WO2014155949A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2014155949A1
WO2014155949A1 PCT/JP2014/000854 JP2014000854W WO2014155949A1 WO 2014155949 A1 WO2014155949 A1 WO 2014155949A1 JP 2014000854 W JP2014000854 W JP 2014000854W WO 2014155949 A1 WO2014155949 A1 WO 2014155949A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
fuel
fuel injection
injection amount
amount
Prior art date
Application number
PCT/JP2014/000854
Other languages
English (en)
French (fr)
Inventor
貴史 西尾
誠 湯浅
健一 竹腰
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to BR112015022256A priority Critical patent/BR112015022256A2/pt
Priority to US14/430,885 priority patent/US20150252772A1/en
Priority to CN201480002513.4A priority patent/CN105074178A/zh
Priority to DE112014000213.5T priority patent/DE112014000213T5/de
Priority to MX2015011260A priority patent/MX345074B/es
Publication of WO2014155949A1 publication Critical patent/WO2014155949A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/045Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • F02D41/083Introducing corrections for particular operating conditions for idling taking into account engine load variation, e.g. air-conditionning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device for an internal combustion engine, and more particularly to a control device for an internal combustion engine capable of using a fuel containing alcohol.
  • a flex-fuel vehicle equipped with an engine capable of using a fuel containing alcohol such as ethanol (sometimes referred to as “Flexible Fuel Vehicle: FFV”) is known. Since alcohol contains oxygen in its molecule, the amount of air to achieve the stoichiometric air-fuel ratio is smaller than that of gasoline. Therefore, the value of the theoretical air-fuel ratio of the alcohol-containing fuel is smaller than that of gasoline (that is, on the rich side). For example, as shown in FIG. 7, the stoichiometric air-fuel ratio of gasoline-only fuel is 14.7, whereas the stoichiometric air-fuel ratio of ethanol-only fuel is 9.0.
  • the theoretical air-fuel ratio of the alcohol-containing fuel varies according to the alcohol concentration. Therefore, in the FFV, the alcohol concentration of the alcohol-containing fuel is detected using an alcohol concentration sensor as disclosed in Patent Document 1 so that any alcohol-containing fuel having any alcohol concentration can be operated at the theoretical air-fuel ratio.
  • E95 ethanol 95% + water 5%
  • E22 ethanol 22% + gasoline 78%)
  • the value of the theoretical air fuel ratio becomes smaller.
  • the alcohol concentration of the fuel in the fuel tank can take various values from time to time because E95 or E22 is poured into the fuel tank by an arbitrary amount every time fuel is supplied. Therefore, even if the alcohol concentration of the fuel in the fuel tank fluctuates, the engine is always operated at the stoichiometric air-fuel ratio, so that the exhaust gas can be purified well with the three-way catalyst. It is important to grasp the properties and inject the fuel at an injection amount and injection timing suitable for the fuel properties.
  • the alcohol concentration of the fuel can be known from the oxygen concentration in the exhaust gas discharged from the combustion chamber, the alcohol concentration of the fuel can be learned based on the oxygen concentration in the exhaust gas detected by the oxygen concentration sensor. it can. As described above, the higher the alcohol concentration, the smaller the amount of air used to achieve the stoichiometric air-fuel ratio.For example, when there is unburned oxygen in the exhaust gas, it is determined that the alcohol concentration of the fuel was higher than expected. The alcohol concentration of the fuel can be learned based on the oxygen concentration in the exhaust gas.
  • the oxygen concentration sensor is not activated unless the exhaust gas temperature is raised to a predetermined temperature (for example, several hundred degrees Celsius). Therefore, if the engine is stopped without the oxygen concentration sensor being activated, refueling is performed on the way and the alcohol concentration of the fuel in the fuel tank fluctuates, but the alcohol concentration is not learned for a long time. Things can happen. In such a case, until the alcohol concentration learning is executed, as the alcohol concentration value, the value obtained by the last executed alcohol concentration learning (that is, the old learned value for which a considerable amount of time has passed as data) Is used as the estimated alcohol concentration.
  • a predetermined temperature for example, several hundred degrees Celsius
  • the alcohol concentration learned value data stored in the memory may disappear.
  • a predetermined value (default value) registered in advance in the program is used as the alcohol concentration estimated value as the alcohol concentration value until learning of the alcohol concentration is executed.
  • the estimated alcohol concentration value is not accurate and is likely to deviate from the actual alcohol concentration. Therefore, when the estimated alcohol concentration is lower than the actual alcohol concentration, the air-fuel ratio of the air-fuel mixture becomes leaner (larger value) than the stoichiometric air-fuel ratio, and when it is higher, it becomes rich (smaller value). Then, after the engine is started, until the oxygen concentration sensor is activated (that is, until the alcohol concentration can be learned), during idle operation (that is, during the period from when the accelerator pedal is depressed until the vehicle starts).
  • the present invention has been made in view of the above situation in an internal combustion engine capable of using an alcohol-containing fuel. Even when the estimated alcohol concentration deviates from the actual alcohol concentration, the engine after the engine is started An object of the present invention is to provide a control device for an internal combustion engine that can suppress the occurrence of stalls and the occurrence of rotational fluctuations.
  • the present invention is a control device for an internal combustion engine capable of using a fuel containing alcohol, and an oxygen concentration sensor provided in an exhaust passage is activated after the engine is started. If the fluctuation amount of the engine speed is equal to or greater than a predetermined threshold during idling until the fuel injection amount is changed from the initial fuel injection amount after starting the engine to the maximum or maximum value of the alcohol concentration of the fuel.
  • the post-startup injection is performed so that the fuel injection amount that has been corrected for increase is repeatedly decreased with a correction range smaller than that during the increase correction until the fluctuation amount becomes less than the threshold value.
  • the present invention also relates to a control device for an internal combustion engine that can use a fuel containing alcohol, and when the engine is started, when the engine is not started with a predetermined number of ignitions, the fuel injection amount is assumed to be the alcohol concentration of the fuel.
  • the starting injection amount increasing means for correcting the increase to the fuel injection amount set when the maximum value or a value close to the maximum value is within a predetermined range, and an oxygen concentration sensor provided in the exhaust passage after the engine is started During idling until the engine is activated, if the fluctuation amount of the engine speed is greater than or equal to a predetermined threshold value, the fuel injection amount that has been corrected to increase is kept within a predetermined correction range until the fluctuation amount becomes less than the threshold value.
  • a control apparatus for an internal combustion engine comprising: post-startup injection amount reduction means for repeatedly reducing the amount of fuel.
  • FIG. 1 is an overall configuration diagram of an engine as an internal combustion engine mounted on an FFV according to an embodiment of the present invention. It is a control system figure of the engine. It is a flowchart of the control which PCM of the said engine performs from the time of engine starting to the idling operation after engine starting. It is explanatory drawing of the fuel-injection timing and ignition timing in the idling operation after starting from the time of the said engine starting. It is a flowchart of the modification of the control of FIG. It is a flowchart of another modification of the control of FIG. It is a correlation diagram of the alcohol concentration and the theoretical air fuel ratio in the alcohol-containing fuel.
  • an engine 1 as an internal combustion engine is a spark ignition type four-cycle engine having a plurality of cylinders 2 (only one is shown in FIG. 1).
  • a cylinder block 4 that rotatably supports the crankshaft 3 a cylinder head 5 disposed above the cylinder block 4, an oil pan 6 disposed below the cylinder block 4, and a cylinder head 5.
  • the outer shape of the engine body is substantially formed by the head cover 7.
  • a piston 9 connected to the crankshaft 3 via a connecting rod 8 is slidably accommodated in each cylinder 2, and a combustion chamber 10 is formed above the piston 9.
  • An injector (corresponding to fuel injection means of the present invention) 11 for directly injecting fuel into the combustion chamber 10 is provided in the cylinder head 5 for opening and closing the spark plug 12 and the intake port 13 on the ceiling wall portion of the combustion chamber 10.
  • the intake valve 14 and the exhaust valve 16 for opening and closing the exhaust port 15 are provided.
  • the intake valve 14 and the exhaust valve 16 are driven to open and close in conjunction with the crankshaft 3 by valve mechanisms 17 and 18 each having a camshaft and a VVT (Variable Valve Timing) mechanism (not shown).
  • the intake passage 20 is connected to the intake port 13, and the exhaust passage 30 is connected to the exhaust port 15.
  • the intake passage 20 is provided with a throttle valve 21 for adjusting the amount of intake air
  • the exhaust passage 30 is provided with a catalyst device 31 for accommodating an unillustrated three-way catalyst for purifying exhaust gas.
  • a starter motor 23 that is driven when the engine 1 is started to perform cranking is provided.
  • the engine 1 according to the present embodiment is an engine that can use a fuel containing ethanol. That is, the vehicle according to the present embodiment is an FFV (flex fuel vehicle). Therefore, the fuel tank 40 is supplied with an ethanol-containing fuel such as E95 (ethanol 95% + water 5% fuel) or E22 (ethanol 22% + gasoline 78% fuel). When refueling, E95 or E22 is poured into the fuel tank 40 by an arbitrary amount, so that the ethanol concentration of the fuel in the fuel tank 40 can take various values at that time. The ethanol-containing fuel in the fuel tank 40 is supplied to the injector 11 through the fuel supply pipe 41 and is directly injected from the injector 11 into the combustion chamber 10.
  • E95 ethanol 95% + water 5% fuel
  • E22 ethanol 22% + gasoline 78% fuel
  • the pressure of the fuel supplied to the injector 11 is set to a relatively high pressure. Therefore, atomization of the fuel injected from the injector 11 is promoted.
  • the geometric compression ratio and the effective compression ratio are set to a relatively high compression ratio. Therefore, for example, when the fuel is directly injected into the combustion chamber 10 in the latter half of the compression stroke at the time of starting the engine 1, the injected fuel is promoted to vaporize in the high-temperature combustion chamber 10, and rich around the spark plug 12. An air-fuel mixture is generated (weak stratification), and the ignition stability is improved in combination with the atomization of fuel.
  • gasoline is a mixture of multiple components having different molecular formulas, whereas alcohol is a single component defined by one molecular formula.
  • gasoline can evaporate and vaporize even at low temperatures due to the presence of low-boiling components.
  • alcohol does not evaporate and evaporate below the boiling point (78.3 ° C for ethanol), so it does not ignite and burn, making it difficult to start the engine. Become.
  • a dedicated sub-tank dedicated to E22 having a low alcohol concentration or a sub-tank dedicated to gasoline, a supply pipe, a fuel rail, and a sub-injector have been provided exclusively for starting the engine.
  • An engine is started using a fuel system.
  • a sub fuel system is provided in addition to the main fuel system (the fuel tank 40, the fuel supply pipe 41, the injector 11, etc.), the hardware is complicated, the cost is increased, and the vehicle weight is increased. .
  • problems to be solved in terms of safety such as the location of the sub tank.
  • the engine 1 instead of providing a sub fuel system dedicated to engine starting, as described above, atomization of fuel droplets injected from the injector 11 into the combustion chamber 10 is attempted, and By increasing the compression ratio to increase the temperature of the combustion chamber 10 when the piston 9 is raised and injecting fuel into the combustion chamber 10 in the latter half of the compression stroke, even in the case of mixed fuel with a high alcohol concentration, The amount of evaporation / vaporization is increased to ensure the startability of the engine 1 (sub tankless system).
  • the engine 1 includes a PCM (Powertrain Control Module) 50.
  • the PCM 50 is a microprocessor composed of a CPU, ROM, RAM, and the like.
  • the PCM 50 is provided in the intake passage 20 and includes an air flow sensor SW1 for detecting the intake air amount, an engine speed sensor SW2 for detecting the engine speed, an engine water temperature sensor SW3 for detecting the engine water temperature, and an exhaust passage.
  • 30 is a linear air-fuel ratio sensor (corresponding to the oxygen concentration sensor of the present invention) SW4 for detecting the oxygen concentration in the exhaust gas, and the presence or absence of the driver's accelerator operation (depressing the accelerator pedal) and the accelerator operation It is electrically connected to an accelerator position sensor SW5 for detecting the amount (depressed amount of the accelerator pedal).
  • the PCM 50 performs start control and normal operation control of the engine 1 on the basis of various information input from the various sensors SW1 to SW5.
  • the engine 1 The air-fuel ratio feedback control is performed using the linear air-fuel ratio sensor SW4 so as to operate at the stoichiometric air-fuel ratio.
  • the PCM 50 performs ethanol concentration learning control that learns the ethanol concentration of the fuel in the fuel tank 40 by using the linear air-fuel ratio sensor SW4 without using, for example, an alcohol concentration sensor.
  • the PCM 50 is electrically connected to the injector 11, the spark plug 12, the throttle valve actuator 22 for driving the throttle valve 21, and the starter motor 23 in order to execute these various controls. Output a control signal to the device.
  • Ethanol concentration learning control The ethanol concentration learning control performed by the PCM 50 is approximately as follows. That is, the relationship between the ethanol concentration of fuel and the stoichiometric air-fuel ratio is uniquely determined. As shown in FIG. 7, for example, when the ethanol concentration is 0% (total gasoline), the theoretical air-fuel ratio is 14.7, and when the ethanol concentration is 100%, the theoretical air-fuel ratio is 9.0. The stoichiometric air-fuel ratio of the fuel with the ethanol concentration in the meantime (over 0% to less than 100%) is 1: 1 on the straight line connecting 14.7 and 9.0. This straight line has a slope such that the theoretical air-fuel ratio decreases by 0.057 every time the ethanol concentration increases by 1%.
  • the fuel injection amount that realizes the theoretical air-fuel ratio X is set by assuming that the ethanol concentration is 50%.
  • the theoretical air-fuel ratio specified based on the information from the linear air-fuel ratio sensor SW4 is X
  • it can be determined that the estimated value is correct actual ethanol concentration is 50%
  • the theoretical air-fuel ratio specified based on the information from the linear air-fuel ratio sensor SW4 is larger than X
  • the theoretical air-fuel ratio specified based on the information from the linear air-fuel ratio sensor SW4 is smaller than X, it can be determined that the actual ethanol concentration is higher than 50% by that small amount (Case C).
  • the PCM 50 obtains the deviation amount of the ethanol concentration by applying the deviation amount of the theoretical air-fuel ratio to the slope of the straight line. Then, the actual ethanol concentration is learned by adding the deviation amount of the ethanol concentration to the initial estimated value (50% in the above example).
  • FIG. 3 is a flowchart of the control performed by the PCM 50 during the idle operation after the engine is started after the engine is started.
  • the ethanol concentration learning control is executed every time refueling is performed, and the learning value is updated. Until the next refueling, for example, the latest ethanol concentration obtained by the ethanol concentration learning control executed most recently (that is, last) is used, for example, air-fuel ratio feedback control, engine 1 start control, idle Operation control or the like is executed.
  • the linear air-fuel ratio sensor SW4 is not activated unless the exhaust gas temperature is raised to several hundred degrees Celsius. For this reason, if the operation in which the engine 1 is stopped without the linear air-fuel ratio sensor SW4 being activated continues, refueling is performed halfway and the ethanol concentration of the fuel in the fuel tank 40 fluctuates, but the ethanol concentration is long. There can be a situation where the period is not learned. In such a case, until the ethanol concentration learning is executed, the PCM 50 uses the value obtained by the ethanol concentration learning control executed last (that is, the old data that has been used for a long time) as the ethanol concentration value. (Learned value) is used as the estimated ethanol concentration.
  • the PCM 50 uses, as the ethanol concentration estimated value, a predetermined value (default value) registered in advance in the program as the ethanol concentration value until the ethanol concentration learning is executed.
  • the estimated ethanol concentration is not accurate and is likely to deviate from the actual ethanol concentration. Therefore, when the estimated ethanol concentration is lower than the actual ethanol concentration, the air-fuel ratio of the air-fuel mixture becomes leaner (larger value) than the stoichiometric air-fuel ratio, and when it is higher, it becomes rich (smaller value). Then, after the engine is started, until the linear air-fuel ratio sensor SW4 is activated (that is, until the ethanol concentration can be learned), the engine is idling (that is, during the period from when the accelerator pedal is depressed until the vehicle starts moving).
  • the fuel injection timing and the ignition timing change accordingly.
  • the combustion mode varies in various ways. If such a variation in the combustion mode occurs when the air-fuel ratio of the air-fuel mixture is leaner than the stoichiometric air-fuel ratio, engine stall is likely to occur, and if it occurs when the air-fuel ratio is rich, the engine 1 Rotational fluctuations are likely to occur.
  • the combustion mixture does not matter whether the air-fuel ratio of the mixture is leaner or richer than the stoichiometric air-fuel ratio.
  • the engine torque fluctuates because the generated torque is not stable.
  • the air-fuel ratio is richer than the stoichiometric air-fuel ratio, the engine rotation continues to fluctuate, whereas when lean, the engine stalls after the engine rotation fluctuates.
