WO2014147926A1 - 固体高分子型燃料電池の単セルモジュール及び固体高分子型燃料電池 - Google Patents

固体高分子型燃料電池の単セルモジュール及び固体高分子型燃料電池 Download PDF

Info

Publication number
WO2014147926A1
WO2014147926A1 PCT/JP2014/000117 JP2014000117W WO2014147926A1 WO 2014147926 A1 WO2014147926 A1 WO 2014147926A1 JP 2014000117 W JP2014000117 W JP 2014000117W WO 2014147926 A1 WO2014147926 A1 WO 2014147926A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
electrolyte membrane
frame member
fuel cell
single cell
Prior art date
Application number
PCT/JP2014/000117
Other languages
English (en)
French (fr)
Inventor
森 正裕
光生 吉村
井芹 充博
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP14755962.9A priority Critical patent/EP2819228B1/en
Priority to JP2014514652A priority patent/JP5575345B1/ja
Publication of WO2014147926A1 publication Critical patent/WO2014147926A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a unit cell module of a polymer electrolyte fuel cell in which an electrolyte membrane is supported by a frame formed of a resin and is sandwiched by a separator provided with a seal member, and a polymer electrolyte fuel cell having the unit cell module It is about.
  • a fuel cell is configured by stacking a required number of modules as a single cell module in which a catalyst layer is joined to an electrolyte membrane that causes a power generation reaction and sandwiched between them by a separator.
  • the electrolyte membrane is mainly fixed to a frame-shaped frame member made of resin. With this frame member, it is possible to improve the handleability when sandwiching and assembling with the separator, and to reduce the amount of electrolyte material used in the non-power generation part.
  • FIGS. 1 and 5B are diagrams showing a conventional method for fixing an electrolyte membrane described in Patent Document 1 to a frame.
  • both surfaces of the electrolyte membrane 20 are sandwiched between the frame members 100, and the protrusions 112 provided on the frame member 100 are welded together via the electrolyte membrane 20 by ultrasonic welding, thereby allowing the electrolyte membrane 20 to be attached to the frame. It is fixed to the member 100.
  • FIG. 6 is a diagram showing a conventional method for fixing an electrolyte membrane described in Patent Document 2 to a frame.
  • the both sides of the electrolyte membrane 2 are sandwiched between the frame members 5 softened by heat and pressed to fill the through holes previously provided in the electrolyte membrane 2 with the softened material of the frame members 5.
  • the electrolyte membrane 2 is fixed to the frame member 5 by welding the frame members 5 on both sides through the holes.
  • the electrolyte membrane in the vicinity of the power generation region or in the vicinity of the fixing portion of the electrolyte membrane to the frame portion, the electrolyte membrane has a high-temperature thermal history and changes in the wet and dry dimensions of the electrolyte membrane due to the operation / stop of the fuel cell. As a result, local stress concentration occurs, and sufficient durability and gas sealability cannot be ensured.
  • the electrolyte membrane is fixed to the frame member using ultrasonic welding.
  • the electrolyte membrane in the vicinity of the welded portion is caused by heat and vibration applied during welding. The thickness of the will become thin. If the electrolyte membrane becomes thin, gas leakage through the membrane tends to occur, and sufficient power generation performance and durability cannot be obtained.
  • the oxidant gas is exposed to the thinned electrolyte membrane portion, and the electrolyte membrane is further deteriorated, which causes a gas leak.
  • the humidified fuel gas and oxidant gas supplied for power generation are exposed to the thinned electrolyte membrane portion, and the electrolyte membrane absorbs the water vapor of the humidified gas and swells and shrinks, thereby causing mechanical stress. Accumulate, destroy the molecular structure and destroy the electrolyte membrane.
  • the water generated during power generation reaches the thinned electrolyte membrane part, and the electrolyte membrane absorbs and swells and shrinks, accumulating mechanical stress, destroying the molecular structure, and destroying the electrolyte membrane. Become.
  • Patent Document 2 the frame member softened with heat is pressed against the electrolyte membrane, and the electrolyte membrane and the frame member are merely brought into close contact with each other. Due to the shrinkage, the electrolyte membrane peels from the frame member.
  • separation of the electrolyte membrane from the frame member creates a space through which gas can pass between the electrolyte membrane and the frame member, and gas that bypasses the through hole and the end of the electrolyte membrane rotates to the counter electrode. Thus, sufficient power generation performance cannot be obtained.
  • the electrolyte membrane is mechanically damaged, and sufficient durability cannot be ensured.
  • An object of the present invention is to solve the above-described conventional problems, and to provide a single cell module of a polymer electrolyte fuel cell and a polymer electrolyte fuel cell having sufficient durability and gas sealing properties. To do.
  • the first frame and the second frame are melt-bonded through the electrolyte membrane, and the sealing member is disposed on the power generation region side from the melt-bonded portion.
  • the structure is sandwiched between separators.
  • the electrolyte membrane is fixed to the frame member at the melt-bonded location, and the gas sealing property is secured by the seal member provided on the power generation region side from the welded location.
  • the single cell module of the present invention has a structure in which electrolyte membrane material is mixed in the melt-bonded portion of the first frame and the second frame.
  • This configuration improves the integrity of the frame member and the electrolyte membrane, and improves the function of fixing the electrolyte membrane to the frame member.
  • the single cell module of the present invention has a structure in which the boundary between the first frame and the second frame and the fusion welded portion that communicate with the end of the electrolyte membrane are covered with the third frame.
  • Electrolyte membrane deteriorates when exposed to air for a long time.
  • the boundary between the first frame and the second frame that communicates with the atmosphere is sealed with the third frame, so that the exposure of the electrolyte membrane end to the atmosphere can be reduced, and the durability of the electrolyte membrane can be reduced. Can be maintained.
  • the electrolyte membrane present in the melt-bonded portion is covered by the third frame so that the electrolyte membrane is not exposed to the air at the melt-bonded portion of the first frame and the second frame mixed with the electrolyte membrane material. Can be prevented.
  • At least one of the first frame and the second frame is made of the same material as that of the third frame.
  • the single cell module of the present invention is sandwiched between the first frame and the second frame from both surfaces of the electrolyte membrane, and an ultrasonic welding horn is brought into contact with one frame member side so that the electrolyte membrane is superposed on the frame member. Fix using the sonic welding method.
  • the single cell module of the present invention is sandwiched between the first frame and the second frame from both surfaces of the electrolyte membrane, and the laser beam is irradiated to the fusion welded portion from one frame member side so that the electrolyte membrane is used as the frame member. Fix using laser fusion bonding.
  • the electrolyte membrane and the frame member can be melt-bonded in a non-contact manner, impurities can be prevented from entering the melt-welded portion, and the durability of the electrolyte membrane structure can be maintained.
  • the single cell module of the present invention is sandwiched between the first frame and the second frame from both surfaces of the electrolyte membrane, and is mainly transmitted to the frame member from one frame side and absorbed by the electrolyte membrane. Irradiation with a laser beam having a wavelength is applied to the melt-welded portion, and the electrolyte membrane is fixed to the frame member using a laser fusion bonding method.
  • the fuel cell system of the present invention is a stack unit in which the single cell modules are stacked.
  • This configuration can provide a fuel cell system with excellent gas sealing properties and durability.
  • the single cell module of the polymer electrolyte fuel cell and the polymer electrolyte fuel cell of the present invention gas leakage in the single cell module can be suppressed, and the characteristics of the fuel cell can be ensured.
  • FIG. 1 shows a schematic configuration diagram of a polymer electrolyte fuel cell of the present invention.
