WO2014148138A1 - 動力伝達装置 - Google Patents

動力伝達装置 Download PDF

Info

Publication number
WO2014148138A1
WO2014148138A1 PCT/JP2014/052807 JP2014052807W WO2014148138A1 WO 2014148138 A1 WO2014148138 A1 WO 2014148138A1 JP 2014052807 W JP2014052807 W JP 2014052807W WO 2014148138 A1 WO2014148138 A1 WO 2014148138A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
damper
clutch
transmission device
engine
Prior art date
Application number
PCT/JP2014/052807
Other languages
English (en)
French (fr)
Inventor
達之 大橋
潤 石村
厚穂 太田
薫 飯田
Original Assignee
株式会社エフ・シ-・シ-
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013057271A external-priority patent/JP6209345B2/ja
Application filed by 株式会社エフ・シ-・シ- filed Critical 株式会社エフ・シ-・シ-
Priority to CN201480024154.2A priority Critical patent/CN105164448B/zh
Priority to DE112014001528.8T priority patent/DE112014001528T5/de
Publication of WO2014148138A1 publication Critical patent/WO2014148138A1/ja
Priority to US14/858,750 priority patent/US10443698B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/02Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions
    • F16D3/12Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted for accumulation of energy to absorb shocks or vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/133Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
    • F16F15/134Wound springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H2045/002Combinations of fluid gearings for conveying rotary motion with couplings or clutches comprising a clutch between prime mover and fluid gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0205Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type two chamber system, i.e. without a separated, closed chamber specially adapted for actuating a lock-up clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0215Details of oil circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0226Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0273Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type characterised by the type of the friction surface of the lock-up clutch
    • F16H2045/0294Single disk type lock-up clutch, i.e. using a single disc engaged between friction members

Definitions

  • the present invention relates to a power transmission device capable of optionally transmitting or interrupting a driving force of an engine to a wheel.
  • Conventional vehicle power transmission devices include those equipped with a torque converter (a so-called torque converter type starting type) and those equipped with a starting clutch (so-called starting clutch type). Have been proposed).
  • the torque converter type automatic transmission of the torque converter type can improve the starting performance by the torque amplification function of the torque converter at the time of starting.
  • the starting clutch type starting type automatic transmission power transmission efficiency can be improved because there is no slip like a torque converter during steady running, for example.
  • the torque converter type automatic transmission has a technical advantage that the torque amplifying function of the torque converter at the time of starting can improve the starting performance. For example, during steady running, the torque converter There was a technical demerit that power transmission efficiency was reduced by slipping.
  • the starting clutch type automatic transmission has a technical advantage that power transmission efficiency can be improved because there is no slip like a torque converter during steady running, for example.
  • Such a torque amplifying function as described above has a technical demerit that the starting performance is deteriorated, and the reduction ratio of the transmission must be increased to prevent the starting performance from being deteriorated.
  • a first power transmission system that transmits the driving force of the engine to the wheels via the torque converter, and the engine without using the torque converter.
  • clutch means capable of switching between the second power transmission system for transmitting the driving force to the wheels, the torque amplification function of the torque converter improves the starting performance and improves the power transmission efficiency during steady running.
  • a damper having a predetermined spring characteristic is interposed in the middle of the second power transmission system.
  • the conventional power transmission device has the following problems. Recently, in order to further improve fuel efficiency, it is required to maintain the state switched to the second power transmission system in a wider engine rotation range. That is, in the state of the first power transmission system, since power transmission is performed via the torque converter, there is a possibility that the power transmission efficiency is lowered and the fuel consumption is deteriorated. By holding in, fuel consumption can be improved.
  • the damper according to the conventional power transmission device has a single spring characteristic, when attempting to maintain the state of the second power transmission system in a wider engine rotation region, the torque fluctuation is sufficient. There is a possibility that a state in which the engine cannot be quickly attenuated (for example, a traveling state in which the engine rotates at a lower speed than the idle state in the process of deceleration of the vehicle) may occur.
  • a problem is not limited to a power transmission device having a torque converter, but includes a damper mechanism composed of a damper having a spring characteristic for attenuating engine torque fluctuations, and the engine driving force is reduced to a wheel.
  • a power transmission device having no torque converter is also common.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a power transmission device that can sufficiently attenuate torque fluctuations and further improve fuel efficiency.
  • the invention according to claim 1 includes a damper mechanism composed of a damper having a spring characteristic for attenuating engine torque fluctuations, and can selectively transmit or block engine driving force to the wheels. And a spring characteristic switching means that can arbitrarily switch the spring characteristic of the damper mechanism, and the spring characteristic switching means that is operated according to the traveling state of the vehicle, so that the spring characteristic according to the traveling state is obtained. And a spring characteristic control means that can be switched.
  • the power transmission device wherein the torque converter is mounted on a vehicle and has a torque amplification function, and the first power that transmits the driving force of the engine to the wheels via the torque converter.
  • Clutch means capable of switching between a transmission system and a second power transmission system for transmitting the driving force of the engine to the wheels without passing through the torque converter, and the damper mechanism is provided in the middle of the second power transmission system. It is characterized by being arranged in.
  • the damper mechanism includes two dampers, a first damper and a second damper, and the spring characteristic switching means By arbitrarily connecting the first damper and the second damper, it is possible to switch between a low spring rate state with a low spring constant and a high spring rate state with a high spring constant.
  • the first damper and the second damper are connected in series to the power transmission system of the engine to achieve the low spring rate state, and the power The high spring rate state can be achieved by connecting either the first damper or the second damper to the transmission system.
  • the damper mechanism includes a power transmission system having the first damper, a power transmission system having the second damper and the spring characteristic switching means. Are connected in parallel, and can be switched from the low spring rate state to the high spring rate state by setting the spring characteristic switching means to a connected state.
  • the spring characteristic switching means is brought into a connected state, so that the low spring rate state is removed. It is characterized by switching to a high spring rate state.
  • the switching from the low spring rate state to the high spring rate state is performed on the condition that the torque down control is performed for a predetermined time. To do.
  • an urging unit that constantly urges the spring characteristic switching unit in a direction in which the spring characteristic switching unit is connected is provided.
  • the first damper overlaps to a position extended in an outer circumferential direction with respect to the spring characteristic switching means. It is characterized by being arranged.
  • the power transmission device in the power transmission device according to any one of the third to ninth aspects, includes a torque converter mounted on a vehicle and having a torque amplification function, and the turbine included in the torque converter.
  • the output member is formed with a flow hole through which hydraulic oil for operating the spring characteristic switching means can flow.
  • the holding member that holds the first damper has hydraulic oil for operating the spring characteristic switching means. It is characterized in that a circulation hole is formed through which can be circulated.
  • the spring characteristic switching means is configured such that the engine is rotated at a lower rotational speed than the idle state in the process of deceleration of the vehicle.
  • the high spring rate state is switched in the resonance range with the engine in the low spring rate state
  • the low spring rate state is switched in the resonance range with the engine in the high spring rate state.
  • the spring characteristic switching means keeps the vehicle speed substantially constant when the throttle opening is lower than a predetermined value.
  • the low spring rate state is set when the vehicle is in a traveling state or a traveling state where the vehicle accelerates more slowly than a predetermined speed.
  • the spring characteristic switching means includes the high spring rate state when the vehicle is in a traveling state where the vehicle accelerates more rapidly than a predetermined value. It is characterized by doing.
  • the spring characteristic switching means sets the high spring rate state when the engine is stopped and starts the engine.
  • the high spring rate state is sometimes maintained.
  • the spring characteristic switching means is a predetermined signal in the second power transmission system in response to a signal from the spring characteristic control means. It is characterized by comprising a damper clutch that shuts off or connects the part.
  • the damper clutch is capable of slip control in which the clutch is slid in the process of switching off a predetermined portion and switching the connection in the second power transmission system. It is characterized by that.
  • the spring characteristic control means holds in advance a control map capable of referring to a control mode according to the running state of the vehicle, and controls the control map.
  • the spring characteristic switching means can be controlled according to a mode.
  • the spring characteristic control means refers to the control map only when the hydraulic fluid of the damper clutch is hotter than a predetermined value.
  • the damper clutch is disposed in the torque converter.
  • the invention according to claim 21 is the power transmission device according to claim 20, wherein the torque converter and a transmission including a transmission are arranged in the middle of the power transmission system from the engine to the wheels.
  • the clutch means is disposed in the transmission.
  • the transmission is an automatic transmission.
  • the invention according to claim 23 is the power transmission device according to claim 22, wherein the automatic transmission is a continuously variable transmission.
  • the clutch means is disposed in the torque converter.
  • the spring characteristic switching means capable of arbitrarily switching the spring characteristic of the damper mechanism and the spring characteristic switching means according to the traveling state of the vehicle are operated to switch to the spring characteristic according to the traveling state. Since the spring characteristic control means that can be used is provided, the torque fluctuation can be sufficiently attenuated and the fuel consumption can be further improved.
  • the torque converter mounted on the vehicle and having a torque amplification function, the first power transmission system for transmitting the driving force of the engine to the wheels via the torque converter, and the engine without using the torque converter Clutch means capable of switching between the second power transmission system for transmitting the driving force to the wheels, and the damper mechanism is disposed in the middle of the second power transmission system, so that in a wider engine rotation region The state of the second power transmission system can be maintained, torque fluctuations can be sufficiently attenuated, and fuel consumption can be further improved.
  • a damper mechanism has two dampers, a 1st damper and a 2nd damper, and connects the said 1st damper and a 2nd damper arbitrarily by a spring characteristic switching means.
  • the low spring rate state with a low spring constant and the high spring rate state with a high spring constant can be switched, so that the spring characteristics of the damper mechanism can be switched more appropriately and smoothly according to the traveling state.
  • the first damper and the second damper are connected in series to the engine power transmission system to achieve a low spring rate state, and the first damper is connected to the second power transmission system.
  • the spring characteristics of the damper mechanism can be switched more reliably and smoothly.
  • the power transmission system having the first damper and the power transmission system having the second damper and the spring characteristic switching means are connected in parallel, and the spring characteristic switching means Can be switched from a low spring rate state to a high spring rate state by making the connection state, so that the torque applied to the spring characteristic switching means in the high spring rate state can be reduced, and a smaller spring characteristic switching means can be used. Can do.
  • the spring characteristic switching means is switched to the connected state by switching the spring characteristic switching means to the high spring rate state. It is possible to reliably attenuate the torque fluctuation by the first damper.
  • the switching from the low spring rate state to the high spring rate state is based on the condition that the torque down control has been performed for a predetermined time. A feeling of idling due to torque loss can be reduced.
  • the urging means for constantly urging the spring characteristic switching means in the direction of setting the spring characteristic switching means is provided, the responsiveness of the spring characteristic switching means can be further improved.
  • the first damper is disposed so as to overlap with the spring characteristic switching means to the position extended in the outer circumferential direction, at least the overlap is provided in the axial direction of the power transmission device.
  • the first damper having a larger diameter can be used while the size can be reduced.
  • the torque converter mounted on the vehicle and having a torque amplifying function is provided, and hydraulic oil for operating the spring characteristic switching means is provided on the output member of the turbine of the torque converter. Since the flowable hole is formed, the responsiveness of the spring characteristic switching means can be improved.
  • the holding member that holds the first damper is formed with a flow hole through which hydraulic oil for operating the spring characteristic switching means can flow, the responsiveness of the spring characteristic switching means. Can be further improved.
  • the twelfth aspect of the present invention it is possible to reliably avoid the occurrence of resonance even when the engine is in a traveling state in which the engine is rotating at a lower rotational speed than the idle state in the process of deceleration of the vehicle. And the state of the second power transmission system can be held more appropriately.
  • the thirteenth aspect of the present invention even when the vehicle is in a traveling state where the throttle opening is lower than a predetermined value and the vehicle speed is maintained substantially constant or the vehicle is accelerating more slowly than the predetermined value, Can be reliably avoided, and the state of the second power transmission system can be more appropriately maintained.
  • a phenomenon in which the vehicle repeats vibration and vibration at the time of acceleration or deceleration (a so-called jerking phenomenon) occurs. Can be reliably avoided, and the state of the second power transmission system can be more appropriately maintained.
  • the spring characteristic switching means is in a high spring rate state when the engine is stopped, and can reliably avoid resonance of the second power transmission system when the engine is started.
  • the spring characteristic switching means is composed of the damper clutch that shuts off or connects the predetermined part of the second power transmission system by a signal from the spring characteristic control means, so that the damper is more reliably and smoothly performed.
  • the spring characteristics of the mechanism can be switched.
  • the damper clutch is capable of slip control in which the clutch is slid in the process of breaking the predetermined portion and switching the connection in the second power transmission system, the spring characteristics of the damper mechanism can be made more smoothly. Can be switched.
  • the spring characteristic control means can hold in advance a control map that can refer to a control mode according to the running state of the vehicle, and can control the spring characteristic switching means according to the control mode of the control map. Therefore, the damper mechanism can be switched more smoothly and appropriately.
  • the spring characteristic control means refers to the control map only when the hydraulic oil of the damper clutch is higher than a predetermined value, the hydraulic oil of the damper clutch is lower than the predetermined value. Sometimes, control according to the control map can be prohibited.
  • the damper clutch is disposed in the torque converter, the spring characteristics of the damper mechanism can be arbitrarily switched more efficiently and the external configuration of the torque converter is simplified. be able to.
  • a general-purpose vehicle in which a torque converter and a transmission having a transmission are arranged, the transmission is an automatic transmission, or the automatic transmission is a continuously variable transmission. Can be easily applied to.
  • the clutch means since the clutch means is disposed in the torque converter, it can switch between the first power transmission system and the second power transmission system more efficiently, and the outside of the torque converter.
  • the configuration can be simplified.
  • FIG. 1 is a longitudinal sectional view showing a power transmission device according to a first embodiment of the present invention.
  • Schematic diagram showing the concept of the power transmission device Enlarged view showing clutch means in the power transmission device Sectional view taken along line IV-IV in FIG.
  • the enlarged view which shows the internal structure of the torque converter in the same power transmission device
  • the graph which shows the spring characteristic of the damper mechanism which concerns on the same power transmission device
  • Schematic diagram showing the overall configuration including a continuously variable transmission in the power transmission device
  • Block diagram showing details of hydraulic control circuit in the power transmission device Control table of clutch means and spring characteristic switching means in the power transmission device
  • Schematic diagram showing the operation of the spring characteristic switching means in the power transmission device Time chart in the same power transmission device Control mode table of spring characteristic switching means in the power transmission device
  • Flow chart showing control contents of spring characteristic control means in the power transmission device
  • Flow chart showing the control content of the second clutch means in the power transmission device
  • the schematic diagram which shows the concept of the power transmission device which concerns on other embodiment (
  • a longitudinal sectional view showing a power transmission device according to a second embodiment of the present invention Schematic diagram showing the concept of the power transmission device
  • the enlarged view which shows the internal structure of the torque converter in the same power transmission device
  • the graph which shows the spring characteristic of the damper mechanism which concerns on the same power transmission device
  • Schematic diagram showing the overall configuration including a continuously variable transmission in the power transmission device
  • Block diagram showing details of hydraulic control circuit in the power transmission device
  • Schematic diagram showing the operation of the spring characteristic switching means in the power transmission device
  • Time chart in the same power transmission device Flow chart showing control contents of spring characteristic control means in the power transmission device
  • the schematic diagram which shows the concept of the power transmission device which concerns on other embodiment (modified example of 2nd Embodiment) of this invention.
  • the schematic diagram which shows the concept of the power transmission device which concerns on other embodiment (applied to the vehicle which does not comprise a torque converter) of this invention.
  • the power transmission device is for transmitting or blocking driving force from an engine (driving source) of an automobile (vehicle) to wheels (driving wheels), as shown in FIGS.
  • the torque converter 1, the clutch means 3, the damper mechanism 7, the damper clutch 10 as the spring characteristic switching means, and the spring characteristic control means 14 are mainly included.
  • FIG. 1 is a longitudinal sectional view showing a main part of the power transmission device according to the present embodiment
  • FIG. 2 is a schematic diagram (conceptual diagram) schematically showing the power transmission device according to the embodiment. It is.
  • a torque converter 1 and a transmission A are disposed as shown in FIG.
  • a continuously variable transmission 2 is provided in addition to the clutch means 3 and the third clutch means 8.
  • reference numeral 11 denotes an input shaft extending from the engine E.
  • the torque converter 1 has a torque amplification function that amplifies the torque from the engine E and transmits the amplified torque to the continuously variable transmission 2, and the driving force of the engine E is transmitted to rotate around the shaft.
  • the torque converter covers 1a and 13 which contain oil (hydraulic oil) in a liquid-tight state, the pump P formed on the torque converter cover 1a side and rotating together with the torque converter cover 1a, and the torque converter cover while facing the pump P And a turbine T rotatably disposed on the 13th side.
  • the input shaft 11 is connected to the torque converter cover 13 via the cover member 12.
  • the torque converter covers 13, 1a, and the pump P are rotated, the rotational torque is amplified to the turbine T side via the liquid (hydraulic oil). Being transmitted.
  • the first drive shaft 5 splined with the turbine T rotates, and the torque is transmitted to the continuously variable transmission 2 (first power transmission system).
  • the “first power transmission system for transmitting the driving force of the engine E to the wheels D via the torque converter 1” includes the torque converter cover 1a, the pump P, the turbine T, and the first drive shaft 5. It refers to the transmission system of the driving force that is formed.
  • the damper mechanism 7 is arranged in the middle of the second power transmission system and is composed of a damper having a spring characteristic for attenuating torque fluctuations.
  • the connecting member 7c is connected to the connecting portion 7e via the first damper 7a, and the inner peripheral edge of the connecting portion 7e is attached to the outer peripheral surface of the second drive shaft 6 by spline fitting.
  • a plurality of first dampers 7a and second dampers 7b are attached to the damper mechanism 7 in a substantially concentric shape (in the present embodiment, the first damper 7a on the inner side and the second damper 7b on the outer side).
  • the damper mechanism 7 and the second drive shaft 6 allow the driving force of the engine E to be transmitted to the wheels D without passing through the torque converter 1, and the first Torque fluctuations can be attenuated by the spring characteristics of the damper 7a and the second damper 7b.
  • the “second power transmission system for transmitting the driving force of the engine E to the wheel D without passing through the torque converter 1” in the present invention is the driving force formed by the torque converter cover 13, the connecting member 7c, and the second driving shaft 6. Refers to the transmission system.
  • the first drive shaft 5 is rotatable by the driving force of the engine E through the power transmission system of the torque converter 1 and is connected to the first clutch means 3a. It can be directly rotated by the driving force of the engine E without going through the power transmission system of the torque converter 1, and is connected to the second clutch means 3b.
  • the first drive shaft 5 is a cylindrical member, and the second drive shaft 6 is rotatably disposed therein, and the rotation axes thereof are the same.
  • the first drive shaft 5 and the second drive shaft 6 are formed concentrically.
  • the first drive shaft 5 is rotatable on the outside of the second drive shaft 6, and the second drive shaft 6 is rotatable on the inside of the first drive shaft 5.
  • the first drive shaft 5 and the second drive shaft 6 can be independently rotated by selective operation by the clutch means 3.
  • the clutch means 3 is operable when the automobile (vehicle) moves forward, and transmits the driving force of the engine E (drive source) to the wheels (drive wheels D) via the power transmission system of the torque converter 1.
  • the driving force of the engine E (drive source) is transmitted to the wheels (drive wheels D) without passing through the power transmission system of the first clutch means 3a and the torque converter 1 that can be in the state of the power transmission system.
  • It has the 2nd clutch means 3b which can be made into a state.
  • the first clutch means 3a and the second clutch means 3b include a plurality of drive side clutch plates 3aa and 3ba and driven side clutch plates 3ab and 3bb which are slidable in the left-right direction in the figure. Is formed to form a multi-plate clutch.
  • the driving-side clutch plate 3aa is formed on the interlocking member 15 that is connected to and interlocked with the first driving shaft 5, and the driven-side clutch plate 3ab is formed on the housing 17, and these Drive side clutch plates 3aa and driven side clutch plates 3ab are alternately stacked.
  • the adjacent drive side clutch plate 3aa and driven side clutch plate 3ab can be in pressure contact or separated (release of pressure contact force).
  • a driving side clutch plate 3ba is formed on the interlocking member 16 that is connected to and interlocked with the second driving shaft 6, and a driven side clutch plate 3bb is formed on the housing 17, and these The driving side clutch plate 3ba and the driven side clutch plate 3bb are alternately stacked. As a result, the adjacent drive side clutch plate 3ba and driven side clutch plate 3bb can be pressed against or separated (release of the pressure contact force).
  • the clutch means 3 includes a first clutch means 3a, a second clutch means 3b, and 2 corresponding to the first clutch means 3a and the second clutch means 3b in the same housing 17.
  • the first clutch means 3a or the second clutch means 3b can be optionally operated by controlling the oil pressure for operating the hydraulic pistons P1 and P2 while having two hydraulic pistons P1 and P2.
  • the hydraulic piston P1 moves to the right in the figure against the urging force of the return spring 3c, and at its tip.
  • the first clutch means 3a is pressed so that the driving side clutch plate 3aa and the driven side clutch plate 3ab are pressed against each other.
  • the drive side clutch plate 3ba and the driven side clutch plate 3bb in the second clutch means 3b are formed with concavo-convex shapes on the respective peripheral edges, and the tip of the hydraulic piston P1 is inserted in the recess. It is configured to be.
  • the hydraulic piston P2 moves to the right in FIG. 3 against the urging force of the return spring 3c, and at its tip.
  • the second clutch means 3b is pressed so that the driving side clutch plate 3ba and the driven side clutch plate 3bb are pressed against each other.
  • the first clutch means 3a or the second clutch means 3b can be optionally operated by controlling the hydraulic pressure for operating the hydraulic pistons P1, P2.
  • symbol g in the figure has shown the stopper provided in the 1st clutch means 3a side and the 2nd clutch means 3b side.
  • the casing 17 constituting the clutch means 3 is connected to an interlocking member 18 formed with a gear G1, and the gear G1 meshes with a gear G2 formed on the output shaft 20 as shown in FIG. It is configured.
  • the driving force of the engine E transmitted by the first clutch means 3a or the second clutch means 3b reaches the interlocking member 18 via the casing 17, and reaches the continuously variable transmission 2 via the output shaft 20. It is to be transmitted.
  • the third clutch means 8 comprises a multi-plate clutch similar to the first clutch means 3a and the second clutch means 3b, and the engine E (drive source) via the power transmission system of the torque converter 1 when the vehicle moves backward. Is transmitted to the wheel D (drive wheel). That is, when the shift lever of the vehicle is operated to set the R range (reverse), the idle gear Ga (see FIG. 7) is provided between the gear formed on the interlocking member 15 and the gear formed on the output shaft 20 side. So that the driving force of the engine E reaches the third clutch means 8 while reversing the rotational direction.
  • the clutch control means 4 is electrically connected to the engine control means 9 (ECU) and supplies hydraulic oil to the hydraulic chamber S1 or S2 in accordance with the traveling state of the automobile (vehicle) (vehicle speed, vehicle body inclination angle, etc.).
  • the first clutch means 3a or the second clutch means 3b is optionally operated by optionally operating the hydraulic pistons P1 and P2 by injecting at the pressure of the engine, and the engine via the power transmission system of the torque converter 1
  • the driving force of E (driving source) is transmitted to the wheel D (driving wheel) (first power transmission state), or the driving force of the engine E (driving source) is transmitted to the wheel D (without passing through the power transmission system of the torque converter 1).
  • Drive wheel (second power transmission state).
  • the friction material 10a is formed at the outer peripheral edge portion, and the connection portion 10b connected to the first damper 7a is formed at a predetermined position. And a connection position (see FIG. 10A) where the friction material 10a is in contact with and connected to the inner wall surface of the torque converter cover 13, and a separation position where the friction material 10a is separated from the inner wall surface of the torque converter cover 13 (FIG. 10). (See (b)). That is, as shown in FIG. 10, the damper clutch 10 is moved from the separated position to the connected position by the hydraulic pressure supplied from the hydraulic valve 30 acting on the front side and moving in the ⁇ direction (see FIG. 10A). In addition, the hydraulic pressure supplied from the hydraulic valve 30 acts on the back side and moves in the ⁇ direction (see FIG. 5B), so that the connection position can be switched to the separation position.
  • the hydraulic valve 30 has a piston member 30a urged by a spring sp in the direction of arrow b in FIG. 10B, and is normally operated (the solenoid 22 (SHA) is not operated). ),
  • the hydraulic oil supplied to the damper clutch 10 circulates, and the hydraulic pressure of the circulating hydraulic oil acts on the back surface of the damper clutch 10 to be in the separated position.
  • the hydraulic pressure acts on the front surface of the door to establish the connection position.
  • the driving force is transmitted from the torque converter cover 13 to the damper clutch 10 by the frictional force of the friction material 10a, so that the driving force is transmitted to the first damper via the connecting portion 10b.
  • the second drive shaft 6 is transmitted to 7a and rotates, and when the transmitted torque fluctuates, the torque fluctuation can be attenuated exclusively by the first damper 7a.
  • the first spring 7a and the second damper 7b are connected in series to the second power transmission system to thereby achieve a low spring rate state (first When the spring constant of the damper 7a is k1 and the spring constant of the second damper 7b is k2, the total spring constant is k1 ⁇ k2 / (k1 + k2)), and the second power transmission system
  • a high spring rate state can be achieved (the entire spring constant is the same as the spring constant k1 of the first damper 7a).
  • the horizontal axis in the graph of FIG. 6 indicates the twist angle of the torque converter cover 13 with respect to the second drive shaft 6 (that is, the displacement in the compression direction of the first damper 7a and the second damper 7b).
  • first damper 7a is connected to the second power transmission system to achieve a high spring rate state, but either the first damper 7a or the second damper 7b is connected ( For example, it is sufficient if only the second damper 7b is connected to the second power transmission system to achieve a high spring rate state.
  • the spring characteristic control means 14 is formed in the clutch control means 4 and can operate the spring characteristic switching means in accordance with the traveling state of the automobile (vehicle) to switch to the spring characteristic in accordance with the traveling state. is there. That is, since the clutch control means 4 can grasp the running state of the vehicle by a signal from the engine control means 9 (ECU), the clutch control means 4 operates the damper clutch 10 by a signal corresponding to the running state, and the second By disconnecting or connecting a predetermined part (part where the damper clutch 10 is disposed) in the power transmission system, a low spring rate state (the damper clutch 10 interrupts the predetermined part and the first damper 7a and the second damper 7b are It is possible to switch between a state connected in series) and a high spring rate state (a state where the damper clutch 10 connects a predetermined part and only the first damper 7a is connected).
  • a low spring rate state the damper clutch 10 interrupts the predetermined part and the first damper 7a and the second damper 7b are It
  • the spring characteristic control means 14 is a damper in a resonance range with the engine in the low spring rate state when the engine E is running at a lower rotational speed than the idle state in the process of deceleration of the vehicle.
  • the clutch 10 is switched to the high spring rate state with the connection position, and the damper clutch 10 can be switched to the low spring rate state with the damper clutch 10 in the resonance range in the high spring rate state.
  • Such control can reliably avoid the occurrence of resonance even when the engine E is in a traveling state where the engine E rotates at a lower rotational speed than the idle state in the process of deceleration of the vehicle.
  • the state of the second power transmission system can be appropriately maintained.
  • the state of the second power transmission system can be maintained even when the engine E has a lower rotational speed than the idle state. Energy regeneration.
  • the spring characteristic control means 14 is configured such that the damper is in a traveling state where the throttle opening is lower than a predetermined value and in a traveling state where the vehicle speed is maintained substantially constant or when the vehicle is accelerated more slowly than a predetermined value.
  • the clutch 10 can be controlled to be in the low spring rate state with the separated position.
  • the spring characteristic control means 14 is controllable so that the damper clutch 10 is in a high spring rate state with the damper clutch 10 in the connected state when the vehicle is in a traveling state where the vehicle accelerates faster than a predetermined speed.
  • the spring characteristic control means 14 is configured such that when the engine E is stopped, the damper clutch 10 is connected to a high spring rate state and the high spring rate state is maintained when the engine is started. Has been. Thereby, it is possible to reliably avoid resonance of the second power transmission system when the engine is started. In other words, resonance occurs in the region where the engine speed is higher in the high spring rate state than in the low spring rate state. Therefore, the resonance can be avoided by setting the high spring rate state when the engine is started.
  • the damper clutch 10 is connected in contact with a disconnection process of a predetermined portion in the second power transmission system and a connection switching process (that is, the separation state in which the damper clutch 10 is separated from the torque converter cover 13). It is possible to control the slipping of the clutch in the switching process). That is, by adjusting the pressure contact force of the friction material 10a of the damper clutch 10 against the inner wall surface of the torque converter cover 13, the friction material 10a is slid while being brought into contact with the torque converter cover 13, thereby controlling the capacity (the capacity of power transmission). Control).
  • the damper clutch 10 (spring characteristic switching means) that can arbitrarily switch the spring characteristics of the damper mechanism 7 and the damper clutch 10 (spring characteristic switching means) are operated according to the traveling state of the vehicle. Since the spring characteristic control means 14 capable of switching to the spring characteristic corresponding to the running state is provided, the state of the second power transmission system can be maintained in a wider engine rotation range, and the fuel consumption can be further improved. Can do.
  • the damper mechanism 7 has two dampers, a first damper 7a and a second damper 7b, and the first damper 7a and the second damper 7b by a damper clutch 10 (spring characteristic switching means). Can be switched between a low spring rate state with a low spring constant and a high spring rate state with a high spring constant, so that the spring characteristics of the damper mechanism 7 can be more appropriately and smoothly adjusted according to the running state. Can be switched.
  • the first damper 7a and the second damper 7b are connected in series to the second power transmission system so that the low spring rate state is achieved, and the second power transmission system is compared with the second power transmission system. Since either the first damper 7a or the second damper 7b can be connected to achieve a high spring rate state, the spring characteristics of the damper mechanism 7 can be switched more reliably and smoothly.
  • the spring characteristic switching means is composed of the damper clutch 10 that shuts off or connects a predetermined part in the second power transmission system by a signal from the spring characteristic control means 14, so that the spring characteristic switching means is more reliable and smooth.
  • the spring characteristics of the damper mechanism 7 can be switched.
  • the damper clutch 10 as the spring characteristic switching means can be controlled to slide by sliding the clutch in the process of shutting off a predetermined portion and switching the connection in the second power transmission system, so that the spring of the damper mechanism 7 can be made more smoothly. The characteristics can be switched.
  • the spring characteristic control means 14 holds in advance a control map (see FIG. 12) that can refer to the control mode according to the running state of the vehicle, and the damper clutch 10 (spring characteristic switching means) according to the control mode of the control map. Can be controlled. As a result, the damper mechanism 7 can be switched more smoothly and appropriately.
  • the spring characteristic control means 14 is configured to refer to the control map only when the hydraulic oil of the damper clutch 10 is hotter than a predetermined value, so that the hydraulic oil of the damper clutch 10 is more than the predetermined value. When the temperature is low (that is, when there is a possibility that the operation of the damper clutch 10 may not be performed smoothly), control according to the control map can be prohibited.
  • the damper clutch 10 spring characteristic switching means
  • the damper clutch 10 is disposed in the torque converter 1 (that is, in the torque converter cover 13), the spring characteristic of the damper mechanism 7 can be arbitrarily switched more efficiently.
  • the external configuration of the torque converter 1 can be simplified.
  • a torque converter 1 and a transmission A including a transmission are disposed in the middle of the power transmission system from the engine E to the wheels D.
  • the clutch means 3 is disposed in the transmission A, the transmission is composed of an automatic transmission, and the automatic transmission is composed of a continuously variable transmission 2, so that a torque converter 1 and a transmission including the transmission are disposed.
  • the transmission can be easily applied to a general-purpose vehicle including an automatic transmission or an automatic transmission including a continuously variable transmission 2.
  • the first clutch means 3a or the second clutch means 3b is optionally operated according to the state of the vehicle, and the engine E is driven via the power transmission system of the torque converter 1. Force is transmitted to the wheel D (drive wheel) (first power transmission system), or the driving force of the engine E is transmitted to the wheel D (drive wheel) without passing through the power transmission system of the torque converter (second power transmission system). ) Since the clutch control means 4 to be obtained is provided, it is possible to suppress the complication and enlargement of the power transmission device, improve the starting performance by the torque amplification function of the torque converter 1, and improve the power transmission efficiency during steady running. Can be improved.
  • first drive shaft 5 and the second drive shaft 6 are formed concentrically, the first drive shaft 5 and the second drive shaft 6 are respectively extended (two are provided side by side)
  • the whole power transmission device can be further reduced in size as compared with the above.
  • the second drive shaft 6 is connected to the engine E via the damper mechanism 7 that can attenuate the torque fluctuation, the vibration of the engine E transmitted to the second clutch means 3b can be attenuated.
  • the continuously variable transmission 2 in the present embodiment is referred to as CVT (Continuously Variable Transmission).
  • CVT Continuous Variable Transmission
  • the second clutch means 3b of the clutch means 3 and the wheel D are in the middle of the power transmission system from the drive source (engine E) of the vehicle to the wheels D (drive wheels).
  • the continuously variable transmission 2 is interposed between the (driving wheels).
  • the continuously variable transmission 2 has two pulleys Q1 and Q2 and a belt V suspended between them.
  • the hydraulic control circuit 21 operates the movable sheaves of the pulleys Q1 and Q2 independently of each other. The diameter of the belt V suspension is changed to perform a desired speed change.
  • the continuously variable transmission 2 is configured so that oil (operating oil) is supplied from an oil pump 27 (see FIG. 8) and the movable sheaves of the pulleys (Q1, Q2) can be operated by the oil pressure of the oil.
  • the hydraulic control circuit 21 is electrically connected to the clutch control means 4 that is electrically connected to the brake switch S1 of the brake pedal, the position sensor S2 of the shift lever, the engine control means 9 and the like in the vehicle.
  • . 7 indicates a throttle opening sensor of an accelerator pedal in the vehicle.
  • a continuously variable transmission 2 is interposed between the wheel D and the second clutch means 3b of the clutch means 3 in the middle of the power transmission system from the engine E (drive source) of the vehicle to the wheels D. Therefore, the clutch that advances the vehicle and the clutch that transmits the driving force of the engine E to the wheels D without using the power transmission system of the torque converter 1 can be combined in the second clutch means 3b.
  • reference numeral 19 denotes a differential gear provided in the vehicle.
  • Reference numeral S4 is an engine rotation sensor for detecting the rotation speed of the engine E
  • S5 is a speed sensor for detecting the rotation speed of the first drive shaft 5
  • S6 is the clutch means 3 (second clutch means 3b in this embodiment).
  • S7 indicates a secondary shaft speed sensor
  • S8 indicates a countershaft speed sensor.
  • a spring characteristic control means 14 is formed in the clutch control means 4 according to the present embodiment, and a damper clutch as a spring characteristic switching means is controlled by the spring characteristic control means 14 via the hydraulic control circuit 21. 10 is operable.
  • the clutch control means 4 and the spring characteristic control means 14 are electrically connected to the engine control means 9 (ECU), and receive the traveling state of the vehicle grasped by the engine control means 9 as an electric signal. Configured to get.
  • the spring characteristic control means 14 can operate the damper clutch 10 at an arbitrary timing according to the traveling state of the vehicle based on the received electrical signal.
  • the hydraulic control circuit 21 is mainly composed of an oil passage and a valve for connecting the oil pump 27 and an oil supply target (torque converter 1, clutch means 3, etc.), and a solenoid for opening and closing the valve.
  • reference numeral 29 denotes a regulator valve that regulates the line pressure
  • reference numeral 25 denotes a linear solenoid (LSB) that controls the control pressure of the regulator valve 29.
  • the clutch pressure for the clutch means 3 is controlled in the D range by the linear solenoid 24 (LSA)
  • the clutch pressure for the RVS CLUTCH is controlled in the R range
  • the regulator valve 29 is regulated by the linear solenoid 25 (LSB).
  • the line pressure can be controlled.
  • Reference numeral 28 denotes a manual valve that switches the supply path in accordance with the transmission range (P, R, N, D), and reference numeral 24 denotes a linear solenoid (LSA) that controls the clutch pressure.
  • LSA linear solenoid
  • the hydraulic valve 30 is connected in the middle of the oil flow path from the oil pump 27 to the torque converter 1.
  • the hydraulic valve 30 can switch the spring characteristic of the damper mechanism 7 between a low spring rate state and a high spring rate state by arbitrarily operating the damper clutch 10 (spring characteristic switching means). That is, when the hydraulic valve 30 is brought into the state shown in FIG. 10B based on the control of the spring characteristic control means 14, the damper clutch 10 is set to the separated position to be in the low spring rate state, and the hydraulic valve 30 is shown in FIG. In the state of a), the damper clutch 10 can be in the connected position and the high spring rate state can be obtained.
  • the spring characteristic control means 14 can refer to a control mode (modes 1 to 3) corresponding to the traveling state of the vehicle (in this embodiment, the vehicle speed V and the throttle opening TH).
  • a control map is held in advance. According to such a control map, the state in which the damper clutch 10 is not operated is mode 1, the state in which the damper clutch 10 is slip-controlled is mode 2, the state in which the damper clutch 10 is operated is mode 3, and the vehicle speed is high, for example. In the case of (V2) or more, mode 3 is set regardless of the throttle opening.
  • mode 3 is set when the throttle opening is higher than the high opening (TH2)
  • mode 2 is set when the throttle opening is higher than the low opening (TH1) and lower than the high opening (TH2).
  • mode 3 is set when the vehicle speed is low (V1) or less
  • mode 1 is set when the vehicle speed is low (V1) or more and high (V2) or less.
  • the solenoid 22 (SHA) and the solenoid 23 (SHB) are controlled in accordance with the referenced mode, and the solenoid is set to an arbitrary solenoid (linear solenoid 24 (LSA) or linear solenoid 25 (LSB)). It is configured to be operated by supplying pressure.
  • the mark mark indicates that the solenoid pressure is supplied and the solenoid is electrically turned on
  • the cross mark indicates that the supply of the solenoid pressure is stopped and the solenoid is electrically turned off.
  • the control contents for the damper clutch 10 according to the traveling state of the vehicle (that is, the control contents of the spring characteristic control means 14) will be described based on the time chart shown in FIG.
  • the damper clutch 10 is held in the connected position and is in a high spring rate state. That is, when the engine is stopped, the damper clutch 10 is held at the connected position so as to be in a high spring rate state, and the high spring rate state is held even when the engine is started.
  • the damper clutch 10 is switched to the disengaged position, and the low spring rate state is set. If the opening degree is lower than a predetermined value and the vehicle is running at a low speed, the damper clutch 10 is held at the disengaged position and the low spring rate state is maintained.
  • the damper clutch 10 When the accelerator pedal is suddenly operated to accelerate the vehicle more rapidly than the predetermined speed, the damper clutch 10 is moved to the connected position after the slip control is performed and switched to the high spring rate state.
  • the speed is substantially constant (the throttle opening is higher than a predetermined value and the vehicle is traveling at a high speed) after the rapid acceleration, the damper clutch 10 is held at the connected position and the high spring rate state is maintained.
  • the damper clutch 10 when the operation of the accelerator pedal is stopped and the vehicle is slowly decelerated, the damper clutch 10 is moved to the separation position after the slip control is performed and switched to the low spring rate until the predetermined speed is reached. Is reached, the damper clutch 10 moves to the connected position and is switched to a high spring rate.
  • the resonance range with the engine E in the low spring rate state in FIG.
  • the low speed (V1 ) At the following vehicle speed), it switches to the high spring rate state, and at the high spring rate state, it switches to the low spring rate state at the resonance range with the engine E (at the vehicle speed of low speed (V1) or higher and high speed (V2) or lower). It is controlled as follows.
  • the control content of the damper clutch 10 in this embodiment (that is, the control content of the spring characteristic control means) will be described based on the flowchart of FIG.
  • S1 it is determined whether or not the vehicle is stopped. If it is determined that the vehicle is not stopped, the process proceeds to S2, and whether or not the second clutch means 3b is operating (that is, the torque converter 1 is turned on). Whether or not the second power transmission system is used to transmit the driving force of the engine E to the wheels D without intervention, and it is determined that the second clutch means 3b is activated to be the second power transmission system. Then, it progresses to S3 and it is determined whether hydraulic oil is hotter than predetermined value (oil for operation is temperature higher than predetermined value).
  • the process proceeds to S4, and the control map shown in FIG. 12 is referred to. That is, by switching the damper clutch 10 according to the traveling state of the vehicle, the high spring rate state and the low spring rate state are switched according to the traveling state. Then, as a result of referring to the control map, determination as to whether or not mode 3 should be set (S5) and determination as to whether or not mode 2 should be set (S6) are sequentially performed. If it is determined that the control should be performed, the process proceeds to S7 where mode 2 control (that is, slip control) is performed.
  • mode 2 control that is, slip control
  • the process proceeds to S12, where it is determined whether or not a predetermined time has elapsed from mode 1, and then it is determined that the predetermined time has elapsed. If it does, it will progress to S13 and will operate the damper clutch 10 according to the setting of mode 3 (it will move to a connection position), and will be in a high spring rate state. If it is determined in S12 that the predetermined time has not elapsed since Mode 1 (that is, the predetermined time has not elapsed since the running state of the vehicle has changed), the process proceeds to S7 and the control of mode 2 (slip) Control).
  • the process proceeds to S9, where it is determined whether or not a predetermined time has elapsed from mode 3, and then a predetermined time has elapsed.
  • the process proceeds to S10, in which the damper clutch 10 is deactivated (moved to the separated position) according to the setting of mode 1, and the low spring rate state is set.
  • the process proceeds to S7 and the control of mode 2 (slip) Control).
  • control map is not referred to, and after proceeding to S8 and setting the mode 1 , S9 and S10 are sequentially performed.
  • control map is not referred to, and after proceeding to S11 and setting the mode 3, the steps of S12 and S13 are sequentially performed.
  • the control content of the second clutch means 3b (lock-up clutch) in the present embodiment will be described based on the flowchart of FIG.
  • S1 it is determined whether or not the vehicle is stopped. If it is determined that the vehicle is not stopped, the process proceeds to S2, and the hydraulic oil in the second clutch means 3b is higher than a predetermined value (oil for operation). Is a temperature higher than a predetermined value). If it is determined that the temperature is higher than the predetermined value, the control map for LC (for the second clutch means 3b) (for example, a map that can refer to the control mode according to the traveling state of the vehicle) is referred to (S3). ) If it is determined that the control mode is to operate the second clutch means 3b as a result of referring to the control map, the process proceeds to S5, and the second clutch means 3b is operated.
  • the process proceeds to S6 and the second clutch means 3b is deactivated. If it is determined in S1 that the engine is starting or idling stop and the vehicle is stopped, or if it is determined in S2 that the hydraulic oil in the second clutch means 3b is not higher than a predetermined value. The process proceeds to S6 without referring to the control map for LC (for the second clutch means 3b), and the second clutch means 3b is deactivated.
  • a clutch means 31 (corresponding to the second clutch means 3b in the above embodiment) that can switch between the first power transmission system and the second power transmission system. May be arranged in the torque converter 1.
  • a separate clutch means 32 is connected to the upstream side of the continuously variable transmission 2 in parallel with the third clutch means 8 so that forward and backward switching can be controlled.
  • the power transmission device is for transmitting or blocking the driving force from the engine (drive source) of the automobile (vehicle) to the wheels (drive wheels).
  • the torque converter 1, the clutch means 3, the damper mechanism 33, the damper clutch 34 as a spring characteristic switching means, and the spring characteristic control means 14 are mainly included.
  • FIG. 16 is a longitudinal sectional view showing the main part of the power transmission device according to the present embodiment
  • FIG. 17 is a schematic diagram (conceptual diagram) schematically showing the power transmission device according to the embodiment. It is.
  • symbol is attached
  • the damper mechanism 33 is arranged in the middle of the second power transmission system and is configured by a damper having a spring characteristic for attenuating torque fluctuation.
  • the damper mechanism 33 includes a holding member 35 that holds the first damper 33 a and a damper clutch 34 that has the second damper 33 b, and includes a power transmission system including the holding member 35. And a power transmission system including the damper clutch 34 are connected in parallel.
  • the holding member 35 includes one end 35b connected to the connecting portion 33c via the first damper 33a, the other end 35c spline-fitted to the outer peripheral surface of the second drive shaft 6, and It has the connection part 35d connected with the damper clutch 34 via the 2 damper 33b.
  • the damper mechanism 33 and the second drive shaft 6 can transmit the driving force of the engine E to the wheels D without passing through the torque converter 1. Torque fluctuations can be attenuated by the spring characteristics of the damper 33a and the second damper 33b.
  • the “second power transmission system for transmitting the driving force of the engine E to the wheels D without passing through the torque converter 1” in the present invention is the driving force formed by the torque converter cover 13, the holding member 35, and the second driving shaft 6. Refers to the transmission system.
  • the first drive shaft 5 is rotatable by the driving force of the engine E through the power transmission system of the torque converter 1 and is connected to the first clutch means 3a. It can be directly rotated by the driving force of the engine E without going through the power transmission system of the torque converter 1, and is connected to the second clutch means 3b.
  • the first drive shaft 5 is a cylindrical member, and the second drive shaft 6 is rotatably disposed therein, and these rotations
  • the shaft is configured to be the same. That is, the first drive shaft 5 and the second drive shaft 6 are formed concentrically.
  • first drive shaft 5 is rotatable on the outside of the second drive shaft 6, and the second drive shaft 6 is rotatable on the inside of the first drive shaft 5.
  • the first drive shaft 5 and the second drive shaft 6 can be independently rotated by selective operation by the clutch means 3.
  • the friction material 34a is formed on the outer peripheral edge portion, and the second damper 33b connected to the holding member 35 via the connecting portion 35d.
  • a connection position in which the friction material 34a is held in a predetermined position and connected to the inner wall surface of the torque converter cover 13 and the friction material 34a is separated from the inner wall surface of the torque converter cover 13. It is possible to move between the separated positions (see FIG. 5B). That is, as shown in FIG. 22, the damper clutch 34 is moved from the separated position to the connected position by the hydraulic pressure supplied from the hydraulic valve 30 acting on the front side and moving in the ⁇ direction (see FIG. 22A). In addition, the hydraulic pressure supplied from the hydraulic valve 30 acts on the back side and moves in the ⁇ direction (see FIG. 5B), so that the connection position can be switched to the separation position.
  • the hydraulic valve 30 has a piston member 30a urged by a spring sp in the direction of arrow b in FIG. 22B, and is normally operated (the solenoid 22 (SHA) is not operated). ),
  • the hydraulic oil supplied to the damper clutch 34 circulates, and the hydraulic pressure of the circulating hydraulic oil acts on the back surface of the damper clutch 34 to be in the separated position.
  • the hydraulic pressure acts on the front surface of the door to establish the connection position.
  • the driving force is transmitted from the torque converter cover 13 to the damper clutch 34 by the frictional force of the friction material 34a, so that the driving force is applied to the second damper 33b and the connecting portion 35d.
  • the remaining driving force that is not transmitted by the damper clutch is transmitted from the torque converter cover 13 to the holding member 35 via the connecting portion 33c and the first damper 33a, and the second drive shaft 6 rotates.
  • the first damper 33a and the second damper 33b can attenuate the torque fluctuation.
  • the damper clutch 34 when the damper clutch 34 is in the disengaged position, only the first damper 33a is connected to the second power transmission system to thereby achieve a low spring rate state (the overall spring constant is the first damper). 33a and the spring constant k1), and when the damper clutch 34 is in the connected position, the first damper 33a and the second damper 33b are connected in parallel to the second power transmission system to achieve a high spring rate state. (When the spring constant of the first damper 33a is k1 and the spring constant of the second damper 33b is k2, the entire spring constant is (k1 + k2)).
  • the horizontal axis in the graph of FIG. 19 indicates the twist angle of the torque converter cover 13 with respect to the second drive shaft 6 (that is, the displacement in the compression direction of the first damper 33a and the second damper 33b).
  • the first damper 33a is disposed so as to overlap with the damper clutch 34 (spring characteristic switching means) to a position extended in the outer circumferential direction.
  • the power transmission system having the first damper 33a and the power transmission system having the second damper 33b and the damper clutch 34 are connected in parallel, so that the damper clutch 34 in the high spring rate state is connected to the damper clutch 34.
  • the applied torque can be reduced, and the damper clutch 34 can be reduced in size (reduced capacity) accordingly.
  • the damper clutch 34 can be reduced in size and the radial dimension can be reduced, so that the first damper 33a is disposed so as to overlap in the space (a portion extending in the outer circumferential direction of the damper clutch 34).
  • the first damper 33a having a larger diameter can be used.
  • a disc spring 36 biasing means that constantly urges the damper clutch 34 (spring characteristic switching means) in the direction in which it is connected. That is, the disc spring 36 is disposed such that one end thereof is in contact with the holding member 35 and the other end is in contact with the damper clutch 34, so that the friction material 34 a is in contact with the inner wall surface of the torque converter cover 13. 34 is energized.
  • other general-purpose urging means coil spring or the like
  • the responsiveness of the damper clutch 34 (spring characteristic switching means) can be further improved.
  • hydraulic oil for operating the damper clutch 34 can flow through the output member Ta of the turbine T of the torque converter 1.
  • a circulation hole Taa is formed, and the holding member 35 that holds the first damper 33a is formed with a circulation hole 35a through which hydraulic oil for operating the damper clutch 34 (spring characteristic switching means) can be circulated.
  • the flow hole 35a of the holding member 35 may not be formed, and only the flow hole Taa of the output member Ta may be formed. Thereby, the responsiveness of the damper clutch 34 (spring characteristic switching means) can be improved.
  • the spring characteristic control means 14 is formed in the clutch control means 4 as in the first embodiment, and operates the spring characteristic switching means according to the traveling state of the automobile (vehicle), and the spring according to the traveling state. It can be switched to characteristics. That is, since the clutch control means 4 can grasp the running state of the vehicle by a signal from the engine control means 9 (ECU), the clutch control means 4 operates the damper clutch 34 by the signal according to the running state, and the second A low spring rate state (a state in which the damper clutch 34 cuts off the predetermined part and only the first damper 33a is connected) by cutting off or connecting a predetermined part (the part where the damper clutch 34 is disposed) in the power transmission system. And a high spring rate state (a state in which the damper clutch 34 is connected to a predetermined portion and the first damper 33a and the second damper 33b are connected in parallel) can be switched.
  • ECU engine control means 9
  • the spring characteristic control means 14 is a damper in a resonance range with the engine in the low spring rate state when the engine E is running at a lower rotational speed than the idle state in the process of deceleration of the vehicle.
  • the clutch 34 can be switched to the high spring rate state with the connection position, and the control can be performed so that the damper clutch 34 is switched to the low spring rate state with the damper clutch 34 in the resonance range in the high spring rate state.
  • Such control can reliably avoid the occurrence of resonance even when the engine E is in a traveling state where the engine E rotates at a lower rotational speed than the idle state in the process of deceleration of the vehicle.
  • the state of the second power transmission system can be appropriately maintained.
  • the engine E maintains the state of the second power transmission system even at a lower rotational speed than the idle state.
  • Energy regeneration can be performed in a wide rotation range of the engine E.
  • the spring characteristic control means 14 is configured such that the damper is in a traveling state where the throttle opening is lower than a predetermined value and in a traveling state where the vehicle speed is maintained substantially constant or when the vehicle is accelerated more slowly than a predetermined value.
  • the clutch 34 can be controlled to be in a separated position and to be in a low spring rate state.
  • the spring characteristic control means 14 can be controlled so that the damper clutch 34 is in a high spring rate state when the vehicle is in a traveling state where the vehicle is accelerated more rapidly than a predetermined value.
  • the damper clutch 34 is in a high spring rate state when the vehicle is in a traveling state where the vehicle is accelerated more rapidly than a predetermined value.
  • the spring characteristic control means 14 is configured such that when the engine E is stopped, the damper clutch 34 is connected to a high spring rate state and the high spring rate state is maintained when the engine is started. Has been. Thereby, it is possible to reliably avoid resonance of the second power transmission system when the engine is started. In other words, resonance occurs in the region where the engine speed is higher in the high spring rate state than in the low spring rate state. Therefore, the resonance can be avoided by setting the high spring rate state when the engine is started.
  • the damper clutch 34 is connected in contact with a disconnection process of a predetermined portion in the second power transmission system and a switching process of the connection (that is, the damper clutch 34 is separated from the torque converter cover 13). It is possible to control the slipping of the clutch in the switching process). That is, by adjusting the pressure contact force of the friction material 34a of the damper clutch 34 against the inner wall surface of the torque converter cover 13, the friction material 34a is slid while being brought into contact with the torque converter cover 13, thereby controlling the capacity (the capacity of power transmission). Control).
  • the damper clutch 34 (spring characteristic switching means) that can arbitrarily switch the spring characteristics of the damper mechanism 33 and the damper clutch 34 (spring characteristic switching means) are operated according to the traveling state of the vehicle. Since the spring characteristic control means 14 capable of switching to the spring characteristic corresponding to the running state is provided, the state of the second power transmission system can be maintained in a wider engine rotation range, and the fuel consumption can be further improved. Can do.
  • the damper mechanism 33 has two dampers, a first damper 33a and a second damper 33b, and the first damper 33a and the second damper 33b by a damper clutch 34 (spring characteristic switching means). Can be switched between a low spring rate state with a low spring constant and a high spring rate state with a high spring constant, so that the spring characteristics of the damper mechanism 33 can be more appropriately and smoothly adjusted according to the running state. Can be switched.
  • the damper mechanism 33 includes a power transmission system having the first damper 33a and a power transmission system having the second damper 33b and the damper clutch 34 connected in parallel.
  • the damper clutch 34 By setting 34 to the connected state, it is possible to switch from the low spring rate state to the high spring rate state, so that it is possible to share the torque to be received by both the first damper 33a and the second damper 33b in the high spring rate state. Therefore, the torque applied to the damper clutch 34 in the high spring rate state can be reduced, and a smaller damper clutch 34 (spring characteristic switching means) can be used.
  • the spring characteristic switching means is composed of the damper clutch 34 that shuts off or connects the predetermined part in the second power transmission system by the signal from the spring characteristic control means 14, so that it is more reliable and smooth.
  • the spring characteristic of the damper mechanism 33 can be switched.
  • the damper clutch 34 as the spring characteristic switching means can be controlled to slide by sliding the clutch in the process of shutting off a predetermined portion and switching the connection in the second power transmission system, so that the spring of the damper mechanism 33 can be made more smoothly. The characteristics can be switched.
  • the spring characteristic control means 14 holds in advance a control map (see FIG. 12) that can refer to the control mode according to the running state of the vehicle, and the damper clutch according to the control mode of the control map. 34 (spring characteristic switching means) can be controlled. Thereby, the damper mechanism 33 can be switched more smoothly and appropriately.
  • the spring characteristic control means 14 is configured to refer to the control map only when the hydraulic oil of the damper clutch 34 is hotter than a predetermined value, whereby the hydraulic oil of the damper clutch 34 exceeds the predetermined value. When the temperature is low (that is, when there is a possibility that the operation of the damper clutch 34 may not be performed smoothly), the control according to the control map can be prohibited.
  • the damper clutch 34 (spring characteristic switching means) according to the present embodiment is disposed in the torque converter 1 (that is, in the torque converter cover 13), the spring characteristics of the damper mechanism 33 can be arbitrarily switched more efficiently.
  • the external configuration of the torque converter 1 can be simplified.
  • a torque converter 1 and a transmission A including a transmission (continuously variable transmission 2) are provided in the middle of the power transmission system from the engine E to the wheels D.
  • the clutch means 3 is disposed in the transmission A, the transmission is composed of an automatic transmission, and the automatic transmission is composed of a continuously variable transmission 2, so that the torque converter 1 and the transmission are provided.
  • the transmission can be easily applied to a general-purpose vehicle in which the transmission is composed of an automatic transmission or the automatic transmission is composed of a continuously variable transmission 2.
  • the first clutch means 3a or the second clutch means 3b is optionally operated according to the state of the vehicle, and the engine E is driven via the power transmission system of the torque converter 1. Force is transmitted to the wheel D (drive wheel) (first power transmission system), or the driving force of the engine E is transmitted to the wheel D (drive wheel) without passing through the power transmission system of the torque converter (second power transmission system). ) Since the clutch control means 4 to be obtained is provided, it is possible to suppress the complication and enlargement of the power transmission device, improve the starting performance by the torque amplification function of the torque converter 1, and improve the power transmission efficiency during steady running. Can be improved.
  • first drive shaft 5 and the second drive shaft 6 are formed concentrically, the first drive shaft 5 and the second drive shaft 6 are respectively extended (two are provided side by side)
  • the whole power transmission device can be further reduced in size as compared with the above.
  • the second drive shaft 6 is connected to the engine E via the damper mechanism 33 that can attenuate the torque fluctuation, the vibration of the engine E transmitted to the second clutch means 3b can be attenuated.
  • the continuously variable transmission 2 in the present embodiment is referred to as CVT (Continuously Variable Transmission) as in the first embodiment.
  • CVT Continuous Variable Transmission
  • the second clutch means 3b of the clutch means 3 and the wheel D are in the middle of the power transmission system from the vehicle drive source (engine E) to the wheels D (drive wheels).
  • the continuously variable transmission 2 is interposed between the (driving wheels).
  • the continuously variable transmission 2 has two pulleys Q1 and Q2 and a belt V suspended between them.
  • the hydraulic control circuit 21 operates the movable sheaves of the pulleys Q1 and Q2 independently of each other. The diameter of the belt V suspension is changed to perform a desired speed change.
  • the continuously variable transmission 2 is configured such that oil (operating oil) is supplied from an oil pump 27 (see FIG. 21) and the movable sheaves of the pulleys (Q1, Q2) can be operated by the oil pressure of the oil.
  • the hydraulic control circuit 21 is electrically connected to the clutch control means 4 that is electrically connected to the brake switch S1 of the brake pedal, the position sensor S2 of the shift lever, the engine control means 9 and the like in the vehicle.
  • symbol S3 indicates a throttle opening sensor of an accelerator pedal in the vehicle.
  • a continuously variable transmission 2 is interposed between the wheel D and the second clutch means 3b of the clutch means 3 in the middle of the power transmission system from the engine E (drive source) of the vehicle to the wheels D. Therefore, the clutch that advances the vehicle and the clutch that transmits the driving force of the engine E to the wheels D without using the power transmission system of the torque converter 1 can be combined in the second clutch means 3b.
  • reference numeral 19 denotes a differential gear provided in the vehicle.
  • Reference numeral S4 is an engine rotation sensor for detecting the rotation speed of the engine E
  • S5 is a speed sensor for detecting the rotation speed of the first drive shaft 5
  • S6 is the clutch means 3 (second clutch means 3b in this embodiment).
  • S7 indicates a secondary shaft speed sensor
  • S8 indicates a countershaft speed sensor.
  • a spring characteristic control means 14 is formed in the clutch control means 4 according to the present embodiment, and a damper clutch as a spring characteristic switching means is controlled by the spring characteristic control means 14 via the hydraulic control circuit 21. 34 is operable.
  • the clutch control means 4 and the spring characteristic control means 14 are electrically connected to the engine control means 9 (ECU), and receive the traveling state of the vehicle grasped by the engine control means 9 as an electric signal. Configured to get. Therefore, the spring characteristic control means 14 can operate the damper clutch 34 at an arbitrary timing according to the traveling state of the vehicle based on the received electrical signal.
  • the hydraulic control circuit 21 is mainly composed of an oil passage and a valve for connecting an oil pump 27 and an oil supply target (torque converter 1, clutch means 3, etc.), and a solenoid for opening and closing the valve.
  • reference numeral 29 denotes a regulator valve that regulates the line pressure
  • reference numeral 25 denotes a linear solenoid (LSB) that controls the control pressure of the regulator valve 29.
  • the clutch pressure for the clutch means 3 is controlled in the D range by the linear solenoid 24 (LSA)
  • the clutch pressure for the RVS CLUTCH is controlled in the R range
  • the regulator valve 29 is regulated by the linear solenoid 25 (LSB).
  • the line pressure can be controlled.
  • Reference numeral 28 denotes a manual valve that switches the supply path in accordance with the transmission range (P, R, N, D), and reference numeral 24 denotes a linear solenoid (LSA) that controls the clutch pressure.
  • LSA linear solenoid
  • the hydraulic valve 30 is connected in the middle of the oil flow path from the oil pump 27 to the torque converter 1.
  • the hydraulic valve 30 can arbitrarily switch a spring characteristic of the damper mechanism 33 between a low spring rate state and a high spring rate state by arbitrarily operating a damper clutch 34 (spring characteristic switching means). That is, when the hydraulic valve 30 is brought into the state of FIG. 22 (b) based on the control of the spring characteristic control means 14, the damper clutch 34 is set to the separated position to be in the low spring rate state, and the hydraulic valve 30 is shown in FIG. In the state of a), the damper clutch 34 can be in the connected position and the high spring rate state can be obtained.
  • the spring characteristic control means 14 has a control mode (mode 1) corresponding to the running state of the vehicle (the vehicle speed V and the throttle opening TH in the present embodiment).
  • a control map that can refer to (3) to (3) is previously stored. According to such a control map, the state in which the damper clutch 34 is not operated is mode 1, the state in which the damper clutch 34 is slip-controlled is mode 2, the state in which the damper clutch 34 is operated is mode 3, and the vehicle speed is high, for example. In the case of (V2) or more, mode 3 is set regardless of the throttle opening.
  • mode 3 is set when the throttle opening is higher than the high opening (TH2)
  • mode 2 is set when the throttle opening is higher than the low opening (TH1) and lower than the high opening (TH2).
  • mode 3 is set when the vehicle speed is low (V1) or less
  • mode 1 is set when the vehicle speed is low (V1) or more and high (V2) or less.
  • the solenoid 22 (SHA) and the solenoid 23 (SHB) are controlled in accordance with the referred mode, and the solenoid is set to an arbitrary solenoid (linear solenoid 24 (LSA) or linear solenoid 25 (LSB)). It is configured to be operated by supplying pressure.
  • the control content for the damper clutch 34 according to the running state of the vehicle (that is, the control content of the spring characteristic control means 14) will be described based on the time chart shown in FIG.
  • the damper clutch 34 is held in the connected position and is in a high spring rate state. That is, when the engine is stopped, the damper clutch 34 is held at the connected position to be in a high spring rate state, and the high spring rate state is also maintained when the engine is started.
  • the damper clutch 34 is switched to the disengaged position, and is brought into a low spring rate state.
  • the opening degree is lower than a predetermined value and the vehicle is running at a low speed, the damper clutch 34 is held at the separated position, and the low spring rate state is maintained.
  • the damper clutch 34 (spring characteristic switching means) is in the connected state on the condition that the torque reduction control of the engine E is performed, the torque applied to the first damper 33a is temporarily reduced. Accordingly, it is possible to avoid the damper clutch 34 from being connected when the first damper 33a is activated. Therefore, it is possible to reliably attenuate the torque fluctuation by the first damper 33a in the high spring rate state.
  • switching from the low spring rate state to the high spring rate state is performed under the condition that the torque down control is performed for a predetermined time. Thereby, the feeling of idling due to torque loss at the time of switching can be reduced by shortening the predetermined time.
  • the damper clutch 34 If the speed is substantially constant after the sudden acceleration (the throttle opening is higher than a predetermined value and the vehicle is traveling at a high speed), the damper clutch 34 is held at the connected position, and the high spring rate state is maintained. However, when the operation of the accelerator pedal is stopped and the vehicle is slowly decelerated, the damper clutch 34 is moved to the separation position after the slip control is performed up to the predetermined speed, and is switched to the low spring rate. Is reached, the damper clutch 34 moves to the connected position and is switched to a high spring rate.
  • the resonance range with the engine E in the low spring rate state (in FIG. 12, the low speed (V1 ) At the following vehicle speed), it switches to the high spring rate state, and at the high spring rate state, it switches to the low spring rate state at the resonance range with the engine E (in the figure, at the vehicle speed of low speed (V1) or higher and high speed (V2) or lower). It is controlled as follows. However, just before the engine E stops, when the low spring rate state is switched to the high spring rate state, the torque down control (during deceleration) is performed by the electric throttle opening control or valve lift up control of the engine E. It is configured to be done.
  • the control content of the damper clutch 34 in this embodiment (that is, the control content of the spring characteristic control means) will be described based on the flowchart of FIG.
  • S1 it is determined whether or not the vehicle is stopped. If it is determined that the vehicle is not stopped, the process proceeds to S2, and whether or not the second clutch means 3b is operating (that is, the torque converter 1 is turned on). Whether or not the second power transmission system is used to transmit the driving force of the engine E to the wheels D without intervention, and it is determined that the second clutch means 3b is activated to be the second power transmission system. Then, it progresses to S3 and it is determined whether hydraulic oil is hotter than predetermined value (oil for operation is temperature higher than predetermined value).
  • the process proceeds to S4, and the control map shown in FIG. 12 is referred to. That is, by switching the damper clutch 34 according to the traveling state of the vehicle, the high spring rate state and the low spring rate state are switched according to the traveling state. Then, as a result of referring to the control map, determination as to whether or not mode 3 should be set (S5) and determination as to whether or not mode 2 should be set (S6) are sequentially performed. If it is determined that it should be, it is determined in S7 whether or not a predetermined time has elapsed from mode 1 (that is, the necessary torque down time has elapsed).
  • S9 After performing torque-down control of the engine E, the process proceeds to S10 and mode 2 control (that is, slip control) is performed. If it is determined in S7 that the predetermined time has elapsed from mode 1, the process proceeds to S8 to end the torque-down control of the engine E, and then proceeds to S10 to perform the mode 2 control (that is, slip control). Done.
  • mode 2 control that is, slip control
  • the process proceeds to S16, where it is determined whether or not a predetermined time has elapsed from mode 1, and then it is determined that the predetermined time has elapsed. Then, after the torque-down control of the engine E is ended in S17, the process proceeds to S18, and the damper clutch 34 is operated (moved to the connection position) according to the setting of mode 3 to be in the high spring rate state. If it is determined in S16 that the predetermined time has not elapsed since Mode 1 (that is, the predetermined time has not elapsed since the running state of the vehicle has changed), the engine E torque is reduced in S7 to S9. After performing the control, the process proceeds to S10 and the mode 2 control (that is, slip control) is performed.
  • mode 1 that is, slip control
  • the torque reduction control of the engine E is terminated in S12, and then the process proceeds to S13 and a predetermined time has elapsed from mode 3. It is determined whether or not. Thereafter, when it is determined in S13 that a predetermined time has elapsed from mode 3, the process proceeds to S14, in which the damper clutch 34 is deactivated (moved to the separated position) according to the setting of mode 1, and the low spring rate state is set.
  • control map is not referred to, and after proceeding to S11 and mode 1 is set. , S12 to S14 are sequentially performed. Similarly, if it is determined in S3 that the hydraulic oil is at a temperature lower than the predetermined value, the control map is not referred to, and after proceeding to S15 and setting the mode 3, steps S16 to S18 are sequentially performed. .
  • clutch means 37 (corresponding to the second clutch means 3b of the above embodiment) that can switch between the first power transmission system and the second power transmission system. May be arranged in the torque converter 1.
  • a separate clutch means 38 is connected to the upstream side of the continuously variable transmission 2 in parallel with the third clutch means 8 so that forward and backward switching can be controlled.
  • the spring characteristic switching means (damper clutches 10 and 34) that can arbitrarily switch the spring characteristic of the damper mechanism, and the spring according to the traveling state of the vehicle Since the characteristic switching means is operated and the spring characteristic control means 14 capable of switching to the spring characteristic corresponding to the traveling state is provided, the torque fluctuation can be sufficiently attenuated and the fuel consumption can be further improved. it can.
  • the torque converter 1 mounted on the vehicle and having a torque amplifying function, and the driving force of the engine E through the torque converter 1 are converted to wheels.
  • the clutch means includes a first power transmission system that transmits the driving force of the engine E to the wheel D via the torque converter 1 and a second power transmission system that transmits the driving force of the engine E to the wheel D without passing through the torque converter 1.
  • a first power transmission system that transmits the driving force of the engine E to the wheel D via the torque converter 1
  • a second power transmission system that transmits the driving force of the engine E to the wheel D without passing through the torque converter 1.
  • it may be composed of a forward clutch 38 disposed in the middle of the power transmission system of the engine E.
  • reference numeral 39 denotes a reverse clutch disposed in the middle of the power transmission system of the engine E
  • reference numeral 34 denotes a damper clutch
  • reference numeral 33 denotes a damper mechanism provided with the damper clutch 34 and the like. Yes.
  • Such a power transmission device can be applied to a vehicle that does not include the torque converter 1.
  • the damper mechanism has two dampers, a first damper (7a, 33a) and a second damper (7b, 33b), and these connections are used as a damper clutch as a spring characteristic switching means. 10 and 34, which can be switched between a low spring rate state and a high spring rate state.
  • the damper mechanism has three or more dampers, and a plurality of spring rates corresponding to the traveling state of the vehicle by switching them. You may make it switch to a state.
  • the plurality of dampers in the present embodiment, the first dampers (7a, 33a) and the second dampers (7b, 33b)
  • the damper characteristic switching means is configured by the damper clutches 10 and 34, it may be a switching means of a form different from the clutch.
  • the damper mechanism may have a single damper, and the spring characteristic can be arbitrarily switched by changing the damper support portion by the damper characteristic switching means.
  • the clutch means includes a first power transmission system that transmits the driving force of the engine E to the wheel D via the torque converter 1 and a second power that transmits the driving force of the engine E to the wheel D without passing through the torque converter 1.
  • the present invention is not limited to switching between the transmission system and other forms.
  • Spring characteristic switching means capable of arbitrarily switching the spring characteristic of the damper mechanism, and spring characteristic control means capable of operating the spring characteristic switching means according to the traveling state of the vehicle and switching to the spring characteristic according to the traveling state.
  • spring characteristic switching means capable of arbitrarily switching the spring characteristic of the damper mechanism
  • spring characteristic control means capable of operating the spring characteristic switching means according to the traveling state of the vehicle and switching to the spring characteristic according to the traveling state.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Vehicle Body Suspensions (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

 より広いエンジンの回転領域において第2動力伝達系の状態を保持させることができ、燃費をより一層向上させることができる動力伝達装置を提供する。 トルクコンバータ1を介してエンジンの駆動力を車輪に伝達させる第1動力伝達系と、トルクコンバータ1を介さずエンジンの駆動力を車輪に伝達させる第2動力伝達系とを切り替え得るクラッチ手段3と、第2動力伝達系の途中に配設されるとともに、トルク変動を減衰するためのバネ特性を有したダンパで構成されたダンパ機構7とを具備し、エンジンの駆動力を車輪に対して任意選択的に伝達又は遮断可能な動力伝達装置であって、ダンパ機構7のバネ特性を任意に切り替え得るダンパクラッチ10と、車両の走行状態に応じてダンパクラッチ10を作動させ、当該走行状態に応じたバネ特性に切り替えさせ得るバネ特性制御手段14とを備えたものである。

Description

動力伝達装置
 本発明は、エンジンの駆動力を車輪に対して任意選択的に伝達又は遮断可能な動力伝達装置に関するものである。
 従来の車両の動力伝達装置(自動変速機)においては、トルクコンバータを具備したもの(所謂トルコンタイプと称される発進方式のもの)と、発進クラッチを具備したもの(所謂発進クラッチタイプと称される発進方式のもの)とが提案されている。このうち、トルコンタイプの発進方式の自動変速機では、発進時においてトルクコンバータが有するトルク増幅機能により発進性能の向上を図ることができる。一方、発進クラッチタイプの発進方式の自動変速機では、例えば定常走行中においてはトルクコンバータの如きスリップがないため動力伝達効率を向上させることができる。
 しかるに、トルコンタイプの発進方式の自動変速機では、発進時においてトルクコンバータが有するトルク増幅機能により発進性能の向上を図ることができるという技術的メリットがあるものの、例えば定常走行中においては、トルクコンバータのスリップにより動力伝達効率が低下してしまうという技術的デメリットがあった。一方、発進クラッチタイプの発進方式の自動変速機では、例えば定常走行中においてはトルクコンバータの如きスリップがないため動力伝達効率を向上させることができるという技術的メリットがあるものの、発進時には、トルクコンバータの如きトルク増幅機能を有さないため、発進性能が低下してしまうという技術的デメリットがあるとともに、発進性能の低下を防止するには変速機の減速レシオを大きくしなければならない。
 上記の如き不具合を解消すべく、例えば特許文献1にて開示されているように、トルクコンバータを介してエンジンの駆動力を車輪に伝達させる第1動力伝達系と、トルクコンバータを介さずエンジンの駆動力を車輪に伝達させる第2動力伝達系とを切り替え得るクラッチ手段を具備させることにより、トルクコンバータのトルク増幅機能により発進性能の向上を図るとともに、定常走行中における動力伝達効率を向上させることができる動力伝達装置が提案されている。かかる従来の動力伝達装置は、第2動力伝達系の途中に所定のバネ特性を有したダンパが介装されており、クラッチ手段にて第2動力伝達系に切り替えられた状態において、当該ダンパによって、エンジンの駆動力伝達時のトルク変動を減衰し得るものとされていた。
特開2010-84828号公報
 上記従来の動力伝達装置においては、以下の如き問題があった。
 近時においては、より一層の燃費向上を図るため、第2動力伝達系に切り替えられた状態をより広いエンジン回転領域で保持させることが求められている。すなわち、第1動力伝達系の状態では、動力伝達がトルクコンバータを介して行われることから、動力伝達効率が低下して燃費が悪化する虞があるので、第2動力伝達系の状態を広い領域で保持することで、燃費を向上させることができるのである。
 しかしながら、従来の動力伝達装置に係るダンパは、単一のバネ特性を有するものであったため、より広いエンジンの回転領域において第2動力伝達系の状態を保持させようとした場合、トルク変動を十分に減衰することができない状態(例えば、車両が減速する過程においてエンジンがアイドル状態よりも低い回転数で回転している走行状態など)が生じてしまう虞があった。なお、このような問題は、トルクコンバータを有する動力伝達装置に限らず、エンジンのトルク変動を減衰するためのバネ特性を有したダンパで構成されたダンパ機構を具備し、エンジンの駆動力を車輪に対して任意選択的に伝達又は遮断可能な動力伝達装置であれば、トルクコンバータを有しないものでも共通する。
 本発明は、このような事情に鑑みてなされたもので、トルク変動を十分に減衰させることができるとともに、燃費をより一層向上させることができる動力伝達装置を提供することにある。
 請求項1記載の発明は、エンジンのトルク変動を減衰するためのバネ特性を有したダンパで構成されたダンパ機構を具備し、エンジンの駆動力を車輪に対して任意選択的に伝達又は遮断可能な動力伝達装置であって、前記ダンパ機構のバネ特性を任意に切り替え得るバネ特性切替手段と、車両の走行状態に応じて前記バネ特性切替手段を作動させ、当該走行状態に応じたバネ特性に切り替えさせ得るバネ特性制御手段とを備えたことを特徴とする。
 請求項2記載の発明は、請求項1記載の動力伝達装置において、車両に搭載されてトルク増幅機能を有するトルクコンバータと、前記トルクコンバータを介してエンジンの駆動力を車輪に伝達させる第1動力伝達系と、前記トルクコンバータを介さず前記エンジンの駆動力を前記車輪に伝達させる第2動力伝達系とを切り替え得るクラッチ手段とを具備し、前記ダンパ機構は、当該第2動力伝達系の途中に配設されたことを特徴とする。
 請求項3記載の発明は、請求項1又は請求項2記載の動力伝達装置において、前記ダンパ機構は、第1ダンパ及び第2ダンパの2つのダンパを有するとともに、前記バネ特性切替手段にて当該第1ダンパ及び第2ダンパを任意選択的に接続させることにより、バネ定数が低い低バネレート状態とバネ定数が高い高バネレート状態とを切り替えさせ得ることを特徴とする。
 請求項4記載の発明は、請求項3記載の動力伝達装置において、エンジンの動力伝達系に対して第1ダンパ及び第2ダンパを直列に接続させることにより前記低バネレート状態とするとともに、当該動力伝達系に対して第1ダンパ又は第2ダンパの何れか一方を接続させることにより前記高バネレート状態とし得ることを特徴とする。
 請求項5記載の発明は、請求項3記載の動力伝達装置において、前記ダンパ機構は、前記第1ダンパを有する動力伝達系と、前記第2ダンパ及び前記バネ特性切替手段を有する動力伝達系とが並列に接続されるとともに、当該バネ特性切替手段を接続状態とすることにより、前記低バネレート状態から高バネレート状態に切り替え得ることを特徴とする。
 請求項6記載の発明は、請求項5記載の動力伝達装置において、エンジンのトルクダウン制御が行われたことを条件として、前記バネ特性切替手段を接続状態とすることにより、前記低バネレート状態から高バネレート状態に切り替えることを特徴とする。
 請求項7記載の発明は、請求項6記載の動力伝達装置において、前記低バネレート状態から高バネレート状態への切り替えは、前記トルクダウン制御が所定時間行われたことを条件とすることを特徴とする。
 請求項8記載の発明は、請求項3~7の何れか1つに記載の動力伝達装置において、前記バネ特性切替手段を接続状態とする方向へ常時付勢する付勢手段を具備したことを特徴とする。
 請求項9記載の発明は、請求項5~8の何れか1つに記載の動力伝達装置において、前記第1ダンパは、前記バネ特性切替手段に対して外周方向に延長した位置までオーバーラップして配設されたことを特徴とする。
 請求項10記載の発明は、請求項3~9の何れか1つに記載の動力伝達装置において、車両に搭載されてトルク増幅機能を有するトルクコンバータを具備するとともに、当該トルクコンバータが有するタービンの出力部材には、前記バネ特性切替手段を作動させるための作動油が流通可能な流通孔が形成されたことを特徴とする。
 請求項11記載の発明は、請求項3~10の何れか1つに記載の動力伝達装置において、前記第1ダンパを保持する保持部材には、前記バネ特性切替手段を作動させるための作動油が流通可能な流通孔が形成されたことを特徴とする。
 請求項12記載の発明は、請求項3~11の何れか1つに記載の動力伝達装置において、前記バネ特性切替手段は、車両が減速する過程において前記エンジンがアイドル状態よりも低い回転数で回転している走行状態のとき、前記低バネレート状態におけるエンジンとの共振範囲では前記高バネレート状態に切り替えるとともに、前記高バネレート状態におけるエンジンとの共振範囲では前記低バネレート状態に切り替えることを特徴とする。
 請求項13記載の発明は、請求項3~12の何れか1つに記載の動力伝達装置において、前記バネ特性切替手段は、スロットル開度が所定より低い状態で車両の速度が略一定に保持された走行状態又は車両が所定より緩やかに加速する走行状態のとき、前記低バネレート状態とすることを特徴とする。
 請求項14記載の発明は、請求項3~13の何れか1つに記載の動力伝達装置において、前記バネ特性切替手段は、車両が所定より急加速する走行状態のとき、前記高バネレート状態とすることを特徴とする。
 請求項15記載の発明は、請求項3~14の何れか1つに記載の動力伝達装置において、前記バネ特性切替手段は、エンジンが停止するとき、前記高バネレート状態とするとともに、エンジンの始動時に当該高バネレート状態が保持されることを特徴とする。
 請求項16記載の発明は、請求項1~15の何れか1つに記載の動力伝達装置において、前記バネ特性切替手段は、前記バネ特性制御手段からの信号により前記第2動力伝達系における所定部位を遮断又は接続させるダンパクラッチから成ることを特徴とする。
 請求項17記載の発明は、請求項16記載の動力伝達装置において、前記ダンパクラッチは、前記第2動力伝達系における所定部位の遮断及び接続の切り替え過程でクラッチを滑らせる滑り制御が可能とされたことを特徴とする。
 請求項18記載の発明は、請求項17記載の動力伝達装置において、前記バネ特性制御手段は、車両の走行状態に応じた制御モードを参照可能な制御マップを予め保持し、当該制御マップの制御モードに従って前記バネ特性切替手段を制御し得ることを特徴とする。
 請求項19記載の発明は、請求項18記載の動力伝達装置において、前記バネ特性制御手段は、前記ダンパクラッチの作動油が所定値より高温のときに限り、前記制御マップを参照することを特徴とする。
 請求項20記載の発明は、請求項16~19の何れか1つに記載の動力伝達装置において、前記ダンパクラッチは、前記トルクコンバータ内に配設されたことを特徴とする。
 請求項21記載の発明は、請求項20記載の動力伝達装置において、エンジンから車輪までの動力伝達系の途中には、前記トルクコンバータと変速機を具備するトランスミッションとが配設されるとともに、当該トランスミッション内に前記クラッチ手段が配設されたことを特徴とする。
 請求項22記載の発明は、請求項21記載の動力伝達装置において、変速機は、自動変速機から成ることを特徴とする。
 請求項23記載の発明は、請求項22記載の動力伝達装置において、前記自動変速機は、無段変速機であることを特徴とする。
 請求項24記載の発明は、請求項21記載の動力伝達装置において、前記クラッチ手段は、前記トルクコンバータ内に配設されたことを特徴とする。
 請求項1の発明によれば、ダンパ機構のバネ特性を任意に切り替え得るバネ特性切替手段と、車両の走行状態に応じてバネ特性切替手段を作動させ、当該走行状態に応じたバネ特性に切り替えさせ得るバネ特性制御手段とを備えたので、トルク変動を十分に減衰させることができるとともに、燃費をより一層向上させることができる。
 請求項2の発明によれば、車両に搭載されてトルク増幅機能を有するトルクコンバータと、トルクコンバータを介してエンジンの駆動力を車輪に伝達させる第1動力伝達系と、トルクコンバータを介さずエンジンの駆動力を車輪に伝達させる第2動力伝達系とを切り替え得るクラッチ手段とを具備し、ダンパ機構は、当該第2動力伝達系の途中に配設されたので、より広いエンジンの回転領域において第2動力伝達系の状態を保持させることができ、トルク変動を十分に減衰させることができるとともに、燃費をより一層向上させることができる。
 請求項3の発明によれば、ダンパ機構は、第1ダンパ及び第2ダンパの2つのダンパを有するとともに、バネ特性切替手段にて当該第1ダンパ及び第2ダンパを任意選択的に接続させることにより、バネ定数が低い低バネレート状態とバネ定数が高い高バネレート状態とを切り替えさせ得るので、走行状態に応じて、より適切かつ円滑にダンパ機構のバネ特性を切り替えさせることができる。
 請求項4の発明によれば、エンジンの動力伝達系に対して第1ダンパ及び第2ダンパを直列に接続させることにより低バネレート状態とするとともに、当該第2動力伝達系に対して第1ダンパ又は第2ダンパの何れか一方を接続させることにより高バネレート状態とし得るので、より確実かつ円滑にダンパ機構のバネ特性を切り替えさせることができる。
 請求項5の発明によれば、ダンパ機構は、第1ダンパを有する動力伝達系と、第2ダンパ及びバネ特性切替手段を有する動力伝達系とが並列に接続されるとともに、当該バネ特性切替手段を接続状態とすることにより、低バネレート状態から高バネレート状態に切り替え得るので、高バネレート状態におけるバネ特性切替手段に付与されるトルクを低減させることができ、より小型のバネ特性切替手段を用いることができる。
 請求項6の発明によれば、エンジンのトルクダウン制御が行われたことを条件として、バネ特性切替手段を接続状態とすることにより、低バネレート状態から高バネレート状態に切り替えるので、高バネレート状態における第1ダンパによるトルク変動の減衰を確実に行わせることができる。
 請求項7の発明によれば、低バネレート状態から高バネレート状態への切り替えは、トルクダウン制御が所定時間行われたことを条件とするので、所定時間を短時間とすることで、切り替え時のトルク抜けによる空走感を低減させることができる。
 請求項8の発明によれば、バネ特性切替手段を接続状態とする方向へ常時付勢する付勢手段を具備したので、当該バネ特性切替手段の応答性をより向上させることができる。
 請求項9の発明によれば、第1ダンパは、バネ特性切替手段に対して外周方向に延長した位置までオーバーラップして配設されたので、少なくともオーバーラップ分だけ動力伝達装置の軸方向の寸法を小さくすることができるとともに、より径寸法が大きい第1ダンパを用いることができる。
 請求項10の発明によれば、車両に搭載されてトルク増幅機能を有するトルクコンバータを具備するとともに、当該トルクコンバータが有するタービンの出力部材には、バネ特性切替手段を作動させるための作動油が流通可能な流通孔が形成されたので、バネ特性切替手段の応答性を向上させることができる。
 請求項11の発明によれば、第1ダンパを保持する保持部材には、バネ特性切替手段を作動させるための作動油が流通可能な流通孔が形成されたので、バネ特性切替手段の応答性をより向上させることができる。
 請求項12の発明によれば、車両が減速する過程においてエンジンがアイドル状態よりも低い回転数で回転している走行状態のときであっても、共振が生じてしまうのを確実に回避することができ、より適切に第2動力伝達系の状態を保持させることができる。
 請求項13の発明によれば、スロットル開度が所定より低い状態で車両の速度が略一定に保持された走行状態又は車両が所定より緩やかに加速する走行状態のときであっても、こもり音が生じてしまうのを確実に回避することができ、より適切に第2動力伝達系の状態を保持させることができる。
 請求項14の発明によれば、車両が所定より急加速する走行状態のときであっても、加速時又は減速時に車両がガクガクと振動を繰り返す現象(所謂しゃくり現象:jerk)が生じてしまうのを確実に回避することができ、より適切に第2動力伝達系の状態を保持させることができる。
 請求項15の発明によれば、バネ特性切替手段は、エンジンが停止するとき、高バネレート状態とするとともに、エンジンの始動時の第2動力伝達系の共振を確実に回避させることができる。
 請求項16の発明によれば、バネ特性切替手段は、バネ特性制御手段からの信号により第2動力伝達系における所定部位を遮断又は接続させるダンパクラッチから成るので、より確実、かつ、円滑にダンパ機構のバネ特性を切り替えることができる。
 請求項17の発明によれば、ダンパクラッチは、第2動力伝達系における所定部位の遮断及び接続の切り替え過程でクラッチを滑らせる滑り制御が可能とされたので、より滑らかにダンパ機構のバネ特性を切り替えることができる。
 請求項18の発明によれば、バネ特性制御手段は、車両の走行状態に応じた制御モードを参照可能な制御マップを予め保持し、当該制御マップの制御モードに従ってバネ特性切替手段を制御し得るので、より円滑かつ適切なダンパ機構の切り替えを行わせることができる。
 請求項19の発明によれば、バネ特性制御手段は、ダンパクラッチの作動油が所定値より高温のときに限り、制御マップを参照するので、当該ダンパクラッチの作動油が所定値より低温であるとき、制御マップに従う制御を禁止することができる。
 請求項20の発明によれば、ダンパクラッチは、トルクコンバータ内に配設されたので、より効率よくダンパ機構のバネ特性を任意に切り替えることができるとともに、トルクコンバータの外部の構成を簡素化することができる。
 請求項21~23の発明によれば、トルクコンバータと変速機を具備するトランスミッションとが配設され、変速機が自動変速機から成り、或いは自動変速機が無段変速機から成る汎用的な車両に容易に適用することができる。
 請求項24の発明によれば、クラッチ手段は、トルクコンバータ内に配設されたので、より効率よく第1動力伝達系と第2動力伝達系とを切り替えることができるとともに、トルクコンバータの外部の構成を簡素化することができる。
本発明の第1の実施形態に係る動力伝達装置を示す縦断面図 同動力伝達装置の概念を示す模式図 同動力伝達装置におけるクラッチ手段を示す拡大図 図1におけるIV-IV線断面図 同動力伝達装置におけるトルクコンバータの内部構成を示す拡大図 同動力伝達装置に係るダンパ機構のバネ特性を示すグラフ 同動力伝達装置における無段変速機を含む全体の構成を示す模式図 同動力伝達装置における油圧制御回路の詳細を示すブロック図 同動力伝達装置におけるクラッチ手段及びバネ特性切替手段の制御表 同動力伝達装置におけるバネ特性切替手段の作動を示す模式図 同動力伝達装置におけるタイムチャート 同動力伝達装置におけるバネ特性切替手段の制御モード表 同動力伝達装置におけるバネ特性制御手段の制御内容を示すフローチャート 同動力伝達装置における第2クラッチ手段の制御内容を示すフローチャート 本発明の他の実施形態(第1の実施形態の変形例)に係る動力伝達装置の概念を示す模式図 本発明の第2の実施形態に係る動力伝達装置を示す縦断面図 同動力伝達装置の概念を示す模式図 同動力伝達装置におけるトルクコンバータの内部構成を示す拡大図 同動力伝達装置に係るダンパ機構のバネ特性を示すグラフ 同動力伝達装置における無段変速機を含む全体の構成を示す模式図 同動力伝達装置における油圧制御回路の詳細を示すブロック図 同動力伝達装置におけるバネ特性切替手段の作動を示す模式図 同動力伝達装置におけるタイムチャート 同動力伝達装置におけるバネ特性制御手段の制御内容を示すフローチャート 本発明の他の実施形態(第2の実施形態の変形例)に係る動力伝達装置の概念を示す模式図 本発明の他の実施形態(トルクコンバータを具備しない車両に適用)に係る動力伝達装置の概念を示す模式図
 以下、本発明の実施形態について図面を参照しながら具体的に説明する。
 第1の実施形態に係る動力伝達装置は、自動車(車両)のエンジン(駆動源)による駆動力を車輪(駆動輪)に伝達又は遮断するためのものであり、図1~5に示すように、トルクコンバータ1と、クラッチ手段3と、ダンパ機構7と、バネ特性切替手段としてのダンパクラッチ10と、バネ特性制御手段14とを主に有している。なお、図1は、本実施形態に係る動力伝達装置の主要部を表す縦断面図であり、図2は、同実施形態に係る動力伝達装置を模式化した模式図(概念図)を示すものである。
 しかるに、車両のエンジンEから車輪D(駆動輪)に至るまでの動力伝達系の途中には、図2に示すように、トルクコンバータ1及びトランスミッションAが配設されており、このうちトランスミッションAには、クラッチ手段3及び第3クラッチ手段8の他、無段変速機2(CVT)が配設されている。なお、同図中、符号11は、エンジンEから延設された入力軸を示している。
 トルクコンバータ1は、エンジンEからのトルクを増幅して無段変速機2に伝達するトルク増幅機能を有して成るもので、当該エンジンEの駆動力が伝達されて軸回りに回転可能とされるとともにオイル(作動油)を液密状態で収容したトルコンカバー1a、13と、該トルコンカバー1a側に形成されて当該トルコンカバー1aと共に回転するポンプPと、該ポンプPと対峙しつつトルコンカバー13側で回転可能に配設されたタービンTとを主に具備している。
 また、入力軸11は、カバー部材12を介してトルコンカバー13と連結されている。そして、エンジンEの駆動力にて入力軸11が回転し、カバー部材12、トルコンカバー13、1a及びポンプPが回転すると、その回転トルクが液体(作動油)を介してタービンT側にトルク増幅されつつ伝達される。しかして、トルク増幅されてタービンTが回転すると、該タービンTとスプライン嵌合した第1駆動シャフト5が回転し、無段変速機2に当該トルクが伝達される(第1動力伝達系)。なお、本発明における「トルクコンバータ1を介してエンジンEの駆動力を車輪Dに伝達させる第1動力伝達系」は、上記したトルコンカバー1a、ポンプP、タービンT、及び第1駆動シャフト5が成す駆動力の伝達系を指すものである。
 一方、ダンパ機構7は、第2動力伝達系の途中に配設されるとともに、トルク変動を減衰するためのバネ特性を有したダンパで構成されたもので、本実施形態においては、第1ダンパ7a及び第2ダンパ7bの2つのダンパと、トルコンカバー13の内周面から内側に向かって突出形成された連結部7dと、第2ダンパ7bを介して連結部7dと連結された連結部材7cとを具備している。また、連結部材7cは、第1ダンパ7aを介して連結部7eと連結されており、当該連結部7eの内周縁部が第2駆動シャフト6の外周面とスプライン嵌合して取り付けられている。しかして、ダンパ機構7には、第1ダンパ7a及び第2ダンパ7bが略同心円状(本実施形態においては、内側に第1ダンパ7a及び外側に第2ダンパ7b)に複数取り付けられている。
 これにより、エンジンEの駆動力にて入力軸11が回転すると、カバー部材12、トルコンカバー13、連結部材7c及び第2駆動シャフト6が回転し、無段変速機2にエンジンEの駆動トルクが伝達される(第2動力伝達系)。しかして、第2動力伝達系においては、ダンパ機構7と第2駆動シャフト6により、トルクコンバータ1を介さずにエンジンEの駆動力を車輪Dに伝達することが可能とされるとともに、第1ダンパ7a及び第2ダンパ7bのバネ特性により、トルク変動を減衰することが可能とされている。なお、本発明における「トルクコンバータ1を介さずエンジンEの駆動力を車輪Dに伝達させる第2動力伝達系」は、上記したトルコンカバー13、連結部材7c及び第2駆動シャフト6が成す駆動力の伝達系を指すものである。
 上記の如く、第1駆動シャフト5は、トルクコンバータ1の動力伝達系を介してエンジンEの駆動力で回転可能とされ、第1クラッチ手段3aと連結されるとともに、第2駆動シャフト6は、トルクコンバータ1の動力伝達系を介さずエンジンEの駆動力で直接回転可能とされ、第2クラッチ手段3bと連結されている。また、本実施形態においては、第1駆動シャフト5が円筒状部材とされるとともに、その内部に第2駆動シャフト6が回転自在に配設されており、これらの回転軸が同一となるよう構成されている。すなわち、当該第1駆動シャフト5と第2駆動シャフト6とは同心円状に形成されているのである。これにより、第1駆動シャフト5は、第2駆動シャフト6の外側にて回転自在とされるとともに、第2駆動シャフト6は、第1駆動シャフト5の内側で回転自在とされており、当該第1駆動シャフト5と第2駆動シャフト6とは、クラッチ手段3による選択的作動により、別個独立に回転可能とされる。
 クラッチ手段3は、自動車(車両)の前進時に作動可能とされるとともに、トルクコンバータ1の動力伝達系を介してエンジンE(駆動源)の駆動力を車輪(駆動輪D)に伝達させる第1動力伝達系の状態とし得る第1クラッチ手段3a、及びトルクコンバータ1の動力伝達系を介さずエンジンE(駆動源)の駆動力を車輪(駆動輪D)に伝達させて第2動力伝達系の状態とし得る第2クラッチ手段3bを有するものである。第1クラッチ手段3a及び第2クラッチ手段3bには、図3で示すように、同図中左右方向に対して摺動自在な複数の駆動側クラッチ板3aa、3ba及び被動側クラッチ板3ab、3bbが形成され、多板クラッチを成している。
 しかるに、第1クラッチ手段3aにおいては、第1駆動シャフト5と連結されて連動する連動部材15に駆動側クラッチ板3aaが形成されるとともに、筐体17に被動側クラッチ板3abが形成され、これら駆動側クラッチ板3aaと被動側クラッチ板3abとが交互に積層形成されている。これにより、隣り合う駆動側クラッチ板3aaと被動側クラッチ板3abとが圧接又は離間(圧接力の解放)可能となっている。
 また、第2クラッチ手段3bにおいては、第2駆動シャフト6と連結されて連動する連動部材16に駆動側クラッチ板3baが形成されるとともに、筐体17に被動側クラッチ板3bbが形成され、これら駆動側クラッチ板3baと被動側クラッチ板3bbとが交互に積層形成されている。これにより、隣り合う駆動側クラッチ板3baと被動側クラッチ板3bbとが圧接又は離間(圧接力の解放)可能となっている。
 また、かかるクラッチ手段3は、図3に示すように、同一筐体17内に第1クラッチ手段3a、第2クラッチ手段3b、及び当該第1クラッチ手段3a及び第2クラッチ手段3bに対応する2つの油圧ピストンP1、P2を有するとともに、当該油圧ピストンP1、P2を作動させる油圧を制御することにより、当該第1クラッチ手段3a又は第2クラッチ手段3bを任意選択的に作動可能とされている。
 すなわち、筐体17と油圧ピストンP1との間の油圧室S1に作動油を注入させることにより、油圧ピストンP1がリターンスプリング3cの付勢力に抗して同図中右側へ移動し、その先端で第1クラッチ手段3aを押圧して、駆動側クラッチ板3aaと被動側クラッチ板3abとを圧接させるよう構成されている。なお、第2クラッチ手段3bにおける駆動側クラッチ板3ba及び被動側クラッチ板3bbは、図4に示すように、それぞれの周縁に凹凸形状が形成されており、その凹部において油圧ピストンP1の先端が挿通されるよう構成されている。
 また、油圧ピストンP1と油圧ピストンP2との間の油圧室S2に作動油を注入させることにより、油圧ピストンP2がリターンスプリング3cの付勢力に抗して図3中右側へ移動し、その先端で第2クラッチ手段3bを押圧して、駆動側クラッチ板3baと被動側クラッチ板3bbとを圧接させるよう構成されている。これにより、油圧ピストンP1、P2を作動させる油圧を制御することにより、第1クラッチ手段3a又は第2クラッチ手段3bを任意選択的に作動可能とされている。尚、図中符号gは、第1クラッチ手段3a側及び第2クラッチ手段3b側に設けられたストッパを示している。
 クラッチ手段3を構成する筐体17は、ギアG1が形成された連動部材18と連結されており、該ギアG1は、図7に示すように、出力軸20に形成されたギアG2と噛み合って構成されている。これにより、第1クラッチ手段3a又は第2クラッチ手段3bにて伝達されたエンジンEの駆動力は、筐体17を介して連動部材18に至り、出力軸20を介して無段変速機2に伝達されるようになっている。
 一方、第3クラッチ手段8は、第1クラッチ手段3a及び第2クラッチ手段3bと同様の多板クラッチから成り、車両の後進時に、トルクコンバータ1の動力伝達系を介してエンジンE(駆動源)の駆動力を車輪D(駆動輪)に伝達させるためのものである。すなわち、車両が具備するシフトレバーを操作してRレンジ(後進)とすると、連動部材15に形成されたギアと出力軸20側に形成されたギアとの間にアイドルギアGa(図7参照)が介在して噛み合い、エンジンEの駆動力が回転方向を逆転しつつ第3クラッチ手段8に至るようになっている。
 クラッチ制御手段4は、エンジン制御手段9(ECU)と電気的に接続され、自動車(車両)の走行状態(車速や車体の傾斜角度など)に応じて、油圧室S1又はS2に作動油を所定の圧力で注入して油圧ピストンP1、P2を任意選択的に作動させることにより第1クラッチ手段3a又は第2クラッチ手段3bを任意選択的に作動させ、トルクコンバータ1の動力伝達系を介してエンジンE(駆動源)の駆動力を車輪D(駆動輪)に伝達させ(第1動力伝達状態)、又はトルクコンバータ1の動力伝達系を介さずエンジンE(駆動源)の駆動力を車輪D(駆動輪)に伝達させ(第2動力伝達状態)得るものである。
 ここで、本実施形態に係るダンパクラッチ10(バネ特性切替手段)は、外周縁部に摩擦材10aが形成されるとともに、第1ダンパ7aと接続された接続部10bが所定位置に形成されており、摩擦材10aがトルコンカバー13の内壁面に当接して接続された接続位置(図10(a)参照)と、当該摩擦材10aがトルコンカバー13の内壁面から離間した離間位置(同図(b)参照)との間で移動可能とされている。すなわち、ダンパクラッチ10は、図10に示すように、油圧バルブ30から供給された油圧が正面側に作用してα方向(同図(a)参照)に移動し、離間位置から接続位置に切替可能とされるとともに、当該油圧バルブ30から供給された油圧が背面側に作用してβ方向(同図(b)参照)に移動し、接続位置から離間位置に切替可能とされている。
 より具体的には、油圧バルブ30は、スプリングspにて図10(b)中の矢印b方向に付勢されたピストン部材30aを有しており、通常時(ソレノイド22(SHA)の非作動時)には、同図に示すように、ダンパクラッチ10に供給される作動油が循環するとともに、その循環する作動油の油圧が当該ダンパクラッチ10の背面に対して作用して離間位置とされる。そして、ソレノイド22(SHA)から油圧バルブ30に作動油が供給されると、ピストン部材30aがスプリングspの付勢力に抗して図10(a)中の矢印a方向に移動し、ダンパクラッチ10の正面に対して油圧が作用して接続位置とされる。
 そして、ダンパクラッチ10が接続位置にあるとき、摩擦材10aによる摩擦力にてトルコンカバー13から当該ダンパクラッチ10に駆動力が伝達されるので、その駆動力が接続部10bを介して第1ダンパ7aに伝達され、第2駆動シャフト6が回転することとなり、伝達されるトルクが変動した際、専ら第1ダンパ7aによって当該トルク変動を減衰し得るようになっている。
 一方、ダンパクラッチ10が離間位置にあるとき、トルコンカバー13から連結部材7cに駆動力が伝達されるので、その駆動力が第1ダンパ7a及び第2ダンパ7bを介して伝達され、第2駆動シャフト6が回転することとなり、伝達されるトルクが変動した際、第1ダンパ7a及び第2ダンパ7bの両方のダンパによって当該トルク変動を減衰し得るようになっている。
 しかして、図6に示すように、ダンパクラッチ10が離間位置にあるとき、第2動力伝達系に対して第1ダンパ7a及び第2ダンパ7bを直列に接続させることにより低バネレート状態(第1ダンパ7aのバネ定数をk1及び第2ダンパ7bのバネ定数をk2とした場合、全体のバネ定数がk1・k2/(k1+k2)とされた状態)とするとともに、当該第2動力伝達系に対して第1ダンパ7aのみを接続させることにより高バネレート状態(全体のバネ定数が第1ダンパ7aのバネ定数k1と同じ状態)とすることができる。
 なお、図6のグラフにおける横軸は、第2駆動シャフト6に対するトルコンカバー13の捩り角度(すなわち、第1ダンパ7a及び第2ダンパ7bの圧縮方向の変位)を示している。また、本実施形態においては、第2動力伝達系に対して第1ダンパ7aのみを接続させることにより高バネレート状態としているが、第1ダンパ7a又は第2ダンパ7bの何れか一方を接続させる(例えば第2動力伝達系に対して第2ダンパ7bのみを接続する)ことにより高バネレート状態とし得るものであれば足りる。
 バネ特性制御手段14は、クラッチ制御手段4に形成されたもので、自動車(車両)の走行状態に応じてバネ特性切替手段を作動させ、当該走行状態に応じたバネ特性に切り替えさせ得るものである。すなわち、クラッチ制御手段4は、エンジン制御手段9(ECU)からの信号により自動車の走行状態を把握可能とされていることから、その走行状態に応じた信号によりダンパクラッチ10を作動させ、第2動力伝達系における所定部位(ダンパクラッチ10が配設された部位)を遮断又は接続させることにより、低バネレート状態(ダンパクラッチ10が所定部位を遮断して、第1ダンパ7a及び第2ダンパ7bが直列に接続した状態)と高バネレート状態(ダンパクラッチ10が所定部位を接続して、第1ダンパ7aのみが接続した状態)とを切替可能とされているのである。
 具体的には、バネ特性制御手段14は、車両が減速する過程においてエンジンEがアイドル状態よりも低い回転数で回転している走行状態のとき、低バネレート状態におけるエンジンとの共振範囲では、ダンパクラッチ10を接続位置として高バネレート状態に切り替えるとともに、高バネレート状態におけるエンジンとの共振範囲では、ダンパクラッチ10を離間位置として低バネレート状態に切り替えるよう制御可能とされている。
 かかる制御により、車両が減速する過程においてエンジンEがアイドル状態よりも低い回転数で回転している走行状態のときであっても、共振が生じてしまうのを確実に回避することができ、より適切に第2動力伝達系の状態を保持させることができる。特に、車両が減速する過程でエネルギ回生が行われる車両においては、エンジンEがアイドル状態よりも低い回転数においても第2動力伝達系の状態を保持することができ、エンジンEの広い回転領域にてエネルギ回生を行わせることができる。
 また、本実施形態に係るバネ特性制御手段14は、スロットル開度が所定より低い状態で車両の速度が略一定に保持された走行状態又は車両が所定より緩やかに加速する走行状態のとき、ダンパクラッチ10を離間位置として低バネレート状態とするよう制御可能とされている。これにより、スロットル開度が所定より低い状態で車両の速度が略一定に保持された走行状態又は車両が所定より緩やかに加速する走行状態のときであっても、こもり音が生じてしまうのを確実に回避することができ、より適切に第2動力伝達系の状態を保持させることができる。
 さらに、本実施形態に係るバネ特性制御手段14は、車両が所定より急加速する走行状態のとき、ダンパクラッチ10を接続位置として高バネレート状態とするよう制御可能とされている。これにより、車両が所定より急加速する走行状態のときであっても、加速時又は減速時に車両がガクガクと振動を繰り返す現象(所謂しゃくり現象:jerk)が生じてしまうのを確実に回避することができ、より適切に第2動力伝達系の状態を保持させることができる。
 またさらに、本実施形態に係るバネ特性制御手段14は、エンジンEが停止するとき、ダンパクラッチ10を接続状態として高バネレート状態とするとともに、エンジンの始動時に当該高バネレート状態が保持されるよう構成されている。これにより、エンジン始動時の第2動力伝達系の共振を確実に回避させることができる。すなわち、高バネレート状態の方が低バネレート状態よりもエンジン回転数が高い領域で共振が生じることから、エンジンの始動時に高バネレート状態とすることで、共振を回避することができるのである。
 さらに、本実施形態に係るダンパクラッチ10は、第2動力伝達系における所定部位の遮断及び接続の切り替え過程(すなわち、ダンパクラッチ10がトルコンカバー13に対して離間する離間状態と当接して接続する接続状態との切り替え過程)でクラッチを滑らせる滑り制御が可能とされている。すなわち、ダンパクラッチ10の摩擦材10aのトルコンカバー13の内壁面に対する圧接力を調整して、当該摩擦材10aをトルコンカバー13に当接させつつ滑らせることにより、容量制御(動力伝達の容量を制御)を図り得るのである。
 上記実施形態によれば、ダンパ機構7のバネ特性を任意に切り替え得るダンパクラッチ10(バネ特性切替手段)と、車両の走行状態に応じてダンパクラッチ10(バネ特性切替手段)を作動させ、当該走行状態に応じたバネ特性に切り替えさせ得るバネ特性制御手段14とを備えたので、より広いエンジンの回転領域において第2動力伝達系の状態を保持させることができ、燃費をより一層向上させることができる。
 また、本実施形態に係るダンパ機構7は、第1ダンパ7a及び第2ダンパ7bの2つのダンパを有するとともに、ダンパクラッチ10(バネ特性切替手段)にて当該第1ダンパ7a及び第2ダンパ7bを任意選択的に接続させることにより、バネ定数が低い低バネレート状態とバネ定数が高い高バネレート状態とを切り替えさせ得るので、走行状態に応じて、より適切かつ円滑にダンパ機構7のバネ特性を切り替えさせることができる。
 さらに、本実施形態によれば、第2動力伝達系に対して第1ダンパ7a及び第2ダンパ7bを直列に接続させることにより低バネレート状態とするとともに、当該第2動力伝達系に対して第1ダンパ7a又は第2ダンパ7bの何れか一方を接続させることにより高バネレート状態とし得るので、より確実かつ円滑にダンパ機構7のバネ特性を切り替えさせることができる。
 またさらに、本実施形態においては、バネ特性切替手段が、バネ特性制御手段14からの信号により第2動力伝達系における所定部位を遮断又は接続させるダンパクラッチ10から成るので、より確実、かつ、円滑にダンパ機構7のバネ特性を切り替えることができる。また、バネ特性切替手段としてのダンパクラッチ10は、第2動力伝達系における所定部位の遮断及び接続の切り替え過程でクラッチを滑らせる滑り制御が可能とされたので、より滑らかにダンパ機構7のバネ特性を切り替えることができる。
 さらに、バネ特性制御手段14は、車両の走行状態に応じた制御モードを参照可能な制御マップ(図12参照)を予め保持し、当該制御マップの制御モードに従ってダンパクラッチ10(バネ特性切替手段)を制御し得るようになっている。これにより、より円滑かつ適切なダンパ機構7の切り替えを行わせることができる。特に、バネ特性制御手段14は、ダンパクラッチ10の作動油が所定値より高温のときに限り、制御マップを参照するよう構成されており、これにより、当該ダンパクラッチ10の作動油が所定値より低温であるとき(すなわち、ダンパクラッチ10の作動が円滑に行われない虞があるとき)、制御マップに従う制御を禁止することができる。
 なお、本実施形態に係るダンパクラッチ10(バネ特性切替手段)は、トルクコンバータ1内(すなわち、トルコンカバー13内)に配設されたので、より効率よくダンパ機構7のバネ特性を任意に切り替えることができるとともに、トルクコンバータ1の外部の構成を簡素化することができる。また、本実施形態においては、エンジンEから車輪Dまでの動力伝達系の途中には、トルクコンバータ1と変速機(無段変速機2)を具備するトランスミッションAとが配設されるとともに、当該トランスミッションA内にクラッチ手段3が配設され、変速機が自動変速機から成り、及び自動変速機が無段変速機2から成るので、トルクコンバータ1と変速機を具備するトランスミッションとが配設され、変速機が自動変速機から成り、或いは自動変速機が無段変速機2から成る汎用的な車両に容易に適用することができる。
 加えて、上記実施形態によれば、車両の状態に応じて第1クラッチ手段3a又は第2クラッチ手段3bを任意選択的に作動させて、トルクコンバータ1の動力伝達系を介してエンジンEの駆動力を車輪D(駆動輪)に伝達させ(第1動力伝達系)、又はトルクコンバータの動力伝達系を介さずエンジンEの駆動力を車輪D(駆動輪)に伝達させ(第2動力伝達系)得るクラッチ制御手段4を備えたので、動力伝達装置の複雑化及び大型化を抑制し、且つ、トルクコンバータ1のトルク増幅機能により発進性能の向上を図るとともに、定常走行中における動力伝達効率を向上させることができる。
 また、第1駆動シャフト5と第2駆動シャフト6とは同心円状に形成されたので、当該第1駆動シャフト5と第2駆動シャフト6とがそれぞれ延設されたもの(2本が併設されたもの)に比べ、動力伝達装置全体をより小型化することができる。さらに、第2駆動シャフト6は、トルク変動を減衰し得るダンパ機構7を介してエンジンEと連結されたので、第2クラッチ手段3bに伝達されるエンジンEの振動を減衰させることができる。
 ところで、本実施形態における無段変速機2は、CVT(Continuously Variable Transmission)と称されるものとされている。本実施形態においては、図7に示すように、車両の駆動源(エンジンE)から車輪D(駆動輪)に至る動力伝達系の途中であってクラッチ手段3の第2クラッチ手段3bと車輪D(駆動輪)との間に無段変速機2を介装させたものとされる。
 かかる無段変速機2は、2つのプーリQ1、Q2と、その間に懸架されたベルトVとを有しており、油圧制御回路21によりプーリQ1、Q2の可動シーブを動作させて互いに独立してベルトV懸架部の径を変化させ、所望の変速を行わせるものである。かかる無段変速機2は、オイルポンプ27(図8参照)からオイル(作動油)が供給されて当該オイルの油圧によりプーリ(Q1、Q2)の可動シーブを作動させ得るよう構成されている。一方、油圧制御回路21は、車両におけるブレーキペダルのブレーキスイッチS1やシフトレバーのポジションセンサS2、及びエンジン制御手段9等と電気的に接続されて成るクラッチ制御手段4と電気的に接続されている。なお、図7中符号S3は、車両におけるアクセルペダルのスロットル開度センサを示している。
 そして、車両のエンジンE(駆動源)から車輪Dに至る動力伝達系の途中であってクラッチ手段3の第2クラッチ手段3bと車輪Dとの間には、無段変速機2が介装されたので、車両を前進させるクラッチとトルクコンバータ1の動力伝達系を介さずエンジンEの駆動力を車輪Dに伝達させるクラッチとを第2クラッチ手段3bにて兼用させることができる。なお、同図中符号19は、車両が具備するディファレンシャルギアを示している。また、符号S4はエンジンEの回転速度を検出するエンジン回転センサ、S5は第1駆動シャフト5の回転速度を検出するスピードセンサ、S6はクラッチ手段3(本実施形態においては第2クラッチ手段3b)の油圧を検出する油圧スイッチ、S7はセカンダリシャフトスピードセンサ、S8はカウンタシャフトスピードセンサを示している。
 ここで、本実施形態に係るクラッチ制御手段4にバネ特性制御手段14が形成されており、当該バネ特性制御手段14による制御にて、油圧制御回路21を介してバネ特性切替手段としてのダンパクラッチ10が作動可能とされている。また、クラッチ制御手段4及びバネ特性制御手段14は、エンジン制御手段9(ECU)と電気的に接続されており、当該エンジン制御手段9にて把握される車両の走行状態を電気信号として受信し得るよう構成されている。しかして、バネ特性制御手段14は、受信した電気信号に基づき、車両の走行状態に応じてダンパクラッチ10を任意タイミングにて作動し得るものとされている。
 油圧制御回路21は、図8に示すように、オイルポンプ27とオイルの供給対象(トルクコンバータ1、クラッチ手段3等)とを連結する油路やバルブ、当該バルブを開閉するソレノイドから主に構成されている。同図中、符号29は、ライン圧を調圧するレギュレータバルブ、符号25は、レギュレータバルブ29の制御圧を制御するリニアソレノイド(LSB)を示している。そして、リニアソレノイド24(LSA)により、Dレンジではクラッチ手段3用クラッチ圧を制御し、RレンジではRVS CLUTCH用クラッチ圧を制御するとともに、リニアソレノイド25(LSB)により、レギュレータバルブ29が調圧するライン圧を制御し得るようになっている。なお、同図中符号26は、蓄圧のためのアキュムレータを示している。また、符号28は、変速機のレンジ(P、R、N、D)に応じて供給路を切り替えるマニュアルバルブ、符号24は、クラッチ圧を制御するリニアソレノイド(LSA)を示している。
 ここで、本実施形態においては、オイルポンプ27からトルクコンバータ1のオイルの流通経路途中に油圧バルブ30が接続されている。この油圧バルブ30は、ダンパクラッチ10(バネ特性切替手段)を任意に作動させて、ダンパ機構7のバネ特性を低バネレート状態と高バネレート状態との間で切り替え可能なものである。すなわち、バネ特性制御手段14の制御に基づき、油圧バルブ30が図10(b)の状態とされると、ダンパクラッチ10を離間位置として低バネレート状態とするとともに、当該油圧バルブ30が同図(a)の状態とされると、ダンパクラッチ10を接続位置として高バネレート状態とし得るのである。
 また、バネ特性制御手段14は、図12に示すように、車両の走行状態(本実施形態においては、車速V及びスロットル開度TH)に応じた制御モード(モード1~3)を参照可能な制御マップを予め保持している。かかる制御マップによれば、ダンパクラッチ10が非作動の状態をモード1、ダンパクラッチ10が滑り制御された状態をモード2、ダンパクラッチ10が作動した状態をモード3とするとともに、例えば車速が高速(V2)以上の場合、スロットル開度に関わらずモード3とする。また、車速が高速(V2)以下の場合において、スロットル開度が高開度(TH2)以上のときモード3、低開度(TH1)以上かつ高開度(TH2)以下のときモード2とするとともに、スロットル開度が全閉(TH0)のとき、車速が低速(V1)以下でモード3、低速(V1)以上かつ高速(V2)以下でモード1とされる。
 そして、図9に示すように、参照されたモードに従い、ソレノイド22(SHA)及びソレノイド23(SHB)を制御して任意のソレノイド(リニアソレノイド24(LSA)又はリニアソレノイド25(LSB))にソレノイド圧を供給して作動させ得るよう構成されている。同図中符号マル印はソレノイド圧が供給されてソレノイドを電気的にオンすることを示し、バツ印はソレノイド圧の供給が停止されてソレノイドを電気的にオフすることを示している。
 次に、車両の走行状態に応じたダンパクラッチ10に対する制御内容(すなわち、バネ特性制御手段14の制御内容)を、図11に示すタイムチャートに基づき説明する。
 先ず、エンジンの始動時においては、ダンパクラッチ10が接続位置に保持されており、高バネレート状態とされている。すなわち、エンジンが停止するとき、ダンパクラッチ10が接続位置に保持されて高バネレート状態とされており、当該高バネレート状態がエンジン始動時にも保持されているのである。
 なお、エンジン停止時においては、オイルポンプ27が停止しており、ダンパクラッチ10が容量を持たない状態であるため、当該ダンパクラッチ10が接続位置であっても厳密には「高バネレート状態」ではなく「高バネレート状態と同一状態」とされている。すなわち、エンジン停止時、オイルポンプ27が停止した状態においても、アキュムレータ26の蓄圧によって油圧バルブ30に油圧が供給されており、ダンパクラッチ10の接続状態が保持されているのである。これにより、エンジン始動時、高バネレート状態とすべくダンパクラッチ10を接続状態に切り替える必要がなく、応答性を向上させることができる。
 その後、アクセルペダル(スロットル)を緩やかに操作して車両を緩やかに加速させると、ダンパクラッチ10が離間位置に切り替えられ、低バネレート状態とされるとともに、その緩やかな加速後に略一定の速度(スロットル開度が所定より低い状態、かつ、低速走行)とされると、ダンパクラッチ10が離間位置にて保持され、低バネレート状態が維持されることとなる。
 そして、アクセルペダルを急に操作して車両を所定より急加速させると、ダンパクラッチ10は、滑り制御が行われた後、接続位置に移動して高バネレート状態に切り替えられる。その急加速後に略一定の速度(スロットル開度が所定より高い状態、かつ、高速走行)とされると、ダンパクラッチ10が接続位置にて保持され、高バネレート状態が維持されることとなる。
 しかるに、アクセルペダルの操作を止めて車両を緩やかに減速させると、所定速度までは、ダンパクラッチ10は、滑り制御が行われた後、離間位置に移動して低バネレートに切り替えられるとともに、所定速度に達すると、ダンパクラッチ10は、接続位置に移動して高バネレートに切り替えられる。本実施形態においては、車両が減速する過程においてエンジンEがアイドル状態よりも低い回転数で回転している走行状態のとき、低バネレート状態におけるエンジンEとの共振範囲(図12中、低速(V1)以下の車速時)では高バネレート状態に切り替えるとともに、高バネレート状態におけるエンジンEとの共振範囲(同図中、低速(V1)以上かつ高速(V2)以下の車速時)では低バネレート状態に切り替えるよう制御される。
 次に、本実施形態におけるダンパクラッチ10の制御内容(すなわち、バネ特性制御手段の制御内容)を図13のフローチャートに基づいて説明する。
 まず、車両が停車中であるか否かが判定され(S1)、停車中でないと判定された場合、S2に進み、第2クラッチ手段3bが作動しているか否か(すなわち、トルクコンバータ1を介さずエンジンEの駆動力を車輪Dに伝達させる第2動力伝達系とされているか否か)が判定され、第2クラッチ手段3bが作動して第2動力伝達系とされていると判定されると、S3に進み、作動油が所定値より高温(作動のためのオイルが所定値より高い温度)か否かが判定される。
 そして、S3にて作動油が所定値より高温であると判定されると、S4に進み、図12で示す制御マップが参照される。すなわち、車両の走行状態に応じてダンパクラッチ10の切り替えが行われることで、当該走行状態に応じて高バネレート状態と低バネレート状態とが切り替えられるのである。そして、制御マップの参照の結果、モード3に設定すべきか否かの判定(S5)、及びモード2に設定すべきか否かの判定(S6)が順次行われ、S6にてモード2に設定すべきと判定された場合、S7に進んでモード2の制御(すなわち、滑り制御)が行われる。
 一方、S5において、制御マップの参照の結果、モード3に設定すべきと判定された場合、S12に進み、モード1から所定時間経過したか否かが判定された後、所定時間経過したと判定されると、S13に進み、モード3の設定に従ってダンパクラッチ10を作動させ(接続位置に移動)、高バネレート状態とする。また、S12にて、モード1から所定時間経過していない(すなわち、車両の走行状態が変化してから所定時間経過していない)と判定されると、S7に進んでモード2の制御(滑り制御)が行われる。
 さらに、S6において、制御マップの参照の結果、モード2に設定すべきでないと判定されると、S9に進み、モード3から所定時間経過したか否かが判定された後、所定時間経過したと判定されると、S10に進み、モード1の設定に従ってダンパクラッチ10を非作動とし(離間位置に移動)、低バネレート状態とする。また、S9にて、モード3から所定時間経過していない(すなわち、車両の走行状態が変化してから所定時間経過していない)と判定されると、S7に進んでモード2の制御(滑り制御)が行われる。
 なお、S2において、第2クラッチ手段3bが非作動とされて第1動力伝達系とされていると判定されると、制御マップの参照は行われず、S8に進んでモード1が設定された後、S9、S10のステップが順次行われる。同様に、S3において、作動油が所定値より低温であると判定されると、制御マップの参照は行われず、S11に進んでモード3が設定された後、S12、S13のステップが順次行われる。
 次に、本実施形態における第2クラッチ手段3b(ロックアップクラッチ)の制御内容を図14のフローチャートに基づいて説明する。
 まず、車両が停車中であるか否かが判定され(S1)、停車中でないと判定された場合、S2に進み、第2クラッチ手段3bにおける作動油が所定値より高温(作動のためのオイルが所定値より高い温度)か否かが判定される。そして、所定値より高温であると判定されると、LC用(第2クラッチ手段3b用)の制御マップ(例えば、車両の走行状態に応じた制御モードを参照可能なマップ)を参照し(S3)、当該制御マップの参照の結果、第2クラッチ手段3bを作動させる制御モードであると判定された場合、S5に進み、当該第2クラッチ手段3bを作動させる。
 一方、S4において、制御マップの参照の結果、第2クラッチ手段3bを作動させない制御モードであると判定された場合、S6に進み、当該第2クラッチ手段3bを非作動とする。なお、S1において、エンジンが始動中又はアイドルストップ中であり車両が停車中であると判定された場合、或いはS2において、第2クラッチ手段3bにおける作動油が所定値より高温でないと判定された場合、LC用(第2クラッチ手段3b用)の制御マップを参照しないでS6に進み、当該第2クラッチ手段3bを非作動とする。
 しかるに、上記の動力伝達装置に代えて、例えば図15に示すように、第1動力伝達系と第2動力伝達系とを切り替え得るクラッチ手段31(上記実施形態の第2クラッチ手段3bに相当)をトルクコンバータ1内に配設させて構成してもよい。この場合、トランスミッションA内において、第3クラッチ手段8と並行して別個のクラッチ手段32を無段変速機2の上流側に接続させ、前進と後退とを切り替え制御し得るよう構成されている。このように、第1動力伝達系と第2動力伝達系とを切り替え得るクラッチ手段31をトルクコンバータ1内に配設することにより、より効率よく第1動力伝達系と第2動力伝達系とを切り替えることができるとともに、トルクコンバータ1の外部の構成を簡素化することができる。
 次に、本発明に係る第2の実施形態について説明する。
 第2の実施形態に係る動力伝達装置は、第1の実施形態と同様、自動車(車両)のエンジン(駆動源)による駆動力を車輪(駆動輪)に伝達又は遮断するためのものであり、図16~18に示すように、トルクコンバータ1と、クラッチ手段3と、ダンパ機構33と、バネ特性切替手段としてのダンパクラッチ34と、バネ特性制御手段14とを主に有している。なお、図16は、本実施形態に係る動力伝達装置の主要部を表す縦断面図であり、図17は、同実施形態に係る動力伝達装置を模式化した模式図(概念図)を示すものである。また、第1の実施形態と同様の構成要素には、同一の符号を付し、それらの詳細な説明を省略する。
 本実施形態に係るダンパ機構33は、図17に示すように、第2動力伝達系の途中に配設されるとともに、トルク変動を減衰するためのバネ特性を有したダンパで構成されたもので、本実施形態においては、第1ダンパ33a及び第2ダンパ33bの2つのダンパと、バネ特性切替手段としてのダンパクラッチ34と、トルコンカバー13の内周面から内側に向かって突出形成された連結部33cとを具備している。
 ここで、本実施形態においては、ダンパ機構33は、第1ダンパ33aを保持する保持部材35と、第2ダンパ33bを有するダンパクラッチ34とを有しており、保持部材35から成る動力伝達系と、ダンパクラッチ34から成る動力伝達系とが並列に接続されている。より具体的には、保持部材35は、第1ダンパ33aを介して連結部33cと連結された一端部35bと、第2駆動シャフト6の外周面とスプライン嵌合した他端部35cと、第2ダンパ33bを介してダンパクラッチ34と連結された連結部35dとを有している。
 これにより、エンジンEの駆動力にて入力軸11が回転すると、カバー部材12、トルコンカバー13、保持部材35及び第2駆動シャフト6が回転し、無段変速機2にエンジンEの駆動トルクが伝達される(第2動力伝達系)。しかして、第2動力伝達系においては、ダンパ機構33と第2駆動シャフト6により、トルクコンバータ1を介さずにエンジンEの駆動力を車輪Dに伝達することが可能とされるとともに、第1ダンパ33a及び第2ダンパ33bのバネ特性により、トルク変動を減衰することが可能とされている。なお、本発明における「トルクコンバータ1を介さずエンジンEの駆動力を車輪Dに伝達させる第2動力伝達系」は、上記したトルコンカバー13、保持部材35及び第2駆動シャフト6が成す駆動力の伝達系を指すものである。
 上記の如く、第1駆動シャフト5は、トルクコンバータ1の動力伝達系を介してエンジンEの駆動力で回転可能とされ、第1クラッチ手段3aと連結されるとともに、第2駆動シャフト6は、トルクコンバータ1の動力伝達系を介さずエンジンEの駆動力で直接回転可能とされ、第2クラッチ手段3bと連結されている。また、本実施形態においては、第1実施形態と同様、第1駆動シャフト5が円筒状部材とされるとともに、その内部に第2駆動シャフト6が回転自在に配設されており、これらの回転軸が同一となるよう構成されている。すなわち、当該第1駆動シャフト5と第2駆動シャフト6とは同心円状に形成されているのである。これにより、第1駆動シャフト5は、第2駆動シャフト6の外側にて回転自在とされるとともに、第2駆動シャフト6は、第1駆動シャフト5の内側で回転自在とされており、当該第1駆動シャフト5と第2駆動シャフト6とは、クラッチ手段3による選択的作動により、別個独立に回転可能とされる。
 ここで、本実施形態に係るダンパクラッチ34(バネ特性切替手段)は、外周縁部に摩擦材34aが形成されるとともに、連結部35dを介して保持部材35と連結された第2ダンパ33bが所定位置に保持されており、摩擦材34aがトルコンカバー13の内壁面に当接して接続された接続位置(図22(a)参照)と、当該摩擦材34aがトルコンカバー13の内壁面から離間した離間位置(同図(b)参照)との間で移動可能とされている。すなわち、ダンパクラッチ34は、図22に示すように、油圧バルブ30から供給された油圧が正面側に作用してα方向(同図(a)参照)に移動し、離間位置から接続位置に切替可能とされるとともに、当該油圧バルブ30から供給された油圧が背面側に作用してβ方向(同図(b)参照)に移動し、接続位置から離間位置に切替可能とされている。
 より具体的には、油圧バルブ30は、スプリングspにて図22(b)中の矢印b方向に付勢されたピストン部材30aを有しており、通常時(ソレノイド22(SHA)の非作動時)には、同図に示すように、ダンパクラッチ34に供給される作動油が循環するとともに、その循環する作動油の油圧が当該ダンパクラッチ34の背面に対して作用して離間位置とされる。そして、ソレノイド22(SHA)から油圧バルブ30に作動油が供給されると、ピストン部材30aがスプリングspの付勢力に抗して図22(a)中の矢印a方向に移動し、ダンパクラッチ34の正面に対して油圧が作用して接続位置とされる。
 そして、ダンパクラッチ34が接続位置にあるとき、摩擦材34aによる摩擦力にてトルコンカバー13から当該ダンパクラッチ34に駆動力が伝達されるので、その駆動力が第2ダンパ33b及び連結部35dを介して保持部材35に伝達されるとともに、ダンパクラッチが伝達しない残りの駆動力がトルコンカバー13から連結部33c及び第1ダンパ33aを介して保持部材35に伝達され、第2駆動シャフト6が回転することとなり、伝達されるトルクが変動した際、第1ダンパ33a及び第2ダンパ33bによって当該トルク変動を減衰し得るようになっている。
 一方、ダンパクラッチ34が離間位置にあるとき、トルコンカバー13から連結部33c及び第1ダンパ33aを介して保持部材35に伝達され、第2駆動シャフト6が回転することとなり、伝達されるトルクが変動した際、専ら第1ダンパ33aによって当該トルク変動を減衰し得るようになっている。
 しかして、図19に示すように、ダンパクラッチ34が離間位置にあるとき、第2動力伝達系に対して第1ダンパ33aのみを接続させることにより低バネレート状態(全体のバネ定数が第1ダンパ33aのバネ定数k1と同じ状態)とするとともに、ダンパクラッチ34が接続位置にあるとき、第2動力伝達系に対して第1ダンパ33a及び第2ダンパ33bを並列に接続させることにより高バネレート状態(第1ダンパ33aのバネ定数をk1及び第2ダンパ33bのバネ定数をk2とした場合、全体のバネ定数が(k1+k2)とされた状態)とすることができる。なお、図19のグラフにおける横軸は、第2駆動シャフト6に対するトルコンカバー13の捩り角度(すなわち、第1ダンパ33a及び第2ダンパ33bの圧縮方向の変位)を示している。
 ここで、本実施形態においては、図18に示すように、第1ダンパ33aは、ダンパクラッチ34(バネ特性切替手段)に対して外周方向に延長した位置までオーバーラップして配設されている。すなわち、本実施形態においては、第1ダンパ33aを有する動力伝達系と、第2ダンパ33b及びダンパクラッチ34を有する動力伝達系とが並列に接続されているので、高バネレート状態におけるダンパクラッチ34に付与されるトルクを低減させることができ、その分、ダンパクラッチ34を小型化(低容量化)することができる。しかして、ダンパクラッチ34を小型化して径方向の寸法を小さくすることができるので、そのスペース(ダンパクラッチ34の外周方向に延長した部位)に第1ダンパ33aをオーバーラップさせて配設させることができ、より径寸法が大きい第1ダンパ33aを用いることができるのである。
 さらに、本実施形態においては、図18に示すように、ダンパクラッチ34(バネ特性切替手段)を接続状態とする方向へ常時付勢する皿バネ36(付勢手段)を具備している。すなわち、皿バネ36は、一端が保持部材35に当接しつつ他端がダンパクラッチ34に当接して介装されることにより、摩擦材34aがトルコンカバー13の内壁面に当接する方向にダンパクラッチ34を付勢させているのである。なお、皿バネ36に代えて、他の汎用的な付勢手段(コイルスプリング等)としてもよい。これにより、ダンパクラッチ34(バネ特性切替手段)の応答性をより向上させることができる。
 またさらに、本実施形態においては、図18に示すように、トルクコンバータ1が有するタービンTの出力部材Taには、ダンパクラッチ34(バネ特性切替手段)を作動させるための作動油が流通可能な流通孔Taaが形成されるとともに、第1ダンパ33aを保持する保持部材35には、ダンパクラッチ34(バネ特性切替手段)を作動させるための作動油が流通可能な流通孔35aが形成されている。なお、保持部材35の流通孔35aは形成せず、出力部材Taの流通孔Taaのみ形成するようにしてもよい。これにより、ダンパクラッチ34(バネ特性切替手段)の応答性を向上させることができる。
 バネ特性制御手段14は、第1実施形態と同様、クラッチ制御手段4に形成されたもので、自動車(車両)の走行状態に応じてバネ特性切替手段を作動させ、当該走行状態に応じたバネ特性に切り替えさせ得るものである。すなわち、クラッチ制御手段4は、エンジン制御手段9(ECU)からの信号により自動車の走行状態を把握可能とされていることから、その走行状態に応じた信号によりダンパクラッチ34を作動させ、第2動力伝達系における所定部位(ダンパクラッチ34が配設された部位)を遮断又は接続させることにより、低バネレート状態(ダンパクラッチ34が所定部位を遮断して、第1ダンパ33aのみが接続した状態)と高バネレート状態(ダンパクラッチ34が所定部位を接続して、第1ダンパ33a及び第2ダンパ33bが並列に接続した状態)とを切替可能とされているのである。
 具体的には、バネ特性制御手段14は、車両が減速する過程においてエンジンEがアイドル状態よりも低い回転数で回転している走行状態のとき、低バネレート状態におけるエンジンとの共振範囲では、ダンパクラッチ34を接続位置として高バネレート状態に切り替えるとともに、高バネレート状態におけるエンジンとの共振範囲では、ダンパクラッチ34を離間位置として低バネレート状態に切り替えるよう制御可能とされている。
 かかる制御により、車両が減速する過程においてエンジンEがアイドル状態よりも低い回転数で回転している走行状態のときであっても、共振が生じてしまうのを確実に回避することができ、より適切に第2動力伝達系の状態を保持させることができる。特に、車両が減速する過程で、オルタネータ(交流発電機)等を使ってエネルギ回生が行われる車両においては、エンジンEがアイドル状態よりも低い回転数においても第2動力伝達系の状態を保持することができ、エンジンEの広い回転領域にてエネルギ回生を行わせることができる。
 また、本実施形態に係るバネ特性制御手段14は、スロットル開度が所定より低い状態で車両の速度が略一定に保持された走行状態又は車両が所定より緩やかに加速する走行状態のとき、ダンパクラッチ34を離間位置として低バネレート状態とするよう制御可能とされている。これにより、スロットル開度が所定より低い状態で車両の速度が略一定に保持された走行状態又は車両が所定より緩やかに加速する走行状態のときであっても、こもり音が生じてしまうのを確実に回避することができ、より適切に第2動力伝達系の状態を保持させることができる。
 さらに、本実施形態に係るバネ特性制御手段14は、車両が所定より急加速する走行状態のとき、ダンパクラッチ34を接続位置として高バネレート状態とするよう制御可能とされている。これにより、車両が所定より急加速する走行状態のときであっても、加速時又は減速時に車両がガクガクと振動を繰り返す現象(所謂しゃくり現象:jerk)が生じてしまうのを確実に回避することができ、より適切に第2動力伝達系の状態を保持させることができる。
 またさらに、本実施形態に係るバネ特性制御手段14は、エンジンEが停止するとき、ダンパクラッチ34を接続状態として高バネレート状態とするとともに、エンジンの始動時に当該高バネレート状態が保持されるよう構成されている。これにより、エンジン始動時の第2動力伝達系の共振を確実に回避させることができる。すなわち、高バネレート状態の方が低バネレート状態よりもエンジン回転数が高い領域で共振が生じることから、エンジンの始動時に高バネレート状態とすることで、共振を回避することができるのである。
 さらに、本実施形態に係るダンパクラッチ34は、第2動力伝達系における所定部位の遮断及び接続の切り替え過程(すなわち、ダンパクラッチ34がトルコンカバー13に対して離間する離間状態と当接して接続する接続状態との切り替え過程)でクラッチを滑らせる滑り制御が可能とされている。すなわち、ダンパクラッチ34の摩擦材34aのトルコンカバー13の内壁面に対する圧接力を調整して、当該摩擦材34aをトルコンカバー13に当接させつつ滑らせることにより、容量制御(動力伝達の容量を制御)を図り得るのである。
 上記実施形態によれば、ダンパ機構33のバネ特性を任意に切り替え得るダンパクラッチ34(バネ特性切替手段)と、車両の走行状態に応じてダンパクラッチ34(バネ特性切替手段)を作動させ、当該走行状態に応じたバネ特性に切り替えさせ得るバネ特性制御手段14とを備えたので、より広いエンジンの回転領域において第2動力伝達系の状態を保持させることができ、燃費をより一層向上させることができる。
 また、本実施形態に係るダンパ機構33は、第1ダンパ33a及び第2ダンパ33bの2つのダンパを有するとともに、ダンパクラッチ34(バネ特性切替手段)にて当該第1ダンパ33a及び第2ダンパ33bを任意選択的に接続させることにより、バネ定数が低い低バネレート状態とバネ定数が高い高バネレート状態とを切り替えさせ得るので、走行状態に応じて、より適切かつ円滑にダンパ機構33のバネ特性を切り替えさせることができる。
 さらに、本実施形態によれば、ダンパ機構33は、第1ダンパ33aを有する動力伝達系と、第2ダンパ33b及びダンパクラッチ34を有する動力伝達系とが並列に接続されるとともに、当該ダンパクラッチ34を接続状態とすることにより、低バネレート状態から高バネレート状態に切り替え得るので、高バネレート状態において第1ダンパ33aと第2ダンパ33bとの双方で受けるべきトルクを分担させることができる。したがって、高バネレート状態におけるダンパクラッチ34に付与されるトルクを低減させることができ、より小型のダンパクラッチ34(バネ特性切替手段)を用いることができる。
 またさらに、本実施形態においては、バネ特性切替手段が、バネ特性制御手段14からの信号により第2動力伝達系における所定部位を遮断又は接続させるダンパクラッチ34から成るので、より確実、かつ、円滑にダンパ機構33のバネ特性を切り替えることができる。また、バネ特性切替手段としてのダンパクラッチ34は、第2動力伝達系における所定部位の遮断及び接続の切り替え過程でクラッチを滑らせる滑り制御が可能とされたので、より滑らかにダンパ機構33のバネ特性を切り替えることができる。
 さらに、バネ特性制御手段14は、第1実施形態と同様、車両の走行状態に応じた制御モードを参照可能な制御マップ(図12参照)を予め保持し、当該制御マップの制御モードに従ってダンパクラッチ34(バネ特性切替手段)を制御し得るようになっている。これにより、より円滑かつ適切なダンパ機構33の切り替えを行わせることができる。特に、バネ特性制御手段14は、ダンパクラッチ34の作動油が所定値より高温のときに限り、制御マップを参照するよう構成されており、これにより、当該ダンパクラッチ34の作動油が所定値より低温であるとき(すなわち、ダンパクラッチ34の作動が円滑に行われない虞があるとき)、制御マップに従う制御を禁止することができる。
 なお、本実施形態に係るダンパクラッチ34(バネ特性切替手段)は、トルクコンバータ1内(すなわち、トルコンカバー13内)に配設されたので、より効率よくダンパ機構33のバネ特性を任意に切り替えることができるとともに、トルクコンバータ1の外部の構成を簡素化することができる。また、本実施形態においては、図17に示すように、エンジンEから車輪Dまでの動力伝達系の途中には、トルクコンバータ1と変速機(無段変速機2)を具備するトランスミッションAとが配設されるとともに、当該トランスミッションA内にクラッチ手段3が配設され、変速機が自動変速機から成り、及び自動変速機が無段変速機2から成るので、トルクコンバータ1と変速機を具備するトランスミッションとが配設され、変速機が自動変速機から成り、或いは自動変速機が無段変速機2から成る汎用的な車両に容易に適用することができる。
 加えて、上記実施形態によれば、車両の状態に応じて第1クラッチ手段3a又は第2クラッチ手段3bを任意選択的に作動させて、トルクコンバータ1の動力伝達系を介してエンジンEの駆動力を車輪D(駆動輪)に伝達させ(第1動力伝達系)、又はトルクコンバータの動力伝達系を介さずエンジンEの駆動力を車輪D(駆動輪)に伝達させ(第2動力伝達系)得るクラッチ制御手段4を備えたので、動力伝達装置の複雑化及び大型化を抑制し、且つ、トルクコンバータ1のトルク増幅機能により発進性能の向上を図るとともに、定常走行中における動力伝達効率を向上させることができる。
 また、第1駆動シャフト5と第2駆動シャフト6とは同心円状に形成されたので、当該第1駆動シャフト5と第2駆動シャフト6とがそれぞれ延設されたもの(2本が併設されたもの)に比べ、動力伝達装置全体をより小型化することができる。さらに、第2駆動シャフト6は、トルク変動を減衰し得るダンパ機構33を介してエンジンEと連結されたので、第2クラッチ手段3bに伝達されるエンジンEの振動を減衰させることができる。
 ところで、本実施形態における無段変速機2は、第1実施形態と同様、CVT(Continuously Variable Transmission)と称されるものとされている。本実施形態においては、図20に示すように、車両の駆動源(エンジンE)から車輪D(駆動輪)に至る動力伝達系の途中であってクラッチ手段3の第2クラッチ手段3bと車輪D(駆動輪)との間に無段変速機2を介装させたものとされる。
 かかる無段変速機2は、2つのプーリQ1、Q2と、その間に懸架されたベルトVとを有しており、油圧制御回路21によりプーリQ1、Q2の可動シーブを動作させて互いに独立してベルトV懸架部の径を変化させ、所望の変速を行わせるものである。かかる無段変速機2は、オイルポンプ27(図21参照)からオイル(作動油)が供給されて当該オイルの油圧によりプーリ(Q1、Q2)の可動シーブを作動させ得るよう構成されている。一方、油圧制御回路21は、車両におけるブレーキペダルのブレーキスイッチS1やシフトレバーのポジションセンサS2、及びエンジン制御手段9等と電気的に接続されて成るクラッチ制御手段4と電気的に接続されている。なお、図20中符号S3は、車両におけるアクセルペダルのスロットル開度センサを示している。
 そして、車両のエンジンE(駆動源)から車輪Dに至る動力伝達系の途中であってクラッチ手段3の第2クラッチ手段3bと車輪Dとの間には、無段変速機2が介装されたので、車両を前進させるクラッチとトルクコンバータ1の動力伝達系を介さずエンジンEの駆動力を車輪Dに伝達させるクラッチとを第2クラッチ手段3bにて兼用させることができる。なお、同図中符号19は、車両が具備するディファレンシャルギアを示している。また、符号S4はエンジンEの回転速度を検出するエンジン回転センサ、S5は第1駆動シャフト5の回転速度を検出するスピードセンサ、S6はクラッチ手段3(本実施形態においては第2クラッチ手段3b)の油圧を検出する油圧スイッチ、S7はセカンダリシャフトスピードセンサ、S8はカウンタシャフトスピードセンサを示している。
 ここで、本実施形態に係るクラッチ制御手段4にバネ特性制御手段14が形成されており、当該バネ特性制御手段14による制御にて、油圧制御回路21を介してバネ特性切替手段としてのダンパクラッチ34が作動可能とされている。また、クラッチ制御手段4及びバネ特性制御手段14は、エンジン制御手段9(ECU)と電気的に接続されており、当該エンジン制御手段9にて把握される車両の走行状態を電気信号として受信し得るよう構成されている。しかして、バネ特性制御手段14は、受信した電気信号に基づき、車両の走行状態に応じてダンパクラッチ34を任意タイミングにて作動し得るものとされている。
 油圧制御回路21は、図21に示すように、オイルポンプ27とオイルの供給対象(トルクコンバータ1、クラッチ手段3等)とを連結する油路やバルブ、当該バルブを開閉するソレノイドから主に構成されている。同図中、符号29は、ライン圧を調圧するレギュレータバルブ、符号25は、レギュレータバルブ29の制御圧を制御するリニアソレノイド(LSB)を示している。そして、リニアソレノイド24(LSA)により、Dレンジではクラッチ手段3用クラッチ圧を制御し、RレンジではRVS CLUTCH用クラッチ圧を制御するとともに、リニアソレノイド25(LSB)により、レギュレータバルブ29が調圧するライン圧を制御し得るようになっている。なお、同図中符号26は、蓄圧のためのアキュムレータを示している。また、符号28は、変速機のレンジ(P、R、N、D)に応じて供給路を切り替えるマニュアルバルブ、符号24は、クラッチ圧を制御するリニアソレノイド(LSA)を示している。
 ここで、本実施形態においては、オイルポンプ27からトルクコンバータ1のオイルの流通経路途中に油圧バルブ30が接続されている。この油圧バルブ30は、ダンパクラッチ34(バネ特性切替手段)を任意に作動させて、ダンパ機構33のバネ特性を低バネレート状態と高バネレート状態との間で切り替え可能なものである。すなわち、バネ特性制御手段14の制御に基づき、油圧バルブ30が図22(b)の状態とされると、ダンパクラッチ34を離間位置として低バネレート状態とするとともに、当該油圧バルブ30が同図(a)の状態とされると、ダンパクラッチ34を接続位置として高バネレート状態とし得るのである。
 また、バネ特性制御手段14は、第1実施形態と同様、図12に示すように、車両の走行状態(本実施形態においては、車速V及びスロットル開度TH)に応じた制御モード(モード1~3)を参照可能な制御マップを予め保持している。かかる制御マップによれば、ダンパクラッチ34が非作動の状態をモード1、ダンパクラッチ34が滑り制御された状態をモード2、ダンパクラッチ34が作動した状態をモード3とするとともに、例えば車速が高速(V2)以上の場合、スロットル開度に関わらずモード3とする。また、車速が高速(V2)以下の場合において、スロットル開度が高開度(TH2)以上のときモード3、低開度(TH1)以上かつ高開度(TH2)以下のときモード2とするとともに、スロットル開度が全閉(TH0)のとき、車速が低速(V1)以下でモード3、低速(V1)以上かつ高速(V2)以下でモード1とされる。そして、図9に示すように、参照されたモードに従い、ソレノイド22(SHA)及びソレノイド23(SHB)を制御して任意のソレノイド(リニアソレノイド24(LSA)又はリニアソレノイド25(LSB))にソレノイド圧を供給して作動させ得るよう構成されている。
 次に、車両の走行状態に応じたダンパクラッチ34に対する制御内容(すなわち、バネ特性制御手段14の制御内容)を、図23に示すタイムチャートに基づき説明する。
 先ず、エンジンの始動時においては、ダンパクラッチ34が接続位置に保持されており、高バネレート状態とされている。すなわち、エンジンが停止するとき、ダンパクラッチ34が接続位置に保持されて高バネレート状態とされており、当該高バネレート状態がエンジン始動時にも保持されているのである。
 なお、エンジン停止時においては、オイルポンプ27が停止しており、ダンパクラッチ34が容量を持たない状態であるため、当該ダンパクラッチ34が接続位置であっても厳密には「高バネレート状態」ではなく「高バネレート状態と同一状態」とされている。すなわち、エンジン停止時、オイルポンプ27が停止した状態においても、アキュムレータ26の蓄圧によって油圧バルブ30に油圧が供給されており、さらに皿バネ36の付勢力が付与されていることから、ダンパクラッチ34の接続状態が保持されているのである。これにより、エンジン始動時、高バネレート状態とすべくダンパクラッチ34を接続状態に切り替える必要がなく、応答性を向上させることができる。
 その後、アクセルペダル(スロットル)を緩やかに操作して車両を緩やかに加速させると、ダンパクラッチ34が離間位置に切り替えられ、低バネレート状態とされるとともに、その緩やかな加速後に略一定の速度(スロットル開度が所定より低い状態、かつ、低速走行)とされると、ダンパクラッチ34が離間位置にて保持され、低バネレート状態が維持されることとなる。
 そして、アクセルペダルを急に操作して車両を所定より急加速させると、フューエルカット等によってエンジンEのトルクダウン制御が行われるとともに、ダンパクラッチ34は、滑り制御が行われた後、接続位置に移動して高バネレート状態に切り替えられる。すなわち、本実施形態においては、エンジンEのトルクダウン制御が行われたことを条件として、ダンパクラッチ34(バネ特性切替手段)を接続状態とすることにより、低バネレート状態から高バネレート状態に切り替えるよう構成されているのである。
 このように、エンジンEのトルクダウン制御が行われたことを条件として、ダンパクラッチ34(バネ特性切替手段)を接続状態とすれば、第1ダンパ33aに付与されているトルクを一時的に低減させることができ、これにより第1ダンパ33aが作動した状態でダンパクラッチ34が接続状態となってしまうのを回避することができる。したがって、高バネレート状態における第1ダンパ33aによるトルク変動の減衰を確実に行わせることができる。また、本実施形態においては、低バネレート状態から高バネレート状態への切り替えは、トルクダウン制御が所定時間行われたことを条件としている。これにより、所定時間を短時間とすることで、切り替え時のトルク抜けによる空走感を低減させることができる。
 その急加速後に略一定の速度(スロットル開度が所定より高い状態、かつ、高速走行)とされると、ダンパクラッチ34が接続位置にて保持され、高バネレート状態が維持されることとなる。しかるに、アクセルペダルの操作を止めて車両を緩やかに減速させると、所定速度までは、ダンパクラッチ34は、滑り制御が行われた後、離間位置に移動して低バネレートに切り替えられるとともに、所定速度に達すると、ダンパクラッチ34は、接続位置に移動して高バネレートに切り替えられる。
 本実施形態においては、車両が減速する過程においてエンジンEがアイドル状態よりも低い回転数で回転している走行状態のとき、低バネレート状態におけるエンジンEとの共振範囲(図12中、低速(V1)以下の車速時)では高バネレート状態に切り替えるとともに、高バネレート状態におけるエンジンEとの共振範囲(同図中、低速(V1)以上かつ高速(V2)以下の車速時)では低バネレート状態に切り替えるよう制御される。しかるに、エンジンEが停止する直前であって、低バネレート状態から高バネレート状態に切り替えられる際には、エンジンEの電動スロットル開け制御やバルブリフトアップ制御等によって、(減速時における)トルクダウン制御が行われるよう構成されている。
 次に、本実施形態におけるダンパクラッチ34の制御内容(すなわち、バネ特性制御手段の制御内容)を図24のフローチャートに基づいて説明する。
 まず、車両が停車中であるか否かが判定され(S1)、停車中でないと判定された場合、S2に進み、第2クラッチ手段3bが作動しているか否か(すなわち、トルクコンバータ1を介さずエンジンEの駆動力を車輪Dに伝達させる第2動力伝達系とされているか否か)が判定され、第2クラッチ手段3bが作動して第2動力伝達系とされていると判定されると、S3に進み、作動油が所定値より高温(作動のためのオイルが所定値より高い温度)か否かが判定される。
 そして、S3にて作動油が所定値より高温であると判定されると、S4に進み、図12で示す制御マップが参照される。すなわち、車両の走行状態に応じてダンパクラッチ34の切り替えが行われることで、当該走行状態に応じて高バネレート状態と低バネレート状態とが切り替えられるのである。そして、制御マップの参照の結果、モード3に設定すべきか否かの判定(S5)、及びモード2に設定すべきか否かの判定(S6)が順次行われ、S6にてモード2に設定すべきと判定された場合、S7にて、モード1から所定時間経過した(すなわち必要トルクダウン時間経過した)か否かが判定され、所定時間経過していないと判定された場合は、S9にてエンジンEのトルクダウン制御を行った後、S10に進んでモード2の制御(すなわち、滑り制御)が行われる。また、S7において、モード1から所定時間経過したと判定された場合は、S8に進んでエンジンEのトルクダウン制御を終了させた後、S10に進んでモード2の制御(すなわち、滑り制御)が行われる。
 一方、S5において、制御マップの参照の結果、モード3に設定すべきと判定された場合、S16に進み、モード1から所定時間経過したか否かが判定された後、所定時間経過したと判定されると、S17にてエンジンEのトルクダウン制御を終了させた後、S18に進み、モード3の設定に従ってダンパクラッチ34を作動させ(接続位置に移動)、高バネレート状態とする。また、S16にて、モード1から所定時間経過していない(すなわち、車両の走行状態が変化してから所定時間経過していない)と判定されると、S7~S9にてエンジンEのトルクダウン制御を行った後、S10に進んでモード2の制御(すなわち、滑り制御)が行われる。
 さらに、S6において、制御マップの参照の結果、モード2に設定すべきでないと判定されると、S12にてエンジンEのトルクダウン制御を終了させた後、S13に進み、モード3から所定時間経過したか否かが判定される。その後、S13にてモード3から所定時間経過したと判定されると、S14に進み、モード1の設定に従ってダンパクラッチ34を非作動とし(離間位置に移動)、低バネレート状態とする。また、S13にて、モード3から所定時間経過していない(すなわち、車両の走行状態が変化してから所定時間経過していない)と判定されると、S10に進んでモード2の制御(滑り制御)が行われる。
 なお、S2において、第2クラッチ手段3bが非作動とされて第1動力伝達系とされていると判定されると、制御マップの参照は行われず、S11に進んでモード1が設定された後、S12~S14のステップが順次行われる。同様に、S3において、作動油が所定値より低温であると判定されると、制御マップの参照は行われず、S15に進んでモード3が設定された後、S16~S18のステップが順次行われる。
 しかるに、上記の動力伝達装置に代えて、例えば図25に示すように、第1動力伝達系と第2動力伝達系とを切り替え得るクラッチ手段37(上記実施形態の第2クラッチ手段3bに相当)をトルクコンバータ1内に配設させて構成してもよい。この場合、トランスミッションA内において、第3クラッチ手段8と並行して別個のクラッチ手段38を無段変速機2の上流側に接続させ、前進と後退とを切り替え制御し得るよう構成されている。このように、第1動力伝達系と第2動力伝達系とを切り替え得るクラッチ手段37をトルクコンバータ1内に配設することにより、より効率よく第1動力伝達系と第2動力伝達系とを切り替えることができるとともに、トルクコンバータ1の外部の構成を簡素化することができる。
 上記第1実施形態及び第2実施形態に係る動力伝達装置によれば、ダンパ機構のバネ特性を任意に切り替え得るバネ特性切替手段(ダンパクラッチ10、34)と、車両の走行状態に応じてバネ特性切替手段を作動させ、当該走行状態に応じたバネ特性に切り替えさせ得るバネ特性制御手段14とを備えたので、トルク変動を十分に減衰させることができるとともに、燃費をより一層向上させることができる。
 加えて、上記第1実施形態及び第2実施形態に係る動力伝達装置によれば、車両に搭載されてトルク増幅機能を有するトルクコンバータ1と、トルクコンバータ1を介してエンジンEの駆動力を車輪に伝達させる第1動力伝達系と、トルクコンバータ1を介さずエンジンEの駆動力を車輪Dに伝達させる第2動力伝達系とを切り替え得るクラッチ手段とを具備し、ダンパ機構(7、33)は、当該第2動力伝達系の途中に配設されたので、より広いエンジンの回転領域において第2動力伝達系の状態を保持させることができ、トルク変動を十分に減衰させることができるとともに、燃費をより一層向上させることができる。
 以上、本実施形態(第1の実施形態及び第2の実施形態)について説明したが、本発明はこれらに限定されない。クラッチ手段は、トルクコンバータ1を介してエンジンEの駆動力を車輪Dに伝達させる第1動力伝達系と、トルクコンバータ1を介さずエンジンEの駆動力を車輪Dに伝達させる第2動力伝達系とを切り替え得るものに限定されず、例えば図26に示すように、エンジンEの動力伝達系の途中に配設された前進用クラッチ38から成るものであってもよい。なお、同図中符号39は、エンジンEの動力伝達系の途中に配設された後進用クラッチ、符号34は、ダンパクラッチ、符号33は、ダンパクラッチ34等を具備したダンパ機構をそれぞれ示している。かかる動力伝達装置によれば、トルクコンバータ1を具備しない車両に対しても適用させることができる。
 さらに、本実施形態においては、ダンパ機構が第1ダンパ(7a、33a)及び第2ダンパ(7b、33b)の2つのダンパを有するものとされ、これらの接続をバネ特性切替手段としてのダンパクラッチ10、34にて切り替え、低バネレート状態と高バネレート状態とで切り替え可能とされているが、ダンパ機構が3つ以上のダンパを有し、それらを切り替えて車両の走行状態に応じた複数のバネレート状態に切り替えるようにしてもよい。なお、複数のダンパ(本実施形態においては、第1ダンパ(7a、33a)及び第2ダンパ(7b、33b))は、互いに異なるバネ定数のものであってもよく、或いは互いに同一のバネ定数のものであり、その組み合わせにより低バネレート状態及び高バネレート状態とされるものであってもよい。
 また、本実施形態に係るダンパ特性切替手段は、ダンパクラッチ10、34にて構成されているが、クラッチとは相違する形態の切り替え手段としてもよい。またさらに、ダンパ機構が単一のダンパを有し、そのダンパの支持部分をダンパ特性切替手段が変更することで、バネ特性を任意に切り替え得るものとしてもよい。なお、クラッチ手段は、トルクコンバータ1を介してエンジンEの駆動力を車輪Dに伝達させる第1動力伝達系と、トルクコンバータ1を介さずエンジンEの駆動力を車輪Dに伝達させる第2動力伝達系とを切り替え得るものに限らず、他の形態のものであってもよい。
 ダンパ機構のバネ特性を任意に切り替え得るバネ特性切替手段と、車両の走行状態に応じてバネ特性切替手段を作動させ、当該走行状態に応じたバネ特性に切り替えさせ得るバネ特性制御手段とを備えた動力伝達装置であれば、外観形状が異なるもの或いは他の機能が付加されたもの等にも適用することができる。
 1  トルクコンバータ
 2  無段変速機
 3  クラッチ手段
 3a 第1クラッチ手段
 3b 第2クラッチ手段
 4  クラッチ制御手段
 5  第1駆動シャフト
 6  第2駆動シャフト
 7  ダンパ機構
 7a 第1ダンパ
 7b 第2ダンパ
 8  第3クラッチ手段
 9  エンジン制御手段
 10 ダンパクラッチ(バネ特性切替手段)
 11 入力軸
 12 カバー部材
 13 トルコンカバー
 14 バネ特性制御手段
 15、16 連動部材
 17 筐体
 18 連動部材
 19 ディファレンシャルギア
 20 出力軸
 21 油圧制御回路
 22 ソレノイド
 23 ソレノイド
 24 リニアソレノイド
 25 リニアソレノイド
 26 アキュムレータ
 27 オイルポンプ
 28 マニュアルバルブ
 29 レギュレータバルブ
 30 油圧バルブ
 31 クラッチ手段
 32 クラッチ手段
 33 ダンパ機構
 33a 第1ダンパ
 33b 第2ダンパ
 34 ダンパクラッチ(バネ特性切替手段)
 35 保持部材
 36 皿バネ(付勢手段)

Claims (24)

  1.  エンジンのトルク変動を減衰するためのバネ特性を有したダンパで構成されたダンパ機構を具備し、エンジンの駆動力を車輪に対して任意選択的に伝達又は遮断可能な動力伝達装置であって、
     前記ダンパ機構のバネ特性を任意に切り替え得るバネ特性切替手段と、
     車両の走行状態に応じて前記バネ特性切替手段を作動させ、当該走行状態に応じたバネ特性に切り替えさせ得るバネ特性制御手段と、
    を備えたことを特徴とする動力伝達装置。
  2.  車両に搭載されてトルク増幅機能を有するトルクコンバータと、
     前記トルクコンバータを介してエンジンの駆動力を車輪に伝達させる第1動力伝達系と、前記トルクコンバータを介さず前記エンジンの駆動力を前記車輪に伝達させる第2動力伝達系とを切り替え得るクラッチ手段と、
    を具備し、前記ダンパ機構は、当該第2動力伝達系の途中に配設されたことを特徴とする請求項1記載の動力伝達装置。
  3.  前記ダンパ機構は、第1ダンパ及び第2ダンパの2つのダンパを有するとともに、前記バネ特性切替手段にて当該第1ダンパ及び第2ダンパを任意選択的に接続させることにより、バネ定数が低い低バネレート状態とバネ定数が高い高バネレート状態とを切り替えさせ得ることを特徴とする請求項1又は請求項2記載の動力伝達装置。
  4.  エンジンの動力伝達系に対して第1ダンパ及び第2ダンパを直列に接続させることにより前記低バネレート状態とするとともに、当該動力伝達系に対して第1ダンパ又は第2ダンパの何れか一方を接続させることにより前記高バネレート状態とし得ることを特徴とする請求項3記載の動力伝達装置。
  5.  前記ダンパ機構は、前記第1ダンパを有する動力伝達系と、前記第2ダンパ及び前記バネ特性切替手段を有する動力伝達系とが並列に接続されるとともに、当該バネ特性切替手段を接続状態とすることにより、前記低バネレート状態から高バネレート状態に切り替え得ることを特徴とする請求項3記載の動力伝達装置。
  6.  エンジンのトルクダウン制御が行われたことを条件として、前記バネ特性切替手段を接続状態とすることにより、前記低バネレート状態から高バネレート状態に切り替えることを特徴とする請求項5記載の動力伝達装置。
  7.  前記低バネレート状態から高バネレート状態への切り替えは、前記トルクダウン制御が所定時間行われたことを条件とすることを特徴とする請求項6記載の動力伝達装置。
  8.  前記バネ特性切替手段を接続状態とする方向へ常時付勢する付勢手段を具備したことを特徴とする請求項3~7の何れか1つに記載の動力伝達装置。
  9.  前記第1ダンパは、前記バネ特性切替手段に対して外周方向に延長した位置までオーバーラップして配設されたことを特徴とする請求項5~8の何れか1つに記載の動力伝達装置。
  10.  車両に搭載されてトルク増幅機能を有するトルクコンバータを具備するとともに、当該トルクコンバータが有するタービンの出力部材には、前記バネ特性切替手段を作動させるための作動油が流通可能な流通孔が形成されたことを特徴とする請求項3~9の何れか1つに記載の動力伝達装置。
  11.  前記第1ダンパを保持する保持部材には、前記バネ特性切替手段を作動させるための作動油が流通可能な流通孔が形成されたことを特徴とする請求項3~10の何れか1つに記載の動力伝達装置。
  12.  前記バネ特性切替手段は、車両が減速する過程において前記エンジンがアイドル状態よりも低い回転数で回転している走行状態のとき、前記低バネレート状態におけるエンジンとの共振範囲では前記高バネレート状態に切り替えるとともに、前記高バネレート状態におけるエンジンとの共振範囲では前記低バネレート状態に切り替えることを特徴とする請求項3~11の何れか1つに記載の動力伝達装置。
  13.  前記バネ特性切替手段は、スロットル開度が所定より低い状態で車両の速度が略一定に保持された走行状態又は車両が所定より緩やかに加速する走行状態のとき、前記低バネレート状態とすることを特徴とする請求項3~12の何れか1つに記載の動力伝達装置。
  14.  前記バネ特性切替手段は、車両が所定より急加速する走行状態のとき、前記高バネレート状態とすることを特徴とする請求項3~13の何れか1つに記載の動力伝達装置。
  15.  前記バネ特性切替手段は、エンジンが停止するとき、前記高バネレート状態とするとともに、エンジンの始動時に当該高バネレート状態が保持されることを特徴とする請求項3~14の何れか1つに記載の動力伝達装置。
  16.  前記バネ特性切替手段は、前記バネ特性制御手段からの信号により前記第2動力伝達系における所定部位を遮断又は接続させるダンパクラッチから成ることを特徴とする請求項1~15の何れか1つに記載の動力伝達装置。
  17.  前記ダンパクラッチは、前記第2動力伝達系における所定部位の遮断及び接続の切り替え過程でクラッチを滑らせる滑り制御が可能とされたことを特徴とする請求項16記載の動力伝達装置。
  18.  前記バネ特性制御手段は、車両の走行状態に応じた制御モードを参照可能な制御マップを予め保持し、当該制御マップの制御モードに従って前記バネ特性切替手段を制御し得ることを特徴とする請求項17記載の動力伝達装置。
  19.  前記バネ特性制御手段は、前記ダンパクラッチの作動油が所定値より高温のときに限り、前記制御マップを参照することを特徴とする請求項18記載の動力伝達装置。
  20.  前記ダンパクラッチは、前記トルクコンバータ内に配設されたことを特徴とする請求項16~19の何れか1つに記載の動力伝達装置。
  21.  エンジンから車輪までの動力伝達系の途中には、前記トルクコンバータと変速機を具備するトランスミッションとが配設されるとともに、当該トランスミッション内に前記クラッチ手段が配設されたことを特徴とする請求項20記載の動力伝達装置。
  22.  前記変速機は、自動変速機から成ることを特徴とする請求項21記載の動力伝達装置。
  23.  前記自動変速機は、無段変速機であることを特徴とする請求項22記載の動力伝達装置。
  24.  前記クラッチ手段は、前記トルクコンバータ内に配設されたことを特徴とする請求項21記載の動力伝達装置。
PCT/JP2014/052807 2013-03-19 2014-02-06 動力伝達装置 WO2014148138A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480024154.2A CN105164448B (zh) 2013-03-19 2014-02-06 动力传递设备
DE112014001528.8T DE112014001528T5 (de) 2013-03-19 2014-02-06 Leistungsübertragungsvorrichtung
US14/858,750 US10443698B2 (en) 2013-03-19 2015-09-18 Power transmitting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-057271 2013-03-19
JP2013057271A JP6209345B2 (ja) 2012-08-14 2013-03-19 動力伝達装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/858,750 Continuation US10443698B2 (en) 2013-03-19 2015-09-18 Power transmitting apparatus

Publications (1)

Publication Number Publication Date
WO2014148138A1 true WO2014148138A1 (ja) 2014-09-25

Family

ID=51583773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052807 WO2014148138A1 (ja) 2013-03-19 2014-02-06 動力伝達装置

Country Status (4)

Country Link
US (1) US10443698B2 (ja)
CN (1) CN105164448B (ja)
DE (1) DE112014001528T5 (ja)
WO (1) WO2014148138A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016211954A1 (de) * 2016-06-30 2018-01-04 Zf Friedrichshafen Ag Drehmomentübertragungsvorrichtung
DE102016211945A1 (de) * 2016-06-30 2018-01-04 Zf Friedrichshafen Ag Drehmomentübertragungsvorrichtung
US10527145B2 (en) * 2017-01-12 2020-01-07 GM Global Technology Operations LLC Torque converter assembly and a vehicle including the torque converter assembly
DE102017209194A1 (de) * 2017-05-31 2018-12-06 Zf Friedrichshafen Ag Torsionsschwingungsreduzierungsanordnung
US11359571B2 (en) 2019-12-05 2022-06-14 Wen-Yi Wu Device and method for inhibiting unintended vehicle acceleration

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115294A (ja) * 2007-11-09 2009-05-28 Mazda Motor Corp 流体伝動装置
JP2011214635A (ja) * 2010-03-31 2011-10-27 Aisin Aw Co Ltd 流体伝動装置
JP2012506004A (ja) * 2008-10-16 2012-03-08 シェフラー テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 流体力学的なトルクコンバータ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151291A (ja) 2006-12-19 2008-07-03 Toyota Motor Corp 流体伝動装置およびこれが組み込まれた車両の運転制御装置
JP5098582B2 (ja) * 2007-11-07 2012-12-12 パナソニック株式会社 ふろ自動機能付き給湯機
JP5145185B2 (ja) 2008-09-30 2013-02-13 株式会社エフ・シー・シー 動力伝達装置
US8627934B2 (en) * 2008-10-10 2014-01-14 Toyta Jidosha Kabushiki Kaisha Fluid transmission device
JP5462800B2 (ja) * 2008-10-22 2014-04-02 株式会社エフ・シー・シー 動力伝達装置
JP5398250B2 (ja) * 2008-12-15 2014-01-29 株式会社エフ・シー・シー 動力伝達装置
JP5527873B2 (ja) * 2009-03-18 2014-06-25 株式会社エフ・シー・シー 動力伝達装置
JP6111077B2 (ja) * 2013-01-17 2017-04-05 株式会社エフ・シー・シー 動力伝達装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115294A (ja) * 2007-11-09 2009-05-28 Mazda Motor Corp 流体伝動装置
JP2012506004A (ja) * 2008-10-16 2012-03-08 シェフラー テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 流体力学的なトルクコンバータ
JP2011214635A (ja) * 2010-03-31 2011-10-27 Aisin Aw Co Ltd 流体伝動装置

Also Published As

Publication number Publication date
CN105164448A (zh) 2015-12-16
DE112014001528T5 (de) 2016-01-07
US20160010735A1 (en) 2016-01-14
US10443698B2 (en) 2019-10-15
CN105164448B (zh) 2018-01-16

Similar Documents

Publication Publication Date Title
JP5398317B2 (ja) 動力伝達装置
KR101635302B1 (ko) 차량용 변속기의 제어 장치
JP5527873B2 (ja) 動力伝達装置
WO2014148138A1 (ja) 動力伝達装置
JP6111077B2 (ja) 動力伝達装置
JP6061021B2 (ja) 車両の制御装置および方法
US8245826B2 (en) Power transmitting apparatus
JP5463425B2 (ja) 車両用無段変速装置
JP5660733B2 (ja) 動力伝達装置
JP6362749B2 (ja) 動力伝達装置
JP2017036783A (ja) 動力伝達装置の制御装置
JP6290343B2 (ja) 動力伝達装置
JP4378844B2 (ja) 車両駆動装置
CN111071033A (zh) 车辆用动力传递装置
JP5232316B2 (ja) 動力伝達装置
JP2007107698A (ja) 油圧制御装置
JP6349544B2 (ja) 油圧制御装置
JP5666385B2 (ja) ハイブリッド駆動装置
JP2016156460A (ja) 車両の後進制御システム、車両、及び、車両の後進制御方法
JP2016156459A (ja) 車両のクリープ走行形態設定方法
KR20120128937A (ko) 무단변속기의 제어장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480024154.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14769276

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 112014001528

Country of ref document: DE

Ref document number: 1120140015288

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14769276

Country of ref document: EP

Kind code of ref document: A1