WO2014154104A1 - 一种低合金高韧性耐磨钢板及其制造方法 - Google Patents

一种低合金高韧性耐磨钢板及其制造方法 Download PDF

Info

Publication number
WO2014154104A1
WO2014154104A1 PCT/CN2014/073675 CN2014073675W WO2014154104A1 WO 2014154104 A1 WO2014154104 A1 WO 2014154104A1 CN 2014073675 W CN2014073675 W CN 2014073675W WO 2014154104 A1 WO2014154104 A1 WO 2014154104A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistant steel
steel plate
alloy high
wear
low
Prior art date
Application number
PCT/CN2014/073675
Other languages
English (en)
French (fr)
Inventor
李红斌
姚连登
苗雨川
吴扣根
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to JP2015554048A priority Critical patent/JP6251291B2/ja
Priority to NZ708752A priority patent/NZ708752A/en
Priority to KR1020177016489A priority patent/KR102040680B1/ko
Priority to AU2014243611A priority patent/AU2014243611B2/en
Priority to EP14774698.6A priority patent/EP2980255A4/en
Priority to US14/762,596 priority patent/US10494706B2/en
Publication of WO2014154104A1 publication Critical patent/WO2014154104A1/zh
Priority to ZA2015/04328A priority patent/ZA201504328B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to wear-resistant steel, in particular to a low-alloy high-toughness wear-resistant steel plate and a manufacturing method thereof; the typical mechanical properties thereof: tensile strength greater than 1200 MPa, elongation greater than 12%, Brinell hardness greater than 400 HB, -40
  • the °C Charpy V-type longitudinal impact energy is greater than 60J.
  • Wear-resistant steel plates are widely used in engineering products with high strength and high wear resistance, engineering, mining, agriculture, cement production, ports, electricity and metallurgy. Such as bulldozers, loaders, excavators, dump trucks and grabs, stackers and reclaimers, and feed bending structures.
  • Austenitic high manganese steel has been used to produce wear parts. Austenitic high manganese steel can undergo strain-induced martensitic transformation under high impact load and improve its wear resistance. Austenitic high manganese steels are limited by high alloying elements, poor machining, poor weldability, and low initial hardness, and are not suitable for a wide range of applications.
  • wear-resistant steel In recent decades, the development and application of wear-resistant steel has developed rapidly. Generally, an appropriate amount of carbon and alloy elements are added, and production is carried out by casting, rolling and offline heat treatment. Producing wear-resistant steel by casting, the production process is short, the process is simple, and easy to produce, but there are disadvantages such as high alloying element content, poor mechanics, welding and mechanical processing performance; wear-resistant steel produced by rolling can be further reduced The content of alloying elements, improve product performance, but still not suitable for wide application; off-line quenching + tempering heat treatment is the most important production mode of wear-resistant steel plate, with less alloying elements, higher product performance, stable industrial production, but With the requirements of low carbon, energy saving and environmental protection, the low cost, short process, low alloy and high toughness products are the inevitable trend of the development of the steel industry.
  • Chinese patent CN1140205A discloses a medium-high carbon medium alloy wear-resistant steel which is produced by a casting process and has a high content of carbon and alloying elements (Cr, Mo, etc.), which inevitably leads to poor welding performance and mechanical processing performance.
  • Chinese patent CN1865481A discloses a bainite wear-resistant steel, which has high carbon and alloying elements (Si, Mn, Cr, Mo, etc.) and poor weldability; it adopts air-cooling or stack-cooling process after rolling to obtain shellfish. Austenitic wear-resistant steel with low mechanical properties.
  • the object of the present invention is to provide a low alloy high toughness wear resistant steel plate and a manufacturing method thereof, the low alloy high toughness wear resistant steel plate has a tensile strength greater than 1200 MPa, an elongation greater than 12%, and a Brinell hardness greater than 400 HB, -40 °C Charpy V-type longitudinal impact energy is greater than 60J, achieving high strength, high hardness and high toughness matching, and has good machinability and welding performance, which is very beneficial to a wide range of applications in engineering.
  • a low alloy high toughness wear resistant steel plate having a chemical composition weight percentage of C: 0.08-0.20%, Si: 0.10-0.60%, Mn: 1.00-2.00%, B: 0.0005-0.0040%, Cr ⁇ 1.50%, Mo ⁇ 0.80%, Ni ⁇ 1.50%, Nb ⁇ 0.080%, V ⁇ 0.080%, Ti ⁇ 0.060%, Al: 0.010-0.080%, Ca: 0.0010-0.0080%, N ⁇ 0.0080%, O ⁇ 0.0080%, H ⁇ 0.0004%, P ⁇ 0.015%, S ⁇ 0.010%, and satisfying 0 ⁇ 20% ⁇ (Cr/5+Mn/6+50B) ⁇ 0.55%, 0.02% ⁇ (Mo/3+Ni/5+2Nb) ⁇ 0.45%, 0.01% ⁇ ( Al+Ti ) ⁇ 0.13%, the rest are Fe and unavoidable impurities; the microstructure is fine martensite and retained austenite, wherein the volume fraction of retained austenite ⁇ 5%; Typical mechanical properties: Its tensile strength is greater than 1200MP
  • the chemical composition of the low alloy high toughness wear resistant steel sheet according to the present invention is as follows:
  • Carbon is the most basic and important element in wear-resistant steel. It can improve the strength and hardness of steel and improve the wear resistance of steel. However, it is unfavorable to the toughness and weldability of steel. Therefore, it should be controlled in steel.
  • the carbon content is from 0.08 to 0.20 wt.%, preferably from 0.10 to 0.20 wt.%.
  • Silicon solid solution increases their hardness and strength in ferrite and austenite.
  • too high a silicon content leads to a sharp drop in the toughness of steel.
  • the affinity of silicon and oxygen is stronger than that of iron, it is easy to produce low-melting silicate during welding, increasing the fluidity of molten slag and molten metal, affecting the quality of the weld, so the content is not easy to be excessive, and the low alloy of the present invention is high.
  • the control silicon in the ductile wear-resistant steel is from 0.10 to 0.60 wt.%, preferably from 0.10 to 0.50 wt.%.
  • Manganese strongly increases the hardenability of steel and reduces the transition temperature of wear-resistant steel and the critical cooling rate of steel. However, when the manganese content is high, there is a tendency to coarsen the crystal grains, and the tempering and brittle sensitivity of the steel is increased, and segregation and cracking in the cast slab are easily caused, and the performance of the steel sheet is lowered, and the low alloy high toughness resistance of the present invention is resistant.
  • the controlled manganese content in the milled steel is 1.00-2.00 wt.%, preferably 1.00-1.80 wt.%schreib
  • the boron content of the low alloy high toughness wear resistant steel of the present invention is controlled. It is 0.0005 to 0.0040 wt.%, preferably 0.0005 to 0.0020 wt.%.
  • Chromium can reduce the critical cooling rate and improve the hardenability of steel. Chromium can form various carbides such as (Fe, Cr) 3 C, (Fe, Cr) 7 C 3 and (Fe, Cr) 23 C 7 in steel to improve strength and hardness. Chromium can block or temper Slowing the precipitation and aggregation of carbides can improve the tempering stability of the steel.
  • the low-alloy high-toughness wear-resistant steel of the present invention has a controlled chromium content of ⁇ 1.50 wt.%, preferably 0.10-1.20 wt.%.
  • Molybdenum can refine grains and improve strength and toughness. Molybdenum exists in the solid solution phase and the carbide phase in steel. Therefore, the molybdenum-containing steel has both solid solution strengthening and carbide dispersion strengthening. Molybdenum is an element that reduces temper brittleness and improves tempering stability.
  • the low-alloy high-toughness wear-resistant steel of the present invention has a controlled molybdenum content of ⁇ 0.80 wt.%, preferably ⁇ 0.60 wt.%.
  • Nickel has the effect of significantly reducing the cold-brittle transition temperature. However, if the content is too high, the scale of the steel sheet is difficult to fall off, and the cost is significantly increased.
  • the low-alloy high-toughness wear-resistant steel of the present invention has a controlled nickel content of ⁇ 1.50 wt.%. , preferably ⁇ 1.20 wt.%.
  • the grain refinement and precipitation strengthening of b are extremely significant for improving the toughness and toughness of the material, and are strong elements of C and N formation, which strongly inhibit the growth of austenite grains.
  • Nb Through grain refinement while improving the strength and toughness of steel, Nb mainly improves and improves the properties of steel through precipitation strengthening and phase transformation strengthening. Nb has been used as one of the most effective strengthening agents in HSLA steel, and the invention is low.
  • the controlled niobium content in the alloy high toughness wear resistant steel is ⁇ 0.080 wt.%, preferably 0.005-0.080 wt.%.
  • Vanadium The addition of vanadium is mainly to refine the grains, so that the austenite grains in the heating stage are not too coarse in the heating stage, so that the grain of the steel can be obtained in the subsequent multi-pass rolling process. Further refining, to increase the strength and toughness of the steel, the low-alloy high-toughness wear-resistant steel of the present invention has a controlled vanadium content of ⁇ 0.080 wt.%, preferably ⁇ 0.060 wt.%.
  • Titanium is one of the strong carbide forming elements and forms fine TiC particles with carbon.
  • the TiC particles are fine and distributed at the grain boundary to achieve the effect of refining the grains.
  • the hard TiC particles improve the wear resistance of the steel.
  • the low-alloy high-toughness wear-resistant steel of the present invention has a controlled titanium content of ⁇ 0.060 wt.%. It is preferably 0.005 to 0.060 wt.%.
  • Nitrogen in aluminum and steel forms fine, insoluble A1N particles that refine the grain of steel.
  • Aluminum can refine the grain of steel, fix nitrogen and oxygen in steel, reduce the sensitivity of steel to the notch, reduce or eliminate the aging of steel, and improve the toughness of steel.
