WO2014155450A1 - シリコンベース電気光学変調装置 - Google Patents
シリコンベース電気光学変調装置 Download PDFInfo
- Publication number
- WO2014155450A1 WO2014155450A1 PCT/JP2013/006990 JP2013006990W WO2014155450A1 WO 2014155450 A1 WO2014155450 A1 WO 2014155450A1 JP 2013006990 W JP2013006990 W JP 2013006990W WO 2014155450 A1 WO2014155450 A1 WO 2014155450A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon
- semiconductor layer
- layer
- electro
- optic modulator
- Prior art date
Links
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 174
- 239000010703 silicon Substances 0.000 title claims abstract description 174
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 171
- 239000004065 semiconductor Substances 0.000 claims abstract description 89
- 230000003287 optical effect Effects 0.000 claims description 72
- 239000000969 carrier Substances 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 11
- 230000005684 electric field Effects 0.000 claims description 8
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 5
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 3
- 230000009467 reduction Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 163
- 230000000694 effects Effects 0.000 description 26
- 239000000758 substrate Substances 0.000 description 17
- 230000008859 change Effects 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000004891 communication Methods 0.000 description 9
- 210000000746 body region Anatomy 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 230000031700 light absorption Effects 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 238000005253 cladding Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000010365 information processing Effects 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 229910021332 silicide Inorganic materials 0.000 description 3
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 108091006149 Electron carriers Proteins 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 230000005374 Kerr effect Effects 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
- G02F1/025—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/21—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference
- G02F1/225—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference in an optical waveguide structure
- G02F1/2255—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/21—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference
- G02F1/225—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference in an optical waveguide structure
- G02F1/2257—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference in an optical waveguide structure the optical waveguides being made of semiconducting material
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/011—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour in optical waveguides, not otherwise provided for in this subclass
- G02F1/0113—Glass-based, e.g. silica-based, optical waveguides
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
- G02F1/0151—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the refractive index
- G02F1/0152—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the refractive index using free carrier effects, e.g. plasma effect
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/21—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference
- G02F1/212—Mach-Zehnder type
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/06—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide
- G02F2201/063—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide ridge; rib; strip loaded
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/10—Materials and properties semiconductor
- G02F2202/103—Materials and properties semiconductor a-Si
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/10—Materials and properties semiconductor
- G02F2202/104—Materials and properties semiconductor poly-Si
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/10—Materials and properties semiconductor
- G02F2202/105—Materials and properties semiconductor single crystal Si
Definitions
- the present invention relates to a silicon-based electro-optic modulator that converts a high-speed electrical signal into an optical signal at high speed.
- the present invention relates to, for example, a silicon-insulator-silicon formed on a silicon-on-insulator (SOI) substrate.
- SOI silicon-on-insulator
- the present invention relates to a silicon electro-optic modulation device using a capacitor structure composed of:
- the present invention is used, for example, in the information processing and communication fields.
- an optical modulator that modulates signals from LSI circuits that handle information processing in optical communication devices to optical signals at high speed. It becomes.
- Silicon-based optical communication devices that function at 1310 nm and 1550 nm optical fiber communication wavelengths for various systems such as home optical fibers and local area networks (LANs) utilize CMOS technology to integrate optical functional elements and electronic circuits. This is a very promising technology that can be integrated on a silicon platform.
- passive devices such as silicon-based waveguides, optical couplers and wavelength filters have been very extensively studied.
- the optical switch and the modulation element that change the refractive index by utilizing the thermo-optic effect of silicon are low speed and can be used only for apparatus speeds up to a modulation frequency of 1 Mb / sec. Therefore, in order to realize a high modulation frequency required in more optical communication systems, an optical modulation element using the electro-optic effect is necessary.
- electro-optic modulators change the real part and the imaginary part of the refractive index by changing the free carrier density in the silicon layer by using the carrier plasma effect, and the phase of the light. It is a device that changes the strength. Pure silicon does not exhibit a linear electro-optic effect (Pockets) effect, and since the refractive index change due to the Franz-Keldysh effect or the Kerr effect is very small, the above effect is widely used.
- the output is directly modulated by the change in light absorption propagating in Si.
- a structure using a change in refractive index a structure using a Mach-Zehnder interferometer is generally used. It is possible to obtain an optical intensity modulation signal by interfering with the optical phase difference between the two arms.
- the free carrier density in the electro-optic modulator can be changed by free carrier injection, accumulation, removal or inversion.
- Many of these devices studied to date have poor optical modulation efficiency, the length required for optical phase modulation is on the order of mm, and an injection current density higher than 1 kA / cm 3 is required.
- an element structure capable of obtaining high light modulation efficiency is required, and thus the optical phase modulation length can be reduced.
- the element size is large, it is likely to be affected by the temperature distribution on the silicon platform, and it is assumed that the original electro-optic effect is canceled by the refractive index change of the silicon layer caused by the thermo-optic effect. is there.
- FIG. 1 is a typical example of a silicon-based electro-optic phase modulator using a rib waveguide shape formed on an SOI substrate shown in Non-Patent Document 1.
- the structure shown in FIG. 1 is a PIN diode type modulator. By applying forward and reverse bias, the free carrier density in the intrinsic semiconductor region is changed and the carrier plasma effect is used to refract. It has a structure that changes the rate.
- the rib waveguide structure is formed using a Si layer on a silicon-on-insulator (SOI) substrate.
- FIG. 1 is a cross-sectional view of an optical modulator, which is a cross-sectional view in a plane perpendicular to the light propagation direction.
- This optical modulator has an oxide layer 12 on the upper surface of a silicon substrate 11 as a support substrate.
- a rib waveguide 14 is formed on the upper surface of the oxide layer 12.
- the rib waveguide 14 has a projecting portion 15 serving as a core at the center thereof, and further has slab portions 16 on both sides of the projecting portion 15 and connected to the projecting portion 15. (In the present specification, the protruding portion may be referred to as a rib portion.)
- the rib waveguide 14 is an intrinsic semiconductor silicon layer.
- a p-type region 17 in which the intrinsic semiconductor silicon layer is p-type doped and an n-type region 18 in which the intrinsic semiconductor silicon layer is n-type doped are formed on both sides of the slab portion 16.
- the structure is a PIN diode.
- a first electrode contact layer 19 is formed on the upper surface of the p-type region 17, and the first electrode contact layer 19 is connected to the electrode wiring 21.
- a second electrode contact layer 20 is formed on the upper surface of the n-type region 18, and the second electrode contact layer 20 is connected to the electrode wiring 21.
- the p-type region 17 and the n-type region 18 can be doped so as to exhibit a carrier density of about 10 20 per unit volume (1 cm 3 ).
- An oxide cladding layer 13 that also functions as a cladding layer in the waveguide is provided so as to cover the rib waveguide 14, the p-type region 17, and the n-type region 18.
- the first and second electrode contact layers 19, 20 are used to apply a forward bias to the PIN diode, thereby injecting free carriers into the waveguide. It is connected. At this time, the refractive index of the intrinsic semiconductor silicon layer (that is, the rib waveguide 14) is changed by the increase of free carriers, and thereby phase modulation of light transmitted through the waveguide 14 is performed.
- Such prior art PIN diode phase modulators typically have operating speeds in the range of 10-50 Mb / sec during forward bias operation. Here, the speed of this light modulation operation is limited by the free carrier lifetime in the rib waveguide 14 and the carrier diffusion when the forward bias is removed. Thus, it is possible to shorten the carrier lifetime and increase the switching speed by introducing impurities into the silicon layer. However, the introduced impurities have a problem of reducing the light modulation efficiency.
- the biggest factor affecting the operating speed is due to the RC time constant, and the capacitance (C) when the forward bias is applied becomes very large due to the decrease in the carrier depletion layer at the PN junction.
