WO2012153013A1 - Procede de fabrication d'acier martensitique a tres haute limite elastique tole ou piece ainsi obtenue. - Google Patents
Procede de fabrication d'acier martensitique a tres haute limite elastique tole ou piece ainsi obtenue. Download PDFInfo
- Publication number
- WO2012153013A1 WO2012153013A1 PCT/FR2012/000156 FR2012000156W WO2012153013A1 WO 2012153013 A1 WO2012153013 A1 WO 2012153013A1 FR 2012000156 W FR2012000156 W FR 2012000156W WO 2012153013 A1 WO2012153013 A1 WO 2012153013A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sheet
- temperature
- steel
- martensitic
- average
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the invention relates to a method for producing steel sheets with a martensitic structure with a mechanical strength greater than that which could be obtained by a simple quenching treatment with martensitic quenching, and mechanical strength and elongation properties allowing their application to the manufacture of energy absorbing parts in motor vehicles.
- (C) denotes the carbon content of the steel, expressed as a percentage by weight.
- a method of manufacture is thus sought which makes it possible to obtain an ultimate tensile strength of 50 MPa at expression (1), ie a strength greater than 3220 ( C) + 958 MPa for this steel. It seeks to have a method for the manufacture of sheet with a very high yield strength, that is greater than 300 MPa. It is also sought to have a method for the manufacture of directly usable sheets, that is to say without the imperative need of a tempering treatment after quenching.
- the present invention aims to solve the problems mentioned above. It aims in particular to provide sheets with a yield strength greater than 1300 MPa, a tensile strength, expressed in megapascals, greater than (3220 (C) +958) MPa, and preferably a greater total elongation. at 3%.
- the subject of the invention is a method for manufacturing a martensitic steel sheet with a yield strength greater than 1300 MPa, comprising the successive steps and in this order in which:
- a semi-finished steel product whose composition comprises, the contents being expressed by weight: 0.15% ⁇ C ⁇ 0.40%, 1, 5% ⁇ Mn ⁇ 3%, 0.005% ⁇ Si ⁇ 2 %, 0.005% ⁇ Al ⁇ 0.1%, S ⁇ 0.05%, P ⁇ 0.1%, 0.025% ⁇ Nb ⁇ 0.1% and optionally: 0.01% ⁇ Ti ⁇ 0.1%, 0% ⁇ Cr ⁇ 4%, 0% ⁇ Mo ⁇ 2%, 0.0005% ⁇ B ⁇ 0.005%, 0.0005% ⁇ Ca ⁇ 0.005%, the remainder of the composition consisting of iron and unavoidable impurities resulting from the elaboration.
- the semi-finished product is heated to a temperature between 1050 ° C. and 1250 ° C.
- the sheet is not completely cooled to a temperature T3 of between 970 ° C and Ar3 + 30 ° C, so as to avoid transformation of the austenite, at a speed V R i greater than 2 ° C / s, then
- a finishing hot rolling is carried out at the temperature T 3 of the non-completely cooled sheet, with a cumulative reduction ratio b greater than 50% so as to obtain a sheet, and then
- the sheet is cooled at a speed V R2 greater than the critical speed of martensitic quenching.
- the average size of austenitic grains is less than 5 micrometers.
- the sheet is subjected to a subsequent thermal treatment of tempering at a temperature T 4 of between 150 and 600 ° C. for a period of between 5 and 30 minutes.
- the subject of the invention is also a nonreturned steel sheet with a yield strength greater than 1300 MPa, obtained by a method according to one of the above-described methods of manufacture, with a totally martensitic structure, having an average size of slats less than 1, 2 micrometer, the average elongation factor of slats being between 2 and 5.
- the subject of the invention is also a steel sheet obtained by the process with the above treatment of income, the steel having a totally martensitic structure with an average slat size of less than 1.2 micrometres, the elongation factor average slats being between 2 and 5.
- the carbon content of the steel is less than 0.15% by weight, the quenchability of the steel is insufficient and it is not possible to obtain a totally martensitic structure given the process used.
- this content is greater than 0.40%, welded joints made from these sheets or these parts have insufficient toughness.
- the optimal carbon content for the implementation of the invention is between 0.16 and 0.28%.
- Manganese lowers the initial formation temperature of martensite and slows the decomposition of austenite. In order to obtain sufficient effects, the manganese content must not be less than 1.5%. Moreover, when the manganese content exceeds 3%, segregated zones are present in excessive amounts which is detrimental to the implementation of the invention. A preferred range for the implementation of the invention is 1.8 to 2.5% Mn.
- the silicon content must be greater than 0.005% so as to participate in the deoxidation of the steel in the liquid phase.
- the silicon must not exceed 2% by weight because of the formation of surface oxides which significantly reduce the coating ability, in the case where it would be desirable to coat the sheet by passing through a metal coating bath, in particular by continuous galvanizing.
- the aluminum content of the steel according to the invention is not less than 0.005% so as to obtain sufficient deoxidation of the steel in the liquid state.
- the aluminum content is greater than 0.1% by weight, casting problems may occur. It is also possible to form inclusions of alumina in too large quantities or sizes which play a detrimental role on toughness.
- the sulfur and phosphorus contents of the steel are respectively limited to 0.05 and 0.1% in order to avoid a reduction in the ductility or toughness of the parts or sheets produced according to the invention.
- the steel also contains niobium in an amount between 0.025 and 0.1%, and optionally titanium in an amount between 0.01 and 0.1%.
- Chromium and molybdenum are very effective elements for delaying the transformation of austenite and can be used optionally for the implementation of the invention. These elements have the effect of separating the ferrito-pearlitic and bainitic transformation domains, the transformation Ferritic-pearlitic occurring at temperatures above the bainitic transformation. These transformation domains are then in the form of two distinct "noses" in an isothermal transformation diagram (Transformation-Temperature-Time)
- the chromium content must be less than or equal to 4%. Beyond this content, its effect on the quenchability is practically saturated; an additional addition is then expensive without corresponding beneficial effect.
- the molybdenum content must not exceed 2% because of its excessive cost.
- the steel can also contain boron: indeed, the significant deformation of the austenite can accelerate the conversion to ferrite on cooling, a phenomenon that should be avoided. Addition of boron in an amount of between 0.0005 and 0.005% by weight makes it possible to guard against early ferritic transformation.
- the steel may also contain calcium in an amount between 0.0005 and 0.005%: by combining with oxygen and sulfur, calcium prevents the formation of large inclusions that are harmful to the ductility of the sheets or parts thus manufactured.
- the rest of the composition of the steel consists of iron and unavoidable impurities resulting from the elaboration.
- the average slat size is defined by the known intercepts method: the average size of slats intercepted by defined lines is evaluated. random with respect to the microstructure. The measurement is performed on at least 1000 martensitic slats in order to obtain a representative average value. The morphology of the individualized slats is then determined by image analysis using software known per se: the maximum dimension l ma x and minimum n of each
- the process for manufacturing hot-rolled sheets according to the invention comprises the following steps:
- a semi-finished steel product the composition of which has been described above, is supplied.
- This semi-finished product may for example be in the form of slab from continuous casting, thin slab or ingot.
- a continuous casting slab has a thickness of about 200 mm, a thin slab a thickness of about 50-80 mm.
- This semi-finished product is heated to a temperature of between 1050 ° C. and 1250 ° C.
- the temperature Ti is greater than A C 3, total conversion temperature to austenite heating. This reheating thus makes it possible to obtain a complete austenitization of the steel as well as the dissolution of any possible niobium carbonitrides in the semi-finished product.
- This reheating step also makes it possible to carry out the various subsequent hot rolling operations which will be presented: a so-called roughing operation of the semi-finished product is carried out: this roughing rolling is carried out at a temperature T 2 of between 1050 and 1150 ° C.
- T 2 The cumulative reduction rate of the various stages of rolling at roughing is noted ⁇ 3 . If e, a is the thickness of the semi-finished product prior to hot rough rolling and ef is the thickness of the sheet after it g
- the reduction rate e a must be greater than 100%, that is to say greater than 1.
- the average austenitic grain size thus obtained is less than 40 micrometers, or even 5 micrometers when the niobium content is between 0.030 and 0.050%. This grain size can be measured, for example, by means of tests in which the sheet is quenched directly after rolling. A polished and etched section thereof is then observed, the attack being carried out using a reagent known in itself, such as, for example, the Béchet-Beaujard reagent which reveals the old austenitic grain boundaries.
- This sheet is then cooled to a speed VR2 greater than the critical martensitic quenching speed, and a sheet is thus obtained characterized by a very fine martensitic structure whose mechanical properties are greater than those which can be obtained by a simple treatment. thermal quenching.
- the invention is not limited to this geometry and to this type of product, and can also be adapted the manufacture of long products, bars, profiles, by successive stages of hot deformation.
- the steel sheets may be used as such or subjected to a heat treatment of tempered temperature T 4 between 150 and 600 ° C for a period of between 5 and 30 minutes.
- This treatment of income generally has the effect of increasing the ductility at the price of a decrease of the limit of elasticity and the resistance.
- the underlined values are not in accordance with the invention 31 mm thick semi-finished products were reheated and held for 30 minutes at a Ti temperature of 1250 ° C. and then subjected to rolling in 4 passes at a T 2 temperature of 100 ° C. C with a cumulative reduction rate ⁇ of 164%, ie up to a thickness of 6mm. At this stage, at high temperature after roughing, the structure is totally austenitic, not completely recrystallized with an average grain size of 30 microns. The sheets thus obtained were then cooled at a rate of 3 ° C./s up to a temperature T 3 of between 955 ° C. and 840 ° C., the latter temperature being equal to Ar 3 + 60 ° C.
- the sheets were rolled in this temperature range in 5 passes with a cumulative reduction rate Zb of 76%, ie up to a thickness of 2.8 mm, then cooled. then to room temperature with a speed of 80 ° C / sec so as to obtain a completely martensitic microstructure.
- steel sheets of the above composition were heated at a temperature of 1250 ° C., held for 30 minutes at this temperature and then cooled with water so as to obtain a completely martensitic microstructure (reference condition).
- the yield strength Re By means of tensile tests, the yield strength Re, the breaking strength Rm and the total elongation A have been determined for sheets obtained by these different methods of manufacture.
- Steel B does not contain enough niobium: it does not reach a yield strength of 1300 MPa, both after simple martensitic quenching (test B2) and in the case of rolling with roughing and finishing at temperature.
- T3 (test B1)
- the microstructure of the plates obtained by Scanning Electron Microscopy was also observed by means of a field effect gun ("MEB-FEG” technique) and EBSD detector, and quantified the average size. laths of the martensitic structure and their lengthening factor
- the method according to the invention makes it possible to obtain a martensitic structure with an average slat size of 0.9 micrometres and an elongation factor of 3. This structure is considerably thinner than that observed after simple martensitic quenching, whose average slat size is of the order of 2 micrometers.
- the ARM values are respectively 63 and 172 MPa respectively.
- the process according to the invention therefore makes it possible to obtain mechanical strength values significantly greater than those which would be obtained by simple martensitic quenching.
- this increase in resistance (172 MPa) is equivalent to that which would be obtained, according to relation (1), thanks to a simple martensitic quenching applied to steels in which an addition additional 0.05% would have been achieved.
- Such an increase in the carbon content would however have adverse consequences with respect to the weldability and toughness, whereas the method according to the invention makes it possible to increase the mechanical strength without these disadvantages.
- the plates produced according to the invention because of their lower carbon content, have good weldability by the usual processes, in particular spot resistance welding. They also have good ability to be coated, for example by galvanizing or continuous dipping aluminization.
- the invention allows the manufacture of sheets or bare or coated with very high mechanical characteristics, under very satisfactory economic conditions.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
Claims
Priority Applications (15)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12724659.3A EP2707515B1 (fr) | 2011-05-12 | 2012-04-20 | Procede de fabrication d'acier martensitique a tres haute limite élastique et tole ou piece ainsi obtenue. |
BR112013029012A BR112013029012B1 (pt) | 2011-05-12 | 2012-04-20 | processo de fabricação de uma chapa de aço martensítico com um limite de elasticidade superior a 1300 mpa e chapa de aço |
RU2013155178/02A RU2550682C1 (ru) | 2011-05-12 | 2012-04-20 | Способ изготовления сверхпрочной мартенситной стали и лист, полученный этим способом |
MX2013013218A MX356324B (es) | 2011-05-12 | 2012-04-20 | Método para la fabricación de acero martensítico con límite de elasticidad muy alto y placa o pieza obtenida por tal método. |
CN201280022862.3A CN103517996B (zh) | 2011-05-12 | 2012-04-20 | 制造极高弹性极限马氏体钢的方法及如此获得的板材或部件 |
CA2834967A CA2834967C (fr) | 2011-05-12 | 2012-04-20 | Procede de fabrication d'acier martensitique a tres haute limite elastique et tole ou piece ainsi obtenue |
PL12724659T PL2707515T3 (pl) | 2011-05-12 | 2012-04-20 | Sposób produkcji blach ze stali martenzytycznej o bardzo wysokiej granicy plastyczności oraz wytworzone blachy stalowe |
ES12724659.3T ES2551005T3 (es) | 2011-05-12 | 2012-04-20 | Procedimiento de fabricación de acero martensítico de límite elástico muy alto y chapa o pieza obtenida de ese modo |
UAA201314473A UA111200C2 (uk) | 2011-05-12 | 2012-04-20 | Спосіб виробництва мартенситної сталі, що має високу міцність, та лист або деталь, одержані за таким способом |
US14/116,980 US9963756B2 (en) | 2011-05-12 | 2012-04-20 | Method for production of martensitic steel having a very high yield point and sheet or part thus obtained |
JP2014509780A JP6161597B2 (ja) | 2011-05-12 | 2012-04-20 | 非常に高い降伏点を有するマルテンサイト鋼およびこのように得た鋼板または部品の製造方法 |
MA36354A MA35059B1 (fr) | 2011-05-12 | 2012-04-20 | Procede de fabrication d'acier martensitique a tres haute limite elastique tole ou piece ainsi obtenue. |
KR1020137032959A KR101903823B1 (ko) | 2011-05-12 | 2012-04-20 | 초고항복점을 갖는 마텐자이트 강의 제조 방법 및 그로부터 획득되는 시트 또는 부품 |
KR1020167014295A KR20160066007A (ko) | 2011-05-12 | 2012-04-20 | 초고항복점을 갖는 마텐자이트 강의 제조 방법 및 그로부터 획득되는 시트 또는 부품 |
ZA2013/07845A ZA201307845B (en) | 2011-05-12 | 2013-10-21 | Method for the production of martensitic steel having a very high yield point and sheet or part thus obtained |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FRPCT/FR2011/000295 | 2011-05-12 | ||
PCT/FR2011/000295 WO2012153009A1 (fr) | 2011-05-12 | 2011-05-12 | Procede de fabrication d'acier martensitique a tres haute resistance et tole ainsi obtenue |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012153013A1 true WO2012153013A1 (fr) | 2012-11-15 |
Family
ID=46197584
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2011/000295 WO2012153009A1 (fr) | 2011-05-12 | 2011-05-12 | Procede de fabrication d'acier martensitique a tres haute resistance et tole ainsi obtenue |
PCT/FR2012/000156 WO2012153013A1 (fr) | 2011-05-12 | 2012-04-20 | Procede de fabrication d'acier martensitique a tres haute limite elastique tole ou piece ainsi obtenue. |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2011/000295 WO2012153009A1 (fr) | 2011-05-12 | 2011-05-12 | Procede de fabrication d'acier martensitique a tres haute resistance et tole ainsi obtenue |
Country Status (16)
Country | Link |
---|---|
US (1) | US9963756B2 (fr) |
EP (1) | EP2707515B1 (fr) |
JP (1) | JP6161597B2 (fr) |
KR (2) | KR20160066007A (fr) |
CN (1) | CN103517996B (fr) |
BR (1) | BR112013029012B1 (fr) |
CA (1) | CA2834967C (fr) |
ES (1) | ES2551005T3 (fr) |
HU (1) | HUE027986T2 (fr) |
MA (1) | MA35059B1 (fr) |
MX (1) | MX356324B (fr) |
PL (1) | PL2707515T3 (fr) |
RU (1) | RU2550682C1 (fr) |
UA (1) | UA111200C2 (fr) |
WO (2) | WO2012153009A1 (fr) |
ZA (1) | ZA201307845B (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014154104A1 (fr) * | 2013-03-28 | 2014-10-02 | 宝山钢铁股份有限公司 | Plaque d'acier faiblement allié de ténacité élevée et résistante à l'usure et son procédé de fabrication |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101607044B1 (ko) * | 2012-02-23 | 2016-03-28 | 제이에프이 스틸 가부시키가이샤 | 전기 강판의 제조 방법 |
ES2748806T3 (es) * | 2013-12-11 | 2020-03-18 | Arcelormittal | Acero martensítico con resistencia a la fractura retardada y procedimiento de fabricación |
MX2017003764A (es) * | 2014-09-22 | 2017-06-28 | Arcelormittal | Estructura para bajos de carroceria de vehiculo y carroceria de vehiculo. |
BR112017016683A2 (pt) | 2015-02-25 | 2018-04-10 | Arcelormittal | chapa de aço laminada a frio |
WO2019226197A1 (fr) * | 2018-05-25 | 2019-11-28 | Kingston William R | Acier à haute résistance résistant aux chocs |
MX2020009592A (es) * | 2018-03-29 | 2020-10-05 | Nippon Steel Corp | Articulo estampado en caliente. |
TW202003873A (zh) | 2018-05-07 | 2020-01-16 | 日商日本製鐵股份有限公司 | 熱軋鋼板及其製造方法 |
KR102109271B1 (ko) * | 2018-10-01 | 2020-05-11 | 주식회사 포스코 | 표면 품질이 우수하고, 재질편차가 적은 초고강도 열연강판 및 그 제조방법 |
CN110129670B (zh) * | 2019-04-25 | 2020-12-15 | 首钢集团有限公司 | 一种1300MPa级高强高塑性热冲压用钢及其制备方法 |
CN113528944B (zh) * | 2021-06-17 | 2022-12-16 | 首钢集团有限公司 | 一种1000MPa易成形耐磨钢板及其制备方法 |
CN113755758B (zh) * | 2021-09-03 | 2023-02-03 | 本钢板材股份有限公司 | 一种添加铈微合金制备的8mm厚热冲压钢以及其热冲压工艺 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010132945A (ja) * | 2008-12-03 | 2010-06-17 | Nippon Steel Corp | 耐遅れ破壊特性および溶接性に優れる高強度厚鋼板およびその製造方法 |
US20100230016A1 (en) * | 2008-09-17 | 2010-09-16 | Tatsuya Kumagai | High-strength steel plate and producing method therefor |
EP2290116A1 (fr) * | 2008-11-11 | 2011-03-02 | Nippon Steel Corporation | Tôle d'acier épaisse présentant une résistance élevée et son procédé de fabrication |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4619714A (en) * | 1984-08-06 | 1986-10-28 | The Regents Of The University Of California | Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes |
JPS63134628A (ja) * | 1986-11-25 | 1988-06-07 | Sumitomo Metal Ind Ltd | 高強度高靭性を有する熱延厚鋼板の製造法 |
JPH01275719A (ja) * | 1988-04-26 | 1989-11-06 | Sumitomo Metal Ind Ltd | 高強度高靭性を有する厚鋼板の製造法 |
CN1106070A (zh) | 1994-01-31 | 1995-08-02 | 沈阳重型机器厂 | 耐低温可焊接细晶粒厚度方向钢板 |
ATE330040T1 (de) * | 1997-07-28 | 2006-07-15 | Exxonmobil Upstream Res Co | Ultrahochfeste, schweissbare stähle mit ausgezeichneter ultra-tief-temperatur zähigkeit |
TW459052B (en) | 1997-12-19 | 2001-10-11 | Exxon Production Research Co | Ultra-high strength steels with excellent cryogenic temperature toughness |
EP1288322A1 (fr) * | 2001-08-29 | 2003-03-05 | Sidmar N.V. | Acier à tres haute résistance mécanique, procédé pour la production de cet acier et le produit obtenu |
JP2004010971A (ja) | 2002-06-07 | 2004-01-15 | Nippon Steel Corp | 強度・靭性に優れ、かつ平坦度の良好な鋼板の高効率製造方法 |
US6811624B2 (en) * | 2002-11-26 | 2004-11-02 | United States Steel Corporation | Method for production of dual phase sheet steel |
FR2849864B1 (fr) * | 2003-01-15 | 2005-02-18 | Usinor | Acier lamine a chaud a tres haute resistance et procede de fabrication de bandes |
FR2885142B1 (fr) * | 2005-04-27 | 2007-07-27 | Aubert & Duval Soc Par Actions | Acier martensitique durci, procede de fabrication d'une piece a partir de cet acier, et piece ainsi obtenue |
JP2007154305A (ja) * | 2005-07-05 | 2007-06-21 | Jfe Steel Kk | 強度、延性及び靱性に優れた機械構造用鋼およびその製造方法 |
EP1832667A1 (fr) * | 2006-03-07 | 2007-09-12 | ARCELOR France | Procédé de fabrication de tôles d'acier à très hautes caractéristiques de résistance, de ductilité et de tenacité, et tôles ainsi produites |
JP5277648B2 (ja) * | 2007-01-31 | 2013-08-28 | Jfeスチール株式会社 | 耐遅れ破壊特性に優れた高張力鋼板並びにその製造方法 |
JP5266804B2 (ja) | 2008-03-07 | 2013-08-21 | Jfeスチール株式会社 | 圧延非調質鋼材の製造方法 |
CN101676425B (zh) | 2008-09-18 | 2011-07-20 | 宝山钢铁股份有限公司 | 高强度马氏体耐磨钢 |
JP2010106287A (ja) * | 2008-10-28 | 2010-05-13 | Jfe Steel Corp | 疲労特性に優れた高張力鋼材およびその製造方法 |
KR101091306B1 (ko) * | 2008-12-26 | 2011-12-07 | 주식회사 포스코 | 원자로 격납 용기용 고강도 강판 및 그 제조방법 |
JP5439819B2 (ja) * | 2009-01-09 | 2014-03-12 | Jfeスチール株式会社 | 疲労特性に優れた高張力鋼材およびその製造方法 |
JP5412915B2 (ja) | 2009-03-27 | 2014-02-12 | Jfeスチール株式会社 | フェライト・パーライト型圧延非調質鋼材の製造方法 |
CN101586217B (zh) | 2009-06-25 | 2011-03-16 | 莱芜钢铁集团有限公司 | 一种低成本超高强韧马氏体钢及其制造方法 |
JP5609383B2 (ja) * | 2009-08-06 | 2014-10-22 | Jfeスチール株式会社 | 低温靭性に優れた高強度熱延鋼板およびその製造方法 |
BR112012031722B8 (pt) * | 2010-06-14 | 2022-08-23 | Nippon Steel & Sumitomo Metal Corp | Aço estampado a quente, método de produção de chapa de aço para um aço estampado a quente, e método de produção de aço estampado a quente |
-
2011
- 2011-05-12 WO PCT/FR2011/000295 patent/WO2012153009A1/fr active Application Filing
-
2012
- 2012-04-20 KR KR1020167014295A patent/KR20160066007A/ko not_active Application Discontinuation
- 2012-04-20 US US14/116,980 patent/US9963756B2/en active Active
- 2012-04-20 JP JP2014509780A patent/JP6161597B2/ja active Active
- 2012-04-20 MA MA36354A patent/MA35059B1/fr unknown
- 2012-04-20 CN CN201280022862.3A patent/CN103517996B/zh active Active
- 2012-04-20 CA CA2834967A patent/CA2834967C/fr active Active
- 2012-04-20 PL PL12724659T patent/PL2707515T3/pl unknown
- 2012-04-20 MX MX2013013218A patent/MX356324B/es active IP Right Grant
- 2012-04-20 RU RU2013155178/02A patent/RU2550682C1/ru active
- 2012-04-20 UA UAA201314473A patent/UA111200C2/uk unknown
- 2012-04-20 HU HUE12724659A patent/HUE027986T2/en unknown
- 2012-04-20 BR BR112013029012A patent/BR112013029012B1/pt active IP Right Grant
- 2012-04-20 ES ES12724659.3T patent/ES2551005T3/es active Active
- 2012-04-20 EP EP12724659.3A patent/EP2707515B1/fr active Active
- 2012-04-20 WO PCT/FR2012/000156 patent/WO2012153013A1/fr active Application Filing
- 2012-04-20 KR KR1020137032959A patent/KR101903823B1/ko active IP Right Grant
-
2013
- 2013-10-21 ZA ZA2013/07845A patent/ZA201307845B/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100230016A1 (en) * | 2008-09-17 | 2010-09-16 | Tatsuya Kumagai | High-strength steel plate and producing method therefor |
EP2290116A1 (fr) * | 2008-11-11 | 2011-03-02 | Nippon Steel Corporation | Tôle d'acier épaisse présentant une résistance élevée et son procédé de fabrication |
JP2010132945A (ja) * | 2008-12-03 | 2010-06-17 | Nippon Steel Corp | 耐遅れ破壊特性および溶接性に優れる高強度厚鋼板およびその製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014154104A1 (fr) * | 2013-03-28 | 2014-10-02 | 宝山钢铁股份有限公司 | Plaque d'acier faiblement allié de ténacité élevée et résistante à l'usure et son procédé de fabrication |
US10494706B2 (en) | 2013-03-28 | 2019-12-03 | Baoshan Iron & Steel Co., Ltd. | High-toughness low alloy wear-resistant steel sheet and method of manufacturing method thereof the same |
Also Published As
Publication number | Publication date |
---|---|
WO2012153009A1 (fr) | 2012-11-15 |
UA111200C2 (uk) | 2016-04-11 |
BR112013029012A2 (pt) | 2017-01-17 |
JP6161597B2 (ja) | 2017-07-12 |
CN103517996B (zh) | 2016-05-11 |
MA35059B1 (fr) | 2014-04-03 |
HUE027986T2 (en) | 2016-11-28 |
MX2013013218A (es) | 2013-12-12 |
KR20140018382A (ko) | 2014-02-12 |
CA2834967C (fr) | 2017-02-21 |
BR112013029012B1 (pt) | 2018-10-09 |
CN103517996A (zh) | 2014-01-15 |
KR101903823B1 (ko) | 2018-10-02 |
KR20160066007A (ko) | 2016-06-09 |
ES2551005T3 (es) | 2015-11-13 |
ZA201307845B (en) | 2015-06-24 |
EP2707515B1 (fr) | 2015-08-19 |
EP2707515A1 (fr) | 2014-03-19 |
MX356324B (es) | 2018-05-23 |
US9963756B2 (en) | 2018-05-08 |
JP2014517873A (ja) | 2014-07-24 |
US20140144559A1 (en) | 2014-05-29 |
CA2834967A1 (fr) | 2012-11-15 |
PL2707515T3 (pl) | 2016-01-29 |
RU2550682C1 (ru) | 2015-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2707515B1 (fr) | Procede de fabrication d'acier martensitique a tres haute limite élastique et tole ou piece ainsi obtenue. | |
EP2707513B1 (fr) | Procede de fabrication d'acier martensitique a tres haute resistance et tôle ou piece ainsi obtenue | |
EP2155915B2 (fr) | Procédé de fabrication de tôles d'acier laminées à froid et recuites à très haute résistance, et tôles ainsi produites | |
EP3783116B1 (fr) | Tôles prerevêtues permettant la fabrication de pieces d'acier revêtues et durcies a la presse | |
EP3084014B1 (fr) | Acier à haute résistance et procédé de fabrication | |
EP1913169B1 (fr) | Procede de fabrication de tôles d'acier presentant une haute resistance et une excellente ductilite, et tôles ainsi produites | |
CA2680623C (fr) | Acier pour formage a chaud ou trempe sous outil, a ductilite amelioree | |
EP2171112B1 (fr) | Procede de fabrication de tôles d'acier a hautes caracteristiques de resistance et de ductilite, et tôles ainsi produites | |
WO2016198940A2 (fr) | Acier à haute résistance et procédé de fabrication | |
CA3065036C (fr) | Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede | |
WO2011104443A1 (fr) | Procédé de fabrication d'une pièce a partir d'une tôle revêtue d'aluminium ou d'alliage d'aluminium | |
WO2016151390A1 (fr) | Pieces a structure bainitique a hautes proprietes de resistance et procede de fabrication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201280022862.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12724659 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2012724659 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2834967 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2014509780 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2013/013218 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: A201314473 Country of ref document: UA |
|
ENP | Entry into the national phase |
Ref document number: 20137032959 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2013155178 Country of ref document: RU Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14116980 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013029012 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013029012 Country of ref document: BR Kind code of ref document: A2 Effective date: 20131111 |