  • the flowchart shown in FIG. 3 is a measure that can suppress the occurrence of engine stall and rotation fluctuation after engine startup even when the estimated ethanol concentration deviates from the actual ethanol concentration. It is.
  • the PCM 50 determines whether or not the starter motor 23 is ON in step S1, that is, whether or not the engine 1 is being started.
  • the PCM 50 sets the fuel injection amount at the start using the stored ethanol concentration in step S2.
  • the stored ethanol concentration is usually the latest ethanol concentration obtained by the most recent (ie, last) executed ethanol concentration learning control.
  • the ethanol concentration estimated value (old learning value when not learned for a long time and default value when data disappears) is included.
  • the PCM 50 sets a fuel injection amount that is increased by a predetermined amount from the fuel injection amount that realizes the theoretical air-fuel ratio when the engine 1 is started. That is, when the engine 1 is started, the air-fuel ratio slightly richer than the stoichiometric air-fuel ratio is set as the target air-fuel ratio.
  • the PCM 50 sets a fixed injection timing as the injection timing in step S3, and sets a fixed ignition timing as the ignition timing in step S4.
  • the PCM 50 sets the fuel injection timing (represented by a hatched portion in the figure) in the latter half of the compression stroke when the engine 1 is started, and the ignition timing is a predetermined fixed value. Set to MBT (minimum advance for best torque) just before top dead center.
  • FIG. 4 illustrates the case where the fuel is injected in two stages.
  • the operation in step S3 of the PCM 50 corresponds to the operation as the injection timing setting means of the present invention together with the operation in step S11 described later.
  • the operation in step S4 of the PCM 50 corresponds to the operation as the ignition timing setting means of the present invention together with the operation in step S12 described later.
  • step S5 the PCM 50 determines whether or not the engine 1 has completely exploded, that is, the engine speed specified based on the information from the engine speed sensor SW2 is a predetermined speed (the engine 1 has started to rotate on its own). It is determined whether or not the engine speed has increased to a possible number of revolutions). If the result is YES, the process proceeds to step S9. If the result is NO, the process proceeds to step S6.
  • step S6 the PCM 50 determines whether or not ignition has been performed a predetermined number of times or more. As a result, when the result is NO, the process returns to step S5. When the result is YES, the process proceeds to step S7.
  • step S7 the PCM 50 determines whether or not the ethanol concentration E is equal to or higher than the upper threshold Emax (E ⁇ Emax). As a result, if YES, the process returns to step S5 to continue the start control, and if NO, the process proceeds to step S8.
  • step S8 the PCM 50 increases the fuel injection amount (set in step S2) by a predetermined amount. That is, the ethanol concentration used to set the fuel injection amount at the start in step S2 is shifted to a higher concentration side by a predetermined concentration, and the fuel injection amount at the start is changed using the ethanol concentration shifted to the higher concentration side. It is set again. In this case, the fuel injection amount that realizes the target air-fuel ratio at the time of starting is increased by the amount of shift of the ethanol concentration to the high concentration side.
  • the PCM 50 returns from step S8 to step S5 and repeats the complete explosion determination (steps S5 to S8). That is, in steps S5 to S8, the PCM 50 repeatedly shifts the ethanol concentration to the high concentration side until the ethanol concentration E becomes equal to or higher than the upper limit side threshold value Emax.
  • the engine 1 according to the present embodiment employs a sub-tankless system, and even if the mixed fuel has a high ethanol concentration, the amount of evaporation / vaporization in the combustion chamber 10 increases, and the engine 1 is started. Therefore, normally, the engine 1 completes explosion while the ethanol concentration E is less than the upper threshold Emax.
  • step S7 when it is determined in step S7 that the ethanol concentration E is equal to or higher than the upper threshold Emax, but it is determined in step S5 that the engine 1 has not completely exploded, the PCM 50 performs fuel injection at that time.
  • the intake amount and ignition timing other than the fuel injection control are controlled to promote complete explosion.
  • the maximum value of the ethanol concentration of the fuel is 95% (E95). That is, the upper limit side threshold value Emax used as the determination threshold value in step S7 is a value close to the maximum value (95%) within a predetermined range (for example, within a range of 15%). The reason why the individual threshold value is used as the determination threshold value in step S7 without using 95% which is the maximum value of the ethanol concentration of the fuel is that it is considered that even if 95% does not complete explosion, complete explosion does not occur. It is.
  • the PCM 50 updates the stored ethanol concentration based on the fuel injection amount at the start in step S9. That is, the ethanol concentration used to set the fuel injection amount at the start in step S2 is the ethanol concentration when it is determined in step S5 that the engine 1 has completely exploded (completed without going through steps S7 and S8).
  • the ethanol concentration used in step S2 is rewritten, and when detonated completely via steps S7 and S8, the ethanol concentration obtained by shifting to the high concentration side in step S8 is finally rewritten.
  • step S10 the PCM 50 sets the fuel injection amount after startup using the updated ethanol concentration.
  • the PCM 50 sets the fuel injection amount that realizes the theoretical air-fuel ratio. That is, after the engine 1 is started, the theoretical air fuel ratio is set to the target air fuel ratio.
  • step S11 the PCM 50 sets the fuel injection timing after the start as the injection timing, and in step S12, the engine water temperature and external load (for example, on / off of the air conditioner) specified based on the information from the engine water temperature sensor SW3. Etc.) and set the ignition timing after starting.
  • the engine water temperature and external load for example, on / off of the air conditioner
  • the PCM 50 shifts to an idle operation after the engine 1 is started.
  • the AWS is turned on. After the operation, it shifts to normal idle operation.
  • the PCM 50 advances the fuel injection timing from the time when the engine 1 is started, and sets the second half of the intake stroke (first stage) and the second half of the compression stroke (second stage).
  • the PCM 50 significantly retards the ignition timing beyond the compression top dead center during the operation of the AWS.
  • the retard amount of the ignition timing is variably determined according to the engine water temperature and the external load.
  • the PCM 50 advances the fuel injection timing from the start of the engine 1 and sets it in the first half of the intake stroke (collective injection). Further, during normal idle operation, the PCM 50 sets the ignition timing to a predetermined idle ignition timing that is before the compression top dead center but after the MBT.
  • the ignition timing for idling is also variably determined according to the engine water temperature and the external load.
  • step S13 the PCM 50 determines whether or not the fluctuation amount ⁇ N of the engine speed is greater than or equal to a predetermined threshold value ⁇ N1 ( ⁇ N ⁇ ⁇ N1). As a result, when the result is NO, the control is terminated, and when the result is YES, the process proceeds to step S14.
  • step S14 the PCM 50 sets the ethanol concentration updated in step S9 to a high concentration value (upper limit threshold Emax), and uses the ethanol concentration set to this high concentration value to start the initial fuel injection amount (step S10).
  • the fuel injection amount that realizes the target air-fuel ratio (theoretical air-fuel ratio) after the start is increased from the fuel injection amount set in step S10 by the amount that the ethanol concentration is set to a high concentration value.
  • the operation of step S14 of the PCM 50 corresponds to the operation as the post-startup injection amount increasing means of the present invention.
  • the maximum value of the ethanol concentration of the fuel is 95% (E95). That is, the upper threshold value Emax set as the high density value in step S14 is a value close to the maximum value (95%) within a predetermined range (for example, within a range of 15%).
  • the upper limit side threshold value Emax is used without using 95%, which is the maximum value of the ethanol concentration of the fuel, as the high concentration value, even if the upper limit side threshold value Emax does not suppress the rotational fluctuation of the engine 1 even if 95%. It is because it is considered that it is not suppressed.
  • step S15 the PCM 50 determines again whether or not the engine speed fluctuation amount ⁇ N is equal to or greater than a predetermined threshold value ⁇ N1 ( ⁇ N ⁇ ⁇ N1). As a result, if NO, the process proceeds to step S16, and if YES, the process proceeds to step S17.
  • step S16 the PCM 50 uses the ethanol concentration (upper limit side threshold Emax) updated in step S14 to set the fuel injection amount after the subsequent start, and this control is completed.
  • step S17 the PCM 50 determines whether the ethanol concentration E is equal to or lower than the lower threshold Emin (E ⁇ Emin). As a result, when the determination is YES, the control is terminated, and when the determination is NO, the process proceeds to step S18.
  • step S18 the PCM 50 reduces the fuel injection amount (set in step S14) by a predetermined amount. That is, the ethanol concentration (upper limit threshold Emax) used to set the fuel injection amount after start in step S14 is shifted to a low concentration side by a predetermined concentration, and the start is performed using the ethanol concentration shifted to the low concentration side. The subsequent fuel injection amount is reset. In that case, the fuel injection amount that realizes the target air-fuel ratio after the start is reduced by the amount of shift of the ethanol concentration to the low concentration side.
  • the operation of the PCM 50 in step S18 corresponds to the operation as the post-startup injection amount reducing means of the present invention.
  • the PCM 50 returns from Step S18 to Step S15, and repeats the determination (Steps S15, S17, S18) of whether or not the rotational fluctuation of the engine 1 is suppressed. That is, the PCM 50 repeats the shift of the ethanol concentration to the low concentration side in steps S15, S17, and S18 until the ethanol concentration E becomes equal to or lower than the lower limit side threshold value Emin.
  • the generated torque for each combustion is the same regardless of whether the air-fuel ratio of the air-fuel mixture is leaner or richer than the stoichiometric air-fuel ratio. Since it is not stable, rotational fluctuation of the engine 1 occurs.
  • step S14 the ethanol concentration is shifted to a higher concentration side and the fuel injection amount is increased and corrected.
  • step S15 since the rotational fluctuation of the engine 1 is not suppressed (YES in step S15), next, the ethanol concentration in step S18. Since the fuel injection amount is corrected to decrease by shifting the fuel injection amount to the low concentration side, usually, the rotation fluctuation of the engine 1 is suppressed while the ethanol concentration E is higher than the lower limit side threshold value Emin. Therefore, when it is determined in step S17 that the ethanol concentration E is equal to or lower than the lower limit threshold Emin, but in step S15, it is determined that the rotational fluctuation of the engine 1 is not suppressed, the PCM 50 Fuel injection at the ethanol concentration at the time is continued. On the other hand, although not shown in FIG. 3, other than fuel injection control, for example, intake air amount, ignition timing, and the like are controlled to promote suppression of rotational fluctuation.
  • the minimum value of the ethanol concentration of the fuel is 22% (E22). That is, the lower limit side threshold value Emin used as the determination threshold value in step S17 is a value close to the lowest value (22%) within a predetermined range (for example, within a range of 15%).
  • the reason why the lower limit side threshold value Emin is used as the determination threshold value in step S17 without using 22% which is the minimum value of the ethanol concentration of the fuel is that even if the rotation fluctuation of the engine 1 is not suppressed by the lower limit side threshold value Emin, even 22% is suppressed. It is because it is considered if it is not done.
  • step S15 When it is determined in step S15 that the rotational fluctuation of the engine 1 is suppressed, the PCM 50 proceeds to step S16, sets the fuel injection amount after the start using the ethanol concentration updated in step S18, and this Control ends.
  • step S18 is repeated as long as it is determined YES in step S15 until the ethanol concentration E becomes equal to or lower than the lower limit side threshold Emin.
  • the fuel injection amount increase correction in step S14 is performed once. Therefore, the PCM 50 performs the decrease correction in step S18 with a correction width smaller than the correction width in the increase correction in step S14.
  • the fuel injection amount is determined from the initial fuel injection amount after engine startup (the fuel injection amount set in step S10) and the ethanol concentration. Is corrected to increase once in the amount up to the fuel injection amount set when the upper limit side threshold Emax is set (step S14).
  • step S15 If the variation amount ⁇ N of the engine speed is still greater than the threshold value ⁇ N1 (YES in step S15), Until the fluctuation amount ⁇ N becomes less than the threshold value ⁇ N1 (NO in step S15), the fuel injection amount corrected in the increase amount (the fuel injection set in step S14). The amount) repeatedly reducing correction with a smaller compensation range than when the increasing correction (step S15, S17, S18) is intended.
  • FIG. 5 is a flowchart of a modification of the control of FIG.
  • the fuel injection amount increase correction is performed once in step S14 in the control example 1, whereas the fuel injection amount increase correction is performed multiple times in steps S34 to S36.
  • This is different from the control example 1 in that it is performed separately.
  • steps S21 to S32 in FIG. 5 are the same as steps S1 to S12 in FIG. 3, so steps S33 to S40 will be described.
  • step S33 the PCM 50 determines whether or not the engine speed fluctuation amount ⁇ N is equal to or greater than a predetermined threshold value ⁇ N1 ( ⁇ N ⁇ ⁇ N1). As a result, when the result is NO, the control is terminated, and when the result is YES, the process proceeds to step S34.
  • step S34 the PCM 50 determines whether or not the ethanol concentration E is equal to or higher than the upper threshold Emax (E ⁇ Emax). As a result, if YES, the process proceeds to step S38, and if NO, the process proceeds to step S35.
  • step S35 the PCM 50 increases the fuel injection amount (set in step S30) by a predetermined amount. That is, the ethanol concentration (updated in step S29) used to set the initial fuel injection amount after the start in step S30 is shifted to a high concentration side by a predetermined concentration, and the ethanol concentration shifted to the high concentration side is changed. It is used to reset the fuel injection amount after starting. In this case, the fuel injection amount that realizes the target air-fuel ratio (theoretical air-fuel ratio) after the start is greater than the initial fuel injection amount after the start set in step S30 by the amount that the ethanol concentration is shifted to the high concentration side. The amount is increased.
  • the operation in step S35 of the PCM 50 corresponds to the operation as the post-startup injection amount increasing means of the present invention.
  • step S36 the PCM 50 determines again whether or not the fluctuation amount ⁇ N of the engine speed is equal to or greater than a predetermined threshold value ⁇ N1 ( ⁇ N ⁇ ⁇ N1). If the result is NO, the process proceeds to step S37, and if YES, the process returns to step S34.
  • step S37 the PCM 50 sets the fuel injection amount after the subsequent start using the ethanol concentration updated in step S35, and this control ends.
  • the PCM 50 that has returned to step S34 repeats the determination (steps S34 to S36) as to whether or not the rotational fluctuation of the engine 1 has been suppressed. That is, the PCM 50 repeats the shift of the ethanol concentration to the high concentration side in steps S34 to S36 until the ethanol concentration E becomes equal to or higher than the upper limit side threshold value Emax. If it is determined in step S34 that the ethanol concentration E is equal to or greater than the upper threshold Emax (E ⁇ Emax), the PCM 50 proceeds to step S38.
  • step S38 the PCM 50 reduces the fuel injection amount (set in step S35) by a predetermined amount. That is, the ethanol concentration (updated in step S35) used to set the fuel injection amount after starting in step S35 is shifted to a low concentration side by a predetermined concentration, and the ethanol concentration shifted to the low concentration side is used. Then, the fuel injection amount after starting is reset. In that case, the fuel injection amount that realizes the target air-fuel ratio (theoretical air-fuel ratio) after the start is reduced by the amount that the ethanol concentration is shifted to the lower concentration side than the fuel injection amount after the start set in step S35. It is done.
  • the operation in step S38 of the PCM 50 corresponds to the operation as the post-startup injection amount reducing means of the present invention.
  • step S39 the PCM 50 determines again whether or not the fluctuation amount ⁇ N of the engine speed is greater than or equal to a predetermined threshold value ⁇ N1 ( ⁇ N ⁇ ⁇ N1). As a result, if NO, the process proceeds to step S37, and if YES, the process proceeds to step S40.
  • step S37 the PCM 50 sets the fuel injection amount after the start using the ethanol concentration updated in step S38, and the control ends.
  • step S40 the PCM 50 determines whether or not the ethanol concentration E is equal to or lower than the lower threshold Emin (E ⁇ Emin). As a result, when the determination is YES, the control is terminated, and when the determination is NO, the process returns to step S38.
  • the PCM 50 that has returned to step S38 repeats the determination (steps S38 to S40) as to whether or not the rotational fluctuation of the engine 1 has been suppressed. That is, in steps S38 to S40, the PCM 50 repeatedly shifts the ethanol concentration to the low concentration side until the ethanol concentration E becomes equal to or lower than the lower limit side threshold Emin. As described above, due to the inaccuracy of the estimated ethanol concentration value, the generated torque for each combustion is the same regardless of whether the air-fuel ratio of the air-fuel mixture is leaner or richer than the stoichiometric air-fuel ratio. Since it is not stable, rotational fluctuation of the engine 1 occurs.
  • step S35 the ethanol concentration is shifted to a higher concentration side and the fuel injection amount is increased and corrected.
  • the ethanol concentration is then determined in step S38. Since the fuel injection amount is corrected to decrease by shifting the fuel injection amount to the low concentration side, usually, the rotation fluctuation of the engine 1 is suppressed while the ethanol concentration E is higher than the lower limit side threshold value Emin.