  • the low alloy high toughness wear-resistant steel of the invention The medium aluminum content is controlled to be 0.010-0.080 wt.%, preferably 0.020-0.080 wt.%.
  • Titanium can form fine particles and refine grains. Aluminum can ensure the formation of fine titanium particles and fully exert the grain refinement effect of titanium. Therefore, the contents of aluminum and titanium are as follows: 0.010% ⁇ A1+Ti ⁇ 0.13%, preferably 0.010% ⁇ A1 + Ti ⁇ 0.12%.
  • the low alloy high performance wear resistant steel of the present invention has a controlled calcium content of from 0.0010 to 0.0080 wt.%, preferably from 0.0010 to 0.0050 wt.%.
  • Phosphorus and sulfur In wear-resistant steel, sulfur and phosphorus are harmful elements, and their content should be strictly controlled.
  • the controlled phosphorus content in the steels involved in the invention is ⁇ 0.015wt.%, preferably ⁇ 0.012wt.%;
  • the sulfur content is ⁇ 0.010 wt.%, preferably ⁇ 0.005 wt.%.
  • Nitrogen, oxygen, hydrogen Excessive oxygen, nitrogen and hydrogen in steel are very detrimental to the properties of steel, especially weldability, impact toughness and crack resistance, reducing the quality and service life of steel plates, but the control is too strict.
  • the controlled nitrogen content in the steel of the invention is ⁇ 0.0080 wt.%, preferably ⁇ 0.0050 wt.%; the control oxygen content ⁇ 0.0080 wt.%, preferably ⁇ 0.0050 wt.%; controlling the hydrogen content ⁇ 0.0004 wt.%, preferably ⁇ 0.0003 wt.%.
  • each of the smelting raw materials is subjected to a direct cooling step of smelting, casting, heating, rolling, and rolling in accordance with the ratio of the above chemical components to obtain the low alloy high toughness resistance.
  • Grinding steel plate wherein, in the heating step, the slab heating temperature is 1000-1200 ° C, and the heat preservation is 1-3 hours; in the rolling step, the rough rolling temperature is 900-1150 ° C, and the finishing rolling temperature is 780-880 °C;
  • the cooling step it is cooled by water to 400 °C and then air cooled to room temperature, wherein the water cooling rate is ⁇ 20 °C / s.
  • a tempering step is further included.
  • the heating temperature is 100-400 ° C and the temperature is kept for 30-120 min.
  • the heating temperature is 1000-1150 ° C; the more preferable heating temperature is 1000-1130 ° C; in order to improve production efficiency and prevent excessive growth of austenite grains and severe oxidation of the surface of the steel slab
  • the most preferred heating temperature is 1000-1110 °C.
  • the rough rolling temperature is 900-1100 ° C, the rolling reduction ratio in the rough rolling stage is greater than 20%, the finishing rolling temperature is 780-860 ° C, and the rolling reduction ratio in the finishing rolling stage is greater than 40%; more preferably, the rough rolling temperature is 900-1080 ° C, the rolling reduction rate in the rough rolling stage is more than 25%, the finishing rolling temperature is 780-855 ° C, and the rolling reduction rate in the finishing rolling stage is more than 45%. Most preferably, the rough rolling temperature is 910-1080 ° C, the rolling reduction rate in the rough rolling stage is greater than 28%, the finishing rolling temperature is 785-855 ° C, and the rolling reduction ratio in the finishing rolling stage is greater than 50%;
  • the cooling temperature is below 380 ° C, the water cooling cooling rate is ⁇ 23 ° C / s; more preferably, the cooling temperature is below 350 ° C, the water cooling cooling rate is ⁇ 27 ° C / s; Most preferably, the cooling temperature is below 330 ° C, and the water cooling cooling rate is ⁇ 30 ° C / s.
  • the heating temperature is 100-380 ° C, and the temperature is kept for 30-100 min; more preferably, The heating temperature is 120-380 ° C, and the temperature is 30-100 min; most preferably, the heating temperature is 150-380 ° C, and the temperature is 30-100 min.
  • the obtained wear-resistant steel plate is obtained by refining and strengthening the alloying elements and controlling the refinement and strengthening effect of the rolling and cooling processes.
  • Excellent mechanical properties such as strength, hardness, elongation, impact properties, etc.), weldability and wear resistance.
  • the alloy composition of the low-alloy high-toughness wear-resistant steel plate of the present invention is mainly low-carbon low-alloy, and fully utilizes the characteristics of refinement and strengthening of microalloying elements such as Nb and Ti to reduce carbon and At the same time as the alloying elements such as Cr, Mo and M, the wear-resistant steel sheet has good mechanical properties and excellent welding properties.
  • the low-alloy high-toughness wear-resistant steel plate of the invention is produced by TMCP process, and the structure refinement is improved by controlling the process parameters such as opening and ending rolling temperature, rolling deformation and cooling speed in the TMCP process.
  • the process has the characteristics of short production process, high efficiency, energy saving and low cost.
  • the low-alloy high-toughness wear-resistant steel plate of the invention has high strength, high hardness, high low temperature toughness (typical mechanical properties: tensile strength greater than 1200 MPa, elongation greater than 12%, Brinell hardness greater than 400 HB , -40 °C Charpy V-type longitudinal impact energy is greater than 60J), and has good weldability ⁇ fi ⁇
  • the low-alloy high-toughness wear-resistant steel plate of the invention fully utilizes alloying element addition and controlled rolling and controlled cooling to obtain fine martensite structure and retained austenite (including residual austenite volume)
  • the score ⁇ 5%) is good for the good matching of the strength, hardness and toughness of the wear-resistant steel.
  • the wear-resistant steel plate of the invention has obvious advantages, the control of the carbon and alloying element content and the wear-resistant steel plate obtained by each heat treatment process have low cost, high process cylinder, high hardness, good low temperature toughness and excellent mechanical processing performance. Easy to weld, suitable for wearable parts in various mechanical equipment. This type of wear-resistant steel plate is an inevitable trend in the development of social economy and steel industry.
  • FIG. 1 is a photograph showing the microstructure of a steel sheet according to Example 5 detailed description
  • the wear-resistant steel sheets of the following Examples 1-10 and the steel sheets of Comparative Example 1 have the chemical composition percentages as shown in Table 1; the wear-resistant steel sheets of Examples 1-10 and Comparative Example 1 (Comparative Example 1 is the patent CN1865481A)
  • the manufacturing method of the steel sheet of the embodiment) is as follows: The corresponding smelting raw materials are sequentially subjected to the following steps: smelting ⁇ casting ⁇ heating ⁇ rolling ⁇ direct cooling after rolling ⁇ tempering (no tempering), controlling various examples and comparative examples 1 in the steel sheet chemical element mass ratio, wherein, in the heating step, the slab heating temperature is 1000-1200 ° C, holding 1-3 hours; in the rolling step, the rough rolling temperature is 900-1150 ° C The finishing temperature is 780-880 °C; in the cooling step, it is cooled by water to 400 °C and then air cooled to room temperature, wherein the water cooling cooling rate is >20 °C / s; in the tempering step, the heating temperature is
  • the abrasion resistance test was carried out on an ML-100 abrasive wear tester.
  • the axis of the sample is perpendicular to the surface of the steel sheet, and the worn surface of the sample is the rolled surface of the steel sheet.
  • the sample is processed into a stepped cylinder as required.
  • the size of the test part is (D4mm, the size of the clamping part of the fixture is (D5mm.
  • the sample is cleaned with alcohol before the test, and then blown dry with a hair dryer, at a precision of one ten thousandth.
  • the balance is weighed, the weight of the sample is measured as the original weight, and then mounted on the elastic fixture.
  • the sandpaper with a particle size of 80 mesh is tested under the load of 84 N.
  • rl is the starting radius of the helix
  • r2 is the ending radius of the helix
  • a is the feed of the helix.
  • the welding constrained weld is welded, and the restrained weld is welded with Ar gas-enhanced welding.
  • the JM-58 welding wire of ⁇ 1.2 is used, and the angular deformation of the test piece is strictly controlled during the welding process.
  • the weld of the test weld was carried out after cooling the room temperature after welding.
  • the test weld is welded at room temperature.
  • the weld surface crack and section are detected. Cracks and root cracks.
  • the welding specification is 170Ax25Vx l60mm/min.
  • Example 5 50 °C 3 0 0 0 26 °C 66%
  • Example 8 50 °C 3 0 0 0 33 °C 61%
  • Example 9 750 °C 3 0 0 0 28 °C 59%
  • the wear-resistant steel plate of Example 5 was examined to obtain a microstructure thereof. As shown in FIG. 1, the microstructure was fine martensite and a small amount of retained austenite, wherein the retained austenite volume fraction was ⁇ 5%. This ensures that the steel sheet has excellent mechanical properties.
  • the invention scientifically designs carbon and alloy composition and ratio thereof under reasonable production process conditions, and reduces Alloy cost, making full use of microalloying elements and TMCP process for microstructure refinement and strengthening, the obtained wear-resistant steel plate has excellent mechanical properties (such as high hardness, strength, elongation, impact toughness, etc.) and welding properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种低合金高韧性耐磨钢板及其制造方法,其化学成分(wt%)为:C: 0.08-0.20%,Si:0.10-0.60%,Mn:1.00-2.00%,B:0.0005-0.0040%,Cr≤1.50%,Mo≤0.80%,Ni≤1.50%,Nb≤0.080%,V≤0.080%,Ti≤0.060%,Al:0.010-0.080%, Ca:0.0010-0.0080%,N≤0.0080%,O≤0.0080%,H≤0.0004%,P≤0.015%,S≤0.010%,且满足0.20%≤(Cr/5+Mn/6+50B)≤0.55%,0.02%≤(Mo/3+Ni/5+2Nb)≤0.45%, 0.01%≤(Al+Ti)≤0.13%,其余为 Fe和不可避免的杂质。充分利用 Nb、Ti等微合金元素的细化、强化等特点及通过TMCP工艺,耐磨钢板强硬度高,韧性佳,易焊接,耐磨性优异,适用于各种机械设备中易磨损部件。