  • the fuel cell 200 generates electric power, heat, and water simultaneously by electrochemically reacting, for example, a fuel gas 211 containing hydrogen and an oxidant gas 212 containing oxygen such as air.
  • the fuel cell 200 includes a stack 300 having a structure in which a plurality of unit cell modules 1 each having a pair of anode and cathode electrodes are connected in series, a fuel processor 400 that extracts hydrogen from the fuel gas 211, and a fuel processor 400.
  • An anode humidifier 411 for humidifying the fuel gas containing hydrogen taken out in Step 1 a cathode humidifier 412 for humidifying the oxidant gas 212, and a pump 413a for supplying the fuel gas 211 and the oxidant gas 212, respectively. 413b.
  • the fuel cell 200 includes a fuel supply device that supplies a fuel cell 211 to a single cell by a fuel processor 400, an anode humidifier 411, and a pump 413a.
  • the cathode humidifier 412 and the pump 413b constitute an oxidant supply device that supplies oxidant gas to the single cell of the stack 300.
  • Such a fuel supply device and an oxidant supply device may adopt various other forms as long as they have a function of supplying fuel and an oxidant. As long as the supply device supplies the fuel gas 211 and the oxidant gas 212 in common to the single cell, the effects of this embodiment to be described later can be suitably obtained.
  • the fuel cell 200 includes a pump 413c for circulatingly supplying cooling water 213 that efficiently removes heat generated in the stack 300 during power generation, and the cooling water 213 (for example, having conductivity).
  • a heat exchanger 414 for exchanging heat with a fluid such as tap water, and a hot water storage tank 415 for storing the heat-exchanged tap water.
  • the fuel cell 200 includes an operation control device 500 that performs operation control for power generation by associating each of these components with each other, and an electric output unit 600 that extracts electricity generated by the stack 300. ing.
  • the stack 300 is configured by stacking a plurality of unit cell modules 1 (see FIG. 2) and fastening them with a predetermined load from both sides with a current collecting plate 701, an insulating plate 702, and an end plate 703.
  • Each current collecting plate 701 is provided with a current extraction terminal portion (not shown), from which current, that is, electricity is extracted during power generation.
  • Each insulating plate 702 insulates between the current collecting plate 701 and the end plate 703, and may be provided with an inlet (not shown) or an outlet (not shown) for gas or cooling water. .
  • Each end plate 703 is held by fastening a plurality of unit cell modules 1, a current collecting plate 701, and an insulating plate 702 with a predetermined load by a pressing means (not shown).
  • FIG. 2 is a cross-sectional view of the single cell module 1 in which the electrolyte membrane structure 11 according to the embodiment of the present invention is sandwiched between separators 6 with a seal member 7.
  • FIG. 3 is a top view of the electrolyte membrane structure 11 according to the embodiment of the present invention from the second frame member 52 side.
  • the electrolyte membrane structure 11 is sandwiched between the resin frame-shaped first frame member 51 and the resin frame-shaped second frame member 52 with the end of the electrolyte membrane 2 interposed therebetween. Then, the first frame member 51 and the second frame member 52 are joined at the melt welded portion 8, and the boundary portion between the first frame member 51 and the second frame member 52 and the melt welded portion 8 are connected to the second welded portion 8.
  • the third frame member 53 covers the frame member 52 from the outside.
  • a gas diffusion layer 4 for uniformly distributing the fuel gas and the oxidant gas to the catalyst is disposed on both surfaces of the electrolyte membrane structure 11, and sandwiched between separators 6 with a seal member 7 having gas flow paths 61.
  • the single cell module 1 is configured.
  • the gas diffusion layer 4 rides on the first frame member 51 and the second frame member 52 and fills the space with the separator 6. However, the first frame member 51 and the second frame are filled. If there is no space between the member 52 and the member 52, the gas diffusion layer 4 may not be filled.
  • the fuel gas and the oxidant gas do not pass through the gas flow path 61, and the first frame member 51 and the second frame member 51. In other words, the fuel gas and the oxidant gas do not reach the power generation region 12 through the space between the frame member 52 and the separator 6, and sufficient power generation performance cannot be obtained.
  • the fuel gas and the oxidant gas can pass through the gas flow path 61. Power generation performance can be obtained.
  • the thickness of the region of the gas diffusion layer 4 located between the first frame member 51 and the second frame member 52 and the separator 6 is set to the thickness of the first frame member 51, the second frame member 52 and the separator 6.
  • the fuel gas is interposed between the electrolyte membrane 2 and the first frame member 51 and between the electrolyte membrane 2 and the second frame member 52.
  • the penetration of the oxidant gas can be reduced, the gas barrier property can be improved, and the electrolyte membrane 2 can be suppressed from being deteriorated by the fuel gas and the oxidant gas, so that the performance of the fuel cell can be ensured for a long time.
  • the catalyst layer electrode 3 is uniformly formed on both surfaces of the electrolyte membrane 2 except for the end portions. A part of the first frame member 51 and the second frame member 52 is covered with the end portion of the catalyst layer electrode 3. By doing so, it is possible to reduce exposure of the oxidant gas to a region of the electrolyte membrane 2 where the catalyst layer electrode 3 is not formed, and to suppress deterioration of the electrolyte membrane due to the oxidant gas. Become.
  • the seal member 7 provided in the separator 6 is disposed closer to the power generation region than the fusion weld portion 8 formed in the electrolyte membrane structure 11, and the region of the catalyst layer electrode 3 Arranged outside.
  • the seal member 7 provided in the separator 6 is brought into contact with the first frame member 51 and the second frame member 52 and compressed.
  • the reaction force of the seal member 7 is generated by the compression, and the seal member 7, the first frame member 51, the second frame member 52, the first frame member 51, the second frame member 52, and the electrolyte membrane 2 are interposed.
  • the degree of adhesion is improved and gas barrier properties can be secured.
  • the catalyst layer electrode 3 has a porous structure so that fuel gas and air gas diffuse and cause a power generation reaction. Therefore, when the catalyst layer electrode 3 and the seal member contact portion 71 overlap, the porous portion of the catalyst layer electrode 3 cannot be shielded only by the reaction force of the seal member 7, which causes a gas leak.
  • the seal member 7 provided on the first frame member 51 side and the seal member 7 provided on the second frame member 52 side are arranged at opposite positions with the electrolyte membrane structure 11 interposed therebetween, and are provided at both electrodes. Both of the sealing members 7 are arranged so as not to overlap with the catalyst layer electrode 3, but they need not be arranged at positions where the sealing members 7 face each other as long as the reaction force of the sealing member 7 can be sufficiently obtained. If at least one of the seal members 7 does not cover the catalyst layer electrode 3, it is sufficient that a sufficient gas barrier property can be secured on the seal member 7 side not applied to the catalyst layer electrode 3.
  • the reaction force of the seal member 7 applied to the electrolyte membrane structure 11 opposes, and stress is not applied to the electrolyte membrane structure 11, and the seal member 7 is applied to the catalyst layer electrode 3 at both electrodes. If it does not exist, the gas barrier property may be secured.
  • swelling shrinkage due to moisture absorption can be reduced, concentration of mechanical stress can be prevented, and the electrolyte membrane structure can be prevented from being broken, and fuel cell performance can be maintained for a long time.
  • a first frame member 51, a second frame member 52, and a third frame member 53 are provided so as to surround the four sides of the electrolyte membrane 2, and in the vicinity of the electrolyte membrane end 21 of the electrolyte membrane 2.
  • the melt-welded portions 8 are provided at a predetermined melt-welded portion interval 82.
  • the first frame member 51 is provided with an opening serving as the power generation region 12 in the center.