  • step S40 when it is determined in step S40 that the ethanol concentration E is equal to or lower than the lower threshold Emin, but in step S39 it is determined that the rotational fluctuation of the engine 1 is not suppressed, the PCM 50 Fuel injection at the ethanol concentration at the time is continued, but on the other hand, although not shown in FIG. 5, other than the fuel injection control, for example, the intake air amount, the ignition timing, and the like are controlled, and the suppression of the rotational fluctuation is promoted.
  • the fuel injection amount is determined from the initial fuel injection amount after engine startup (the fuel injection amount set in step S30) and the ethanol concentration. Is increased in multiple increments until the fuel injection amount set when the value is the upper limit side threshold Emax (steps S34 to S36). If the engine rotational speed fluctuation amount ⁇ N is still greater than or equal to the threshold value ⁇ N1 (step S36). Until the fluctuation amount ⁇ N becomes less than the threshold value ⁇ N1 (NO in step S39), the fuel injection amount corrected for the increase (step S35). Set the fuel injection amount) repeatedly decreasing correction (steps S38 ⁇ S40) are those.
  • FIG. 6 is a flowchart of another modification of the control of FIG.
  • step S14 the fuel injection amount increase correction is performed after the engine 1 is started in step S14, whereas the fuel injection amount increase correction is performed in step S58.
  • step S58 This is different from the control example 1 in that it is performed at the time of starting.
  • steps S51 to S57 and S59 to S62 in FIG. 6 are the same as steps S1 to S7 and S9 to S12 in FIG. 3, so steps S58 and S63 to S66 will be described.
  • step S58 the PCM 50 increases the fuel injection amount (set in step S52) by a predetermined amount. That is, the ethanol concentration used for setting the fuel injection amount at the start in step S52 is shifted to the upper limit side threshold Emax, and the fuel injection amount at the start is reset using the ethanol concentration of the upper limit side threshold Emax. It is. In this case, the fuel injection amount that realizes the target air-fuel ratio at the time of starting is increased by the amount that the ethanol concentration is shifted to the upper limit side threshold value Emax.
  • the operation of the PCM 50 in step S58 corresponds to the operation as the starting injection amount increasing means of the present invention.
  • step S63 the PCM 50 determines whether or not the engine speed fluctuation amount ⁇ N is equal to or greater than a predetermined threshold value ⁇ N1 ( ⁇ N ⁇ ⁇ N1). As a result, if NO, the process proceeds to step S64, and if YES, the process proceeds to step S65.
  • step S64 the PCM 50 sets the fuel injection amount after the start using the ethanol concentration updated in step S59, and this control is completed.
  • the PCM 50 reduces the fuel injection amount (set in step S60) by a predetermined amount in step S65. That is, the ethanol concentration used to set the initial fuel injection amount after start-up in step S60 (updated in step S59) is shifted to a low concentration side by a predetermined concentration, and the ethanol concentration shifted to the low concentration side is changed. It is used to reset the fuel injection amount after starting. In this case, the fuel injection amount that realizes the target air-fuel ratio (theoretical air-fuel ratio) after the start is equal to the initial fuel injection amount after the start set in step S60 by the amount that the ethanol concentration is shifted to the low concentration side. The amount is reduced by a predetermined correction width.
  • the operation of the PCM 50 in step S65 corresponds to the operation as the post-startup injection amount reducing means of the present invention.
  • step S66 the PCM 50 determines whether or not the ethanol concentration E is equal to or lower than the lower threshold Emin (E ⁇ Emin). As a result, when the determination is YES, the control is terminated, and when the determination is NO, the process returns to step S63.
  • the PCM 50 that has returned to step S63 repeats the determination (steps S63, S65, and S66) as to whether or not the rotational fluctuation of the engine 1 has been suppressed. That is, the PCM 50 repeats the shift of the ethanol concentration to the low concentration side until the ethanol concentration E becomes equal to or lower than the lower limit side threshold value Emin in steps S63, S65, and S66.
  • the generated torque for each combustion is the same regardless of whether the air-fuel ratio of the air-fuel mixture is leaner or richer than the stoichiometric air-fuel ratio. Since it is not stable, rotational fluctuation of the engine 1 occurs.
  • step S58 when the engine 1 is started, the ethanol concentration is shifted to the upper limit side threshold value Emax to correct the fuel injection amount.
  • step S65 since the ethanol concentration is shifted to the low concentration side and the fuel injection amount is corrected to decrease after the engine 1 is started, normally, while the ethanol concentration E exceeds the lower limit side threshold Emin, the engine 1 Rotational fluctuation is suppressed.
  • step S66 when it is determined in step S66 that the ethanol concentration E is equal to or lower than the lower limit threshold Emin, but in step S63, it is determined that the rotational fluctuation of the engine 1 is not suppressed, the PCM 50 Fuel injection at the ethanol concentration at the time is continued.
  • the fuel injection control for example, the intake air amount, the ignition timing, and the like are controlled, and the suppression of the rotational fluctuation is promoted.
  • the control example 3 shown in FIG. 6 is set using the fuel injection amount (stored ethanol concentration) set in step S52 when the engine 1 is started (steps S51 to S58). If the engine does not start with a predetermined number of ignitions (YES in step S56), the fuel injection amount is increased to the fuel injection amount set when the ethanol concentration is the upper threshold Emax. (Step S58), after the engine 1 is started (after Step S59), during idle operation until the linear air-fuel ratio sensor SW4 provided in the exhaust passage 30 is activated, the fluctuation amount ⁇ N of the engine speed is a predetermined threshold value.
  • step S63 When ⁇ N1 or more (YES in step S63), the increase correction is performed until the fluctuation amount ⁇ N becomes less than the threshold value ⁇ N1 (NO in step S63).
  • Fuel injection quantity fuel injection quantity set in step S58
  • step S65, S66 Fuel injection quantity
  • the following characteristic configuration is adopted in the control device of the engine 1 as an internal combustion engine capable of using a fuel containing ethanol.
  • the fuel injection amount is assumed to be the upper limit side threshold Emax from the initial fuel injection amount after engine startup (the fuel injection amount set in steps S10 and S30). In this case, the fuel injection amount is set to the fuel injection amount that is set (steps S14, S34 to S36).
  • the fuel injection amount is corrected to the decrease side. Therefore, when the air-fuel ratio is richer than the stoichiometric air-fuel ratio, the air-fuel ratio becomes the stoichiometric air-fuel ratio. As the fuel ratio is approached, fluctuations in the rotation of the engine 1 are suppressed. That is, the engine stall, which has a specific disadvantage that it is difficult for the FFV to start the engine 1, is preferentially avoided, and the rotational fluctuation of the engine 1 is also suppressed.
  • the engine 1 that can use the ethanol-containing fuel, even when the estimated ethanol concentration deviates from the actual ethanol concentration, the occurrence of engine stall after the start of the engine 1 and A control device for engine 1 that can suppress the occurrence of rotational fluctuation is provided.
  • the PCM 50 corrects the fuel injection amount to the fuel injection amount that is set when the alcohol concentration of the fuel is the upper limit side threshold value Emax at the time of fuel injection amount increase correction. As a result, the engine stall is surely avoided.
  • the PCM 50 repeatedly performs a decrease correction with a correction range smaller than that during the increase correction when the fuel injection amount is corrected to decrease, so that the fuel injection amount is decreased stepwise. Therefore, such a problem that the fuel injection amount is greatly reduced at a stretch, the air-fuel ratio becomes lean, and engine stall occurs is suppressed.
  • the PCM 50 performs the increase correction of the fuel injection amount in one time (Step S14 in Control Example 1).
  • the PCM 50 performs the increase correction of the fuel injection amount in a plurality of times (Steps S34 to S36 in Control Example 2).
  • the fuel injection amount when the fuel injection amount is corrected to increase, the fuel injection amount is increased stepwise. Therefore, when the air-fuel ratio is leaner than the stoichiometric air-fuel ratio, the air-fuel ratio exceeds the stoichiometric air-fuel ratio and is rich.
  • the increase correction of the fuel injection amount can be stopped when the air-fuel ratio approaches the stoichiometric air-fuel ratio. Further, even when the air-fuel ratio exceeds the stoichiometric air-fuel ratio, it does not become excessively rich, and therefore, when the fuel injection amount is corrected to be reduced (steps S38 to S40), the rotational fluctuation of the engine 1 can be suppressed in a short time.
  • the PCM 50 sets the fuel injection timing by the injector 11 that injects fuel into the combustion chamber 10 in the latter half of the compression stroke when the engine 1 is started (steps S3, S23, S53). ) After the engine 1 is started, the fuel injection timing is advanced from the time when the engine 1 is started (steps S11, S31, S61). Similarly, as shown in FIG. 4, the PCM 50 sets the ignition timing to a predetermined fixed value MBT when the engine 1 is started (steps S4, S24, S54). The ignition timing is variably controlled according to the engine water temperature and the external load (steps S12, S32, S62).
  • the PCM 50 does not start with a predetermined number of ignitions (YES in step S56), more specifically, the fuel injection amount set in step S52, that is, normal The latest ethanol concentration obtained by the most recent (ie, last) ethanol concentration learning control, the old learning value when ethanol concentration learning is not performed for a long period of time, or the default value when data is lost.
  • the fuel injection amount at the time of start set using the estimated ethanol concentration value of the fuel cell, and when the engine is not started with ignition more than a predetermined number of times (YES in step S56), the fuel injection amount is assumed to be the upper limit threshold value.
  • the amount of fuel injection is corrected to the fuel injection amount set when Emax is set (step S58), and after the engine 1 is started (step S58). 59 and after), during the idling operation until the linear air-fuel ratio sensor SW4 is activated, when the fluctuation amount ⁇ N of the engine speed is greater than or equal to a predetermined threshold value ⁇ N1 (YES in step S63), the fluctuation amount ⁇ N is equal to the threshold value ⁇ N1.
  • the fuel injection amount that has been corrected to increase (the fuel injection amount set in step S58) is repeatedly decreased and corrected within a predetermined correction range (NO in step S63) (steps S63, S65, and S66).
  • the engine 1 in addition to the above-described operation, the engine 1 can be started reliably, the start time of the engine 1 can be shortened, and fluctuations in the rotation of the engine can be suppressed in a short time after the engine 1 is started. Is played.
  • the ethanol-containing fuel is used as the alcohol-containing fuel.
  • the present invention is not limited to this, and for example, a methanol-containing fuel, a butanol-containing fuel, a propanol-containing fuel, or the like may be used.
  • the present invention relates to a control device for an internal combustion engine capable of using a fuel containing alcohol, and the engine speed is controlled during idle operation after the engine is started until the oxygen concentration sensor provided in the exhaust passage is activated.
  • the fuel injection amount is assumed to be the maximum value of fuel or the value close to the maximum value within a predetermined range from the initial fuel injection amount after engine startup
  • the start-up injection amount increasing means for correcting the increase to the fuel injection amount set to, and after the increase correction of the fuel injection amount by the post-start-up injection amount increasing means, when the fluctuation amount of the engine speed is not less than the threshold value
  • a post-startup injection amount reduction means for repeatedly reducing the amount of fuel injection that has been corrected to increase until the fluctuation amount is less than the threshold value, with a correction range smaller than that during the increase correction.
  • the control apparatus for an internal combustion engine to be.
  • the fuel injection amount is corrected to the increase side, and if the variation amount of the engine speed is still greater than or equal to the threshold value, the fuel injection amount is corrected to the decrease side.
  • the generated torque for each combustion is not stable even when the air-fuel ratio of the mixture is leaner or richer than the stoichiometric air-fuel ratio.
  • the rotation fluctuates greatly.
  • the fuel injection amount is corrected to increase and the air / fuel ratio leaner than the stoichiometric air / fuel ratio is corrected to the rich side, or conversely, the fuel injection amount is corrected to decrease.
  • the air-fuel ratio that is richer than the stoichiometric air-fuel ratio may be corrected to the lean side.
  • the oxygen concentration sensor is not activated now and the alcohol concentration cannot be learned, it is not known whether the air-fuel ratio is leaner or richer than the stoichiometric air-fuel ratio. If the air-fuel ratio is leaner than the stoichiometric air-fuel ratio and the fuel injection amount is corrected to decrease, fuel shortage causes engine stall.
  • the fuel injection amount is corrected to the increase side. If the fuel injection amount is corrected to increase, when the air-fuel ratio is leaner than the stoichiometric air-fuel ratio, the engine air-fuel ratio approaches the stoichiometric air-fuel ratio while avoiding engine stall, which makes engine startup difficult, and engine rotation fluctuations occur. It can be suppressed. On the other hand, even when the air-fuel ratio is richer than the stoichiometric air-fuel ratio, it is possible to avoid a serious engine stall. If the engine rotation still fluctuates greatly after the fuel injection amount increase correction, the fuel injection amount is corrected to the decrease side.
  • the air-fuel ratio when the air-fuel ratio is richer than the stoichiometric air-fuel ratio, the air-fuel ratio becomes the stoichiometric air-fuel ratio.
  • the fuel ratio approaches, engine rotation fluctuations are suppressed. That is, the present invention preferentially avoids engine stall, which has a specific disadvantage that it is difficult for the FFV to start the engine, and also suppresses engine rotation fluctuations.
  • a control device for an internal combustion engine capable of suppressing generation is provided.
  • the fuel injection amount set when the alcohol concentration of the fuel is the maximum value, or a value close to the maximum value within a predetermined range. Therefore, the fuel injection amount is increased to the maximum and the occurrence of engine stall is surely avoided.
  • the amount of fuel injection is decreased stepwise, because the amount of fuel injection is repeatedly corrected with a smaller correction range than when increasing the fuel amount. Therefore, such a problem that the fuel injection amount is greatly reduced at a stretch, the air-fuel ratio becomes lean, and engine stall occurs is suppressed.
  • the post-startup injection amount increasing means performs the fuel injection amount increase correction at a time.
  • the post-startup injection amount increasing means performs the fuel injection amount increase correction in a plurality of times.
  • the fuel injection amount when the fuel injection amount is corrected to increase, the fuel injection amount is increased stepwise. Therefore, when the air-fuel ratio is leaner than the stoichiometric air-fuel ratio, the air-fuel ratio exceeds the stoichiometric air-fuel ratio and is rich. The increase correction of the fuel injection amount can be stopped when the air-fuel ratio approaches the stoichiometric air-fuel ratio. Further, even when the air-fuel ratio exceeds the stoichiometric air-fuel ratio, the engine does not become excessively rich, and therefore, engine rotation fluctuations can be suppressed in a short time when the fuel injection amount is reduced.
  • a fuel injection means for injecting fuel into the combustion chamber, and a fuel injection timing by the fuel injection means is set in the latter half of the compression stroke when the engine is started, and after the engine is started, it is advanced more than when the engine is started.
  • an ignition timing setting means for setting the ignition timing to a predetermined fixed value when the engine is started and variably controlling the ignition timing according to the water temperature and the external load after the engine is started.
  • the present invention also relates to a control device for an internal combustion engine that can use a fuel containing alcohol, and when the engine is started, when the engine is not started with a predetermined number of ignitions, the fuel injection amount is assumed to be the alcohol concentration of the fuel.
  • the starting injection amount increasing means for correcting the increase to the fuel injection amount set when the maximum value or a value close to the maximum value is within a predetermined range, and an oxygen concentration sensor provided in the exhaust passage after the engine is started During idling until the engine is activated, if the fluctuation amount of the engine speed is greater than or equal to a predetermined threshold value, the fuel injection amount that has been corrected to increase is kept within a predetermined correction range until the fluctuation amount becomes less than the threshold value.
  • a control apparatus for an internal combustion engine comprising: post-startup injection amount reduction means for repeatedly reducing the amount of fuel.
  • the fuel injection amount is first corrected to the increase side and then corrected to the decrease side. The difference is that the correction is performed when the engine is started, and after the engine is started, only the fuel injection amount reduction is corrected.
  • the engine in addition to the operations similar to those of the first aspect, the engine can be started reliably, the engine start time can be shortened, and the engine rotation fluctuation can be suppressed in a short time after the engine is started. Is played.
  • the present invention can suppress the occurrence of engine stall and the occurrence of rotational fluctuation after engine start even when the estimated alcohol concentration deviates from the actual alcohol concentration. This contributes to the development and improvement of FFV technology in which the alcohol concentration of the fuel in the fuel tank changes variously.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 アルコール含有燃料が使用可能な内燃機関において、エンジン始動後のエンジンストール及び回転変動を抑制するため、PCM(50)は、エンジン始動後、リニア空燃比センサ(SW4)が活性化するまでのアイドル運転中、エンジン回転数センサ(SW2)で検出されるエンジン回転数の変動量が閾値以上のときは、インジェクタ(11)からの燃料噴射量を、エンジン始動後当初の燃料噴射量から、仮に燃料のアルコール濃度が最高値又は最高値に所定の範囲内で近い値であるとした場合に設定される燃料噴射量まで増量補正し、燃料噴射量の増量補正後、エンジン回転数センサ(SW2)で検出されるエンジン回転数の変動量が閾値以上のときは、前記変動量が前記閾値未満になるまで、増量補正した燃料噴射量を増量補正時よりも小さい補正幅で繰り返し減量補正する。