- C capacitance
- Patent Document 1 Japanese Patent Publication No. 2006-515082
- a p-doped silicon layer 34 and an n-doped silicon layer 38 are laminated via a relatively thin dielectric layer 42 in a waveguide structure.
- the optical modulator 30 includes a silicon substrate (support substrate) 31, an oxide layer 32, an oxide clad layer 33, and an electrode wiring 41.
- a relatively thin silicon surface layer 34 doped to the first conductivity type is formed on the top surface of the oxide layer 32.
- This relatively thin silicon surface layer doped (eg, p-type dopant) into this first conductivity type will be referred to as body region 34.
- a gate region 38 is formed on the upper surface of the main body region 34 so as to at least partially overlap the main body region 34.
- Gate region 38 is formed of a relatively thin silicon region that is doped (eg, n-type dopant) to a second conductivity type.
- a thin gate dielectric 42 is sandwiched between the body region 34 and the gate region 38.
- a heavily doped region 35 that is heavily doped is formed at the end of the main body region 34 (right end in FIG. 2), and a first electrode contact layer 36 is formed on the upper surface of the heavily doped region 35.
- the electrode contact layer 36 is connected to the electrode wiring 37.
- a heavily doped region 39 that is heavily doped is formed at the end of the gate region 38 (left end in FIG. 2), a second electrode contact layer 40 is formed on the upper surface of the heavily doped region 39, and the second The electrode contact layer 40 is connected to the electrode wiring 41.
- the gate region 38 and the main body region 34 are doped, and the doped region is defined such that a change in carrier density is controlled by an external signal voltage.
- the optical signal electric field and the carrier density are dynamically matched to the externally controlled region, and free carriers are accumulated, removed, or inverted on both sides of the gate dielectric layer 42.
- optical phase modulation is performed.
- the region where the carrier density changes dynamically is very thin, about several tens of nanometers, which requires a light modulation length on the order of mm, which increases the size of the electro-optic modulator. There is a problem that high-speed operation is difficult.
- an object of the present invention is to provide a silicon-based electro-optic modulation that is small and capable of high-speed operation that improves the overlap of the optical field with the region where the free carrier density varies and enhances the carrier plasma effect, and further reduces the extraction electrode resistance.
- the silicon-based electro-optic modulator of the present invention is At least a portion of a first silicon semiconductor layer doped to exhibit a first conductivity type and a second silicon semiconductor layer doped to exhibit a second conductivity type are stacked, and the first silicon The semiconductor layer and the second silicon semiconductor layer have an SIS (semiconductor-insulator-semiconductor) type junction in which a relatively thin dielectric is formed at the interface where the second silicon semiconductor layer is laminated, and the first silicon semiconductor layer and the second silicon semiconductor layer Free carriers accumulate, remove, or invert on both sides of the relatively thin dielectric layer due to electrical signals from electrical terminals respectively coupled to the silicon semiconductor layers, thereby modulating the free carrier concentration felt by the optical signal electric field.
- SIS semiconductor-insulator-semiconductor
- a silicon-based electro-optic modulator utilizing The first silicon semiconductor layer includes a rib portion that is a portion that becomes a core of the rib waveguide and that has a protruding shape, and a slab portion that is on both sides of the rib portion and is connected to the rib portion. It is processed into a rib waveguide shape, A first heavily doped region that is heavily doped at a position adjacent to the slab portion of the first silicon semiconductor layer; A second heavily doped region formed by heavily doping part of the second silicon semiconductor layer, The first heavily doped region has a height equivalent to that of the rib portion of the rib waveguide.
- a small and high-speed silicon-based electro-optic that improves the overlap between the optical field and the region where the free carrier density changes, enhances the carrier plasma effect, and further reduces the extraction electrode resistance. It can be a modulation device.
- the figure for demonstrating the manufacturing process of an electro-optic modulation apparatus The figure for demonstrating the manufacturing process of an electro-optic modulation apparatus. The figure for demonstrating the manufacturing process of an electro-optic modulation apparatus. The figure for demonstrating the manufacturing process of an electro-optic modulation apparatus. The figure for demonstrating the manufacturing process of an electro-optic modulation apparatus. The figure for demonstrating the manufacturing process of an electro-optic modulation apparatus. The figure for demonstrating the manufacturing process of an electro-optic modulation apparatus. The figure for demonstrating the manufacturing process of an electro-optic modulation apparatus. The figure for demonstrating the manufacturing process of an electro-optic modulation apparatus. The figure for demonstrating the manufacturing process of an electro-optic modulation apparatus.
- the figure for demonstrating the manufacturing process of an electro-optic modulation apparatus The figure for demonstrating the manufacturing process of an electro-optic modulation apparatus.
- Mach-Zehnder interferometer type light intensity modulator using silicon-based electro-optic modulator The figure which shows the Example which has arrange
- ⁇ n and ⁇ k represent the real part and the imaginary part of the refractive index change of the silicon layer.
- e is the charge
- lambda is optical wavelength
- epsilon 0 is the dielectric constant in vacuum
- n is the refractive index of the intrinsic semiconductor silicon
- m e is the effective mass of the electron carrier
- m h is the effective mass of the hole carriers
- mu e electronic carrier ⁇ h is the mobility of hole carriers
- ⁇ N e is the change in electron carrier concentration
- ⁇ N h is the change in hole carrier concentration.
- L is the length of the active layer along the light propagation direction of the electro-optic device.
- the amount of phase change is a greater effect than light absorption, and the electro-optic modulator described below can basically exhibit the characteristics of a phase modulator.
- FIG. 3 is a cross-sectional view of the silicon-based electro-optic modulation device 100 according to the first embodiment, and is a cross-sectional view in a plane perpendicular to the light propagation direction.
- the electro-optic modulation device 100 has an oxide layer 111 on the upper surface of a silicon substrate 110 as a support substrate.
- a first silicon semiconductor layer 120 doped with a first conductivity type (for example, p-type) is formed.
- the central region of the first silicon semiconductor layer 120 is a rib waveguide 130, and highly doped regions 140 and 140 are formed on both sides of the rib waveguide 130.
- the rib waveguide 130 has a projecting portion 131 as a core at the center thereof, and further has slab portions 132 and 132 on both sides of the projecting portion 131 and connected to the projecting portion 131. (In this specification, the protruding portion may be referred to as a rib portion.)
- Highly doped regions 140 and 140 are formed further outside the slab portion 132.
- first electrical contact portions 141 and 141 are formed on the upper surfaces of the heavily doped regions 140 and 140.
- the first electrical contact portions 141 and 141 are, for example, silicide layers. At this time, the height of the first electrical contact portions 141 and 141 is higher than that of the slab portions 132 and 132.
- the heights of the first electrical contact portions 141 and 141 are formed to be substantially the same as the protrusions (rib portions 131) of the rib waveguide 130. (In other words, the height of the upper surfaces of the heavily doped regions 140 and 140 is substantially equal to the height of the protrusion (rib portion 131) of the rib waveguide 130.) In other words, in the cross-sectional view of FIG.
- the first silicon semiconductor layer 120 is recessed at the slab portions 132 and 132 and is convex at the rib portion 131 and the first contact portions 141 and 141. Electrode wirings 142 and 142 are connected to the first contact portions 141 and 141.
- a dielectric layer 150 is formed on the upper surface of the rib portion 131 of the rib waveguide 130.
- the dielectric layer 150 is formed relatively thin. (Although the dielectric layer 150 is relatively thin, the dielectric layer 150 is shown with a certain thickness to make the drawing easier to see.)
- a second silicon semiconductor layer 160 doped with a second conductive type (eg, n type) is formed on the upper surface of the dielectric layer 150.