  • the openings provided in the first frame member 51 and the second frame member 52 have the same size, they may have different sizes, and if they have the same size, the region that can be used for the power generation region 12 becomes large, and the electrolyte Membrane utilization is good.
  • the electrolyte membrane 2 is larger than the power generation region 12 and has a size that does not protrude from the first frame member 51 and the second frame member 52 when sandwiched between the first frame member 51 and the second frame member 52. I just need it.
  • the first frame member 51 to the third frame member 53 include a manifold 9 for supplying a fuel gas or an oxidant gas necessary for a power generation reaction of the fuel cell.
  • the seal member 7 provided on the separator 6 is disposed so that the seal member contact portion 71 surrounds the entire power generation region 12 and the gasket 9.
  • formation of the fusion welded portion 8 between the first frame member 51 and the second frame member 52 through the electrolyte membrane 2 is performed by ultrasonic welding.
  • the second frame member 52 is also provided with an opening serving as the power generation region 12 in the center.
  • the first frame portion material, the second frame portion material, and the electrolyte It is possible to form the melt weld portion 8 in which a film is mixed.
  • the first frame member 51, the second frame member 52, and the electrolyte membrane 2 can be more securely fixed, and the wet and dry dimensions Stress concentration on the electrolyte membrane 2 due to changes can be avoided, and the long-term durability of the electrolyte membrane 2 can be improved.
  • the third frame member 53 is formed so as to cover the boundary surface between the first frame member 51 and the second frame member 52 and the processing marks of the fusion welded portion 8, and the electrolyte membrane structure 11. Assemble.
  • FIG. 4A, FIG. 4B, and FIG. 4C show assembly schematic diagrams of the electrolyte membrane structure.
  • the first frame member 51 and the second frame member 52 are prepared in advance by injection molding, and after the electrolyte membrane 2 coated with the catalyst layer electrode 3 is disposed on the first frame member 51, the second frame member 52 is arranged (FIG. 4A).
  • the ultrasonic horn 81 is brought into contact with a predetermined position from the outside of the second frame member 52 to form the melt weld portion 8 (FIG. 4B).
  • the electrolyte membrane 2 integrated with the first frame member 51 and the second frame member 52 is placed in a mold of an injection molding machine to form a third frame member 53 (FIG. 4C).
  • the spot-like melt weld portion 8 is formed.
  • the ultrasonic weld is used to form the melt weld portion 8.
  • an ultrasonic bonding machine ( ⁇ G620S) manufactured by Seidensha Industry Co., Ltd. was used.
  • ⁇ G620S ultrasonic bonding machine
  • As the ultrasonic processing tool to be brought into contact with the frame member a tool having a tip of ⁇ 0.5 mm was used.
  • the joining conditions were a vibration frequency of 28.5 kHz, an amplitude of 40 ⁇ m, a pressurizing force of 30 N, and good joining was obtained in a processing time of 0.25 seconds.
  • melt bonding method using a laser may be used.
  • a laser it becomes possible to form the melt weld portion 8 in a non-contact manner, and contamination that causes deterioration of the electrolyte membrane 2 is mixed in the melt weld portion 8 where the frame member and the electrolyte membrane are mixed. It is possible to prevent this, and it is possible to guarantee the performance for a long time.
  • the laser beam used for fusion bonding may be selected to have a wavelength that is absorbed by the frame member or the electrolyte membrane, but it is preferable to use a laser beam having a wavelength that is transmitted through the frame member and absorbed by the electrolyte membrane.
  • the laser beam that has passed through the frame member is absorbed by the electrolyte membrane, the laser beam irradiation part becomes high temperature, and the frame member that sandwiches the electrolyte membrane unit irradiated with the laser beam is melted by the heat, and fusion bonding is possible It becomes.
  • the energy input at the time of melt bonding can be minimized, the melting time can be shortened, and the productivity can be further improved. Furthermore, it is possible to reduce the melt welded portion, to reduce the thermal effect on the electrolyte membrane, and to ensure the performance of the electrolyte membrane for a long time.
  • the distance between the melt weld 8 and the seal member 7 is about 2 mm.
  • the third frame member 53 is formed by integrating the frame member that covers the boundary surface between the first frame member 51 and the second frame member 52 and the frame member that covers the processing marks of the fusion weld portion 8. is doing.
  • the frame member that covers the boundary surface between the first frame member 51 and the second frame member 52 and the frame member that covers the processing traces of the melt-welded portion may be formed as separate members.
  • the rigidity of the electrolyte membrane structure 11 is further improved, and handling properties and the like are improved.
  • ultrasonic bonding is performed from the second frame member 52 side, but ultrasonic bonding may be performed from the first frame member 51 side.
  • the frame member 53 the frame member that covers the boundary between the first frame member 51 and the second frame member 52 and the frame member that covers the processing marks of the fusion welded portion 8 may be separated.
  • the first frame member 51, the second frame member 52, and the third frame member 53 are formed of the same resin material. As shown in FIG. 4, when the same resin material is used for directly injection-molding the third frame member 53 on the first frame member 51 and the second frame member 52, joining between the frame members is performed. The force is increased, the integrity of the electrolyte membrane structure 11 is improved, and the handling property is improved.
  • a thermoplastic resin is used as the frame material of the first frame member 51 and the second frame member 52.
  • the first frame member 51 and the second frame member 52 are It is more preferable to use a material such as modified PPE, modified PPE or PPS because it is exposed to the power generation environment of the fuel cell.
  • the spot-like melt-welded portion 8 is formed, but a melt-bonded portion on the line may be formed or may not be intermittent.
  • the spot-like melt weld portion 8 When the spot-like melt weld portion 8 is used, the assembly time of the electrolyte membrane structure 11 is shortened, and the productivity can be improved. Moreover, when the continuous or intermittent melt-welded part 8 is formed, the fixing strength of the electrolyte membrane 2 to the frame member can be improved.
  • the optimum shape of the melt welded portion may be selected depending on the assembly environment, the fuel cell operating conditions, and the like.
  • the electrolyte membrane 2 since the electrolyte membrane 2 is not affected by the equipment operation during film formation and has an isotropic characteristic in the vertical direction and the horizontal direction, the electrolyte membrane 2 melts around the entire power generation region.
  • the weld interval 82 was made equal.
  • Some electrolyte membranes 2 have anisotropy in the vertical direction and the horizontal direction.
  • the distance may be adjusted according to the characteristics in the vertical direction and the horizontal direction.
  • the electrolyte membrane 2 may be able to equalize stress concentration on the melt welds 8 due to drying shrinkage or wet expansion.
  • the amount of the electrolyte membrane that does not contribute to power generation is reduced by bringing the seal member 7 and the electrolyte membrane end 21 as close as possible.
  • the distance between the seal member 7 and the electrolyte membrane end 21 is not limited so long as the electrolyte membrane 2 contracted by drying does not reach the inside of the seal member 7. Since the displacement of the membrane 2 is increased, the distance between the seal member 7 and the electrolyte membrane end 21 may be increased.
  • the gap between the sealing member 7 and the electrolyte membrane end 21 is increased, the length of the leakage path when one gas leaks to the other electrode can be increased by bypassing the electrolyte membrane end 21. Can be reduced.
  • a single cell module having a high gas sealing property can be formed without being affected by a dimensional change of the electrolyte membrane.
  • a polymer fuel cell having high electrical characteristics and high durability can be obtained.
  • a highly rigid electrolyte membrane structure can be formed, handling properties when assembling a single cell module and a stack can be improved.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