Description

内燃機関の制御装置
 本発明は、内燃機関の制御装置に関し、詳しくは、アルコールを含有する燃料の使用が可能な内燃機関の制御装置に関する。
 従来、石油消費の削減等のため、エタノール等のアルコールを含有する燃料の使用が可能なエンジンを搭載したフレックス燃料自動車(Flexible Fuel Vehicle:FFVと記す場合がある)が知られている。アルコールは分子中に酸素を含むため、理論空燃比を実現するための空気量がガソリンに比べて少なくなる。そのため、アルコール含有燃料の理論空燃比の値はガソリンの理論空燃比の値よりも小さくなる(すなわちリッチ側にある)。例えば、図7に示すように、ガソリンのみの燃料の理論空燃比が14.7であるのに対し、エタノールのみの燃料の理論空燃比は9.0である。そして、アルコール含有燃料の理論空燃比はアルコール濃度に応じて変動する。そのため、FFVでは、どのようなアルコール濃度のアルコール含有燃料でも理論空燃比で運転できるように、特許文献1に開示されるようなアルコール濃度センサを用いてアルコール含有燃料のアルコール濃度が検出される。
 例えば、E95と称されるアルコール含有燃料(エタノール95%+水5%)を使用するときは、E22と称されるアルコール含有燃料(エタノール22%+ガソリン78%)を使用するときに比べて、理論空燃比の値が小さくなる。燃料タンク内の燃料のアルコール濃度は、給油のたびにE95又はE22が任意の量だけ燃料タンクに注がれるから、そのときどきで様々な値を取り得る。したがって、たとえ燃料タンク内の燃料のアルコール濃度が変動しても、常に理論空燃比でエンジンを運転し、排気ガスを三元触媒で良好に浄化することができるように、現在使用中の燃料の性状を把握し、その燃料性状に適した噴射量や噴射時期で燃料を噴射することが重要となる。
特開平5-60003号公報(段落0008)
 ところで、アルコール濃度センサを備えると、ハード面の複雑化及びコスト面の上昇を招く。そこで、アルコール濃度センサを備える代わりに、空燃比のフィードバック制御用に排気通路に備えられる酸素濃度センサ(特にリニア空燃比センサ)を利用して、アルコール含有燃料のアルコール濃度を学習することが提案される。
 すなわち、燃料のアルコール濃度は、燃焼室から排出される排気ガス中の酸素濃度から分かるので、前記酸素濃度センサで検出される排気ガス中の酸素濃度に基いて燃料のアルコール濃度を学習することができる。前述のように、アルコール濃度が高いほど理論空燃比を実現するための空気量が減少するから、例えば、排気ガス中に燃え残りの酸素があるときは燃料のアルコール濃度が予想よりも高かったと判断でき、排気ガス中の酸素濃度に基いて燃料のアルコール濃度を学習することができる。
 ここで、前記酸素濃度センサは、排気ガス温で所定の温度(例えばセ氏数百度)まで昇温されなければ活性化しない。そのため、酸素濃度センサが活性化しないままエンジンが停止される運転が続くと、途中で給油が行われて燃料タンク内の燃料のアルコール濃度が変動しているのにアルコール濃度が長期間学習されないという事態が起こり得る。このような場合、アルコール濃度の学習が実行されるまでは、アルコール濃度の値として、最後に実行されたアルコール濃度の学習で得られた値(つまりデータとしてかなり時間が経っている古い学習値)がアルコール濃度推定値として用いられる。
 あるいは、FFVからバッテリが取り外されると、メモリに格納していたアルコール濃度の学習値のデータが消えるという事態が起こり得る。このような場合、アルコール濃度の学習が実行されるまでは、アルコール濃度の値として、予めプログラムに登録された既定値(デフォルト値)がアルコール濃度推定値として用いられる。
 いずれにしても、前記アルコール濃度推定値は正確なものではなく、実際のアルコール濃度と乖離している可能性が高い。そのため、アルコール濃度推定値が実際のアルコール濃度よりも低い場合は、混合気の空燃比が理論空燃比よりもリーン(大きい値)になり、高い場合は、リッチ(小さい値)になる。そして、エンジン始動後において、酸素濃度センサが活性化するまで(すなわちアルコール濃度の学習が実行可能となるまで)のアイドル運転中(すなわちアクセルペダルが踏み込まれて車両が発進するまでの期間中)に、例えば、エアコンがオン・オフされたり、排気通路に備えられる触媒装置の早期活性化を図るためのAWS(accelerated warm-up system)と称されるシステムが作動すると、それに伴い、燃料噴射時期及び点火時期が様々に変化し、またそれにより、燃焼形態も様々に変動する。このような燃焼形態の変動は、エンジンの回転変動やエンジンストールにつながる。
 本発明は、アルコール含有燃料の使用が可能な内燃機関における前記のような現状に鑑みてなされたもので、アルコール濃度推定値が実際のアルコール濃度と乖離している場合でも、エンジン始動後におけるエンジンストールの発生及び回転変動の発生を抑制できる内燃機関の制御装置の提供を目的とする。
 前記課題を解決するためのものとして、本発明は、アルコールを含有する燃料の使用が可能な内燃機関の制御装置であって、エンジン始動後、排気通路に備えられた酸素濃度センサが活性化するまでのアイドル運転中、エンジン回転数の変動量が所定の閾値以上のときは、燃料噴射量を、エンジン始動後当初の燃料噴射量から、仮に燃料のアルコール濃度が最高値又は最高値に所定の範囲内で近い値であるとした場合に設定される燃料噴射量まで増量補正する始動後噴射量増量手段と、前記始動後噴射量増量手段による燃料噴射量の増量補正後、エンジン回転数の変動量が前記閾値以上のときは、前記変動量が前記閾値未満になるまで、前記増量補正された燃料噴射量を前記増量補正時よりも小さい補正幅で繰り返し減量補正する始動後噴射量減量手段とを備えていることを特徴とする内燃機関の制御装置である。
 また、本発明は、アルコールを含有する燃料の使用が可能な内燃機関の制御装置であって、エンジン始動時、所定の点火回数で始動しないときは、燃料噴射量を、仮に燃料のアルコール濃度が最高値又は最高値に所定の範囲内で近い値であるとした場合に設定される燃料噴射量まで増量補正する始動時噴射量増量手段と、エンジン始動後、排気通路に備えられた酸素濃度センサが活性化するまでのアイドル運転中、エンジン回転数の変動量が所定の閾値以上のときは、前記変動量が前記閾値未満になるまで、前記増量補正された燃料噴射量を所定の補正幅で繰り返し減量補正する始動後噴射量減量手段とを備えていることを特徴とする内燃機関の制御装置である。
 前記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面とから明らかになる。
本発明の実施形態に係るFFVに搭載された内燃機関としてのエンジンの全体構成図である。 前記エンジンの制御システム図である。 前記エンジンのPCMがエンジン始動時からエンジン始動後のアイドル運転中に行う制御のフローチャートである。 前記エンジンの始動時から始動後のアイドル運転中の燃料噴射時期及び点火時期の説明図である。 図3の制御の変形例のフローチャートである。 図3の制御の別の変形例のフローチャートである。 アルコール含有燃料におけるアルコール濃度と理論空燃比との相関図である。
 以下、図面に基いて本発明の実施形態を説明する。
 (1)全体構成
 図1に示すように、本実施形態に係る内燃機関としてのエンジン1は、複数の気筒2(図1には1つのみ図示)を有する火花点火式4サイクルエンジンであり、クランクシャフト3を回転自在に支持するシリンダブロック4と、シリンダブロック4の上方に配置されたシリンダヘッド5と、シリンダブロック4の下方に配置されたオイルパン6と、シリンダヘッド5の上方に配置されたヘッドカバー7とで、エンジン本体の外形が略形成されている。
 各気筒2にコンロッド8を介してクランクシャフト3に連結されたピストン9が摺動自在に収容され、ピストン9の上方に燃焼室10が形成されている。燃焼室10に燃料を直接噴射するインジェクタ(本発明の燃料噴射手段に相当する)11がシリンダヘッド5に設けられ、燃焼室10の天井壁部に点火プラグ12と、吸気ポート13を開閉するための吸気弁14と、排気ポート15を開閉するための排気弁16とが設けられている。吸気弁14及び排気弁16はそれぞれ図略のカムシャフト及びVVT(Variable Valve Timing)機構を有する動弁機構17,18によってクランクシャフト3に連動して開閉駆動される。
 吸気ポート13に吸気通路20が接続され、排気ポート15に排気通路30が接続されている。吸気通路20に吸入空気量を調節するためのスロットル弁21が備えられ、排気通路30に排気ガスを浄化するための図略の三元触媒を収容する触媒装置31が備えられている。
 また、エンジン1の始動時に駆動されてクランキングを行うスタータモータ23が設けられている。
 本実施形態に係るエンジン1は、エタノールを含有する燃料を使用することが可能なエンジンである。すなわち、本実施形態に係る車両はFFV(フレックス燃料自動車)である。そのため、燃料タンク40には、例えばE95(エタノール95%+水5%の燃料)やE22(エタノール22%+ガソリン78%の燃料)等のエタノール含有燃料が給油される。給油時は、E95又はE22が任意の量だけ燃料タンク40に注がれるから、燃料タンク40内の燃料のエタノール濃度は、そのときどきで様々な値を取り得る。そして、燃料タンク40内のエタノール含有燃料は、燃料供給管41を介してインジェクタ11に供給され、インジェクタ11から燃焼室10に直接噴射される。
 本実施形態に係るエンジン1では、燃料が燃焼室10に直接噴射されるので、インジェクタ11に供給される燃料の圧力が比較的高圧に設定されている。そのため、インジェクタ11から噴射される燃料の微粒化が促進される。
 本実施形態に係るエンジン1では、幾何学的圧縮比及び有効圧縮比が比較的高圧縮比に設定されている。そのため、例えばエンジン1の始動時等に燃料が圧縮行程後半で燃焼室10に直接噴射された場合、噴射された燃料は高温の燃焼室10内で気化が促進され、点火プラグ12の周りでリッチな混合気を生成し(弱成層)、燃料の微粒化と併せて着火安定性の向上が図られる。
 ところで、ガソリンは分子式の異なる複数成分の混合物であるのに対し、アルコールは1つの分子式で定義される単成分である。そのため、ガソリンは低沸点成分の存在により低温でも蒸発・気化して着火燃焼し得るが、アルコールは沸点(エタノールで78.3℃)以下では蒸発・気化しないため着火燃焼せず、エンジン始動が難しくなる。
 この問題に対処するため、従来、エンジン始動専用に、アルコール濃度の低いE22専用又はガソリン専用のサブタンク、供給管、フュエルレール、及びサブインジェクタを備え、エンジン始動時は、このエンジン始動専用のサブの燃料系統を用いてエンジンを始動することが行われている。しかし、メインの燃料系統(前記燃料タンク40、燃料供給管41、インジェクタ11等)に加えてサブの燃料系統を備えると、ハード面の複雑化、コスト面の上昇、及び車両重量の増大を招く。また、サブタンクの配置場所等、安全面でも解決すべき課題が生じる。
 そこで、本実施形態に係るエンジン1では、エンジン始動専用のサブの燃料系統を備える代わりに、前述のように、インジェクタ11から燃焼室10に噴射される燃料の液滴の微粒化を図ると共に、圧縮比を高くしてピストン9上昇時の燃焼室10温度を高め、燃料を圧縮行程後半で燃焼室10に噴射することにより、たとえアルコール濃度の高い混合燃料であっても、燃焼室10内での蒸発・気化量を多くして、エンジン1の始動性を確保するようにしたものである(サブタンクレスシステム)。
 (2)制御システム
 図2に示すように、本実施形態に係るエンジン1はPCM(Powertrain Controle Module)50を備える。PCM50は、周知の通り、CPU、ROM、RAM等から構成されるマイクロプロセッサであり、本発明の始動後噴射量増量手段、始動後噴射量減量手段、噴射時期設定手段、点火時期設定手段、及び始動時噴射量増量手段に相当する。
 PCM50は、吸気通路20に備えられて吸入空気量を検出するためのエアフローセンサSW1、エンジン回転数を検出するためのエンジン回転数センサSW2、エンジン水温を検出するためのエンジン水温センサSW3、排気通路30に備えられて排気ガス中の酸素濃度を検出するためのリニア空燃比センサ(本発明の酸素濃度センサに相当する)SW4、及び運転者のアクセル操作(アクセルペダルの踏込み)の有無及びアクセル操作量(アクセルペダルの踏込量)を検出するためのアクセルポジションセンサSW5と相互に電気的に接続されている。
 PCM50は、前記各種センサSW1~SW5から入力される種々の情報に基き、エンジン1の始動制御や通常運転制御を行う他、特に、触媒装置31の排気ガス浄化率の向上のために、エンジン1を理論空燃比で運転するように、リニア空燃比センサSW4を用いて空燃比のフィードバック制御を行う。さらに、PCM50は、例えばアルコール濃度センサ等を用いずに、前記リニア空燃比センサSW4を利用して、燃料タンク40内の燃料のエタノール濃度を学習するエタノール濃度学習制御を行う。
 PCM50は、これらの各種制御を実行するため、インジェクタ11、点火プラグ12、スロットル弁21を駆動するためのスロットル弁アクチュエータ22、及びスタータモータ23と相互に電気的に接続されており、これらの各種機器に制御信号を出力する。
 (3)制御動作
 [3-1]エタノール濃度学習制御
 PCM50が行うエタノール濃度学習制御はおよそ次のようである。すなわち、燃料のエタノール濃度と理論空燃比との関係は一義的に決まっている。図7に示すように、例えばエタノール濃度が0%(全量ガソリン)の場合、理論空燃比は14.7であり、エタノール濃度が100%の場合、理論空燃比は9.0である。そして、エタノール濃度がその間の値(0%超~100%未満)である燃料の理論空燃比は、14.7と9.0とを結ぶ直線上に1対1にある。この直線は、エタノール濃度が1%増える毎に理論空燃比が0.057減るような傾きを持っている。