Description

一种低合金高韧性耐磨钢板及其制造方法
技术领域
本发明涉及耐磨钢, 特别是涉及一种低合金高韧性耐磨钢板及其制造方法; 其 典型力学性能:其抗拉强度大于 1200MPa,延伸率大于 12%,布氏硬度大于 400HB, -40 °C夏比 V型纵向冲击功大于 60J。
背景技术
耐磨钢板广泛应用于工作条件特别恶劣, 要求高强度, 高耐磨性能的工程、 采 矿、 农业、 水泥生产、 港口、 电力以及冶金等机械产品上。 如推土机、 装载机、 挖 掘机、 自卸车及抓斗、 堆取料机、 输料弯曲结构等。
传统上一般选用奥氏体高锰钢生产耐磨部件。奥氏体高锰钢在大的冲击载荷作 用下, 可发生应变诱导马氏体相变, 提高其耐磨性。 奥氏体高锰钢受限于合金元素 含量高、 机械加工、 焊接性能差、 初始硬度低, 并不适合广泛应用。
近几十年来, 耐磨钢的开发与应用发展很快, 一般添加适量的碳及合金元素, 通过铸造、 轧制及离线热处理等方式进行生产。 通过铸造方式生产耐磨钢, 生产流 程短、 工艺筒单、 易于生产, 但存在合金元素含量偏高、 力学、 焊接和机械加工性 能差等缺点; 通过轧制方式生产的耐磨钢可以进一步减少合金元素的含量、 提高产 品性能, 但仍不适合广泛应用; 离线淬火 +回火热处理是目前耐磨钢板最主要的生 产方式, 其合金元素较少, 产品性能较高, 可以稳定工业生产, 但随着低碳、 节能、 环保等要求越来越高, 低成本、 短流程、 低合金高韧性产品是钢铁行业发展的必然 趋势。
中国专利 CN1140205A公开了一种中高碳中合金耐磨钢, 采用铸造工艺生产, 其碳及合金元素 (Cr、 Mo等)含量较高, 这必然导致焊接性能与机械加工性能较 差。
中国专利 CN1865481A公开了一种贝氏体耐磨钢, 其碳及合金元素 ( Si、 Mn、 Cr、 Mo等)含量均较高, 焊接性能较差; 其采用轧后空冷或堆冷工艺得到贝氏体 耐磨钢, 力学性能较低。 发明内容 本发明的目的是提供一种低合金高韧性耐磨钢板及其制造方法,该低合金高韧 性耐磨钢板抗拉强度大于 1200MPa, 延伸率大于 12%, 布氏硬度大于 400HB, -40 °C夏比 V型纵向冲击功大于 60J, 实现了高强度、 高硬度和高韧性的匹配, 并具有 良好的机械加工性能和焊接性能, 十分有益于工程上的广泛应用。
为达到上述目的, 本发明的技术方案是:
一种低合金高韧性耐磨钢板, 其化学成分的重量百分比为 C: 0.08-0.20%, Si: 0.10-0.60%, Mn: 1.00-2.00%, B: 0.0005-0.0040%, Cr<1.50%, Mo<0.80%, Ni<1.50%, Nb<0.080% , V<0.080% , Ti<0.060%, Al: 0.010-0.080%, Ca: 0.0010-0.0080% , N<0.0080% , O<0.0080% , H<0.0004% , P<0.015% , S<0.010% , 且满足 0·20%≤ ( Cr/5+Mn/6+50B ) <0.55%, 0.02%< ( Mo/3+Ni/5+2Nb ) <0.45%, 0.01%< ( Al+Ti ) <0.13%, 其余为 Fe和不可避免的杂质; 其显微组织为细的马氏体及残余奥氏体, 其中残余奥氏体的体积分数≤5%; 其典型力学性能: 其抗拉强度大于 1200MPa, 延 伸率大于 12%, 布氏硬度大于 400HB, -40°C夏比 V型纵向冲击功大于 60J。
本发明所涉及的低合金高韧性耐磨钢板的化学成分作用如下:
碳: 碳是耐磨钢中最基本、 最重要的元素, 可以提高钢的强度和硬度, 进而提 高钢的耐磨性, 但其对钢的韧性和焊接性能不利, 因此, 应合理控制钢中的碳含量 为 0.08-0.20wt.%, 优选为 0.10-0.20wt.%„
硅: 硅固溶在铁素体和奥氏体中提高它们的硬度和强度, 然而硅含量过高会导 致钢的韧性急剧下降。 同时考虑到硅与氧的亲和力比铁强, 焊接时容易产生低熔点 的硅酸盐, 增加熔渣和熔化金属的流动性, 影响焊缝质量, 因此含量不易过多, 本 发明的低合金高韧性耐磨钢中控制硅为 0.10-0.60 wt.%, 优选为 0.10-0.50 wt.%。
锰: 锰强烈增加钢的淬透性, 降低耐磨钢转变温度和钢的临界冷却速度。 但锰 含量较高时, 有使晶粒粗化的倾向, 并增加钢的回火脆敏感性, 而且容易导致铸坯 中出现偏析和裂紋, 降低钢板的性能, 本发明的低合金高韧性耐磨钢中控制锰含量 为 1.00-2.00wt.%, 优选为 1.00-1.80 wt.%„
硼: 硼增加钢的淬透性但含量过高将导致热脆现象, 影响钢的焊接性能及热加 工性能, 因此需要严格控制 B含量, 本发明的低合金高韧性耐磨钢中控制硼含量为 0.0005-0.0040wt.%, 优选为 0.0005-0.0020wt.%。
铬:铬可以降低临界冷却速度、提高钢的淬透性。铬在钢中可以形成 (Fe, Cr)3C、 (Fe, Cr)7C3和 (Fe, Cr)23C7等多种碳化物, 提高强度和硬度。 铬在回火时能阻止或 减缓碳化物的析出与聚集, 可以提高钢的回火稳定性, 本发明的低合金高韧性耐磨 钢中控制铬含量为≤1.50wt.%, 优选为 0.10-1.20wt.%。
钼: 钼可以细化晶粒, 提高强度和韧性。 钼在钢中存在于固溶体相和碳化物相 中, 因此, 含钼钢同时具有固溶强化和碳化物弥散强化的作用。 钼是减小回火脆性 的元素, 可以提高回火稳定。 本发明的低合金高韧性耐磨钢中控制钼含量为 <0.80wt.%, 优选为≤0.60wt.%。
镍: 镍具有明显降低冷脆转变温度的作用, 但含量过高易导致钢板表面氧化皮 难以脱落, 且成本显著增加, 本发明的低合金高韧性耐磨钢中控制镍含量 < 1.50wt.%, 优选为 < 1.20wt.%。
铌: b 的细化晶粒和析出强化作用, 对提高材料强韧性贡献是极为显著的, 是强烈的 C、 N化物的形成元素, 强烈地抑制奥氏体晶粒长大。 b通过晶粒细化 同时提高钢的强度和韧性, Nb 主要通过析出强化和相变强化来改善和提高钢的性 能, Nb已经被作为 HSLA钢中最有效的强化剂之一, 本发明的低合金高韧性耐磨 钢中控制铌含量为≤0.080wt.%, 优选为 0.005-0.080wt.%。
钒: 钒的加入主要是为了细化晶粒, 使钢坯在加热阶段奥氏体晶粒不至于生长 的过于粗大,这样,在随后的多道次轧制过程中,可以使钢的晶粒得到进一步细化, 提高钢的强度和韧性, 本发明的低合金高韧性耐磨钢中控制钒含量为≤0.080 wt.%, 优选为≤0.060wt.%。
钛: 钛是强碳化物形成元素之一, 与碳形成细微的 TiC颗粒。 TiC颗粒细小, 分布在晶界, 达到细化晶粒的效果, 较硬的 TiC颗粒提高钢的耐磨性, 本发明的低 合金高韧性耐磨钢中控制钛含量为≤0.060 wt.%, 优选为 0.005-0.060wt.%。
铝: 铝和钢中氮能形成细小难溶的 A1N颗粒, 细化钢的晶粒。 铝可细化钢的晶 粒, 固定钢中的氮和氧, 减轻钢对缺口的敏感性, 减小或消除钢的时效现象, 并提 高钢的韧性, 本发明的低合金高韧性耐磨钢中铝含量控制在 0.010-0.080 wt.%, 优 选为 0.020-0.080 wt.%。
铝和钛: 钛均能形成细小颗粒进而细化晶粒, 铝可以保证细小钛颗粒的形成, 充分发挥钛的细化晶粒作用, 故铝和钛的含量范围如下: 0.010%≤A1+Ti≤0.13%, 优 选为 0.010%≤A1+Ti≤0.12%。
钙: 钙对铸钢中夹杂物的变质具有显著作用, 铸钢中加入适量钙可将铸钢中的 长条状硫化物夹杂转变为球状的 CaS或 (Ca, Mn ) S夹杂, 钙所形成的氧化物及 硫化物夹杂密度小, 易于上浮排除。 钙还显著降低硫在晶界的偏聚, 这些都有益于 提高铸钢的质量, 进而提高钢的性能。 本发明的低合金高性能耐磨钢中控制钙含量 为 0.0010-0.0080wt.%, 优选为 0.0010-0.0050wt.%。
磷与硫: 在耐磨钢中, 硫与磷均为有害元素, 它们的含量要严格控制, 本发明 所涉及钢种中控制磷含量≤0.015wt.%,优选为≤0.012wt.%; 控制硫含量≤0.010wt.%, 优选为≤0.005wt.%。
氮、 氧、 氢: 钢中过多的氧、 氮和氢对钢的性能尤其对焊接性、 冲击韧性和抗 裂性是十分不利的,降低钢板的质量及使用寿命,但控制过严会大幅增加生产成本, 因此, 本发明所涉及钢种中控制氮含量≤0.0080wt.%, 优选为≤0.0050wt.%; 控制氧 含量≤0.0080wt.% , 优选为≤0.0050 wt.%; 控制氢含量≤0.0004wt.% , 优选为 ≤0.0003wt.%。
本发明的低合金高韧性耐磨钢板的制造方法, 将各冶炼原料按照上述化学成分 的配比依次经过冶炼、 铸造、 加热、 轧制、 轧后直接冷却步骤, 获得所述低合金高 韧性耐磨钢板; 其中, 在加热步骤中, 板坯加热温度为 1000-1200°C , 保温 1-3小 时; 在轧制步骤中, 粗轧温度为 900-1150 °C , 精轧温度为 780-880°C ; 在冷却步骤 中, 采用水冷冷却至 400 °C以下再空冷至室温, 其中水冷冷却速度≥20 °C /s。
进一步的, 所述轧后直接冷却后还包括回火步骤, 在回火步骤中, 加热温度为 100-400 °C , 保温 30-120min。
优选的, 在所述加热过程中, 加热温度为 1000-1150°C ; 更优选的加热温度为 1000-1130°C ; 为提高生产效率并防奥氏体晶粒过分长大及钢坯表面严重氧化, 最 优选的加热温度为 1000-1110°C。