- the width of the second silicon semiconductor layer 160 is sufficiently wider than the width of the rib portion 131 of the rib waveguide 130, and the second silicon semiconductor layer 160 includes the slab regions 132 and 132 of the rib waveguide 130 when viewed from above. Also, it is formed so as to protrude so as to overlap.
- heavily doped regions 161 and 161 formed by heavily doped are formed.
- Second electrical contact portions 162 and 162 are formed on the upper surfaces of the heavily doped regions 161 and 161.
- a SIS (semiconductor-insulator-semiconductor) type junction is formed by stacking the first silicon semiconductor layer 120 (rib waveguide 130) -dielectric layer 150-second silicon semiconductor layer 160.
- An oxide cladding layer 170 is provided so as to cover the entire first silicon semiconductor layer 120 and the second silicon semiconductor layer 160.
- the heavily doped regions 140 and 140 and the first electrical contact portions 141 and 141 are formed at the same height as the rib portion 131 of the rib waveguide 130,
- the resistance that is, the series resistance component can be reduced, and the RC time constant can be reduced.
- a silicide layer (first electrical contact portion 141) is formed when connecting the electrode wirings 142, 142 to the heavily doped regions 140, 140.
- the heavily doped regions 140, 140 have a sufficient thickness, they are stable. As a result, the connection resistance between the electrode wirings 142 and 142 and the heavily doped regions 140 and 140 can be stably reduced.
- the conventional structure described with reference to FIGS. 1 and 2 has a drawback in that the overlap between the optical field and the region where the carrier density is modulated is small, and the size of the electro-optic modulator is increased.
- the optical field is confined narrowly, and further, the thickness of the second silicon semiconductor layer 160 is adjusted, so that the optical field and the region where the carrier density is modulated are separated. The overlap can be improved and the electro-optic modulator can be downsized.
- FIGS. 4 and 5 show examples in which the thickness of the second silicon semiconductor layer 160 is adjusted.
- the heavily doped regions 161 and 161 are thicker than the regions located immediately above the rib portion 131 and the dielectric layer 150.
- the thickness of the region located immediately above the rib portion 131 and the dielectric layer 150 is smaller than the thickness of the heavily doped regions 161 and 161.
- the above structure is realized by recessing the upper surface side of the second silicon semiconductor layer 160 at a position corresponding to a position directly above the rib portion 131 and the dielectric layer 150.
- the above-described structure is realized by recessing the lower surface side of the second silicon semiconductor layer 160 at a position corresponding to the portion directly above the rib portion 131 and the dielectric layer 150.
- a second embodiment of the present invention will be described.
- the modulation efficiency can be further increased.
- a region on the upper side of the rib portion 131, that is, a region adjacent to the dielectric layer 150 is referred to as a rib upper region.
- W as the maximum depletion layer thickness is given by the following formula in a thermal equilibrium state.
- ⁇ s is the dielectric constant of the semiconductor layer
- k is the Boltzmann constant
- N c is the carrier density
- ni is the intrinsic carrier concentration
- e is the charge amount.
- the maximum depletion layer thickness W is about 0.1 ⁇ m
- the depletion layer thickness W that is, the thickness of the region where the modulation of the carrier density occurs as the carrier density increases. Becomes thinner.
- a laminated structure having a layer composition may be employed.
- the first silicon semiconductor layer and the second silicon semiconductor layer are formed from at least one layer selected from the group consisting of polycrystalline silicon, amorphous silicon, strained silicon, single crystal silicon, and Si 1-x Ge x. Good.
- the first silicon semiconductor layer and the second silicon semiconductor layer may be formed by combining and laminating these variously.
- FIG. 8A is a cross-sectional view of an SOI substrate used to form a silicon-based electro-optic modulator.
- This SOI substrate has a structure in which a Si layer of about 100 to 1000 nm is stacked on the buried oxide layer 111, and a structure in which the thickness of the buried oxide layer 111 is 1000 nm or more is applied in order to reduce optical loss.
- a substrate previously doped so as to exhibit the first conductivity type is used, or the surface layer is doped with P (phosphorus) or B (boron) by ion implantation or the like. You may heat-process after processing. In this way, the first silicon semiconductor layer 120 is formed.
- a laminated structure of an oxide film mask 410 and a SiN x hard mask layer 411 is formed as a mask for forming a rib waveguide shape, and patterning is performed by UV lithography, dry etching, or the like. To do.
- the rib waveguide 130 shape is formed by patterning the first silicon semiconductor layer 120 using the oxide film mask 410 and the SiN x hard mask 411 as a mask. Note that, as shown in FIG. 8C, the height of the region outside the rib waveguide 130 is left without being cut.
- high concentration B doping is performed on an adjacent region having a height equivalent to the shape of the rib waveguide 130 by ion implantation or the like. In this way, heavily doped regions 140 and 140 are formed.
- an oxide clad 170 is stacked and planarized by a CMP (chemical mechanical polishing) method.
- CMP chemical mechanical polishing
- the SiN x hard mask 411 and the oxide film mask 410 are removed by treatment with hot phosphoric acid and dilute hydrofluoric acid, and subsequently, about 5 to 10 nm on the upper layer portion of the rib waveguide 130 shape.
- a relatively thin dielectric layer 150 is formed.
- an n-doped polycrystalline silicon layer 160 is stacked and patterned by a dry etching method or the like to such a width that a second electrical contact layer can be formed. Thereby, the second silicon semiconductor layer 160 is formed.
- the second silicon semiconductor layer 160 is heavily doped by ion implantation or the like so that the second electrical contact parts 162 and 162 can be formed. Thereby, heavily doped regions 161 and 161 are formed.
- an oxide clad 170 is further laminated by about 1 ⁇ m, and then a contact hole 421 for taking first and second electrical contacts is formed by a dry etching method or the like.
- a metal layer such as Ti / TiN / Al (Cu) or Ti / TiN / W is formed by sputtering or CVD, and patterned by reactive etching to form electrode wiring.
- 142, 142, 163 and 163 are formed and connected to the driving circuit.
- FIG. 9 is a diagram showing the frequency characteristics of the light modulation efficiency between the silicon-based electro-optic modulator according to the present invention and the conventional type (for example, the type shown in FIG. 2).
- the solid line shows the frequency characteristic of the light modulation efficiency in the silicon-based electro-optic modulator according to the present invention.
- a dotted line indicates a frequency characteristic of light modulation efficiency in a conventional (for example, the type shown in FIG. 2) gas optical modulator.
- the carrier mobility in the polycrystalline silicon layer is a problem in high-speed operation. Therefore, the carrier mobility is improved by increasing the particle diameter by recrystallization by annealing treatment, or the crystal quality of the second silicon semiconductor layer 160 is improved by using an epitaxial lateral growth (ELO) method or the like. Is effective.
- ELO epitaxial lateral growth
- a Mach-Zehnder interferometer type optical intensity modulator 500 is shown.
- a silicon-based electro-optic modulator as the first arm 510 and a silicon-based electro-optic modulator as the second arm 520 are arranged in parallel. Electrode pads 531, 532, and 533 are provided so as to sandwich the first arm 510 and the second arm 520, respectively.
- An optical branching structure 541 is provided on the input side, and an optical multiplexing structure 542 is provided on the output side. The optical input is branched by the optical branching structure 541 and is incident on the first arm 510 and the second arm 520, respectively. Then, the first arm 510 and the second arm 520 respectively modulate the phase of the optical signal, and the optical multiplexing structure 542 causes phase interference. In this way, a signal whose light intensity is modulated (light intensity modulation) is generated.
- the input light is branched so that the first arm 510 and the second arm 520 have the same power by the light branching structure 541 disposed on the input side.
- the first arm 510 by applying a positive voltage to the first arm 510, carrier accumulation occurs on both sides of the thin dielectric layer 150, and by applying a negative voltage to the second arm 520, the thin dielectric layer 150 The carriers on both sides will be removed.