 例えばいまエタノール濃度が50%と推定して理論空燃比Xが実現する燃料噴射量を設定したとする。その結果、リニア空燃比センサSW4からの情報に基き特定される理論空燃比がXであれば、推定値が正しかった(実際のエタノール濃度が50%である)と判定できる(ケースA)。しかし、リニア空燃比センサSW4からの情報に基き特定される理論空燃比がXよりも大きい場合は、その大きい分だけ、実際のエタノール濃度が50%よりも低いと判定できる(ケースB)。また、リニア空燃比センサSW4からの情報に基き特定される理論空燃比がXよりも小さい場合は、その小さい分だけ、実際のエタノール濃度が50%よりも高いと判定できる(ケースC)。
 PCM50は、理論空燃比のズレ量を前記直線の傾きに当てはめることにより、エタノール濃度のズレ量を求める。そして、このエタノール濃度のズレ量を最初の推定値(前記例でいえば50%)に加算することにより、実際のエタノール濃度を学習する。
 [3-2]始動制御~始動後のアイドル運転制御
 <制御例1>
 図3は、PCM50がエンジン始動時からエンジン始動後のアイドル運転中に行う制御のフローチャートである。
 前述のように、給油によって燃料タンク40内の燃料のエタノール濃度が変動する可能性があるから、前記エタノール濃度学習制御は、給油が行なわれる度に実行され、学習値が更新される。そして、次に給油が行われるまで、最も新しく(つまり最後に)実行されたエタノール濃度学習制御で得られた最新のエタノール濃度を用いて、例えば空燃比のフィードバック制御やエンジン1の始動制御やアイドル運転制御等が実行される。
 ここで、リニア空燃比センサSW4は、排気ガス温でセ氏数百度まで昇温されなければ活性化しない。そのため、リニア空燃比センサSW4が活性化しないままエンジン1が停止される運転が続くと、途中で給油が行われて燃料タンク40内の燃料のエタノール濃度が変動しているのにエタノール濃度が長期間学習されないという事態が起こり得る。このような場合、PCM50は、エタノール濃度の学習が実行されるまでは、エタノール濃度の値として、最後に実行されたエタノール濃度学習制御で得られた値(つまりデータとしてかなり時間が経っている古い学習値)をエタノール濃度推定値として用いる。
 あるいは、車両からバッテリが取り外されると、PCM50のメモリに格納していたエタノール濃度の学習値のデータが消えるという事態が起こり得る。このような場合、PCM50は、エタノール濃度の学習が実行されるまでは、エタノール濃度の値として、予めプログラムに登録された既定値(デフォルト値)をエタノール濃度推定値として用いる。
 いずれの場合も、エタノール濃度推定値は正確なものではなく、実際のエタノール濃度と乖離している可能性が高い。そのため、エタノール濃度推定値が実際のエタノール濃度よりも低い場合は、混合気の空燃比が理論空燃比よりもリーン(大きい値)になり、高い場合は、リッチ(小さい値)になる。そして、エンジン始動後において、リニア空燃比センサSW4が活性化するまで(すなわちエタノール濃度の学習が実行可能となるまで)のアイドル運転中(すなわちアクセルペダルが踏み込まれて車両が発進するまでの期間中)に、例えば、エアコンがオン・オフされたり、触媒装置31の早期活性化を図るためのAWS(accelerated warm-up system)が作動すると、それに伴い、燃料噴射時期及び点火時期が様々に変化し、またそれにより、燃焼形態も様々に変動する。このような燃焼形態の変動が、混合気の空燃比が理論空燃比よりもリーンになっている場合に起こると、エンジンストールが発生し易くなり、リッチになっている場合に起こると、エンジン1の回転変動が発生し易くなる。もっとも、これは結果であって、エタノール濃度推定値の不正確さに起因して、混合気の空燃比が理論空燃比よりもリーンになっている場合でもリッチになっている場合でも、燃焼毎の発生トルクが安定しないため、エンジン回転の変動は起きる。ただし、理論空燃比よりもリッチの場合はそのエンジン回転の変動が続くのに対し、リーンの場合はエンジン回転の変動後エンジンストールに至る点で、両者は相違する。
 この図3に示すフローチャートは、このようにエタノール濃度推定値が実際のエタノール濃度と乖離している場合でも、エンジン始動後におけるエンジンストールの発生及び回転変動の発生を抑制できるように対策されたものである。
 すなわち、PCM50は、ステップS1で、スタータモータ23がONか否か、つまりエンジン1の始動時か否かを判定する。
 その結果、YESのときは、PCM50は、ステップS2で、記憶しているエタノール濃度を用いて始動時の燃料噴射量を設定する。ここで、記憶しているエタノール濃度とは、通常は、最も新しく(つまり最後に)実行されたエタノール濃度学習制御で得られた最新のエタノール濃度のことであるが、ここでは、前記のようなエタノール濃度推定値(長期間学習されない場合の古い学習値やデータが消えた場合のデフォルト値)が含まれる。
 なお、PCM50は、エンジン1の始動時は、理論空燃比が実現する燃料噴射量よりも所定量増量した燃料噴射量を設定する。つまり、エンジン1の始動時は、理論空燃比よりもややリッチ側の空燃比が目標空燃比とされる。
 次いで、PCM50は、ステップS3で、噴射時期として固定の噴射時期を設定し、ステップS4で、点火時期として固定の点火時期を設定する。
 具体的に、PCM50は、図4に示すように、エンジン1の始動時は、燃料噴射時期(図中ハッチング部分で表す)を圧縮行程後半に設定し、点火時期を所定の固定値である圧縮上死点直前のMBT(minimum advance for best torque)に設定する。なお、図4は、燃料を2段に分割して噴射する場合を例示している。このPCM50のステップS3における動作は、後述するステップS11における動作と併せて、本発明の噴射時期設定手段としての動作に相当する。また、このPCM50のステップS4における動作は、後述するステップS12における動作と併せて、本発明の点火時期設定手段としての動作に相当する。
 次いで、PCM50は、ステップS5で、エンジン1が完爆したか否か、つまりエンジン回転数センサSW2からの情報に基き特定されるエンジン回転数が所定回転数(エンジン1が自力で回り始めたと判定できる回転数)まで上昇したか否かを判定する。その結果、YESのときは、ステップS9に進み、NOのときは、ステップS6に進む。
 PCM50は、ステップS6で、点火を所定回数以上行ったか否かを判定する。その結果、NOのときは、ステップS5に戻り、YESのときは、ステップS7に進む。
 PCM50は、ステップS7で、エタノール濃度Eが上限側閾値Emax以上(E≧Emax)か否かを判定する。その結果、YESのときは、ステップS5に戻って始動制御を続け、NOのときは、ステップS8に進む。
 PCM50は、ステップS8で、燃料噴射量(ステップS2で設定したもの)を所定量増量する。つまり、ステップS2で始動時の燃料噴射量を設定するのに用いたエタノール濃度を所定濃度だけ高濃度側へシフトし、その高濃度側へシフトしたエタノール濃度を用いて始動時の燃料噴射量を設定し直すのである。そして、その場合、エタノール濃度が高濃度側へシフトされた分、始動時の目標空燃比が実現する燃料噴射量が増量されるのである。
 PCM50は、ステップS8からステップS5に戻り、完爆判定(ステップS5~S8)を繰り返す。つまり、PCM50は、ステップS5~S8において、エタノール濃度Eが上限側閾値Emax以上になるまでエタノール濃度の高濃度側へのシフトを繰り返す。前述のように、本実施形態に係るエンジン1はサブタンクレスシステムを採用し、たとえエタノール濃度の高い混合燃料であっても、燃焼室10内での蒸発・気化量が多くなり、エンジン1の始動性が確保されているから、通常は、エタノール濃度Eが上限側閾値Emax未満のうちにエンジン1は完爆する。したがって、ステップS7でエタノール濃度Eが上限側閾値Emax以上と判定されているのにステップS5でエンジン1が完爆していないと判定されるときは、PCM50は、燃料噴射については、その時点でのエタノール濃度での燃料噴射を継続し、一方で、図3には表れていないが、燃料噴射制御以外の例えば吸気量や点火時期等を制御し、完爆を促す。
 なお、本実施形態では、燃料のエタノール濃度の最高値は95%(E95)である。つまり、ステップS7で判定閾値として用いられている上限側閾値Emaxは、最高値(95%)に所定範囲内(例えば15%の範囲内)で近い値である。ステップS7で判定閾値として燃料のエタノール濃度の最高値である95%を用いずに個別の閾値を用いたのは、本閾値で完爆しない場合は95%でも完爆しないと看做されるからである。
 ステップS5でエンジン1が完爆したと判定されたときは、PCM50は、ステップS9で、始動時の燃料噴射量に基いて、記憶しているエタノール濃度を更新する。つまり、ステップS2で始動時の燃料噴射量を設定するのに用いたエタノール濃度を、ステップS5でエンジン1が完爆したと判定されたときのエタノール濃度(ステップS7,S8を経由せずに完爆したときはステップS2で用いたエタノール濃度、ステップS7,S8を経由して完爆したときは最後にステップS8で高濃度側へシフトして得られたエタノール濃度)に書き換えるのである。
 次いで、PCM50は、ステップS10で、更新したエタノール濃度を用いて始動後の燃料噴射量を設定する。ここで、PCM50は、エンジン1の始動後は、理論空燃比が実現する燃料噴射量を設定する。つまり、エンジン1の始動後は、理論空燃比が目標空燃比とされる。
 次いで、PCM50は、ステップS11で、噴射時期として始動後の燃料噴射時期を設定し、ステップS12で、エンジン水温センサSW3からの情報に基き特定されるエンジン水温及び外部負荷(例えばエアコンのオン・オフ等)に応じて始動後の点火時期を設定する。
 具体的に、PCM50は、図4に示すように、エンジン1の始動後は、アイドル運転に移行するのであるが、例えば冷間始動時等で触媒装置31が活性化していないときは、AWSを作動した後、通常のアイドル運転に移行する。PCM50は、AWSの作動中は、燃料噴射時期をエンジン1の始動時よりも進角させ、吸気行程後半(1段目)と圧縮行程後半(2段目)とに設定する。また、PCM50は、AWSの作動中は、点火時期を圧縮上死点を超えて大幅にリタードさせる。この点火時期のリタード量が前記エンジン水温及び外部負荷に応じて可変的に定められる。PCM50は、通常のアイドル運転中は、燃料噴射時期をエンジン1の始動時よりも進角させ、吸気行程前半に設定する(一括噴射)。また、PCM50は、通常のアイドル運転中は、点火時期を圧縮上死点よりも前であるがMBTよりも後の所定のアイドル用点火時期に設定する。このアイドル用点火時期もまた前記エンジン水温及び外部負荷に応じて可変的に定められる。
 次いで、PCM50は、ステップS13で、エンジン回転数の変動量ΔNが所定の閾値ΔN1以上(ΔN≧ΔN1)か否かを判定する。その結果、NOのときは、この制御が終了となり、YESのときは、ステップS14に進む。
 PCM50は、ステップS14で、ステップS9で更新したエタノール濃度を高濃度値(上限側閾値Emax)に設定し、この高濃度値に設定したエタノール濃度を用いて始動後当初の燃料噴射量(ステップS10で設定したもの)を設定し直す。この場合、エタノール濃度が高濃度値に設定された分、始動後の目標空燃比(理論空燃比)が実現する燃料噴射量が、ステップS10で設定した燃料噴射量よりも増量される。このPCM50のステップS14における動作は、本発明の始動後噴射量増量手段としての動作に相当する。
 なお、本実施形態では、燃料のエタノール濃度の最高値は95%(E95)である。つまり、ステップS14で高濃度値として設定される上限側閾値Emaxは、最高値(95%)に所定範囲内(例えば15%の範囲内)で近い値である。ステップS14で高濃度値として燃料のエタノール濃度の最高値である95%を用いずに上限側閾値Emaxを用いたのは、上限側閾値Emaxでエンジン1の回転変動が抑制されない場合は95%でも抑制されないと看做されるからである。
 次いで、PCM50は、ステップS15で、再度、エンジン回転数の変動量ΔNが所定の閾値ΔN1以上(ΔN≧ΔN1)か否かを判定する。その結果、NOのときは、ステップS16に進み、YESのときは、ステップS17に進む。
 PCM50は、ステップS16で、ステップS14で更新したエタノール濃度(上限側閾値Emax)を用いてこれ以降の始動後の燃料噴射量を設定し、この制御が終了する。
 PCM50は、ステップS17で、エタノール濃度Eが下限側閾値Emin以下(E≦Emin)か否かを判定する。その結果、YESのときは、この制御を終了し、NOのときは、ステップS18に進む。
 PCM50は、ステップS18で、燃料噴射量(ステップS14で設定したもの)を所定量減量する。つまり、ステップS14で始動後の燃料噴射量を設定するのに用いたエタノール濃度(上限側閾値Emax)を所定濃度だけ低濃度側へシフトし、その低濃度側へシフトしたエタノール濃度を用いて始動後の燃料噴射量を設定し直すのである。そして、その場合、エタノール濃度が低濃度側へシフトされた分、始動後の目標空燃比が実現する燃料噴射量が減量されるのである。このPCM50のステップS18における動作は、本発明の始動後噴射量減量手段としての動作に相当する。
 PCM50は、ステップS18からステップS15に戻り、エンジン1の回転変動が抑制されたか否かの判定(ステップS15,S17,S18)を繰り返す。つまり、PCM50は、ステップS15,S17,S18において、エタノール濃度Eが下限側閾値Emin以下になるまでエタノール濃度の低濃度側へのシフトを繰り返す。前述のように、エタノール濃度推定値の不正確さに起因して、混合気の空燃比が理論空燃比よりもリーンになっている場合でもリッチになっている場合でも、燃焼毎の発生トルクが安定しないため、エンジン1の回転変動は起きる。そして、まず、ステップS14でエタノール濃度を高濃度側へシフトして燃料噴射量を増量補正したが、エンジン1の回転変動が抑制されないから(ステップS15でYES)、次に、ステップS18でエタノール濃度を低濃度側へシフトして燃料噴射量を減量補正しているので、通常は、エタノール濃度Eが下限側閾値Eminを超えて高いうちにエンジン1の回転変動が抑制される。したがって、ステップS17でエタノール濃度Eが下限側閾値Emin以下と判定されているのにステップS15でエンジン1の回転変動が抑制されていないと判定されるときは、PCM50は、燃料噴射については、その時点でのエタノール濃度での燃料噴射を継続し、一方で、図3には表れていないが、燃料噴射制御以外の例えば吸気量や点火時期等を制御し、回転変動の抑制を促す。