ガスシール性及び耐久性が向上した固体高分子型燃料電池の単セルモジュール及び固体高分子型燃料電池。電解質膜の外周部をフレームで挟持し、一方のフレームの表面に電解質膜を貫通して他方のフレームまで達する溶着部を形成する。当該溶着部は電解質膜の外周に点在している。更に、溶着部よりも発電領域側にシール部材を具備する。ガスシール性を確保するシール部材部で電解質膜の変形がなく、ガスシール性及び耐久性を確保することができる

Description

固体高分子型燃料電池の単セルモジュール及び固体高分子型燃料電池
 本発明は、樹脂により形成されたフレームで電解質膜を支持し、シール部材を備えたセパレータで挟持した固体高分子型燃料電池の単セルモジュール、および当該単セルモジュールを有する固体高分子型燃料電池に関するものである。
 燃料電池は発電反応を起こす電解質膜に触媒層を接合し、それらをセパレータで挟んだものを一つの単セルモジュールとして、必要な個数のモジュールを積み上げ構成されている。電解質膜は、主に樹脂製の枠状のフレーム部材に固定されている。このフレーム部材により、セパレータで挟み組み立てる際のハンドリング性向上や、非発電部の電解質材料の使用量を削減することができる。
 燃料電池を動作させるためには、電解質膜の両面に形成した電極の一方に燃料ガス(水素ガス)、他方に酸素(空気)を供給しなければならず、一方のガスが他方に流入すると、正常な電気化学反応が行われず、充分な発電特性を得ることができない。そのため、電解質膜の枠体との固定部において、ガスシール性を有していなければならない。
 従来の電解質膜のフレーム部材への固定方法としては、超音波を用いて樹脂製のフレーム部材に電解質膜を溶着しているものがある(例えば、特許文献1参照)。図5A、図5Bは、特許文献1に記載された従来の電解質膜の枠体への固定方法を示す図である。図5A、図5Bにおいて、電解質膜20の両面をフレーム部材100で挟み込み、フレーム部材100に設けた突出部112同士を超音波溶着により電解質膜20を介して溶着させることで、電解質膜20をフレーム部材100に固定している。
 また、従来の電解質膜のフレーム部材への固定方法として、電解質膜にあらかじめ貫通孔を設けておき、貫通孔にフレーム樹脂を充填し、フレーム部材に固定しているものもある(例えば、特許文献2照)。図6は、特許文献2に記載された従来の電解質膜の枠体への固定方法を示す図である。図6において、電解質膜2の両面を熱で軟化させたフレーム部材5で挟み込み、加圧することで、電解質膜2に予め設けておいた貫通孔に軟化したフレーム部材5の材料が充填され、貫通孔を介して両面のフレーム部材5が溶着することで、電解質膜2をフレーム部材5に固定している。
特開平7-235314号公報 特開2009-123381号公報
 しかしながら、特許文献1及び2の構成では、発電領域近傍又は電解質膜のフレーム部への固定部近傍において、電解質膜に高温の熱履歴と、燃料電池の運転・停止に伴う電解質膜の乾湿寸法変化により局所的な応力の集中が生じてしまい、充分な耐久性及びガスシール性が確保できない。
 具体的には、特許文献1では、超音波溶着を用いて電解質膜をフレーム部材に固定しているが、超音波溶着を行う際に、溶着時に与える熱及び振動により、溶着部近傍の電解質膜の厚みが薄くなってしまう。電解質膜が薄くなると膜を解してのガスリークが起こりやすくなり、充分な発電性能、耐久性が得られない。
 更に、特許文献1の構成では、薄くなった電解質膜部分に酸化剤ガスが暴露され、より電解質膜劣化が起こり、ガスリークの要因となる。また、薄くなった電解質膜部分に、発電のために供給される加湿された燃料ガス及び酸化剤ガスが暴露し、加湿ガスの水蒸気を電解質膜が吸収し膨潤収縮することで、機械的応力が蓄積し、分子の構造を壊し、電解質膜を破壊する。そして、薄くなった電解質膜部分に発電の際に生じる生成水が到達し、電解質膜が吸収し膨潤収縮することで、機械的応力が蓄積し、分子構造を壊し、電解質膜を破壊することになる。
 また、特許文献2の構成では、熱で軟化させたフレーム部材を電解質膜に押し当て、電解質膜とフレーム部材を密着させているのみで、燃料電池の発電・停止に伴う、電解質膜の膨潤・収縮により、電解質膜がフレーム部材から剥離する。特許文献2において、電解質膜がフレーム部材から剥離することで、電解質膜とフレーム部材の間にガスが通じることのできる空間が生じ、貫通穴部や電解質膜端部を迂回したガスが対極に回りこんで、充分な発電性能が得られない。
 更に、燃料電池の運転・停止に伴う電解質膜の寸法変化による、貫通孔の周囲への応力の集中により、電解質膜に機械的ダメージが生じ、充分な耐久性を確保することができない。
 本発明は、上記従来の課題を解決するものであり、充分な耐久性及びガスシール性を有する、固体高分子型燃料電池の単セルモジュール及び固体高分子型燃料電池を提供することを目的とする。
 上記目的を達成するために、本発明の単セルモジュールは、第1のフレームと第2のフレームが電解質膜を解して溶融接合され且つ溶融接合箇所よりも発電領域側にシール部材を配したセパレータで挟み込んだ構造とする。
 本構成によって、電解質膜のフレーム部材への固定を溶融接合箇所で行い、溶着箇所より発電領域側に設けたシール部材により、ガスシール性を確保する。ガスリークの起こりやすい溶融接合箇所よりシール部材を発電領域側に設けることで、溶融接合箇所にガスが到達することがなく、ガスシール性を確保することができる。また、シール部材を一定以上に圧縮させた状態でセパレータと電解質膜構造体を積層させることで、燃料電池の運転・停止に伴う乾湿の電解質膜の厚み寸法が変化した場合においても、所定以上のシール部圧力を維持することができ、電解質膜の厚み状態およびその変動によらず、ガスシール性を確保することができる。
 また、本発明の単セルモジュールは、第1のフレームと第2のフレームの溶融接合箇所に、電解質膜材料が混在した構造とする。
 本構成によって、フレーム部材と電解質膜の一体性が向上し、電解質膜のフレーム部材への固定機能が向上する。
 また、本発明の単セルモジュールは、電解質膜端部に通じる第1のフレームと第2のフレームの境界部及び溶融溶着部を第3のフレームで覆う構造とする。
 電解質膜は長期に大気に暴露させると劣化する。本構成によって、大気に通じる第1のフレームと第2のフレームの境界部を第3のフレームで封止することで、電解質膜端部の大気への暴露が低減でき、電解質膜の耐久性を維持することができる。
 更に、電解質膜材料の混在した第1のフレームと第2のフレームの溶融接合箇所において、電解質膜が大気に暴露しないように、第3のフレームで覆うことで、溶融接合箇所に存在する電解質膜の劣化を防止することができる。
 また、本発明の単セルモジュールは、第1のフレーム、第2のフレームの少なくともどちらか一方は、第3のフレームの材料と同種の材料とする。
 本構成によって、第3のフレームと第1のフレームまたは第3のフレームと第2のフレーム間の接合がより強固になり、フレーム部材の剛性を向上させ、電解質膜構造体のハンドリング性や寸法精度を向上することができる。
 また、本発明の単セルモジュールは、電解質膜の両面から第1のフレームと第2のフレームで挟み込み、一方のフレーム部材側から、超音波溶接ホーンを当接させ、電解質膜をフレーム部材に超音波溶着方法を用いて固定する。
 本構成により、溶融接合界面にのみが加熱され溶融溶着ができ、周囲への熱影響を最小限に抑えることができ、電解質膜構造体の耐久性を維持することができる。
 また、本発明の単セルモジュールは、電解質膜の両面から第1のフレームと第2のフレームで挟み込み、一方のフレーム部材側から、溶融溶着部にレーザ光を照射し、電解質膜をフレーム部材にレーザ溶融接合法を用いて固定する。
 本構成により、電解質膜とフレーム部材を非接触で溶融接合が可能となり、溶融溶着部に不純物が混入することを防ぐことが可能となり、電解質膜構造体の耐久性を維持することができる。
 また、本発明の単セルモジュールは、電解質膜の両面から第1のフレームと第2のフレームで挟み込み、一方のフレーム側から、フレーム部材に対しては主に透過し、電解質膜で吸収される波長のレーザ光を照射を溶融溶着部に照射し、電解質膜をフレーム部材にレーザ溶融接合法を用いて固定する。
 本構成により、溶融接合界面にのみが加熱され溶融溶着ができ、周囲への熱影響を最小限に抑えることができ、電解質膜構造体の耐久性を維持することができる。
 また、本発明の燃料電池システムは、上記単セルモジュールを積層させたスタックユニットである。
 本構成により、ガスシール性と耐久性に優れた燃料電池システムとすることができる。
 以上のように、本発明の固体高分子型燃料電池の単セルモジュール及び固体高分子型燃料電池によれば、単セルモジュール内でのガスリークを抑制し、燃料電池の特性を確保することができる。
