JPWO2018043317A1 - 光変調器 - Google Patents

光変調器 Download PDF

Info

Publication number
JPWO2018043317A1
JPWO2018043317A1 JP2018537218A JP2018537218A JPWO2018043317A1 JP WO2018043317 A1 JPWO2018043317 A1 JP WO2018043317A1 JP 2018537218 A JP2018537218 A JP 2018537218A JP 2018537218 A JP2018537218 A JP 2018537218A JP WO2018043317 A1 JPWO2018043317 A1 JP WO2018043317A1
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
insulating layer
semiconductor
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018537218A
Other languages
English (en)
Other versions
JP6832936B2 (ja
Inventor
達郎 開
達郎 開
松尾 慎治
慎治 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Publication of JPWO2018043317A1 publication Critical patent/JPWO2018043317A1/ja
Application granted granted Critical
Publication of JP6832936B2 publication Critical patent/JP6832936B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2257Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure the optical waveguides being made of semiconducting material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/0151Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the refractive index
    • G02F1/0152Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the refractive index using free carrier effects, e.g. plasma effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/06Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide
    • G02F2201/063Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide ridge; rib; strip loaded
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/101Ga×As and alloy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/102In×P and alloy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/105Materials and properties semiconductor single crystal Si

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

クラッド層(101)の上に形成されたp型の第1半導体層(102)と、第1半導体層(102)の上に形成された絶縁層(103)と、絶縁層(103)の上に形成されたn型の第2半導体層(104)とを備える。第1半導体層(102)は、シリコンまたはシリコンゲルマニウムから構成され、第2半導体層(104)は、3つ以上の材料からなるIII−V族化合物半導体から構成されている。

