WO2014146591A1 - 一种皮芯型再生聚酯短纤维及其制备方法 - Google Patents

一种皮芯型再生聚酯短纤维及其制备方法 Download PDF

Info

Publication number
WO2014146591A1
WO2014146591A1 PCT/CN2014/073754 CN2014073754W WO2014146591A1 WO 2014146591 A1 WO2014146591 A1 WO 2014146591A1 CN 2014073754 W CN2014073754 W CN 2014073754W WO 2014146591 A1 WO2014146591 A1 WO 2014146591A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
polyester
reaction
recycled polyester
staple fiber
Prior art date
Application number
PCT/CN2014/073754
Other languages
English (en)
French (fr)
Inventor
钱军
王方河
唐世君
邢喜全
秦丹
马哲峰
杜芳
王秀华
Original Assignee
宁波大发化纤有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波大发化纤有限公司 filed Critical 宁波大发化纤有限公司
Publication of WO2014146591A1 publication Critical patent/WO2014146591A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F13/00Recovery of starting material, waste material or solvents during the manufacture of artificial filaments or the like
    • D01F13/04Recovery of starting material, waste material or solvents during the manufacture of artificial filaments or the like of synthetic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/62Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear

Definitions

  • the invention relates to the technical field of chemical fiber production, in particular to a sheath-core type recycled polyester staple fiber and a preparation method thereof.
  • the low-melting-point sheath-core composite polyester staple fiber refers to a fiber obtained by distributing a core-core structure of the two different polymers of a low-melting-point polyester and a conventional polyester in the same fiber.
  • the skin layer is a low melting point polyester which retains some of the characteristics of conventional polyesters and has good compatibility with conventional polyesters.
  • the low melting point sheath-core composite fiber is mainly used for the heat bonding fiber, and the main function in the production of the nonwoven fabric is that the low melting point fiber skin layer polymer melts at a certain temperature, thereby exerting a bonding effect in the fiber web.
  • the produced non-woven fabric has the characteristics of soft handfeel and high elasticity, and is widely used in sanitary masks, bandages and other sanitary materials and interior decoration materials. field.
  • the invention patent "a low melting point copolyester and a preparation method thereof" discloses a design method of a low melting point copolyester, the melting point of the polyester can be lowered to 110 ° C, and the low melting point copolyester crystallizes Good performance, high intrinsic viscosity, difficult adhesion of particles, good spinnability, etc.
  • Invention patent "manufacturing method of low melting point polyester staple fiber” (application number: 200410072878.2 The low melting point short fiber is obtained by melt spinning after low temperature vacuum drying of the polyester chip having a low melting point of 120 ° C to 130 ° C.
  • Invention patent "a side-by-side composite low-melting staple fiber” (application number: 200810123792.6) discloses that a water-soluble polyester component and a polytrimethylene terephthalate component are juxtaposed into a low-melting staple fiber, and the fiber has good heat shrinkage stability. There have been some reports on the research of low melting core-sheath composite polyester fibers.
  • the invention patent "manufacturing method of sheath-core type low-melting polyester staple fiber" (application No.: 200810163542.5) is characterized in that the skin layer is a low-melting polyester melt obtained by direct spinning of a melt, and the core layer is passed through conventional PET.
  • a conventional PET polyester melt obtained by a slicing process obtained by a slicing process.
  • the use of recycled materials for the preparation of polyester staple fibers as the core layer of sheath-core composite fibers has not been reported so far.
  • polyester waste Recycling has become a necessity for a sustainable society.
  • Most of the short fibers currently prepared from polyester waste are used in low-addition fields such as fillers. Studying the quenching and tempering process to solve the technical problems of wide sources of polyester waste, complex composition and high quality fluctuations.
  • the use of polyester waste to prepare products with high added value has become a major issue in the transformation and upgrading of the recycling industry.
  • the technology replaces low-melting polyester chip spinning with melt direct spinning, which better solves a series of problems such as high drying cost, poor stability and poor fiber spinnability of Russian low-melting polyester, and the production cost is greatly reduced.
  • an object of the present invention is to provide a method for preparing a sheath-core type recycled polyester staple fiber, which improves the preparation of recycled polyester from polyester waste.
  • the added value of the short fibers, the prepared sheath-core type recycled polyester staple fiber has the characteristics of stable quality and excellent quality.
  • Another object of the present invention is to provide a regenerated polyester staple fiber prepared by the above method.
  • the present invention adopts the following technical solutions:
  • the invention relates to a method for preparing a sheath-core type recycled polyester short fiber, which is composed of a skin layer and a core layer, the skin layer weight is 10% to 90% of the total weight of the composite fiber, and the core layer is completely wrapped in the skin layer;
  • the skin layer is a low melting point regenerated polyester prepared by degradation and re-polymerization of the recycled material.
  • the melting point of the low melting point regenerated polyester is 70-160 ° C, and the terminal carboxyl group content is ⁇ 35. Mmmol/kg, intrinsic viscosity 0.5dL/g- 1.
  • the core layer is a high-melting-recycled polyester prepared by a quenching and tempering process, wherein the high-melting-recycled polyester has a melting point of 250 to 270 ° C and a terminal carboxyl group content of ⁇ 20 mmol/kg.
  • Viscosity is 0.7dl/g ⁇ 1.0 Dl/g; two kinds of polyester melts are metered by respective metering pumps and then enter the composite spinneret assembly, and the melt ejected from the spinneret of the composite component is cooled, wound, bundled, drafted, shaped, cut And packaged, leather core type recycled polyester staple fiber.
  • the low-melting-recycled polyester has an intrinsic viscosity of 0.55 dL/g to 0.75 dL/g
  • the high-melting-recycled polyester has an intrinsic viscosity of 0.75 dl/g to 0.85 dl/g.
  • the regenerated low melting point polyester is obtained by degradation and polycondensation of the following raw materials:
  • neopentyl glycol e. one or more of neopentyl glycol, hexanediol, butylene glycol, and polyethylene glycol;
  • the regenerated low melting point polyester is prepared according to one of the following methods:
  • the mass ratio of a and b is 1:4 to 14
  • the mass ratio of a to c is 100:0.5 to 1
  • the degradation temperature is 170 to 250 ° C
  • the pressure is 1.5.
  • the reaction time is 2.5 ⁇ 5h
  • the reaction is completed when the pressure returns to atmospheric pressure
  • the reaction is filtered, the obtained liquid is rotary evaporated, methanol and ethylene glycol are separately evaporated, and the obtained solid is dissolved in hot ethanol.
  • the obtained liquid is evaporated to ethanol to obtain dimethyl terephthalate;
  • the esterification reaction of dimethyl terephthalate with ethylene glycol is carried out under nitrogen pressure, and the molar ratio of dimethyl terephthalate to d is 2 to 5:1; Ester and The molar ratio of e is 3 to 19:1; the molar ratio of dimethyl terephthalate to ethylene glycol is 20:80 to 80:20; the molar ratio of alkyd is 1.4 to 1.6:1; f and