本発明の実施の形態における燃料電池の模式図 本発明の実施の形態における単セルモジュールの断面図 本発明の実施の形態における電解質膜構造体の上視図 本発明の実施の形態における電解質膜構造体の組立工程模式図 本発明の実施の形態における電解質膜構造体の組立工程模式図 本発明の実施の形態における電解質膜構造体の組立工程模式図 特許文献1記載の単電池構造の断面模式図 特許文献1記載の単電池構造の断面模式図 特許文献2記載の従来の電解質膜構造体の断面模式図
 以下、本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態)
 図1は本発明の固体高分子型燃料電池の模式構成図を示す。
 燃料電池200は、例えば水素を含有する燃料ガス211と、空気など酸素を含有する酸化剤ガス212を電気化学的に反応させることで、電力、熱、及び水を同時に発生させるものである。
 燃料電池200は、アノード及びカソードの一対の極を備える単セルモジュール1が複数個直列に接続された構造を有するスタック300と、燃料ガス211から水素を取り出す燃料処理器400と、燃料処理器400にて取り出された水素を含む燃料ガスを加湿するアノード加湿器411と、酸化剤ガス212に対して加湿を行うカソード加湿器412と、燃料ガス211と酸化剤ガス212を夫々供給するポンプ413a,413bを備える。
 この燃料電池200には、燃料処理器400、アノード加湿器411、ポンプ413aにより燃料ガス211を単セルに供給する燃料供給装置が構成されている。また、カソード加湿器412とポンプ413bとにより、酸化剤ガスをスタック300の単セルに供給する酸化剤供給装置が構成されている。
 なお、このような燃料供給装置や酸化剤供給装置は、燃料や酸化剤の供給を行う機能を備えていればその他様々な形態を採用し得るが、本実施形態においては、スタック300が備える複数の単セルに対して、共通して燃料ガス211や酸化剤ガス212を供給する供給装置であれば、後述する本実施形態の効果を好適に得ることができる。
 また、燃料電池200には、発電の際にスタック300にて発生される熱を効率的に除去する冷却水213を循環供給するためのポンプ413cと、この冷却水213(例えば、導電性を有さない液体、例えば純水が用いられる)により除去された熱を、水道水などの流体と熱交換するための熱交換器414と、熱交換された水道水を貯留させる貯湯タンク415が備えられている。更に、燃料電池200には、このようなそれぞれの構成部を互いに関連付けて発電のための運転制御を行う運転制御装置500と、スタック300にて発電された電気を取り出す電気出力部600が備えられている。
 このスタック300は、単セルモジュール1(図2参照)を複数個積層し、集電板701、絶縁板702、端板703で両側から所定の荷重で締結して構成されている。それぞれの集電板701には、電流取り出し端子部(図示せず)が設けられており、発電時にここから電流、すなわち電気が取り出される。
 それぞれの絶縁板702は、集電板701と端板703の間を絶縁するとともに、ガスや冷却水の導入口(図示せず)、排出口(図示せず)が設けられている場合もある。それぞれの端板703は、複数枚積層された単セルモジュール1と集電板701、絶縁板702を加圧手段(図示せず)によって所定の荷重で締結し、保持されている。
 図2は、本発明の実施の形態の電解質膜構造体11をシール部材7付きセパレータ6で挟み込んだ、単セルモジュール1の断面図である。図3は、本発明の実施の形態の電解質膜構造体11の第2のフレーム部材52側からの上視図である。
 図2において、電解質膜構造体11は電解質膜2の端部を樹脂製の枠状の第1のフレーム部材51と樹脂製の枠状の第2のフレーム部材52で挟み込み、電解質膜2を介して、第1のフレーム部材51と第2のフレーム部材52が溶融溶着部8で接合され、前記第1のフレーム部材51と第2のフレーム部材52の境界部及び溶融溶着部8を第2のフレーム部材52の外側から、第3のフレーム部材53で覆う構成としている。電解質膜構造体11の両面には、燃料ガス及び酸化剤ガスを触媒に均一に行き渡らせるためのガス拡散層4を配置し、ガス流路61を具備したシール部材7付きセパレータ6で挟み込むことで、単セルモジュール1を構成している。
 本実施の形態では、ガス拡散層4が第1のフレーム部材51及び第2のフレーム部材52に乗り上げ、セパレータ6との空間に充填されているが、第1のフレーム部材51及び第2のフレーム部材52との間に、空間がなければ、ガス拡散層4で充填しなくてもよい。
 第1のフレーム部材51及び第2のフレーム部材52とセパレータ6との間に空間がある場合、燃料ガス及び酸化剤ガスがガス流路61を通過せず、第1のフレーム部材51及び第2のフレーム部材52とセパレータ6との間の空間を通過してしまい、発電領域12に燃料ガス及び酸化剤ガスが行き渡らず、充分な発電性能を得ることができない。第1のフレーム部材51及び第2のフレーム部材52とセパレータ6との間に、ガス拡散層4を充填することで、燃料ガス及び酸化剤ガスがガス流路61を通過させることができ、所定の発電性能を得ることができる。
 また、ガス拡散層4の第1のフレーム部材51及び第2のフレーム部材52とセパレータ6との間に位置する領域の厚みを、第1のフレーム部材51及び第2のフレーム部材52とセパレータ6の間隔より厚くしておくことで、電解質膜構造体11をセパレータ6で挟持する際に、ガス拡散層4が圧縮され、第1のフレーム部材51及び第2のフレーム部材52を電解質膜2に密着させることができる。
 第1のフレーム部材51及び第2のフレーム部材52を電解質膜2に密着させることで、電解質膜2と第1のフレーム部材51及び電解質膜2と第2のフレーム部材52の間に、燃料ガス及び酸化剤ガスが侵入することを低減でき、ガスバリア性を向上できると共に、電解質膜2が燃料ガス及び酸化剤ガスにより劣化することが抑制でき、燃料電池の性能を長期に確保することが出来る。
 本実施の形態では、電解質膜2の両面に端部を除き均一に触媒層電極3を形成している。触媒層電極3の端部には、第1のフレーム部材51及び第2のフレーム部材52の一部が覆いかぶさる配置とした。こうすることで、電解質膜2の触媒層電極3が形成されていない領域に、酸化剤ガスが暴露することを低減することができ、酸化剤ガスによる電解質膜の劣化を抑制することが可能となる。
 単セルモジュール1を形成した際に、セパレータ6に設けられたシール部材7は、電解質膜構造体11に形成された溶融溶着部8よりも発電領域側に配置され、且つ触媒層電極3の領域よりも外側に配置した。
 単セルモジュール1とした際に、セパレータ6に設けられたシール部材7は、第1のフレーム部材51及び第2のフレーム部材52と当接し、圧縮される。
 圧縮によりシール部材7の反力が発生し、シール部材7と第1のフレーム部材51及び第2のフレーム部材52、第1のフレーム部材51及び第2のフレーム部材52と電解質膜2の間の密着度が向上し、ガスバリア性を確保することが出来る。
 触媒層電極3は燃料ガス及び空気ガスが拡散し、発電反応を起こすために、多孔質構造となっている。そのため、触媒層電極3とシール部材当接触部71が重なった場合、シール部材7の反力だけでは触媒層電極3の多孔質部を遮蔽することができず、ガスリークの原因となる。
 第1のフレーム部材51側に具備されたシール部材7及び第2のフレーム部材52側に具備されたシール部材7は、電解質膜構造体11を挟んで、向かい合う位置に配置し、両極に設けられたシール部材7は共に、触媒層電極3と重ならない配置としたが、シール部材7同士が向い合う位置に配置しなくても良く、シール部材7の反力が充分に得られればよい。また、少なくとも一方のシール部材7が触媒層電極3にかかっていなければ、触媒層電極3にかからないシール部材7側で充分なガスバリア性が確保できればよい。
 向かい合う位置に配置した場合、電解質膜構造体11にかかるシール部材7の反力が対向し、電解質膜構造体11に応力を与えることがなく、両極においてシール部材7が触媒層電極3にかからなければ、よりガスバリア性を確保できてよい。
 本実施の形態において、溶融溶着部8よりも発電領域12側にシール部材7を設けることで、溶融溶着部8を形成する際の、超音波溶着時の熱及び振動による電解質膜2の変形部が燃料ガス、酸化剤ガスや水分に晒されることを抑制することができ、ガスリーク低減することができ、燃料電池の発電性能を維持することができる。
 また、水分を吸収することによる膨潤収縮を低減することができ、機械的応力の集中を防ぎ、電解質膜構造が壊れることを抑止することができ、燃料電池性能を長期に維持することができる。
 図3において、電解質膜2の四辺を囲うように、第1のフレーム部材51、第2のフレーム部材52と第3のフレーム部材53を備えており、電解質膜2の電解質膜端部21の近傍に、所定の溶融溶着部間隔82で溶融溶着部8が設けられている。
 本実施の形態では、第1のフレーム部材51には、中心部に発電領域12となる開口が設けられている。第1のフレーム部材51と第2のフレーム部材52に設けた開口は同じ大きさとしたが、違う大きさでも良く、同じ大きさとした場合、発電領域12に用いることの出来る領域が大きくなり、電解質膜の利用率がよい。電解質膜2は発電領域12よりも大きく且つ第1のフレーム部材51と第2のフレーム部材52で挟持した際に、第1のフレーム部材51及び第2のフレーム部材52からはみ出さない大きさであればよい。
 第1のフレーム部材51ないし第3のフレーム部材53は、燃料電池の発電反応に必要な燃料ガスもしくは酸化剤ガスを供給するマニホールド9を具備している。
 シール部材当接触部71が、発電領域12の全領域及びガスケット9を囲うように、セパレータ6に設けられたシール部材7を配置した。
 本実施の形態では、電解質膜2を介しての第1のフレーム部材51と第2のフレーム部材52の溶融溶着部8の形成を超音波溶着により行っている。第2のフレーム部材52にも、中心部に発電領域12となる開口が設けられている。超音波溶着を用いた電解質膜2を介しての第1のフレーム部材51と第2のフレーム部材52の溶融溶着部8の形成において、第1のフレーム部材料と第2のフレーム部材料と電解質膜が混在する溶融溶着部8を形成することができる。
 フレーム部材料と電解質膜材料が混在する溶融溶着部8を形成することで、第1のフレーム部材51および第2のフレーム部材52と電解質膜2の固定性をより向上することができ、乾湿寸法変化による電解質膜2への応力の集中を避けることができ、電解質膜2の長期耐久性を向上することができる。
 本実施の形態では、第1のフレーム部材51と第2のフレーム部材52の境界面及び溶融溶着部8の加工痕を覆うように、第3のフレーム部材53を形成し、電解質膜構造体11を組み立てる。
 図4A、図4B、図4Cに電解質膜構造体の組立模式図を示す。予め第1のフレーム部材51と第2のフレーム部材52を射出成形を用いて作製し、第1のフレーム部材51に触媒層電極3を塗布した電解質膜2を配置した後、第2のフレーム部材52を配置する(図4A)。第2のフレーム部材52の外側から超音波ホーン81を所定の位置に当接させ、溶融溶着部8を形成する(図4B)。第1のフレーム部材51及び第2のフレーム部材52と一体化した電解質膜2を、射出成型機の金型に配置し、第3のフレーム部材53を形成する(図4C)。
 本実施の形態では、スポット状の溶融溶着部8を形成した。本実施の形態において、溶融溶着部8の形成は、超音波接合を用いた。超音波接合には精電舎工業社製の超音波接合機(ΣG620S)を用いた。フレーム部材に当接させる超音波加工工具は、先端がφ0.5mmのものを用いた。フレーム部材を超音波接合する際の、接合加工条件としては28.5kHzの振動数で、振幅は40μm、加圧力30Nで、0.25秒の加工時間で良好な接合が得られた。
 本実施の形態の溶融溶着部8の形成においては、レーザを用いた溶融接合法を用いてもよい。レーザを用いた場合、非接触で溶融溶着部8を形成することが可能となり、フレーム部材と電解質膜が混在する溶融溶着部8に、電解質膜2の劣化の原因となるコンタミが混入することを防止でき、長期に性能を保証することが可能となる。
 また、溶融接合に用いるレーザ光はフレーム部材や電解質膜に吸収される波長のものを選択すればよいが、フレーム部材を透過し、電解質膜に吸収される波長のレーザ光を用いることが好ましい。これにより、フレーム部材を透過したレーザ光が電解質膜で吸収され、レーザ光照射部が高温となり、その熱によりレーザ光が照射された電解質膜部を挟持するフレーム部材を溶融させ、溶融接合が可能となる。
 また、溶融接合時に投入するエネルギーを最も小さくすることができるため、溶融時間を短縮することができ、より生産性を向上することができる。さらに、溶融溶着部を小さくすることが可能となり、電解質膜への熱影響を小さくすることが可能となり、電解質膜の性能を長期に確保することが可能となる。
 本実施の形態では、溶融溶着部8とシール部材7の間隔は約2mmとした。溶融溶着部8とシール部材7の間隔をより狭小にすることで、発電に寄与しない領域の電解質膜量を削減できるが、超音波接合時の熱や振動により、加工部の周囲の電解質膜2を変形させるため、電解質膜2の変形した領域がシール部材7より発電面に対して内側にこないように配置するとよい。
 本実施の形態では、第1のフレーム部材51と第2のフレーム部材52の境界面を覆うフレーム部材と溶融溶着部8の加工痕を覆うフレーム部材を一体として、第3のフレーム部材53を形成している。この状態で、第1のフレーム部材51と第2のフレーム部材52の境界面を覆うフレーム部材と溶融溶着部の加工痕を覆うフレーム部材を分離した部材として形成しても良いが、一体で形成した場合、電解質膜構造体11の剛性がより向上し、ハンドリング性などがよくなる。
 また、図4Bに示すように、第2のフレーム部材52側から、超音波接合を行っているが、第1のフレーム部材51側から超音波接合を行っても良く、その場合は第3のフレーム部材53において、第1のフレーム部材51と第2のフレーム部材52の境界部を覆うフレーム部材と溶融溶着部8の加工痕を覆うフレーム部材を分離すればよい。
 本実施の形態では、第1のフレーム部材51、第2のフレーム部材52と第3のフレーム部材53を同一の樹脂材料で形成した。図4に示すように、第1のフレーム部材51及び第2のフレーム部材52に、直接、第3のフレーム部材53を射出成形するため、同一の樹脂材料を用いた場合、フレーム部材間の接合力が高まり、電解質膜構造体11の一体性が向上し、ハンドリング性がよくなる。
 また、本実施の形態では、第1のフレーム部材51と第2のフレーム部材52のフレーム部材料として、熱可塑性樹脂を用いており、特に第1のフレーム部材51及び第2のフレーム部材52は燃料電池の発電環境に晒されることから、変性PPE、変性PPEやPPSなどの材料を用いることがより好ましい。
 本実施の形態では、スポット状の溶融溶着部8を形成しているが、線上の溶融接合箇所を形成しても良く、また間欠でなくてもよい。
 スポット状の溶融溶着部8とした場合、電解質膜構造体11の組立時間が短くなり、生産性を向上することが出来る。また、連続的または断続的な溶融溶着部8を形成した場合、電解質膜2のフレーム部材への固定強度を向上することができる。
 溶融溶着部の形状は、組立環境や燃料電池の運転条件などにより、最適な形状を選択すればよい。
 また、本実施の形態では、電解質膜2は製膜時の設備動作の影響を受けない、縦方向と横方向で等方的な特性を持つ電解質膜2を用いたため、発電領域全周において溶融溶着部間隔82を等間隔とした。電解質膜2により縦方向と横方向で異方性を持つものもあり、異方性を持つ電解質膜2においては、縦方向と横方向のそれぞれの特性に合せた間隔に調整するとよく、更に等間隔に溶融溶着部8を形成した場合、電解質膜2が乾燥収縮もしくは湿潤膨張による溶融溶着部8への応力の集中を均等にすることができてよい。
 また、本実施の形態では、シール部材7と電解質膜端部21を出来る限り近づけることで、発電に寄与しない電解質膜量を削減している。シール部材7と電解質膜端部21の間隔は、乾燥により収縮した電解質膜2がシール部材7より内側に到達しなければよく、溶融溶着部間隔82が広い場合、溶融接合されていない箇所の電解質膜2の変位は大きくなるため、シール部材7と電解質膜端部21の間隔を大きくすれば良い。シール部材7と電解質膜端部21の間隔を大きくした場合、電解質膜端部21を迂回して、一方のガスが他方の電極にリークする際のリーク経路長を長くすることがでるため、ガスリークを低減できてよい。
 2013年3月21日出願の特願2013-057608の日本出願に基づく優先権を主張する。本日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明によれば、電解質膜の寸法変化に影響を受けることなく、ガスシール性の高い単セルモジュールを形成することができる。この電解質膜構造体及び単セルモジュールを用いることで、電気特性が高く、高耐久性を有する高分子型燃料電池が得られる。また、剛性の高い電解質膜構造体を形成することが出来るため、単セルモジュールおよびスタックを組み立てる際のハンドリング性をよくすることができる。
 1 単セルモジュール 
 11 電解質膜構造体 
 12 発電領域 
 2,20 電解質膜 
 21 電解質膜端部 
 3 触媒層電極 
 4 ガス拡散層 
 5,100 フレーム部材 
 51 第1のフレーム部材 
 52 第2のフレーム部材 
 53 第3のフレーム部材 
 6 セパレータ 
 61 ガス流路 
 7 シール部材 
 8 溶融溶着部 
 81 超音波ホーン 
 82 溶融溶着部間隔 
 112 突出部 
 200 燃料電池 
 211 燃料ガス 
 212 酸化剤ガス 
 213 冷却水 
 300 スタック 
 400 燃料処理器 
 411 アノード加湿器 
 412 カソード加湿器 
 413a ポンプ 
 413b ポンプ 
 413c ポンプ 
 414 熱交換器 
 415 貯湯タンク 
 500 運転制御装置 
 600 電気出力部 

Claims (8)

  1.  電解質膜の外周部を第1のフレームと第2のフレームで挟持した固体高分子型燃料電池の単セルモジュールにおいて、
     前記第1のフレームと前記第2のフレームの一方の表面に前記電解質膜を貫通して他方のフレームまで達する溶着部が形成され、前記溶着部は、前記第1のフレーム、前記第2のフレーム及び前記電解質膜を溶着するとともに、前記電解質膜の外周に点在してなり、かつ、前記溶着部より内側の前記第1のフレームと前記第2のフレームの表面にシール部材をそれぞれ配置してなること、
     を特徴とする、固体高分子型燃料電池の単セルモジュール。
  2.  前記溶着部は、
     前記第1のフレームの材料、前記第2のフレームの材料及び前記電解質膜の材料とが混在してなる、請求項1に記載の固体高分子型燃料電池の単セルモジュール。
  3.  前記溶着部は、第3のフレームで覆われてなる、請求項1に記載の固体高分子型燃料電池の単セルモジュール。
  4.  前記第1のフレーム、前記第2のフレーム、及び、前記第3のフレームの材料のうち、少なくとも2つのフレームの材料は、同じ樹脂材料である、
     請求項3に記載の固体高分子型燃料電池の単セルモジュール。
  5.  超音波溶着を用いて、前記第1のフレーム、前記第2のフレーム及び前記電解質膜の溶融接合を行う、請求項1に記載の固体高分子型燃料電池の単セルモジュール。
  6.  レーザを用いて、前記第1のフレーム、前記第2のフレーム及び前記電解質膜の溶融接合を行う、請求項1に記載の固体高分子型燃料電池の単セルモジュール。
  7.  前記溶融接合に用いるレーザ光は、前記第1のフレーム又は前記第2のフレームを透過し、前記電解質膜で吸収される波長を有する、
     請求項6に記載の固体高分子型燃料電池の単セルモジュール。
  8.  電解質膜の外周部を第1のフレームと第2のフレームで挟持し、これらのフレームを挟む一対のセパレータを有する複数の単電池モジュールを積層して組み立てられる固体高分子型燃料電池であって、
     前記第1のフレームと前記第2のフレームの一方の表面に前記電解質膜を貫通して他方のフレームまで達する溶着部が形成され、前記溶着部は、前記第1のフレーム、前記第2のフレーム及び前記電解質膜を溶着するとともに、前記電解質膜の外周に点在してなり、かつ、前記溶着部より内側の前記第1のフレームと前記第2のフレームの表面にシール部材をそれぞれ配置してなること、
     を特徴とする、固体高分子型燃料電池。
     
PCT/JP2014/000117 2013-03-21 2014-01-14 固体高分子型燃料電池の単セルモジュール及び固体高分子型燃料電池 WO2014147926A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14755962.9A EP2819228B1 (en) 2013-03-21 2014-01-14 Single cell module for solid polymer fuel cells, and solid polymer fuel cell
JP2014514652A JP5575345B1 (ja) 2013-03-21 2014-01-14 固体高分子型燃料電池の単セルモジュール及び固体高分子型燃料電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-057608 2013-03-21
JP2013057608 2013-03-21

Publications (1)

Publication Number Publication Date
WO2014147926A1 true WO2014147926A1 (ja) 2014-09-25

Family

ID=51579634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000117 WO2014147926A1 (ja) 2013-03-21 2014-01-14 固体高分子型燃料電池の単セルモジュール及び固体高分子型燃料電池

Country Status (2)

Country Link
EP (1) EP2819228B1 (ja)
WO (1) WO2014147926A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201183A (ja) * 2015-04-07 2016-12-01 トヨタ自動車株式会社 燃料電池単セルの製造方法
JP2017162733A (ja) * 2016-03-10 2017-09-14 凸版印刷株式会社 燃料電池用膜電極接合体およびその製造方法
JP2018037345A (ja) * 2016-09-01 2018-03-08 日産自動車株式会社 電解質膜とフレームとの接合体
WO2022116912A1 (zh) * 2020-12-03 2022-06-09 中国科学院大连化学物理研究所 燃料电池膜电极密封组件、封装工艺以及连续封装用设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015010419A1 (de) 2015-08-11 2017-02-16 Daimler Ag Brennstoffzelle, Rahmen für eine gerahmte Membranelektrodenanordnung und gerahmte Membranelektrodenanordnung
EP4310963A1 (en) * 2022-07-21 2024-01-24 Mann+Hummel Life Sciences & Environment Holding Singapore Pte. Ltd. Method of fixing a membrane to a frame, cell stack and use
EP4310964A1 (en) * 2022-07-21 2024-01-24 Mann+Hummel Life Sciences & Environment Holding Singapore Pte. Ltd. Method of fixing a membrane to a frame, cell stack and use

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235314A (ja) 1994-02-21 1995-09-05 Toyota Motor Corp 固体高分子型燃料電池の単電池およびその製造方法
JP2001155758A (ja) * 1999-11-25 2001-06-08 Sumitomo Electric Ind Ltd レドックスフロー2次電池のセルスタック
WO2002027847A2 (en) * 2000-09-28 2002-04-04 Proton Energy Systems, Inc. Cell frame/flow field integration method and apparatus
JP2006310288A (ja) * 2005-04-01 2006-11-09 Matsushita Electric Ind Co Ltd Mea、meaの製造方法及び高分子電解質形燃料電池
JP2007250249A (ja) * 2006-03-14 2007-09-27 Toyota Motor Corp シール一体型膜電極接合体
JP2007335279A (ja) * 2006-06-16 2007-12-27 Nok Corp 燃料電池セルシール
JP2009021217A (ja) * 2007-06-11 2009-01-29 Panasonic Corp 燃料電池用の電極−膜−枠接合体およびその製造方法、並びに高分子電解質型燃料電池およびその製造方法
JP2009105009A (ja) * 2007-10-25 2009-05-14 Nissan Motor Co Ltd 燃料電池、および燃料電池の製造方法
JP2009123381A (ja) 2007-11-12 2009-06-04 Toyota Motor Corp 固体高分子型燃料電池の電解質膜構造体およびその製造方法
JP2012226848A (ja) * 2011-04-15 2012-11-15 Panasonic Corp 高分子電解質型燃料電池の電極−膜−枠接合体およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005058370A1 (de) * 2005-12-06 2007-06-14 Harro Höfliger Verpackungsmaschinen GmbH Brennstoffzelle, Verfahren zur Herstellung derselben und Vorrichtung zum Ausführen des Herstellverfahrens einer Brennstoffzelle
US8642230B2 (en) * 2007-06-11 2014-02-04 Panasonic Corporation Electrode-membrane-frame assembly for fuel cell, polyelectrolyte fuel cell and manufacturing method therefor
DE102010055996B4 (de) * 2010-12-23 2016-03-03 Daimler Ag Verfahren zur Herstellung einer Membrananordnung für eine Brennstoffzelle und Brennstoffzelle

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235314A (ja) 1994-02-21 1995-09-05 Toyota Motor Corp 固体高分子型燃料電池の単電池およびその製造方法
JP2001155758A (ja) * 1999-11-25 2001-06-08 Sumitomo Electric Ind Ltd レドックスフロー2次電池のセルスタック
WO2002027847A2 (en) * 2000-09-28 2002-04-04 Proton Energy Systems, Inc. Cell frame/flow field integration method and apparatus
JP2006310288A (ja) * 2005-04-01 2006-11-09 Matsushita Electric Ind Co Ltd Mea、meaの製造方法及び高分子電解質形燃料電池
JP2007250249A (ja) * 2006-03-14 2007-09-27 Toyota Motor Corp シール一体型膜電極接合体
JP2007335279A (ja) * 2006-06-16 2007-12-27 Nok Corp 燃料電池セルシール
JP2009021217A (ja) * 2007-06-11 2009-01-29 Panasonic Corp 燃料電池用の電極−膜−枠接合体およびその製造方法、並びに高分子電解質型燃料電池およびその製造方法
JP2009105009A (ja) * 2007-10-25 2009-05-14 Nissan Motor Co Ltd 燃料電池、および燃料電池の製造方法
JP2009123381A (ja) 2007-11-12 2009-06-04 Toyota Motor Corp 固体高分子型燃料電池の電解質膜構造体およびその製造方法
JP2012226848A (ja) * 2011-04-15 2012-11-15 Panasonic Corp 高分子電解質型燃料電池の電極−膜−枠接合体およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2819228A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201183A (ja) * 2015-04-07 2016-12-01 トヨタ自動車株式会社 燃料電池単セルの製造方法
JP2017162733A (ja) * 2016-03-10 2017-09-14 凸版印刷株式会社 燃料電池用膜電極接合体およびその製造方法
JP2018037345A (ja) * 2016-09-01 2018-03-08 日産自動車株式会社 電解質膜とフレームとの接合体
WO2022116912A1 (zh) * 2020-12-03 2022-06-09 中国科学院大连化学物理研究所 燃料电池膜电极密封组件、封装工艺以及连续封装用设备

Also Published As

Publication number Publication date
EP2819228A1 (en) 2014-12-31
EP2819228B1 (en) 2016-09-21
EP2819228A4 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
WO2014147926A1 (ja) 固体高分子型燃料電池の単セルモジュール及び固体高分子型燃料電池
WO2018055858A1 (ja) 蓄電装置及び蓄電装置の製造方法
JP6104050B2 (ja) 燃料電池用電解質膜・電極構造体
JP5683433B2 (ja) 燃料電池スタック
JP6014548B2 (ja) 燃料電池の製造方法
JP6602244B2 (ja) 燃料電池用樹脂枠付き段差mea及びその製造方法
JP6633127B2 (ja) 燃料電池スタック、燃料電池スタック用のダミーセル及びダミーセルの製造方法
JP2018097917A (ja) 樹脂枠付き電解質膜・電極構造体及びその製造方法
US10763530B2 (en) Manufacturing method for fuel cell
JP2015060621A (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体
JP5839122B2 (ja) 燃料電池スタック
JP6618762B2 (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体及びその製造方法
KR102683799B1 (ko) 연료전지용 탄성체 셀 프레임 및 그 제조방법과 이를 이용한 단위 셀
JP2017068956A (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体
JP5575345B1 (ja) 固体高分子型燃料電池の単セルモジュール及び固体高分子型燃料電池
JP2015090793A (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体
JP7257851B2 (ja) 燃料電池用弾性体セルフレームおよびその製造方法とそれを用いた単位セル
JP2022022802A (ja) 燃料電池スタックの製造方法
JP6748849B2 (ja) 燃料電池の膜電極接合体及び燃料電池
JP6857812B2 (ja) 電解質膜−電極−枠接合体の製造方法
JP7062730B2 (ja) 燃料電池セルユニットの製造方法及び製造装置
US11018363B2 (en) Fuel cell including frame member
JP4461788B2 (ja) 燃料電池用セルの製造方法及び燃料電池用セル
JP2020119885A (ja) 枠付き電解質膜・電極構造体の製造方法、枠付き電解質膜・電極構造体及び燃料電池
JP2016091936A (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014514652

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014755962

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014755962

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14755962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE