WO2014147864A1 - 樹脂コート不織布 - Google Patents

樹脂コート不織布 Download PDF

Info

Publication number
WO2014147864A1
WO2014147864A1 PCT/JP2013/073541 JP2013073541W WO2014147864A1 WO 2014147864 A1 WO2014147864 A1 WO 2014147864A1 JP 2013073541 W JP2013073541 W JP 2013073541W WO 2014147864 A1 WO2014147864 A1 WO 2014147864A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
nonwoven fabric
coated
mass
embossing
Prior art date
Application number
PCT/JP2013/073541
Other languages
English (en)
French (fr)
Inventor
稲富 伸一郎
浩康 坂口
大門 篤
Original Assignee
東洋紡株式会社
東洋クロス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社, 東洋クロス株式会社 filed Critical 東洋紡株式会社
Priority to CN201380074901.9A priority Critical patent/CN105143546B/zh
Priority to US14/777,812 priority patent/US10626549B2/en
Publication of WO2014147864A1 publication Critical patent/WO2014147864A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/042Acrylic polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0011Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using non-woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • D06N3/0036Polyester fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/007Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by mechanical or physical treatments
    • D06N3/0077Embossing; Pressing of the surface; Tumbling and crumbling; Cracking; Cooling; Heating, e.g. mirror finish
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/06Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds with polyvinylchloride or its copolymerisation products
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/06Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds with polyvinylchloride or its copolymerisation products
    • D06N3/065PVC together with other resins except polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N7/00Flexible sheet materials not otherwise provided for, e.g. textile threads, filaments, yarns or tow, glued on macromolecular material
    • D06N7/0002Wallpaper or wall covering on textile basis
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/26Vehicles, transportation
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/08Upholstery, mattresses
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/12Vehicles