  • the feed of g is 200-600 ppm of the total amount of acid, the alcohol is the sum of ethylene glycol and e; the temperature of the esterification reaction is 180-250 ° C, the pressure is 0.05 MPa-0.4 MPa, and the reaction time is 1.5-3 h;
  • the polycondensation reaction temperature is 250 to 285 ° C, the degree of vacuum is 30 to 200 Pa, and the reaction time is 2.5 to 5 hours;
  • the esterification reaction of terephthalic acid with ethylene glycol is carried out under nitrogen pressure, the molar ratio of terephthalic acid to d is 2 to 5:1; the molar ratio of terephthalic acid to e is 3 ⁇ 19:1; the molar ratio of terephthalic acid to ethylene glycol is: 20:80-80:20; the molar ratio of alkyd is 1.4-1.6:1; the feeding of f and g is 200-600 ppm of acid;
  • the alcohol is the sum of ethylene glycol and e, the acid is the sum of terephthalic acid and d; the temperature of the esterification reaction is 180-250 ° C, the pressure is 0.05 MPa - 0.4 MPa, and the reaction time is 1.5 - 3h; polycondensation reaction temperature is 250 ⁇ 285 ° C, vacuum degree is 30 ⁇ 200Pa, reaction time 2.5 ⁇ 5h;
  • reaction time is 1.5 ⁇ 3h, until the intrinsic viscosity of the reaction liquid reaches 0.2 ⁇ 0.35dl / g; after the reaction is completed, the reaction liquid is rapidly hot filtered, the filtrate is distilled under reduced pressure to recover ethylene glycol, decompression
  • the distilled liquid is dissolved in a hot alcohol, ester, chlorinated hydrocarbon or ketone solvent, and the insoluble matter is filtered off by heat, and the filtrate is naturally cooled to obtain ethylene terephthalate and oligomers thereof;
  • the recycled polyester material which is mainly composed of polyester bottle flakes is prepared through a quenching and tempering process, and the specific process is as follows: reclaimed raw material-cleaning-mixing-drum drying-multi-stage filtration- The liquid phase is thickened, wherein the drum drying temperature is 100 to 150 ° C, and the drying time is 7 to 10 hours.
  • liquid phase thickening step is as follows:
  • the melt having a temperature of 260 ° C to 290 ° C and having an intrinsic viscosity of 0.5 dl / g to 0.70 dl / g is pumped to the vacuum separation tower by melt transfer, and the melt is in a vacuum of 10 Pa to 400 Pa.
  • the temperature is 270 ° C ⁇ 300 ° C, the intrinsic viscosity can reach 0.55 dl / g ⁇ 0.78 dl / g after 15 min ⁇ 40 min;
  • the melt temperature and the vacuum degree in the secondary quenching and tempering adjusting device are the same as those in the vacuum separation tower, and the melt continuously advances under the action of the rotary propeller, and the melt viscosity Increasingly, the rotation speed of the propeller is 1.5r/min ⁇ 10r/min
  • the residence time is 15min ⁇ 30min, and the final melt intrinsic viscosity is 0.60dl/g ⁇ 0.88dl/g.
  • the liquid phase thickening process of the present invention adopts a waste plastic quenching and tempering system as described in the Chinese invention patent (Application No.: 201010574044.7, application date: 2010-12-01).
  • the recycled polyester raw material also includes a hybrid waste polyester textile.
  • the control of spinning temperature is the key to the production of low-melting sheath-core composite short fibers.
  • the material properties of the skin layer and the core layer should be considered. Different temperature control is adopted for the temperature of the two components and the temperature of the tank. After the two melts are combined in the main tank, they should be controlled at a temperature that can be adapted to both.
  • the low-melting polyester spinning pipe insulation temperature is 220-240 ° C; the regenerated polyester screw temperature is 270-300 ° C, and the regenerated polyester spinning pipe insulation temperature is 270-290 ° C, the spinning box Body temperature is 270- 290 ° C.
  • the composite melt stream is cooled in the spinning tunnel and the melt viscosity is gradually increased until solidified. If the cooling is insufficient, the primary fibers will be in a molten state and will stick together due to the lower melting point of the cortex after the spinning holes.
  • the cooling is carried out by ring blowing, the air temperature is 15 to 32 ° C, the wind speed is 0.5 to 5.0 m/s, and the spinning speed is 800 to 1200 m/min.
  • the drawing ratio of the drawing is 1.2 to 3.5
  • the drawing temperature is 50 to 90 ° C
  • the drawing speed is 100 to 150 m/min.
  • the present invention also provides the regenerated polyester staple fiber prepared by the above preparation method.
  • the sheath-core type recycled polyester staple fiber prepared by the method of the invention has stable quality and excellent quality and can be used in the production of non-woven fabrics, flocking, composite materials and the like.
  • the mass ratio of recycled raw materials to methanol is 1:6; the mass ratio of recycled raw materials to zinc acetate is 100:0.5; the above raw materials are polymerized by methanol to prepare recycled low-melting polyester.
  • the degradation temperature is 190 ° C, the pressure is 2.5 Mpa, the reaction time is 3 h, the reaction is completed when the pressure returns to atmospheric pressure, the reaction is filtered, the obtained liquid is rotary evaporated, and methanol and ethylene glycol are separately distilled off to obtain a solid matter. It was dissolved in hot ethanol and filtered, and the obtained liquid was evaporated to give dimethyl terephthalate (DMT).
  • DMT dimethyl terephthalate
  • the molar ratio of dimethyl terephthalate (DMT) to isophthalic acid (IPA) is 3:1; the molar ratio of dimethyl terephthalate (DMT) to neopentyl glycol (NPG) is 7:1; the molar ratio of dimethyl terephthalate (DMT) to ethylene glycol is 1:2; the molar ratio of alcohol (sum of ethylene glycol to neopentyl glycol (NPG)) is 1.5:1
  • Catalyst antimony trioxide (Sb203) and cobalt acetate (Co(Ac)2) It is 300 ppm of the total amount of acid in the reaction system, and a stabilizer of trimethyl phosphate is added in an amount of 0.01% by weight (relative to the acid component).
  • the esterification reaction was carried out under a nitrogen pressure at a temperature of 220 ° C, a pressure of 0.15 MPa, a reaction time of 2.2 h, a polycondensation reaction temperature of 275 ° C, a vacuum of 90 Pa, and a reaction time of 3.5 h.
  • the obtained low melting point polyester had a melting point of 110 ° C, a terminal carboxyl group content of 25 mmol/kg, and an intrinsic viscosity of 0.69 dL/g.
  • the preparation of recycled polyester the use of bottle flakes through cleaning, drum drying, multi-stage filtration, liquid phase thickening process.
  • the drum drying temperature was 130 ° C
  • the drying time was 8 h.
  • the steps of liquid phase thickening are as follows: 1) The melt having a temperature of 270 ° C and an intrinsic viscosity of 0.55 dl / g after being melted by the screw is pumped to the vacuum separation tower by melt transfer, and the melt is at a vacuum of 100 Pa, and the temperature is At 280 ° C, the intrinsic viscosity can reach 0.68 dl / g after staying for 30 min; 2) the melt enters the secondary quenching and tempering adjustment device, the melt temperature and vacuum degree in the secondary quenching and tempering device and the vacuum separation tower In the same way, the melt continues to advance under the action of the rotary propeller, the melt viscosity is continuously increased, and the rotation speed of the propeller is 5r/min.
  • the residence time was 20 min and the final melt intrinsic viscosity was 0.79 dl/g.
  • the regenerated polyester had a melting point of 264 ° C, a terminal carboxyl group content of 16 mmol/kg, and an intrinsic viscosity of 0.79 dl/g.