Description

本発明は、化合物半導体を用いたMOS構造電荷蓄積型の光変調器に関する。
通信用光デバイスとして、SOI(silicon-on-insulator)基板の上に化合物半導体素子を集積する技術が注目されている。特に、レーザーと光変調器との集積に関する技術は、通信デバイスの飛躍的な高集積化、低コスト化を実現する上で重要となる。高速、高効率化が要求される光変調器において、InP層をn型、低損失なSi層をp型とするMOS構造電荷蓄積型の光変調器が有望である(非特許文献1参照)。
この光変調器は、図4に示すように、埋め込み絶縁層401の上に形成されたp型シリコン層402と、p型シリコン層402の上に形成された絶縁層403と、絶縁層403の上に形成されたn型InP層404とから構成されている。p型シリコン層402には、p電極405が接続し、n型InP層404にはn電極406が接続している。埋め込み絶縁層401は、クラッドとして機能する。また、p型シリコン層402は、埋め込み絶縁層401の上のSOI層411をパターニングすることで形成されている。p型シリコン層402のn電極406形成側の側部には、SOI層411との間に空気溝412が形成されている。また、n電極406に覆われていないn型InP層404の上面は、空間に解放されている。
p型シリコン層402の一部とn型InP層404の一部とは、平面視で互いに重なって配置され、変調対象の光が導波する光導波部を形成している。この光導波部において、積層方向にp型シリコン層402とn型InP層404との間に絶縁層403が挟まれる。変調対象となる光は、埋め込み絶縁層401、空気溝412、および上方空間などをクラッドとして光閉じ込め部に閉じ込められ、導波モード421が形成される。
この光変調器では、光導波部においてp型シリコン層402およびn型InP層404それぞれ絶縁層403との界面に蓄積される多数キャリア密度を変調することにより、光導波部におけるp型シリコン層402およびn型InP層404の屈折率を変調する。この構造では、n型層にSiを用いる場合に比較して、2〜3倍程度の変調効率の向上が期待できる。
D. Liang et al., "A Tunable Hybrid III-V-on-Si MOS Microring Resonator with Negligible Tuning Power Consumption", Optical Fiber Communication Conference 2016, Th1K.4 , 2016.
しかしながら、上述した技術では、更なる変調効率の向上が容易ではないという問題があった。変調効率の向上のためには、まず、キャリアによる屈折率変化を増大させることが重要となる(キャリアプラズマ効果)。また、変調効率の向上のためには、生成したキャリアの導波光への作用(影響)をより大きくさせることが重要となる。理論的には、キャリアによる屈折率変化は、化合物半導体の有効質量の低減、およびバンドフィリング効果の増大によって、より大きくすることができる。また、光閉じ込め係数の増大により、キャリアの導波光への作用をより大きくすることができる。
しかしながら、実際には、従来技術で用いられているInP層を構成するInPは、化学量論的に安定な組成であり、結晶構造が一意に決定されるため、有効質量や屈折率といった材料物性を調整することができない。このため、上述した2つのことによる変調効率の向上が極めて困難である。
本発明は、以上のような問題点を解消するためになされたものであり、MOS構造電荷蓄積型の光変調器の変調効率を更に向上させることを目的とする。
本発明に係る光変調器は、クラッド層の上に形成されたシリコンまたはシリコンゲルマニウムから構成されたp型の第1半導体層と、第1半導体層の上に形成された絶縁層と、絶縁層の上に形成された3つ以上の材料からなるIII−V族化合物半導体から構成されたn型の第2半導体層と、第1半導体層に接続された第1電極と、第2半導体層に接続された第2電極とを備え、第1半導体層の一部と第2半導体層の一部とは、絶縁層を介して平面視でで重なって配置され、クラッド層の平面に平行な方向に変調対象の光が導波する光導波部を形成し、光導波部は、シングルモード条件を満たしている。
上記光変調器において、第1電極は、第1半導体層の光導波部以外の領域の上に形成されている。
上記光変調器において、第2半導体層は、積層された複数の化合物半導体層からなり、複数の化合物半導体層は、絶縁層に近い化合物半導体層ほど小さなバンドギャップエネルギーを有するものとしてもよい。
上記光変調器において、第1半導体層は、積層された複数の半導体層からなり、複数の半導体層は、絶縁層に近い半導体層ほど小さなバンドギャップエネルギーを有するものとしてもよい。
以上説明したように、本発明によれば、n型の第2半導体層を3つ以上の材料からなるIII−V族化合物半導体から構成したので、MOS構造電荷蓄積型の光変調器の変調効率を更に向上させることができるという優れた効果が得られる。
図1は、本発明の実施の形態1における光変調器の構成を示す断面図である。 図2は、本発明の実施の形態1における光変調器の一部構成を示す平面図である。 図3は、本発明の実施の形態2における光変調器の構成を示す断面図である。 図4は、従来のMOS構造電荷蓄積型の光変調器の構成を示す断面図である。
以下、本発明の実施の形態について図を参照して説明する。
[実施の形態1]
はじめに、本発明の実施の形態1について、図1,図2を用いて説明する。図1は、本発明の実施の形態1における光変調器の構成を示す断面図である。また、図2は、本発明の実施の形態1における光変調器の一部構成を示す平面図である。
この光変調器は、クラッド層101の上に形成されたp型の第1半導体層102と、第1半導体層102の上に形成された絶縁層103と、絶縁層103の上に形成されたn型の第2半導体層104とを備える。第1半導体層102は、シリコンまたはシリコンゲルマニウムから構成されている。第2半導体層104は、3つ以上の材料からなる化合物半導体から構成されている。第2半導体層104は、例えば、InGaAsPから構成されている。また、第1半導体層102に接続された第1電極105と、第2半導体層104に接続された第2電極106とを備える。