 なお、本実施形態では、燃料のエタノール濃度の最低値は22%(E22)である。つまり、ステップS17で判定閾値として用いられている下限側閾値Eminは、最低値(22%)に所定範囲内(例えば15%の範囲内)で近い値である。ステップS17で判定閾値として燃料のエタノール濃度の最低値である22%を用いずに下限側閾値Eminを用いたのは、下限側閾値Eminでエンジン1の回転変動が抑制されない場合は22%でも抑制されないと看做されるからである。
 ステップS15でエンジン1の回転変動が抑制されたと判定されたときは、PCM50は、ステップS16に進み、ステップS18で更新したエタノール濃度を用いてこれ以降の始動後の燃料噴射量を設定し、この制御が終了する。
 なお、ステップS18における燃料噴射量の減量補正は、エタノール濃度Eが下限側閾値Emin以下になるまで、ステップS15でYESと判定される限り繰り返される。一方、ステップS14における燃料噴射量の増量補正は、1回で行われる。そのため、PCM50は、ステップS14における増量補正時の補正幅よりも小さい補正幅でステップS18における減量補正を行う。
 以上のように、この図3に示される制御例1は、エンジン1の始動後(ステップS9以降)、排気通路30に備えられたリニア空燃比センサSW4が活性化するまでのアイドル運転中、エンジン回転数の変動量ΔNが所定の閾値ΔN1以上のときは(ステップS13でYES)、燃料噴射量を、エンジン始動後当初の燃料噴射量(ステップS10で設定される燃料噴射量)から、エタノール濃度が上限側閾値Emaxのときに設定される燃料噴射量まで1回で増量補正し(ステップS14)、それでもなおエンジン回転数の変動量ΔNが前記閾値ΔN1以上のときは(ステップS15でYES)、前記変動量ΔNが前記閾値ΔN1未満になるまで(ステップS15でNO)、前記増量補正された燃料噴射量(ステップS14で設定される燃料噴射量)を前記増量補正時よりも小さい補正幅で繰り返し減量補正する(ステップS15,S17,S18)ものである。
 <制御例2>
 図5は、図3の制御の変形例のフローチャートである。
 この図5に示される制御例2は、前記制御例1では燃料噴射量の増量補正がステップS14で1回で行われるのに対し、燃料噴射量の増量補正がステップS34~S36で複数回に分けて行われる点で、前記制御例1と異なっている。ここでは、制御例1と異なっている部分のみ説明し、制御例1と同じ部分は説明を省略する。すなわち、図5のステップS21~S32は、図3のステップS1~S12と同じであるので、ステップS33~S40を説明する。
 PCM50は、ステップS33で、エンジン回転数の変動量ΔNが所定の閾値ΔN1以上(ΔN≧ΔN1)か否かを判定する。その結果、NOのときは、この制御が終了となり、YESのときは、ステップS34に進む。
 PCM50は、ステップS34で、エタノール濃度Eが上限側閾値Emax以上(E≧Emax)か否かを判定する。その結果、YESのときは、ステップS38に進み、NOのときは、ステップS35に進む。
 PCM50は、ステップS35で、燃料噴射量(ステップS30で設定したもの)を所定量増量する。つまり、ステップS30で始動後当初の燃料噴射量を設定するのに用いたエタノール濃度(ステップS29で更新したもの)を所定濃度だけ高濃度側へシフトし、その高濃度側へシフトしたエタノール濃度を用いて始動後の燃料噴射量を設定し直すのである。そして、その場合、エタノール濃度が高濃度側へシフトされた分、始動後の目標空燃比(理論空燃比)が実現する燃料噴射量が、ステップS30で設定した始動後当初の燃料噴射量よりも増量されるのである。このPCM50のステップS35における動作は、本発明の始動後噴射量増量手段としての動作に相当する。
 次いで、PCM50は、ステップS36で、再度、エンジン回転数の変動量ΔNが所定の閾値ΔN1以上(ΔN≧ΔN1)か否かを判定する。その結果、NOのときは、ステップS37に進み、YESのときは、ステップS34に戻る。
 PCM50は、ステップS37で、ステップS35で更新したエタノール濃度を用いてこれ以降の始動後の燃料噴射量を設定し、この制御が終了する。
 ステップS34に戻ったPCM50は、エンジン1の回転変動が抑制されたか否かの判定(ステップS34~S36)を繰り返す。つまり、PCM50は、ステップS34~S36において、エタノール濃度Eが上限側閾値Emax以上になるまでエタノール濃度の高濃度側へのシフトを繰り返す。そして、ステップS34でエタノール濃度Eが上限側閾値Emax以上(E≧Emax)になったと判定されたときは、PCM50は、ステップS38に進む。
 PCM50は、ステップS38で、燃料噴射量(ステップS35で設定したもの)を所定量減量する。つまり、ステップS35で始動後の燃料噴射量を設定するのに用いたエタノール濃度(ステップS35で更新したもの)を所定濃度だけ低濃度側へシフトし、その低濃度側へシフトしたエタノール濃度を用いて始動後の燃料噴射量を設定し直すのである。そして、その場合、エタノール濃度が低濃度側へシフトされた分、始動後の目標空燃比(理論空燃比)が実現する燃料噴射量が、ステップS35で設定した始動後の燃料噴射量よりも減量されるのである。このPCM50のステップS38における動作は、本発明の始動後噴射量減量手段としての動作に相当する。
 次いで、PCM50は、ステップS39で、再度、エンジン回転数の変動量ΔNが所定の閾値ΔN1以上(ΔN≧ΔN1)か否かを判定する。その結果、NOのときは、ステップS37に進み、YESのときは、ステップS40に進む。
 PCM50は、ステップS37で、ステップS38で更新したエタノール濃度を用いてこれ以降の始動後の燃料噴射量を設定し、この制御が終了する。
 PCM50は、ステップS40で、エタノール濃度Eが下限側閾値Emin以下(E≦Emin)か否かを判定する。その結果、YESのときは、この制御を終了し、NOのときは、ステップS38に戻る。
 ステップS38に戻ったPCM50は、エンジン1の回転変動が抑制されたか否かの判定(ステップS38~S40)を繰り返す。つまり、PCM50は、ステップS38~S40において、エタノール濃度Eが下限側閾値Emin以下になるまでエタノール濃度の低濃度側へのシフトを繰り返す。前述のように、エタノール濃度推定値の不正確さに起因して、混合気の空燃比が理論空燃比よりもリーンになっている場合でもリッチになっている場合でも、燃焼毎の発生トルクが安定しないため、エンジン1の回転変動は起きる。そして、まず、ステップS35でエタノール濃度を高濃度側へシフトして燃料噴射量を増量補正したが、エンジン1の回転変動が抑制されないから(ステップS36でYES)、次に、ステップS38でエタノール濃度を低濃度側へシフトして燃料噴射量を減量補正しているので、通常は、エタノール濃度Eが下限側閾値Eminを超えて高いうちにエンジン1の回転変動が抑制される。したがって、ステップS40でエタノール濃度Eが下限側閾値Emin以下と判定されているのにステップS39でエンジン1の回転変動が抑制されていないと判定されるときは、PCM50は、燃料噴射については、その時点でのエタノール濃度での燃料噴射を継続し、一方で、図5には表れていないが、燃料噴射制御以外の例えば吸気量や点火時期等を制御し、回転変動の抑制を促す。
 以上のように、この図5に示される制御例2は、エンジン1の始動後(ステップS29以降)、排気通路30に備えられたリニア空燃比センサSW4が活性化するまでのアイドル運転中、エンジン回転数の変動量ΔNが所定の閾値ΔN1以上のときは(ステップS33でYES)、燃料噴射量を、エンジン始動後当初の燃料噴射量(ステップS30で設定される燃料噴射量)から、エタノール濃度が上限側閾値Emaxのときに設定される燃料噴射量まで複数回に分けて増量補正し(ステップS34~S36)、それでもなおエンジン回転数の変動量ΔNが前記閾値ΔN1以上のときは(ステップS36でYES)、前記変動量ΔNが前記閾値ΔN1未満になるまで(ステップS39でNO)、前記増量補正された燃料噴射量(ステップS35で設定される燃料噴射量)を繰り返し減量補正する(ステップS38~S40)ものである。
 <制御例3>
 図6は、図3の制御の別の変形例のフローチャートである。
 この図6に示される制御例3は、前記制御例1では燃料噴射量の増量補正がステップS14でエンジン1の始動後に行われるのに対し、燃料噴射量の増量補正がステップS58でエンジン1の始動時に行われる点で、前記制御例1と異なっている。ここでは、制御例1と異なっている部分のみ説明し、制御例1と同じ部分は説明を省略する。すなわち、図6のステップS51~S57及びS59~S62は、図3のステップS1~S7及びS9~S12と同じであるので、ステップS58及びS63~S66を説明する。
 PCM50は、ステップS58で、燃料噴射量(ステップS52で設定したもの)を所定量増量する。つまり、ステップS52で始動時の燃料噴射量を設定するのに用いたエタノール濃度を上限側閾値Emaxへシフトし、この上限側閾値Emaxのエタノール濃度を用いて始動時の燃料噴射量を設定し直すのである。そして、その場合、エタノール濃度が上限側閾値Emaxへシフトされた分、始動時の目標空燃比が実現する燃料噴射量が増量されるのである。このPCM50のステップS58における動作は、本発明の始動時噴射量増量手段としての動作に相当する。
 また、PCM50は、ステップS63で、エンジン回転数の変動量ΔNが所定の閾値ΔN1以上(ΔN≧ΔN1)か否かを判定する。その結果、NOのときは、ステップS64に進み、YESのときは、ステップS65に進む。
 PCM50は、ステップS64で、ステップS59で更新したエタノール濃度を用いてこれ以降の始動後の燃料噴射量を設定し、この制御が終了する。
 PCM50は、ステップS65で、燃料噴射量(ステップS60で設定したもの)を所定量減量する。つまり、ステップS60で始動後当初の燃料噴射量を設定するのに用いたエタノール濃度(ステップS59で更新したもの)を所定濃度だけ低濃度側へシフトし、その低濃度側へシフトしたエタノール濃度を用いて始動後の燃料噴射量を設定し直すのである。そして、その場合、エタノール濃度が低濃度側へシフトされた分、始動後の目標空燃比(理論空燃比)が実現する燃料噴射量が、ステップS60で設定した始動後当初の燃料噴射量よりも所定の補正幅で減量されるのである。このPCM50のステップS65における動作は、本発明の始動後噴射量減量手段としての動作に相当する。
 次いで、PCM50は、ステップS66で、エタノール濃度Eが下限側閾値Emin以下(E≦Emin)か否かを判定する。その結果、YESのときは、この制御を終了し、NOのときは、ステップS63に戻る。
 ステップS63に戻ったPCM50は、エンジン1の回転変動が抑制されたか否かの判定(ステップS63,S65,S66)を繰り返す。つまり、PCM50は、ステップS63,S65,S66において、エタノール濃度Eが下限側閾値Emin以下になるまでエタノール濃度の低濃度側へのシフトを繰り返す。前述のように、エタノール濃度推定値の不正確さに起因して、混合気の空燃比が理論空燃比よりもリーンになっている場合でもリッチになっている場合でも、燃焼毎の発生トルクが安定しないため、エンジン1の回転変動は起きる。そして、まず、ステップS58でエンジン1の始動時にエタノール濃度を上限側閾値Emaxまでシフトして燃料噴射量を増量補正したが、エンジン1の回転変動が抑制されないから(ステップS63でYES)、次に、ステップS65でエンジン1の始動後にエタノール濃度を低濃度側へシフトして燃料噴射量を減量補正しているので、通常は、エタノール濃度Eが下限側閾値Eminを超えて高いうちにエンジン1の回転変動が抑制される。したがって、ステップS66でエタノール濃度Eが下限側閾値Emin以下と判定されているのにステップS63でエンジン1の回転変動が抑制されていないと判定されるときは、PCM50は、燃料噴射については、その時点でのエタノール濃度での燃料噴射を継続し、一方で、図6には表れていないが、燃料噴射制御以外の例えば吸気量や点火時期等を制御し、回転変動の抑制を促す。
 以上のように、この図6に示される制御例3は、エンジン1の始動時(ステップS51~S58)、ステップS52で設定される燃料噴射量(記憶しているエタノール濃度を用いて設定される始動時の燃料噴射量)で、所定回数以上の点火で始動しないときは(ステップS56でYES)、燃料噴射量を、エタノール濃度が上限側閾値Emaxのときに設定される燃料噴射量まで増量補正し(ステップS58)、エンジン1の始動後(ステップS59以降)、排気通路30に備えられたリニア空燃比センサSW4が活性化するまでのアイドル運転中、エンジン回転数の変動量ΔNが所定の閾値ΔN1以上のときは(ステップS63でYES)、前記変動量ΔNが前記閾値ΔN1未満になるまで(ステップS63でNO)、前記増量補正された燃料噴射量(ステップS58で設定される燃料噴射量)を所定の補正幅で繰り返し減量補正する(ステップS63,S65,S66)ものである。
 (4)作用等
 以上のように、本実施形態では、エタノールを含有する燃料の使用が可能な内燃機関としてのエンジン1の制御装置において、次のような特徴的構成を採用した。
 すなわち、PCM50は、エンジン1の始動後(ステップS9,S29以降)、リニア空燃比センサSW4が活性化するまでのアイドル運転中、エンジン回転数の変動量ΔNが所定の閾値ΔN1以上のときは(ステップS13,S33でYES)、燃料噴射量を、エンジン始動後当初の燃料噴射量(ステップS10,S30で設定される燃料噴射量)から、仮に燃料のエタノール濃度が上限側閾値Emaxであるとした場合に設定される燃料噴射量まで増量補正し(ステップS14,S34~S36)、この増量補正後、エンジン回転数の変動量ΔNが前記閾値ΔN1以上のときは(ステップS15,S36でYES)、前記変動量ΔNが前記閾値ΔN1未満になるまで(ステップS15,S39でNO)、前記増量補正された燃料噴射量(ステップS14,S35で設定される燃料噴射量)を繰り返し減量補正する(ステップS15,S17,S18,S38~S40)。
 この構成によれば、FFVでエンジンストールが発生すると、エタノールは気化潜熱が大きいため、燃焼室10が冷却されてエンジン1の始動が困難になるという、FFVにとって不利益の大きいエンジンストールを回避するために、まず、燃料噴射量が増量側に補正されるから、空燃比が理論空燃比よりもリーンの場合は、エンジン1の始動が困難になるエンジンストールを回避しつつ、空燃比が理論空燃比に近づいて、エンジン1の回転変動が抑えられる。一方、空燃比が理論空燃比よりもリッチの場合でも、不利益の大きいエンジンストールを回避することができる。そして、燃料噴射量の増量補正後に、まだエンジン回転が大きく変動しているときは、燃料噴射量を減量側に補正するので、空燃比が理論空燃比よりもリッチの場合に空燃比が理論空燃比に近づいて、エンジン1の回転変動が抑えられる。つまり、FFVにとってエンジン1の始動が困難になるという特有の不利益があるエンジンストールが優先的に回避されつつ、エンジン1の回転変動も併せて抑制される。
 以上により、本実施形態によれば、エタノール含有燃料の使用が可能なエンジン1において、エタノール濃度推定値が実際のエタノール濃度と乖離している場合でも、エンジン1の始動後におけるエンジンストールの発生及び回転変動の発生を抑制できるエンジン1の制御装置が提供される。
 さらに、本実施形態では、PCM50は、燃料噴射量の増量補正時は、仮に燃料のアルコール濃度が上限側閾値Emaxであるとした場合に設定される燃料噴射量まで増量補正するので、燃料噴射量が最大限に増量されて、エンジンストールの発生が確実に回避される。
 さらに、本実施形態では、PCM50は、燃料噴射量の減量補正時は、増量補正時よりも小さい補正幅で繰り返し減量補正するので、燃料噴射量が段階的に減量される。そのため、燃料噴射量が一気に大きく減量されて空燃比がリーンになりエンジンストールが発生するというような不具合が抑制される。
 本実施形態では、PCM50は、前記燃料噴射量の増量補正を1回で行う(制御例1のステップS14)。
 この構成によれば、燃料噴射量の増量補正時は、燃料噴射量が一気に最大限に増量されるので、エンジンストールの発生がより一層確実に回避される。
 本実施形態では、PCM50は、前記燃料噴射量の増量補正を複数回に分けて行う(制御例2のステップS34~S36)。
 この構成によれば、燃料噴射量の増量補正時は、燃料噴射量が段階的に増量されるので、空燃比が理論空燃比よりもリーンの場合において、空燃比が理論空燃比を行き過ぎてリッチになることが抑制され、空燃比が理論空燃比に近づいた段階で燃料噴射量の増量補正を停止することができる。また、空燃比が理論空燃比を行き過ぎた場合でも、過度にリッチにならないので、燃料噴射量の減量補正時(ステップS38~S40)に、エンジン1の回転変動が短時間で抑えられる。
 本実施形態では、PCM50は、図4に示すように、エンジン1の始動時は、燃焼室10に燃料を噴射するインジェクタ11による燃料噴射時期を圧縮行程後半に設定し(ステップS3,S23,S53)、エンジン1の始動後は、前記燃料噴射時期をエンジン1の始動時よりも進角させる(ステップS11,S31,S61)。また、同じく図4に示すように、PCM50は、エンジン1の始動時は、点火時期を所定の固定値であるMBTに設定し(ステップS4,S24,S54)、エンジン1の始動後は、前記点火時期をエンジン水温及び外部負荷に応じて可変制御する(ステップS12,S32,S62)。
 この構成によれば、エンジン1の始動時は、筒内温度が上昇する圧縮行程後半で燃料が噴射されるので、燃料の気化が促進され、かつMBT(minimum advance for best torque)で点火されるので、高トルクが得られてエンジン回転数が速やかに上昇する。また、エンジン1の始動後は、圧縮行程後半よりも早い時期に燃料が噴射され、かつエンジン水温及び外部負荷に応じて点火時期が可変制御される。このように、エンジン1の始動時と始動後とで燃料噴射時期制御及び点火時期制御が大幅に異なる場合においても、エンジン1の始動後におけるエンジンストールの発生及び回転変動の発生が抑制される。
 また、PCM50は、エンジン1の始動時(ステップS51~S58)、所定回数以上の点火で始動しないとき(ステップS56でYES)、より詳しくは、ステップS52で設定される燃料噴射量、すなわち、通常の最も新しく(つまり最後に)実行されたエタノール濃度学習制御で得られた最新のエタノール濃度や、エタノール濃度の学習が長期間行われない場合の古い学習値又はデータが消えた場合のデフォルト値等のエタノール濃度推定値を用いて設定される始動時の燃料噴射量で、所定回数以上の点火で始動しないときは(ステップS56でYES)、燃料噴射量を、仮に燃料のエタノール濃度が上限側閾値Emaxであるとした場合に設定される燃料噴射量まで増量補正し(ステップS58)、エンジン1の始動後(ステップS59以降)、リニア空燃比センサSW4が活性化するまでのアイドル運転中、エンジン回転数の変動量ΔNが所定の閾値ΔN1以上のときは(ステップS63でYES)、前記変動量ΔNが前記閾値ΔN1未満になるまで(ステップS63でNO)、前記増量補正された燃料噴射量(ステップS58で設定される燃料噴射量)を所定の補正幅で繰り返し減量補正する(ステップS63,S65,S66)。
 この構成によれば、前述の作用に加えて、エンジン1が確実に始動する、エンジン1の始動時間が短縮化する、エンジン1の始動後にエンジンの回転変動が短時間で抑えられる、等の作用が奏される。
 なお、前記実施形態では、アルコール含有燃料として、エタノール含有燃料を使用したが、これに限らず、例えば、メタノール含有燃料、ブタノール含有燃料、プロパノール含有燃料等を使用してもよい。
 以上説明した本発明をまとめると以下の通りである。
 本発明は、アルコールを含有する燃料の使用が可能な内燃機関の制御装置であって、エンジン始動後、排気通路に備えられた酸素濃度センサが活性化するまでのアイドル運転中、エンジン回転数の変動量が所定の閾値以上のときは、燃料噴射量を、エンジン始動後当初の燃料噴射量から、仮に燃料のアルコール濃度が最高値又は最高値に所定の範囲内で近い値であるとした場合に設定される燃料噴射量まで増量補正する始動後噴射量増量手段と、前記始動後噴射量増量手段による燃料噴射量の増量補正後、エンジン回転数の変動量が前記閾値以上のときは、前記変動量が前記閾値未満になるまで、前記増量補正された燃料噴射量を前記増量補正時よりも小さい補正幅で繰り返し減量補正する始動後噴射量減量手段とを備えていることを特徴とする内燃機関の制御装置である。
 本発明によれば、アルコール含有燃料の使用が可能な内燃機関において、エンジン始動後、アルコール濃度の学習が実行可能となるまでのアイドル運転中、エンジン回転数の変動量が閾値以上のときは、まず、燃料噴射量を増量側に補正し、それでもまだエンジン回転数の変動量が閾値以上のときは、燃料噴射量を減量側に補正する。
 アルコール濃度推定値の不正確さに起因して、混合気の空燃比が理論空燃比よりもリーンになっている場合でもリッチになっている場合でも、燃焼毎の発生トルクが安定しないため、エンジン回転が大きく変動する。ただし、理論空燃比よりもリッチの場合は回転変動が続くのに対し、リーンの場合は回転変動後エンジンストールが発生する点で、両者は結果が相違する。このエンジン回転の変動を抑えるためには、燃料噴射量を増量補正して理論空燃比よりもリーンになっている空燃比をリッチ側に修正するか、逆に、燃料噴射量を減量補正して理論空燃比よりもリッチになっている空燃比をリーン側に修正すればよい。しかし、いまは酸素濃度センサが活性化しておらず、アルコール濃度の学習ができないので、空燃比が理論空燃比よりもリーンになっているのかリッチになっているのか分からない。もし空燃比が理論空燃比よりもリーンなのに燃料噴射量を減量補正すると燃料が不足してエンジンストールが発生する。FFVでエンジンストールが発生すると、アルコールは気化潜熱が大きいため(例えばガソリンの気化潜熱が0.32MJ/kgであるのに対しエタノールの気化潜熱は0.86MJ/kgである)、燃焼室が冷却されてエンジン始動が困難になるという特有の不利益がある。
 そこで、本発明では、FFVにとってこのような不利益の大きいエンジンストールを回避するために、まず、燃料噴射量を増量側に補正するのである。燃料噴射量を増量補正すれば、空燃比が理論空燃比よりもリーンの場合は、エンジン始動が困難になるエンジンストールを回避しつつ、空燃比が理論空燃比に近づいて、エンジンの回転変動が抑えられる。一方、空燃比が理論空燃比よりもリッチの場合でも、不利益の大きいエンジンストールを回避することができる。そして、燃料噴射量の増量補正後に、まだエンジン回転が大きく変動しているときは、燃料噴射量を減量側に補正するので、空燃比が理論空燃比よりもリッチの場合に空燃比が理論空燃比に近づいて、エンジンの回転変動が抑えられる。つまり、本発明は、FFVにとってエンジン始動が困難になるという特有の不利益があるエンジンストールを優先的に回避しつつ、エンジンの回転変動も併せて抑制するものである。
 以上により、本発明によれば、アルコール含有燃料の使用が可能な内燃機関において、アルコール濃度推定値が実際のアルコール濃度と乖離している場合でも、エンジン始動後におけるエンジンストールの発生及び回転変動の発生を抑制できる内燃機関の制御装置が提供される。
 さらに、本発明では、燃料噴射量の増量補正時は、仮に燃料のアルコール濃度が最高値であるとした場合に設定される燃料噴射量、又は、最高値に所定の範囲内で近い値であるとした場合に設定される燃料噴射量まで増量補正するので、燃料噴射量が最大限に増量されて、エンジンストールの発生が確実に回避される。
 さらに、本発明では、燃料噴射量の減量補正時は、増量補正時よりも小さい補正幅で繰り返し減量補正するので、燃料噴射量が段階的に減量される。そのため、燃料噴射量が一気に大きく減量されて空燃比がリーンになりエンジンストールが発生するというような不具合が抑制される。
 本発明において、好ましくは、前記始動後噴射量増量手段は、前記燃料噴射量の増量補正を1回で行う。
 この構成によれば、燃料噴射量の増量補正時は、燃料噴射量が一気に最大限に増量されるので、エンジンストールの発生がより一層確実に回避される。
 本発明において、好ましくは、前記始動後噴射量増量手段は、前記燃料噴射量の増量補正を複数回に分けて行う。
 この構成によれば、燃料噴射量の増量補正時は、燃料噴射量が段階的に増量されるので、空燃比が理論空燃比よりもリーンの場合において、空燃比が理論空燃比を行き過ぎてリッチになることが抑制され、空燃比が理論空燃比に近づいた段階で燃料噴射量の増量補正を停止することができる。また、空燃比が理論空燃比を行き過ぎた場合でも、過度にリッチにならないので、燃料噴射量の減量補正時に、エンジンの回転変動が短時間で抑えられる。
 本発明において、好ましくは、燃焼室に燃料を噴射する燃料噴射手段と、前記燃料噴射手段による燃料噴射時期をエンジン始動時は圧縮行程後半に設定し、エンジン始動後はエンジン始動時よりも進角させる噴射時期設定手段と、点火時期をエンジン始動時は所定の固定値に設定し、エンジン始動後は水温及び外部負荷に応じて可変制御する点火時期設定手段とを備えている。
 この構成によれば、エンジン始動時は、筒内温度が上昇する圧縮行程後半で燃料を噴射するので、燃料の気化が促進され、かつ所定の固定値(例えばMBT)で点火するので、高トルクが得られてエンジン回転数が速やかに上昇する。また、エンジン始動後は、圧縮行程後半よりも早い時期に燃料を噴射し、かつ水温及び外部負荷(例えばエアコンのオン・オフ等)に応じて点火時期を可変制御する。このように、エンジン始動時と始動後とで燃料噴射時期制御及び点火時期制御が大幅に異なる場合においても、エンジン始動後におけるエンジンストールの発生及び回転変動の発生が抑制される。
 また、本発明は、アルコールを含有する燃料の使用が可能な内燃機関の制御装置であって、エンジン始動時、所定の点火回数で始動しないときは、燃料噴射量を、仮に燃料のアルコール濃度が最高値又は最高値に所定の範囲内で近い値であるとした場合に設定される燃料噴射量まで増量補正する始動時噴射量増量手段と、エンジン始動後、排気通路に備えられた酸素濃度センサが活性化するまでのアイドル運転中、エンジン回転数の変動量が所定の閾値以上のときは、前記変動量が前記閾値未満になるまで、前記増量補正された燃料噴射量を所定の補正幅で繰り返し減量補正する始動後噴射量減量手段とを備えていることを特徴とする内燃機関の制御装置である。
 前述の発明では、エンジン始動後におけるエンジンストールの発生及び回転変動の発生を抑制するために、特に、FFVにとってエンジン始動が困難になるという特有の不利益があるエンジンストールを優先的に回避しつつ、エンジンの回転変動も併せて抑制するために、エンジンの始動後に、まず、燃料噴射量を増量側に補正し、その後、減量側に補正したが、この発明では、燃料噴射量の増量側の補正をエンジンの始動時に行い、エンジンの始動後は、燃料噴射量の減量側の補正のみ行う点が異なっている。
 この構成によれば、請求項1と同様の作用に加えて、エンジンが確実に始動する、エンジンの始動時間が短縮化する、エンジン始動後にエンジンの回転変動が短時間で抑えられる、等の作用が奏される。
 この出願は、2013年3月29日に出願された日本国特許出願特願2013-071512を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ充分に説明したが、当業者であれば上述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、そのような変更形態又は改良形態は、請求の範囲に記載された請求項の権利範囲に包括されると解釈される。
 本発明は、アルコール含有燃料の使用が可能な内燃機関において、アルコール濃度推定値が実際のアルコール濃度と乖離している場合でも、エンジン始動後におけるエンジンストールの発生及び回転変動の発生を抑制できるから、燃料タンク内の燃料のアルコール濃度が様々に変化するFFVの技術の発展向上に寄与する。

Claims (7)

  1.  アルコールを含有する燃料の使用が可能な内燃機関の制御装置であって、
     エンジン始動後、排気通路に備えられた酸素濃度センサが活性化するまでのアイドル運転中、エンジン回転数の変動量が所定の閾値以上のときは、燃料噴射量を、エンジン始動後当初の燃料噴射量から、仮に燃料のアルコール濃度が最高値又は最高値に所定の範囲内で近い値であるとした場合に設定される燃料噴射量まで増量補正する始動後噴射量増量手段と、
     前記始動後噴射量増量手段による燃料噴射量の増量補正後、エンジン回転数の変動量が前記閾値以上のときは、前記変動量が前記閾値未満になるまで、前記増量補正された燃料噴射量を前記増量補正時よりも小さい補正幅で繰り返し減量補正する始動後噴射量減量手段と、
    を備えていることを特徴とする内燃機関の制御装置。
  2.  請求項1に記載の内燃機関の制御装置において、
     前記始動後噴射量増量手段は、前記燃料噴射量の増量補正を1回で行うことを特徴とする内燃機関の制御装置。
  3.  請求項1に記載の内燃機関の制御装置において、
     前記始動後噴射量増量手段は、前記燃料噴射量の増量補正を複数回に分けて行うことを特徴とする内燃機関の制御装置。
  4.  請求項1に記載の内燃機関の制御装置において、
     燃焼室に燃料を噴射する燃料噴射手段と、
     前記燃料噴射手段による燃料噴射時期を、エンジン始動時は、圧縮行程後半に設定し、エンジン始動後は、エンジン始動時よりも進角させる噴射時期設定手段と、
     点火時期を、エンジン始動時は、所定の固定値に設定し、エンジン始動後は、水温及び外部負荷に応じて可変制御する点火時期設定手段と、
    を備えていることを特徴とする内燃機関の制御装置。
  5.  請求項2に記載の内燃機関の制御装置において、
     燃焼室に燃料を噴射する燃料噴射手段と、
     前記燃料噴射手段による燃料噴射時期を、エンジン始動時は、圧縮行程後半に設定し、エンジン始動後は、エンジン始動時よりも進角させる噴射時期設定手段と、
     点火時期を、エンジン始動時は、所定の固定値に設定し、エンジン始動後は、水温及び外部負荷に応じて可変制御する点火時期設定手段と、
    を備えていることを特徴とする内燃機関の制御装置。
  6.  請求項3に記載の内燃機関の制御装置において、
     燃焼室に燃料を噴射する燃料噴射手段と、
     前記燃料噴射手段による燃料噴射時期を、エンジン始動時は、圧縮行程後半に設定し、エンジン始動後は、エンジン始動時よりも進角させる噴射時期設定手段と、
     点火時期を、エンジン始動時は、所定の固定値に設定し、エンジン始動後は、水温及び外部負荷に応じて可変制御する点火時期設定手段と、
    を備えていることを特徴とする内燃機関の制御装置。
  7.  アルコールを含有する燃料の使用が可能な内燃機関の制御装置であって、
     エンジン始動時、所定の点火回数で始動しないときは、燃料噴射量を、仮に燃料のアルコール濃度が最高値又は最高値に所定の範囲内で近い値であるとした場合に設定される燃料噴射量まで増量補正する始動時噴射量増量手段と、
     エンジン始動後、排気通路に備えられた酸素濃度センサが活性化するまでのアイドル運転中、エンジン回転数の変動量が所定の閾値以上のときは、前記変動量が前記閾値未満になるまで、前記増量補正された燃料噴射量を所定の補正幅で繰り返し減量補正する始動後噴射量減量手段と、
    を備えていることを特徴とする内燃機関の制御装置。
PCT/JP2014/000854 2013-03-29 2014-02-19 内燃機関の制御装置 WO2014155949A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112015022256A BR112015022256A2 (pt) 2013-03-29 2014-02-19 dispositivo de controle para mecanismo motor de combustão interna
US14/430,885 US20150252772A1 (en) 2013-03-29 2014-02-19 Control device for internal combustion engine
CN201480002513.4A CN105074178A (zh) 2013-03-29 2014-02-19 内燃机的控制装置
DE112014000213.5T DE112014000213T5 (de) 2013-03-29 2014-02-19 Steuervorrichtung für Brennkraftmaschine
MX2015011260A MX345074B (es) 2013-03-29 2014-02-19 Dispositivo de control para motor de combustion interna.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013071512A JP5949632B2 (ja) 2013-03-29 2013-03-29 内燃機関の制御装置
JP2013-071512 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014155949A1 true WO2014155949A1 (ja) 2014-10-02

Family

ID=51622972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000854 WO2014155949A1 (ja) 2013-03-29 2014-02-19 内燃機関の制御装置

Country Status (7)

Country Link
US (1) US20150252772A1 (ja)
JP (1) JP5949632B2 (ja)
CN (1) CN105074178A (ja)
BR (1) BR112015022256A2 (ja)
DE (1) DE112014000213T5 (ja)
MX (1) MX345074B (ja)
WO (1) WO2014155949A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105756791A (zh) * 2014-11-24 2016-07-13 Ge延巴赫两合无限公司 用于起动利用燃料-空气混合物运行的内燃机的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10473042B2 (en) * 2015-07-22 2019-11-12 Walbro Llc Engine control strategy
US9828948B2 (en) * 2015-12-02 2017-11-28 Ford Global Technologies, Llc Method and system for determining knock control fluid composition
CN108884785B (zh) 2016-03-28 2022-03-15 沃尔布罗有限责任公司 用于发动机暖机的燃料供应系统
DE102016223716A1 (de) * 2016-11-29 2018-05-30 Mahle International Gmbh Betriebsverfahren für eine Brennkraftmaschine
JP6821255B2 (ja) * 2017-02-27 2021-01-27 ダイハツ工業株式会社 内燃機関の制御装置
CN110219737A (zh) * 2019-05-30 2019-09-10 东风汽车集团有限公司 一种直喷发动机从启动到怠速的喷油过渡控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080264394A1 (en) * 2007-04-27 2008-10-30 Paul Spivak Method and System for Detecting Fuel Type
JP2009121399A (ja) * 2007-11-16 2009-06-04 Denso Corp 内燃機関の燃料アルコール濃度推定装置
JP2010084675A (ja) * 2008-10-01 2010-04-15 Denso Corp 内燃機関の異常検出装置
JP2011163280A (ja) * 2010-02-12 2011-08-25 Honda Motor Co Ltd 汎用型エンジンの空燃比制御装置
JP2012225323A (ja) * 2011-04-22 2012-11-15 Toyota Motor Corp 内燃機関の制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233472A (ja) * 1988-07-21 1990-02-02 Fuji Heavy Ind Ltd エンジンの点火時期制御装置
JPH0617693A (ja) * 1992-04-17 1994-01-25 Nippondenso Co Ltd 内燃機関の電子制御システム
US5363647A (en) * 1992-10-13 1994-11-15 Mitsubishi Denki Kabushiki Kaisha Dual-sensor type air fuel ratio control system for internal combustion engine and catalytic converter diagnosis apparatus for the same
JP3165882B2 (ja) * 1995-10-24 2001-05-14 株式会社クボタ ガスエンジン
JP3337931B2 (ja) * 1997-01-30 2002-10-28 マツダ株式会社 筒内噴射式エンジン
JP3367429B2 (ja) * 1998-08-19 2003-01-14 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
JP3817961B2 (ja) * 1999-03-30 2006-09-06 マツダ株式会社 火花点火式直噴エンジンの制御装置
US7096853B2 (en) * 2004-01-28 2006-08-29 Nissan Motor Co., Ltd. Direct fuel injection/spark ignition engine control device
JP2007187149A (ja) * 2005-12-13 2007-07-26 Nissan Motor Co Ltd エンジンの燃料噴射制御方法及び燃料噴射制御装置
US7768382B2 (en) * 2008-04-04 2010-08-03 Ford Global Technologies, Llc Vehicle misfueling mitigation system and method
JP4664395B2 (ja) * 2008-05-23 2011-04-06 日立オートモティブシステムズ株式会社 エンジンの制御装置
JP5429230B2 (ja) * 2011-06-22 2014-02-26 トヨタ自動車株式会社 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080264394A1 (en) * 2007-04-27 2008-10-30 Paul Spivak Method and System for Detecting Fuel Type
JP2009121399A (ja) * 2007-11-16 2009-06-04 Denso Corp 内燃機関の燃料アルコール濃度推定装置
JP2010084675A (ja) * 2008-10-01 2010-04-15 Denso Corp 内燃機関の異常検出装置
JP2011163280A (ja) * 2010-02-12 2011-08-25 Honda Motor Co Ltd 汎用型エンジンの空燃比制御装置
JP2012225323A (ja) * 2011-04-22 2012-11-15 Toyota Motor Corp 内燃機関の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105756791A (zh) * 2014-11-24 2016-07-13 Ge延巴赫两合无限公司 用于起动利用燃料-空气混合物运行的内燃机的方法

Also Published As

Publication number Publication date
CN105074178A (zh) 2015-11-18
BR112015022256A2 (pt) 2017-07-18
DE112014000213T5 (de) 2015-06-11
US20150252772A1 (en) 2015-09-10
JP5949632B2 (ja) 2016-07-13
JP2014196664A (ja) 2014-10-16
MX345074B (es) 2017-01-16
MX2015011260A (es) 2015-12-03

Similar Documents

Publication Publication Date Title
JP5949632B2 (ja) 内燃機関の制御装置
US7597072B2 (en) System and method for operating a multiple fuel engine
JP5119126B2 (ja) エンジンシステムの制御方法
US20100312459A1 (en) Internal combustion engine controller
JP5987764B2 (ja) 火花点火式エンジンの制御装置
JP5987763B2 (ja) 火花点火式エンジンの制御装置
JP4710788B2 (ja) 内燃機関の制御装置
US7447586B2 (en) Valve characteristic control apparatus for internal combustion engine
US8161941B2 (en) Control device for internal combustion engine
JP6070412B2 (ja) 火花点火式エンジンの制御装置
JP4501298B2 (ja) 内燃機関の空燃比制御装置
JP5987765B2 (ja) 火花点火式エンジンの制御装置
JP6011433B2 (ja) 火花点火式エンジン
JP3975726B2 (ja) 内燃機関用制御装置
JP4872656B2 (ja) エンジンの制御方法及び制御装置
JP4872654B2 (ja) エンジンの制御方法及び制御装置
JP6020351B2 (ja) 火花点火式エンジンの制御装置
JP6044457B2 (ja) 内燃機関の燃料噴射制御装置
JP5658205B2 (ja) 内燃機関の始動制御装置
JP2009047004A (ja) 内燃機関
JP5942928B2 (ja) 火花点火式エンジンの制御装置
JP4686526B2 (ja) 内燃機関のスロットル弁制御装置
JP4872657B2 (ja) エンジンの制御方法及び制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480002513.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773000

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14430885

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014000213

Country of ref document: DE

Ref document number: 1120140002135

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/011260

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015022256

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 14773000

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015022256

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150910