  • sheath-core type recycled polyester staple fiber the above low-melting polyester and recycled polyester are accurately metered into the composite spinneret with a weight of 4:6 core, respectively, and the melt ejected from the spinneret of the composite component
  • the core-type reclaimed polyester staple fiber can be obtained by cooling, winding, bundling, drawing, shaping, cutting and packing.
  • the drying temperature of the recycled polyester is 150 ° C, the drying time is 7 h, the screw temperature is 280 ° C; the low melting point polyester spinning pipe insulation temperature is 230 ° C, the regenerated polyester spinning pipe insulation temperature is 275 ° C, the spinning box temperature It is 280 ° C; the ring air cooling cooling air temperature is 15 ° C, the wind speed is 2.0 m / s; the spinning speed is 1100 m / min; the draft ratio is 2.0, the drawing temperature is 75 ° C, and the drafting speed is 110 m / min.
  • the quality index of the sheath-core type recycled polyester staple fiber obtained by the above production process is:
  • regenerated low-melting polyester the mass ratio of recycled raw materials to water is 1:4; the mass ratio of recycled raw materials to potassium acetate is 100:0.5; the above raw materials are polymerized by hydrolysis to prepare regenerated low-melting polyester: hydrolysis
  • the temperature is 220 ° C, the pressure is 4.5 Mpa, the reaction time is 2.8 h, and when the pressure is returned to the atmospheric pressure, the reaction product is filtered, and the obtained liquid is rotary evaporated to obtain ethylene glycol, and the filtered solid is dissolved in DMF and filtered.
  • the resulting liquid was recrystallized to give terephthalic acid (TPA).
  • the molar ratio of terephthalic acid (TPA) to adipic acid (AA) is 3.5:1; the molar ratio of terephthalic acid (TPA) to hexanediol (HG) is 6:1; terephthalic acid
  • the molar ratio of (TPA) to ethylene glycol is 1.5:1; the molar ratio of alkyd is 1.5:1; catalyst antimony trioxide (Sb203) and cobalt acetate (Co(Ac)2) 300 ppm of the total amount of acid in the reaction system, and a stabilizer of trimethyl phosphate of 0.01% by weight (relative to the acid component) (TMP).
  • the esterification reaction was carried out under nitrogen pressure at a temperature of 220 ° C, a pressure of 0.3 MPa, a reaction time of 2.5 h, a polycondensation reaction temperature of 275 ° C, a vacuum of 80 Pa, and a reaction time of 3 h.
  • the melting point of the obtained low melting point polyester was The terminal carboxyl group content was 28 mmol/kg at 105 ° C, and the intrinsic viscosity was 0.67 dL/g.
  • the preparation of recycled polyester the use of bottle flakes through cleaning, drum drying, multi-stage filtration, liquid phase thickening process.
  • the drum drying temperature was 110 ° C
  • the drying time was 7 h.
  • the steps of liquid phase thickening are as follows: 1) The melt having a temperature of 270 ° C and an intrinsic viscosity of 0.55 dl / g after being melted by the screw is pumped to the vacuum separation tower by melt transfer, and the melt is at a vacuum of 100 Pa, and the temperature is At 280 ° C, the intrinsic viscosity can reach 0.68 dl / g after staying for 30 min; 2) the melt enters the secondary quenching and tempering adjustment device, the melt temperature and vacuum degree in the secondary quenching and tempering device and the vacuum separation tower In the same way, the melt continues to advance under the action of the rotary propeller, the melt viscosity is continuously increased, and the rotation speed of the propeller is 5r/min.
  • the residence time was 15 min and the final melt intrinsic viscosity was 0.78 dl/g.
  • the regenerated polyester had a melting point of 269 ° C, a terminal carboxyl group content of 14 mmol/kg, and an intrinsic viscosity of 0.78 dl/g.
  • sheath-core type recycled polyester staple fiber the above low-melting polyester and recycled polyester are accurately metered into the composite spinneret with a 5:5 core weight, respectively, and the melt ejected from the spinneret of the composite component
  • the core-type reclaimed polyester staple fiber can be obtained by cooling, winding, bundling, drawing, shaping, cutting and packing.
  • the drying temperature of the recycled polyester raw material is 140 ° C, the drying time is 7.5 h, the screw temperature is 270 ° C; the low melting point polyester spinning pipe insulation temperature is 220 ° C, and the regenerated polyester spinning pipe insulation temperature is 275 ° C, the spinning box
  • the body temperature was 280 ° C; the ring blowing cooling air temperature was 20 ° C, the wind speed was 3.0 m / s; the spinning speed was 1000 m / min; the draft ratio was 3.0, the drawing temperature was 70 ° C, and the drafting speed was 120 m / min.
  • the quality index of the sheath-core type recycled polyester staple fiber obtained by the above production process is:
  • ethylene terephthalate ethylene terephthalate
  • IPA isophthalic acid
  • NPG neopentyl glycol
  • SB203 catalyst antimony trioxide
  • Co(Ac) cobalt acetate
  • TMP stabilizer trimethyl phosphate
  • the obtained low melting point polyester had a melting point of 115 ° C, a terminal carboxyl group content of 30 mmol/kg, and an intrinsic viscosity of 0.68 dL/g.
  • the molar amount of isophthalic acid (IPA) is the mass of the recycled raw material / 450; the molar amount of neopentyl glycol (NPG) is the mass of the recycled raw material / 960; the molar ratio of the alkyd is 1.4; the catalyst is antimony trioxide (Sb203) and cobalt acetate (Co(Ac)2)
  • Sb203 antimony trioxide
  • Co(Ac)2 cobalt acetate
  • TMP trimethyl phosphate
  • the preparation of recycled polyester the use of bottle flakes through cleaning, drum drying, multi-stage filtration, liquid phase thickening process.
  • the drum drying temperature was 100 ° C
  • the drying time was 7 h.
  • the steps of liquid phase thickening are as follows: 1) The melt having a temperature of 270 ° C and an intrinsic viscosity of 0.55 dl / g after being melted by the screw is pumped to the vacuum separation tower by melt transfer, and the melt is at a vacuum of 100 Pa, and the temperature is At 280 ° C, the intrinsic viscosity can reach 0.68 dl / g after staying for 30 min; 2) the melt enters the secondary quenching and tempering adjustment device, the melt temperature and vacuum degree in the secondary quenching and tempering device and the vacuum separation tower In the same way, the melt continues to advance under the action of the rotary propeller, the melt viscosity is continuously increased, and the rotation speed of the propeller is 5r/min.
  • the residence time was 15 min and the final melt intrinsic viscosity was 0.78 dl/g.
  • the regenerated polyester had a melting point of 267 ° C, a terminal carboxyl group content of 16 mmol/kg, and an intrinsic viscosity of 0.78 dl/g.
  • sheath-core type recycled polyester staple fiber the above low-melting polyester and recycled polyester are accurately metered into the composite spinneret with a weight of 6:4 core, respectively, and the melt ejected from the spinneret of the composite component
  • the core-type reclaimed polyester staple fiber can be obtained by cooling, winding, bundling, drawing, shaping, cutting and packing.
  • the drying temperature of the recycled polyester raw material is 140 ° C, the drying time is 7 h, the screw temperature is 280 ° C; the low melting point polyester spinning pipe insulation temperature is 230 ° C, the regenerated polyester spinning pipe insulation temperature is 270 ° C, the spinning box The temperature was 285 ° C; the ring air cooling cooling air temperature was 22 ° C, the wind speed was 2.5 m / s; the spinning speed was 900 m / min; the draft ratio was 2.5, the drawing temperature was 60 ° C, and the drafting speed was 110 m / min.
  • the quality index of the sheath-core type recycled polyester staple fiber obtained by the above production process is:

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Multicomponent Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明涉及一种皮芯型再生聚酯短纤维及制备方法,该再生聚酯短纤维由皮层和芯层构成,皮层为低熔点再生聚酯,低熔点再生聚酯的熔点为70~160℃,端羧基含量≤35mmol/kg,特性粘度为0.5dL/g~1.0dL/g;芯层为高熔点再生聚酯,所述的高熔点再生聚酯的熔点为250~270℃,端羧基含量≤20mmol/kg,特性粘度为0.7dl/g~1.0dl/g;两种聚酯熔体通过各自计量泵计量后进入复合喷丝组件,从复合组件的喷丝板中喷出的熔体,经冷却、卷绕、集束、牵伸、定型、切断和打包,可得皮芯型再生聚酯短纤维。本发明方法制备的皮芯型再生聚酯短纤维质量稳定,品质优良。

Description

一种皮芯型再生聚酯短纤维及其制备方法 技术领域
本发明涉及属化纤生产技术领域,尤其涉及一种皮芯型再生聚酯短纤维及其制备方法。
背景技术
低熔点皮芯型复合聚酯短纤维是指用低熔点聚酯和常规聚酯这两种不同的聚合物以皮芯结构分布于同一根纤维之中制成的纤维。皮层是低熔点聚酯,它保留了常规聚酯的部分特性,与常规聚酯具有良好的相容性的特点。低熔点皮芯复合纤维主要用于热粘合纤维,在非织造布生产中主要作用是在一定温度下低熔点纤维皮层聚合物熔化,从而在纤维网中起到黏结效果。由于低熔点涤纶短纤维具有强度高、膨松性好、弹性恢复率高,生产出的非织造布具有手感柔软、弹性高等特点,目前广泛使用在手术口罩、绷带等卫生材料和室内装饰材料等领域。
目前对于低熔点聚酯短纤维的生产方法有较多的研究报道。如发明专利“一种低熔点共聚酯及其制备方法”(申请号:200810063395.4)公开了低熔点共聚酯的设计方法,聚酯熔点可降至110℃,而且该低熔点共聚酯结晶性能好、特性粘度高、粒子不易粘连、具有良好的可纺性等。发明专利“一种低熔点聚酯短纤维的生产方法”(申请号:200410072878.2 )采用120℃~130℃低熔点聚酯切片经过低温真空干燥后,经熔融纺丝可得低熔点短纤维。发明专利“一种并列型复合的低熔点短纤”(申请号: 200810123792.6)公开的是水溶性聚酯组分与聚对苯二甲酸丙二酯组分并列复合而成低熔点短纤,此纤维具有良好的热收缩率稳定性。关于低熔点皮芯复合聚酯纤维的研究也有一些报道。如发明专利“一种皮芯型低熔点聚酯短纤维的生产方法”(申请号:200810163542.5)其特征在于皮层为通过熔体直纺得到的低熔点聚酯熔体,芯层为通过常规PET切片纺工艺得到的常规PET聚酯熔体。但是利用再生料制备聚酯短纤维作为皮芯型复合纤维的芯层至今没有报道。
随着聚酯材料在各领域的迅速发展和使用,聚酯废料的排放量与日俱增,其难降解性现已对环境造成了极大的污染,并且由于目前工业原料的缺乏,对聚酯废料的回收再利用已成为可持续发展社会之所需。目前用聚酯废料制备的短纤维大部分用于填充物等低附加领域。研究调质调粘工艺,解决聚酯废料来源广、成分复杂、质量波动大的技术难题,利用聚酯废料制备具有高附加值的产品成为再生行业转型升级的一个重大课题。另外,该技术以熔体直纺替代低熔聚酯切片纺丝,较好的解决俄低熔点聚酯干燥成本大、稳定性差、纤维可纺性差等一系列问问题,生产成本大幅下降。
技术问题
为了解决利用再生料制备聚酯皮芯型复合纤维存在的技术问题,本发明的一个目的在于提供一种皮芯型再生聚酯短纤维的制备方法,该方法提高了聚酯废料制备再生聚酯短纤维的附加值,制备的皮芯型再生聚酯短纤维具有质量稳定,品质优良的特点。本发明的另一个目的在于提供采用上述的方法制备的再生聚酯短纤维。
技术解决方案
了实现上述的第一个目的,本发明采用了以下的技术方案:
一种皮芯型再生聚酯短纤维的制备方法,该再生聚酯短纤维由皮层和芯层构成,皮层重量占复合纤维总重量的10%~90%,芯层被完全包裹在皮层内;皮层为再生料通过降解再改性聚合制备的低熔点再生聚酯,低熔点再生聚酯的熔点为70~160℃,端羧基含量≤35 mmol/kg,特性粘度为0.5dL/g- 1.OdL/g;芯层为再生料通过调质调粘工艺制备的高熔点再生聚酯,所述的高熔点再生聚酯的熔点为250~270℃,端羧基含量≤20mmol/kg,特性粘度为0.7dl/g~1.0 dl/g;两种聚酯熔体通过各自计量泵计量后进入复合喷丝组件,从复合组件的喷丝板中喷出的熔体,经冷却、卷绕、集束、牵伸、定型、切断和打包,可得皮芯型再生聚酯短纤维。
作为优选,所述的低熔点再生聚酯的特性粘度为0.55dL/g~0.75dL/g,高熔点再生聚酯的特性粘度为0.75dl/g~0.85dl/g。
作为优选,所述的再生低熔点聚酯为以下原料通过降解和缩聚反应而制得:
a.再生原料;
b.甲醇、水或乙二醇;
c.醋酸锌、醋酸钾、醋酸锰、醋酸镁、醋酸铅、氯化钴、钛酸四丁酯、钛酸四异丙酯和丁二基月桂酸锡中的一种或多种;
d.间苯二甲酸,己二酸和癸二酸中的一种或多种;
e. 新戊二醇,己二醇,丁二醇和聚乙二醇中的一种或多种;
f.催化剂三氧化二锑和醋酸钴;
g.稳定剂磷酸三甲酯;
根据b原料选择以下一种方法制备再生低熔点聚酯:
一、甲醇醇解法
1)将a、b与c投料后混合,a与b的投料质量比为1:4~14,a与c的质量比为100:0.5~1;降解温度为170~250℃,压力为1.5~4.0Mpa,反应时间为2.5~5h,等压力回到大气压时反应结束,将反应物过滤,得到的液体旋转蒸发,分别蒸去甲醇与乙二醇,得到的固体物溶于热乙醇中过滤,所得液体蒸去乙醇得到对苯二甲酸二甲酯;
2)对苯二甲酸二甲酯与乙二醇的酯化反应在氮气加压下进行,对苯二甲酸二甲酯与d的投料摩尔比为2~5:1;对苯二甲酸二甲酯与 e的投料摩尔比为3~19:1;对苯二甲酸二甲酯与乙二醇的摩尔比为:20:80~80:20;醇酸的摩尔比例为1.4~1.6:1;f与g的投料为酸总量的200~600ppm,所述的醇为乙二醇与e的总和;酯化反应的温度为180~250℃,压力为0.05MPa~0.4MPa,反应时间1.5~3h;缩聚反应温度为250~285℃,真空度为30~200Pa,反应时间2.5~5h;
二、水解法
1)水解:将a、b与c投料后混合,a与b的投料质量比为1:1~5,a与c的质量比为100:0.5~1;反应温度为190~280℃,压力为3.0~6.0Mpa,反应时间为2~5h,反应结束等压力回到大气压时,将反应物过滤,所得液体旋转蒸发得到乙二醇,再将过滤固体物溶于DMF中过滤,所得液体重结晶得到对苯二甲酸;
2)对苯二甲酸与乙二醇的酯化反应在氮气加压下进行,对苯二甲酸与d的投料摩尔比为2~5:1;对苯二甲酸与e的投料摩尔比为3~19:1;对苯二甲酸与乙二醇的摩尔比为:20:80~80:20;醇酸的摩尔比例为1.4~1.6:1;f与g的投料为酸的200~600ppm;所述的醇为乙二醇与e的总和,所述的酸为对苯二甲酸与d的总和;酯化反应的温度为180-250℃,压力为0.05MPa~0.4MPa,反应时间1.5~3h;缩聚反应温度为250~285℃,真空度为30~200Pa,反应时间2.5~5h;
三、乙二醇醇解法
1)将a、b与c投料后混合,a与b的投料质量比为1:1~4;a与c的质量比为100:0.5~1;在氮气加压或者常压条件下进行,反应温度为170~220℃,压力为0 ℃0.4MPa,反应时间为1.5~3h,直到反应液的特性粘度达到0.2~0.35dl/g;反应结束后,将反应液快速热过滤,对滤液进行减压蒸馏回收乙二醇,将减压蒸馏后的液体溶于热醇、酯、氯化烃或酮溶剂中,热过滤出去不溶物,滤液自然冷却得到对苯二甲酸乙二醇酯及其低聚物;
2)对苯二甲酸乙二醇酯及其低聚物的缩聚反应,d的投料摩尔量为a的质量/960-a的质量/384;e的投料摩尔量为a的质量/1728-a的质量/576;醇酸的摩尔比例为1.4~1.6:1;f与g的投料为酸总量的200~600ppm,反应温度为250~285℃,真空度为30~200Pa,反应时间2.5~5h。
作为进一步改进,所述的再生聚酯以聚酯瓶片为主的回收聚酯原料通过调质调粘工艺制备,具体工艺如下:再生原料—清洗—配比—转鼓干燥—多级过滤—液相增粘,其中,转鼓干燥温度为100~150℃,干燥时间为7~10h。
作为进一步改进,所述的液相增粘的步骤如下:
1)经螺杆熔融后的温度在260℃~290℃特性粘度为0.5dl/g~0.70dl/g的熔体经熔体输送泵送至真空分离塔,熔体在真空度为10pa~400pa,温度为270℃~300℃,条件下停留15min~40min之后特性粘度可达到0.55dl/g~0.78dl/g;
2)之后熔体进入二级调质调粘装置,二级调质调粘装置内的熔体温度和真空度与真空分离塔相同,在旋转推进器的作用下熔体不断前进,熔体粘度不断增加,推进器的旋转速度为1.5r/min~10r/min ,停留时间15min~30min,最终熔体特性粘度在0.60dl/g~0.88dl/g。
本发明液相增粘工艺采用中国发明专利(申请号:201010574044.7,申请日:2010-12-01)所述的一种废塑料调质调粘系统。
作为进一步改进,所述的回收聚酯原料还包括混杂的废聚酯纺织品。
纺丝温度的控制是生产低熔点皮芯型复合短纤维的关键,应考虑皮层和芯层不同的物料特性,对两种组分管道和箱体温度,采用不同的温度控制。两种熔体汇合于主箱体后,应按两者都能适应的温度进行控制。作为进一步改进,所述的低熔点聚酯纺丝管道保温温度为220~240℃;再生聚酯的螺杆温度270~300℃,再生聚酯纺丝管道保温温度为270-290℃,纺丝箱体温度为270- 290℃。
复合熔体细流在纺丝甬道内,经吹风冷却,熔体粘度逐渐增加直至固化成形。若冷却不充分,出喷丝孔后由于皮层熔点较低,初生纤维呈熔融态,会黏连在一起。作为进一步改进,所述的冷却采用环吹风进行,风温为15~32℃,风速为0.5~5.0m/s,纺丝速度为800~1200m/min。
作为进一步改进,所述的牵伸的牵伸比为1.2~3.5,牵伸温度50~90℃,牵伸速度为100~150m/min。
为了实现上述的第二个目的,本发明还提供了上述的制备方法制备得到的再生聚酯短纤维。
有益效果
本发明方法制备的皮芯型再生聚酯短纤维质量稳定,品质优良,可用于生产非织造布、植绒、复合材料等行业中。
附图说明
本发明的最佳实施方式
本发明的实施方式
实施例1
1、再生低熔点聚酯的制备:再生原料与甲醇的投料质量比为1:6;再生原料与醋酸锌的质量比为100:0.5;以上原料通过甲醇醇解后聚合制备再生低熔点聚酯:降解温度为190℃,压力为2.5Mpa,反应时间为3h,等压力回到大气压时反应结束,将反应物过滤,得到的液体旋转蒸发,分别蒸去甲醇与乙二醇,得到的固体物溶于热乙醇中过滤,所得液体蒸去乙醇得到对苯二甲酸二甲酯(DMT)。对苯二甲酸二甲酯(DMT)与间苯二甲酸(IPA)的投料摩尔比为3:1;对苯二甲酸二甲酯(DMT)与新戊二醇(NPG)的投料摩尔比为7:1;对苯二甲酸二甲酯(DMT)与乙二醇的摩尔比为1:2;醇(乙二醇与新戊二醇(NPG)的总和)酸的摩尔比例为1.5:1;催化剂三氧化二锑(Sb203)与醋酸钴(Co(Ac)2) 为反应体系中酸总量的300ppm,再加入加入重量为0.01%(相对酸成份)的稳定剂磷酸三甲酯 (TMP)。酯化反应在氮气加压下进行,温度为220℃,压力为0.15MPa,反应时间2.2h;缩聚反应温度为275℃,真空度为90Pa,反应时间3.5h。得到的低熔点聚酯的熔点为110℃,端羧基含量为25mmol/kg,特性粘度为0.69dL/g。
2、再生聚酯的制备:采用瓶片料经过清洗、转鼓干燥、多级过滤、液相增粘的工艺流程。其中,转鼓干燥温度为130℃,干燥时间为8h。液相增粘的步骤如下:1)经螺杆熔融后的温度在270℃特性粘度为0.55dl/g的熔体经熔体输送泵送至真空分离塔,熔体在真空度为100pa,温度为280℃,条件下停留30min之后特性粘度可达到0.68dl/g;2)之后熔体进入二级调质调粘装置,二级调质调粘装置内的熔体温度和真空度与真空分离塔相同,在旋转推进器的作用下熔体不断前进,熔体粘度不断增加,推进器的旋转速度为5r/min ,停留时间20min,最终熔体特性粘度在0.79dl/g。再生聚酯的熔点为264℃,端羧基含量为16 mmol/kg,特性粘度为0.79dl/g。
3、皮芯型再生聚酯短纤维:将上述低熔点聚酯与再生聚酯分别以4:6皮芯重量精确计量进入复合喷丝组件,从复合组件的喷丝板中喷出的熔体,经冷却、卷绕、集束、牵伸、定型、切断和打包,可得皮芯型再生聚酯短纤维。再生聚酯的干燥温度为150℃,干燥时间为7h,螺杆温度280℃;低熔点聚酯纺丝管道保温温度为230℃,再生聚酯纺丝管道保温温度为275℃,纺丝箱体温度为280℃;环吹风冷却风温为15℃,风速为2.0m/s;纺丝速度为1100m/min;牵伸比为2.0,牵伸温度75℃,牵伸速度为110m/min。经上述生产工艺得到的皮芯型再生聚酯短纤维质量指标为:
线密度:4.21dtex
断裂强度:3.14cN/dtex
断裂伸长率:40%
切断长度:51.2mm。
实施例2
1、再生低熔点聚酯的制备:再生原料与水的投料质量比为1:4;再生原料与醋酸钾的质量比为100:0.5;以上原料通过水解后聚合制备再生低熔点聚酯:水解温度为220℃,压力为4.5Mpa,反应时间为2.8h,反应结束等压力回到大气压时,将反应物过滤,所得液体旋转蒸发得到乙二醇,再将过滤固体物溶于DMF中过滤,所得液体重结晶得到对苯二甲酸(TPA)。对苯二甲酸(TPA)与己二酸(AA)的投料摩尔比为3.5:1;对苯二甲酸(TPA)与己二醇(HG)的投料摩尔比为6:1;对苯二甲酸(TPA)与乙二醇的摩尔比为1.5:1;醇酸的摩尔比例为1.5:1;催化剂三氧化二锑(Sb203)与醋酸钴(Co(Ac)2) 为反应体系中酸总量的300ppm,再加入重量为0.01%(相对酸成份)的稳定剂磷酸三甲酯 (TMP)。酯化反应在氮气加压下进行,温度为220℃,压力为0.3MPa,反应时间2.5h;缩聚反应温度为275℃,真空度为80Pa,反应时间3h,得到的低熔点聚酯的熔点为105℃,端羧基含量为28mmol/kg,特性粘度为0.67dL/g。
2、再生聚酯的制备:采用瓶片料经过清洗、转鼓干燥、多级过滤、液相增粘的工艺流程。其中,转鼓干燥温度为110℃,干燥时间为7h。液相增粘的步骤如下:1)经螺杆熔融后的温度在270℃特性粘度为0.55dl/g的熔体经熔体输送泵送至真空分离塔,熔体在真空度为100pa,温度为280℃,条件下停留30min之后特性粘度可达到0.68dl/g;2)之后熔体进入二级调质调粘装置,二级调质调粘装置内的熔体温度和真空度与真空分离塔相同,在旋转推进器的作用下熔体不断前进,熔体粘度不断增加,推进器的旋转速度为5r/min ,停留时间15min,最终熔体特性粘度在0.78dl/g。再生聚酯的熔点为269℃,端羧基含量为14 mmol/kg,特性粘度为0.78dl/g。
3、皮芯型再生聚酯短纤维:将上述低熔点聚酯与再生聚酯分别以5:5皮芯重量精确计量进入复合喷丝组件,从复合组件的喷丝板中喷出的熔体,经冷却、卷绕、集束、牵伸、定型、切断和打包,可得皮芯型再生聚酯短纤维。再生聚酯原料的干燥温度为140℃,干燥时间为7.5h,螺杆温度270℃;低熔点聚酯纺丝管道保温温度为220℃,再生聚酯纺丝管道保温温度为275℃,纺丝箱体温度为280℃;环吹风冷却风温为20℃,风速为3.0m/s;纺丝速度为1000m/min;牵伸比为3.0,牵伸温度70℃,牵伸速度为120m/min。经上述生产工艺得到的皮芯型再生聚酯短纤维质量指标为:
线密度:4.05dtex
断裂强度:3.22cN/dtex
断裂伸长率:42%
切断长度:51.6mm。
实施例3
1、再生低熔点聚酯的制备:再生原料与乙二醇的投料质量比为1:3.5;再生原料与丁二基月桂酸锡的质量比为100:0.5;醇解反应温度为196℃,压力为0.15MPa,反应时间为2h,反应液的特性粘度达到0.29dl/g。反应结束后,将反应液快速热过滤,对滤液进行减压蒸馏回收乙二醇,将减压蒸馏后的液体(常温下为固体)溶于热醇、酯、氯化烃、酮等溶剂中,热过滤出去不溶物,滤液自然冷却得到对苯二甲酸乙二醇酯(BHET)及其低聚物。在对苯二甲酸乙二醇酯(BHET)及其低聚物中加入间苯二甲酸(IPA)、新戊二醇(NPG)、催化剂三氧化二锑(Sb203)与醋酸钴(Co(Ac)2)和稳定剂磷酸三甲酯 (TMP),进行缩聚反应,对苯二甲酸乙二醇酯(BHET)及其低聚物的缩聚反应温度为275℃,真空度为95Pa,反应时间3.5h。得到的低熔点聚酯的熔点为115℃,端羧基含量为30mmol/kg,特性粘度为0.68dL/g。间苯二甲酸(IPA)的投料摩尔量为再生原料的质量/450;新戊二醇(NPG)的投料摩尔量为再生原料质量/960;醇酸的摩尔比例为1.4;催化剂三氧化二锑(Sb203)与醋酸钴(Co(Ac)2) 为反应体系中酸总量的400ppm,再加入重量为0.01%(相对酸成份)的稳定剂磷酸三甲酯 (TMP)。
2、再生聚酯的制备:采用瓶片料经过清洗、转鼓干燥、多级过滤、液相增粘的工艺流程。其中,转鼓干燥温度为100℃,干燥时间为7h。液相增粘的步骤如下:1)经螺杆熔融后的温度在270℃特性粘度为0.55dl/g的熔体经熔体输送泵送至真空分离塔,熔体在真空度为100pa,温度为280℃,条件下停留30min之后特性粘度可达到0.68dl/g;2)之后熔体进入二级调质调粘装置,二级调质调粘装置内的熔体温度和真空度与真空分离塔相同,在旋转推进器的作用下熔体不断前进,熔体粘度不断增加,推进器的旋转速度为5r/min ,停留时间15min,最终熔体特性粘度在0.78dl/g。再生聚酯的熔点为267℃,端羧基含量为16 mmol/kg,特性粘度为0.78dl/g。
3、皮芯型再生聚酯短纤维:将上述低熔点聚酯与再生聚酯分别以6:4皮芯重量精确计量进入复合喷丝组件,从复合组件的喷丝板中喷出的熔体,经冷却、卷绕、集束、牵伸、定型、切断和打包,可得皮芯型再生聚酯短纤维。再生聚酯原料的干燥温度为140℃,干燥时间为7h,螺杆温度280℃;低熔点聚酯纺丝管道保温温度为230℃,再生聚酯纺丝管道保温温度为270℃,纺丝箱体温度为285℃;环吹风冷却风温为22℃,风速为2.5m/s;纺丝速度为900m/min;牵伸比为2.5,牵伸温度60℃,牵伸速度为110m/min。经上述生产工艺得到的皮芯型再生聚酯短纤维质量指标为:
线密度:4.24 dtex
断裂强度:2.67 cN/dtex
断裂伸长率:47%
切断长度:50.8mm。
工业实用性
序列表自由内容

Claims (9)

  1. 一种皮芯型再生聚酯短纤维的制备方法,该再生聚酯短纤维由皮层和芯层构成,皮层重量占复合纤维总重量的10%~90%,芯层被完全包裹在皮层内;其特征在于:皮层为再生料通过降解再改性聚合制备的低熔点再生聚酯,低熔点再生聚酯的熔点为70~160℃,端羧基含量≤35mmol/kg,特性粘度为0.5dL/g~1.OdL/g;芯层为再生料通过调质调粘工艺制备的高熔点再生聚酯,所述的高熔点再生聚酯的熔点为250~270℃,端羧基含量≤20mmol/kg,特性粘度为0.7dl/g~1.0dl/g;两种聚酯熔体通过各自计量泵计量后进入复合喷丝组件,从复合组件的喷丝板中喷出的熔体,经冷却、卷绕、集束、牵伸、定型、切断和打包,可得皮芯型低熔点再生聚酯短纤维。
  2. 根据权利要求1所述的一种皮芯型再生聚酯短纤维的制备方法,其特征在于低熔点再生聚酯的特性粘度为0.55dL/g~0.75dL/g,高熔点再生聚酯的特性粘度为0.75dl/g~0.85dl/g。
  3. 根据权利要求1所述的一种皮芯型再生聚酯短纤维的制备方法,其特征在于所述的低熔点再生聚酯为以下原料通过降解和缩聚反应而制得:
    a.再生原料;
    b.甲醇、水或乙二醇;
    c.醋酸锌、醋酸钾、醋酸锰、醋酸镁、醋酸铅、氯化钴、钛酸四丁酯、钛酸四异丙酯和丁二基月桂酸锡中的一种或多种;
    d.间苯二甲酸,己二酸和癸二酸中的一种或多种;
    e.新戊二醇,己二醇,丁二醇和聚乙二醇中的一种或多种;
    f.催化剂三氧化二锑和醋酸钴;
    g.稳定剂磷酸三甲酯;
    根据b原料选择以下一种方法制备再生低熔点聚酯:
    一、甲醇醇解法
    1)将a、b与c投料后混合,a与b的投料质量比为1:4~14,a与c的质量比为100:0.5~1;降解温度为170~250℃,压力为1.5~4.0Mpa,反应时间为2.5~5h,等压力回到大气压时反应结束,将反应物过滤,得到的液体旋转蒸发,分别蒸去甲醇与乙二醇,得到的固体物溶于热乙醇中过滤,所得液体蒸去乙醇得到对苯二甲酸二甲酯;
    2)对苯二甲酸二甲酯与乙二醇的酯化反应在氮气加压下进行,对苯二甲酸二甲酯与d的投料摩尔比为2~5:1;对苯二甲酸二甲酯与e的投料摩尔比为3~19:1;对苯二甲酸二甲酯与乙二醇的摩尔比为:20:80~80:20;醇酸的摩尔比例为1.4~1.6:1;f与g的投料为酸总量的200~600ppm,所述的醇为乙二醇与e的总和;酯化反应的温度为180~250℃,压力为0.05MPa~0.4MPa,反应时间1.5~3h;缩聚反应温度为250~285℃,真空度为30~200Pa,反应时间2.5~5h;
    二、水解法
    1)水解:将a、b与c投料后混合,a与b的投料质量比为1:1~5,a与c的质量比为100:0.5~1;反应温度为190~280℃,压力为3.0~6.0Mpa,反应时间为2~5h,反应结束等压力回到大气压时,将反应物过滤,所得液体旋转蒸发得到乙二醇,再将过滤固体物溶于DMF中过滤,所得液体重结晶得到对苯二甲酸;
    2)对苯二甲酸与乙二醇的酯化反应在氮气加压下进行,对苯二甲酸与d的投料摩尔比为2~5:1;对苯二甲酸与e的投料摩尔比为3~19:1;对苯二甲酸与乙二醇的摩尔比为:20:80~80:20;醇酸的摩尔比例为1.4~1.6:1;f与g的投料为酸的200~600ppm;所述的醇为乙二醇与e的总和,所述的酸为对苯二甲酸与d的总和;酯化反应的温度为180~250℃,压力为0.05MPa~0.4MPa,反应时间1.5~3h;缩聚反应温度为250~285℃,真空度为30~200Pa,反应时间2.5~5h;
    三、乙二醇醇解法
    1)将a、b与c投料后混合,a与b的投料质量比为1:1~4;a与c的质量比为100:0.5~1;在氮气加压或者常压条件下进行,反应温度为170~220℃,压力为0℃0.4MPa,反应时间为1.5~3h,直到反应液的特性粘度达到0.2~0.35dl/g;反应结束后,将反应液快速热过滤,对滤液进行减压蒸馏回收乙二醇,将减压蒸馏后的液体溶于热醇、酯、氯化烃或酮溶剂中,热过滤出去不溶物,滤液自然冷却得到对苯二甲酸乙二醇酯及其低聚物;
    2)对苯二甲酸乙二醇酯及其低聚物的缩聚反应,d的投料摩尔量为a的质量/960~a的质量/384;e的投料摩尔量为a的质量/1728~a的质量/576;醇酸的摩尔比例为1.4~1.6:1;f与g的投料为酸总量的200~600ppm,反应温度为250~285℃,真空度为30~200Pa,反应时间2.5~5h。
  4. 根据权利要求1所述的一种皮芯型再生聚酯短纤维的制备方法,其特征在于:再生聚酯以聚酯瓶片为主的回收聚酯原料通过调质调粘工艺制备,具体工艺如下:再生原料—清洗—配比—转鼓干燥—多级过滤—液相增粘,其中,转鼓干燥温度为100~150℃,干燥时间为7~10h。
  5. 根据权利要求4所述的一种皮芯型再生聚酯短纤维的制备方法,其特征在于液相增粘的步骤如下:
    1)经螺杆熔融后的温度在260℃~290℃特性粘度为0.5dl/g~0.70dl/g的熔体经熔体输送泵送至真空分离塔,熔体在真空度为10pa~400pa,温度为270℃~300℃,条件下停留15min~40min之后特性粘度可达到0.55dl/g~0.78dl/g;
    2)之后熔体进入二级调质调粘装置,二级调质调粘装置内的熔体温度和真空度与真空分离塔相同,在旋转推进器的作用下熔体不断前进,熔体粘度不断增加,推进器的旋转速度为1.5r/min~10r/min,停留时间15min~30min,最终熔体特性粘度在0.60dl/g~0.88dl/g。
  6. 根据权利要求1所述的一种皮芯型再生聚酯短纤维的制备方法,其特征在于:低熔点聚酯纺丝管道保温温度为220~240℃;再生聚酯的螺杆温度270~300℃,再生聚酯纺丝管道保温温度为270~290℃,纺丝箱体温度为270~290℃。
  7. 根据权利要求1所述的一种皮芯型再生聚酯短纤维的制备方法,其特征在于:冷却采用环吹风进行,风温为15~32℃,风速为0.5~5.0m/s,纺丝速度为800~1200m/min。
  8. 根据权利要求1所述的一种皮芯型再生聚酯短纤维的制备方法,其特征在于:牵伸的牵伸比为1.2~3.5,牵伸温度50~90℃,牵伸速度为100~150m/min。
  9. 根据权利要求1~8任意一项权利要求所述的制备方法制备得到的再生聚酯短纤维。
PCT/CN2014/073754 2013-03-21 2014-03-20 一种皮芯型再生聚酯短纤维及其制备方法 WO2014146591A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310091697.3 2013-03-21
CN201310091697.3A CN103147163B (zh) 2013-03-21 2013-03-21 一种皮芯型再生聚酯短纤维及其制备方法

Publications (1)

Publication Number Publication Date
WO2014146591A1 true WO2014146591A1 (zh) 2014-09-25

Family

ID=48545465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073754 WO2014146591A1 (zh) 2013-03-21 2014-03-20 一种皮芯型再生聚酯短纤维及其制备方法

Country Status (2)

Country Link
CN (1) CN103147163B (zh)
WO (1) WO2014146591A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113445171A (zh) * 2021-07-30 2021-09-28 苏州贤辉新纺织科技有限公司 一种利用回收聚酯纤维纺制5tex纤维牵伸工艺整理方法
CN114108125A (zh) * 2021-09-22 2022-03-01 安徽农业大学 一种微穴中空抗紫外再生pet纤维长丝制备工艺
CN114506054A (zh) * 2022-02-21 2022-05-17 富海(山东)包装材料有限公司 一种连续聚酯聚合生产有色且具有永久防粘片材的工艺技术
CN114805777A (zh) * 2022-04-14 2022-07-29 福建赛隆科技有限公司 一种再生ptt聚合物及其制备方法和应用
CN115074858A (zh) * 2022-08-04 2022-09-20 扬州天富龙集团股份有限公司 一种抗菌低熔点涤纶短纤维及其制备方法
CN115142162A (zh) * 2022-07-05 2022-10-04 诸暨鼎丰化纤有限公司 一种再生涤纶复合抗菌涤纶长丝及其生产工艺
CN115382297A (zh) * 2022-04-12 2022-11-25 江阴市华思诚无纺布有限公司 一种熔体直纺三角形截面皮芯双组分pet纺粘液体过滤材料及其制备方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103145957B (zh) * 2013-03-21 2015-08-26 宁波大发化纤有限公司 乙二醇降解生产皮芯型聚酯用低熔点再生聚酯的方法
CN103147163B (zh) * 2013-03-21 2015-03-18 宁波大发化纤有限公司 一种皮芯型再生聚酯短纤维及其制备方法
CN105803573A (zh) * 2014-12-30 2016-07-27 上海水星家用纺织品股份有限公司 一种天然薄荷纤维的制备方法
CN104862825B (zh) * 2015-06-10 2017-10-27 马海燕 大直径皮芯型复合单丝及其生产方法
EP3429451B1 (de) 2016-03-17 2020-02-26 Eurofilters N.V. Staubsaugerfilterbeutel aus recyclierten kunststoffen
DK3219376T3 (en) 2016-03-17 2019-01-14 Eurofilters Nv Vacuum cleaner filter bag of recycled plastics
CN106149075A (zh) * 2016-08-25 2016-11-23 宁波大发化纤有限公司 一种以回收聚酯原料制备的双组份并列复合纤维
CN106319656A (zh) * 2016-08-25 2017-01-11 宁波大发化纤有限公司 一种双组份并列复合纤维的制备方法
CN106637498A (zh) * 2016-10-11 2017-05-10 漳州市鼎鑫电子科技有限公司 一种自芳香天然抗菌除臭纤维的制备方法及其应用
CN106435824A (zh) * 2016-10-11 2017-02-22 漳州市鼎鑫电子科技有限公司 一种自芳香天然抗菌除臭纤维
CN110616474B (zh) * 2019-10-22 2021-02-12 宁波大发化纤有限公司 废聚酯纺织品制备皮芯复合低熔点再生聚酯纤维的方法
CN110685037A (zh) * 2019-11-11 2020-01-14 南通新帝克单丝科技股份有限公司 高强耐磨型拉链单丝及其生产方法
CN111676528B (zh) * 2020-05-29 2022-05-17 绍兴柯桥恒鸣化纤有限公司 一种熔体直纺涤锦复合超细纤维的制备方法
CN111705370B (zh) * 2020-05-29 2021-07-20 绍兴柯桥恒鸣化纤有限公司 一种基于熔体直纺技术制备潜在双组份弹性纤维的方法
CN112251828A (zh) * 2020-10-13 2021-01-22 江苏华亚化纤有限公司 一种lmpet/pet皮芯型复合弹性纤维制备工艺
CN112760748A (zh) * 2020-12-14 2021-05-07 浙江理工大学 一种废旧聚酯再生制备自粘型抗菌皮芯纤维的方法
CN112813528A (zh) * 2020-12-30 2021-05-18 浪莎针织有限公司 一种可降解阻燃聚乳酸弹性纤维及其制备方法
CN116536794A (zh) * 2023-05-05 2023-08-04 优彩环保资源科技股份有限公司 一种皮芯复合三维卷曲低熔点聚酯纤维的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211223A (ja) * 2002-12-27 2004-07-29 Ashimori Ind Co Ltd ロープ
CN101445972A (zh) * 2008-12-29 2009-06-03 浙江理工大学 一种皮芯型低熔点聚酯短纤维的生产方法
CN102093590A (zh) * 2010-12-01 2011-06-15 宁波大发化纤有限公司 一种废塑料调质调粘系统
KR20110125889A (ko) * 2010-05-14 2011-11-22 코오롱글로텍주식회사 탄성 및 형태 복원력이 우수한 부직포 및 이를 이용한 쿠션용 소재
CN102899729A (zh) * 2012-10-19 2013-01-30 宁波大发化纤有限公司 废聚酯纺织品加工再生涤纶短纤维的方法
CN103145957A (zh) * 2013-03-21 2013-06-12 宁波大发化纤有限公司 乙二醇降解生产皮芯型聚酯用低熔点再生聚酯的方法
CN103145959A (zh) * 2013-03-21 2013-06-12 宁波大发化纤有限公司 水解降解生产皮芯型聚酯用低熔点再生聚酯的方法
CN103147163A (zh) * 2013-03-21 2013-06-12 宁波大发化纤有限公司 一种皮芯型再生聚酯短纤维及其制备方法
CN103145958A (zh) * 2013-03-21 2013-06-12 宁波大发化纤有限公司 甲醇降解生产皮芯型聚酯用低熔点再生聚酯的方法
CN203212688U (zh) * 2013-03-07 2013-09-25 宁波大发化纤有限公司 全再生皮芯型低熔点聚酯短纤维

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211223A (ja) * 2002-12-27 2004-07-29 Ashimori Ind Co Ltd ロープ
CN101445972A (zh) * 2008-12-29 2009-06-03 浙江理工大学 一种皮芯型低熔点聚酯短纤维的生产方法
KR20110125889A (ko) * 2010-05-14 2011-11-22 코오롱글로텍주식회사 탄성 및 형태 복원력이 우수한 부직포 및 이를 이용한 쿠션용 소재
CN102093590A (zh) * 2010-12-01 2011-06-15 宁波大发化纤有限公司 一种废塑料调质调粘系统
CN102899729A (zh) * 2012-10-19 2013-01-30 宁波大发化纤有限公司 废聚酯纺织品加工再生涤纶短纤维的方法
CN203212688U (zh) * 2013-03-07 2013-09-25 宁波大发化纤有限公司 全再生皮芯型低熔点聚酯短纤维
CN103145957A (zh) * 2013-03-21 2013-06-12 宁波大发化纤有限公司 乙二醇降解生产皮芯型聚酯用低熔点再生聚酯的方法
CN103145959A (zh) * 2013-03-21 2013-06-12 宁波大发化纤有限公司 水解降解生产皮芯型聚酯用低熔点再生聚酯的方法
CN103147163A (zh) * 2013-03-21 2013-06-12 宁波大发化纤有限公司 一种皮芯型再生聚酯短纤维及其制备方法
CN103145958A (zh) * 2013-03-21 2013-06-12 宁波大发化纤有限公司 甲醇降解生产皮芯型聚酯用低熔点再生聚酯的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHU, GENPING: "Research on Synthesizing Multicomponent Copolyester from Waste Polyester", MASTER'S DISSERTATION OF ZHEJIANG UNIVERSITY, 15 September 2004 (2004-09-15), pages 17 , 18 , 22-26 - 52-54 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113445171A (zh) * 2021-07-30 2021-09-28 苏州贤辉新纺织科技有限公司 一种利用回收聚酯纤维纺制5tex纤维牵伸工艺整理方法
CN114108125A (zh) * 2021-09-22 2022-03-01 安徽农业大学 一种微穴中空抗紫外再生pet纤维长丝制备工艺
CN114506054A (zh) * 2022-02-21 2022-05-17 富海(山东)包装材料有限公司 一种连续聚酯聚合生产有色且具有永久防粘片材的工艺技术
CN115382297A (zh) * 2022-04-12 2022-11-25 江阴市华思诚无纺布有限公司 一种熔体直纺三角形截面皮芯双组分pet纺粘液体过滤材料及其制备方法
CN115382297B (zh) * 2022-04-12 2023-10-31 江阴市华思诚无纺布有限公司 熔体直纺双组分pet纺粘液体过滤材料及其制备方法
CN114805777A (zh) * 2022-04-14 2022-07-29 福建赛隆科技有限公司 一种再生ptt聚合物及其制备方法和应用
CN115142162A (zh) * 2022-07-05 2022-10-04 诸暨鼎丰化纤有限公司 一种再生涤纶复合抗菌涤纶长丝及其生产工艺
CN115074858A (zh) * 2022-08-04 2022-09-20 扬州天富龙集团股份有限公司 一种抗菌低熔点涤纶短纤维及其制备方法

Also Published As

Publication number Publication date
CN103147163B (zh) 2015-03-18
CN103147163A (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
WO2014146591A1 (zh) 一种皮芯型再生聚酯短纤维及其制备方法
WO2014146582A1 (zh) 乙二醇降解生产皮芯型聚酯用低熔点再生聚酯的方法
WO2014146590A1 (zh) 芯层采用再生聚酯的皮芯型聚酯短纤维及其制备方法
WO2014146587A1 (zh) 甲醇降解生产皮芯型聚酯用低熔点再生聚酯的方法
WO2014146589A1 (zh) 水解降解生产皮芯型聚酯用低熔点再生聚酯的方法
CN102877156B (zh) 一种阻燃再生涤纶短纤维的制备方法
CN103012758B (zh) Pet聚酯的回收处理方法及高强高伸的涤纶纤维
WO2023124145A1 (zh) 一种阳离子可染阻燃高强聚酯纤维的制备方法
CN103146020A (zh) 皮芯型聚酯短纤维芯层高熔点再生聚酯及其制备方法和应用
JP6639661B2 (ja) 高弾性率・低収縮ポリエステル工業糸及びその製造方法
CN105200563B (zh) 一种再生有色聚酯短纤维的制备方法
CN103409844A (zh) 一种增强阻燃再生聚酯纤维的制备方法
CN103122497A (zh) 常压易染再生基涤纶长丝及其制备方法
CN112760748A (zh) 一种废旧聚酯再生制备自粘型抗菌皮芯纤维的方法
CN103173889A (zh) 仿羊毛涤纶短纤维及其制备方法
CN113005563A (zh) 一种低熔点ptt皮芯复合共聚酯纤维的制备方法
CN106319680B (zh) 一种多功能聚酯短纤维的制造方法
JP2010065348A (ja) ポリエステル複合繊維の製造方法
CN115896976A (zh) 一种具有阻燃功能的再生低熔点聚酯复合纤维及其制备方法
CN114921868B (zh) 一种纳米生物炭改性熔体直纺超细旦聚酯纤维的制备方法
CN115726057A (zh) 一种具有紫外屏蔽功能的再生低熔点聚酯复合纤维及其制备方法
CN109722741B (zh) 皮芯阻燃长丝及其制备方法
CN111808271B (zh) 生物基耐热阻燃聚酯、聚酯制品、其制备方法及应用
CN114672925A (zh) 一种聚乳酸熔喷布及其制备方法与应用
WO2024196205A1 (ko) 폐원단을 이용한 재생 폴리에스테르사의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14769001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14769001

Country of ref document: EP

Kind code of ref document: A1