ここで、第1半導体層102の一部と第2半導体層104の一部とは、平面視で互いに重なって配置され、クラッド層101の平面に平行な方向に変調対象の光が導波する光導波部121を形成している。すなわち、光導波部121の積層方向では、第1半導体層102と第2半導体層104との間に絶縁層103が挟まれている。
なお、実施の形態1において、クラッド層101の上の第2電極106が形成される側の領域には、絶縁層107が形成されている。絶縁層107の側部は、第1半導体層102の側部に接している。また、第2半導体層104の上には、絶縁層108が形成されている。絶縁層107および絶縁層108はクラッドとして機能し、クラッド層101とともに、断面視でこれらに囲われた領域に光を閉じ込める機能を果たす。
光導波部121は、図2の平面図に矢印で示す光導波方向に延在している。なお、図2では、第1電極105、第2電極106、絶縁層108は省略されている。実施の形態1では、光導波部121を境に、一方の方向に第1半導体層102が延在し、他方の方向に第2半導体層104が延在している。第1半導体層102の光導波部121から延在する領域のうち絶縁層103が形成されていない領域において、第1半導体層102の表面に第1電極105がオーミック接続している。また、第2半導体層104の光導波部121から延在する領域の表面に、第2電極106がオーミック接続している。平面視で光導波部121の領域には、電極が配置されない。言い換えると、第1電極105は、第1半導体層102の上の光導波部121以外の領域に形成されている。
また、光導波部121に導波モードが形成されるように、光導波部121は、シングルモード条件を満たすようにする。光導波部121において、第1半導体層102および第2半導体層104の絶縁層103との界面に多数キャリアが蓄積されるので、この部分すなわち、第1半導体層102または第2半導体層104の絶縁層103との界面に、光導波路モードフィールドの中心が配置されるように、第1半導体層102の厚さおよび第2半導体層104の厚さを適宜に設定する。
以下、実施の形態における光変調器の製造方法について簡単に説明する。例えば、よく知られたSOI基板を用い、埋め込み絶縁層をクラッド層101とし、表面シリコン層を、公知のリソグラフィー技術およびエッチング技術によりパターニングすることで、クラッド層101の上に第1半導体層102を形成する。
次に、クラッド層101の上に第1半導体層102に隣接して絶縁層107を形成する。絶縁層107は、例えば、酸化シリコン,酸窒化シリコン、酸化アルミニウムなどから構成すればよい。絶縁層107は、この表面が第1半導体層102の表面と同一平面上に配置されるように平坦化した状態に形成する。次に、第1半導体層102および絶縁層107の上に、絶縁層103を形成する。絶縁層103は、例えば、酸化シリコン,酸窒化シリコン、酸化アルミニウムなどから構成すればよい。なお、第1半導体層102と絶縁層107との間に、空気溝を設けてもよい。
一方、InPからなる成長基板の上に、よく知られた有機金属気相成長法により、所定の組成比としたInGaAsPの層をエピタキシャル成長させる。次いで、成長したInGaAsPの層を、上述した絶縁層103の上に貼り合わせ、この後、成長基板を除去する。次に、絶縁層103の上に形成されたInGaAsPの層を、公知のリソグラフィー技術およびエッチング技術によりパターニングすることで、第2半導体層104を形成する。
次に、第1電極105を形成する箇所の絶縁層103に開口を形成して第1半導体層102の表面を露出させ、ここに第1電極105を形成する。第1電極105は、例えば、Tiから構成すればよい。また、第2半導体層104の上に第2電極106を形成する。第2電極106は、例えば、AuGeNiから構成すればよい。各電極は、例えば、よく知られたリフトオフ法により形成すればよい。また、第2半導体層104および絶縁層103の上に、絶縁層108を形成する。なお、絶縁層108は、必ずしも形成しなくてもよく、代わりに空気の層としてもよい。ただし、絶縁層108を形成することで、第2半導体層104が、周囲の環境より保護できるようになる。
実施の形態1によれば、第2半導体層104を3つ以上の材料からなる化合物半導体から構成したので、以下に説明するように、光変調器の変調効率の向上が可能となる。
3元系または4元系の化合物半導体は、組成の制御により有効質量や屈折率を制御することが可能であり、キャリアによる屈折率の変化、および光閉じ込めの両方を向上させることが可能である。
例えば、In1-xGaxAsy1-yのバンドギャップエネルギーEgと組成yとの関係は、
Eg=1.344−0.738y+0.138y2
となる。
ここで、半導体における電流注入による屈折率の変化には、よく知られているように、キャリアプラズマ効果、バンドフィリング効果、バンドギャップ縮小効果がある。これらの効果を考慮した場合、電子密度を2×1018cm3変化させると、InPは、屈折率が0.0094変化する。これに対し、電子密度を2×1018cm3変化させると、Eg=0.95eVとしたIn1-xGaxAsy1-yは、屈折率が0.013変化し、Eg=0.92eVとしたIn1-xGaxAsy1-yは、屈折率が0.0145変化し、Eg=0.89eVとしたIn1-xGaxAsy1-yは、屈折率が0.016変化する。
なお、Eg=0.95eVとしたIn1-xGaxAsy1-yは、バンドギャップ波長λが1.3μmであり、Eg=0.92eVとしたIn1-xGaxAsy1-yは、バンドギャップ波長λが1.35μmであり、Eg=0.89eVとしたIn1-xGaxAsy1-yは、バンドギャップ波長λが1.4μmである。
In1-xGaxAsy1-yは、組成比を変化させることでバンドギャップエネルギーが小さくなるにつれて、キャリアによる屈折率変化は大きくなり、二元系材料のInPよりも大きな値となる。
また、一般にIn1-xGaxAsy1-yは、バンドギャップエネルギーが小さくなるにつれて、屈折率が大きくなる。光導波部121を構成する第2半導体層104に屈折率が大きい材料を用いることで、光導波部121への光閉じ込め効果が大きくなり、光導波部121における光強度(分布)をより強くすることができる。この結果、光導波部121
