WO2020022477A1 - 高強度鋼板 - Google Patents

高強度鋼板 Download PDF

Info

Publication number
WO2020022477A1
WO2020022477A1 PCT/JP2019/029384 JP2019029384W WO2020022477A1 WO 2020022477 A1 WO2020022477 A1 WO 2020022477A1 JP 2019029384 W JP2019029384 W JP 2019029384W WO 2020022477 A1 WO2020022477 A1 WO 2020022477A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
rolling
steel sheet
strength steel
content
Prior art date
Application number
PCT/JP2019/029384
Other languages
English (en)
French (fr)
Inventor
真衣 永野
林 宏太郎
上西 朗弘
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN201980048444.3A priority Critical patent/CN112437816B/zh
Priority to JP2019563293A priority patent/JP6652230B1/ja
Priority to MX2021000354A priority patent/MX2021000354A/es
Priority to US17/258,704 priority patent/US11505855B2/en
Publication of WO2020022477A1 publication Critical patent/WO2020022477A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength steel sheet, specifically, a high-strength steel sheet having a tensile strength of 1200 MPa or more and excellent in bake hardenability and weldability, which is suitable for structural members such as automobiles which are mainly used by pressing. It is about.
  • a high-strength steel sheet specifically, a high-strength steel sheet having a tensile strength of 1200 MPa or more and excellent in bake hardenability and weldability, which is suitable for structural members such as automobiles which are mainly used by pressing. It is about.
  • Priority is claimed on Japanese Patent Application No. 2018-141226 filed on July 27, 2018, the content of which is incorporated herein by reference.
  • the material having excellent bake hardenability is a material having a high bake hardening amount and a high strength after bake hardening.
  • the bake hardening is performed by interstitial elements (carbon and nitrogen) diffusing into dislocations formed by press molding (hereinafter, also referred to as “prestrain”) during baking at 150 ° C. to 200 ° C. and fixing the dislocations. This is the strain aging phenomenon that occurs.
  • Patent Document 1 discloses a high-strength steel sheet mainly composed of bainite and martensite. In the high-strength steel sheet disclosed in Patent Document 1, for example, a predetermined treatment is performed on a steel material. To increase the dislocation density, thereby improving the bake hardenability. Considering these facts, it is considered that even with the same martensite, the baking hardening amount is increased by increasing the concentration of the added carbon.
  • Ceq carbon equivalent
  • the weldability is secured by precipitating a metal carbide by using a mother phase as tempered martensite or bainite or the like.
  • the invention described in Patent Literature 3 has a problem in that since there is a tempering step, the amount of dissolved carbon is reduced, and the bake hardenability is deteriorated.
  • an object of the present invention is to provide a high-strength steel sheet having high bake hardenability and excellent weldability.
  • the present inventors have attempted to secure the above-mentioned bake hardenability and weldability by the following two approaches. (1) To control the Ceq by appropriately controlling the alloy components to secure the weldability. (2) To secure baking hardenability by using martensite as a mother phase as quenched in order to secure an appropriate amount of dissolved carbon.
  • the present inventors have found that by controlling the hot-rolling process, the micro-segregation of Mn is suppressed by having a uniform structure, and the pre-strain is uniform, so that the bake hardenability is greatly improved. Was. In addition, by making the structure uniform, it became difficult to form MA, and the weldability was also improved.
  • the high-strength steel sheet excellent in bake hardenability and weldability of the present invention which can achieve the above-mentioned object in this way, is as follows.
  • C 0.05 to 0.15%
  • Si 1.5% or less
  • Mn 2.00 to 5.00%
  • P 0.100% or less
  • S 0.010% or less
  • Al 0.001 to 2.000%
  • N 0.010% or less
  • Ceq defined by the following formula (1) is less than 0.21
  • the two-dimensional homogeneous dispersion ratio S defined by the equation (2) is not less than 0.85 and not more than 1.20;
  • High strength steel sheet (6)
  • a high-strength steel sheet having excellent weldability and high bake hardenability specifically, by forming a uniform structure of Mn microsegregation in martensite with quenched as controlled alloy components, and specifically, It is possible to provide a high-strength steel sheet whose tensile strength after bake hardening reaches 1350 MPa. After being pressed, it is baked at the time of painting to increase the strength, so it is suitable as a structural field in the field of automobiles and the like.
  • the high-strength steel sheet according to the embodiment of the present invention is C: 0.05 to 0.15%, Si: 1.5% or less, Mn: 2.00 to 5.00%, P: 0.100% or less, S: 0.010% or less, Al: 0.001 to 2.000%, N: 0.010% or less, the balance being Fe and impurities, Ceq defined by the following formula (1) is less than 0.21, Contains 98% or more of martensite in area ratio, the remaining structure is 2% or less in area ratio,
  • the two-dimensional homogeneous dispersion ratio S defined by the equation (2) is not less than 0.85 and not more than 1.20; It is characterized in that the tensile strength is 1200 MPa or more.
  • % which is a unit of the content of each element contained in a high-strength steel sheet and a slab means “% by mass” unless otherwise specified.
  • C (C: 0.05% to 0.15%) C has the effect of increasing the amount of dissolved carbon and increasing the bake hardenability. In addition, it has the effect of enhancing the hardenability and increasing the strength by incorporating it into the martensite structure. If the C content is less than 0.05%, a sufficient amount of solute carbon cannot be secured, and the bake hardening amount decreases. Therefore, the C content is set to 0.05% or more, preferably 0.08% or more. On the other hand, if the C content exceeds 0.15%, silicate having a low melting point is generated during welding, which affects the quality of the weld seam. Also, the strength is too high to ensure the moldability. Therefore, the C content is set to 0.15% or less, preferably 0.13% or less, 0.12% or less, 0.11% or less, or 0.10% or less.
  • Si (Si: 1.5% or less) Si is a solid solution strengthening element and has a role of suppressing the precipitation of cementite, which is a factor of decreasing the strength. Therefore, it may be included in the high-strength steel sheet of the present invention.
  • the Si content is set to 1.5% or less, preferably 1.2% or less.
  • the lower limit of the Si content is not particularly limited, the content may be 0.01% or more because it functions as a deoxidizing agent for molten steel.
  • Mn is an element for improving hardenability, and is an element necessary for forming a martensite structure without limiting the cooling rate.
  • the Mn content is set to 2.00% or more, preferably 2.50% or more.
  • the excessive Mn content lowers the low-temperature toughness due to the precipitation of MnS, so the content is made 5.00% or less, preferably 4.50% or less.
  • P 0.100% or less
  • P is not an essential element and is contained, for example, as an impurity in steel. From the viewpoint of weldability, the lower the P content, the better. In particular, when the P content exceeds 0.100%, the weldability is significantly reduced. Therefore, the P content is set to 0.100% or less, preferably 0.030% or less. Reducing the P content is costly and attempting to reduce it to less than 0.0001% will significantly increase costs. Therefore, the P content may be 0.0001% or more. Further, since P contributes to improvement in strength, the P content may be set to 0.0001% or more from such a viewpoint.
  • S is not an essential element but is contained as an impurity in steel, for example. From the viewpoint of weldability, the lower the S content, the better. As the S content increases, the amount of MnS precipitated increases, and the low-temperature toughness decreases. In particular, when the S content exceeds 0.010%, the weldability and the low-temperature toughness are significantly reduced. Therefore, the S content is set to 0.010% or less, preferably 0.003% or less. Cost reduction is required to reduce the S content, and an attempt to reduce the content to less than 0.0001% significantly increases the cost. Therefore, the S content may be 0.0001% or more.
  • Al 0.001% to 2.000%
  • Al content is set to 0.001% or more, preferably 0.010% or more.
  • the Al content is set to 2.000% or less, preferably 1.000% or less.
  • N is not an essential element and is contained, for example, as an impurity in steel. From the viewpoint of weldability, the lower the N content, the better. In particular, when the N content exceeds 0.010%, the weldability is significantly reduced. Therefore, the N content is set to 0.010% or less, preferably 0.006% or less. Reducing the N content is costly, and attempting to reduce it to less than 0.0001% significantly increases the cost. Therefore, the N content may be 0.0001% or more.
  • the basic component composition of the high-strength steel sheet of the present invention and the slab used for its production are as described above. Further, the high-strength steel sheet of the present invention and the slab used for the production thereof may contain the following optional elements as necessary.
  • Ti and Nb contribute to improvement in strength. Therefore, Ti, Nb or any combination thereof may be contained.
  • the content of Ti or Nb, or the total content of a combination of these two types is preferably 0.003% or more.
  • the content of Ti or Nb, or the total content of a combination of these two types is set to 0.100% or less. That is, the limiting range in the case of each component alone is set to 0.003% to 0.100% for Ti: 0.003% to 0.100% for Nb, and the total content when these are combined is also considered. , 0.003 to 0.100%.
  • Cu and Ni contribute to improvement in strength. Therefore, Cu, Ni or a combination thereof may be contained.
  • the content of Cu and Ni is preferably in the range of 0.005 to 1.000% when each component is used alone, and the total content when these two types are combined is also considered. , 0.005% or more and 1.000% or less.
  • the upper limit of the contents of Cu and Ni, or the total content when these two types are combined is 1.000%. That is, Cu: 0.005% to 1.000% and Ni: 0.005% to 1.000%, and the total content when these are combined is 0.005 to 1.000%.
  • W, Ca, Mg, and REM contribute to fine dispersion of inclusions and increase toughness. Therefore, W, Ca, Mg, or REM or any combination thereof may be contained. In order to sufficiently obtain this effect, the total content of W, Ca, Mg, and REM, or any combination of two or more thereof is preferably 0.0003% or more. On the other hand, if the total content of W, Ca, Mg and REM exceeds 0.010%, the surface properties deteriorate. Therefore, the total content of W, Ca, Mg, and REM is set to 0.010% or less. That is, W: 0.005% or less, Ca: 0.005% or less, Mg: 0.005% or less, REM: 0.010% or less, and the total content of any two or more of these is 0. It is preferably from 0.0003 to 0.010%.
  • REM rare earth metal
  • REM content means the total content of these 17 elements.
  • Lanthanoids are industrially added, for example, in the form of misch metal.
  • B is a hardenability improving element and is an element useful for forming a martensite structure.
  • B is preferably contained at 0.0001% (1 ppm) or more. However, if B is contained in excess of 0.0030% (30 ppm), excessive boron may cause high-temperature brittleness and affect welding performance, so the B content is set to 0.0030% or less. Preferably it is 0.0025% or less.
  • Cr is a hardenability improving element and is an element useful for forming a martensite structure. Cr is preferably contained at 0.005% or more. However, if the Cr content exceeds 1.000%, the welding performance may be affected, so the Cr content is set to 1.000% or less. Preferably, it is 0.500%.
  • the balance other than the above components consists of Fe and impurities.
  • the impurities are components that are mixed due to various factors in the manufacturing process, including raw materials such as ores and scraps, when industrially producing high-strength steel sheets, and according to the present embodiment. It means a component that is not a component intentionally added to a high-strength steel sheet.
  • Ceq Ceq is less than 0.21