- the carrier accumulation mode the refractive index felt by the optical signal electric field in the silicon-based electro-optic modulation device becomes small, and in the carrier removal (depletion) mode, the refractive index felt by the optical signal electric field becomes large.
- the optical signal phase difference at is maximized.
- Optical intensity modulation occurs when optical signals transmitted through both arms 510 and 520 are multiplexed by the optical multiplexing structure 542 on the output side.
- silicon-based electro-optic modulation device 500 of this embodiment it was confirmed that an optical signal of 40 Gbps or more can be transmitted.
- the electro-optic modulation device 500 including the Mach-Zehnder interferometer is arranged in parallel or in series so that an optical modulator or matrix optical switch having a higher transfer rate can be obtained. It is also possible to apply to the above.
- FIG. 11 is a diagram illustrating a state in which a plurality of electro-optic modulation devices 500 including Mach-Zehnder interferometers are arranged in parallel.
- FIG. 12 is a diagram illustrating a state in which electro-optic modulation devices 500 including Mach-Zehnder interferometers are arranged in series.
- At least a portion of a first silicon semiconductor layer doped to exhibit a first conductivity type and a second silicon semiconductor layer doped to exhibit a second conductivity type are stacked, and the first silicon
- An SIS (semiconductor-insulator-semiconductor) -type junction in which a relatively thin dielectric is formed is formed at an interface where the semiconductor layer and the second silicon semiconductor layer are stacked.
- the first silicon semiconductor layer and the second silicon semiconductor layer Free carriers accumulate, remove, or invert on both sides of the relatively thin dielectric layer due to electrical signals from electrical terminals respectively coupled to the silicon semiconductor layers, thereby modulating the free carrier concentration felt by the optical signal electric field.
- a silicon-based electro-optic modulator utilizing The first silicon semiconductor layer includes a rib portion that is a portion that becomes a core of the rib waveguide and that has a protruding shape, and a slab portion that is on both sides of the rib portion and is connected to the rib portion. It is processed into a rib waveguide shape, A first heavily doped region that is heavily doped at a position adjacent to the slab portion of the first silicon semiconductor layer; A second heavily doped region formed by heavily doping part of the second silicon semiconductor layer, The first heavily doped region has a height equivalent to that of the rib portion of the rib waveguide.
- a silicon-based electro-optic modulator characterized by comprising a structure in which is modulated in the film thickness direction.
- the first silicon semiconductor layer and the second silicon semiconductor layer are: A silicon-based electro-optic modulator comprising at least one layer selected from the group consisting of polycrystalline silicon, amorphous silicon, strained silicon, single crystal silicon, and Si 1-x Ge x .
- a silicon-based electro-optic modulator comprising at least one layer selected from the group consisting of polycrystalline silicon, amorphous silicon, strained silicon, single crystal silicon, and Si 1-x Ge x .
- a silicon-based electro-optic wherein an optical modulation signal is generated by applying at least one electrical modulation signal as an input to at least one of the first heavily doped region and the second heavily doped region Modulation device.
- a first arm which is the silicon-based electro-optic modulation device according to any one of appendix 1 to appendix 8, The silicon-based electro-optic modulation device according to any one of appendix 1 to appendix 8, wherein the second arm is disposed in parallel to the first arm;
- An optical branching unit for splitting light on the input side;
- An optical coupling part for coupling light on the output side, Mach-Zehnder interferometer type characterized in that a light intensity modulation signal is generated by performing phase modulation of an optical signal by the first arm and the second arm, and further by performing phase interference by the optical coupling unit Electro-optic modulation device.
- (Appendix 12) A plurality of Mach-Zehnder interferometer-type electro-optic modulators according to any one of appendix 9 to appendix 11, The plurality of Mach-Zehnder interferometer-type electro-optic modulators are arranged in parallel.
- (Appendix 13) A plurality of Mach-Zehnder interferometer-type electro-optic modulators according to any one of appendix 9 to appendix 11, The plurality of Mach-Zehnder interferometer-type electro-optic modulators are arranged in series.
- SYMBOLS 11 Silicon substrate, 12 ... Oxide layer, 14 ... Rib waveguide, 15 ... Protrusion part, 16 ... Slab part, 30 ... Silicon-based electro-optic modulator, 31 ... Silicon substrate, 33 ... Oxide clad layer, 34 ... Main body region 35 ... Highly doped region 36 ... First electrode contact layer 37 ... Electrode wiring 38 ... Gate region 39 ... Highly doped region 40 ... Second electrode contact layer 41 ... Electrode wiring 42 ... Gate dielectric layer, 100 ... silicon-based electro-optic modulator, 110 ... silicon substrate, 111 ... oxide layer, 120 ... first silicon semiconductor layer, 130 ... rib waveguide, 131 ... rib portion, 132 ...
- slab portion 140 ... Highly doped region, 141 ... First electrical contact part, 142 ... Electrode wiring, 150 ... Dielectric layer, 160 ... Second silicon semiconductor layer, 161 ... Highly doped region 162: second electrical contact portion, 163: electrode wiring, 170 ... oxide clad layer, 410 ... oxide mask, 411 ... hard mask layer, 421 ... contact hole, 500 ... silicon-based electro-optic modulator, 510 ... first Arm, 520, second arm, 531, electrode pad, 541, optical branching structure, 542, optical multiplexing structure.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
この光変調器30では、導波路構造において、pドープシリコン層34とnドープシリコン層38とが比較的薄い誘電体層42を介して積層されている。この光変調器30は、図2に示すように、シリコン基板(支持基板)31、酸化物層32、酸化物クラッド層33および電極配線41を有する。酸化物層32の上面に、第1の導電性タイプにドープ処理された比較的薄いシリコン表面層34が形成されている。この第1の導電性タイプにドープ処理(例えばpタイプドーパント)された比較的薄いシリコン表面層を本体領域34と称することにする。本体領域34の上面において、この本体領域34と少なくとも一部がオーバーラップするようにゲート領域38が形成されている。ゲート領域38は、第2の導電性タイプにドープ処理(例えばnタイプドーパント)された比較的薄いシリコン領域で形成されている。そして、本体領域34とゲート領域38との間には薄いゲート誘電体42が挟まれている。
さらに、光変調効率を増加させるために、Si層の厚さを薄くした場合、引出し電極の抵抗が大きくなり、高速動作が困難であった。
そこで本発明の目的は、自由キャリア密度が変化する領域と光フィールドとのオーバーラップを改善すると共にキャリアプラズマ効果をエンハンスし、さらに引出し電極抵抗を低減した小型かつ高速動作可能なシリコンベース電気光学変調装置を提供することにある。
第1の導電タイプを呈するようにドープ処理された第1シリコン半導体層と第2の導電タイプを呈するようにドープ処理された第2シリコン半導体層との少なくとも一部が積層され、前記第1シリコン半導体層と前記第2シリコン半導体層とが積層された界面に、比較的薄い誘電体が形成されたSIS(semiconductor-insulator-semiconductor)型接合を有し、前記第1シリコン半導体層および前記第2シリコン半導体層にそれぞれ結合された電気端子からの電気信号により、自由キャリアが、前記比較的薄い誘導体層の両側で蓄積、除去、または反転することにより、光信号電界が感じる自由キャリア濃度が変調されることを利用したシリコンベース電気光学変調装置であって、
第1シリコン半導体層は、リブ導波路のコアとなる部分であって突起する形状に形成されたリブ部と、前記リブ部の両側にあって前記リブ部に接続されるスラブ部と、を有するリブ導波路形状に加工されており、
前記第1シリコン半導体層の前記スラブ部に隣接する位置において、高濃度ドープされた第1高濃度ドープ領域と、
第2シリコン半導体層の一部が高濃度ドープされて形成された第2高濃度ドープ領域と、を有し、
前記第1高濃度ドープ領域は、前記リブ導波路の前記リブ部と同等の高さを有する
ことを特徴とする。
eは電荷、λは光波長、ε0は真空中の誘電率、nは真性半導体シリコンの屈折率、meは電子キャリアの有効質量、mhはホールキャリアの有効質量、μeは電子キャリアの移動度、μhはホールキャリアの移動度、ΔNeは電子キャリアの濃度変化、ΔNhはホールキャリアの濃度変化である。
そして、Si1-xGex(x=0.01~0.9)層は、シリコン半導体層に比較して屈折率が大きいため、自由キャリア密度が変化する領域と光フィールドとのオーバーラップを改善する効果があり、アクティブ層の長さを顕著に小さくすることが可能である。
また、Si1-xGex層におけるGe組成を増加することにより、キャリアプラズマ効果はよりエンハンスされる。このとき、光通信システムで使用する1310nmおよび1550nm波長において、Si1-xGex層中の電子エネルギー遷移に起因する光吸収を避けるために、組成としては、x=0.01~0.9が望ましい。また、Si1-xGex(x=0.01~0.9)層に歪を印加することにより、電子およびホールキャリアの有効質量がより小さくなり、より大きなキャリアプラズマ効果を得ることが可能である。
以下、図面を参照して本発明の実施の形態について説明する。
SOI基板上にシリコン半導体-誘電体層-シリコン半導体接合からなる自由キャリアプラズマ効果を用いた電気光学位相変調装置を以下に開示する。
電気光学変調装置100は、支持基板としてのシリコン基板110の上面に酸化物層111を有する。酸化物層111の上面には、第1の導電性タイプ(例えばpタイプ)にドープ処理された第1シリコン半導体層120が形成されている。第1シリコン半導体層120は、その中央領域がリブ導波路130となっており、リブ導波路130の両側には高濃度ドープ領域140、140が形成されている。
(本明細書では突起部をリブ部と称することもある。)
そして、スラブ部132のさらに外側において、高濃度ドープ領域140、140が形成されている。さらに、この高濃度ドープ領域140、140の上面に第1電気コンタクト部141、141が形成されている。
第1電気コンタクト部141、141は、例えば、シリサイド層である。このとき、第1電気コンタクト部141、141の高さはスラブ部132、132よりも高くなっている。
(つまり、高濃度ドープ領域140、140の厚みがスラブ部132、132の厚みよりも厚く、高濃度ドープ領域140、140の上面の高さがスラブ部132、132よりも高くなっている。)図3では、具体的には、第1電気コンタクト部141、141の高さは、リブ導波路130の突起部(リブ部131)とほぼ同等の高さに形成されている。
(つまり、高濃度ドープ領域140、140の上面の高さがリブ導波路130の突起部(リブ部131)の高さとほぼ同等である。)
言い換えると、図3の断面図において、第1シリコン半導体層120は、スラブ部132、132の部分で凹み、リブ部131と第1コンタクト部141、141のところで凸になっている。第1コンタクト部141、141には電極配線142、142が接続されている。
(なお、誘電体層150は比較的薄いものであるが、図を見やすくするため、ある程度の厚みで図示している。)
図4および図5に示すように、第2シリコン半導体層160において、高濃度ドープ領域161、161の厚みが、リブ部131および誘電体層150の直上に位置する領域の厚みよりも厚くなっている。逆にいうと、第2シリコン半導体層160において、リブ部131および誘電体層150の直上に位置する領域の厚みが、高濃度ドープ領域161、161の厚みよりも薄い。なお、図4では、リブ部131および誘電体層150の直上に対応する位置において第2シリコン半導体層160の上面側を窪ませることにより、前記の構造を実現している。逆に、図5では、リブ部131および誘電体層150の直上に対応する位置において第2シリコン半導体層160の下面側を窪ませることにより、前記の構造を実現している。
本発明の第2実施形態を説明する。
第2実施形態の基本的構成は第1実施形態と同様であるが、リブ部の上部領域にSi1-xGex(x=0.01~0.9)からなる層131Aを有する点に特徴を有する。図6において、リブ導波路130のリブ部131において、上側の領域にSi1-xGex(x=0.01~0.9)層131Aを形成している。このような構成にすることにより、変調効率をさらに高めることが可能である。本明細書では、リブ部131の上側の領域、つまり、誘電体層150に隣接する領域を、リブ上部領域と称する。
本発明の第3実施形態として製造工程の一例を説明する。
図8Aは、シリコンベース電気光学変調装置を形成するために用いるSOI基板の断面図である。
このSOI基板は、埋め込み酸化層111上に100-1000nm程度のSi層が積層された構造からなり、光損失を低減するために、埋め込み酸化層111の厚みを1000nm以上とする構造を適用した。この埋め込み酸化層111上のSi層は、第1の導電タイプを呈するように予めドーピング処理された基板を用いるか、あるいはイオン注入などにより、P(リン)あるいはB(ホウ素)を表面層にドープ処理した後、熱処理しても良い。このようにして、第1シリコン半導体層120が形成される。
本発明の第4実施形態として、マッハ・ツェンダー干渉計型の光強度変調器500を示す。
図10において、第1アーム510としてのシリコンベース電気光学変調装置と第2アーム520としてのシリコンベース電気光学変調装置とが平行に配置されている。
なお、第1アーム510と第2アーム520とをそれぞれ挟むように電極パッド531、532、533が設けられている。そして、光分岐構造541が入力側に設けられ、光合波構造542が出力側に設けられている。
光入力は光分岐構造541によって分岐され、それぞれ第1アーム510と第2アーム520とに入射する。そして、第1アーム510および第2アーム520でそれぞれ光信号の位相変調が行われ、光合波構造542により位相干渉が行われる。
このようにして、光強度が変調された信号(光強度変調)が生成される。
ここで、第1アーム510にプラスの電圧を印加することにより、薄い誘電体層150の両側でキャリア蓄積が生じ、第2アーム520にマイナスの電圧を印加することにより、薄い誘電体層150の両側のキャリアが除去されることになる。