において第2半導体層104の絶縁層103との界面に生成される多数キャリアを、光導波部121に導波する光に対してより強く作用させることが可能となる。従って、第2半導体層104を構成する多元系の化合物半導体においては、バンドギャップエネルギーがより小さくなる組成とすることが望ましい。
以上に説明したように、第2半導体層104をバンドギャップエネルギーがより小さい半導体から構成することで、第1に、キャリア密度変化による屈折率変化の増大が可能となり、第2に、発生させたキャリアの導波光への影響の増大が可能となることが分かる。なお、第2半導体層104におけるバンド間吸収を防ぐため、バンドギャップエネルギーは、変調対象の光の波長に対応するエネルギー以上にしなければならない。例えば、対象となる光の波長が1.55μmの場合、第2半導体層104のバンドギャップエネルギーは0.8eV以上でなければならない。
また、第1半導体層102は、必ずしもシリコンである必要はなく、より有効質量が小さなシリコンゲルマニウム混晶材料から構成されても良い。また、絶縁層103は、絶縁破壊耐性やトンネル電流防止性能が得られる範囲で、所望とするCR時定数の容量が実現できるように薄くすればよい。
[実施の形態2]
次に、本発明の実施の形態2について、図3を用いて説明する。図3は、本発明の実施の形態2における光変調器の構成を示す断面図である。
この光変調器は、クラッド層101の上に形成されたp型の第1半導体層102と、第1半導体層102の上に形成された絶縁層103と、絶縁層103の上に形成されたn型の第2半導体層204とを備える。また、第1半導体層102に接続された第1電極105と、第2半導体層204に接続された第2電極106とを備える。
第1半導体層102の一部と第2半導体層104の一部とは、平面視で互いに重なって配置され、クラッド層101の平面に平行な方向に変調対象の光が導波する光導波部121を形成している。すなわち、光導波部121の積層方向では、第1半導体層102と第2半導体層104との間に絶縁層103が挟まれている。
実施の形態2では、第2半導体層204は、積層された複数の化合物半導体層204a,204bから形成されている。化合物半導体層204a,204bのバンドギャップエネルギーは、互いに異なり、絶縁層103に近い化合物半導体層204aほどより小さなバンドギャップエネルギーを有する。第2半導体層204以外の構成は、前述した実施の形態1と同様であり、実施の形態2においても、クラッド層101の上に第1半導体層102に隣接して絶縁層107が形成され、第2半導体層204の上には、絶縁層108が形成されている。
光導波部121における第1半導体層102および第2半導体層204の絶縁層103との界面に発生したキャリアにより屈折率が変化する領域は、キャリアが蓄積される第1半導体層102および第2半導体層204の絶縁層103との界面近傍となる。従って、より屈折率変化が大きくバンドギャップエネルギーがより小さい層は、絶縁層103の付近に配置されていればよい。従って、上述したように、バンドギャップエネルギーがより小さい化合物半導体層204aを絶縁層103の側に配置する。
この構成では、屈折率の大小関係が、化合物半導体層204a>化合物半導体層204bとなるところに特徴がある。この構成により、第2半導体層204には、積層方向に屈折率差が生じるため、光導波部121を導波する光は屈折率がより高い化合物半導体層204aの側に集中し、キャリアが蓄積される絶縁層103との界面付近により強く光が閉じ込められる。この結果、キャリアの導波光への作用をより大きくすることができる。
なお、実施の形態2においても、光導波部121における多数キャリアが蓄積される部分、すなわち第1半導体層102または第2半導体層204の絶縁層103との界面近傍に光導波路モードフィールドの中心が配置されるように、第1半導体層102、化合物半導体層204a,化合物半導体層204bの各々の厚さを適宜に設定する。また、実施の形態2においても、第1電極105は、第1半導体層102上の光導波部121以外の領域に形成されており、平面視で光導波部121の領域には、電極が配置されない。
また、より小さいバンドギャップを有する化合物半導体は、キャリアによる屈折率変化が大きい一方で、キャリアによる吸収も大きい。このため、キャリア蓄積が生じない界面近傍以外の領域をより低損失な化合物半導体層204bとすることで、導波光の吸収損失を低減することができる。
ところで、この実施の形態2では、第1半導体層102をシリコンまたはシリコンゲルマニウムから構成し、第2半導体層204を、各々異なるバンドギャップエネルギーの化合物半導体層204a,204bの積層構造とし、絶縁層103に近い化合物半導体層ほど小さなバンドギャップエネルギーとしたが、第1半導体層102においても、第2半導体層204と同様に、互いに異なるバンドギャップエネルギーを有する半導体層の積層構造とし、絶縁層に近い半導体層ほど小さなバンドギャップエネルギーを有する構成としてもよい。また、実施の形態1においても、第1半導体層102を上述した積層構造としてもよい。第1半導体層102は、シリコンとゲルマニウムの混晶材料の組成により、バンドギャップおよび屈折率の制御が可能であり、第1半導体層においても、上記と同様の効果が得られるものと考えられる。
以上に説明したように、本発明によれば、n型の第2半導体層を3つ以上の材料からなるIII−V族化合物半導体から構成したので、MOS構造電荷蓄積型の光変調器の変調効率を更に向上させることができる。
なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。例えば、上述では、InGaAsPを例に説明したが、これに限るものではなく、他の3元系,4元系のIII−V族化合物半導体から構成してもよい。また、これらは、必ずしも結晶でなくてもよい。
101…クラッド層、102…第1半導体層、103…絶縁層、104…第2半導体層、105…第1電極、106…第2電極、107…絶縁層、108…絶縁層。