优选的, 在轧制步骤中, 粗轧温度为 900-1100°C , 粗轧阶段轧制压下率大于 20%, 精轧温度为 780-860 °C , 精轧阶段轧制压下率大于 40%; 更优选的, 粗轧温 度为 900-1080°C , 粗轧阶段轧制压下率大于 25%, 精轧温度为 780-855 °C , 精轧阶 段轧制压下率大于 45%; 最优选的, 粗轧温度为 910-1080°C , 粗轧阶段轧制压下率 大于 28%, 精轧温度为 785-855 °C , 精轧阶段轧制压下率大于 50%; 。
优选的, 在冷却步骤中, 停冷温度为 380 °C以下, 水冷冷却速度≥23 °C/s; 更优 选的, 停冷温度为 350°C以下, 水冷冷却速度≥27°C/s; 最优选的, 停冷温度为 330 °C以下, 水冷冷却速度≥30 °C /s。
优选的, 在回火步骤中, 加热温度为 100-380°C , 保温 30-100min; 更优选的, 加热温度为 120-380°C , 保温 30-100min; 最优选的, 加热温度为 150-380 °C , 保温 30-100min„
由于本发明的低合金高韧性耐磨钢板中科学设计了碳及合金元素的含量, 通过 合金元素的细化强化作用及控制轧制和冷却工艺的细化、 强化效果, 使获得的耐磨 钢板具有优异的力学性能(如强度、 硬度、 延伸率、 冲击性能等) 、 焊接性能和耐 磨性能。
本发明的低合金高韧性耐磨钢板与现有技术相比具有如下特点:
1、 从化学成分上看, 本发明的低合金高韧性耐磨钢板的合金成分以低碳低合 金为主, 充分利用 Nb、 Ti等微合金元素的细化、 强化等特点, 在减少碳及合金元 素 Cr、 Mo和 M等的含量的同时, 保证耐磨钢板具有良好的力学性能和优异的焊 接性能等。
2、 从生产工艺上看, 本发明的低合金高韧性耐磨钢板采用 TMCP工艺生产, 通过 TMCP工艺中的开、终轧温度、轧制变形量及冷却速度等工艺参数的控制提高 组织细化、 强化效果, 进而减少碳和合金元素含量, 得到力学性能和焊接性能等均 十分优异的钢板。 此外, 该工艺还具有生产流程短, 效率高, 节约能源, 成本低等 特点。
3、 从产品性能上看, 本发明的低合金高韧性耐磨钢板具有高强度、 高硬度、 高低温韧性(典型力学性能: 抗拉强度大于 1200MPa, 延伸率大于 12%, 布氏硬度 大于 400HB, -40°C夏比 V型纵向冲击功大于 60J ) 等优点, 并具有良好的焊接性 έ fi匕
匕。
4、 从显微组织上看, 本发明的低合金高韧性耐磨钢板, 充分利用合金元素添 加及控轧控冷工艺得到细的马氏体组织及残余奥氏体 (其中残余奥氏体体积分数 <5% ) , 有益于耐磨钢板强、 硬度及韧性的良好匹配。
总之, 本发明涉及的耐磨钢板具有较明显的优势, 控制碳和合金元素含量以及 各热处理工艺得到的耐磨钢板成本低、 工艺筒单、 强硬度高, 低温韧性佳, 机械加 工性能优异, 易焊接, 适用于各种机械设备中易磨损部件该宗类型的耐磨钢板是社 会经济和钢铁工业发展的必然趋势。 附图说明
图 1为本发明实施例 5钢板显微组织照片。 具体实施方式
下面结合具体实施例对本发明的技术方案作进一步阐述, 应明确, 这些实施例 仅用于对本发明的具体实施方式的描述,并不用于对本发明的保护范围构成任何限 制。
以下实施例 1-10的耐磨钢板和对比例 1 的钢板, 其化学成分的重量百分比如 表 1所示; 实施例 1-10的耐磨钢板和对比例 1 (对比例 1为专利 CN1865481A中实 施例)的钢板的制造方法为: 将相应的冶炼原料依次按照如下步骤进行: 冶炼→铸 造加热轧制轧后直接冷却回火(可不回火) , 控制各实施例及对比例 1中 的钢板化学元素质量百分配比, 其中, 在加热步骤中, 板坯加热温度为 1000-1200 °C , 保温 1-3小时; 在轧制步骤中, 粗轧温度为 900-1150 °C , 精轧温度为 780-880 °C ; 在冷却步骤中, 采用水冷冷却至 400 °C以下再空冷至室温, 其中水冷冷却速度 >20°C/s; 在回火步骤中, 加热温度为 100-400 °C , 保温 30-120min。 实施例 1-10的 具体工艺参数如表 2所示。
表 1实施例 1-10的成分(单位为 wt% )
Figure imgf000009_0001
表 2 实施例 1-10中的具体工艺参数
Figure imgf000010_0001
1、 力学性能试验
对实施例 1-10的低合金高韧性耐磨钢板进行力学性能测试, 其结果如表 3所示。
表 3 实施例 1-10及对比例 1的力学性能
Figure imgf000011_0001
从表 3中可以看出, 实施例 1-10的钢板, 抗拉强度: 1200-1400MPa, 延伸率: 14%- 16%, 布氏硬度: 400-460HB, -40°C夏比 V型纵向冲击功: 60-130J, 以上说 明本发明所涉及的耐磨钢板不但具有高强、 高硬、 高延伸率等特点, 而且具有优异 的低温冲击韧性, 其钢板的强度、 硬度、 延伸率明显优于对比例 1的钢板。
2、 耐磨性能试验:
耐磨性试验在 ML-100磨粒磨损试验机上进行。截取试样时,令试样的轴线垂 直于钢板表面,试样的磨损面即钢板的轧制面。将试样按要求加工成台阶状圓柱体, 测试部分尺寸为(D4mm, 卡具夹持部分尺寸为(D5mm。 试验前用酒精清洗试样, 然后用吹风机吹干, 在万分之一精度的天平上称重, 测得试样重量作为原始重量, 而后安装在弹性夹具上。 用粒度为 80目的砂纸, 在 84N载荷作用下进行试验。 试 验后由于试样与砂纸间的磨损,试样在砂纸上画出一条螺旋线,根据螺旋线的起始 和终止半径来计算螺旋线的长度, 计算公式如下: a
上式中, rl为螺旋线的起始半径, r2为螺旋线的终止半径, a为螺旋线的进给 量。 每次实验称重三次取平均值, 然后计算失重, 用每米失重来表示试样的磨损率 ( mg/M ) 。
对本发明的实施例 1-10的高性能耐磨钢板进行耐磨性试验。 本发明的实施例 钢种与对比例 2钢(对比例 2为一种硬度为 360HB钢板 )的磨损试险结果见表 4。 表 4 实施例 1-10与对比例 2的磨损试验结果
Figure imgf000012_0001
从表 4可知, 在室温、 80目砂纸 /84N载荷的磨损条件下, 本发明的高性能耐 磨钢板的耐磨性能优于对比例 2钢板耐磨性。
3、 焊接性试验
按照《斜 Y坡口焊接裂紋试验方法》 ( GB4675.1-84 )对本发明耐磨钢板进行 斜 Y坡口焊接裂紋试验, 分五组进行试验。
首先焊接拘束焊缝,拘束焊缝采用富 Ar气体保护焊焊接, 使用 Φ1.2的 JM-58 焊丝,焊接过程中严格控制了试件的角变形。焊后冷却室温后进行试验焊缝的焊接。 试验焊缝在室温下进行焊接, 试验焊缝完成 48小时后, 检测焊缝表面裂紋、 断面 裂紋和根部裂紋。 经过解剖试验, 利用着色法对焊缝的表面、 断面、 根部分别进行 检查。 焊接规范为 170Ax25Vx l60mm/min。
对实施例 1-10的高性能耐磨钢板进行焊接性能试验, 试验结果如表 5所示。 表 5 实施例 1-10的焊接性能试验结果 预热 试样 表面裂 根部裂 断面裂 环境 相对 温度 编号 纹率% 纹率% 纹率% 温度 湿度
1 0 0 0
2 0 0 0
实施例 1 不预热 3 0 0 0 10°C 63%
4 0 0 0
5 0 0 0
1 0 0 0
2 0 0 0
实施例 2 不预热 3 0 0 0 16°C 60%
4 0 0 0
5 0 0 0
1 0 0 0
2 0 0 0
实施例 3 不预热 3 0 0 0 19°C 61%
4 0 0 0
5 0 0 0
1 0 0 0
2 0 0 0
实施例 4 不预热 3 0 0 0 23 °C 63%
4 0 0 0
5 0 0 0
1 0 0 0
2 0 0 0
实施例 5 50 °C 3 0 0 0 26 °C 66%
4 0 0 0
5 0 0 0
实施例 6 不预热 1 0 0 0 32 °C 63% 2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
1 0 0 0
2 0 0 0
实施例 7 80 °C 3 0 0 0 27 °C 62%
4 0 0 0
5 0 0 0
1 0 0 0
2 0 0 0
实施例 8 50 °C 3 0 0 0 33 °C 61%
4 0 0 0
5 0 0 0
1 0 0 0
2 0 0 0
实施例 9 750 °C 3 0 0 0 28 °C 59%
4 0 0 0
5 0 0 0
1 0 0 0
2 0 0 0
实施例
100 °C 3 0 0 0 30°C 58% 10
4 0 0 0
5 0 0 0
由表 5可知, 实施例 1- 10的耐磨钢板在不预热、 预热 50- 100 °C、 环境温度 10-33 °C条件下焊接后均未出现裂紋, 说明本发明耐磨钢板具有极佳的焊接性 能, 尤其对大尺寸焊件极为适用。
4、 显崔组织
将实施例 5的耐磨钢板进行检测获得其显微组织, 如图 1所示, 其显微组 织为细的马氏体和少量残余奥氏体, 其中残余奥氏体体积分数≤5% , 这保证了 钢板具有优异的力学性能。
本发明在合理的生产工艺条件下科学设计碳、 合金成分及其配比, 降低了 合金成本, 充分利用微合金元素及 TMCP工艺进行组织细化、 强化, 获得的耐 磨钢板具有优异的力学性能 (如高的硬度、 强度、 延伸率、 冲击韧性等) 和焊 接性能。