これにより、キャリア蓄積モードではシリコンベース電気光学変調装置における光信号電界が感じる屈折率が小さくなり、キャリア除去(空乏化)モードでは、光信号電界が感じる屈折率が大きくなり、両アーム510、520での光信号位相差が最大となる。この両アーム510、520を伝送する光信号を出力側の光合波構造542により合波することにより、光強度変調が生じることになる。本実施形態のシリコンベース電気光学変調装置500においては、40Gbps以上の光信号の送信が可能であることを確認した。
図11は、マッハ・ツェンダー干渉計からなる電気光学変調装置500を複数並列に並べた状態を示す図である。
図12は、マッハ・ツェンダー干渉計からなる電気光学変調装置500を直列に配置した状態を示す図である。
例えば、上記実施形態を適切に組み合わせられることはもちろんである。
第1の導電タイプを呈するようにドープ処理された第1シリコン半導体層と第2の導電タイプを呈するようにドープ処理された第2シリコン半導体層との少なくとも一部が積層され、前記第1シリコン半導体層と前記第2シリコン半導体層とが積層された界面に、比較的薄い誘電体が形成されたSIS(semiconductor-insulator-semiconductor)型接合を有し、前記第1シリコン半導体層および前記第2シリコン半導体層にそれぞれ結合された電気端子からの電気信号により、自由キャリアが、前記比較的薄い誘導体層の両側で蓄積、除去、または反転することにより、光信号電界が感じる自由キャリア濃度が変調されることを利用したシリコンベース電気光学変調装置であって、
第1シリコン半導体層は、リブ導波路のコアとなる部分であって突起する形状に形成されたリブ部と、前記リブ部の両側にあって前記リブ部に接続されるスラブ部と、を有するリブ導波路形状に加工されており、
前記第1シリコン半導体層の前記スラブ部に隣接する位置において、高濃度ドープされた第1高濃度ドープ領域と、
第2シリコン半導体層の一部が高濃度ドープされて形成された第2高濃度ドープ領域と、を有し、
前記第1高濃度ドープ領域は、前記リブ導波路の前記リブ部と同等の高さを有する
ことを特徴とするシリコンベース電気光学変調装置。
(付記2)
付記1に記載のシリコンベース電気光学変調装置において、
前記第2シリコン半導体層において前記リブ部の直上に位置する領域の厚みは、前記第2高濃度ドープ領域の厚みよりも薄い
ことを特徴とするシリコンベース電気光学変調装置。
(付記3)
付記1または付記2に記載のシリコンベース電気光学変調装置において、
前記リブ部の上部領域がSi1-xGex(x=0.01~0.9)層からなる
ことを特徴とするシリコンベース電気光学変調装置。
(付記4)
付記3に記載のシリコンベース電気光学変調装置において、
前記リブ部の上部領域が、Si1-xGex(x=0.01~0.9)層からなり、かつ、少なくとも2種類以上のSi1-xGex(x=0.01~0.9)組成の積層構造からなる
ことを特徴とするシリコンベース電気光学変調装置。
(付記5)
付記3に記載のシリコンベース電気光学変調装置において、
前記リブ部の上部領域が、Si1-xGex(x=0.01~0.9)層からなり、かつ、Si1-xGex(x=0.01~0.9)の組成が膜厚方向に変調された構造からなる
ことを特徴とするシリコンベース電気光学変調装置。
(付記6)
付記3に記載のシリコンベース電気光学変調装置において、
前記リブ部の上部領域が、格子歪のあるSi1-xGex(x=0.01~0.9)層からなる
ことを特徴とするシリコンベース電気光学変調装置。
(付記7)
付記1から付記6のいずれかに記載のシリコンベース電気光学変調装置において、
前記第1シリコン半導体層および前記第2シリコン半導体層は、
多結晶シリコン、アモルファスシリコン、歪シリコン、単結晶シリコンおよびSi1-xGexからなる群より選択される少なくとも一層を含む
ことを特徴とするシリコンベース電気光学変調装置。
(付記8)
付記1から付記7のいずれかに記載のシリコンベース電気光学変調装置において、
少なくとも1つの電気変調信号が前記第1高濃度ドープ領域および前記第2高濃度ドープ領域の少なくとも1つに入力として加えられることにより、光変調信号が生成される
ことを特徴とするシリコンベース電気光学変調装置。
(付記9)
付記1から付記8のいずれかに記載のシリコンベース電気光学変調装置である第1アームと、
付記1から付記8のいずれかに記載のシリコンベース電気光学変調装置であって、前記第1アームに対して平行に配置された第2アームと、
入力側において光を分岐する光分岐部と、
出力側において光を結合する光結合部と、を備え、
前記第1アームおよび前記第2アームで光信号の位相変調を行い、さらに、前記光結合部により位相干渉を行うことにより、光強度変調信号を生成する
ことを特徴とするマッハ・ツェンダー干渉計型の電気光学変調装置。
(付記10)
付記9に記載のマッハ・ツェンダー干渉計型の電気光学変調装置において、
前記第1アームと第2アームとは非対称な構成である
ことを特徴とするマッハ・ツェンダー干渉計型の電気光学変調装置。
(付記11)
付記9または付記10に記載のマッハ・ツェンダー干渉計型の電気光学変調装置において、
前記光分岐部は、前記第1アームおよび第2アームに対して1対1以外の入力信号分配比を与える
ことを特徴とするマッハ・ツェンダー干渉計型の電気光学変調装置。
(付記12)
付記9から付記11のいずれかに記載のマッハ・ツェンダー干渉計型の電気光学変調装置を複数備え、
前記複数のマッハ・ツェンダー干渉計型の電気光学変調装置を並列に配置した
ことを特徴とするマッハ・ツェンダー干渉計型の電気光学変調装置。
(付記13)
付記9から付記11のいずれかに記載のマッハ・ツェンダー干渉計型の電気光学変調装置を複数備え、
前記複数のマッハ・ツェンダー干渉計型の電気光学変調装置を直列に配置した
ことを特徴とするマッハ・ツェンダー干渉計型の電気光学変調装置。
Claims (10)
- 第1の導電タイプを呈するようにドープ処理された第1シリコン半導体層と第2の導電タイプを呈するようにドープ処理された第2シリコン半導体層との少なくとも一部が積層され、前記第1シリコン半導体層と前記第2シリコン半導体層とが積層された界面に、比較的薄い誘電体が形成されたSIS(semiconductor-insulator-semiconductor)型接合を有し、前記第1シリコン半導体層および前記第2シリコン半導体層にそれぞれ結合された電気端子からの電気信号により、自由キャリアが、前記比較的薄い誘導体層の両側で蓄積、除去、または反転することにより、光信号電界が感じる自由キャリア濃度が変調されることを利用したシリコンベース電気光学変調装置であって、
第1シリコン半導体層は、リブ導波路のコアとなる部分であって突起する形状に形成されたリブ部と、前記リブ部の両側にあって前記リブ部に接続されるスラブ部と、を有するリブ導波路形状に加工されており、
前記第1シリコン半導体層の前記スラブ部に隣接する位置において、高濃度ドープされた第1高濃度ドープ領域と、
第2シリコン半導体層の一部が高濃度ドープされて形成された第2高濃度ドープ領域と、を有し、
前記第1高濃度ドープ領域は、前記リブ導波路の前記リブ部と同等の高さを有する
ことを特徴とするシリコンベース電気光学変調装置。 - 請求項1に記載のシリコンベース電気光学変調装置において、
前記第2シリコン半導体層において前記リブ部の直上に位置する領域の厚みは、前記第2高濃度ドープ領域の厚みよりも薄い
ことを特徴とするシリコンベース電気光学変調装置。 - 請求項1または請求項2に記載のシリコンベース電気光学変調装置において、
前記リブ部の上部領域がSi1-xGex(x=0.01~0.9)層からなる
ことを特徴とするシリコンベース電気光学変調装置。 - 請求項3に記載のシリコンベース電気光学変調装置において、
前記リブ部の上部領域が、Si1-xGex(x=0.01~0.9)層からなり、かつ、少なくとも2種類以上のSi1-xGex(x=0.01~0.9)組成の積層構造からなる
ことを特徴とするシリコンベース電気光学変調装置。 - 請求項3に記載のシリコンベース電気光学変調装置において、
前記リブ部の上部領域が、Si1-xGex(x=0.01~0.9)層からなり、かつ、Si1-xGex(x=0.01~0.9)の組成が膜厚方向に変調された構造からなる
ことを特徴とするシリコンベース電気光学変調装置。 - 請求項3に記載のシリコンベース電気光学変調装置において、
前記リブ部の上部領域が、格子歪のあるSi1-xGex(x=0.01~0.9)層からなる
ことを特徴とするシリコンベース電気光学変調装置。 - 請求項1から請求項6のいずれかに記載のシリコンベース電気光学変調装置において、
前記第1シリコン半導体層および前記第2シリコン半導体層は、
多結晶シリコン、アモルファスシリコン、歪シリコン、単結晶シリコンおよびSi1-xGexからなる群より選択される少なくとも一層を含む
ことを特徴とするシリコンベース電気光学変調装置。 - 請求項1から請求項7のいずれかに記載のシリコンベース電気光学変調装置において、
少なくとも1つの電気変調信号が前記第1高濃度ドープ領域および前記第2高濃度ドープ領域の少なくとも1つに入力として加えられることにより、光変調信号が生成される
ことを特徴とするシリコンベース電気光学変調装置。 - 請求項1から請求項8のいずれかに記載のシリコンベース電気光学変調装置である第1アームと、
請求項1から請求項8のいずれかに記載のシリコンベース電気光学変調装置であって、前記第1アームに対して平行に配置された第2アームと、
入力側において光を分岐する光分岐部と、
出力側において光を結合する光結合部と、を備え、
前記第1アームおよび前記第2アームで光信号の位相変調を行い、さらに、前記光結合部により位相干渉を行うことにより、光強度変調信号を生成する
ことを特徴とするマッハ・ツェンダー干渉計型の電気光学変調装置。 - 請求項9に記載のマッハ・ツェンダー干渉計型の電気光学変調装置において、
前記第1アームと第2アームとは非対称な構成である
ことを特徴とするマッハ・ツェンダー干渉計型の電気光学変調装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015507689A JP6314972B2 (ja) | 2013-03-26 | 2013-11-28 | シリコンベース電気光学変調装置 |
US14/777,791 US9703125B2 (en) | 2013-03-26 | 2013-11-28 | Silicon-based electro-optic modulator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013063285 | 2013-03-26 | ||
JP2013-063285 | 2013-03-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014155450A1 true WO2014155450A1 (ja) | 2014-10-02 |
Family
ID=51622549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/006990 WO2014155450A1 (ja) | 2013-03-26 | 2013-11-28 | シリコンベース電気光学変調装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9703125B2 (ja) |
JP (1) | JP6314972B2 (ja) |