Claims (4)

  1. クラッド層の上に形成されたシリコンまたはシリコンゲルマニウムから構成されたp型の第1半導体層と、
    前記第1半導体層の上に形成された絶縁層と、
    前記絶縁層の上に形成された3つ以上の材料からなるIII−V族化合物半導体から構成されたn型の第2半導体層と、
    前記第1半導体層に接続された第1電極と、
    前記第2半導体層に接続された第2電極と
    を備え、
    前記第1半導体層の一部と前記第2半導体層の一部とは、前記絶縁層を介して平面視でで重なって配置され、前記クラッド層の平面に平行な方向に変調対象の光が導波する光導波部を形成し、
    前記光導波部は、シングルモード条件を満たしている
    ことを特徴とする光変調器。
  2. 請求項1記載の光変調器において、
    前記第1電極は、前記第1半導体層の前記光導波部以外の領域の上に形成されている
    ことを特徴とする光変調器。
  3. 請求項1または2記載の光変調器において、
    前記第2半導体層は、積層された複数の化合物半導体層からなり、前記複数の化合物半導体層は、前記絶縁層に近い化合物半導体層ほど小さなバンドギャップエネルギーを有する
    ことを特徴とする光変調器。
  4. 請求項1〜3のいずれか1項に記載の光変調器において、
    前記第1半導体層は、積層された複数の半導体層からなり、前記複数の半導体層は、前記絶縁層に近い半導体層ほど小さなバンドギャップエネルギーを有する
    ことを特徴とする光変調器。
JP2018537218A 2016-08-29 2017-08-25 光変調器 Active JP6832936B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016166518 2016-08-29
JP2016166518 2016-08-29
PCT/JP2017/030468 WO2018043317A1 (ja) 2016-08-29 2017-08-25 光変調器

Publications (2)

Publication Number Publication Date
JPWO2018043317A1 true JPWO2018043317A1 (ja) 2019-01-31
JP6832936B2 JP6832936B2 (ja) 2021-02-24

Family

ID=61300748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018537218A Active JP6832936B2 (ja) 2016-08-29 2017-08-25 光変調器

Country Status (7)

Country Link
US (1) US10775650B2 (ja)
EP (1) EP3506001B1 (ja)
JP (1) JP6832936B2 (ja)
CN (1) CN109643031B (ja)
CA (1) CA3034236C (ja)
SG (1) SG11201901323RA (ja)
WO (1) WO2018043317A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019038600A1 (en) * 2017-08-22 2019-02-28 Rockley Photonics Limited OPTICAL MODULATOR AND METHOD FOR MANUFACTURING OPTICAL MODULATOR
CN116097156A (zh) * 2020-08-13 2023-05-09 华为技术有限公司 用于膜调制器设备的设计和制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515082A (ja) * 2003-03-25 2006-05-18 シオプティカル インク. 高速シリコン・ベース電気光学変調器
JP2007525711A (ja) * 2004-02-26 2007-09-06 シオプティカル インコーポレーテッド シリコン−オン−インシュレータ(soi)構造における光の能動操作
WO2013062096A1 (ja) * 2011-10-26 2013-05-02 株式会社フジクラ 光学素子及びマッハツェンダ型光導波路素子
US20130301975A1 (en) * 2012-04-13 2013-11-14 Skorpios Technologies, Inc. Hybrid optical modulator
JP2014126728A (ja) * 2012-12-27 2014-07-07 Fujikura Ltd 光導波路素子及び光変調器
WO2014155450A1 (ja) * 2013-03-26 2014-10-02 日本電気株式会社 シリコンベース電気光学変調装置
US20150055910A1 (en) * 2012-04-30 2015-02-26 Hewlett-Packard Development Company, L.P. Hybrid mos optical modulator
WO2016018285A1 (en) * 2014-07-30 2016-02-04 Hewlett-Packard Development Company, L.P. Optical waveguide resonators

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0575684A1 (en) 1992-06-22 1993-12-29 International Business Machines Corporation Decoupled optic and electronic confinement laser diode

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515082A (ja) * 2003-03-25 2006-05-18 シオプティカル インク. 高速シリコン・ベース電気光学変調器
JP2007525711A (ja) * 2004-02-26 2007-09-06 シオプティカル インコーポレーテッド シリコン−オン−インシュレータ(soi)構造における光の能動操作
WO2013062096A1 (ja) * 2011-10-26 2013-05-02 株式会社フジクラ 光学素子及びマッハツェンダ型光導波路素子
US20130301975A1 (en) * 2012-04-13 2013-11-14 Skorpios Technologies, Inc. Hybrid optical modulator
US20150055910A1 (en) * 2012-04-30 2015-02-26 Hewlett-Packard Development Company, L.P. Hybrid mos optical modulator
JP2014126728A (ja) * 2012-12-27 2014-07-07 Fujikura Ltd 光導波路素子及び光変調器
WO2014155450A1 (ja) * 2013-03-26 2014-10-02 日本電気株式会社 シリコンベース電気光学変調装置
WO2016018285A1 (en) * 2014-07-30 2016-02-04 Hewlett-Packard Development Company, L.P. Optical waveguide resonators

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HONG,TAO ET AL.: "A Selective-Area Metal Bonding InGaAsP-Si Laser", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 22, no. 15, JPN6017042477, 1 August 2010 (2010-08-01), US, pages 1141 - 1143, XP011310203, ISSN: 0004029960 *
LIANG,DI ET AL.: "A Tunable Hybrid III-V-on-Si MOS Microring Resonator with Negligible Tuning Power Consumption", OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION, vol. paper Th1K.4, JPN6017042476, 20 March 2016 (2016-03-20), US, ISSN: 0004147766 *

Also Published As

Publication number Publication date
WO2018043317A1 (ja) 2018-03-08
CN109643031B (zh) 2022-03-08
CA3034236A1 (en) 2018-03-08
EP3506001B1 (en) 2021-06-02
US20190187494A1 (en) 2019-06-20
EP3506001A4 (en) 2020-04-22
JP6832936B2 (ja) 2021-02-24
CA3034236C (en) 2021-04-13
SG11201901323RA (en) 2019-03-28
EP3506001A1 (en) 2019-07-03
CN109643031A (zh) 2019-04-16
US10775650B2 (en) 2020-09-15

Similar Documents

Publication Publication Date Title
US9899800B2 (en) Laser device and process for fabricating such a laser device
JPH08220496A (ja) 半導体光変調素子
US20090085056A1 (en) Optical semiconductor device and method for fabricating the same
WO2013088490A1 (ja) 半導体光素子
US8384980B2 (en) Semiconductor optical modulation device, Mach-Zehnder interferometer type semiconductor optical modulator, and method for producing semiconductor optical modulation device
WO2018043317A1 (ja) 光変調器
WO2015198129A1 (en) Monolithic silicon lasers
JP2018041957A (ja) 光電変換デバイスおよび光電変換デバイスの動作波長の制御方法
US10983411B2 (en) Metal-oxide-semiconductor (MOS) optical modulator and method of manufacturing same
JP7410276B2 (ja) 半導体光デバイス
KR20180051186A (ko) 광변조기 및 이를 포함한 광변조 어레이
JP6622152B2 (ja) 光素子
CN111758065B (zh) 光调制器
US20220244581A1 (en) Electro-optic modulator
JPH0590636A (ja) 量子効果デバイス
WO2023238184A1 (ja) 光変調器
WO2007108117A1 (ja) 光半導体素子
JP2013061506A (ja) 半導体光変調器およびその製造方法
JPH10239646A (ja) 光変調器
JP2007304472A (ja) 半導体光変調器
JP2005249852A (ja) 電気吸収型光変調素子およびその製造方法
JP2016109796A (ja) 光変調器
JP2004037755A (ja) 光制御素子
JPH1062731A (ja) 光位相変調器及び光変調装置
JP2005043722A (ja) 半導体電界吸収型変調器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191119

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200218

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200731

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201225

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210122

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210202

R150 Certificate of patent or registration of utility model

Ref document number: 6832936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150