Claims

权 利 要 求 书
1.一种低合金高韧性耐磨钢板, 其化学成分的重量百分比为: C: 0.08-0.20%, Si: 0.10-0.60%, Mn: 1.00-2.00%, B: 0.0005-0.0040%, Cr<1.50%, Mo<0.80%, Ni<1.50% , Nb<0.080% , V<0.080% , Ti<0.060% , Al : 0.010-0.080% , Ca : 0.0010-0.0080%, N<0.0080%, O<0.0080%, H<0.0004%, P<0.015%, S<0.010%, 且满足 0·20%≤ ( Cr/5+Mn/6+50B ) <0.55%, 0.02%< ( Mo/3+Ni/5+2Nb ) <0.45%, 0.010%< ( Al+Ti ) <0.13%, 其余为 Fe和不可避免的杂质; 其显微组织为细的马氏 体及残余奥氏体, 其中残余奥氏体的体积分数≤5%; 其力学性能: 抗拉强度大于 1200MPa, 延伸率大于 12%, 布氏硬度大于 400HB, -40°C夏比 V型纵向冲击功大 于亂
2. 如权利要求 1所述的低合金高韧性耐磨钢板, 其特征在于, C: 0.10-0.20%; Si: 0.10-0.50%, 以重量百分比计。
3. 如权利要求 1所述的低合金高韧性耐磨钢板,其特征在于, Mn: 1.00-1.80%; Cr: 0.10-1.20%; Mo: <0.60%; Ni<1.20%,且满足 0.04%≤( Mo/3+Ni/5+2Nb )≤0.40%, 以重量百分比计。
4. 如权利要求 1 所述的低合金高韧性耐磨钢板, 其特征在于, B :
0.0005-0.0020%; Nb: 0.005-0.080%; V<0.060%,且满足 0·20%≤ ( Cr/5+Mn/6+50B ) <0.50%, 以重量百分比计。
5. 如权利要求 1 所述的低合金高韧性耐磨钢板, 其特征在于, 0.0010%<Ca<0.0050%; N<0.0050%; O<0.0050%; H<0.0003%; P<0.012%; S<0.005%, 以重量百分比计。
6. 如权利要求 1-5 任一所述的低合金高韧性耐磨钢板, 其特征在于, Ti: 0.005-0.060%, Al: 0.020-0.080%, 且满足 0.01%≤A1+Ti≤0.12%, 以重量百分比计。
7. 如权利要求 1-6任一所述的低合金高韧性耐磨钢板的制造方法, 包括如下 步骤: 按上述化学成分配比冶炼, 经铸造、 加热、 轧制、 轧后直接冷却步骤获得所 述低合金高韧性耐磨钢板; 其中, 在加热步骤中, 板坯加热温度为 1000-1200°C , 保温 1-3小时; 在轧制步骤中, 粗轧温度为 900-1150 °C , 精轧温度为 780-880°C ; 在冷却步骤中, 采用水冷冷却至 400°C以下再空冷至室温, 其中水冷冷却速度≥20 °C/s; 所获得的低合金高韧性耐磨钢板的显微组织为细的马氏体及残余奥氏体, 其 中残余奥氏体的体积分数≤5%; 其力学性能: 抗拉强度大于 1200MPa, 延伸率大于 12%, 布氏硬度大于 400HB, -40°C夏比 V型纵向冲击功大于 60J。
8. 如权利要求 7所述的低合金高韧性耐磨钢板的制造方法, 其特征在于, 所 述轧后直接冷却后还包括回火步骤, 在回火步骤中, 加热温度为 100-400°C , 保温 30-120min„
9. 如权利要求 7或 8所述的低合金高韧性耐磨钢板的制造方法, 其特征在于, 在加热步骤中, 板坯加热温度为 1000-1150°C。
10. 如权利要求 7或 8所述的低合金高韧性耐磨钢板的制造方法,其特征在于, 在轧制步骤中, 粗轧温度为 900-1100 °C , 粗轧阶段轧制压下率大于 20%, 精轧温 度为 780-860 °C , 精轧阶段轧制压下率大于 40%。
11. 如权利要求 7或 8所述的低合金高韧性耐磨钢板的制造方法,其特征在于, 在冷却步骤中, 停冷温度为 380°C以下, 水冷冷却速度≥23 °C/s。
12. 如权利要求 8所述的低合金高韧性耐磨钢板的制造方法, 其特征在于, 在 回火步骤中, 回火温度为 100-380 °C , 保温 30-100min。
PCT/CN2014/073675 2013-03-28 2014-03-19 一种低合金高韧性耐磨钢板及其制造方法 WO2014154104A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2015554048A JP6251291B2 (ja) 2013-03-28 2014-03-19 高靱性の低合金耐摩耗鋼板およびその製造方法
NZ708752A NZ708752A (en) 2013-03-28 2014-03-19 High-toughness low-alloy wear-resistant steel sheet and method of manufacturing the same
KR1020177016489A KR102040680B1 (ko) 2013-03-28 2014-03-19 고인성 저합금 내마모성 강판 및 이의 제조 방법
AU2014243611A AU2014243611B2 (en) 2013-03-28 2014-03-19 High-toughness, low-alloy, wear-resistant steel sheet and method of manufacturing the same
EP14774698.6A EP2980255A4 (en) 2013-03-28 2014-03-19 LOW-ALLOY STEEL PLATE OF HIGH TOUGHNESS AND WEAR-RESISTANT AND METHOD FOR MANUFACTURING THE SAME
US14/762,596 US10494706B2 (en) 2013-03-28 2014-03-19 High-toughness low alloy wear-resistant steel sheet and method of manufacturing method thereof the same
ZA2015/04328A ZA201504328B (en) 2013-03-28 2015-06-15 Low alloy high toughness wear-resistant steel plate and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310106558.3 2013-03-28
CN201310106558.3A CN103146997B (zh) 2013-03-28 2013-03-28 一种低合金高韧性耐磨钢板及其制造方法

Publications (1)

Publication Number Publication Date
WO2014154104A1 true WO2014154104A1 (zh) 2014-10-02

Family

ID=48545309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073675 WO2014154104A1 (zh) 2013-03-28 2014-03-19 一种低合金高韧性耐磨钢板及其制造方法

Country Status (9)