WO (1) | WO2014155450A1 (ja) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015112814A1 (en) * | 2014-01-24 | 2015-07-30 | Cisco Technology, Inc. | Electro-optical modulator using ribbed waveguides |
WO2016125772A1 (ja) * | 2015-02-06 | 2016-08-11 | 技術研究組合光電子融合基盤技術研究所 | 光変調器及びその製造方法 |
WO2016157687A1 (ja) * | 2015-03-31 | 2016-10-06 | 日本電気株式会社 | 電気光学装置 |
FR3041115A1 (fr) * | 2015-09-16 | 2017-03-17 | St Microelectronics Crolles 2 Sas | Modulateur electro-optique integre |
JPWO2016092829A1 (ja) * | 2014-12-09 | 2017-05-25 | 日本電信電話株式会社 | 光変調器 |
US9891450B2 (en) | 2015-09-16 | 2018-02-13 | Stmicroelectronics (Crolles 2) Sas | Integrated electro-optic modulator |
WO2018043317A1 (ja) * | 2016-08-29 | 2018-03-08 | 日本電信電話株式会社 | 光変調器 |
JP2018173539A (ja) * | 2017-03-31 | 2018-11-08 | 日本電気株式会社 | 電気光学変調器 |
JP2019525251A (ja) * | 2016-08-08 | 2019-09-05 | コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ | 光信号の伝播損失及び伝播指数の変調器の製造方法 |
US10416382B2 (en) | 2017-12-20 | 2019-09-17 | Renesas Electronics Corporation | Semiconductor device |
JP2019215488A (ja) * | 2018-06-14 | 2019-12-19 | 日本電気株式会社 | 電気光学変調器 |
FR3084174A1 (fr) * | 2018-07-23 | 2020-01-24 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Transmetteur photonique |
WO2021001918A1 (ja) * | 2019-07-02 | 2021-01-07 | 日本電信電話株式会社 | 光変調器 |
US11435645B2 (en) | 2019-06-25 | 2022-09-06 | Renesas Electronics Corporation | Semiconductor device and method of manufacturing the same |
CN115032819A (zh) * | 2022-08-15 | 2022-09-09 | 之江实验室 | 共封装光引擎系统及用于其的相变材料阵列的硅基调制器 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6533118B2 (ja) | 2015-08-05 | 2019-06-19 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
GB2549606B (en) * | 2017-03-24 | 2019-09-04 | Rockley Photonics Ltd | Optical modulator |
JP6855323B2 (ja) * | 2017-05-24 | 2021-04-07 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
EP3506002B1 (en) * | 2017-12-29 | 2022-06-08 | IHP GmbH - Innovations for High Performance Microelectronics / Leibniz-Institut für innovative Mikroelektronik | Electrooptical device |
FR3076916B1 (fr) * | 2018-01-15 | 2020-09-04 | St Microelectronics Crolles 2 Sas | Modulateur de phase electro-optique |
WO2019195441A1 (en) * | 2018-04-04 | 2019-10-10 | The Research Foundation For The State University Of New York | Heterogeneous structure on an integrated photonics platform |
US10684530B1 (en) * | 2019-02-28 | 2020-06-16 | Globalfoundries Inc. | Electro-optic modulators with layered arrangements |
WO2021065578A1 (ja) * | 2019-10-04 | 2021-04-08 | 国立大学法人東京工業大学 | 光変調素子 |
US10747030B1 (en) * | 2019-10-09 | 2020-08-18 | Globalfoundries Inc. | Electro-optic modulators with stacked layers |
FR3103288B1 (fr) | 2019-11-18 | 2021-10-15 | Commissariat Energie Atomique | Transmetteur photonique |
CN115151849A (zh) | 2020-01-29 | 2022-10-04 | 普赛昆腾公司 | 低损耗高效率光子移相器 |
KR20220144410A (ko) | 2020-03-03 | 2022-10-26 | 사이퀀텀, 코퍼레이션 | 광자 디바이스들을 위한 제작 방법 |
WO2021178331A1 (en) * | 2020-03-03 | 2021-09-10 | Psiquantum, Corp. | Phase shifter employing electro-optic material sandwich |
CN112764245B (zh) * | 2021-01-26 | 2022-05-17 | 济南晶正电子科技有限公司 | 一种电光晶体薄膜、制备方法及电子元器件 |
US20240103217A1 (en) * | 2022-09-27 | 2024-03-28 | Globalfoundries U.S. Inc. | Thermo-optic phase shifters |
CN115437167B (zh) * | 2022-11-09 | 2023-02-10 | 上海阿米芯光半导体有限责任公司 | 相移器结构及相移器及其行波电极调制器 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004503799A (ja) * | 2000-07-10 | 2004-02-05 | マサチューセッツ インスティテュート オブ テクノロジー | グレーデッドインデックス導波路 |
WO2011030593A1 (ja) * | 2009-09-10 | 2011-03-17 | 日本電気株式会社 | 電気光学変調器 |
JP2011180595A (ja) * | 2010-03-01 | 2011-09-15 | Nec Corp | シリコンベース電気光学装置 |
JP2012013935A (ja) * | 2010-06-30 | 2012-01-19 | Fujitsu Ltd | 半導体光素子 |
JP2012053399A (ja) * | 2010-09-03 | 2012-03-15 | Toshiba Corp | 光変調素子 |
JP2012128065A (ja) * | 2010-12-14 | 2012-07-05 | Fujitsu Ltd | 光半導体装置及びその製造方法 |
JP2012521576A (ja) * | 2009-03-24 | 2012-09-13 | ユニヴェルシテ パリ−スュッド | 高速データレート用の半導体・オン・インシュレータ光変調器 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6845198B2 (en) | 2003-03-25 | 2005-01-18 | Sioptical, Inc. | High-speed silicon-based electro-optic modulator |
-
2013
- 2013-11-28 JP JP2015507689A patent/JP6314972B2/ja active Active
- 2013-11-28 US US14/777,791 patent/US9703125B2/en active Active
- 2013-11-28 WO PCT/JP2013/006990 patent/WO2014155450A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004503799A (ja) * | 2000-07-10 | 2004-02-05 | マサチューセッツ インスティテュート オブ テクノロジー | グレーデッドインデックス導波路 |
JP2012521576A (ja) * | 2009-03-24 | 2012-09-13 | ユニヴェルシテ パリ−スュッド | 高速データレート用の半導体・オン・インシュレータ光変調器 |
WO2011030593A1 (ja) * | 2009-09-10 | 2011-03-17 | 日本電気株式会社 | 電気光学変調器 |
JP2011180595A (ja) * | 2010-03-01 | 2011-09-15 | Nec Corp | シリコンベース電気光学装置 |
JP2012013935A (ja) * | 2010-06-30 | 2012-01-19 | Fujitsu Ltd | 半導体光素子 |
JP2012053399A (ja) * | 2010-09-03 | 2012-03-15 | Toshiba Corp | 光変調素子 |
JP2012128065A (ja) * | 2010-12-14 | 2012-07-05 | Fujitsu Ltd | 光半導体装置及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
M. TAKENAKA ET AL.: "Strain Engineering of Plasma Dispersion Effect for SiGe Optical Modulators", IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. 48, no. 1, January 2012 (2012-01-01), pages 8 - 16 * |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9766484B2 (en) | 2014-01-24 | 2017-09-19 | Cisco Technology, Inc. | Electro-optical modulator using waveguides with overlapping ridges |
CN106133585B (zh) * | 2014-01-24 | 2019-05-10 | 思科技术公司 | 使用肋形波导的电光调制器 |
WO2015112814A1 (en) * | 2014-01-24 | 2015-07-30 | Cisco Technology, Inc. | Electro-optical modulator using ribbed waveguides |
CN106133585A (zh) * | 2014-01-24 | 2016-11-16 | 思科技术公司 | 使用肋形波导的电光调制器 |
US11226505B2 (en) | 2014-01-24 | 2022-01-18 | Cisco Technology, Inc. | Electro-optical modulator using waveguides with overlapping ridges |
JPWO2016092829A1 (ja) * | 2014-12-09 | 2017-05-25 | 日本電信電話株式会社 | 光変調器 |
EP3232255A4 (en) * | 2014-12-09 | 2018-07-25 | Nippon Telegraph and Telephone Corporation | Optical modulator |
US10146099B2 (en) | 2014-12-09 | 2018-12-04 | Nippon Telegraph And Telephone Corporation | Optical modulator |
WO2016125772A1 (ja) * | 2015-02-06 | 2016-08-11 | 技術研究組合光電子融合基盤技術研究所 | 光変調器及びその製造方法 |
US10146070B2 (en) | 2015-02-06 | 2018-12-04 | Photonics Electronics Technology Research Association | Optical modulator and method of manufacturing same |
JPWO2016125772A1 (ja) * | 2015-02-06 | 2018-01-18 | 技術研究組合光電子融合基盤技術研究所 | 光変調器及びその製造方法 |
EP3255480A4 (en) * | 2015-02-06 | 2018-09-26 | Photonics Electronics Technology Research Association | Optical modulator and method of manufacturing same |
JPWO2016157687A1 (ja) * | 2015-03-31 | 2018-01-25 | 日本電気株式会社 | 電気光学装置 |
WO2016157687A1 (ja) * | 2015-03-31 | 2016-10-06 | 日本電気株式会社 | 電気光学装置 |
US10274757B2 (en) | 2015-03-31 | 2019-04-30 | Nec Corporation | Electro-optic device |
US9891450B2 (en) | 2015-09-16 | 2018-02-13 | Stmicroelectronics (Crolles 2) Sas | Integrated electro-optic modulator |
US10359652B2 (en) | 2015-09-16 | 2019-07-23 | Stmicroelectronics (Crolles 2) Sas | Integrated electro-optic modulator |
FR3041115A1 (fr) * | 2015-09-16 | 2017-03-17 | St Microelectronics Crolles 2 Sas | Modulateur electro-optique integre |
JP2019525251A (ja) * | 2016-08-08 | 2019-09-05 | コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ | 光信号の伝播損失及び伝播指数の変調器の製造方法 |
JP7016858B2 (ja) | 2016-08-08 | 2022-02-07 | コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ | 光信号の伝播損失及び伝播指数の変調器の製造方法 |
CN109643031A (zh) * | 2016-08-29 | 2019-04-16 | 日本电信电话株式会社 | 光调制器 |
US10775650B2 (en) | 2016-08-29 | 2020-09-15 | Nippon Telegraph And Telephone Corporation | Optical modulator |
CN109643031B (zh) * | 2016-08-29 | 2022-03-08 | 日本电信电话株式会社 | 光调制器 |
WO2018043317A1 (ja) * | 2016-08-29 | 2018-03-08 | 日本電信電話株式会社 | 光変調器 |
JPWO2018043317A1 (ja) * | 2016-08-29 | 2019-01-31 | 日本電信電話株式会社 | 光変調器 |
JP6992961B2 (ja) | 2017-03-31 | 2022-01-13 | 日本電気株式会社 | 電気光学変調器 |
JP2018173539A (ja) * | 2017-03-31 | 2018-11-08 | 日本電気株式会社 | 電気光学変調器 |
US10416382B2 (en) | 2017-12-20 | 2019-09-17 | Renesas Electronics Corporation | Semiconductor device |
JP2019215488A (ja) * | 2018-06-14 | 2019-12-19 | 日本電気株式会社 | 電気光学変調器 |
US10725324B2 (en) | 2018-07-23 | 2020-07-28 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Photonic transmitter |
EP3599684A1 (fr) | 2018-07-23 | 2020-01-29 | Commissariat à l'Énergie Atomique et aux Énergies Alternatives | Transmetteur photonique |
FR3084174A1 (fr) * | 2018-07-23 | 2020-01-24 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Transmetteur photonique |
US11435645B2 (en) | 2019-06-25 | 2022-09-06 | Renesas Electronics Corporation | Semiconductor device and method of manufacturing the same |
US11977282B2 (en) | 2019-07-02 | 2024-05-07 | Nippon Telegraph And Telephone Corporation | Optical modulator |
JPWO2021001918A1 (ja) * | 2019-07-02 | 2021-01-07 | ||
JP7276452B2 (ja) | 2019-07-02 | 2023-05-18 | 日本電信電話株式会社 | 光変調器 |
WO2021001918A1 (ja) * | 2019-07-02 | 2021-01-07 | 日本電信電話株式会社 | 光変調器 |
CN115032819A (zh) * | 2022-08-15 | 2022-09-09 | 之江实验室 | 共封装光引擎系统及用于其的相变材料阵列的硅基调制器 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014155450A1 (ja) | 2017-02-16 |
US9703125B2 (en) | 2017-07-11 |
US20160291350A1 (en) | 2016-10-06 |
JP6314972B2 (ja) | 2018-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6314972B2 (ja) | シリコンベース電気光学変調装置 | |
JP5321598B2 (ja) | 光変調器とその製造方法 | |
JP5429579B2 (ja) | 電気光学変調器 | |
JP5321679B2 (ja) | 光変調器とその製造方法 | |
US9341868B2 (en) | Silicon-based electro-optical device | |
JP6853552B2 (ja) | 電気光学装置 | |
WO2011108508A1 (ja) | 光変調器 | |
JP5773410B2 (ja) | シリコンベース電気光学装置 | |
JP6622228B2 (ja) | 光変調器及びその製造方法 | |
US20180373067A1 (en) | Electroabsorption optical modulator | |
JP5648628B2 (ja) | 光変調構造および光変調器 | |
JP6992961B2 (ja) | 電気光学変調器 | |
JP6983590B2 (ja) | 光変調器及びその製造方法 | |
JP2019215488A (ja) | 電気光学変調器 | |
JP2019159273A (ja) | 電界吸収型光変調器 | |
JP5369737B2 (ja) | 光通信システムとその製造方法 | |
WO2014156480A1 (ja) | 光変調器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13880177 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015507689 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14777791 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13880177 Country of ref document: EP Kind code of ref document: A1 |