  • the present embodiment is characterized in that Ceq expressed by the following equation (1) is set to be less than a predetermined numerical value in order to enhance weldability. Thereby, weldability can be ensured. In order to further enhance such an effect, it is necessary to ensure that Ceq is less than 0.21. Preferably it is 0.18 or less.
  • Ceq C + Si / 90 + (Mn + Cr) /100+1.5P+3S Formula (1)
  • the content (% by mass) of each element is substituted for each element symbol in the formula (1), and 0 is substituted when no element is contained.
  • martensite 98% or more
  • the present embodiment is characterized in that martensite is secured in an area ratio of 98% or more. Thereby, sufficient solid solution carbon can be secured, and as a result, bake hardenability can be improved. In order to further enhance such effects, it is necessary that martensite be 98% or more, for example, it may be 100%.
  • the area ratio of martensite is determined as follows. First, a sample was taken using the thickness cross section perpendicular to the rolling direction of the steel sheet as an observation surface, the observation surface was polished, and the structure at a quarter position of the thickness of the steel plate was subjected to SEM-EBSD (electron microscopy) at a magnification of 5000 times. Observation with a scanning electron microscope equipped with an X-ray backscattering diffractometer), image analysis of the image in a visual field of 100 ⁇ m ⁇ 100 ⁇ m and measurement of the area ratio of martensite. It is determined as the area ratio of martensite in the invention.
  • SEM-EBSD electron microscopy
  • the remaining structure other than martensite has an area ratio of 2% or less.
  • the content is preferably set to 0%.
  • the residual structure can include any structure and is not particularly limited.
  • the residual structure includes or consists of retained austenite.
  • a trace amount of retained austenite may be unavoidable depending on the composition of the steel and the production method.
  • such a small amount of retained austenite not only does not adversely affect bake hardenability, but also contributes to an improvement in ductility by a TRIP (Transformation Induced Plasticity) effect when subjected to deformation. Can be. Therefore, the remaining structure may include retained austenite in an area ratio of 2% or less.
  • the remaining structure preferably does not include residual austenite and is preferably 0%.
  • the area ratio of retained austenite is determined by X-ray diffraction measurement. Specifically, a portion from the surface of the steel sheet to a position 1/4 of the thickness of the steel sheet is removed by mechanical polishing and chemical polishing, and MoK ⁇ rays are used as characteristic X-rays to reduce the depth from the surface of the steel sheet to 1/4 depth.
  • the X-ray diffraction intensity at the position is measured. From the integrated intensity ratio of the diffraction peaks of (200) and (211) of the body-centered cubic lattice (bcc) phase and (200), (220) and (311) of the face-centered cubic lattice (fcc) phase, Is used to calculate the area ratio of retained austenite.
  • S ⁇ (I 200f + I 220f + I 311f ) / (I 200b + I 211b ) ⁇ 100
  • S ⁇ is the area ratio of retained austenite
  • I 200f , I 220f and I 311f are the intensities of the diffraction peaks of (200), (220) and (311) of the fcc phase, respectively
  • I 200b and I 211b are The intensities of the diffraction peaks of (200) and (211) of the bcc phase are shown.
  • the two-dimensional homogeneous dispersion ratio is an index for evaluating micro-segregation of an alloy element.
  • the two-dimensional homogeneous dispersion ratio indicated by S is measured as follows. The sheet width direction is set to the x direction, the sheet thickness direction is set to the y direction, and the steel sheet is adjusted so that the surface where the rolling direction is the normal direction (that is, the cross section in the thickness direction of the steel sheet) can be observed.
  • S Sy 2 / Sx 2 Equation (2)
  • the present embodiment is characterized in that the Mn concentration distribution has a uniform structure (for example, checkerboard structure) due to relaxation of microsegregation. If it is less than 0.85, it cannot be said that a sufficiently uniform structure is obtained, and the bake hardenability is low. In addition, MA is generated and the weldability is not good. Therefore, S needs to be 0.85 or more. Preferably it is 0.90 or more, more preferably 0.95 or more.
  • the surface with a high concentration of Mn and the surface with a low concentration of Mn are connected in a layered manner in the thickness direction, and this can be homogenized in the thickness direction and the width direction. is important.
  • S is set to 1.20 or less. Preferably it is 1.15 or less, more preferably 1.10 or less.
  • tensile strength 1200 MPa or more
  • a high tensile strength specifically, a tensile strength of 1200 MPa or more
  • the tensile strength is preferably at least 1300 MPa, more preferably at least 1400 MPa.
  • the high-strength steel sheet of the present invention it is possible to achieve excellent bake hardenability. More specifically, according to the high-strength steel sheet of the present invention, after applying a 2% prestrain, the stress when a test piece heat-treated at 170 ° C. for 20 minutes is re-tensioned is subjected to a stress when a 2% prestrain is applied. Can be attained at 130 MPa or more, preferably 150 MPa or more. If the value of BH is less than 130 MPa, it is difficult to mold and the strength after bake hardening is low. Further, according to the high-strength steel sheet of the present invention, baking hardening is performed such that the stress when a test piece heat-treated at 170 ° C.
  • the following description is intended to exemplify a characteristic method for manufacturing the high-strength steel sheet of the present invention, and the high-strength steel sheet of the present invention is manufactured by a manufacturing method as described below. It is not intended to be limited to
  • a preferred method of manufacturing a high-strength steel sheet of the present invention is a step of forming a slab by casting molten steel having the chemical composition described above, A rough rolling step of roughly rolling the slab in a temperature range of 1050 ° C. or more and 1250 ° C. or less, wherein the rough rolling is reverse rolling with a rolling reduction of 30% or less per pass in two or more passes and an even number in 16 passes or less.
  • the rolling reduction between the two passes during one reciprocation is 20% or less, the even reduction in one reciprocation is 5% or more higher than the odd reduction, and Rough rolling process that is held for more than 5 seconds after
  • This is a finish rolling step of finish rolling the rough-rolled steel sheet in a temperature range of 850 ° C.
  • finish rolling is performed in four or more continuous rolling stands, and the rolling reduction of the first stand is 15%. % Or more, and a finish rolling step in which the finish-rolled steel sheet is wound in a temperature range of 400 ° C. or less, A cold rolling step of cold rolling the obtained hot-rolled steel sheet at a rolling reduction of 15% or more and 45% or less, The obtained cold-rolled steel sheet is heated at an average heating rate of 10 ° C./sec or more, held at a temperature range of Ac 3 to 1000 ° C. for 10 to 1000 seconds, and then cooled at an average cooling rate of 10 ° C./sec or more.
  • a molten steel having the chemical composition of the high-strength steel sheet according to the present invention described above is cast to form a slab to be subjected to rough rolling.
  • a normal casting method may be used, and a continuous casting method, an ingot casting method, or the like can be adopted.
  • the continuous casting method is preferable in terms of productivity.
  • the slab is preferably heated to a solution temperature range of 1000 ° C. or more and 1300 ° C. or less before rough rolling.
  • the heating holding time is not particularly limited, but it is preferable to hold the heating temperature for 30 minutes or more in order to reach a predetermined temperature up to the center of the slab.
  • the heating holding time is preferably 10 hours or less, more preferably 5 hours or less, in order to suppress excessive scale loss. If the temperature of the slab after casting is 1050 ° C. or more and 1250 ° C. or less, the slab may be directly subjected to rough rolling without being heated and held in the temperature range, and may be directly rolled or directly rolled.
  • the Mn segregated portion in the slab formed at the time of solidification in the slab forming step is not formed into a plate-shaped segregated portion extending in one direction, but to a uniform structure. can do.
  • the formation of the Mn concentration distribution having such a uniform structure will be described in more detail.
  • alloy elements such as Mn are concentrated in a comb-like form.
  • portions where alloy elements such as Mn are linearly concentrated are substantially perpendicular to the surface of the slab from both surfaces of the slab toward the inside. Are in a state of being lined up.
  • the surface of the slab is extended in the rolling direction in each pass of the rolling.
  • the rolling direction is a direction in which the slab advances with respect to the rolling roll.
  • the slab surface is extended in the rolling direction in this way, so that the Mn segregated portion growing from the slab surface toward the inside is inclined in the slab traveling direction for each rolling pass.
  • the rolling has a function of slightly tilting the Mn segregated portion extending in a comb shape toward the inside of the slab in the direction in which the rolling proceeds.
  • the Mn segregation portion is directed in the same direction for each pass while maintaining itself in a substantially straight state.
  • the slope gradually increases.
  • the Mn segregation portion is in a posture substantially parallel to the surface of the slab while maintaining a substantially straight state, and flat micro segregation is formed.
  • the Mn segregated portion inclined in the direction of the immediately preceding pass is in the opposite direction in the next pass.
  • the Mn segregation portion has a bent shape.
  • the Mn segregated portions are alternately bent in a zigzag shape by repeatedly performing each pass in the opposite direction alternately.
  • the “checkered pattern” is a kind of lattice pattern, and is a pattern in which substantially square (or substantially rectangular) of different colors are alternately arranged.
  • a structure in which the Mn concentration distribution appears in a checkered pattern is referred to as a checkered pattern structure.
  • the rough rolling temperature range is preferably 1050 ° C. or higher. More preferably, the temperature is 1100 ° C. or higher.
  • the rough rolling temperature range is preferably 1250 ° C. or less.
  • the rolling reduction per pass in the rough rolling exceeds 30%, the shear stress at the time of rolling increases, and the Mn segregated portion becomes non-uniform. Therefore, the rolling reduction per pass in the rough rolling is set to 30% or less.
  • the lower the rolling reduction the smaller the shear strain during rolling and the uniform structure, so the lower limit of the rolling reduction is not particularly defined, but is preferably 10% or more from the viewpoint of productivity.
  • the reverse rolling is preferably performed in two passes or more, and more preferably in four passes or more.
  • it is desirable that the passes in which the traveling directions are opposite to each other are performed the same number of times, that is, the total number of passes is an even number.
  • the entry side and the exit side of the rough rolling are located on opposite sides of the roll. Therefore, the number of passes (rolling) in the direction from the entry side to the exit side of the rough rolling increases once.
  • the last pass (rolling) the Mn segregated portion has a flat shape, and it is difficult to form a uniform structure.
  • the last pass opens a space between rolls and omit rolling.
  • the difference in rolling reduction between two passes included in one round trip of reverse rolling is set to 20% or less. Preferably it is 10% or less.
  • multi-stage tandem rolling in finish rolling is effective, but flat micro-segregation is easily formed by tandem rolling.
  • the effect becomes remarkable when the rolling reduction of the even number of times (return) becomes higher than that of the odd number of times (forward) by 5% or more in one reciprocation of the reverse rolling. Therefore, in one reciprocation of the reverse rolling, it is preferable that the rolling reduction of the even number of times is higher than the rolling reduction of the odd number of times by 5% or more.
  • the rolling of the tandem rolling in the finish rolling is increased to thereby reduce the interval of the Mn segregation zone caused by the secondary arm of the dendrite. It is preferably carried out on a rolling stand.
  • the finish rolling temperature is lower than 850 ° C., recrystallization does not sufficiently occur, and a structure stretched in the rolling direction is formed. In a later step, a plate-like structure caused by the stretched structure is generated.
  • the above is preferred. It is more preferably at least 900 ° C.
  • the finish rolling temperature is preferably 1050 ° C. or less. If necessary, the rough-rolled steel sheet may be heated after the rough rolling step and before the finish rolling step, if the temperature is appropriate. Furthermore, when the rolling reduction of the first stand in the finish rolling is set to 15% or more, a large amount of recrystallized grains is generated, and Mn is easily dispersed uniformly by subsequent grain boundary movement. Thus, by limiting not only the rough rolling step but also the finish rolling step, flat Mn microsegregation can be suppressed.
  • finish rolling temperature refers to the surface temperature of the steel sheet from the start of finish rolling to the end of finish rolling.
  • finish rolling start temperature steel plate temperature in the first pass of finish rolling
  • finish rolling end temperature in the last pass of finish rolling
  • the winding temperature exceeds 400 ° C., the surface properties are reduced due to internal oxidation, so the winding temperature is preferably 400 ° C. or lower. If the steel sheet structure is a homogeneous structure of martensite or bainite, the winding temperature is more preferably 300 ° C. or less because annealing and the formation of a homogeneous structure are easy.
  • Cold rolling process The hot-rolled steel sheet obtained in the finish rolling step is pickled and then subjected to cold rolling to obtain a cold-rolled steel sheet.
  • the rolling reduction is preferably 15% or more and 45% or less. If the rolling reduction in the cold rolling step exceeds 45%, fine laths of martensite cannot be maintained, and Mn is less likely to segregate at the grain boundaries, so that Mn segregates in a direction perpendicular to the sheet thickness (that is, in the sheet surface direction). Obi grows.
  • the pickling may be a normal pickling.
  • the steel sheet obtained through the cold rolling step is subjected to an annealing treatment.
  • the temperature is raised at an average heating rate of 10 ° C./sec or more, and the heating is performed in a temperature range of Ac 3 to 1000 ° C. for 10 to 1000 seconds.
  • This temperature range and annealing time are for transforming the entire surface of the steel sheet to austenite transformation. If the holding temperature exceeds 1000 ° C. or the annealing time exceeds 1000 seconds, the austenite grain size becomes coarse, martensite having a large lath width is obtained, and the toughness is reduced. Therefore, the annealing temperature is set to Ac 3 or more and 1000 ° C. or less, and the annealing time is set to 10 to 1000 seconds.
  • the Ac 3 point is calculated by the following equation.
  • the mass% of the element is substituted for the element symbol in the following formula.
  • Ac 3 881-335 ⁇ C + 22 ⁇ Si-24 ⁇ Mn-17 ⁇ Ni-1 ⁇ Cr-27 ⁇ Cu
  • cooling is performed at an average cooling rate of 10 ° C./sec or more.
  • the faster the cooling rate the better to freeze the tissue and effectively cause martensitic transformation.
  • the temperature is set to 10 ° C./second or more.
  • Cooling stop temperature is 70 ° C or less. This is to produce martensite while being quenched on the entire surface by cooling. If the cooling is stopped at more than 70 ° C., there is a possibility that a structure other than martensite may appear. In addition, even when martensite comes out, precipitates such as iron carbide spheroidized by self-tempering may come out, and in such a case, solid solution carbon decreases and bake hardenability decreases. Therefore, the cooling stop temperature is set to 70 ° C. or lower, preferably 60 ° C. or lower.
  • the high-strength steel sheet according to the embodiment of the present invention can be manufactured.
  • the conditions in the examples are one condition examples adopted for confirming the operability and effects of the present invention, and the present invention is not limited to these one condition examples.
  • the present invention can employ various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • a slab having the chemical composition shown in Table 1 was manufactured, and the slab was heated to 1300 ° C for 1 hour, and then subjected to rough rolling and finish rolling under the conditions shown in Table 2 to obtain a hot-rolled steel sheet. Thereafter, the hot-rolled steel sheet was pickled and cold-rolled at a rolling reduction shown in Table 2 to obtain a cold-rolled steel sheet. Subsequently, annealing and skin pass rolling were performed under the conditions shown in Table 2. Each temperature shown in Table 2 is a surface temperature of the steel sheet.
  • “difference in rolling reduction between one reciprocating pass (return-outgoing)” indicates the difference in rolling reduction between two passes included in one reciprocating rolling in reverse rolling.
  • the area ratio of martensite was determined as follows. First, a sample was taken using the thickness section perpendicular to the rolling direction of the steel sheet as an observation surface, the observation surface was polished, and the structure at a quarter position of the thickness of the steel plate was observed with a SEM-EBSD at a magnification of 5000 times. Then, it was image-analyzed in a visual field of 100 ⁇ m ⁇ 100 ⁇ m to measure the martensite area ratio, and the average of these measured values in any five visual fields was determined as the martensite area ratio. The area ratio of retained austenite was determined by X-ray diffraction measurement.
  • a portion from the surface of the steel sheet to a position 1/4 of the thickness of the steel sheet is removed by mechanical polishing and chemical polishing, and MoK ⁇ rays are used as characteristic X-rays to reduce the depth from the surface of the steel sheet to 1/4 depth.
  • the X-ray diffraction intensity at the position was measured. From the integrated intensity ratio of the diffraction peaks of (200) and (211) of the body-centered cubic lattice (bcc) phase and (200), (220) and (311) of the face-centered cubic lattice (fcc) phase, was used to calculate the area ratio of retained austenite.
  • S ⁇ (I 200f + I 220f + I 311f ) / (I 200b + I 211b ) ⁇ 100
  • S ⁇ is the area ratio of retained austenite
  • I 200f , I 220f and I 311f are the intensities of the diffraction peaks of (200), (220) and (311) of the fcc phase, respectively
  • I 200b and I 211b are The intensities of the diffraction peaks of (200) and (211) of the bcc phase are shown.
  • tensile strength TS tensile strength TS
  • elongation at break EL bake hardening amount BH
  • tensile strength BHTS after bake hardening tensile strength BHTS after bake hardening
  • a JIS No. 5 tensile test piece whose longitudinal direction is perpendicular to the rolling direction is sampled and conforms to JIS Z # 2241. And a tensile test was performed.
  • the bake hardening amount BH is a value obtained by subtracting the stress at the time of applying a 2% pre-strain from the stress at the time of re-tensioning a test piece heat-treated at 170 ° C. for 20 minutes after applying a 2% pre-strain.
  • the tensile strength BHTS after bake hardening is the stress when a test piece that has been heat-treated at 170 ° C. for 20 minutes after a 2% prestrain has been applied is re-tensioned.
  • the tensile strength is 1200 MPa or more, preferably 1300 MPa or more, and more preferably 1400 MPa or more.
  • the elongation is preferably 5% or more for easy molding.
  • BH is less than 130 MPa, is difficult to mold, and has low strength after molding. Therefore, in order to have excellent bake hardenability, 130 MPa or more is required. More preferably, it is 150 MPa or more.
  • 1350 MPa or more is required to improve the collision performance by baking hardening. More preferably, it is 1400 MPa or more.
  • a test piece was sampled in accordance with JIS Z 3137, the same steel plates were spot-welded, and a cross tension test was performed. Specifically, the electrode DR 6 mm-40R, the welding time is 15 cycles / 60 Hz, the pressing force is 400 kgf, the current value is changed, and the cross tension test is performed on the welding material under the condition that the nugget diameter becomes 6 mm. The case of breaking was judged as pass (GOOD), and the case of breaking nugget was judged as fail (BAD).
  • Comparative Example 2 there was no skin pass rolling, so retained austenite remained and BH was low.
  • Comparative Example 4 since the S content was too large, the Ceq was high and the weldability was poor.
  • Comparative Example 7 since the annealing temperature was too low, a ferrite structure appeared and a sufficient martensite structure was not obtained, and as a result, TS, BH and BHTS were low.
  • Comparative Example 8 since the annealing time was too short, the entire surface did not have a martensite structure, and similarly, TS, BH, and BHTS were low.
  • Comparative Example 10 since the average cooling rate in the annealing step was too slow, the entire surface did not have a martensitic structure, and TS, BH, and BHTS were low. In Comparative Example 11, since the C content was too small, the amount of dissolved carbon was reduced, and TS, BH, and BHTS were low. In Comparative Example 12, the weldability was poor because the P content was too large. In Comparative Example 14, the difference in rolling reduction between the two passes during one reciprocation in the rough rolling process was large, so that the structure did not have a uniform Mn concentration distribution, the BH was low, and the weldability was poor.
  • Comparative Example 15 since the rolling reduction of even number of times in one round trip in the rough rolling process was smaller than the rolling reduction of odd number of times, the Mn concentration distribution did not have a uniform structure, the BH was low, and the weldability was poor. .
  • Comparative Example 17 since the number of passes of the reverse rolling in the rough rolling step was an odd number, the structure did not have a uniform Mn concentration distribution, the BH was low, and the weldability was poor.
  • Comparative Example 18 the structure other than martensite appeared because the cooling stop temperature in the annealing step was high, and the iron carbide was precipitated and the amount of dissolved carbon was reduced, so that the BH was low.
  • Comparative Example 19 TS, BH and BHTS were low because the Mn content was too low.
  • Comparative Example 21 since the rolling reduction in the reverse rolling in the rough rolling step was high, the Mn concentration distribution was not uniform, the BH was low, and the weldability was poor.
  • Comparative Example 22 the time from rough rolling to finish rolling was too short, the Mn concentration distribution became flat, BH was low, and the weldability was poor.
  • Comparative Example 23 since the C content was too high, the area ratio of retained austenite ( ⁇ ) was high, BH was low, Ceq was high, and the weldability was poor.
  • Comparative Example 25 since the number of rolling stands for finish rolling was small, the Mn concentration distribution was flat, BH and BHTS were low, and the weldability was poor.
  • Comparative Example 26 the cold-rolling rate was high, the Mn concentration distribution was elongated in the direction perpendicular to the sheet thickness and became flat, the BH and BHTS were low, and the weldability was poor.
  • Comparative Example 29 the rolling reduction of the first stand in the finish rolling was small, the Mn concentration distribution was flat, the BH was low, and the weldability was poor.
  • Comparative Example 30 since the finish rolling temperature (the finish rolling start temperature in Table 2) was too high, the Mn concentration distribution became flat, the BH was low, and the weldability was poor. In Comparative Example 31, the weldability was poor because the Al content was too large. In Comparative Example 32, the weldability was poor because the N content was too large. In Comparative Example 33, weldability was poor because Ceq was too high.
  • the high-strength steel sheet excellent in bake hardenability and weldability of the present invention can be used as a base material for structural materials of automobiles, particularly in the automobile industry.

Abstract

質量%で、C:0.05~0.15%、Si:1.5%以下、Mn:2.00~5.00%、P:0.100%以下、S:0.010%以下、Al:0.001~2.000%、N:0.010%以下を含有し、残部がFe及び不純物からなり、Ceq=C+Si/90+Mn/100+1.5P+3Sで定義されるCeqが0.21未満であり、面積率で98%以上のマルテンサイトを含有し、残部組織が面積率で2%以下であり、S=Sy2/Sx2(Sx2は板幅方向のMn濃度プロファイルデータの分散値であり、Sy2は板厚方向のMn濃度プロファイルデータの分散値である)で定義される2次元均質分散比Sが0.85以上1.20以下であり、引張強度が1200MPa以上の高強度鋼板である高強度鋼板が提供される。

Description

高強度鋼板
 本発明は、高強度鋼板、具体的には引張強度が1200MPa以上であって、主としてプレス加工されて使用される自動車等の構造部材に好適な、焼付硬化性及び溶接性に優れた高強度鋼板に関するものである。
 本願は、2018年7月27日に、日本に出願された特願2018-141226号に基づき優先権を主張し、その内容をここに援用する。
 近年、地球環境保護のため、自動車の燃費向上が求められており、自動車鋼板においては、車体の軽量化及び安全性確保のため、一層の高強度化が要求されている。鋼板を高強度化すると一般に延性が低下するため、冷間プレス成形が困難になる。そのため、成形加工時には比較的軟質で成形しやすく、成形加工後の強度が高い材料、つまり焼付硬化性に優れる材料が求められている。
 ここでいう焼付硬化性に優れる材料とは、焼付硬化量及び焼付硬化後の強度が高い材料のことである。
 前記焼付硬化は、プレス成形(以下、「予ひずみ」ともいう)によって入る転位に、150℃~200℃の塗装焼付時に侵入型元素(炭素や窒素)が拡散して当該転位を固着することで生ずるひずみ時効現象である。
 非特許文献1に示すように、焼付硬化量は固溶している侵入型元素の量、つまり固溶炭素量に依存する。そのため、固溶できる炭素量が少ないフェライトより固溶できる炭素量が多いマルテンサイトにおいて焼付硬化量が高くなる。これに関連して、例えば、特許文献1には、ベイナイト及びマルテンサイトを主体とする高強度鋼板が開示されており、当該特許文献1に開示される高強度鋼板においては、鋼材に所定の処理を施して転位密度を増加させることにより焼付硬化性を向上させている。これらを考慮すると、同じマルテンサイトでも、添加炭素の濃度を高めることで焼付硬化量が高くなると考えられる。
 一方で、炭素や合金元素を添加しすぎると、一般に溶接性が劣化する。溶接性の指標の一つとして、炭素当量(Ceq)がある。これは、鋼板に含まれる成分比率から、溶接性を見積もる方法である。例えば、Ceqは、JIS規格により次式で定められている。ここで、式中の各元素記号には各元素の含有量(質量%)が代入される。
 Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14
 しかし、上記式は建材に用いられる高炭素厚鋼板の評価に適するが、自動車用鋼板には適切でないと言われている。そこで、非特許文献2に示すように、小野によって、次式に示すCeqが提案されている。
 Ceq=C+Si/90+(Mn+Cr)/100+1.5P+3S
 一般的に、Ceqが高くなるほど溶接が困難になる。したがって、溶接性を向上させるためには、上記式に含まれる元素を低減することが重要である。従来の自動車用高強度鋼板においては、C含有量に上限を設け、他の合金元素で強度を補うことによって溶接性を確保している。このような技術は、例えば特許文献2に開示されている。つまり、添加炭素濃度を減らすことによって溶接性が確保される。また、溶接後の特性の確保も重要である。例えば母相に島状マルテンサイト(MA:Martensite-Austenite constituent)を含む組織では、MAが母相よりも硬質な組織であるために、脆化相として作用し、溶接後の靱性を悪くする。
 このように、合金成分の観点からは、焼付硬化性と溶接性を両立させるのは困難である。
 また、特許文献1に記載の高強度鋼板においては、上記のとおり、マルテンサイトやベイナイトを主体とするだけでなく、転位密度を高めることによって焼付硬化性を向上させている。しかしながら、一般的に、転位密度が高い鋼は非特許文献3に示すように、熱ひずみ脆化を引き起こすため、溶接性が悪い。
 一方で、特許文献3に記載の発明においては、母相を焼き戻しマルテンサイト又はベイナイト等として、金属炭化物を析出させることによって溶接性を確保している。しかしながら、特許文献3に記載の発明では、焼き戻し工程があるため、固溶炭素が減少してしまい、焼付硬化性が悪化するという問題がある。
 このように、合金成分の観点だけでなく、転位密度の観点からも焼付硬化性と溶接性を両立させるのは困難である。
日本国特開2008-144233号公報 日本国特開平3-180445号公報 日本国特開2007-308743号公報
K.Nakaoka,et al.,「Strength,Ductility and Aging Properties of Continuously-Annealed Dual-Phase High-Strength Sheet Steels」,Formable HSLA and Dual-Phase Steels,Metall.Soc.of AIME,(1977)126-141 小野守章,「自動車用高強度薄鋼板のスポット溶接性」,溶接技術,51(3)(2003)77-82 佐藤邦彦ら,日本造船学会論文集,142(1977)173-181
 今後更なる高強度化の要求に応えるために優れた焼付硬化性を確保すべく、炭素濃度を高めなければならない。しかし、その結果、Ceqが高まり、溶接性が悪くなるという問題がある。また、転位密度の観点からも、焼付硬化性と溶接性の両立は困難である。
 したがって、本発明は、高い焼付硬化性を有しかつ優れた溶接性を持つ高強度鋼板を提供することを目的とする。
 本発明者らは、下記2つのアプローチで上記焼付硬化性と溶接性を確保しようと試みた。
(1)合金成分を適切に制御することでCeqを抑えて溶接性を確保すること。
(2)適切な固溶炭素量を確保するために、焼き入れままマルテンサイトを母相とすることで焼付硬化性を獲得すること。
 しかし、これだけでは目標とする焼付硬化後の引張強度は得られなかった。詳細に調査をしたところ、焼付硬化後の変形組織が不均一であったことから、本発明者らは、マルテンサイト中の硬度差により、予ひずみが不均一に入ったために、全てのマルテンサイトを焼付硬化に用いることができず、焼付硬化性が劣化すると考えた。そして、本発明者らは、この不均一な硬度差は、Mnのミクロ偏析から発生するものであることを見出した。一般的にミクロ偏析は凝固時から発生する合金元素濃度が不均一に分布する現象であり、板厚方向に垂直な面が層状に連なっている。
 そこで、本発明者らは、熱延工程を制御して、Mnのミクロ偏析を均一な構造にすることで抑制し、予ひずみが均一に入ることで、焼付硬化性が大きく向上することを見出した。また、均一な構造にすることで、MAができにくくなり、溶接性も向上した。
 このようにして、上記目的を達成し得た本発明の焼付硬化性及び溶接性に優れる高強度鋼板は、以下のとおりである。
(1)質量%で、
 C:0.05~0.15%、
 Si:1.5%以下、
 Mn:2.00~5.00%、
 P:0.100%以下、
 S:0.010%以下、
 Al:0.001~2.000%、
 N:0.010%以下
を含有し、残部がFe及び不純物からなり、
 下記式(1)で定義されるCeqが0.21未満であり、
 面積率で98%以上のマルテンサイトを含有し、残部組織が面積率で2%以下であり、
 式(2)で定義される2次元均質分散比Sが0.85以上1.20以下であり、
 引張強度が1200MPa以上である、高強度鋼板。
 Ceq=C+Si/90+(Mn+Cr)/100+1.5P+3S  式(1)
 S=Sy2/Sx2                         式(2)
 ここで、式(1)中の各元素記号には、各元素の含有量(質量%)が代入され、元素を含まない場合は0が代入され、式(2)中のSx2は板幅方向のMn濃度プロファイルデータの分散値であり、Sy2は板厚方向のMn濃度プロファイルデータの分散値である。
(2)前記残部組織が存在する場合には、前記残部組織が残留オーステナイトからなる、(1)に記載の高強度鋼板。
(3)更に、質量%で、
 Ti:0.100%以下、
 Nb:0.100%以下
の1種又は2種を合計で0.100%以下含有する、(1)又は(2)に記載の高強度鋼板。
(4)更に、質量%で、
 Cu:1.000%以下、
 Ni:1.000%以下の1種又は2種を合計で1.000%以下含有する、(1)乃至(3)のいずれか一項に記載の高強度鋼板。
(5)更に、質量%で、
 W:0.005%以下、
 Ca:0.005%以下、
 Mg:0.005%以下
 希土類金属(REM):0.010%以下
の1種又は2種以上を合計で0.010%以下含有する、(1)乃至(4)のいずれか一項に記載の高強度鋼板。
(6)更に、質量%で、B:0.0030%以下を含有する、(1)乃至(5)のいずれか一項に記載の高強度鋼板。
(7)更に、質量%で、Cr:1.000%以下を含有する、(1)乃至(6)のいずれか一項に記載の高強度鋼板。
 本発明によれば、合金成分を制御した焼き入れままマルテンサイトにおいて、Mnのミクロ偏析を均一な構造にすることで、溶接性に優れ、高い焼付硬化性を有する高強度鋼板、具体的には焼付硬化後の引張強度が1350MPaに到達する高強度鋼板を提供することができる。プレス後、塗装時に焼付を受けることで高強度化するので、自動車等の分野の構造分野として適している。
<高強度鋼板>
 本発明の実施形態に係る高強度鋼板は、質量%で、
 C:0.05~0.15%、
 Si:1.5%以下、
 Mn:2.00~5.00%、
 P:0.100%以下、
 S:0.010%以下、
 Al:0.001~2.000%、
 N:0.010%以下
を含有し、残部がFe及び不純物からなり、
 下記式(1)で定義されるCeqが0.21未満であり、
 面積率で98%以上のマルテンサイトを含有し、残部組織が面積率で2%以下であり、
 式(2)で定義される2次元均質分散比Sが0.85以上1.20以下であり、
 引張強度が1200MPa以上であることを特徴としている。
 Ceq=C+Si/90+(Mn+Cr)/100+1.5P+3S  式(1)
 S=Sy2/Sx2                         式(2)
 ここで、式(1)中の各元素記号には、各元素の含有量(質量%)が代入され、元素を含まない場合は0が代入され、式(2)中のSx2は板幅方向のMn濃度プロファイルデータの分散値であり、Sy2は板厚方向のMn濃度プロファイルデータの分散値である。
 まず、本発明の実施形態に係る高強度鋼板及びその製造に用いるスラブの化学成分組成について説明する。以下の説明において、高強度鋼板及びスラブに含まれる各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味する。
(C:0.05%~0.15%)
 Cは、固溶炭素量を高め、焼付硬化性を高める作用を有する。また、焼き入れ性を高め、マルテンサイト組織に含有させることにより強度を高める作用を有する。C含有量は0.05%未満であれば、十分な固溶炭素量が確保できず、焼付硬化量が減少する。よって、C含有量は0.05%以上とし、好ましくは0.08%以上とする。一方、C含有量が0.15%超では、溶接中に低い融点を有するケイ酸塩を生成して、溶接継ぎ目の品質に影響を与える。また、強度が高すぎて成形性が担保できない。従って、C含有量は0.15%以下とし、好ましくは0.13%未満、0.12%以下、0.11%以下、又は0.10%以下とする。
(Si:1.5%以下)
 Siは固溶強化元素であり、強度の低下因子であるセメンタイト析出を抑制する役割を持つ。そのため、本発明の高強度鋼板に含まれていてもよい。一方、Si含有量が1.5%超では、表面性状が劣化したりしてしまう。従って、Si含有量は1.5%以下とし、好ましくは1.2%以下とする。Si含有量の下限は特に限定されないが、溶鋼の脱酸剤として機能することから、その含有量を0.01%以上としてもよい。
(Mn:2.00%~5.00%)
 Mnは焼き入れ性向上元素であり、冷却速度を限定せずマルテンサイト組織にするために必要な元素である。この作用を有効に発揮するには、Mn含有量は2.00%以上とし、好ましくは2.50%以上とする。しかし、過剰のMnの含有は、MnSの析出により低温靱性が低下するため、5.00%以下、好ましくは4.50%以下とする。
(P:0.100%以下)
 Pは、必須元素ではなく、例えば鋼中に不純物として含有される。溶接性の観点から、P含有量は低ければ低いほどよい。特に、P含有量が0.100%超で、溶接性の低下が著しい。従って、P含有量は0.100%以下とし、好ましくは0.030%以下とする。P含有量の低減にはコストがかかり、0.0001%未満まで低減しようとすると、コストが著しく上昇する。このため、P含有量は0.0001%以上としてもよい。また、Pは強度の向上に寄与するため、このような観点から、P含有量は0.0001%以上としてもよい。
(S:0.010%以下)
 Sは、必須元素ではなく、例えば鋼中に不純物として含有される。溶接性の観点から、S含有量は低ければ低いほどよい。S含有量が高いほど、MnSの析出量が増加し、低温靭性が低下する。特に、S含有量が0.010%超で、溶接性の低下及び低温靱性の低下が著しい。従って、S含有量は0.010%以下とし、好ましくは0.003%以下とする。S含有量の低減にはコストがかかり、0.0001%未満まで低減しようとすると、コストが著しく上昇する。このため、S含有量は0.0001%以上としてもよい。
(Al:0.001%~2.000%)
 Alは、脱酸に対して効果を有する。以上のような作用を有効に発揮させるため、Al含有量は0.001%以上とし、好ましくは0.010%以上とする。一方、Al含有量が2.000%超では、溶接性が低下したり、酸化物系介在物が増加して表面性状が劣化したりする。従って、Al含有量は2.000%以下、好ましくは1.000%以下とする。
(N:0.010%以下)
 Nは、必須元素ではなく、例えば鋼中に不純物として含有される。溶接性の観点から、N含有量は低ければ低いほどよい。特に、N含有量が0.010%超で、溶接性の低下が著しい。従って、N含有量は0.010%以下とし、好ましくは0.006%以下とする。N含有量の低減にはコストがかかり、0.0001%未満まで低減しようとすると、コストが著しく上昇する。このため、N含有量は0.0001%以上としてもよい。
 本発明の高強度鋼板及びその製造に用いるスラブの基本成分組成は上記の通りである。さらに本発明の高強度鋼板及びその製造に用いるスラブは、必要に応じて、以下の任意元素を含有していてもよい。
(Ti:0.100%以下、Nb:0.100%以下)
 Ti及びNbは強度の向上に寄与する。従って、Ti、Nb又はこれらの任意の組み合わせが含有されていてもよい。この効果を十分に得るために、Ti若しくはNbの含有量、又はこれらの2種の組み合わせの合計含有量は、好ましくは0.003%以上とする。一方、Ti若しくはNbの含有量、又はこれらの2種の組み合わせの合計含有量が0.100%超では、熱間圧延及び冷間圧延が困難になる。従って、Ti含有量若しくはNb含有量、又はこれらの2種の組み合わせの合計含有量は0.100%以下とする。つまり、各成分単独の場合の制限範囲を、Ti:0.003%~0.100%及びNb:0.003%~0.100%とすると共に、これらを組み合わせた場合の合計含有量においても、0.003~0.100%とすることが好ましい。
(Cu:1.000%以下、Ni:1.000%以下)
 Cu、Niは強度の向上に寄与する。従って、Cu、Ni又はこれらの組み合わせが含有されていてもよい。この効果を十分に得るために、Cu及びNiの含有量は、各成分単独の場合、0.005~1.000%が好ましい範囲であり、これら2種を組み合わせた場合の合計含有量においても、0.005%以上1.000%以下が満たされることが好ましい。一方、Cu及びNiの含有量、又はこれら2種を組み合わせた場合の合計含有量が1.000%超では、上記作用による効果が飽和して、徒にコストが高くなる。従って、Cu及びNiの含有量、又はこれら2種を組み合わせた場合の合計含有量の上限は1.000%とする。つまり、Cu:0.005%~1.000%及びNi:0.005%~1.000%とすると共に、これらを組み合わせた場合の合計含有量においても、0.005~1.000%であることが好ましい。
(W:0.005%以下、Ca:0.005%以下、Mg:0.005%以下、REM:0.010%以下)
 W、Ca、Mg及びREMは介在物の微細分散化に寄与し、靭性を高める。従ってW、Ca、Mg若しくはREM又はこれらの任意の組み合わせが含有されていてもよい。この効果を十分に得るために、W、Ca、Mg及びREM、又はこれらの2種以上の任意の組み合わせの合計含有量は、好ましくは0.0003%以上とする。一方、W、Ca、Mg及びREMの合計含有量が0.010%超では、表面性状が劣化する。従って、W、Ca、Mg及びREMの合計含有量は0.010%以下とする。つまり、W:0.005%以下、Ca:0.005%以下、Mg:0.005%以下、REM:0.010%以下であって、これらの任意の2種以上の合計含有量が0.0003~0.010%であることが好ましい。
 REM(希土類金属)はSc、Y及びランタノイドの合計17種類の元素を指し、「REM含有量」はこれら17種類の元素の合計の含有量を意味する。ランタノイドは、工業的には、例えばミッシュメタルの形で添加される。
(B:0.0030%以下)
 Bは焼き入れ性向上元素であり、マルテンサイト組織形成に有用な元素である。Bは0.0001%(1ppm)以上含有させるとよい。しかし、Bを0.0030%(30ppm)を超えて含有すると過度のホウ素は高温脆性をもたらし、溶接性能に影響を与える場合があるため、B含有量は0.0030%以下とする。好ましくは0.0025%以下である。
(Cr:1.000%以下)
 Crは焼き入れ性向上元素であり、マルテンサイト組織形成に有用な元素である。Crは0.005%以上含有させるとよい。しかし、Crを1.000%を超えて含有すると、溶接性能に影響を与える場合があるため、Cr含有量は1.000%以下とする。好ましくは0.500%とする。
 本実施形態に係る高強度鋼板において、上記成分以外の残部はFe及び不純物からなる。ここで、不純物とは、高強度鋼板を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分であって、本実施形態に係る高強度鋼板に対して意図的に添加した成分でないものを意味する。
(Ceqが0.21未満)
 本実施形態では、溶接性を高めるために、次式(1)で示されるCeqを所定の数値未満にするところに特徴を有している。これにより、溶接性を確保することができる。このような効果を一層高めるためには、Ceqが0.21未満に確保されることが必要である。好ましくは0.18以下である。
 Ceq=C+Si/90+(Mn+Cr)/100+1.5P+3S  式(1)
 ここで、式(1)中の各元素記号には、各元素の含有量(質量%)が代入され、元素を含まない場合は0が代入される。
 次に、本発明の実施形態に係る高強度鋼板の組織について説明する。以下、組織要件について説明するが、組織分率に係る%は「面積率」を意味する。
(マルテンサイト:98%以上)
 本実施形態では、マルテンサイトが面積率で98%以上確保されているところに特徴を有している。これにより、十分な固溶炭素を確保することができ、その結果として焼付硬化性を高めることができる。このような効果を一層高めるためには、マルテンサイトが98%以上確保されることが必要とされ、例えば100%であってもよい。
 本発明において、マルテンサイトの面積率は以下のようにして決定される。まず、鋼板の圧延方向に垂直な板厚断面を観察面として試料を採取し、観察面を研磨し、当該鋼板の厚さの1/4位置の組織を5000倍の倍率でSEM-EBSD(電子線後方散乱回折装置付き走査型電子顕微鏡)で観察し、それを100μm×100μmの視野で画像解析してマルテンサイトの面積率を測定し、任意の5視野以上におけるこれらの測定値の平均が本発明におけるマルテンサイトの面積率として決定される。
(残部組織:2%以下)
 本発明によれば、マルテンサイト以外の残部組織は面積率で2%以下である。高強度鋼板の焼付硬化性を一層高めるためには0%とするのが好ましい。残部組織が存在する場合、当該残部組織は、任意の組織を含むことができ特に限定されないが、例えば、残留オーステナイトを含むか又は残留オーステナイトからなることが好ましい。微量の残留オーステナイトは、鋼の成分と製造方法によっては生成を避けられない場合がある。しかしながら、このような微量の残留オーステナイトは、焼付硬化性に不利に影響を及ぼさないだけでなく、変形を受けた際のTRIP(変態誘起塑性:Transformation Induced Plasticity)効果で延性の向上に寄与することができる。そのため、残部組織は面積率で2%以下の範囲で残留オーステナイトを含んでいてもよい。しかし、焼付硬化性を一層高めるためには、残部組織は残留オーステナイトを含まず、0%であることが好ましい。
 本発明において、残留オーステナイトの面積率は、X線回折測定により決定される。具体的には、鋼板の表面から当該鋼板の厚さの1/4位置までの部分を機械研磨及び化学研磨により除去し、特性X線としてMoKα線を用いて鋼板の表面から深さ1/4位置におけるX線回折強度を測定する。そして、体心立方格子(bcc)相の(200)及び(211)、並びに面心立方格子(fcc)相の(200)、(220)及び(311)の回折ピークの積分強度比から、次の式を用いて残留オーステナイトの面積率を算出する。
 Sγ=(I200f+I220f+I311f)/(I200b+I211b)×100
 上記式において、Sγは残留オーステナイトの面積率、I200f、I220f及びI311fは、それぞれfcc相の(200)、(220)及び(311)の回折ピークの強度、I200b及びI211bは、それぞれbcc相の(200)及び(211)の回折ピークの強度を示す。
(2次元均質分散比Sが0.85以上1.20以下)
 2次元均質分散比は、合金元素のミクロ偏析を評価する指標である。Sで示される2次元均質分散比は次のようにして測定する。板幅方向をx方向、板厚方向をy方向とし、鋼板についてその圧延方向が法線方向となる面(すなわち鋼板の厚さ方向断面)を観察できるように調整した後、鏡面研磨し、EPMA(電子プローブマイクロアナライザ)装置により、該鋼板の厚さ方向断面において鋼板の中央部100μm×100μmの範囲について、鋼板の厚さ方向(y方向)に沿って一方の側から他方の側に向かって0.5μm間隔で200点のMn濃度を測定する。また、測定した鋼板の厚さ方向に垂直な方向(x方向)に沿って同様に一方の側から他方の側に向かって0.5μm間隔で200点のMn濃度を測定する。x方向とy方向における各Mn濃度プロファイルから、分散値Sx2とSy2を求める。これらの値を用い次式(2)によりSを求める。
 S=Sy2/Sx2                         式(2)
 ここで、Sx2は、板幅方向のMn濃度プロファイルデータの分散値であり、Sx2=(1/200)×Σ(A-Ai2で表され、式中、Aはx方向における200点のMn濃度の平均値であり、Aiはx方向のi番目のMn濃度を表す(i=1~200)。同様に、Sy2は板厚方向のMn濃度プロファイルデータの分散値であり、Sy2=(1/200)×Σ(B-Bi2で表され、式中、Bはy方向における200点のMn濃度の平均値であり、Biはy方向のi番目のMn濃度を表す(i=1~200)。
 本実施形態では、Mn濃度分布がミクロ偏析の緩和によって均一な構造(例えば、市松模様構造)を持つところに特徴を有している。これが0.85未満であれば、十分に均一な構造になっているとは言えず、焼付硬化性が低い。また、MAが生成し、溶接性も良くない。そのため、Sは0.85以上必要である。好ましくは0.90以上、より好ましく0.95以上である。一方、先述の通り、ミクロ偏析が制御されていない場合、Mnの濃度の高い面と低い面が板厚方向に層状に連なっており、これを板厚方向と板幅方向で均質化することが重要である。逆に、Mnの濃度の高い面と低い面が板厚方向に層状に連なると、均質化されたことにはならない。つまり、Sの下限値の逆数が上限値となる。そのため、Sは1.20以下とする。好ましくは1.15以下、更に好ましくは1.10以下である。
 次に、本発明の機械特性について説明する。
(引張強度:1200MPa以上)
 上記の組成及び組織を有する本発明の高強度鋼板によれば、高い引張強度、具体的には1200MPa以上の引張強度を達成することができる。ここで、引張強度を1200MPa以上とするのは、自動車車体の軽量化の要求を満たすためである。引張強度は好ましくは1300MPa以上であり、より好ましくは1400MPa以上である。
 本発明の高強度鋼板によれば、優れた焼付硬化性を達成することが可能である。より具体的には、本発明の高強度鋼板によれば、2%予ひずみを付加後、170℃で20分間熱処理した試験片を再引張したときの応力から、2%予ひずみ付加時の応力を差し引いた値が130MPa以上、好ましくは150MPa以上となるような焼付硬化量BHを達成することができる。このBHの値が130MPa未満では、成形しにくく且つ焼付硬化後の強度が低いため、優れた焼付硬化性とは言えない。また、本発明の高強度鋼板によれば、2%予ひずみを付加後、170℃で20分間熱処理した試験片を再引張したときの応力が1350MPa以上、好ましくは1400MPa以上となるような焼付硬化後の引張強度BHTSを達成することができる。このBHTSの値が1350MPa未満では、同様に焼付硬化後の強度が低いため、優れた焼付硬化性とは言えない。
<高強度鋼板の製造方法>
 次に、本実施形態に係る好ましい高強度鋼板の製造方法について説明する。
 以下の説明は、本発明の高強度鋼板を製造するための特徴的な方法の例示を意図するものであって、本発明の高強度鋼板を以下に説明するような製造方法によって製造されるものに限定することを意図するものではない。
 本発明の高強度鋼板の好ましい製造方法は、上で説明した化学成分組成を有する溶鋼を鋳造してスラブを形成する工程、
 前記スラブを1050℃以上1250℃以下の温度域で粗圧延する粗圧延工程であって、前記粗圧延が1パス当たりの圧下率が30%以下のリバース圧延を2パス以上、16パス以下で偶数回行うことを含み、1往復する際の2パス間の圧下率差が20%以下であり、1往復内の偶数回の圧下率が奇数回の圧下率より5%以上高く、前記粗圧延の後5秒以上保持される粗圧延工程、
 粗圧延された鋼板を850℃以上1050℃以下の温度域で仕上げ圧延する仕上げ圧延工程であって、前記仕上げ圧延が4つ以上の連続する圧延スタンドで行われ、第一スタンドの圧下率が15%以上であり、仕上げ圧延された鋼板が400℃以下の温度域で巻き取られる仕上げ圧延工程、
 得られた熱延鋼板を15%以上45%以下の圧下率で冷間圧延する冷間圧延工程、
 得られた冷延鋼板を10℃/秒以上の平均加熱速度で昇温してAc3以上1000℃以下の温度域で10~1000秒間保持し、次いで10℃/秒以上の平均冷却速度で70℃以下まで冷却する焼鈍工程、及び
 得られた鋼板を0.5%以上2.5%以下の圧下率でスキンパス圧延するスキンパス圧延工程を含むことを特徴としている。以下、各工程について説明する。
(スラブの形成工程)
 先ず、上で説明した本発明に係る高強度鋼板の化学成分組成を有する溶鋼を鋳造し、粗圧延に供するスラブを形成する。鋳造方法は、通常の鋳造方法でよく、連続鋳造法、造塊法などを採用できるが、生産性の点で、連続鋳造法が好ましい。
(粗圧延工程)
 スラブを、粗圧延の前に、1000℃以上1300℃以下の溶体化温度域に加熱するのが好ましい。加熱保持時間は特に規定しないが、スラブ中心部まで所定の温度にするために、加熱温度に30分間以上保持することが好ましい。加熱保持時間は、過度のスケールロスを抑制するため、10時間以下が好ましく、5時間以下がより好ましい。鋳造後のスラブの温度が1050℃以上1250℃以下であれば、該温度域に加熱保持せず、そのまま粗圧延に供し、直送圧延又は直接圧延を行ってもよい。
 次に、スラブにリバース圧延で粗圧延を施すことで、スラブの形成工程において凝固時に形成したスラブ中のMn偏析部を、一方向に伸びる板状の偏析部にすることなく、均一な構造にすることができる。このような均一な構造を有するMn濃度分布の形成についてより詳しく説明する。まず、粗圧延を開始する前のスラブを、その表面に垂直に切断した面においては、Mn等の合金元素が櫛状の形態で濃化している様子が観察できる。具体的には、粗圧延前のスラブの上記切断面では、Mn等の合金元素が線状に濃化した部分が、スラブの両方の表面から内部に向かって、スラブの表面に対してほぼ垂直に複数並んでいる状態になっている。
 一方、粗圧延では、圧延の1パスごとに、スラブの表面は圧延の進行方向に伸ばされることとなる。なお、圧延の進行方向とは、圧延ロールに対してスラブが進行していく方向である。そして、このようにスラブの表面が圧延の進行方向に伸ばされることにより、スラブの表面から内部に向かって成長しているMn偏析部は、圧延の1パスごとにスラブの進行方向に傾斜した状態にされる。換言すると、圧延は、スラブ内部に向けて櫛状に延在するMn偏析部を、圧延の進行方向に若干倒す働きを有する。
 ここで、粗圧延の各パスにおけるスラブの進行方向が常に同じ方向であるいわゆる一方向圧延の場合、Mn偏析部は、それ自体がほぼ真っ直ぐな状態を保ったまま、パスごとに同じ方向に向かって徐々に傾斜が大きくなっていく。そして、粗圧延の終了時には、Mn偏析部は、ほほ真っ直ぐな状態を保ったまま、スラブの表面に対してほぼ平行な姿勢となり、扁平なミクロ偏析が形成されてしまう。
 一方、粗圧延の各パスにおけるスラブの進行方向が交互に反対の方向となるリバース圧延の場合は、直前のパスである方向に傾斜させられたMn偏析部が、次のパスでは逆の方向に傾斜させる力を受ける。この場合、Mn偏析部は折れ曲がった形状となる。このため、リバース圧延においては、交互に反対の方向となる各パスが繰り返し行われることにより、Mn偏析部が交互に折れ曲がったジグザグ形状となる。
 このように交互に折れ曲がったジグザグ形状が複数並ぶと、板状のミクロ偏析は消失し、均一に入り組んだMn濃度分布となる。Mn濃度分布が理想的に均一化された場合、Mn濃度分布が略市松模様状に現れる。なお、「市松模様」(Ichimatsu pattern)とは、格子模様の一種であり、色が違う略正方形(または略長方形)を、互い違いに並べた模様のことである。本発明においては、Mn濃度分布が市松模様状に現れる構造を市松模様構造と呼ぶ。2次元均質分散比Sが0.85以上1.20以下である均一な構造をとることにより、後工程での熱処理によってMnがさらに拡散しやすくなり、より均一なMn濃度を有する熱延鋼板を得ることができる。なお、上記のリバース圧延により、鋼板全体にわたって均一に入り組んだMn濃度分布となるため、このような均一な構造は、圧延方向に平行な板厚断面だけでなく、圧延方向が法線となる板厚断面においても同様に形成される。
 粗圧延温度域が1050℃未満であると、粗圧延の最終パスにおいて、850℃以上で圧延を完了することが難しくなり、形状不良となるので、粗圧延温度域は1050℃以上が好ましい。より好ましくは1100℃以上である。粗圧延温度域が1250℃を超えると、スケールロスが増大する上、スラブ割れが発生する懸念が生じるので、粗圧延温度域は1250℃以下が好ましい。
 粗圧延における1パス当たりの圧下率が30%を超えると、圧延時の剪断応力が大きくなって、Mn偏析部が不均一になる。したがって、粗圧延における1パス当たりの圧下率は30%以下とする。圧下率が小さいほど、圧延時の剪断歪みが小さくなり、均一な構造にできるので、圧下率の下限は特に定めないが、生産性の観点から、10%以上が好ましい。
 Mn濃度分布を均一な構造にするためには、リバース圧延は2パス以上が好ましく、より好ましくは4パス以上である。ただし、16パスを超えて施すと十分な仕上げ圧延温度を確保することが難しくなるので、16パス以下とする。また、進行方向が互いに反対の方向となる各パスは、同じ回数ずつ行われること、すなわち合計のパス回数を偶数回とすることが望ましい。しかしながら、一般の粗圧延ラインでは、粗圧延の入側と出側はロールを挟んで反対側に位置する。このため、粗圧延の入側から出側に向かう方向のパス(圧延)が一回多くなる。そうすると、最後のパス(圧延)でMn偏析部が扁平な形状となり、均一な構造が形成されにくくなる。このような、熱間圧延ラインで粗圧延をする場合には、最後のパスはロール間を開けて圧延を省略することが好ましい。
 リバース圧延において、1往復の圧延に含まれる2パス間の圧下率に差があると、形状不良が生じやすくなる、またMn偏析部が不均一になり、均一な構造にすることができない。そのため、粗圧延時、リバース圧延の1往復に含まれる2パス間の圧下率差は20%以下とする。好ましくは10%以下である。
 後述するように、再結晶組織を微細化するためには、仕上げ圧延におけるタンデムの多段圧延が有効であるが、タンデム圧延によって、扁平なミクロ偏析が形成されやすくなる。タンデムの多段圧延を利用するためには、リバース圧延における偶数回の圧下率を奇数回の圧下率より大きくし、その後のタンデム圧延で形成されるミクロ偏析を制御しなければならない。その効果はリバース圧延の1往復において、偶数回(復路)の圧下率が奇数回(往路)の圧下率より5%以上高くなると顕著になる。そのため、リバース圧延の1往復において、偶数回の圧下率が奇数回の圧下率より5%以上高くすることが好ましい。
 粗圧延におけるリバース圧延によって生成したMnの複雑構造をオーステナイト粒界移動によって均一にするためには、粗圧延から仕上げ圧延までに5秒以上保持することが好ましい。
(仕上げ圧延工程)
 粗圧延におけるリバース圧延の後、仕上げ圧延におけるタンデム圧延の圧下率を大きくすることによって、デンドライト二次アームに起因するMn偏析帯の間隔を狭小化するために、仕上げ圧延は4つ以上の連続する圧延スタンドで行われることが好ましい。仕上げ圧延温度が850℃未満であると、再結晶が十分に起きず、圧延方向に延伸した組織となり、後工程で、延伸組織に起因した板状組織が生成するので、仕上げ圧延温度は850℃以上が好ましい。より好ましくは900℃以上である。一方、仕上げ圧延温度が1050℃を超えると、オーステナイトの微細な再結晶粒が生成しにくくなり、粒界のMn偏析が困難となり、Mn偏析帯が扁平となりやすくなる。そのため、仕上げ圧延温度は1050℃以下が好ましい。なお、適正温度であれば、必要に応じて、粗圧延された鋼板を粗圧延工程の後でかつ仕上げ圧延工程の前に加熱してもよい。さらに、仕上げ圧延の第一スタンドの圧下率を15%以上にすると、再結晶粒が多量に生成し、その後の粒界移動によって、Mnが均一に分散しやすくなる。このように、粗圧延工程だけでなく、仕上げ圧延工程を限定することによって、扁平なMnのミクロ偏析を抑制できる。なお、「仕上げ圧延温度」とは、仕上げ圧延開始から仕上圧延終了までの鋼板の表面温度を意味する。仕上げ圧延温度が上述の範囲内となるように仕上圧延がされた場合、いわゆる仕上圧延開始温度(仕上圧延の最初のパスでの鋼板温度)、及び仕上圧延終了温度(仕上圧延の最後のパスでの鋼板温度)も、上述された仕上圧延温度の範囲内となる。
 巻取温度が400℃を超えると、内部酸化によって表面性状が低下するので、巻取温度は400℃以下が好ましい。鋼板組織を、マルテンサイト又はベイナイトの均質組織とすると、焼鈍で、均質な組織を形成し易いので、巻取温度は300℃以下がより好ましい。
(冷間圧延工程)
 仕上げ圧延工程において得られた熱延鋼板を、酸洗後、冷間圧延に供し、冷延鋼板とする。マルテンサイトのラスを維持するため、圧下率は15%以上45%以下が好ましい。冷間圧延工程の圧下率が45%を超えると、マルテンサイトの微細なラスが維持できなくなり、Mnが粒界偏析しにくくなるため、板厚に垂直な方向(即ち板面方向)にMn偏析帯が伸びる。このように扁平な層状のMn偏析帯は、Mnの分散を不均一とするため、Mnの2次元均質分散比が上述の規定値より低くなる。なお、酸洗は、通常の酸洗でよい。
(焼鈍工程)
 上記冷間圧延工程を経て得られた鋼板に、焼鈍処理を施す。焼鈍温度での加熱は、10℃/秒以上の平均加熱速度で昇温し、Ac3以上1000℃以下の温度域で、10~1000秒加熱保持とする。この温度範囲と焼鈍時間は、鋼板の全面をオーステナイト変態させるためのものである。保持温度が1000℃超又は焼鈍時間が1000秒超になると、オーステナイト粒径が粗大化し、ラス幅が大きいマルテンサイトになってしまい、靱性が低下する。従って、焼鈍温度はAc3以上1000℃以下、焼鈍時間は10~1000秒とする。
 なお、Ac3点は次の式により計算する。下記式における元素記号には当該元素の質量%を代入する。含有しない元素については0質量%を代入する。
 Ac3=881-335×C+22×Si-24×Mn-17×Ni-1×Cr-27×Cu
 焼鈍温度保持後、冷却は10℃/秒以上の平均冷却速度で行う。組織を凍結し、マルテンサイト変態を効率的に引き起こすためには、冷却速度は速いほうがよい。ただし、10℃/秒未満ではマルテンサイトが十分に生成せず、所望の組織に制御できない。よって、10℃/秒以上とする。
 冷却停止温度は70℃以下とする。これは、冷却によって全面に焼き入れままマルテンサイトを生成させるためである。70℃超で冷却停止すると、マルテンサイト以外の組織が出てしまう可能性がある。また、マルテンサイトが出た場合でも、自己焼き戻しによって球状化した鉄炭化物等の析出物が出る場合があり、このような場合には固溶炭素が少なくなり焼付硬化性が低下する。そのため、冷却停止温度は70℃以下とし、好ましくは60℃以下とする。
(スキンパス圧延工程)
 焼鈍工程の後、スキンパス圧延(調質圧延)を施す。これは、均一な構造にしてもなおマルテンサイト内で硬度差があった場合に、軟質なマルテンサイトを加工硬化させて、予ひずみによる転位を均一に入れるために必要である。また、残留オーステナイトが残っていた場合は、塑性加工誘起変態によりマルテンサイト変態することによって、マルテンサイト分率を増加させる役割を持つ。この効果は0.5%未満の圧下率におけるスキンパス圧延では果たされない。よって、圧下率は0.5%以上とする。ただし、板厚制御が困難になるため、2.5%を上限とすることが好ましい。更に好ましくは圧下率を1.0%以下とする。
 このようにして、本発明の実施形態に係る高強度鋼板を製造することができる。
 なお、上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
 次に、本発明の実施例について説明する。実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 表1に示す化学組成を有するスラブを製造し、スラブを1300℃に1時間加熱した後、表2に示す条件にて粗圧延及び仕上げ圧延を行って熱延鋼板を得た。その後、熱延鋼板の酸洗を行い、表2に示す圧下率で冷間圧延を行って冷延鋼板を得た。続いて、表2に示す条件下で焼鈍及びスキンパス圧延を行った。なお、表2に示す各温度は鋼板の表面温度である。また、表2における、「1往復内パス間の圧下率差(復路-往路)」は、リバース圧延における、1往復の圧延に含まれる2パス間の圧下率の差を示す。なお、いずれの例でも複数回の往復パスを含むリバース圧延が行われているが、往復パス間圧下率差は、全ての往復パスで同一とした。例えば、例No.1では「粗圧延パス回数」が8であり、「1往復内パス間の圧下率差(復路-往路)」が5%であったと表に示されている。これは、例No.1では4往復のリバース圧延が実施され、この4往復全てにおいて復路圧下率が往路圧下率より5%大きかったことを意味する。
 表2におけるAc3は以下に示す式で計算した。下記式における元素記号には当該元素の質量%を代入した。含有しない元素については0質量%を代入した。
 Ac3=881-335×C+22×Si-24×Mn-17×Ni-1×Cr-27×Cu
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 得られた冷延鋼板に対しSEM-EBSDとX線回折法によりマルテンサイト及び残留オーステナイトの面積率を求めた。
 特に、マルテンサイトの面積率は以下のようにして決定した。まず、鋼板の圧延方向に垂直な板厚断面を観察面として試料を採取し、観察面を研磨し、当該鋼板の厚さの1/4位置の組織を5000倍の倍率でSEM-EBSDで観察し、それを100μm×100μmの視野で画像解析してマルテンサイトの面積率を測定し、任意の5視野におけるこれらの測定値の平均をマルテンサイトの面積率として決定した。残留オーステナイトの面積率は、X線回折測定により求めた。具体的には、鋼板の表面から当該鋼板の厚さの1/4位置までの部分を機械研磨及び化学研磨により除去し、特性X線としてMoKα線を用いて鋼板の表面から深さ1/4位置におけるX線回折強度を測定した。そして、体心立方格子(bcc)相の(200)及び(211)、並びに面心立方格子(fcc)相の(200)、(220)及び(311)の回折ピークの積分強度比から、次の式を用いて残留オーステナイトの面積率を算出した。
 Sγ=(I200f+I220f+I311f)/(I200b+I211b)×100
 上記式において、Sγは残留オーステナイトの面積率、I200f、I220f及びI311fは、それぞれfcc相の(200)、(220)及び(311)の回折ピークの強度、I200b及びI211bは、それぞれbcc相の(200)及び(211)の回折ピークの強度を示す。
 また、Sで示される2次元均質分散比をEMPA装置によって求めた。
 更に、得られた冷延鋼板の引張強度TS、破断伸びEL、焼付硬化量BH、及び焼付硬化後の引張強度BHTSを測定した。引張強度TS、破断伸びEL、焼付硬化量BH、及び焼付硬化後の引張強度BHTSの測定では、圧延方向に直角な方向を長手方向とするJIS5号引張試験片を採取し、JIS Z 2241に準拠して引張試験を行った。焼付硬化量BHは、2%予ひずみを付加後、170℃で20分間熱処理した試験片を再引張したときの応力から、2%予ひずみ付加時の応力を差し引いた値である。焼付硬化後の引張強度BHTSは、2%予ひずみを付加後、170℃で20分間熱処理した試験片を再引張したときの応力である。自動車車体の軽量化の要求を満たすためには引張強度は1200MPa以上、好ましくは1300MPa以上であり、より好ましくは1400MPa以上である。また、成形しやすいために、伸びは5%以上であることが好ましい。また、BHについては、130MPa未満では成形しにくく且つ成形後の強度が低くなるため、優れた焼付硬化性を有するためには、130MPa以上必要である。より好ましくは150MPa以上である。BHTSについては、焼付硬化によって衝突性能を高めるためには、1350MPa以上必要である。より好ましくは1400MPa以上である。
 溶接性の評価として、JIS Z 3137に準拠して試験片を採取し、同じ鋼板同士をスポット溶接し、十字引張試験を行った。詳細には、電極DR6mm-40R、溶接時間は15サイクル/60Hz、加圧力は400kgfとし、電流値を変化させてナゲット径6mmとなる条件の溶接材において十字引張試験を行った際、母材で破断した場合を合格(GOOD)、ナゲット破断した場合を不合格(BAD)として判定した。
Figure JPOXMLDOC01-appb-T000004
 [評価結果]
 表3に示すように、実施例1、3、5、6、9、13、16、20、24、27及び28では、優れた引張強度、焼付硬化性及び溶接性を得ることができた。いずれも引張強度が1200MPa以上、BHが130MPa以上、BHTSが1350MPa以上、十字引張試験で母材破断となり、高強度、且つ、焼付硬化性に優れ、溶接性にも優れることが示された。
 一方、比較例2では、スキンパス圧延がなかったために、残留オーステナイトが残り、BHが低かった。比較例4では、S含有量が多すぎたために、Ceqが高く溶接性が悪かった。比較例7では、焼鈍温度が低すぎたために、フェライト組織が現れて十分なマルテンサイト組織が得られず、その結果としてTS、BH及びBHTSが低かった。比較例8では、焼鈍時間が短すぎたために、全面マルテンサイト組織にならず、同様にTS、BH及びBHTSが低かった。比較例10では、焼鈍工程における平均冷却速度が遅すぎたために、全面マルテンサイト組織にならず、TS、BH及びBHTSが低かった。比較例11では、C含有量が少なすぎたために、固溶炭素量が減少し、TS、BH及びBHTSが低かった。比較例12では、P含有量が多すぎたために、溶接性が悪かった。比較例14では、粗圧延工程における1往復する際の2パス間の圧下率差が大きかったために、Mn濃度分布が均一な構造にならず、BHが低く、溶接性が悪かった。比較例15では、粗圧延工程における1往復内の偶数回の圧下率が奇数回の圧下率よりも小さかったために、Mn濃度分布が均一な構造にならず、BHが低く、溶接性が悪かった。比較例17では、粗圧延工程におけるリバース圧延のパス回数が奇数回であったために、Mn濃度分布が均一な構造にならず、BHが低く、溶接性が悪かった。
 比較例18では、焼鈍工程における冷却停止温度が高かったために、マルテンサイト以外の組織が現れ、さらに鉄炭化物が析出して固溶炭素が少なくなったために、BHが低かった。比較例19では、Mn含有量が少なすぎたために、TS、BH及びBHTSが低かった。比較例21では、粗圧延工程におけるリバース圧延の圧下率が高かったために、Mn濃度分布が均一な構造にならず、BHが低く、溶接性が悪かった。比較例22では粗圧延後から仕上げ圧延までの時間が短すぎて、Mn濃度分布が扁平になってしまい、BHが低く、溶接性が悪かった。比較例23では、C含有量が高すぎたために、残留オーステナイト(γ)の面積率が高く、BHが低く、またCeqも高く溶接性が悪かった。比較例25では、仕上げ圧延の圧延スタンドが少なかったために、Mn濃度分布が扁平になってしまい、BH及びBHTSが低く、溶接性が悪かった。比較例26では、冷延率が高く,板厚に垂直な方向にMn濃度分布が伸びて扁平になってしまい、BHおよびBHTSが低く、溶接性が悪かった。比較例29では、仕上げ圧延の第一スタンドの圧下率が小さく、Mn濃度分布が扁平になってしまい、BHが低く、溶接性が悪かった。比較例30では、仕上げ圧延温度(表2中の仕上げ圧延開始温度)が高すぎたために、Mn濃度分布が扁平になってしまい、BHが低く、溶接性が悪かった。比較例31では、Al含有量が多すぎたために、溶接性が悪かった。比較例32では、N含有量が多すぎたために、溶接性が悪かった。比較例33では、Ceqが高すぎたために、溶接性が悪かった。
 本発明の焼付硬化性及び溶接性に優れた高強度鋼板は、特に、自動車産業分野において自動車の構造材の原板として利用することができる。

Claims (7)

  1.  質量%で、
     C:0.05~0.15%、
     Si:1.5%以下、
     Mn:2.00~5.00%、
     P:0.100%以下、
     S:0.010%以下、
     Al:0.001~2.000%、
     N:0.010%以下
    を含有し、残部がFe及び不純物からなり、
     下記式(1)で定義されるCeqが0.21未満であり、
     面積率で98%以上のマルテンサイトを含有し、残部組織が面積率で2%以下であり、
     下記式(2)で定義される2次元均質分散比Sが0.85以上1.20以下であり、
     引張強度が1200MPa以上である、高強度鋼板。
     Ceq=C+Si/90+(Mn+Cr)/100+1.5P+3S  式(1)
     S=Sy2/Sx2  式(2)
     ここで、式(1)中の各元素記号には、各元素の含有量(質量%)が代入され、元素を含まない場合は0が代入され、式(2)中のSx2は板幅方向のMn濃度プロファイルデータの分散値であり、Sy2は板厚方向のMn濃度プロファイルデータの分散値である。
  2.  前記残部組織が存在する場合には、前記残部組織が残留オーステナイトからなる、請求項1に記載の高強度鋼板。
  3.  更に、質量%で、
     Ti:0.100%以下、
     Nb:0.100%以下
    の1種又は2種を合計で0.100%以下含有する、請求項1又は2に記載の高強度鋼板。
  4.  更に、質量%で、
     Cu:1.000%以下、
     Ni:1.000%以下の1種又は2種を合計で1.000%以下含有する、請求項1乃至3のいずれか一項に記載の高強度鋼板。
  5.  更に、質量%で、
     W:0.005%以下、
     Ca:0.005%以下、
     Mg:0.005%以下
     希土類金属(REM):0.010%以下
    の1種又は2種以上を合計で0.010%以下含有する、請求項1乃至4のいずれか一項に記載の高強度鋼板。
  6.  更に、質量%で、B:0.0030%以下を含有する、請求項1乃至5のいずれか一項に記載の高強度鋼板。
  7.  更に、質量%で、Cr:1.000%以下を含有する、請求項1乃至6のいずれか一項に記載の高強度鋼板。
PCT/JP2019/029384 2018-07-27 2019-07-26 高強度鋼板 WO2020022477A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980048444.3A CN112437816B (zh) 2018-07-27 2019-07-26 高强度钢板
JP2019563293A JP6652230B1 (ja) 2018-07-27 2019-07-26 高強度鋼板
MX2021000354A MX2021000354A (es) 2018-07-27 2019-07-26 Lamina de acero de alta resistencia.
US17/258,704 US11505855B2 (en) 2018-07-27 2019-07-26 High-strength steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-141226 2018-07-27
JP2018141226 2018-07-27

Publications (1)

Publication Number Publication Date
WO2020022477A1 true WO2020022477A1 (ja) 2020-01-30

Family

ID=69180933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029384 WO2020022477A1 (ja) 2018-07-27 2019-07-26 高強度鋼板

Country Status (5)

Country Link
US (1) US11505855B2 (ja)
JP (1) JP6652230B1 (ja)
CN (1) CN112437816B (ja)
MX (1) MX2021000354A (ja)
WO (1) WO2020022477A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387320A (ja) * 1989-08-29 1991-04-12 Kobe Steel Ltd 焼付硬化性の優れた超高強度冷延鋼板の製造方法
KR20060132378A (ko) * 2005-06-18 2006-12-21 현대자동차주식회사 마르텐사이트형 초고강도 냉연강판 조성물 및 이의 제조방법
JP2017504720A (ja) * 2013-12-23 2017-02-09 ポスコPosco 強度及び延性に優れた熱処理硬化型鋼板及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2609732B2 (ja) 1989-12-09 1997-05-14 新日本製鐵株式会社 加工性とスポット溶接性に優れた熱延高強度鋼板とその製造方法
JP5008173B2 (ja) 2006-05-17 2012-08-22 日産自動車株式会社 抵抗溶接用高張力鋼板及びその接合方法
JP4688782B2 (ja) 2006-12-11 2011-05-25 株式会社神戸製鋼所 焼付硬化用高強度鋼板およびその製造方法
JP5177310B2 (ja) * 2011-02-15 2013-04-03 Jfeスチール株式会社 溶接熱影響部の低温靭性に優れた高張力鋼板およびその製造方法
JP5846311B2 (ja) * 2012-09-06 2016-01-20 Jfeスチール株式会社 溶接熱影響部ctod特性に優れた厚肉高張力鋼およびその製造方法
CN103146997B (zh) * 2013-03-28 2015-08-26 宝山钢铁股份有限公司 一种低合金高韧性耐磨钢板及其制造方法
US10301699B2 (en) * 2013-09-18 2019-05-28 Nippon Steel & Sumitomo Metal Corporation Hot-stamped part and method of manufacturing the same
KR101863486B1 (ko) * 2014-04-23 2018-05-31 신닛테츠스미킨 카부시키카이샤 테일러드 롤드 블랭크용 열연 강판, 테일러드 롤드 블랭크 및 그들의 제조 방법
CN107208237B (zh) * 2015-02-13 2019-03-05 杰富意钢铁株式会社 高强度熔融镀锌钢板及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387320A (ja) * 1989-08-29 1991-04-12 Kobe Steel Ltd 焼付硬化性の優れた超高強度冷延鋼板の製造方法
KR20060132378A (ko) * 2005-06-18 2006-12-21 현대자동차주식회사 마르텐사이트형 초고강도 냉연강판 조성물 및 이의 제조방법
JP2017504720A (ja) * 2013-12-23 2017-02-09 ポスコPosco 強度及び延性に優れた熱処理硬化型鋼板及びその製造方法

Also Published As

Publication number Publication date
US20210269903A1 (en) 2021-09-02
US11505855B2 (en) 2022-11-22
JP6652230B1 (ja) 2020-02-19
JPWO2020022477A1 (ja) 2020-08-06
CN112437816B (zh) 2022-06-17
CN112437816A (zh) 2021-03-02
MX2021000354A (es) 2021-03-25

Similar Documents

Publication Publication Date Title
KR102119333B1 (ko) 고강도 강판 및 그 제조 방법
JP4306202B2 (ja) 高張力冷延鋼板及びその製造方法
JP5860308B2 (ja) 温間成形性に優れた高強度鋼板およびその製造方法
JP6677364B1 (ja) 高強度鋼板
JP2018090874A (ja) 焼付硬化性に優れる高強度鋼板および製造方法
KR102158631B1 (ko) 강판
EP3561118B1 (en) Warm-pressed member obtained from a high strength steel sheet having excellent high-temperature elongation characteristic, and manufacturing method thereof
KR102119017B1 (ko) 고강도 냉연 박강판 및 그의 제조 방법
JPWO2020184154A1 (ja) 高強度鋼板およびその製造方法
JP5080215B2 (ja) 等方性と伸びおよび伸びフランジ性に優れた高強度冷延鋼板
KR102455453B1 (ko) 우수한 연성과 구멍 확장성을 갖는 고강도 강판
KR102590522B1 (ko) 냉연 강판 및 그 제조 방법
JP6690804B1 (ja) 合金化溶融亜鉛めっき鋼板
JP6098537B2 (ja) 高強度冷延鋼板およびその製造方法
JP4059050B2 (ja) 冷延鋼板製造用母板、高強度高延性冷延鋼板およびそれらの製造方法
KR102359706B1 (ko) 강판
JP4324227B1 (ja) 降伏応力と伸びと伸びフランジ性に優れた高強度冷延鋼板
JP6652230B1 (ja) 高強度鋼板
KR20220083905A (ko) 성형성 및 표면품질이 우수한 고강도 도금강판 및 그 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019563293

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19842102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19842102

Country of ref document: EP

Kind code of ref document: A1