Country Link
US (1) US10494706B2 (zh)
EP (1) EP2980255A4 (zh)
JP (1) JP6251291B2 (zh)
KR (2) KR102040680B1 (zh)
CN (1) CN103146997B (zh)
AU (1) AU2014243611B2 (zh)
NZ (1) NZ708752A (zh)
WO (1) WO2014154104A1 (zh)
ZA (1) ZA201504328B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104726790A (zh) * 2015-02-13 2015-06-24 天津钢管集团股份有限公司 低碳马氏体矿浆输送耐磨无缝管线钢制造无缝管线管的方法
CN105002439A (zh) * 2015-07-30 2015-10-28 武汉钢铁(集团)公司 一种布氏硬度400级耐磨钢及其制造方法
WO2018020660A1 (ja) * 2016-07-29 2018-02-01 新日鐵住金株式会社 高強度鋼板
EP3225710A4 (en) * 2014-11-28 2018-05-09 Baoshan Iron & Steel Co., Ltd. Low-alloy high-strength high-tenacity steel panel and method for manufacturing same
KR20180073368A (ko) * 2016-12-22 2018-07-02 주식회사 포스코 고경도 내마모강 및 이의 제조방법
CN115125443A (zh) * 2022-06-17 2022-09-30 武汉钢铁有限公司 一种高韧性易焊接钢及其制备方法
CN116065087A (zh) * 2021-11-03 2023-05-05 宝山钢铁股份有限公司 一种高强高硬增强型耐磨钢及其制造方法

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103146997B (zh) 2013-03-28 2015-08-26 宝山钢铁股份有限公司 一种低合金高韧性耐磨钢板及其制造方法
EP2905348B1 (de) * 2014-02-07 2019-09-04 ThyssenKrupp Steel Europe AG Hochfestes Stahlflachprodukt mit bainitisch-martensitischem Gefüge und Verfahren zur Herstellung eines solchen Stahlflachprodukts
JP6135697B2 (ja) * 2014-03-04 2017-05-31 Jfeスチール株式会社 低温靭性および耐低温焼戻し脆化割れ特性に優れた耐摩耗鋼板およびその製造方法
CN104131242B (zh) * 2014-07-25 2016-07-06 合肥市东庐机械制造有限公司 一种低碳低合金钢材料及其制造方法
CN104451403B (zh) * 2014-12-05 2016-08-17 武汉钢铁(集团)公司 低温用hb450级复相组织耐磨钢及其生产方法
CN105018858B (zh) * 2015-07-08 2016-09-28 中冶陕压重工设备有限公司 一种SY15MnNiCrMoVNbTi钢及其结构件制备方法
KR101696094B1 (ko) * 2015-08-21 2017-01-13 주식회사 포스코 고 경도 강판 및 그 제조방법
CN105154788B (zh) * 2015-09-09 2017-03-01 南京工程学院 具跨尺度多相原位增强效应的耐热合金钢及其微结构调控工艺
KR101654684B1 (ko) * 2015-12-11 2016-09-06 주식회사 세아베스틸 저온 충격인성이 우수한 고강도 무어링 체인강 및 그 제조방법
JP6597449B2 (ja) * 2016-03-29 2019-10-30 日本製鉄株式会社 耐摩耗鋼板及びその製造方法
CN106086647B (zh) * 2016-07-13 2018-02-06 河北钢铁股份有限公司邯郸分公司 一种低合金高强钢q460c及其生产方法
CN106244922B (zh) * 2016-08-31 2018-12-11 南京钢铁股份有限公司 一种大厚度q960e超高强钢生产方法
JP6572952B2 (ja) * 2016-09-28 2019-09-11 Jfeスチール株式会社 耐摩耗鋼板および耐摩耗鋼板の製造方法
CN106566998B (zh) * 2016-10-13 2018-07-24 宝钢特钢韶关有限公司 一种CrMo系齿轮圆钢
KR101899687B1 (ko) 2016-12-22 2018-10-04 주식회사 포스코 고경도 내마모강 및 이의 제조방법
CN108930002B (zh) * 2017-05-26 2020-08-25 宝山钢铁股份有限公司 硬度500hb浆体疏浚管用耐磨蚀钢板及其生产方法
CN108034886B (zh) * 2017-11-15 2019-12-27 东北大学 一种低密度轻质自卸车车厢用耐磨钢板及其制备方法
CN109835015B (zh) * 2017-11-28 2021-03-12 宝山钢铁股份有限公司 一种耐磨复合钢板及其制造方法
CN109835014B (zh) * 2017-11-28 2021-03-12 宝山钢铁股份有限公司 一种高强高韧耐磨复合钢板及其制造方法
CN109835013B (zh) * 2017-11-28 2021-03-12 宝山钢铁股份有限公司 一种高强耐磨复合钢板及其制造方法
CN108004469B (zh) * 2017-12-08 2020-07-03 北京科技大学 一种低合金高韧性q-p-t耐磨钢板及其制备方法
KR102045646B1 (ko) * 2017-12-26 2019-11-15 주식회사 포스코 재질 균일성이 우수한 내마모 강판 및 그 제조방법
CN108165893A (zh) * 2017-12-26 2018-06-15 苏州贝尔纳德铁路设备有限公司 一种内燃改锚机用低合金高强度钢板及其生产方法
CN108707824A (zh) * 2018-05-25 2018-10-26 山东钢铁股份有限公司 一种抗氢致延迟开裂耐磨钢板及其制备方法
WO2020022477A1 (ja) * 2018-07-27 2020-01-30 日本製鉄株式会社 高強度鋼板
CN108588572A (zh) * 2018-07-27 2018-09-28 安徽卓煌机械设备有限公司 一种高强度易焊接磨辊基体材料
WO2020038883A1 (de) 2018-08-20 2020-02-27 Thyssenkrupp Steel Europe Ag Warmgewalztes unvergütetes und warmgewalztes vergütetes stahlflachprodukt sowie verfahren zu deren herstellung
KR102119959B1 (ko) * 2018-09-27 2020-06-05 주식회사 포스코 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
CN109023119B (zh) * 2018-10-08 2020-06-23 鞍钢股份有限公司 一种具有优异塑韧性的耐磨钢及其制造方法
CN109280850B (zh) * 2018-10-29 2020-09-25 南京钢铁股份有限公司 一种80mm大厚度高韧性低合金耐磨钢板及其制造方法
CN109811259A (zh) * 2019-01-25 2019-05-28 南京钢铁股份有限公司 一种超低温耐磨钢板及制造方法
CN110318008B (zh) * 2019-06-20 2022-01-14 江阴兴澄特种钢铁有限公司 一种大厚度抗层状撕裂屈服强度960MPa级高强钢板及其生产方法
CN112680571A (zh) * 2020-11-18 2021-04-20 邯郸钢铁集团有限责任公司 一种提高耐磨钢回火效率的生产方法
CN113528952A (zh) * 2021-06-29 2021-10-22 中国原子能科学研究院 一种耐液态铅或铅铋腐蚀高硅高铬铁素体/马氏体耐热钢及其制备方法
CN114164374A (zh) * 2021-11-12 2022-03-11 哈尔滨工程大学 一种5~60mm厚850MPa级高强度高韧性易焊接纳米钢及其制备方法
CN114836673B (zh) * 2022-04-14 2023-04-11 江苏省沙钢钢铁研究院有限公司 一种焊丝钢及其制备工艺
CN115341154A (zh) * 2022-09-21 2022-11-15 南通瑞泰针业有限公司 一种高韧性、高强度缝纫机针
CN116356215B (zh) * 2023-03-29 2024-05-24 武汉科技大学 一种La元素微合金化的AlCrFeNiTi系高耐蚀耐磨性块体合金及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1140205A (zh) 1995-03-28 1997-01-15 王宇辉 一种中碳中合金耐磨钢
CN1865481A (zh) 2005-05-19 2006-11-22 宝钢集团上海梅山有限公司 一种贝氏体耐磨钢板制备工艺
WO2012153013A1 (fr) * 2011-05-12 2012-11-15 Arcelormittal Investigación Y Desarrollo Sl Procede de fabrication d'acier martensitique a tres haute limite elastique tole ou piece ainsi obtenue.
CN102363859B (zh) * 2011-11-14 2012-12-05 湖南华菱湘潭钢铁有限公司 一种耐磨钢板的生产方法
CN102925801A (zh) * 2012-11-01 2013-02-13 湖南华菱湘潭钢铁有限公司 一种超高强钢板的生产方法
CN102925802A (zh) * 2012-11-01 2013-02-13 湖南华菱湘潭钢铁有限公司 一种超高强钢板的生产方法
CN103146997A (zh) * 2013-03-28 2013-06-12 宝山钢铁股份有限公司 一种低合金高韧性耐磨钢板及其制造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5454883A (en) * 1993-02-02 1995-10-03 Nippon Steel Corporation High toughness low yield ratio, high fatigue strength steel plate and process of producing same
JPH101745A (ja) 1996-06-11 1998-01-06 Nippon Steel Corp 超大入熱溶接特性に優れた耐候性鋼
JP4735191B2 (ja) 2005-10-27 2011-07-27 Jfeスチール株式会社 低温靭性に優れた耐摩耗鋼板およびその製造方法
WO2008056732A1 (fr) * 2006-11-09 2008-05-15 National University Corporation Shiga University Of Medical Science Pinces pour endoscope à micro-ondes
JP5402007B2 (ja) * 2008-02-08 2014-01-29 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
BR122017002730B1 (pt) * 2008-09-17 2018-02-06 Nippon Steel & Sumitomo Metal Corporation Method of production of a high resistance steel sheet
CN101775543B (zh) * 2009-01-14 2011-07-20 宝山钢铁股份有限公司 Hb400级耐磨钢板及其制造方法
JP5423323B2 (ja) * 2009-02-12 2014-02-19 新日鐵住金株式会社 耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板及び高強度ラインパイプ用鋼管
JP5630125B2 (ja) * 2009-08-06 2014-11-26 Jfeスチール株式会社 低温靭性に優れた高強度熱延鋼板およびその製造方法
JP5609383B2 (ja) * 2009-08-06 2014-10-22 Jfeスチール株式会社 低温靭性に優れた高強度熱延鋼板およびその製造方法
WO2011061812A1 (ja) * 2009-11-17 2011-05-26 住友金属工業株式会社 高靱性耐摩耗鋼およびその製造方法
CN102199737B (zh) * 2010-03-26 2012-09-19 宝山钢铁股份有限公司 一种600hb级耐磨钢板及其制造方法
JP5845674B2 (ja) * 2010-07-16 2016-01-20 Jfeスチール株式会社 曲げ加工性および低温靱性に優れる高張力鋼板およびその製造方法
JP5598225B2 (ja) * 2010-09-30 2014-10-01 Jfeスチール株式会社 曲げ特性と低温靭性に優れた高強度熱延鋼板およびその製造方法
KR20120071615A (ko) * 2010-12-23 2012-07-03 주식회사 포스코 용접성 및 저온인성이 우수한 내마모용 강판 및 그 제조방법
PL2700728T3 (pl) * 2011-04-21 2018-03-30 Nippon Steel & Sumitomo Metal Corporation Blacha stalowa cienka walcowana na zimno o wysokiej wytrzymałości, wysoce jednorodnej rozciągliwości i doskonałej podatności na powiększanie otworu oraz sposób jej wytwarzania
JP5910168B2 (ja) * 2011-09-15 2016-04-27 臼井国際産業株式会社 Trip型2相マルテンサイト鋼及びその製造方法とそのtrip型2相マルテンサイト鋼を用いた超高強度鋼製加工品
CN102691017A (zh) * 2012-03-27 2012-09-26 北京科技大学 一种具有nm550硬度的低成本耐磨钢板及制造方法
CN102671017A (zh) 2012-04-27 2012-09-19 湖北长友现代农业股份有限公司 同时制备箬叶挥发油、总黄酮和总多糖的方法
CN102747280B (zh) * 2012-07-31 2014-10-01 宝山钢铁股份有限公司 一种高强度高韧性耐磨钢板及其制造方法
US9869009B2 (en) * 2013-11-15 2018-01-16 Gregory Vartanov High strength low alloy steel and method of manufacturing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1140205A (zh) 1995-03-28 1997-01-15 王宇辉 一种中碳中合金耐磨钢
CN1865481A (zh) 2005-05-19 2006-11-22 宝钢集团上海梅山有限公司 一种贝氏体耐磨钢板制备工艺
WO2012153013A1 (fr) * 2011-05-12 2012-11-15 Arcelormittal Investigación Y Desarrollo Sl Procede de fabrication d'acier martensitique a tres haute limite elastique tole ou piece ainsi obtenue.
CN102363859B (zh) * 2011-11-14 2012-12-05 湖南华菱湘潭钢铁有限公司 一种耐磨钢板的生产方法
CN102925801A (zh) * 2012-11-01 2013-02-13 湖南华菱湘潭钢铁有限公司 一种超高强钢板的生产方法
CN102925802A (zh) * 2012-11-01 2013-02-13 湖南华菱湘潭钢铁有限公司 一种超高强钢板的生产方法
CN103146997A (zh) * 2013-03-28 2013-06-12 宝山钢铁股份有限公司 一种低合金高韧性耐磨钢板及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2980255A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3225710A4 (en) * 2014-11-28 2018-05-09 Baoshan Iron & Steel Co., Ltd. Low-alloy high-strength high-tenacity steel panel and method for manufacturing same
CN104726790A (zh) * 2015-02-13 2015-06-24 天津钢管集团股份有限公司 低碳马氏体矿浆输送耐磨无缝管线钢制造无缝管线管的方法
CN104726790B (zh) * 2015-02-13 2017-03-22 天津钢管集团股份有限公司 低碳马氏体矿浆输送耐磨无缝管线钢制造无缝管线管的方法
CN105002439A (zh) * 2015-07-30 2015-10-28 武汉钢铁(集团)公司 一种布氏硬度400级耐磨钢及其制造方法
WO2018020660A1 (ja) * 2016-07-29 2018-02-01 新日鐵住金株式会社 高強度鋼板
KR20180073368A (ko) * 2016-12-22 2018-07-02 주식회사 포스코 고경도 내마모강 및 이의 제조방법
KR101899686B1 (ko) 2016-12-22 2018-10-04 주식회사 포스코 고경도 내마모강 및 이의 제조방법
CN116065087A (zh) * 2021-11-03 2023-05-05 宝山钢铁股份有限公司 一种高强高硬增强型耐磨钢及其制造方法
CN115125443A (zh) * 2022-06-17 2022-09-30 武汉钢铁有限公司 一种高韧性易焊接钢及其制备方法

Also Published As

Publication number Publication date
KR20150086552A (ko) 2015-07-28
CN103146997B (zh) 2015-08-26
KR20170073716A (ko) 2017-06-28
EP2980255A4 (en) 2016-11-23
NZ708752A (en) 2016-11-25
US10494706B2 (en) 2019-12-03
AU2014243611A1 (en) 2015-07-23
AU2014243611B2 (en) 2016-07-28
JP2016509630A (ja) 2016-03-31
US20160002759A1 (en) 2016-01-07
ZA201504328B (en) 2016-04-28
EP2980255A1 (en) 2016-02-03
JP6251291B2 (ja) 2017-12-20
CN103146997A (zh) 2013-06-12
KR102040680B1 (ko) 2019-11-05

Similar Documents

Publication Publication Date Title
WO2014154104A1 (zh) 一种低合金高韧性耐磨钢板及其制造方法
WO2014154140A1 (zh) 一种低合金高性能耐磨钢板及其制造方法
WO2014154106A1 (zh) 一种低合金高硬度耐磨钢板及其制造方法
EP2881486B1 (en) Abrasion resistant steel plate with high strength and high toughness, and process for preparing same
US9816165B2 (en) Ultrahigh-strength, high-toughness, wear-resistant steel plate and manufacturing method thereof
EP2881485B1 (en) Abrasion resistant steel plate with high strength and high toughness, and process for preparing same
WO2021036271A1 (zh) 耐高温400hb耐磨钢板及其生产方法
CN111748728B (zh) 一种易焊接高强高韧耐磨钢板及其制造方法
TWI742812B (zh) 耐磨耗鋼板及其製造方法
CN113215488B (zh) 一种免热处理nm360耐磨钢板及其制造方法
CN116065086A (zh) 易加工增强型耐磨钢及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774698

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014774698

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157018019

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14762596

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014243611

Country of ref document: AU

Date of ref document: 20140319

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015554048

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE