JP2009115294A - 流体伝動装置 - Google Patents

流体伝動装置 Download PDF

Info

Publication number
JP2009115294A
JP2009115294A JP2007292197A JP2007292197A JP2009115294A JP 2009115294 A JP2009115294 A JP 2009115294A JP 2007292197 A JP2007292197 A JP 2007292197A JP 2007292197 A JP2007292197 A JP 2007292197A JP 2009115294 A JP2009115294 A JP 2009115294A
Authority
JP
Japan
Prior art keywords
turbine shell
fluid transmission
turbine
hydraulic chamber
transmission device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007292197A
Other languages
English (en)
Inventor
Hiroki Tanabe
裕樹 田辺
Tokiari Saka
時存 坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2007292197A priority Critical patent/JP2009115294A/ja
Publication of JP2009115294A publication Critical patent/JP2009115294A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】本発明は、ロックアップクラッチ装置を備える流体伝動装置において、ダンパースプリングの上流側のイナーシャと下流側のイナーシャを、ロックアップクラッチ装置の制御状態等に応じて適切に変更することで、振動特性等を向上することができる流体伝動装置を提供することを目的とする。
【解決手段】連結切換機構70は、タービンシェル30とプレート部材60との間に設けており、摩擦面を一体に設けた切換えピストン71と、切換えピストン71のエンジン側に形成される制御油圧室72と、切換えピストン71の変速機側に形成される遠心バランス油圧室73と、遠心バランス油圧室73内でリターン反力を発生するリターンスプリング74と、を備えている。
【選択図】図1

Description

この発明は、流体伝動装置に関し、特に、ロックアップクラッチ装置を備えるトルクコンバータやフルードカップリング等の流体伝動装置に関する。
従来より、自動変速機や無段変速機においては、エンジン等の入力部側にトルクコンバータ等の流体伝動装置を設置して、車両の発進動作、停止動作等を円滑に行なうことが知られている。
もっとも、流体伝動装置では、動力を流体で伝達するため、常に滑りが生じて、エネルギーロスが生じ、燃費悪化を招来するという問題がある。そこで、流体伝動装置の入力部材と出力部材との間に、両者を機械的に連結するロックアップクラッチ装置を設けることが知られている。
例えば、下記特許文献1においても、入力側のフロントカバーと出力側のタービンとの間に、ロックアップクラッチ装置を設置して、高速走行時等にロックアップクラッチ装置をロックアップ(直結)状態にして、燃費改善を図るトルクコンバータが開示されている。
また、こうしたロックアップクラッチ装置では、ロックアップ時におけるエンジンのトルク変動を吸収するため、ダンパースプリングを設けるのが一般的である。
特開平9−317848号公報
ところで、近年、さらに燃費向上を図るため、ロックアップクラッチ装置をロックアップ状態とするロックアップ制御領域を増やすことが要求されている。もっとも、全てをロックアップ状態で制御すると、エンジン回転が低下した場合等にエンジンストールが生じるおそれがあるため、一般には、ロックアップクラッチ装置をスリップ状態とするスリップ制御領域を設定している。
ただし、このようなスリップ制御領域を設定した場合には、摩擦板の間でスティック・スリップが生じて、いわゆるクラッチジャダーが生じ、振動騒音が大きくなるという問題が生じる。
この問題に対しては、クラッチジャダーの発振モード等を考慮すると、ダンパースプリングの上流側(バネ前)のイナーシャを増加して、クラッチジャダーの発生を抑えることが考えられる。
しかし、ダンパースプリングの上流側(バネ前)のイナーシャを増加してダンパースプリングの下流側(バネ後)のイナーシャを減少させると、ロックアップ制御時の共振周波数等が変化して、ロックアップ時のこもり音が増加するといった新たな問題が生じるおそれがある。
そこで、本発明は、ロックアップクラッチ装置を備える流体伝動装置において、ダンパースプリングの上流側のイナーシャと下流側のイナーシャを、ロックアップクラッチ装置の制御状態等に応じて適切に変更することで、振動特性等を向上することができる流体伝動装置を提供することを目的とする。
この発明の流体伝動装置は、入力部と出力部との間に設置され、該入力部に連結されたポンプインペラと、該ポンプインペラと対向配置され該ポンプインペラの回転に伴い流体を介して回転駆動されるタービンランナと、該タービンランナが固設されたタービンシェルと、前記ポンプインペラ側とタービンランナ側とを機械的に直結するロックアップクラッチと、該ロックアップクラッチと前記出力部との間に設けられ両者の相対回転に伴って弾性変形するダンパースプリングと、を備える流体伝動装置であって、前記タービンシェルを前記ダンパースプリングの上流側に連結する第一の連結態様と、該タービンシェルをダンパースプリングの下流側に連結する第二の連結態様と、を変更するタービンシェル連結態様変更機構を備えるものである。
上記構成によれば、タービンシェル連結態様変更機構によって、重量物であるタービンシェルを有効に利用して、ダンパースプリングの上流側のイナーシャとダンパースプリングの下流側のイナーシャとを変更することが可能となる。
このため、流体伝動装置の既存の構成要素であるタービンシェルを利用して、ダンパースプリングの上流側イナーシャと下流側イナーシャを自由に変更することが可能となる。
なお、このようにタービンシェルを、イナーシャを変更する部材として利用する場合には、さらに、タービンシェルの重量を増加すれば、イナーシャを変更する効果を高めることができる。
この発明の一実施態様においては、前記タービンシェル連結様態変更機構を、前記ロックアップクラッチのスリップ制御時に前記第一の連結態様をとり、前記ロックアップクラッチの直結制御時に前記第二の連結態様をとるように設定したものである。
上記構成によれば、タービンシェル連結様態変更機構は、ロックアップクラッチのスリップ制御時には、タービンシェルをダンパースプリングの上流側に連結する第一の連結態様をとり、ロックアップクラッチの直結制御時には、タービンシェルをダンパースプリングの下流側に連結する第二の連結態様をとることになる。
このため、スリップ制御時には、ダンパースプリングの上流側のイナーシャを増加することができ、直結制御時には、ダンパースプリングの下流側のイナーシャを増加することができる。
よって、スリップ制御時のクラッチジャダーの発生を抑えることができると共に、直結制御時のこもり音の発生も抑えることができる。
この発明の一実施態様においては、前記タービンシェル連結様態変更機構が連結様態を変更する制御油圧室を備え、該制御油圧室を第一の連結態様の際に加圧状態として、第二の締結様態の際に非加圧状態となるように設定したものである。
上記構成によれば、制御油圧室は、スリップ制御時の第一の連結状態の際に、加圧状態となり、直結制御時の第二の連結状態の際に、非加圧状態となる。
このため、ロックアップクラッチ装置の制御において、スリップ制御時という使用頻度の少ない制御状態でのみ、加圧を行なえばよいため、油圧制御装置の負担を軽減できる。
よって、油圧制御装置の加圧頻度を少なくすることができ、燃費改善等を図ることができる。
この発明の一実施態様においては、前記タービンシェル連結様態変更機構を、前記ダンパースプリングの径内周側に配置したものである。
上記構成によれば、ダンパースプリングの径内周側に、タービンシェル連結様態変更機構を配置することになる。
よって、ダンパースプリングの径内周側に形成されるデッドスペースを有効に利用して、タービンシェル連結様態変更機構をコンパクトに配置することができ、流体伝動装置の大型化を防止することができる。
この発明の一実施態様においては、タービンシェル連結様態変更機構が遠心バランス油圧室を備え、該遠心バランス油圧室に、タービンシェル内のオイルを導入する導入口を設けたものである。
上記構成によれば、タービンシェル連結様態変更機構の遠心バランス油圧室に、導入口を介して、タービンシェル内のオイルが導入されることになる。
このため、タービンシェル内のオイルを利用して、タービンシェル連結様態変更機構の遠心バランス油圧室の油圧を高めることができる。
よって、複雑な油路を形成することなく、タービンシェル連結様態変更機構の遠心バランス油圧室にオイルを供給することができる。
この発明の一実施態様においては、前記タービンシェル連結様態変更機構の遠心バランス油圧室内に、リターンスプリングを設置したものである。
上記構成によれば、遠心バランス油圧室内に、リターンスプリングを設置することで、遠心バランス油圧室内には、常時反発力が生じることになる。
このため、回転数により圧力が大きく変動するタービンシェル内のオイルを、遠心バランス油圧室内に供給する場合であっても、連結力を発生するのに必要な最低限の圧力を、遠心バランス油圧室内で発生させることができる。
よって、タービンシェル連結様態変更機構の連結状態の信頼性を向上することができ、タービンシェル連結様態変更機構の制御性能を高めることができる。
この発明によれば、流体伝動装置の既存の構成要素であるタービンシェルを利用して、ダンパースプリングの上流側イナーシャと下流側イナーシャを自由に変更することが可能となる。
よって、ロックアップクラッチ装置を備える流体伝動装置において、ダンパースプリングの上流側のイナーシャと下流側のイナーシャを、ロックアップクラッチ装置の制御状態等に応じて適切に変更することで、振動特性等を向上することができる。
以下、図面に基づいて本発明の実施形態を詳述する。
図1は本発明の第一実施形態に係るトルクコンバータの縦断面概略図、図2は図1の要部詳細断面図、図3は連結切換機構の切換状態を説明する説明図、図4はトルクコンバータを振動モデルで示したモデル図、図5はクラッチジャダーのイナーシャとの関係を示したグラフ、図6はロックアップ時のこもり音とイナーシャとの関係を示したグラフである。
まず、トルクコンバータTの全体構造について説明する。
図1は、トルクコンバータTの全体縦断面を示している。このトルクコンバータTは、エンジン(図示せず)からの入力を受けるフロントカバー1と、このフロントカバー1と一体回転するインペラシェル2とを備え、このフロントカバー1とインペラシェル2の内部で増幅された駆動トルクを変速機(図示せず)に出力するタービンシャフト3を備えている。
タービンシャフト3の外周側(図面では上側)には、変速機側から延びるケース側部材である筒状固定部材4を設けており、この筒状固定部材4でトルクコンバータTの回転部材を支持している。
このトルクコンバータTの回転部材について、駆動トルクの流れに沿って、詳細に説明する。
エンジンのクランクシャフト5の端部には、平板円盤状のドライブプレート6を締結ボルト7を介して固定している。そして、このドライブプレート6は、その外周端を、前述のフロントカバー1の固定ボス8に締結ナット9によって固定している。このドライブプレート6によって、エンジンの駆動トルクをフロントカバー1に伝達している。
フロントカバー1は、径方向に延びる前面部10と、この前面部10の外周端から変速機側へ軸方向に延びる外周筒部11とを備え、前面部10の内周側(中心)位置には、エンジン側へ軸方向に延びる係合ボス部12を形成している。
インペラシェル2は、外周端2aでフロントカバー1の外周筒部11と溶接固定されることで、フロントカバー1と一体になっている。このインペラシェル2は、変速機側に凹む「略お椀形状」に形成されており、内周端には、変速機側へ軸方向に延びる筒状部21を形成している。
また、インペラシェル2の外周部2bのエンジン側には、複数のブレード形状のポンプインペラ22を立設しており(図1では1枚のみ図示)、インペラシェル2が駆動トルクを受けて回転する際に、作動油室R内のオイルを撹拌して駆動トルクを伝達するようにしている。
インペラシェル2に対向するエンジン側には、エンジン側に凹む「略お椀形状」に形成したタービンシェル30を設置している。このタービンシェル30の変速機側にも、複数のブレード形状のタービンランナ31を立設しており(1枚のみ図示)、このタービンランナ31で、ポンプインペラ22で撹拌されたオイルを受けることで、駆動トルクを受け、この駆動トルクをタービンシェル30に伝達するようにしている。
タービンシェル30の内周側には、略筒形状のタービンハブ32を設置しており、このタービンハブ32に対して、後述する連結切換機構70を介して、タービンシェル30の駆動トルクを伝達するようにしている。
このタービンハブ32は、前述のタービンシャフト3にスプライン嵌合によって固定しており、タービンシェル30からの駆動トルクを、タービンシャフト3に伝達するようにしている。
インペラシェル2とタービンシェル30との間には、前述の筒状固定部材4に、ワンウェイクラッチ40を介して支持されたステータ部材41を設置している。ステータ部材41は、外周側に延びる縦壁部42を有し、その外周端に翼状の複数のステータ43を形成している(1枚のみ図示)。
ステータ部材41は、駆動トルクの伝達時には静止しており、この静止したステータ部材41のステータ43によって、タービンランナ31から吐出されたオイルに反力を与えて、ポンプインペラ22に送り返すようにしている。
こうして反力を受けて送り返されたオイルを、ポンプインペラ22で再度撹拌することで、駆動トルクを増幅してタービンシェル30に伝達するようにしている。
以上のようにして、トルクコンバータTは、フロントカバー1から入力された駆動トルクを増幅して、タービンシャフト3から出力するように構成している。
もっとも、トルクコンバータTは、「オイル」という流体を介して動力を伝達するため、常に「滑り」が生じており、エネルギーロスが生じ、燃費が悪化するという問題がある。
そこで、ロックアップクラッチ機構50を設けることで、定常走行時等には、フロントカバー1とタービンシャフト3を、機械的に直結(ロックアップ)状態するようにしている。
このロックアップクラッチ機構50は、フロントカバー1とタービンシェル30との間に設けており、以下の構成要素で構成している。
フロントカバー1の内部外周側に、略筒状のクラッチドラム51を接合固定して、このクラッチドラム51の内周側にクラッチ部52を設けている。このクラッチ部52は、径方向に延びるピストンプレート53と、ドーナツ形状の回転摩擦プレート54と、クラッチドラム51に固定されたリテーニングプレート55と、リテーニングプレート55を固定するスナップリング56等によって構成している。
このうち、ピストンプレート53は、異形のプレート部材で構成しており、内周側にフロントカバー1との間で締結受圧室Pを形成する受圧部53aを設け、外周側に回転摩擦プレート54を変速機側に押圧してクラッチ締結力を発生する押圧部53bを設けている。
また、回転摩擦プレート54は、エンジン側、変速機側の各両面に、各々フェージング部材54a、54aを接着しており、ピストンプレート53から押圧力を受けた際に、隣接するリテーニングプレート55に圧着されて、フロントカバー1と一体に回転するように設定している。
回転摩擦プレート54の内周側には、径方向に延びて、駆動トルクをタービンハブ32に伝達するプレート部材60を設置している。
このプレート部材60は、外周側に位置して回転摩擦プレート54にスプライン嵌合する上流側プレート部61と、内周側に位置してタービンハブ32に一体に形成された下流側プレート部62と、両プレート部61,62の間に位置して、両プレート部61,62間の周方向の相対回転を減衰するコイル状のダンパースプリング63とを備えている。
このように、プレート部材60にダンパースプリング63を設けることで、ロックアップ時におけるエンジンのトルク変動が変速機側に作用しないようにしている。
こうして、ロックアップクラッチ機構50を設けることで、燃費改善を図ることができる。しかし、エンジン回転数が低い領域等においても、直結状態を維持すると、エンジンストール等が発生するという問題が生じる。
そこで、燃費改善を図りつつも、エンジンストール等を防止するため、回転摩擦プレート54をスリップさせて制御する「スリップ制御」を多用することが考えられる。
しかし、こうしたスリップ制御を多用すると、回転摩擦プレート54にスティック・スリップが生じ、いわゆる「クラッチジャダー」が生じることが多くなる。
図5は、このクラッチジャダーの発生度合が、クラッチ部のイナーシャが変化することに伴って、変化することを示したグラフである。縦軸が振動の減衰レベルを示す減衰比で、横軸がクラッチ部のイナーシャ(マス)である。このグラフでは、減衰比がマイナスである場合には、クラッチジャダーは減衰されず、減衰比がプラスである場合には、クラッチジャダーは減衰されることを示している。
このグラフに示すように、クラッチジャダーの減衰は、クラッチ部のイナーシャ(マス)の大きさに比例して生じることが分かる。
よって、クラッチジャダーを抑えるためには、できるだけクラッチ部のイナーシャ(マス)を大きくすることが望ましいことが分かる。
一方、駆動系の振動騒音としては、駆動系の捩じり共振による車室内のこもり音も考慮する必要がある。このこもり音とクラッチ部のイナーシャとの関係を示したグラフが図6である。
この図6は、ロックアップ時のダンパースプリングの上流側のイナーシャを大きくした場合の特性ラインと、ダンパースプリングの下流側イナーシャを大きくした場合の特性ラインを示したグラフである。縦軸が振動レベルで、横軸がエンジン回転数に相当する周波数(Hz)である。
このグラフに示すように、ロックアップ時に、上流側イナーシャを大きくした場合には、下流側イナーシャを大きくした場合に比較して、駆動系の捩じり振動の共振点が高周波側にシフトする。このため、ロックアップ時の通常走行時に相当する30Hz〜50Hzの周波数領域では、振動レベルが増加することが分かる。
よって、ロックアップ時における通常走行時のこもり音を低下するためには、ダンパースプリング63の下流側イナーシャを大きくすることが望ましいことが分かる。
このように、ロックアップ時のこもり音を低下するためには、ダンパースプリング63の下流側イナーシャを大きくするのが望ましいのに対して、クラッチジャダーの発生を抑えるためには、逆に、クラッチ部のイナーシャ、すなわち、ダンパースプリング63の上流側イナーシャを大きくするのが望ましいという、相反する要求があることが分かる。
この相反する要求を達成するトルクコンバータとしては、図4に示すような振動モデルのトルクコンバータが考えられる。
この振動モデルのトルクコンバータTは、インペラシェル2と、クラッチ部52と、ダンパースプリング63と、下流側プレート部62と、タービンシェル30とからなる。
まず、ロックアップ制御時には、上段の振動モデルに示すように、クラッチ部52とタービンシェル30との連結を切り離し、タービンシェル30を下流側プレート部62に連結する振動モデルが好ましい。
このように構成すると、ダンパースプリング63の下流側に、重量物であるタービンシェル30が連結されて、下流側イナーシャを大きくすることができるからである。
これにより、ダンパースプリング63の下流側イナーシャが大きくなり、ロックアップ時のこもり音を、低減することができる。
一方、スリップ制御時には、下段の振動モデルに示すように、下流側プレート部62とタービンシェル30との連結を切り離し、タービンシェル30とクラッチ部52を連結する振動モデルが好ましい。
このように構成すると、ダンパースプリング63の上流側に、重量物であるタービンシェル30が連結されて、上流側イナーシャを大きくすることができるからである。
これにより、ダンパースプリング63の上流側イナーシャが大きくなり、クラッチジャダーの発生を、低減することができる。
次に、このような振動モデルのトルクコンバータTを達成する連結切換機構について詳細に説明する。
この連結切換機構70は、図1に示すように、タービンシェル30とプレート部材60との間に設けており、摩擦面を一体に設けた切換えピストン71と、切換えピストン71のエンジン側に形成される制御油圧室72と、切換えピストン71の変速機側に形成される遠心バランス油圧室73と、遠心バランス油圧室73内でリターン反力を発生するリターンスプリング74と、を備えている。
図2に示すように、切換えピストン71は、断面「略大の字」状部材によって構成しており、タービンシェル30のエンジン側に延びる筒状部33の外周側で、軸方向にスライド移動可能に設置されている。
このタービンシェル30の筒状部33と、切換えピストン71は、切換えピストン71の変速機側内周フランジ部71aに設けたスプライン71bによって、軸方向にスライド自在にスプライン嵌合されており、周方向に一体回転するように構成している。
また、切換えピストン71のエンジン側内周フランジ71cには、シール部材C1を設けて、制御油圧室72のシール性を確保している。
さらに、切換えピストン71の変速機側及びエンジン側には、それぞれ軸方向に突出する第一突出フランジ71dと第二突出フランジ71eを形成している。
また、第一突出フランジ71dとタービンシェル30の突出部34との間には、シール部材C2を設けて、遠心バランス油圧室73のシール性を確保している。
また、第二突出フランジ71eと下流側プレート部62との間にも、シール部材C3を設けて、制御油圧室72のシール性を確保している。
そして、切換えピストン71の外周側には、両側面にフェージング部材71fa、71faを貼着した摩擦フランジ部71fを設けている。なお、摩擦フランジ部71fのエンジン側には、下流側プレート部62の壁面部62aを配置して、摩擦フランジ部71fの変速機側には、上流側プレート部61から延びる延長壁部61aを配置するように設定している。
制御油圧室72は、前述のように、切換えピストン71と下流側プレート部62とによって区画された空間部で構成しており、油圧制御された供給路75からオイルが供給されることによって、内部圧力が変化するように構成している。
この油圧制御される供給路75は、図1に示すように、タービンシャフト3を軸方向に貫通する軸方向油路75aと、この軸方向油路の先端(エンジン側端)で径方向に折れ曲りタービンハブ32とタービンシェル30の円筒部を貫通する径方向油路75bとによって構成している。
この制御油圧室72内に供給する供給油圧を制御することによって、切換えピストン71の軸方向位置を変化させるように構成している。
遠心バランス油圧室73は、切換えピストン71とタービンシェル30とによって区画された空間部で構成しており、内部にオイルが供給されることで、切換えピストン71の位置がバランスするようにしている。
また、遠心バランス油圧室73のタービンシェル30の縦壁30aには、軸方向に貫通する貫通穴76を形成しており、この貫通穴76によって、タービンシェル30内部のオイルを、遠心バランス油圧室73内に導くように構成している。
こうして、タービンシェル30内のオイルを利用して遠心バランス油圧室73でバランス油圧が発生するように構成している。
リターンスプリング74は、遠心バランス油圧室73内において、軸方向に延びるように設置している。
このリターンスプリング74は、切換えピストン71をエンジン側に押圧する反発力を発生するように設定しており、制御油圧室72が加圧されてない状態では、常に切換えピストン71を、エンジン側に押圧するように構成している。
このため、制御油圧室72が加圧されてない状態では、常に切換えピストン71の摩擦フランジ部71fが下流側プレート部62に連結されて、タービンシェル30と下流側プレート部62とが一体回転するように構成している。
次に、図3により、この連結切換機構70の作動状態について説明する。
まず、(a)は、ロックアップ時又は流体伝動時の連結切換機構70の作動状態である。
この状態では、切換えピストン71がリターンスプリング74及び遠心バランス油圧室73の圧力を受けて、エンジン側に移動する。このため、切換えピストン71の摩擦フランジ部71fが下流側プレート部62の壁面部62aに当接して、この当接部分で切換えピストン71と下流側プレート部62が結合されることになる。
よって、切換えピストン71を介して、タービンシェル30と下流側プレート部62が連結されることになり、ロックアップ時においては、タービンシェル30が下流側イナーシャを増加するマスとして働き、流体伝動時においては、タービンシェル30から下流側プレート部62へ駆動トルクが伝達されることになる。
一方、(b)は、スリップ時の連結切換機構70の作動状態である。
この状態では、切換えピストン71が制御油圧室72の圧力を受けて、変速機側に移動する。このため、切換えピストン71の摩擦フランジ部71fが上流側プレート部61の延長壁部61aに当接して、この当接部分で切換えピストン71と上流側プレート部61が結合されることになる。
よって、切換えピストン71を介してタービンシェル30と上流側プレート部61が連結されることになり、スリップ時においては、タービンシェル30が上流側イナーシャを増加するマスとして働くことになる。
以上のようにして、この連結切換機構70によって、前述の振動モデルのトルクコンバータTを達成することができる。
次に、このように構成された本実施形態の作用効果について説明する。
この実施形態のトルクコンバータTは、タービンシェル30をダンパースプリング63の上流側の上流側プレート部61に連結するスリップ時連結状態と、タービンシェル30をダンパースプリング63の下流側の下流側プレート部62に連結するロックアップ時連結状態とを切換える連結切換機構70を備えている。
これにより、連結切換機構70によって、重量物であるタービンシェル30を有効に利用して、ダンパースプリング63の上流側のイナーシャとダンパースプリング63の下流側のイナーシャとを変更することが可能となる。
このため、トルクコンバータTの既存の構成要素であるタービンシェル30を利用して、ダンパースプリング63の上流側のイナーシャと下流側のイナーシャを自由に変更することができる。
よって、ロックアップクラッチ機構50を備えるトルクコンバータTにおいて、ダンパースプリング63の上流側のイナーシャと下流側のイナーシャを、ロックアップクラッチ機構50の制御状態に応じて適切に変更して、トルクコンバータTの振動特性を向上することができる。
具体的には、スリップ制御時には、ダンパースプリング63の上流側のイナーシャを増加することができ、ロックアップ制御時には、ダンパースプリング63の下流側のイナーシャを増加することができるため、スリップ制御時のクラッチジャダーの発生を抑えることができると共に、ロックアップ制御時のこもり音の発生も抑えることができる。
また、この実施形態では、連結切換機構70が連結状態を切換える制御油圧室72を備えており、この制御油圧室72を加圧制御する際には、ロックアップクラッチ機構50がスリップ制御となるように設定している。
これにより、制御油圧室72は、ロックアップクラッチ機構50がスリップ制御時に加圧状態となり、ロックアップクラッチ機構50がロックアップ制御時に、非加圧状態となる。
このため、ロックアップクラッチ機構50の制御においてスリップ制御時という使用頻度の少ない制御状態でのみ、加圧を行なえばよいため、油圧制御ユニット(図示せず)の負担を軽減できる。
よって、油圧制御ユニットの加圧頻度を少なくすることができ、さらに燃費改善等を図ることができる。
また、この実施形態では、連結切換機構70を、ダンパースプリング63の内周側に配置している。
これにより、ダンパースプリング63の内周側に形成されるデッドスペースを有効に利用して、連結切換機構70をコンパクトに配置することができる。
よって、トルクコンバータTの大型化を防止することができる。
また、この実施形態では、連結切換機構70が遠心バランス油圧室73を備え、この遠心バランス油圧室73側方のタービンシェル30の縦壁30aに、タービンシェル30内のオイルを導入する貫通穴76を設けている。
これにより、貫通穴76を介して、遠心バランス油圧室73に、タービンシェル30内のオイルが導入されることになる。
このため、タービンシェル30内のオイルを利用して、連結切換機構70の遠心バランス油圧室73の油圧を高めることができる。
よって、複雑な油路を形成することなく、連結切換機構70の遠心バランス油圧室73内にオイルを供給することができる。
また、この実施形態では、遠心バランス油圧室73内に、リターンスプリング74を設置している。
これにより、遠心バランス油圧室73内には、常時、リターンスプリング74による、反発力が生じることになる。
このため、トルクコンバータTの回転数の変動により、圧力が変動するタービンシェル30内のオイルを、遠心バランス油圧室73内に供給する場合であっても、連結切換機構70の連結力を発生するのに必要な最低限の圧力を、遠心バランス油圧室73内で発生させることができる。
よって、連結切換機構70の連結状態の信頼性を向上することができ、連結切換機構70の制御性能を高めることができる。
次に、第二実施形態について、図7に示す縦断面概略図によって説明する。同一の構成要素については、同一の符号を付して説明を省略する。
この第二実施形態のトルクコンバータTは、タービンシェル30の外周部に、タービンシェル30の重量を増加させるために、マス増加部100を設けている。
具体的には、タービンシェル30の外周部外側に、ロックアップクラッチ機構50のクラッチドラム51を避けるように凹部100aを形成したマス増加部100を接合固定している。
このマス増加部100は、金属製部材によって構成しており、タービンシェル30の重量を、第一実施形態のものよりも増加している。また、このマス増加部100を、タービンシェル30の最も外周側に設置していることで、回転イナーシャを効果的に高めることができる。
この第二実施形態によると、第一実施形態よりも、タービンシェル30のイナーシャが高まるため、連結切換機構70による連結切換えの振動低減の効果をより高めることができる。
よって、トルクコンバータTより振動低減の効果を高めることができる。
以上、この発明の構成と前述の実施形態との対応において、
この発明の流体伝動装置は、実施形態のトルクコンバータTに対応し、
以下、同様に、
ダンパースプリングの上流側は、上流側プレート部61に対応し、
ダンパースプリングの下流側は、下流側プレート部62に対応し、
タービンシェル連結様態変更機構は、連結切換機構70に対応し、
導入口は、貫通穴76に対応するも、
この発明は、前述の実施形態に限定されるものではなく、あらゆる流体伝動装置に適用する実施形態を含むものである。例えば、トルクコンバータTに限定されずに、ステータのないフルードカップリングに適用してもよい。
また、前述の実施形態では、連結切換機構70の制御を、ロックアップ時の全ての領域を、非加圧状態で制御しているが、例えば、エンジン回転数が80Hz〜100Hzとなる領域では、逆に、加圧状態となるように制御してもよい。
これは、図6にも示すように、80Hz〜100Hzの高周波領域では、逆にダンパースプリング63の上流側のイナーシャを増加した方が、こもり音を低減できるからである。
その他、車速、エンジン回数、変速機の油音等によって連結切換機構70の制御を変更するようにしてもよい。
第一実施形態に係るトルクコンバータの縦断面概略図。 図1の要部詳細断面図。 連結切換機構の切換状態を説明する説明図。 トルクコンバータを振動モデルで示したモデル図。 クラッチジャダーのイナーシャとの関係を示したグラフ。 ロックアップ時のこもり音とイナーシャとの関係を示したグラフ。 第二実施形態に係るトルクコンバータの縦断面概略図。
符号の説明
T…トルクコンバータ
1…フロントカバー
2…インペラシェル
3…タービンシャフト
22…ポンプインペラ
30…タービンシェル
31…タービンランナ
50…ロックアップクラッチ機構
61…上流側プレート部
62…下流側プレート部
63…ダンパースプリング
70…連結切換機構
71…切換えピストン
72…制御油圧室
73…遠心バランス油圧室
74…リターンスプリング

Claims (6)

  1. 入力部と出力部との間に設置され、該入力部に連結されたポンプインペラと、該ポンプインペラと対向配置され該ポンプインペラの回転に伴い流体を介して回転駆動されるタービンランナと、該タービンランナが固設されたタービンシェルと、前記ポンプインペラ側とタービンランナ側とを機械的に直結するロックアップクラッチと、該ロックアップクラッチと前記出力部との間に設けられ両者の相対回転に伴って弾性変形するダンパースプリングと、を備える流体伝動装置であって、
    前記タービンシェルを前記ダンパースプリングの上流側に連結する第一の連結態様と、該タービンシェルをダンパースプリングの下流側に連結する第二の連結態様と、を変更するタービンシェル連結態様変更機構を備える
    流体伝動装置。
  2. 前記タービンシェル連結様態変更機構を、
    前記ロックアップクラッチのスリップ制御時に前記第一の連結態様をとり、
    前記ロックアップクラッチの直結制御時に前記第二の連結態様をとるように設定した
    請求項1記載の流体伝動装置。
  3. 前記タービンシェル連結様態変更機構が連結様態を変更する制御油圧室を備え、
    該制御油圧室を第一の連結態様の際に加圧状態として、第二の締結様態の際に非加圧状態となるように設定した
    請求項2記載の流体伝動装置。
  4. 前記タービンシェル連結様態変更機構を、前記ダンパースプリングの径内周側に配置した
    請求項1〜3いずれか記載の流体伝動装置。
  5. タービンシェル連結様態変更機構が遠心バランス油圧室を備え、
    該遠心バランス油圧室にタービンシェル内のオイルを導入する導入口を設けた
    請求項1〜4いずれか記載の流体伝動装置。
  6. 前記タービンシェル連結様態変更機構の遠心バランス油圧室内に、リターンスプリングを設置した
    請求項5記載の流体伝動装置。
JP2007292197A 2007-11-09 2007-11-09 流体伝動装置 Pending JP2009115294A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007292197A JP2009115294A (ja) 2007-11-09 2007-11-09 流体伝動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007292197A JP2009115294A (ja) 2007-11-09 2007-11-09 流体伝動装置

Publications (1)

Publication Number Publication Date
JP2009115294A true JP2009115294A (ja) 2009-05-28

Family

ID=40782639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007292197A Pending JP2009115294A (ja) 2007-11-09 2007-11-09 流体伝動装置

Country Status (1)

Country Link
JP (1) JP2009115294A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055669A (ja) * 2012-08-14 2014-03-27 F C C:Kk 動力伝達装置
WO2014148138A1 (ja) * 2013-03-19 2014-09-25 株式会社エフ・シ-・シ- 動力伝達装置
KR101867619B1 (ko) * 2010-12-22 2018-06-15 섀플러 테크놀로지스 아게 운트 코. 카게 일련 댐퍼에 대한 3단계 이력 현상

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101867619B1 (ko) * 2010-12-22 2018-06-15 섀플러 테크놀로지스 아게 운트 코. 카게 일련 댐퍼에 대한 3단계 이력 현상
JP2014055669A (ja) * 2012-08-14 2014-03-27 F C C:Kk 動力伝達装置
JP2017211090A (ja) * 2012-08-14 2017-11-30 株式会社エフ・シー・シー 動力伝達装置
WO2014148138A1 (ja) * 2013-03-19 2014-09-25 株式会社エフ・シ-・シ- 動力伝達装置
US10443698B2 (en) 2013-03-19 2019-10-15 Kabushiki Kaisha F.C.C. Power transmitting apparatus

Similar Documents

Publication Publication Date Title
KR101311531B1 (ko) 차량용 토크 컨버터
CN101487524B (zh) 锁止装置
JP5012912B2 (ja) チェーン駆動式オイルポンプの油路構造
JP5408096B2 (ja) 流体伝動装置
JP5645354B2 (ja) 2パス多機能トルクコンバータ
US7454902B2 (en) Torque converter
US20120080282A1 (en) Fluid transmission apparatus
RU2640938C2 (ru) Гидродинамическая муфта
JP2009041662A (ja) ロックアップクラッチ付きトルクコンバータ
JP2002147563A (ja) トルクコンバータ
US9175760B2 (en) Starting element with hydrodynamic torque converter
JP5120705B2 (ja) 流体伝動装置
JP2017020583A (ja) 流体伝動装置
JP2009115294A (ja) 流体伝動装置
JP2012207777A (ja) 発進装置
KR100284230B1 (ko) 토크컨버터
JP6344326B2 (ja) 流体伝動装置
US5996750A (en) Hydrokinetic torque converter for an automatic transmission
US6827187B2 (en) Hydrodynamic coupling device
JP2012042002A (ja) トルクコンバータ
US6269923B1 (en) Lockup device of torque converter
US20080041684A1 (en) Torque Converter
JP2006300135A (ja) トルクコンバータ
JP2019184021A (ja) 車両用トルクコンバータ
US11293535B2 (en) Hydrodynamic launch device having an active dynamic damper