Definitions

  • the present invention relates to a sheet-like resin-coated nonwoven fabric that can be used for vehicle interior materials, wallpaper, bed members, chair members, and the like, and in particular, resin-coated nonwoven fabrics that can be welded by a high-frequency welder and have a beautiful embossed pattern. About.
  • PVC leather in which polyvinyl chloride sheets are laminated on woven fabrics, knitted fabrics, nonwoven fabrics, etc. is mainly used. Since this sheet can be welded with a high-frequency welder, the labor of processing by sewing is saved, which is advantageous in terms of cost.
  • the PVC leather has a problem that a warm texture cannot be obtained.
  • Patent Document 1 a breathable leather in which a nonwoven fabric is impregnated with a resin
  • Patent Document 1 polyvinyl acetate having a high Tg is used as the impregnation resin ( Example of Patent Document 1)
  • the texture may become hard.
  • the present applicant further invented a leather-like nonwoven fabric in which an acrylic resin is adhered to one side of a thermocompression bonding type high-weight spunbonded nonwoven fabric (Patent Document 2).
  • the nonwoven fabric obtained by this invention has a problem that it cannot be welded by a high-frequency welder.
  • Patent Documents 1 and 2 the possibility of welding with a high-frequency welder is not examined.
  • Polyvinyl acetate can be welded with a high frequency welder.
  • a polyvinyl acetate-impregnated nonwoven fabric has a hard texture and is not flexible. Therefore, the present invention has been made to provide a resin-coated non-woven fabric that can be welded with a high-frequency welder, has improved hardness, and has a beautiful embossed pattern.
  • the present invention has solved the above problem, one side of the long-fiber nonwoven fabric of polyethylene terephthalate thermocompression bonding type having a basis weight of 50g / m 2 ⁇ 150g / m 2, the coating amount after drying at 40g / m 2 ⁇ 150g / m 2
  • a resin coat layer wherein the resin coat layer contains 10% by mass to 45% by mass of a vinyl chloride unit and 30% by mass to 55% by mass of a (meth) acrylic acid ester unit; It has a feature in that it has a pattern by embossing.
  • the resin coating layer preferably has at least one glass transition temperature (Tg) at 30 ° C. or lower in differential scanning calorimetry (DSC).
  • Tg glass transition temperature
  • DSC differential scanning calorimetry
  • the long fiber nonwoven fabric is embossed, and it is desirable that the embossed surface of the long fiber nonwoven fabric is coated with the resin.
  • (meth) acrylic acid ester means “acrylic acid ester and / or methacrylic acid ester”.
  • a resin-coated nonwoven fabric that can be welded with a high-frequency welder, has improved hardness, has an embossed pattern, and has excellent design.
  • FIG. 1-1 is a diagram showing a DSC curve of a coat layer sample collected from the resin-coated nonwoven fabric produced in Example 1.
  • FIG. FIG. 1-2 is an enlarged view ( ⁇ 20 ° C. to 20 ° C.) of FIG. 1-1.
  • the present inventors can weld with a high-frequency welder, have improved hardness, and can realize a clear embossed pattern, particularly a copolymer component or a polymer blend partner,
  • the resin-coated nonwoven fabric obtained by the fact that the resin coated on the nonwoven fabric has a (meth) acrylic acid ester unit in addition to the vinyl chloride unit does not hinder the weldability in the high-frequency welder.
  • the present invention has been completed by discovering that it can give a suppleness and can also give a clear embossed pattern.
  • the present invention will be described in detail.
  • Nonwoven fabric In the present invention, a polyethylene terephthalate (PET) thermocompression type long fiber nonwoven fabric is used as the nonwoven fabric to be the base material. This is because PET is excellent in properties such as mechanical strength (mechanical strength) and heat resistance. In addition, if it is 10 mass% or less, polyesters other than PET may be blended.
  • the intrinsic viscosity of PET is not particularly limited, but is preferably 0.6 dl / g or more.
  • the fiber diameter of the long fibers (single fibers) constituting the nonwoven fabric is preferably about 0.1 to 10 dtex, more preferably about 1 to 5 dtex. Further, in the present invention, having a basis weight used nonwoven fabric is 2 ⁇ 150g / m 2 approximately 50 g / m. Preferably, it is about 60 g / m 2 to 120 g / m 2 , more preferably 70 g / m 2 to 110 g / m 2 . If the fiber diameter and basis weight are within the above ranges, the properties such as mechanical strength, suppleness, and design can be excellent in a balanced manner.
  • the spunbond nonwoven fabric is preferable because it is suitable for high-speed production and can be obtained at a low cost.
  • the spunbond nonwoven fabric is bonded to the crimping ratio (area ratio of the top of the convex portion on the roll side) of about 2 to 50%.
  • the crimping ratio area ratio of the top of the convex portion on the roll side
  • the spunbond nonwoven fabric is embossed only on one side.
  • the resin-coated nonwoven fabric of the present invention has a resin-coated layer on one side of the long-fiber nonwoven fabric.
  • resin which comprises a resin coat layer it is required that it is resin containing a vinyl chloride unit and a (meth) acrylic ester unit.
  • the vinyl chloride unit enables welding with a high-frequency welder, and the (meth) acrylic ester unit imparts moderate softness (flexibility) to the resin.
  • the (meth) acrylic acid ester unit means a structural unit derived from a monomer having a (meth) acryloyl group.
  • Monomers that give such structural units include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, And (meth) acrylates such as 2-hydroxyethyl (meth) acrylate.
  • the vinyl chloride unit is contained in the resin coat layer (the total of the resin constituting the coat layer and the optional additives is 100% by mass) in an amount of 10% to 45% by mass. If it is this range, the welding by a high frequency welder is possible, and a nonwoven fabric does not become hard too much.
  • a preferable range of the vinyl chloride unit content is 15% by mass to 45% by mass, and more preferably 15% by mass to 35% by mass.
  • the (meth) acrylic acid ester unit is contained in the resin coating layer in an amount of 30% by mass to 55% by mass.
  • the (meth) acrylic acid ester unit is increased, tack appears on the surface of the obtained resin-coated nonwoven fabric, and for example, blocking may occur when unwinding the wound resin-coated nonwoven fabric.
  • the preferable range of the (meth) acrylic acid ester unit content is 30% by mass to 50% by mass, and the more preferable range is 35% by mass to 45% by mass.
  • the contents of the (meth) acrylic acid ester unit and the vinyl chloride unit can be measured by NMR or the like. Moreover, you may calculate from the usage-amount of a monomer component, the compounding composition of a resin composition, and you may refer to a manufacturer's nominal value.
  • a copolymer (ternary) in which the resin has a vinyl chloride unit and a (meth) acrylic acid ester unit (2)
  • the resin includes a mixture of a (co) polymer having a vinyl chloride unit and a (co) polymer having a (meth) acrylic acid ester unit.
  • the (co) polymer means a homopolymer or a copolymer.
  • the copolymer may have other units other than the vinyl chloride unit and the (meth) acrylic acid ester unit, and as a monomer that gives such other unit, For example, ethylene; vinyl acetate; styrene; acrylonitrile; acrylic acid; methacrylic acid.
  • the resin comprises (2-1) a mixture of homopoly (meth) acrylic acid ester and polyvinyl chloride; (2-2) homopoly (meth) acrylic acid ester and vinyl chloride An embodiment comprising a mixture of a copolymer containing units; (2-3) an embodiment comprising a mixture of a copolymer containing (meth) acrylic acid ester units and polyvinyl chloride; (2-4) (meth) And an embodiment including a mixture of a copolymer containing an acrylate unit and a copolymer containing a vinyl chloride unit.
  • the units constituting each copolymer in (2-2) to (2-4) are monomer-derived units that give other units exemplified above.
  • the resin coated on the nonwoven fabric may further include a (co) polymer that does not include any of the vinyl chloride unit and the (meth) acrylic acid ester unit. That is, the embodiment (3) is obtained by adding a (co) polymer obtained by polymerizing one or more monomers giving other units exemplified above to the embodiment (1) or (2). .
  • a copolymer of ethylene and vinyl acetate is preferable as the (co) polymer containing neither a vinyl chloride unit nor a (meth) acrylic ester unit. In this copolymer, it is preferable to carry out the copolymerization so that the vinyl acetate unit is 60 mass% to 95 mass%.
  • the amount of vinyl chloride units in the resin coat layer is 10% by mass to 45% by mass and the amount of (meth) acrylic acid ester units is 30% by mass to 55% by mass. .
  • the resin according to the present invention preferably has at least one glass transition temperature (Tg) at 30 ° C. or lower in differential scanning calorimetry (DSC).
  • the glass transition temperature means a glass transition temperature obtained from a DSC curve when an exothermic and endothermic curve (DSC curve) is measured using a differential scanning calorimeter at a heating rate of 20 ° C./min. .
  • DSC curve differential scanning calorimeter
  • the resin according to the present invention may have a plurality of glass transition temperatures.
  • at least one of the plurality of glass transition temperatures may be 30 ° C. or less.
  • the lowest glass transition temperature is preferably ⁇ 30 ° C. or higher.
  • the highest glass transition temperature is preferably 80 ° C. or lower. If the glass transition temperature is too low, tackiness is exhibited, and the resin-coated nonwoven fabric may be blocked. If the glass transition temperature is too high, it may be difficult to obtain desired flexibility.
  • the resin to be coated may be an organic solvent type, but is preferably an emulsion in an aqueous medium. Even when a resin is composed of a plurality of (co) polymers, a uniform resin emulsion can be easily obtained by mixing and stirring the emulsions. Moreover, the viscosity of the resulting resin emulsion (coating solution) can be kept low, and it is also environmentally friendly.
  • the aqueous medium may contain, in addition to water, alcohols such as methanol, ethanol and isopropanol; ketones such as acetone; ethers such as tetrahydrofuran.
  • the above-mentioned resin is coated on the nonwoven fabric so that the resin amount (nonvolatile content) is 40 g / m 2 to 150 g / m 2 . If the amount of the resin is small, the embossed pattern is not clear, and if it is too much, the texture becomes hard, which is not preferable.
  • a more preferable adhesion amount is in the range of 50 g / m 2 to 120 g / m 2 , and a further preferable adhesion amount is in the range of 60 g / m 2 to 110 g / m 2 .
  • the concentration of the emulsion may be adjusted.
  • the resin coated on the nonwoven fabric may be present on the surface of the nonwoven fabric, or may be impregnated in the nonwoven fabric, that is, penetrated between fibers constituting the nonwoven fabric.
  • a known crosslinking agent, flame retardant, wetting agent, viscosity modifier, thickener, antifoaming agent, modifier, pigment, coloring is applied to the resin (emulsion).
  • Additives such as additives, fillers, anti-aging agents, UV absorbers, UV stabilizers and the like may be added within a range that does not impair the object of the present invention, and it is preferable to use them in the form of a resin composition in which they are mixed .
  • the addition amount of the additives is preferably 10% by mass to 50% by mass, more preferably 15% in the resin composition (total 100% by mass of the resin, solvent, filler, flame retardant and other additives).
  • the content is from mass% to 45 mass%, more preferably from 20 mass% to 40 mass%.
  • the resin composition preferably contains antimony trioxide.
  • the amount of antimony trioxide added is about 5% by mass to 10% by mass (when the total mass of the resin and antimony trioxide is 100% by mass).
  • Method for producing resin-coated nonwoven fabric An example of the suitable manufacturing method of the resin coat nonwoven fabric of this invention is demonstrated. First, a spunbond nonwoven fabric is produced by a known method. Subsequently, as described above, pressure bonding is performed through an embossing roll. This completes the nonwoven fabric as the substrate. The embossing at this time is preferably performed at about 150 to 250 ° C.
  • a resin composition is coated on at least one surface of the nonwoven fabric substrate.
  • a resin coat is applied to the embossed surface side during the production of the nonwoven fabric. This is because when the resin coating is applied to the embossed surface side during the production of the nonwoven fabric, curling of the end portion in the width direction of the resin coated nonwoven fabric can be prevented.
  • the resin penetrates into the inside of the nonwoven fabric by the coating of the resin composition, but it does not always reach the surface on the opposite side of the coated surface (a state where the resin is beautifully impregnated to the back surface). There are cases where the layer is divided into an impregnated layer and a non-impregnated non-woven fabric layer.
  • the difference in the heat shrinkage behavior of these two layers is considered to be the cause of the curl.
  • the nonwoven fabric of the portion compressed by the convex portion of the embossing roll is dense in fibers, but the portion that is not pressed remains coarse in the fiber, so from the embossed surface side
  • the curl is preferably 20 mm or less as a value measured by a measurement method described later. More preferably, it is 18 mm or less, More preferably, it is 15 mm or less.
  • the coating method is not particularly limited, but a knife coating method, a gravure coating method, an air knife coating method, or the like can be employed.
  • the knife coating method and the air knife coating method are preferable in terms of good permeability.
  • the coated nonwoven fabric may be heat treated for drying. Conditions for the heat treatment are not particularly limited, and may be, for example, 100 ° C. to 160 ° C. (more preferably 110 ° C. to 150 ° C.) for 0.5 minutes to 10 minutes (more preferably 1 minute to 5 minutes).
  • the obtained resin-coated non-woven fabric is preferably passed through an embossing roll so as to have an uneven pattern on at least one side.
  • the embossing is preferably performed on the resin-coated surface of the nonwoven fabric. This is because a clearer embossed pattern can be obtained.
  • the embossed pattern is not particularly limited. For example, leather-like, satin-like, wood-grained, fabric pattern, geometric pattern (for example, polygonal column shape such as cylindrical shape, triangular prism shape, quadrangular prism shape, truncated cone shape, triangular frustum shape)
  • the shape and the shape of a polygonal frustum such as a quadrangular frustum shape may be appropriately determined according to the required design.
  • a paper roll is preferably used as the opposing roll of the embossing roll.
  • corrugation can be simultaneously formed on both surfaces of a resin coat nonwoven fabric.
  • the embossing is preferably performed by heating so that the resin-coated non-woven fabric is about 130 ° C. to 180 ° C.
  • the resin-coated nonwoven fabric of the present invention can be welded with a high-frequency welder.
  • a measure of whether or not welding is possible is that the high-frequency welder weld has a tensile (breaking) strength of 5.0 N / cm or more.
  • the strength of the welded portion is preferably 7 N / cm or more, and more preferably 8 N / cm or more. A method for measuring the strength of the welded portion will be described in Examples.
  • the resin-coated nonwoven fabric of the present invention has flexibility (flexibility) because the amount of (meth) acrylic acid ester units is set in an appropriate range.
  • flexibility As a measure of flexibility, it is preferably 80 mm to 160 mm in the cantilever type (JIS L 1913 6.7.2 (2010)). More preferably, it is 90 mm to 140 mm, and still more preferably 100 mm to 130 mm.
  • the resin-coated nonwoven fabric of the present invention has a pattern by embossing. Embossing with a specific shape is effective for improving the tackiness when the resin-coated nonwoven fabric is wound into a roll, in addition to the purpose of imparting design properties, and prevents the appearance of stickiness (tack), blocking, etc. It is difficult to cause inconvenience.
  • the resin-coated non-woven fabric of the present invention when used for a tonneau cover of an automobile, the tonneau cover is wound into a roll shape when not in use, and is unwound when in use, but when tuck occurs, a sound is heard when unwinding. Sometimes. This is the sound that occurs when both layers peel off as a result of blocking between the resin coated surfaces or between the resin coated surface and the nonwoven fabric surface when the hardness of the entire resin composition is low, Reduction of crisp noise has been demanded.
  • the shape of the embossing is not particularly limited, but the resin-coated nonwoven fabric is leather-like, satin-like, wood-grained, fabric pattern, geometric pattern (for example, a polygonal column shape such as a columnar shape, a triangular prism shape, a quadrangular prism shape, a cone, etc.
  • geometric pattern for example, a polygonal column shape such as a columnar shape, a triangular prism shape, a quadrangular prism shape, a cone, etc.
  • a shape that can give a shape such as a trapezoidal shape, a triangular frustum shape, a polygonal frustum shape such as a quadrangular frustum shape, or the like is preferable.
  • the quadrangular pyramid shape is preferable because it is excellent in the effect of reducing the burr generated from the tack.
  • the size of the embossed shape is preferably 500 ⁇ m to 2000 ⁇ m when any two points on the contour line of the embossed pattern are selected so that the length between them is maximized on the plane of the resin-coated nonwoven fabric ( More preferably 700 ⁇ m to 1600 ⁇ m, still more preferably 1000 ⁇ m to 1300 ⁇ m, and the height is preferably 250 ⁇ m to 700 ⁇ m (more preferably 300 ⁇ m to 650 ⁇ m, still more preferably 350 ⁇ m to 600 ⁇ m).
  • the embossed pattern in the resin-coated nonwoven fabric there may be mentioned a mode in which the embossed pattern is arranged in a lattice shape, a mode in which the embossed pattern is arranged in a staggered manner, a mode in which the embossed pattern is arranged at random, and a leather texture.
  • the most preferred embossing mode is a mode in which the inverted quadrangular frustum-shaped recesses are staggered as viewed from the resin-coated surface side (any surface may be used when both surfaces of the nonwoven fabric substrate are resin-coated) It is.
  • DSC differential scanning calorimeter
  • ⁇ Curl> A resin-coated non-woven fabric cut into a width of 75 mm and a length of 205 mm was used as a sample, and was allowed to stand at 90 ° C. in an absolutely dry state for 24 hours, and the maximum height (mm) at which the side was warped was measured.
  • ⁇ Tensile (breaking) strength of welded part of high frequency welder> Resin coated layers of resin coated nonwoven fabric with high frequency welder (new hybrid high frequency welder YO-5AN; manufactured by Yamamoto Vinita Co., Ltd.), 0.25A, mold temperature 150 ° C, welding time 3 seconds, cooling time 3 seconds Are welded and joined in a linear form to produce a sample.
  • the length in the direction perpendicular to the welded portion is about 200 mm, the length in the same direction as the welded portion (this length is the width of the test piece) is 30 mm, and the welded portion is near the center of the test piece. Then, a test piece is cut out from the sample.
  • a test piece is sandwiched between upper and lower chucks of a tensile tester (“Autograph (registered trademark)” manufactured by Shimadzu Corporation) so that the distance between the chucks becomes 100 mm, and is pulled at a pulling speed of 200 mm / min.
  • the strength at the time of fracture was divided by the length in the width direction of the test piece to obtain the tensile strength (N / cm).
  • ⁇ Strong> A specimen cut into a width of 30 mm and a length of 200 mm is sandwiched between upper and lower chucks of a tensile tester (“Autograph (registered trademark)” manufactured by Shimadzu Corporation), and the test piece is sandwiched between the chucks so that the distance between chucks is 100 mm. The value at break was read by pulling at a speed of 200 mm / min.
  • Example 1 Polyethylene terephthalate (PET) with an intrinsic viscosity of 0.65 dl / g is melt-spun at a spinning temperature of 285 ° C. and a single-hole discharge rate of 1.0 g / min, opened while being pulled by an ejector, and arranged on a net conveyor. was deposited at a speed adjusted to be random. A spunbonded nonwoven fabric having a basis weight of 100 g / m 2 made of long fibers having a single yarn fineness of 2.0 dtex was obtained. Next, embossing was performed at 230 ° C.
  • PET Polyethylene terephthalate
  • thermocompression type long fiber nonwoven fabric a linear pressure of 20 kN / m with an embossing roll in which pyramidal trapezoidal convex portions with a crimping area ratio of 9% were arranged in a staggered manner to obtain a thermocompression type long fiber nonwoven fabric.
  • thermocompression-bonded long-fiber nonwoven fabric The surface (embossed surface) of the above-mentioned thermocompression-bonded long-fiber nonwoven fabric is coated with the resin composition 1 with a knife coater so that the resin adhesion after drying is 80 g / m 2 , dried, Embossing was performed at 153 ° C. and a linear pressure of 70 kN / m with a school-type embossing roll to obtain a resin-coated nonwoven fabric.
  • the design property, curl, bending resistance, tensile (breaking) strength and strength of the welder welded portion were evaluated by the above methods and are shown in Table 1.
  • the DSC curve obtained at this time is shown in FIG. 1-1, and an enlarged view ( ⁇ 20 ° C. to 20 ° C.) of FIG. 1-1 is shown in FIG. 1-2.
  • Example 2 In the same manner as in Example 1, a thermocompression type long fiber nonwoven fabric was obtained.
  • a resin composition is obtained by thoroughly mixing 35 parts of an emulsion (“Yodosol AD133” manufactured by Henkel Japan Co., Ltd.) with a solid content and 35 parts of calcium carbonate (“Escalon # 100” manufactured by Sankyo Seiko Co., Ltd.) as an extender. 2 was obtained.
  • thermocompression bonding type long fiber nonwoven fabric The surface (embossed surface) of the above-mentioned thermocompression bonding type long fiber nonwoven fabric is coated with the resin composition 2 with a knife coater so that the amount of the resin adhered after drying is 80 g / m 2 , dried, Embossing was performed at 153 ° C. and a linear pressure of 70 kN / m with a school-type embossing roll to obtain a resin-coated nonwoven fabric.
  • Table 1 shows the evaluation results of various characteristics.
  • Example 3 In the same manner as in Example 1, a thermocompression type long fiber nonwoven fabric was obtained.
  • thermocompression-bonded long-fiber nonwoven fabric The surface (embossed surface) of the above-mentioned thermocompression-bonded long-fiber nonwoven fabric is coated with the resin composition 3 with a knife coater so that the resin adhesion after drying is 80 g / m 2 , and dried. Embossing was performed at 153 ° C. and a linear pressure of 70 kN / m with a textured embossing roll to obtain a resin-coated nonwoven fabric. Table 1 shows the evaluation results of various characteristics.
  • Example 4 In the same manner as in Example 1, a thermocompression type long fiber nonwoven fabric was obtained.
  • thermocompression-bonded long-fiber nonwoven fabric The surface (embossed surface) of the above-mentioned thermocompression-bonded long-fiber nonwoven fabric is coated with the resin composition 4 with a knife coater so that the resin adhesion after drying is 80 g / m 2 , and dried. Embossing was performed at 153 ° C. and a linear pressure of 70 kN / m with a textured embossing roll to obtain a resin-coated nonwoven fabric. Table 1 shows the evaluation results of various characteristics.
  • Example 5 Polyethylene terephthalate (PET) with an intrinsic viscosity of 0.65 dl / g is melt-spun at a spinning temperature of 285 ° C. and a single-hole discharge rate of 1.0 g / min, opened while being pulled by an ejector, and arranged on a net conveyor. was deposited at a speed adjusted to be random. A spunbonded nonwoven fabric having a basis weight of 150 g / m 2 made of long fibers having a single yarn fineness of 2.0 dtex was obtained. Next, embossing was performed at 230 ° C.
  • PET Polyethylene terephthalate
  • thermocompression type long fiber nonwoven fabric a linear pressure of 20 kN / m with an embossing roll in which pyramidal trapezoidal convex portions with a crimping area ratio of 9% were arranged in a staggered manner to obtain a thermocompression type long fiber nonwoven fabric.
  • a resin-coated nonwoven fabric was obtained in the same manner as in Example 1 except that the resin composition 1 was coated with a knife coater so that the amount of resin adhered after drying was 150 g / m 2 .
  • Table 1 shows the evaluation results of various characteristics.
  • Example 6 Polyethylene terephthalate (PET) with an intrinsic viscosity of 0.65 dl / g is melt-spun at a spinning temperature of 285 ° C. and a single-hole discharge rate of 1.0 g / min, opened while being pulled by an ejector, and arranged on a net conveyor. was deposited at a speed adjusted to be random. A spunbonded nonwoven fabric having a basis weight of 50 g / m 2 made of long fibers having a single yarn fineness of 2.0 dtex was obtained. Next, embossing was performed at 230 ° C.
  • PET Polyethylene terephthalate
  • thermocompression type long fiber nonwoven fabric a linear pressure of 20 kN / m with an embossing roll in which pyramidal trapezoidal convex portions with a crimping area ratio of 9% were arranged in a staggered manner to obtain a thermocompression type long fiber nonwoven fabric.
  • a resin-coated nonwoven fabric was obtained in the same manner as in Example 1 except that the resin composition 1 was coated with a knife coater so that the amount of the resin adhered after drying was 50 g / m 2 .
  • Table 1 shows the evaluation results of various characteristics.
  • Example 7 A resin-coated nonwoven fabric was obtained in the same manner as in Example 1 except that the non-embossed surface of the long-fiber nonwoven fabric was coated with the resin composition 1. Table 1 shows the evaluation results of various characteristics.
  • Example 8 In the same manner as in Example 1, a thermocompression type long fiber nonwoven fabric was obtained.
  • Acrylic ester polymer, 30 parts in solid content of vinyl chloride and acrylic ester copolymer emulsion (vinyl chloride / acrylic ester 80/20; “ViniBran (registered trademark) 701” manufactured by Nissin Chemical Industry Co., Ltd.) Emulsions (“Sybinol (registered trademark) ACF-15” manufactured by Seiden Chemical Co., Ltd.) in solids and 34 parts of calcium carbonate (“Escalon # 100” manufactured by Sankyo Seiko Co., Ltd.) as a filler are mixed well.
  • a resin composition 8 was obtained.
  • thermocompression type long fiber nonwoven fabric The surface (embossed surface) of the above-mentioned thermocompression type long fiber nonwoven fabric is coated with the resin composition 8 with a knife coater so that the amount of the resin adhered after drying is 80 g / m 2 , dried, Embossing was performed at 153 ° C. and a linear pressure of 70 kN / m with a school-type embossing roll to obtain a resin-coated nonwoven fabric.
  • Table 1 shows the evaluation results of various characteristics.
  • thermocompression-bonded long-fiber non-woven fabric is coated with the resin composition 9 with a knife coater so that the resin adhesion after drying is 80 g / m 2 , dried, and then trapezoidal. Embossing was performed with a lattice-type embossing roll at 153 ° C. and a linear pressure of 70 kN / m to obtain a resin-coated nonwoven fabric.
  • the design property, curl, bending resistance, tensile (breaking) strength and strength of the welder welded portion were evaluated by the above methods and are shown in Table 2.
  • thermocompression bonding type long fiber nonwoven fabric The surface (embossed surface) of the above-mentioned thermocompression bonding type long fiber nonwoven fabric is coated with the resin composition 10 with a knife coater so that the resin adhesion after drying is 80 g / m 2 , dried, and then trapezoidal. Embossing was performed with a lattice-type embossing roll at 153 ° C. and a linear pressure of 70 kN / m to obtain a resin-coated nonwoven fabric. Table 2 shows the evaluation results of various characteristics.
  • thermocompression type long fiber nonwoven fabric was obtained.
  • Composition 11 was obtained.
  • thermocompression bonding type long fiber nonwoven fabric The surface (embossed surface) of the above-mentioned thermocompression bonding type long fiber nonwoven fabric is coated with the resin composition 11 with a knife coater so that the resin adhesion after drying is 80 g / m 2 , dried, and then trapezoidal. Embossing was performed with a lattice-type embossing roll at 153 ° C. and a linear pressure of 70 kN / m to obtain a resin-coated nonwoven fabric. Table 2 shows the evaluation results of various characteristics.
  • Comparative Example 4 Polyethylene terephthalate (PET) with an intrinsic viscosity of 0.65 dl / g is melt-spun at a spinning temperature of 285 ° C. and a single-hole discharge rate of 1.0 g / min, opened while being pulled by an ejector, and arranged on a net conveyor. was deposited at a speed adjusted to be random. A spunbonded nonwoven fabric having a basis weight of 200 g / m 2 made of long fibers having a single yarn fineness of 2.0 dtex was obtained. Next, embossing was performed at 230 ° C.
  • PET Polyethylene terephthalate
  • thermocompression type long fiber nonwoven fabric a linear pressure of 20 kN / m with an embossing roll in which pyramidal trapezoidal convex portions with a crimping area ratio of 9% were arranged in a staggered manner to obtain a thermocompression type long fiber nonwoven fabric.
  • thermocompression-bonded long fiber nonwoven fabric The surface (embossed surface) of the thermocompression-bonded long fiber nonwoven fabric is coated with the resin composition 1 with a knife coater so that the resin adhesion after drying is 80 g / m 2 , dried, and then trapezoidal. Embossing was performed with a lattice-type embossing roll at 153 ° C. and a linear pressure of 70 kN / m to obtain a resin-coated nonwoven fabric. Table 2 shows the evaluation results of various characteristics.
  • Comparative Example 5 Polyethylene terephthalate (PET) with an intrinsic viscosity of 0.65 dl / g is melt-spun at a spinning temperature of 285 ° C. and a single-hole discharge rate of 1.0 g / min, opened while being pulled by an ejector, and arranged on a net conveyor. was deposited at a speed adjusted to be random. A spunbonded nonwoven fabric having a basis weight of 40 g / m 2 made of long fibers having a single yarn fineness of 2.0 dtex was obtained. Next, embossing was performed at 230 ° C.
  • PET Polyethylene terephthalate
  • thermocompression type long fiber nonwoven fabric a linear pressure of 20 kN / m with an embossing roll in which pyramidal trapezoidal convex portions with a crimping area ratio of 9% were arranged in a staggered manner to obtain a thermocompression type long fiber nonwoven fabric.
  • thermocompression-bonded long fiber nonwoven fabric The surface (embossed surface) of the thermocompression-bonded long fiber nonwoven fabric is coated with the resin composition 1 with a knife coater so that the resin adhesion after drying is 80 g / m 2 , dried, and then trapezoidal. Embossing was performed with a lattice-type embossing roll at 153 ° C. and a linear pressure of 70 kN / m to obtain a resin-coated nonwoven fabric. Table 2 shows the evaluation results of various characteristics. In Comparative Example 5, since the basis weight of the nonwoven fabric was too small, a plurality of holes were confirmed in the resin-coated nonwoven fabric after the resin composition 1 was coated and embossed.
  • thermocompression type long fiber nonwoven fabric was obtained.
  • the surface (embossed surface) of the thermocompression-bonded long-fiber nonwoven fabric is coated with the resin composition 1 with a knife coater so that the resin adhesion after drying is 200 g / m 2 , dried, and then trapezoidal.
  • Embossing was performed with a lattice-type embossing roll at 153 ° C. and a linear pressure of 70 kN / m to obtain a resin-coated nonwoven fabric.
  • Table 2 shows the evaluation results of various characteristics.
  • thermocompression type long fiber nonwoven fabric was obtained.
  • the surface (embossed surface) of the thermocompression-bonded long-fiber non-woven fabric is coated with the resin composition 1 with a knife coater so that the resin adhesion after drying is 30 g / m 2 , dried, and then trapezoidal.
  • Embossing was performed with a lattice-type embossing roll at 153 ° C. and a linear pressure of 70 kN / m to obtain a resin-coated nonwoven fabric.
  • Table 2 shows the evaluation results of various characteristics.
  • Comparative Example 8 Polyethylene terephthalate (PET) with an intrinsic viscosity of 0.65 dl / g is melt-spun at a spinning temperature of 285 ° C. and a single-hole discharge rate of 1.0 g / min, opened while being pulled by an ejector, and arranged on a net conveyor. was deposited at a speed adjusted to be random. A spunbonded nonwoven fabric having a basis weight of 100 g / m 2 made of long fibers having a single yarn fineness of 2.0 dtex was obtained. Subsequently, embossing was performed at 230 ° C.
  • PET Polyethylene terephthalate
  • the needle punch long fiber nonwoven fabric was obtained by performing the entanglement process by the needle punch under the conditions of 65 needles / cm 2 and a needle depth of 12 mm using a needle punch machine with a 40th needle.
  • the surface (embossed surface) of the needle punch type long fiber nonwoven fabric is coated with the resin composition 1 with a knife coater so that the amount of resin adhered after drying is 80 g / m 2 , dried, and then trapezoidal. Embossing was performed with a lattice-type embossing roll at 153 ° C. and a linear pressure of 70 kN / m to obtain a resin-coated nonwoven fabric. Table 2 shows the evaluation results of various characteristics.
  • the resin-coated non-woven fabric of the present invention can be welded by a high-frequency welder, has a beautiful embossed pattern and is excellent in design, and is a flexible resin-coated non-woven fabric, such as vehicle interior materials such as tonneau covers, wallpaper, bed members, It can be used for chair members and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)

Abstract

 高周波ウェルダーでの溶着が可能で、硬さが改善され、しかも、エンボスの模様がきれいに出る樹脂コート不織布を提供する。 本発明の樹脂コート不織布は、目付け50g/m2~150g/m2のポリエチレンテレフタレート製熱圧着タイプの長繊維不織布の片面に、乾燥後の塗布量が40g/m2~150g/m2である樹脂コート層を有し、上記樹脂コート層が、塩化ビニルユニット10質量%~45質量%と(メタ)アクリル酸エステルユニット30質量%~55質量%とを含有し、且つ、上記樹脂コート面にエンボス加工による模様を有する。

Description

樹脂コート不織布
 本発明は、車両内装材、壁紙、ベッド部材、椅子部材等に使用可能なシート状の樹脂コート不織布に関するものであり、特に高周波ウェルダーによる溶着が可能であり、エンボスの模様がきれいに出る樹脂コート不織布に関する。
 車両内装材、特にトノカバーに用いられているシートには、織物、編物、不織布等にポリ塩化ビニルシートを積層した塩ビレザーが主流として用いられている。このシートは高周波ウェルダーでの溶着が可能なため、縫製により加工する手間が省け、コスト的に有利である。しかしながら、塩ビレザーは、暖かみのある風合いが得られないという問題があった。こういったことから、本出願人は、不織布に樹脂を含浸させた通気性レザーを発明したが(特許文献1)、この発明では、含浸樹脂としてTgの高いポリ酢酸ビニルを用いているため(特許文献1の実施例)、含浸樹脂量を多くすると風合いが硬くなることがあった。
 本出願人は、さらに、熱圧着タイプの高目付けスパンボンド不織布の片面にアクリル系樹脂を付着させたレザー調不織布を発明した(特許文献2)。この発明で得られる不織布は、高周波ウェルダーによる溶着ができないという問題があった。
特開平7-125066号公報 特開平11-241277号公報
 特許文献1や2では、高周波ウェルダーでの溶着の可否については検討されていない。なお、ポリ酢酸ビニルは高周波ウェルダー溶着が可能であるが、上述のとおり、ポリ酢酸ビニル含浸不織布では、風合いが硬く、しなやかさがない。そこで、本発明では、高周波ウェルダーでの溶着が可能で、硬さが改善され、しかも、エンボスの模様がきれいに出る樹脂コート不織布を提供することを課題として掲げた。
 上記課題を解決した本発明は、目付け50g/m2~150g/m2のポリエチレンテレフタレート製熱圧着タイプの長繊維不織布の片面に、乾燥後の塗布量が40g/m2~150g/m2である樹脂コート層を有し、上記樹脂コート層が、塩化ビニルユニット10質量%~45質量%と(メタ)アクリル酸エステルユニット30質量%~55質量%とを含有し、且つ、上記樹脂コート面にエンボス加工による模様を有するところに特徴を有している。
 上記樹脂コート層としては、示差走査熱量測定(DSC)において、30℃以下に少なくとも1つのガラス転移温度(Tg)を有するものが好ましい。また、上記長繊維不織布にはエンボス加工が施されており、当該長繊維不織布のエンボス加工面に上記樹脂がコートされていることが望ましい。
 なお、本発明において「(メタ)アクリル酸エステル」とは、「アクリル酸エステル及び/又はメタクリル酸エステル」を意味する。
 本発明によれば、高周波ウェルダーでの溶着が可能で、硬さが改善され、エンボスの模様がきれいに出て意匠性に優れた樹脂コート不織布を提供することができた。
図1-1は、実施例1で作製した樹脂コート不織布から採取したコート層試料のDSC曲線を示す図である。 図1-2は、図1-1の拡大図(-20℃~20℃)である。
 本発明者等は、上記従来技術に鑑み、高周波ウェルダーでの溶着が可能で、硬さが改善され、しかも、鮮明なエンボス模様を実現できる樹脂、特に、共重合成分、またはポリマーブレンド相手について、種々検討した結果、不織布にコートされる樹脂が塩化ビニルユニットに加えて、(メタ)アクリル酸エステルユニットを有していることが、高周波ウェルダーでの溶着性を阻害せず、得られる樹脂コート不織布にしなやかさを付与でき、さらには、鮮明なエンボス模様も与え得ることを見出し、本発明を完成した。以下、本発明を詳細に説明する。
 [不織布]
 本発明では、基材となる不織布として、ポリエチレンテレフタレート(PET)製熱圧着タイプの長繊維不織布を用いる。PETは、力学的強度(機械的強度)や耐熱性等の特性に優れているからである。なお、10質量%以下であれば、PET以外のポリエステルがブレンドされていてもよい。PETの固有粘度は、特に限定されないが、0.6dl/g以上が好ましい。
 不織布を構成する長繊維(単繊維)の繊維径は、0.1dtex~10dtex程度が好ましく、より好ましくは1dtex~5dtex程度である。また、本発明では、目付けが50g/m2~150g/m2程度である不織布を用いる。好ましくは60g/m2~120g/m2程度であり、より好ましくは70g/m2~110g/m2である。繊維径や目付けが上記範囲内であれば、力学的強度、しなやかさ、意匠性等の各特性をバランスよく優れたものにすることができる。
 長繊維不織布としては、スパンボンド不織布が高速生産に向いており安価に入手できるため好ましい。なお、スパンボンド不織布のままでは、引張強力や引裂き強力が若干不足する場合があるので、本発明では、スパンボンド不織布を、圧着率(ロール側凸部の頂部の面積割合)2~50%程度のエンボスロールを通して圧着したものを用いる。エンボスロールで圧着することにより不織布の保形性も高まり、搬送時にも不織布の形状が崩れ難くなる。コストの点からは、スパンボンド不織布は、片面のみにエンボス加工が施されたものであるのが好ましい。
 [樹脂]
 本発明の樹脂コート不織布は、上記長繊維不織布の片面に樹脂コート層を有する。樹脂コート層を構成する樹脂としては、塩化ビニルユニットと(メタ)アクリル酸エステルユニットとを含む樹脂であることが必要である。塩化ビニルユニットが高周波ウェルダーでの溶着を可能にし、(メタ)アクリル酸エステルユニットが樹脂にほどよい柔らかさ(柔軟性)を付与する。
 ここで、(メタ)アクリル酸エステルユニットとは、(メタ)アクリロイル基を有する単量体に由来する構造単位を意味する。斯かる構造単位を与える単量体としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート等の(メタ)アクリレート類が挙げられる。
 塩化ビニルユニットは、樹脂コート層中(コート層を構成する樹脂及び任意で用いられる添加剤の合計を100質量%とする)に10質量%~45質量%含まれている。この範囲であれば、高周波ウェルダーでの溶着が可能であり、不織布が硬くなりすぎることがない。塩化ビニルユニット含有量の好ましい範囲は15質量%~45質量%であり、より好ましくは15質量%~35質量%である。
 (メタ)アクリル酸エステルユニットは、樹脂コート層中に30質量%~55質量%含まれている。(メタ)アクリル酸エステルユニットが多くなると、得られる樹脂コート不織布表面にタックが発現し、例えば、巻回状態の樹脂コート不織布を巻き出す際に、ブロッキングを起こすことがあるため、好ましくない。一方、(メタ)アクリル酸エステルユニットが少なすぎると、しなやかさを樹脂コート不織布に与え難くなる。よって、(メタ)アクリル酸エステルユニット含有量の好ましい範囲は30質量%~50質量%であり、より好ましい範囲は35質量%~45質量%である。
 なお、(メタ)アクリル酸エステルユニット、塩化ビニルユニットの含有量は、NMR等により測定できる。また、単量体成分の使用量や樹脂組成物の配合組成から算出してもよく、製造業者の公称値を参考にしてもよい。
 樹脂コート層に、塩化ビニルユニットと(メタ)アクリル酸エステルユニットとを含ませる態様としては、(1)樹脂が、塩化ビニルユニットと(メタ)アクリル酸エステルユニットとを有する共重合体(3元以上の多元共重合体も含む)である態様;(2)樹脂が、塩化ビニルユニットを有する(共)重合体と、(メタ)アクリル酸エステルユニットを含む(共)重合体との混合物を含む態様;が挙げられる。また、(1)、(2)を混合した態様であってもよい。ここで(共)重合体とは、単独重合体又は共重合体を意味する。
 (1)の態様において、上記共重合体は塩化ビニルユニットと(メタ)アクリル酸エステルユニット以外の他のユニットを有していてもよく、このような他のユニットを与える単量体としては、例えば、エチレン;酢酸ビニル;スチレン;アクリロニトリル;アクリル酸;メタクリル酸類等が挙げられる。
 他のユニットがある場合、すなわち、(メタ)アクリル酸エステルと塩化ビニルに加えて他の単量体を共重合する場合は、樹脂コート層中の塩化ビニルユニットや(メタ)アクリル酸エステルユニットの量が上記範囲になるように共重合比を調整することが好ましい。
 上記(2)の態様では、樹脂が、(2-1)ホモポリ(メタ)アクリル酸エステルとポリ塩化ビニルとの混合物を含む態様;(2-2)ホモポリ(メタ)アクリル酸エステルと、塩化ビニルユニットを含む共重合体との混合物を含む態様;(2-3)(メタ)アクリル酸エステルユニットを含む共重合体と、ポリ塩化ビニルとの混合物を含む態様;(2-4)(メタ)アクリル酸エステルユニットを含む共重合体と、塩化ビニルユニットを含む共重合体との混合物を含む態様;とに分けられる。(2-2)~(2-4)における各共重合体を構成するユニットは、上記で例示した他のユニットを与える単量体由来のユニットである。
 本発明において、不織布にコートする樹脂は、塩化ビニルユニットと(メタ)アクリル酸エステルユニットのいずれも含まない(共)重合体をさらに含むものであってもよい。すなわち、上記で例示した他のユニットを与える単量体の1種または2種以上を重合した(共)重合体を、上記(1)または(2)の態様に加えた態様(3)である。当該(3)の態様において、塩化ビニルユニットと(メタ)アクリル酸エステルユニットのいずれも含まない(共)重合体として好ましいのは、エチレンと酢酸ビニルとの共重合体である。この共重合体においては、酢酸ビニルユニットが60質量%~95質量%となるように共重合することが好ましい。
 上記いずれの場合も、樹脂コート層中の塩化ビニルユニット量が10質量%~45質量%、(メタ)アクリル酸エステルユニット量が30質量%~55質量%となるように、調整することが好ましい。
 本発明に係る樹脂は、示差走査熱量測定(DSC)において、30℃以下に少なくとも1つのガラス転移温度(Tg)を有するものであるのが好ましい。ここで、ガラス転移温度とは、示差走査型熱量計を用いて20℃/分の昇温速度で発熱、吸熱曲線(DSC曲線)を測定したときのDSC曲線から求められるガラス転移温度を意味する。ガラス転移温度が30℃以下の成分を使用することで、樹脂コート不織布にしなやかさを付与することができる。
 本発明に係る樹脂は複数のガラス転移温度を有するものであってもよく、この場合、複数のガラス転移温度の内の少なくとも1つが30℃以下であればよい。なお、樹脂が複数のガラス転移温度を有する場合、最も低いガラス転移温度は-30℃以上であるのが好ましい。最も高いガラス転移温度は80℃以下であるのが好ましい。ガラス転移温度が低すぎるとタック性が発現し、樹脂コート不織布がブロッキングを生じる虞があり、ガラス転移温度が高すぎると、所望のしなやかさが得られ難い場合がある。
 コートする樹脂は、有機溶剤系でも構わないが、水性媒体のエマルジョンであることが好ましい。複数の(共)重合体から樹脂が構成されている場合でも、エマルジョン同士を混合して撹拌すれば、均一な樹脂エマルジョンを簡単に得ることができる。また、得られる樹脂エマルジョン(塗布液)の粘度も低く抑えることができ、さらに環境にも優しい。なお、水性媒体には水の他に、メタノール、エタノール、イソプロパノール等のアルコール類;アセトン等のケトン類;テトラヒドロフラン等のエーテル類が含まれていてもよい。
 上記樹脂は、樹脂量(不揮発分)が40g/m2~150g/m2となるように不織布にコートされるものである。樹脂量が少ないと、エンボス模様がはっきりせず、多すぎると風合いが硬くなり好ましくない。より好ましい付着量は50g/m2~120g/m2の範囲であり、更に好ましい付着量は60g/m2~110g/m2の範囲である。コートによる付着量を上記好適範囲とするには、エマルジョンの濃度を調整すればよい。尚、不織布にコートされた樹脂は、不織布表面に存在していてもよく、また、不織布に含浸、すなわち、不織布を構成する繊維間等に浸透して存在していてもよい。
 [樹脂組成物]
 本発明において、不織布に樹脂をコートする際には、樹脂(エマルジョン)に、公知の架橋剤、難燃剤、湿潤剤、粘性調節剤、増粘剤、消泡剤、改質剤、顔料、着色剤、充填剤、老化防止剤、紫外線吸収剤、紫外線安定剤等の添加剤を、本発明の目的を阻害しない範囲で加えてもよく、これらを混合した樹脂組成物の形態で用いることが好ましい。添加剤の添加量は、樹脂組成物中(樹脂、溶媒、及び充填剤、難燃剤等の添加剤の合計100質量%)、10質量%~50質量%であるのが好ましく、より好ましくは15質量%~45質量%であり、さらに好ましくは20質量%~40質量%である。
 樹脂コート不織布に難燃性を付与する観点からは、樹脂組成物は三酸化アンチモンを含むものであるのが好ましい。三酸化アンチモンの添加量は5質量%~10質量%(樹脂と三酸化アンチモンの質量の合計を100質量%とした場合)程度とするのが好ましい実施態様である。
 [樹脂コート不織布の製造方法]
 本発明の樹脂コート不織布の好適な製造方法の一例を説明する。まず、公知の方法でスパンボンド不織布を製造する。続いて、前記したように、エンボスロールを通して圧着する。これで基材としての不織布が完成する。このときのエンボス加工は150~250℃程度で行うとよい。
 次いで、この不織布基材の少なくとも一方の表面に樹脂組成物をコートする。好ましくは不織布製造時のエンボス面側に樹脂コートを施す。不織布製造時のエンボス面側に樹脂コートを施すと、樹脂コート不織布の幅方向端部のカールを防止できるためである。樹脂組成物のコートによって樹脂は不織布の内部に侵入するが、コート面の反対側の表面にまで達する(きれいに裏面まで含浸する状態)とは限らないため、得られる樹脂コート不織布は樹脂が不織布に含浸した層と含浸していない不織布だけの層とに分かれる場合がある。これらの2層の熱収縮挙動が異なることが、上記カールの原因ではないかと考えられる。不織布製造時にエンボス加工を施すと、エンボスロールの凸部によって圧縮された部分の不織布は繊維が密になっているが、押圧されていない部分は繊維が粗のままであるため、エンボス面側から樹脂コートを行うことで、繊維が粗な部分を通じて樹脂が含浸しやすくなり、カールを抑制できるものと考えられる。カールは、後述する測定方法で測定される値として20mm以下が好ましい。より好ましくは18mm以下であり、さらに好ましくは15mm以下である。
 コート法としては特に限定されないが、ナイフコート法、グラビアコート法、エアーナイフコート法等が採用可能である。浸透性がよい点で、ナイフコート法、エアーナイフコート法が好ましい。
 これらの方法は、コートする樹脂量、樹脂組成物の粘度等の特性に応じて適宜選択することができる。なお、コートの回数は特に限定されず、不織布における樹脂量が上記範囲に含まれる限り、何回行ってもよい。コート後の不織布は乾燥のため熱処理を施してもよい。熱処理時の条件は特に限定されず、例えば100℃~160℃(より好ましくは110℃~150℃)で0.5分~10分(より好ましくは1分~5分)とすればよい。
 得られた樹脂コート不織布は、エンボスロールを通過させて、少なくとも片面に凹凸模様を付けることが好ましい。エンボス加工は、不織布の樹脂コート面に施すのが好ましい。より鮮明なエンボス模様が得られるからである。エンボス模様は特に限定されず、例えば、皮革調、梨地調、木目調、布地模様、幾何学模様(例えば、円柱形状、三角柱形状、四角柱形状等の多角柱形状、円錐台形状、三角錐台形状、四角錐台形状等の多角錐台形状等)等、求められる意匠に応じて適宜決定すればよい。尚、タック性改良の観点からは、後述する形状のエンボス模様とすることが推奨される。エンボスロールの対向ロールとしてはペーパーロールを用いることが好ましい。ペーパーロールを用いることで、エンボスロールの凸部に対応した凹部がペーパーロールに形成されるため、樹脂コート不織布の両面に一度に凹凸のエンボス模様を形成することができる。なお、エンボス加工は、樹脂コート不織布が130℃~180℃程度になるように加熱して行うのが好ましい。
 [樹脂コート不織布]
 本発明の樹脂コート不織布は、高周波ウェルダーによる溶着が可能である。溶着が可能かどうかの目安は、高周波ウェルダー溶着部が5.0N/cm以上の引張(破断)強度を示すことである。溶着部の強度は7N/cm以上あることが好ましく、8N/cm以上あることがさらに好ましい。溶着部の強度の測定方法は、実施例で説明する。
 また、本発明の樹脂コート不織布は、(メタ)アクリル酸エステルユニット量を適性範囲に設定したので、しなやかさ(柔軟性)を有するものである。柔軟性の目安としては、カンチレバー式(JIS L 1913 6.7.2(2010))で80mm~160mmであるのが好ましい。より好ましくは90mm~140mmであり、さらに好ましくは100mm~130mmである。
 さらに、本発明の樹脂コート不織布は、エンボス加工による模様を有する。特定形状によるエンボス加工は、意匠性を付与する目的以外に、樹脂コート不織布をロール状に捲回したときのタック性の改良に有効であり、べたつき感(タック)の発現が防止され、ブロッキング等の不都合を起こし難いものになる。
 即ち、樹脂コート不織布をロール状に捲回すると、樹脂コート面同士、又は、樹脂コート面と不織布面とが当接することになるため、樹脂成分のブリードや樹脂コート層が軟化してタックの原因となる。かかるタック現象は、上記樹脂が塩化ビニルユニットを含有している場合に一層生じ易くなる。特に、本発明の樹脂コート不織布を自動車のトノカバーに用いる場合、トノカバーは非使用時にはロール状に巻かれており、使用時に巻きほぐされるが、タックが発生すると巻きほぐしの際にバリバリという音がすることがある。これは樹脂組成物全体の硬度が低い場合に、樹脂コート面同士又は樹脂コート面と不織布面とがタックによってブロッキングを起こした結果、両層が剥離する際に発生する音であり、このようなバリバリ音の低減が求められるようになっている。
 エンボスの形状としては、特に限定されないが、樹脂コート不織布に、皮革調、梨地調、木目調、布地模様、幾何学模様(例えば、円柱形状、三角柱形状、四角柱形状等の多角柱形状、円錐台形状、三角錐台形状、四角錐台形状等の多角錐台形状等)等の形状を与え得るものが好ましい。これらの中でも四角錐台形状は、タックに由来するバリバリ音の低減効果に優れるので好ましい。
 エンボス形状のサイズは、樹脂コート不織布平面において、当該エンボス模様の輪郭線上の任意の2点をその間の長さが最大となるように選んだときの長さが500μm~2000μmであるのが好ましく(より好ましくは700μm~1600μm、さらに好ましくは1000μm~1300μm)、高さは、250μm~700μmであるのが好ましい(より好ましくは300μm~650μm、さらに好ましくは350μm~600μm)。
 また、樹脂コート不織布におけるエンボス模様の配列としては、エンボス模様が格子状に配列されている態様、千鳥配列されている態様、ランダムに配列されている態様、皮シボ調等が挙げられる。最も好ましいエンボスの態様は、樹脂コート面側から見て(不織布基材の両面が樹脂コートされている場合はいずれの面であってもよい)、逆四角錐台形状の凹部が千鳥配列した態様である。
 本願は、2013年3月19日に出願された日本国特許出願第2013-56800号に基づく優先権の利益を主張するものである。2013年3月19日に出願された日本国特許出願第2013-56800号の明細書の全内容が、本願に参考のため援用される。
 以下実施例によって本発明をさらに詳述するが、下記実施例は本発明を制限するものではなく、本発明の趣旨を逸脱しない範囲で変更実施をすることは全て本発明の技術的範囲に包含される。なお、特に断らない限り、「部」は「質量部」を、「%」は「質量%」をそれぞれ意味する。
 [特性評価方法]
 <不織布の目付>
 JIS L 1906 5.2(2000)記載の方法に準拠し、20cm×20cmのサイズで測定した。
 <ガラス転移温度(Tg)>
 ガラス転移温度の測定は、JIS K7121にしたがって行った。
 樹脂コート不織布から、片刃で、基材である不織布部分を削り落として約5mgの樹脂コート層サンプルを採取した。示差走査型熱量計(DSC、TA instruments社製「Q100」)を使用して、窒素気流中、-50℃で2分間間保持したサンプルを、昇温速度20℃/分で-50℃から200℃まで昇温した後、-50℃まで急冷し、再び、昇温速度20℃/分で200℃まで昇温させたときの発熱、吸熱曲線(DSC曲線)を測定した。得られたDSC曲線において、高温側及び低温側の各ベースラインを延長した直線から縦軸方向に等距離にある直線と、ガラス転移の階段状変化部分の曲線とが交わる点の温度を読み取り、ガラス転移温度(℃)とした。
 <意匠性>
 不織布の熱圧着跡が見えず、エンボス柄がはっきりしているものを〇、エンボス柄がはっきりしていないもの、すなわち、加工に使用したエンボスロールの柄と異なるものを△とし、エンボス柄が全く無く、不織布の熱圧着跡が見えるものを×として評価した。
 <カール>
 樹脂コート不織布を、幅75mm、長さ205mmに裁断したものを試料とし、90℃、絶乾状態で24時間放置し、側部の反り上がった最大高さ(mm)を測定した。
 <剛軟度(柔軟性)>
 JIS L 1913 6.7.2(2010)に記載のカンチレバー式で測定した。なお、試料は、試料の長さ方向が、不織布製造時の長さ方向と一致するように調製した(以下、高周波ウェルダー溶着部の引張(破断)強度、強力の測定においても同様)。
 <高周波ウェルダー溶着部の引張(破断)強度>
 高周波ウェルダー加工機(新型ハイブリッド高周波ウェルダーYO-5AN;山本ビニター株式会社製)で、0.25A、金型温度150℃、溶着時間3秒、冷却時間3秒で、樹脂コート不織布の樹脂コート層同士を線状に溶着接合して試料を作製する。溶着部に垂直な方向の長さが200mm程度、溶着部と同一方向の長さ(この長さが試験片の幅となる)が30mmとなり、かつ、溶着部が試験片の中央近傍に来るように、試料から試験片を切り出す。引張試験機(島津製作所株式会社製「オートグラフ(登録商標)」)の上下のチャックに、チャック間距離が100mmとなるように試験片を挟み、引張速度200mm/分で引張って、溶着部が破断したときの強度を試験片幅方向長さで割って、引張強度(N/cm)とした。
 <強力>
 幅30mm、長さ200mmに裁断した試料を、引張試験機(島津製作所社製「オートグラフ(登録商標)」)の上下のチャックに、チャック間距離が100mmとなるように試験片を挟み、引張速度200mm/分で引っ張って破断時の数値を読み取った。
 実施例1
 固有粘度0.65dl/gのポリエチレンテレフタレート(PET)を用い、紡糸温度285℃、単孔吐出量1.0g/分で溶融紡糸し、エジェクターで引き取りつつ開繊して、ネットコンベア上に繊維配列がランダムになるように速度調整して堆積させた。単糸繊度2.0dtexの長繊維からなる目付100g/m2のスパンボンド不織布を得た。次いで圧着面積率9%の角錐台形状の凸部が千鳥配列されたエンボスロールで、230℃、線圧20kN/mでエンボス加工を行い、熱圧着タイプの長繊維不織布を得た。
 塩化ビニルとアクリル酸エステル共重合体エマルジョン(塩化ビニル/アクリル酸エステル=80/20;日信化学工業株式会社製「ビニブラン(登録商標)278」)を固形分で30部、アクリル酸エステル重合体エマルジョン(新中村化学工業株式会社製「ニューコート9500」)を固形分で34部、及び、増量剤として炭酸カルシウム(三共精粉株式会社製「エスカロン#100」)36部をよく混合し、樹脂組成物1を得た。
 上記の熱圧着タイプの長繊維不織布の表面(エンボス面)に、乾燥後の樹脂付着量が80g/m2になるようナイフコーターで上記樹脂組成物1をコートして、乾燥させた後、幾何学型のエンボスロールで、153℃、線圧70kN/mでエンボス加工を行い、樹脂コート不織布を得た。意匠性、カール、剛軟度、ウェルダー溶着部の引張(破断)強度及び強力を上記方法で評価し、表1に示した。また、このとき得られたDSC曲線を図1-1、図1-1の拡大図(-20℃~20℃)を図1-2に示す。
 実施例2
 実施例1と同様にして、熱圧着タイプの長繊維不織布を得た。
 塩化ビニルとアクリル酸エステル共重合体エマルジョン(塩化ビニル/アクリル酸エステル=50/50;日信化学工業株式会社製「ビニブラン(登録商標)271」)を固形分で30部、アクリル酸エステル重合体エマルジョン(ヘンケルジャパン株式会社製「ヨドゾールAD133」)を固形分で35部、及び、増量剤として炭酸カルシウム(三共精粉株式会社製「エスカロン#100」)35部をよく混合して、樹脂組成物2を得た。
 上記の熱圧着タイプの長繊維不織布の表面(エンボス面)に、乾燥後の樹脂付着量が80g/m2になるようナイフコーターで上記樹脂組成物2をコートして、乾燥させた後、幾何学型のエンボスロールで153℃、線圧70kN/mでエンボス加工を行い、樹脂コート不織布を得た。各種特性の評価結果を表1に示す。
 実施例3
 実施例1と同様にして、熱圧着タイプの長繊維不織布を得た。塩化ビニルとアクリル酸エステル共重合体エマルジョン(塩化ビニル/アクリル酸エステル=50/50;日信化学工業株式会社製「ビニブラン(登録商標)271」)を固形分で70部と、増量剤として炭酸カルシウム(三共精粉株式会社製「エスカロン#100」)30部とをよく混合して、樹脂組成物3を得た。
 上記の熱圧着タイプの長繊維不織布の表面(エンボス面)に、乾燥後の樹脂付着量が80g/m2になるようナイフコーターで上記樹脂組成物3をコートして、乾燥させた後、皮シボ型のエンボスロールで153℃、線圧70kN/mでエンボス加工を行い、樹脂コート不織布を得た。各種特性の評価結果を表1に示す。
 実施例4
 実施例1と同様にして、熱圧着タイプの長繊維不織布を得た。
 塩化ビニルとアクリル酸エステル共重合体エマルジョン(塩化ビニル/アクリル酸エステル=80/20;日信化学工業株式会社製「ビニブラン(登録商標)278」)を固形分で20部、アクリル酸エステル重合体エマルジョン(新中村化学工業株式会社製「ニューコート9500」)を固形分で51部、及び、増量剤として炭酸カルシウム(三共精粉株式会社製「エスカロン#100」)29部をよく混合し、樹脂組成物4を得た。
 上記の熱圧着タイプの長繊維不織布の表面(エンボス面)に、乾燥後の樹脂付着量が80g/m2になるようナイフコーターで上記樹脂組成物4をコートして、乾燥させた後、皮シボ型のエンボスロールで、153℃、線圧70kN/mでエンボス加工を行い、樹脂コート不織布を得た。各種特性の評価結果を表1に示す。
 実施例5
 固有粘度0.65dl/gのポリエチレンテレフタレート(PET)を用い、紡糸温度285℃、単孔吐出量1.0g/分で溶融紡糸し、エジェクターで引き取りつつ開繊して、ネットコンベア上に繊維配列がランダムになるように速度調整して堆積させた。単糸繊度2.0dtexの長繊維からなる目付150g/m2のスパンボンド不織布を得た。次いで圧着面積率9%の角錐台形状の凸部が千鳥配列されたエンボスロールで、230℃、線圧20kN/mでエンボス加工を行い、熱圧着タイプの長繊維不織布を得た。
 乾燥後の樹脂付着量が150g/m2になるようナイフコーターで上記樹脂組成物1をコートしたこと以外は、実施例1と同様にして、樹脂コート不織布を得た。各種特性の評価結果を表1に示す。
 実施例6
 固有粘度0.65dl/gのポリエチレンテレフタレート(PET)を用い、紡糸温度285℃、単孔吐出量1.0g/分で溶融紡糸し、エジェクターで引き取りつつ開繊して、ネットコンベア上に繊維配列がランダムになるように速度調整して堆積させた。単糸繊度2.0dtexの長繊維からなる目付50g/m2のスパンボンド不織布を得た。次いで圧着面積率9%の角錐台形状の凸部が千鳥配列されたエンボスロールで、230℃、線圧20kN/mでエンボス加工を行い、熱圧着タイプの長繊維不織布を得た。
 乾燥後の樹脂付着量が50g/m2になるようナイフコーターで上記樹脂組成物1をコートしたこと以外は、実施例1と同様にして、樹脂コート不織布を得た。各種特性の評価結果を表1に示す。
 実施例7
 長繊維不織布の非エンボス面に樹脂組成物1をコートしたこと以外は実施例1と同様にして、樹脂コート不織布を得た。各種特性の評価結果を表1に示す。
 実施例8
 実施例1と同様にして、熱圧着タイプの長繊維不織布を得た。
 塩化ビニルとアクリル酸エステル共重合体エマルジョン(塩化ビニル/アクリル酸エステル=80/20;日信化学工業株式会社製「ビニブラン(登録商標)701」)を固形分で30部、アクリル酸エステル重合体エマルジョン(サイデン化学株式会社製「サイビノール(登録商標)ACF-15」)を固形分で34部、及び、増量剤として炭酸カルシウム(三共精粉株式会社製「エスカロン#100」)36部をよく混合して、樹脂組成物8を得た。
 上記の熱圧着タイプの長繊維不織布の表面(エンボス面)に、乾燥後の樹脂付着量が80g/m2になるようナイフコーターで上記樹脂組成物8をコートして、乾燥させた後、幾何学型のエンボスロールで153℃、線圧70kN/mでエンボス加工を行い、樹脂コート不織布を得た。各種特性の評価結果を表1に示す。
 比較例1
 実施例1と同様にして、熱圧着タイプの長繊維不織布を得た。
 塩化ビニルとアクリル酸エステル共重合体エマルジョン(塩化ビニル/アクリル酸エステル=80/20;日信化学工業株式会社製「ビニブラン(登録商標)278」)を固形分で40部、及び、増量剤として炭酸カルシウム(三共精粉株式会社製「エスカロン#100」)60部をよく混合し、樹脂組成物9を得た。
 上記の熱圧着タイプの長繊維不織布の表面(エンボス面)に、乾燥後の樹脂付着量が80g/m2になるようナイフコーターで上記樹脂組成物9をコートして、乾燥させた後、台形格子型のエンボスロールで、153℃、線圧70kN/mでエンボス加工を行い、樹脂コート不織布を得た。意匠性、カール、剛軟度、ウェルダー溶着部の引張(破断)強度及び強力を上記方法で評価し、表2に示した。
 比較例2
 実施例1と同様にして、熱圧着タイプの長繊維不織布を得た。
 塩化ビニルとアクリル酸エステル共重合体エマルジョン(塩化ビニル/アクリル酸エステル=80/20;日信化学工業株式会社製「ビニブラン(登録商標)278」)を固形分で30部、塩化ビニルとアクリル酸エステル共重合体エマルジョン(塩化ビニル/アクリル酸エステル=50/50;日信化学工業株式会社製「ビニブラン(登録商標)271」)を固形分で50部、及び、増量剤として炭酸カルシウム(三共精粉株式会社製「エスカロン#100」)20部をよく混合して、樹脂組成物10を得た。
 上記の熱圧着タイプの長繊維不織布の表面(エンボス面)に、乾燥後の樹脂付着量が80g/m2になるようナイフコーターで上記樹脂組成物10をコートして、乾燥させた後、台形格子型のエンボスロールで、153℃、線圧70kN/mでエンボス加工を行い、樹脂コート不織布を得た。各種特性の評価結果を表2に示す。
 比較例3
 実施例1と同様にして、熱圧着タイプの長繊維不織布を得た。
 塩化ビニルとアクリル酸エステル共重合体エマルジョン(塩化ビニル/アクリル酸エステル=80/20;日信化学工業株式会社製「ビニブラン(登録商標)278」)を固形分で10部、アクリル酸エステル重合体エマルジョン(新中村化学工業株式会社製「ニューコート9500」)を固形分で55部、及び、増量剤として炭酸カルシウム(三共精粉株式会社製「エスカロン#100」)35部をよく混合し、樹脂組成物11を得た。
 上記の熱圧着タイプの長繊維不織布の表面(エンボス面)に、乾燥後の樹脂付着量が80g/m2になるようナイフコーターで上記樹脂組成物11をコートして、乾燥させた後、台形格子型のエンボスロールで、153℃、線圧70kN/mでエンボス加工を行い、樹脂コート不織布を得た。各種特性の評価結果を表2に示す。
 比較例4
 固有粘度0.65dl/gのポリエチレンテレフタレート(PET)を用い、紡糸温度285℃、単孔吐出量1.0g/分で溶融紡糸し、エジェクターで引き取りつつ開繊して、ネットコンベア上に繊維配列がランダムになるように速度調整して堆積させた。単糸繊度2.0dtexの長繊維からなる目付200g/m2のスパンボンド不織布を得た。次いで圧着面積率9%の角錐台形状の凸部が千鳥配列されたエンボスロールで、230℃、線圧20kN/mでエンボス加工を行い、熱圧着タイプの長繊維不織布を得た。
 上記の熱圧着タイプの長繊維不織布の表面(エンボス面)に、乾燥後の樹脂付着量が80g/m2になるようナイフコーターで上記樹脂組成物1をコートして、乾燥させた後、台形格子型のエンボスロールで、153℃、線圧70kN/mでエンボス加工を行い、樹脂コート不織布を得た。各種特性の評価結果を表2に示す。
 比較例5
 固有粘度0.65dl/gのポリエチレンテレフタレート(PET)を用い、紡糸温度285℃、単孔吐出量1.0g/分で溶融紡糸し、エジェクターで引き取りつつ開繊して、ネットコンベア上に繊維配列がランダムになるように速度調整して堆積させた。単糸繊度2.0dtexの長繊維からなる目付40g/m2のスパンボンド不織布を得た。次いで圧着面積率9%の角錐台形状の凸部が千鳥配列されたエンボスロールで、230℃、線圧20kN/mでエンボス加工を行い、熱圧着タイプの長繊維不織布を得た。
 上記の熱圧着タイプの長繊維不織布の表面(エンボス面)に、乾燥後の樹脂付着量が80g/m2になるようナイフコーターで上記樹脂組成物1をコートして、乾燥させた後、台形格子型のエンボスロールで、153℃、線圧70kN/mでエンボス加工を行い、樹脂コート不織布を得た。各種特性の評価結果を表2に示す。なお、比較例5では、不織布の目付けが小さすぎたため、樹脂組成物1のコートし、エンボス加工した後の樹脂コート不織布に複数の穴が確認された。
 比較例6
 実施例1と同様にして、熱圧着タイプの長繊維不織布を得た。
 上記の熱圧着タイプの長繊維不織布の表面(エンボス面)に、乾燥後の樹脂付着量が200g/m2になるようナイフコーターで上記樹脂組成物1をコートして、乾燥させた後、台形格子型のエンボスロールで、153℃、線圧70kN/mでエンボス加工を行い、樹脂コート不織布を得た。各種特性の評価結果を表2に示す。
 比較例7
 実施例1と同様にして、熱圧着タイプの長繊維不織布を得た。
 上記の熱圧着タイプの長繊維不織布の表面(エンボス面)に、乾燥後の樹脂付着量が30g/m2になるようナイフコーターで上記樹脂組成物1をコートして、乾燥させた後、台形格子型のエンボスロールで、153℃、線圧70kN/mでエンボス加工を行い、樹脂コート不織布を得た。各種特性の評価結果を表2に示す。
 比較例8
 固有粘度0.65dl/gのポリエチレンテレフタレート(PET)を用い、紡糸温度285℃、単孔吐出量1.0g/分で溶融紡糸し、エジェクターで引き取りつつ開繊して、ネットコンベア上に繊維配列がランダムになるように速度調整して堆積させた。単糸繊度2.0dtexの長繊維からなる目付100g/m2のスパンボンド不織布を得た。次いで圧着面積率9%の角錐台形状の凸部が千鳥配列されたエンボスロールで、230℃、線圧20kN/mでエンボス加工を行った。さらに、ニードルパンチ機を用い、40番手の針で、65本/cm2、針深度12mmの条件でニードルパンチによる交絡処理を行って、ニードルパンチ長繊維不織布を得た。
 上記のニードルパンチタイプの長繊維不織布の表面(エンボス面)に、乾燥後の樹脂付着量が80g/m2になるようナイフコーターで上記樹脂組成物1をコートして、乾燥させた後、台形格子型のエンボスロールで、153℃、線圧70kN/mでエンボス加工を行い、樹脂コート不織布を得た。各種特性の評価結果を表2に示す。
 
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明の樹脂コート不織布は、高周波ウェルダーによる溶着が可能であり、エンボスの模様がきれいに出て意匠性に優れ、柔軟な樹脂コート不織布であるので、トノカバー等の車両内装材、壁紙、ベッド部材、椅子部材等に使用可能である。

Claims (3)

  1.  目付け50g/m2~150g/m2のポリエチレンテレフタレート製熱圧着タイプの長繊維不織布の片面に、乾燥後の塗布量が40g/m2~150g/m2である樹脂コート層を有し、
     上記樹脂コート層が、塩化ビニルユニット10質量%~45質量%と(メタ)アクリル酸エステルユニット30質量%~55質量%とを含有し、且つ、
     上記樹脂コート面にエンボス加工による模様を有することを特徴とする樹脂コート不織布。
  2.  上記樹脂コート層が、示差走査熱量測定(DSC)において、30℃以下に少なくとも1つのガラス転移温度(Tg)を有する請求項1に記載の樹脂コート不織布。
  3.  上記長繊維不織布にはエンボス加工が施されており、当該エンボス加工面に上記樹脂がコートされている請求項1または2に記載の樹脂コート不織布。
PCT/JP2013/073541 2013-03-19 2013-09-02 樹脂コート不織布 WO2014147864A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380074901.9A CN105143546B (zh) 2013-03-19 2013-09-02 涂有树脂的无纺布
US14/777,812 US10626549B2 (en) 2013-03-19 2013-09-02 Resin-coated non-woven fabric

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-056800 2013-03-19
JP2013056800A JP5544033B1 (ja) 2013-03-19 2013-03-19 樹脂コート不織布

Publications (1)

Publication Number Publication Date
WO2014147864A1 true WO2014147864A1 (ja) 2014-09-25

Family

ID=51409532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073541 WO2014147864A1 (ja) 2013-03-19 2013-09-02 樹脂コート不織布

Country Status (4)

Country Link
US (1) US10626549B2 (ja)
JP (1) JP5544033B1 (ja)
CN (1) CN105143546B (ja)
WO (1) WO2014147864A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016079511A (ja) * 2014-10-10 2016-05-16 東洋紡株式会社 自動車内装材

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6625812B2 (ja) * 2015-03-30 2019-12-25 呉羽テック株式会社 表皮材用布帛
CN105507078A (zh) * 2015-11-25 2016-04-20 安徽索亚装饰材料有限公司 一种含火山岩-聚乳酸多孔纤维改性丙烯酸树脂乳液涂层的墙纸
JP6820396B2 (ja) * 2019-11-27 2021-01-27 呉羽テック株式会社 表皮材用布帛

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262991A (ja) * 1985-09-10 1987-03-19 旭化成株式会社 スエ−ド調人工皮革の製造方法
JPS6398441A (ja) * 1986-10-15 1988-04-28 日本バイリーン株式会社 自動車内装材用の表皮材
JPS6477666A (en) * 1987-09-14 1989-03-23 Sun Chemical Corp Vehicle interior material
JPH02127554A (ja) * 1988-08-11 1990-05-16 B F Goodrich Co:The 多孔性の不織布からなるシート
JPH05116261A (ja) * 1991-10-25 1993-05-14 Achilles Corp 高周波融着可能なシート材
JP2012056245A (ja) * 2010-09-10 2012-03-22 Toyobo Co Ltd 繊維積層体
JP2013032601A (ja) * 2011-08-01 2013-02-14 Toyobo Co Ltd 樹脂含浸不織布

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730516B2 (ja) * 1986-06-06 1995-04-05 ユニチカ株式会社 塩化ビニル系樹脂加工布の防汚加工方法
JP3613712B2 (ja) 1993-11-08 2005-01-26 東洋紡績株式会社 通気性レザー及びその製造法
JPH11241277A (ja) 1998-02-24 1999-09-07 Toyobo Co Ltd レザー調不織布及びその製造方法
JP4640753B2 (ja) * 2003-12-08 2011-03-02 株式会社Adeka 塩化ビニル系樹脂組成物
JP4387367B2 (ja) * 2006-03-28 2009-12-16 丸昌夏山フエルト株式会社 車両外装用吸音材および該車両外装用吸音材を製造する方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262991A (ja) * 1985-09-10 1987-03-19 旭化成株式会社 スエ−ド調人工皮革の製造方法
JPS6398441A (ja) * 1986-10-15 1988-04-28 日本バイリーン株式会社 自動車内装材用の表皮材
JPS6477666A (en) * 1987-09-14 1989-03-23 Sun Chemical Corp Vehicle interior material
JPH02127554A (ja) * 1988-08-11 1990-05-16 B F Goodrich Co:The 多孔性の不織布からなるシート
JPH05116261A (ja) * 1991-10-25 1993-05-14 Achilles Corp 高周波融着可能なシート材
JP2012056245A (ja) * 2010-09-10 2012-03-22 Toyobo Co Ltd 繊維積層体
JP2013032601A (ja) * 2011-08-01 2013-02-14 Toyobo Co Ltd 樹脂含浸不織布

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016079511A (ja) * 2014-10-10 2016-05-16 東洋紡株式会社 自動車内装材

Also Published As

Publication number Publication date
JP2014181422A (ja) 2014-09-29
JP5544033B1 (ja) 2014-07-09
CN105143546B (zh) 2017-04-19
CN105143546A (zh) 2015-12-09
US10626549B2 (en) 2020-04-21
US20160258111A1 (en) 2016-09-08

Similar Documents

Publication Publication Date Title
US6383958B1 (en) Nonwoven sheets, adhesive articles, and methods for making the same
RU2097459C1 (ru) Нетканый листовой материал, способ его изготовления и адгезионная лента на основе этого материала
KR101187219B1 (ko) 습식 부직포용 섬유
TWI415996B (zh) 人造皮革用基材及其製法、及粒面狀人造皮革
JP5544033B1 (ja) 樹脂コート不織布
WO1988010330A1 (en) Reticulate polypropylene fibers, process for their production, and reticulate fiber nonwoven fabric
TWI422728B (zh) 人造皮革用基材及其製法
JP4088086B2 (ja) 手による引裂き性が向上した特に接着テープ用の不織布支持体
JP6276462B2 (ja) 樹脂コート不織布
JP5623806B2 (ja) 布粘着テープ
JP6351493B2 (ja) 積層シートおよびその製造方法
JP2009185396A (ja) エアーフィルター用補強材
JP2012056245A (ja) 繊維積層体
JP2013032601A (ja) 樹脂含浸不織布
JP6446012B2 (ja) 人工皮革用基材
JP5808994B2 (ja) 樹脂コート不織布
WO2013042761A1 (ja) 樹脂コート不織布
TWI769259B (zh) 粒面狀人工皮革及粒面狀人工皮革之製造方法
JP4792662B2 (ja) 多孔性シートの製造法
CN103448307B (zh) 一种树脂涂层无纺布
JP5345994B2 (ja) 不織シート、接着剤物品およびその製造方法
JP6476720B2 (ja) 自動車内装材
JP5865086B2 (ja) 人工皮革用基材の製造方法
JP2011058107A (ja) 人工皮革用基材およびその製造方法
JP2011058108A (ja) 人工皮革用基材およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380074901.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878851

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14777812

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13878851

Country of ref document: EP

Kind code of ref document: A1