WO2014142290A1 - ピラゾール-アミド化合物およびその医薬用途 - Google Patents

ピラゾール-アミド化合物およびその医薬用途 Download PDF

Info

Publication number
WO2014142290A1
WO2014142290A1 PCT/JP2014/056825 JP2014056825W WO2014142290A1 WO 2014142290 A1 WO2014142290 A1 WO 2014142290A1 JP 2014056825 W JP2014056825 W JP 2014056825W WO 2014142290 A1 WO2014142290 A1 WO 2014142290A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
pharmaceutically acceptable
diabetes
acceptable salt
heart failure
Prior art date
Application number
PCT/JP2014/056825
Other languages
English (en)
French (fr)
Inventor
隆尚 本村
学順 正彌
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51536938&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014142290(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to CA2904985A priority Critical patent/CA2904985C/en
Priority to SG11201507327TA priority patent/SG11201507327TA/en
Priority to EP18156002.0A priority patent/EP3348545A1/en
Priority to AU2014230569A priority patent/AU2014230569B2/en
Priority to NZ712292A priority patent/NZ712292B2/en
Priority to LTEP14763385.3T priority patent/LT2975028T/lt
Priority to ES14763385.3T priority patent/ES2663789T3/es
Priority to CN201480016173.0A priority patent/CN105051015B/zh
Priority to BR112015022077A priority patent/BR112015022077A2/pt
Priority to PL14763385T priority patent/PL2975028T3/pl
Priority to EP14763385.3A priority patent/EP2975028B1/en
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to SI201430703T priority patent/SI2975028T1/en
Priority to KR1020157028869A priority patent/KR102226096B1/ko
Priority to MX2015012743A priority patent/MX2015012743A/es
Priority to DK14763385.3T priority patent/DK2975028T3/en
Priority to MYPI2015703124A priority patent/MY182884A/en
Priority to EP20204677.7A priority patent/EP3805205A1/en
Priority to RU2015144182A priority patent/RU2664532C2/ru
Priority to RS20180492A priority patent/RS57188B1/sr
Publication of WO2014142290A1 publication Critical patent/WO2014142290A1/ja
Priority to PH12015501993A priority patent/PH12015501993A1/en
Priority to IL241355A priority patent/IL241355B/en
Priority to SA515361182A priority patent/SA515361182B1/ar
Priority to HK16103742.7A priority patent/HK1215808A1/zh
Priority to MEP-2018-110A priority patent/ME03090B/me
Priority to CY20181100419T priority patent/CY1120173T1/el
Priority to HRP20180635TT priority patent/HRP20180635T1/hr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/12Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/23Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic, containing six-membered aromatic rings and other rings, with unsaturation outside the aromatic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/12Ophthalmic agents for cataracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/06Antiarrhythmics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/78Benzoic acid esters

Definitions

  • the present invention is a pyrazole-amide compound and its pharmaceutical use. More specifically, pyrazole-amide compounds having a pyruvate dehydrogenase kinase (hereinafter abbreviated as PDHK) inhibitory activity or pharmaceutically acceptable salts thereof, pharmaceutical compositions containing them, and diabetes (type 1 diabetes, 2 Type diabetes), insulin resistance syndrome, metabolic syndrome, hyperglycemia, hyperlactic acidemia, diabetic complications (diabetic neuropathy, diabetic retinopathy, diabetic nephropathy, cataract, etc.), heart failure (acute heart failure, Chronic heart failure), cardiomyopathy, myocardial ischemia, myocardial infarction, angina pectoris, dyslipidemia, atherosclerosis, peripheral arterial disease, intermittent claudication, chronic obstructive pulmonary disease, cerebral ischemia, stroke, mitochondria
  • PDHK pyruvate dehydrogenase kinase
  • the present invention relates to a preventive or therapeutic agent for diseases, mitochondria
  • ATP adenosine triphosphate
  • ATP is produced by the oxidation of high energy metabolic fuels such as glucose or free fatty acids.
  • acetyl CoA is produced by oxidation of glucose through the glycolysis pathway or ⁇ -oxidation of free fatty acids.
  • the enzyme that plays a commanding role in regulating acetyl CoA production from glucose is PDH.
  • PDH catalyzes the reduction of nicotinamide adenine dinucleotide (NAD) to NADH simultaneously with the oxidation of pyruvate to acetyl CoA and carbon dioxide (eg, Non-Patent Documents 1 and 2).
  • NAD nicotinamide adenine dinucleotide
  • PDH is a multi-enzyme complex consisting of three enzyme components (E1, E2 and E3) located in the mitochondrial matrix and several subunits.
  • E1, E2 and E3 perform NADH generation by decarboxylation of pyruvic acid, generation of acetyl CoA and reduction of NAD, respectively.
  • Two types of enzymes having a regulatory role are bound to PDH.
  • One is PDHK, which is a protein kinase that exhibits specificity for PDH. Its role is to phosphorylate and inactivate the E1 ⁇ subunit of the complex.
  • the other is PDH phosphatase, a specific protein phosphatase that activates PDH through dephosphorylation of the E1 ⁇ subunit.
  • the percentage of PDH in the active (dephosphorylated) state is determined by the balance of kinase activity and phosphatase activity.
  • Kinase activity is regulated by the relative concentration of metabolic substrates.
  • the kinase activity is activated by an increase in each ratio of NADH / NAD, acetyl CoA / CoA, and ATP / adenosine diphosphate (ADP), and is inhibited by pyruvic acid (for example, Non-Patent Document 3).
  • PDHK2 is expressed in a wide range of tissues including liver, skeletal muscle, and adipose tissue involved in sugar metabolism. Furthermore, PDHK2 is relatively sensitive to activation by increasing NADH / NAD and acetyl CoA / CoA and inhibition by pyruvate, suggesting that it is involved in short-term glucose metabolism regulation (eg, Non-patent document 4).
  • PDHK1 is highly expressed in cardiac muscle, skeletal muscle, pancreatic ⁇ cells, and the like. Furthermore, PDHK1 is induced in the ischemic state through activation of hypoxia-inducible factor (HIF) 1, suggesting that it is involved in ischemic diseases and cancerous diseases (for example, Non-patent document 5).
  • HIF hypoxia-inducible factor
  • Type 1 diabetes In diseases such as insulin-dependent (type 1) diabetes and non-insulin-dependent (type 2) diabetes, lipid oxidation increases and glucose utilization decreases at the same time. This decrease in glucose utilization contributes to hyperglycemia. Since PDH activity is reduced in a state where oxidative glucose metabolism is reduced such as type 1 and type 2 diabetes and obesity, a decrease in glucose utilization in type 1 and type 2 diabetes is associated with a decrease in PDH activity. (For example, Non-Patent Documents 6 and 7). In addition, type 1 and type 2 diabetes have increased gluconeogenesis in the liver, which also contributes to hyperglycemia. Decreasing PDH activity increases pyruvic acid, resulting in increased availability of lactic acid as a gluconeogenic substrate in the liver.
  • Non-Patent Documents 8 and 9 Activation of PDH by PDHK inhibition is thought to increase the rate of glucose oxidation.
  • the utilization of glucose in the living body is enhanced, and gluconeogenesis in the liver is suppressed, so that it is expected that hyperglycemia in type 1 and type 2 diabetes can be improved (for example, Non-Patent Document 10). 11, 12).
  • Non-patent Document 13 14 Another factor involved in diabetes is impaired insulin secretion, which is known to involve a decrease in PDH activity and induction of PDHK1, 2 and 4 in pancreatic ⁇ cells (eg, Non-patent Document 13, 14).
  • persistent hyperglycemia due to diabetes is known to cause complications such as diabetic neuropathy, diabetic retinopathy, and diabetic nephropathy.
  • Thiamine and ⁇ -lipoic acid contribute to the activation of PDH as a coenzyme.
  • These or thiamine derivatives and ⁇ -lipoic acid derivatives have been shown to have promising effects in the treatment of diabetic complications. Accordingly, PDH activation is expected to improve diabetic complications (eg, Non-Patent Documents 15 and 16).
  • adenosine monophosphate activated kinase is activated and phosphorylated during ischemia to inactivate acetyl CoA carboxylase.
  • a drug that activates PDH by inhibiting PDHK is thought to decrease lactate production by enhancing pyruvate metabolism. Therefore, it is considered useful for the treatment of hyperlactic acidemia such as mitochondrial disease, mitochondrial encephalomyopathy or sepsis (for example, Non-Patent Document 20).
  • Non-Patent Document 21 In cancer cells, the expression of PDHK1 or 2 is increased. In cancer cells, ATP production due to oxidative phosphorylation in mitochondria is reduced, and ATP production via anaerobic glycolysis in the cytoplasm is increased. When PDH is activated by PDHK inhibition, oxidative phosphorylation in mitochondria is enhanced, and production of active oxygen is increased, which is expected to induce apoptosis of cancer cells. Therefore, activation of PDH by PDHK inhibition is considered useful for treatment of cancerous diseases (for example, Non-Patent Document 21).
  • Pulmonary hypertension is a disease characterized by increased blood pressure due to increased cell proliferation of the pulmonary artery and partial contraction of the pulmonary artery.
  • PDH of pulmonary arterial cells in pulmonary hypertension is activated, oxidative phosphorylation in mitochondria is enhanced, and production of active oxygen is increased, thereby inducing apoptosis of pulmonary arterial cells. Therefore, activation of PDH by PDHK inhibition is considered useful for treatment of pulmonary hypertension (for example, Non-Patent Document 22).
  • Alzheimer's disease energy production and glucose metabolism in the cerebrum are decreased, and PDH activity is also decreased.
  • PDH activity decreases, the production of acetyl CoA decreases.
  • Acetyl-CoA is used for ATP production in the electron transport system via the citric acid cycle.
  • Acetyl CoA is a raw material for synthesizing acetylcholine, which is one of neurotransmitters.
  • a decrease in brain PDH activity in Alzheimer's disease is thought to cause neuronal cell death due to a decrease in ATP production.
  • synthesis of acetylcholine which is a transmitter, is suppressed, and it is considered that the memory ability is reduced.
  • Non-Patent Documents 23 and 24 Activation of brain PDH in Alzheimer's disease is expected to enhance energy production and acetylcholine synthesis. Therefore, activation of PDH by PDHK inhibition is considered useful for treatment of Alzheimer's disease (for example, Non-Patent Documents 23 and 24).
  • Dichloroacetic acid a drug having PDH activation action
  • diabetes myocardial ischemia, myocardial infarction, angina pectoris, heart failure, hyperlactic acidemia, cerebral ischemia, stroke, peripheral arterial disease, chronic obstructive pulmonary disease, It has been shown to have promising effects in the treatment of cancerous diseases and pulmonary hypertension (for example, Non-Patent Documents 10, 18, 20, 22, 25, 26, 27).
  • PDHK inhibitors are used in diseases associated with impaired glucose utilization, such as diabetes (type 1 diabetes, type 2 diabetes, etc.), insulin resistance syndrome, metabolic syndrome, hyperglycemia, hyperlactic acid, diabetes It is considered useful for the treatment or prevention of complications (diabetic neuropathy, diabetic retinopathy, diabetic nephropathy, cataract, etc.).
  • PDHK inhibitors are also used for diseases in which the supply of energy substrates to tissues is restricted, such as heart failure (acute heart failure, chronic heart failure), cardiomyopathy, myocardial ischemia, myocardial infarction, angina pectoris, dyslipidemia, atheroma It may be beneficial for the treatment or prevention of systemic sclerosis, peripheral arterial disease, intermittent claudication, chronic obstructive pulmonary disease, cerebral ischemia and stroke. Furthermore, PDHK inhibitors are considered to be useful for the treatment or prevention of mitochondrial diseases, mitochondrial encephalomyopathy, cancer, pulmonary hypertension and the like.
  • PDHK inhibitors are used for diabetes (type 1 diabetes, type 2 diabetes, etc.), insulin resistance syndrome, metabolic syndrome, hyperglycemia, hyperlactic acidemia, diabetic complications (diabetic neuropathy, diabetic retinopathy, Diabetic nephropathy, cataract, etc.), heart failure (acute heart failure, chronic heart failure), cardiomyopathy, myocardial ischemia, myocardial infarction, angina, dyslipidemia, atherosclerosis, peripheral arterial disease, intermittent claudication, It may be beneficial for the treatment or prevention of chronic obstructive pulmonary disease, cerebral ischemia, stroke, mitochondrial disease, mitochondrial encephalomyopathy, cancer, pulmonary hypertension, or Alzheimer's disease.
  • Dichloroacetate enhances performance and reduces blood lactate during maximal cycle exercise arestructCritical (10): 1090-4.
  • Flavin DF Non-Hodgkin's Lymphoma Reversal with Dichloroacetate. J Oncol. Hindawi Publishing Corporation Journal of OncologyVolume 2010, Article ID 414726, 4 pages doi: 10.1155 / 2010/414726.
  • a compound represented by [6] A pharmaceutical composition comprising the compound according to any one of [1] to [5] above or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier, [7] A PDHK inhibitor comprising the compound according to any one of [1] to [5] above or a pharmaceutically acceptable salt thereof, [8] A PDHK1 inhibitor comprising the compound according to any one of [1] to [5] above or a pharmaceutically acceptable salt thereof, [9] A PDHK2 inhibitor comprising the compound according to any one of [1] to [5] above or a pharmaceutically acceptable salt thereof, [10] A hypoglycemic agent comprising the compound according to any one of [1] to [5] above or a pharmaceutically acceptable salt thereof, [11] A lactic acid lowering agent comprising the compound according to any one of the above [1] to [5] or a pharmaceutically acceptable salt thereof, [12] Diabetes, insulin resistance syndrome, metabolic syndrome, hyperglycemia, hyperlactic acidemia, diabetes mellitus including the compound according to
  • a method for inhibiting PDHK1 in a mammal comprising administering to the mammal a pharmaceutically effective amount of the compound according to any one of [1] to [5] above or a pharmaceutically acceptable salt thereof.
  • a method for inhibiting PDHK2 in a mammal comprising administering to the mammal a pharmaceutically effective amount of the compound according to any one of [1] to [5] above or a pharmaceutically acceptable salt thereof.
  • Diabetes in a mammal (1) comprising administering to the mammal a pharmaceutically effective amount of the compound according to any one of [1] to [5] above or a pharmaceutically acceptable salt thereof.
  • Type 2 diabetes type 2 diabetes
  • insulin resistance syndrome metabolic syndrome
  • hyperglycemia hyperlactic acidemia
  • diabetic complications diabetes neuropathy, diabetic retinopathy, diabetic nephropathy, cataract
  • heart failure acute Heart failure, chronic heart failure
  • cardiomyopathy myocardial ischemia, myocardial infarction, angina pectoris, dyslipidemia, atherosclerosis, peripheral arterial disease, intermittent claudication, chronic obstructive pulmonary disease, cerebral ischemia, stroke
  • a method for preventing or treating mitochondrial disease, mitochondrial encephalomyopathy, cancer or pulmonary hypertension comprising administering to the mammal a pharmaceutically effective amount of the compound according to any one of [1] to [5] above or a pharmaceutically acceptable salt thereof.
  • Type 1 diabetes, type 2 diabetes insulin resistance syndrome, metabolic syndrome, hyperglycemia, hyperlactic acidemia, diabetic complications (diabetic neuropathy, diabetic retinopathy, diabetic nephropathy, cataract), heart failure ( Acute heart failure, chronic heart failure), cardiomyopathy, myocardial ischemia, myocardial infarction, angina, dyslipidemia, atherosclerosis, peripheral arterial disease, intermittent claudication, chronic obstructive pulmonary disease, cerebral ischemia, Methods for preventing or treating stroke, mitochondrial disease, mitochondrial encephalomyopathy, cancer, pulmonary hypertension or Alzheimer's disease, [22] The blood glucose level in the mammal, comprising administering to the mammal a pharmaceutically effective amount of the compound according to any one of [1] to [5] above or a pharmaceutically acceptable salt thereof.
  • the compound of the present invention or a pharmaceutically acceptable salt thereof inhibits PDHK activity, diabetes (type 1 diabetes, type 2 diabetes), insulin resistance syndrome, metabolic syndrome, hyperglycemia, hyperlactic acidemia, diabetes complication (Diabetic neuropathy, diabetic retinopathy, diabetic nephropathy, cataract), heart failure (acute heart failure, chronic heart failure), cardiomyopathy, myocardial ischemia, myocardial infarction, angina pectoris, dyslipidemia, atheromatous Useful as therapeutic or preventive agent for sclerosis, peripheral arterial disease, intermittent claudication, chronic obstructive pulmonary disease, cerebral ischemia, stroke, mitochondrial disease, mitochondrial encephalomyopathy, cancer, pulmonary hypertension, Alzheimer's disease, etc. It is.
  • n 1 or 2.
  • a pharmaceutically acceptable salt thereof hereinafter also referred to as compound (1).
  • the compound of the present invention has the formula [II]:
  • the compound of the present invention has the formula [III]:
  • the pharmaceutically acceptable salt of the compound of the present invention may be any salt that forms a non-toxic salt with the compound of the present invention, such as a salt with an inorganic acid, a salt with an organic acid, or a salt with an amino acid. Etc.
  • Examples of the salt with an inorganic acid include salts with hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, hydrobromic acid and the like.
  • As salts with organic acids for example, oxalic acid, maleic acid, citric acid, fumaric acid, lactic acid, malic acid, succinic acid, tartaric acid, acetic acid, trifluoroacetic acid, gluconic acid, ascorbic acid, methanesulfonic acid, benzenesulfonic acid And salts with p-toluenesulfonic acid and the like.
  • Examples of the salt with amino acid include salts with lysine, arginine, aspartic acid, glutamic acid and the like.
  • the pharmaceutically acceptable salt of the compound of the present invention is preferably a salt with an inorganic acid.
  • the compound of the present invention or a pharmaceutically acceptable salt thereof may be labeled with an isotope (for example, 3 H, 2 H, 14 C, 35 S, etc.).
  • an isotope for example, 3 H, 2 H, 14 C, 35 S, etc.
  • the compound of the present invention or a pharmaceutically acceptable salt thereof is preferably a substantially purified compound (1) or a pharmaceutically acceptable salt thereof. More preferably, the compound of the present invention or a pharmaceutically acceptable salt thereof purified to a purity of 80% or more.
  • the compound represented by the general formula [I] or a pharmaceutically acceptable salt thereof may exist as a solvate.
  • the “solvate” is a compound in which a solvent molecule is coordinated to a compound represented by the general formula [I] or a pharmaceutically acceptable salt thereof, and includes a hydrate.
  • the solvate is preferably a pharmaceutically acceptable solvate.
  • the hydrate, ethanol hydrate, dimethyl sulfoxide hydrate, etc. of the compound represented by the general formula [I] or a pharmaceutically acceptable salt thereof may be mentioned.
  • the hemihydrate, monohydrate, dihydrate, or monoethanolate of the compound represented by the general formula [I], or the pharmaceutical preparation of the compound represented by the general formula [I] Examples include an acceptable salt monohydrate or a dihydrochloride 2/3 ethanol solvate.
  • the solvate can be obtained according to a known method.
  • the “pharmaceutical composition” includes tablets, capsules, granules, powders, troches, syrups, emulsions, suspensions and other oral preparations, external preparations, suppositories, injections, eye drops, and nasal preparations. And parenteral agents such as transpulmonary agents.
  • the pharmaceutical composition of the present invention contains a suitable amount of the compound of the present invention or a pharmaceutically acceptable salt thereof together with at least one pharmaceutically acceptable carrier. It is manufactured by mixing and the like.
  • the content of the compound of the present invention or a pharmaceutically acceptable salt thereof in the pharmaceutical composition varies depending on the dosage form, dosage, etc., but is, for example, 0.1 to 100% by weight of the whole composition.
  • the “pharmaceutically acceptable carrier” examples include various organic or inorganic carrier substances commonly used as pharmaceutical materials, such as excipients, disintegrants, binders, fluidizers, lubricants and the like in solid preparations. Or a solvent, a solubilizing agent, a suspending agent, an isotonic agent, a buffering agent, a soothing agent and the like in a liquid preparation. Furthermore, additives such as preservatives, antioxidants, colorants, sweeteners and the like are used as necessary.
  • excipient examples include lactose, sucrose, D-mannitol, D-sorbitol, corn starch, dextrin, microcrystalline cellulose, crystalline cellulose, carmellose, carmellose calcium, carboxymethyl starch sodium, low substituted hydroxypropyl
  • examples include cellulose and gum arabic.
  • disintegrant examples include carmellose, carmellose calcium, carmellose sodium, sodium carboxymethyl starch, croscarmellose sodium, crospovidone, low-substituted hydroxypropylcellulose, hydroxypropylmethylcellulose, crystalline cellulose and the like.
  • binder examples include hydroxypropylcellulose, hydroxypropylmethylcellulose, povidone, crystalline cellulose, sucrose, dextrin, starch, gelatin, carmellose sodium, gum arabic and the like.
  • fluidizing agent examples include light anhydrous silicic acid, magnesium stearate and the like.
  • lubricant examples include magnesium stearate, calcium stearate, talc and the like.
  • solvent examples include purified water, ethanol, propylene glycol, macrogol, sesame oil, corn oil, olive oil and the like.
  • dissolution aid examples include propylene glycol, D-mannitol, benzyl benzoate, ethanol, triethanolamine, sodium carbonate, sodium citrate and the like.
  • suspending agent examples include benzalkonium chloride, carmellose, hydroxypropylcellulose, propylene glycol, povidone, methylcellulose, glyceryl monostearate and the like.
  • isotonic agent examples include glucose, D-sorbitol, sodium chloride, D-mannitol and the like.
  • buffering agent examples include sodium hydrogen phosphate, sodium acetate, sodium carbonate, sodium citrate and the like.
  • Examples of the soothing agent include benzyl alcohol.
  • preservative examples include ethyl paraoxybenzoate, chlorobutanol, benzyl alcohol, sodium dehydroacetate, sorbic acid and the like.
  • antioxidant examples include sodium sulfite and ascorbic acid.
  • colorant examples include food coloring (eg, food red No. 2 or 3, food yellow No. 4 or 5, etc.), ⁇ -carotene and the like.
  • sweetening agent examples include saccharin sodium, dipotassium glycyrrhizinate, aspartame and the like.
  • the pharmaceutical composition of the present invention can be applied not only to humans but also to mammals other than humans (eg, mice, rats, hamsters, guinea pigs, rabbits, cats, dogs, pigs, cows, horses, sheep, monkeys, etc.). Can also be administered orally or parenterally (eg, topical, intramuscular, subcutaneous, rectal, intravenous, etc.).
  • the dose varies depending on the administration subject, disease, symptom, dosage form, administration route, etc.
  • the dose for oral administration to an adult patient is the compound (1) which is an active ingredient As a rule, it is usually in the range of about 1 mg to 1 g per day. These amounts can be administered in one to several divided doses.
  • the compound of the present invention or a pharmaceutically acceptable salt thereof has an activity of inhibiting PDHK (PDHK1 and / or PDHK2), diseases associated with impaired glucose utilization such as diabetes (type 1 diabetes, type 2 diabetes, etc.) , Insulin resistance syndrome, metabolic syndrome, hyperglycemia, hyperlactic acidemia, diabetic complications (diabetic neuropathy, diabetic retinopathy, diabetic nephropathy, cataract, etc.) It is done.
  • diseases associated with impaired glucose utilization such as diabetes (type 1 diabetes, type 2 diabetes, etc.) , Insulin resistance syndrome, metabolic syndrome, hyperglycemia, hyperlactic acidemia, diabetic complications (diabetic neuropathy, diabetic retinopathy, diabetic nephropathy, cataract, etc.) It is done.
  • PDHK inhibitors are also used for diseases in which the supply of energy substrates to tissues is restricted, such as heart failure (acute heart failure, chronic heart failure), cardiomyopathy, myocardial ischemia, myocardial infarction, angina pectoris, dyslipidemia, atheroma It may be beneficial for the treatment or prevention of systemic sclerosis, peripheral arterial disease, intermittent claudication, chronic obstructive pulmonary disease, cerebral ischemia and stroke. Furthermore, PDHK inhibitors are considered to be useful for the treatment or prevention of mitochondrial diseases, mitochondrial encephalomyopathy, cancer, pulmonary hypertension, Alzheimer's disease and the like.
  • Diabetes is, for example, type 1 diabetes and type 2 diabetes.
  • diabetic complications include diabetic neuropathy, diabetic retinopathy, diabetic nephropathy, and cataract.
  • Heart failure is, for example, acute heart failure or chronic heart failure.
  • “Inhibiting PDHK” means that PDHK function is inhibited and its activity is lost or attenuated.
  • the “inhibiting PDHK” is preferably “inhibiting human PDHK”.
  • the “PDHK inhibitor” is preferably a “human PDHK inhibitor”.
  • “Inhibiting PDHK1” means to inhibit or reduce the activity of PDHK1 and, for example, to inhibit the function of PDHK1 based on the conditions of Test Example 1 described later. To do.
  • the “inhibiting PDHK1” is preferably “inhibiting human PDHK1”.
  • the “PDHK1 inhibitor” is preferably a “human PDHK1 inhibitor”. More preferably, it is “PDHK1 inhibitor in human target organ”.
  • “Inhibit PDHK2” means to inhibit or reduce the activity of PDHK2 and, for example, to inhibit the function of PDHK2 based on the conditions of Test Example 1 described below. To do.
  • the “inhibiting PDHK2” is preferably “inhibiting human PDHK2”.
  • the “PDHK2 inhibitor” is preferably a “human PDHK2 inhibitor”. More preferably, it is “PDHK2 inhibitor in human target organ”.
  • Activating PDH means activating PDH such as a target organ (eg, liver, skeletal muscle, adipose tissue, heart, brain) or cancer.
  • “Reducing blood sugar level” means lowering the glucose concentration in blood (including serum or plasma), preferably lowering the high blood sugar level. More preferably, it means reducing the blood glucose level to a therapeutically effective human normal value.
  • “Reducing the lactic acid level” means lowering the lactic acid concentration in blood (including serum or plasma), preferably lowering the high lactic acid level. More preferably, it means reducing the lactic acid level to a therapeutically effective human normal value.
  • the compound of the present invention or a pharmaceutically acceptable salt thereof is used in combination with one or more other drugs (hereinafter also referred to as concomitant drugs) in a general manner practiced in the pharmaceutical field (hereinafter also referred to as combined use).
  • concomitant drugs drugs
  • combined use drugs
  • the administration timing of the compound of the present invention or a pharmaceutically acceptable salt thereof and a concomitant drug is not limited, and these may be administered as a combination drug to the administration subject, or both preparations may be administered simultaneously or at regular intervals. May be administered. Moreover, you may use as a pharmaceutical characterized by being a kit which consists of the pharmaceutical composition of this invention, and a concomitant drug.
  • the dose of the concomitant drug may be determined according to the dose used clinically, and can be appropriately selected depending on the administration subject, disease, symptom, dosage form, administration route, administration time, combination and the like.
  • the administration form of the concomitant drug is not particularly limited as long as the compound of the present invention or a pharmaceutically acceptable salt thereof and the concomitant drug are combined.
  • concomitant drugs include diabetes (type 1 diabetes, type 2 diabetes), insulin resistance syndrome, metabolic syndrome, hyperglycemia, hyperlactic acidemia, diabetic complications (diabetic neuropathy, diabetic retinopathy, diabetes Nephropathy, cataract), heart failure (acute heart failure, chronic heart failure), cardiomyopathy, myocardial ischemia, myocardial infarction, angina, dyslipidemia, atherosclerosis, peripheral arterial disease, intermittent claudication, chronic obstruction Therapeutic agents and / or preventive agents for congenital lung disease, cerebral ischemia, stroke, mitochondrial disease, mitochondrial encephalomyopathy, cancer, pulmonary hypertension, or Alzheimer's disease, etc.
  • the compound of the present invention or a pharmaceutically acceptable salt thereof can be used in combination.
  • Examples of the “diabetes therapeutic and / or preventive agent” include, for example, insulin preparations, sulfonylurea hypoglycemic agents, metformin, DPP-4 inhibitors, insulin sensitizers (eg thiazolidine derivatives), GLP-1 receptor agonists
  • examples include drugs.
  • a protective group is introduced into a functional group as necessary, and deprotection is performed in a post-process; the functional group is treated as a precursor in each step, and converted into a desired functional group at an appropriate stage.
  • Efficient production may be carried out by changing the manufacturing method and the order of steps.
  • post-reaction treatment may be performed by a commonly performed method, and isolation and purification may be performed as necessary by crystallization, recrystallization, distillation, liquid separation, silica gel chromatography, preparative HPLC, etc. These commonly used methods may be appropriately selected and combined. All reagents and solvents were of commercial quality and were used without purification.
  • Percentage percent indicates weight percent.
  • Other abbreviations used in the text have the following meanings. s: singlet d: doublet t: triplet q: quartet m: multiplet br: broad dd: double doublet td: triple doublet ddd: double double doublet J: coupling constant CDCl 3 : heavy chloroform DMSO-D 6 : heavy dimethyl sulfoxide 1 H NMR: proton nuclear magnetic resonance HPLC: high performance liquid chromatography DPPA: diphenyl phosphate azide 1 H-NMR spectrum was measured in CDCl 3 or DMSO-D 6 using tetramethylsilane as an internal standard, and all ⁇ values were in ppm. It showed in.
  • HPLC analysis condition Analysis condition 1 Measuring instrument: HPLC system Shimadzu high performance liquid chromatograph Prominence Column: Daicel CHIRALCEL OD-3R 4.6mm ⁇ ⁇ 150mm Column temperature: 40 ° C Mobile phase: (A liquid) 10 mM phosphate buffer (pH 2.0), (B liquid) Acetonitrile mobile phase composition (A liquid: B liquid) from 50:50 to 20:80 linear over 20 minutes And then held at 20:80 for 5 minutes. Flow rate: 0.5 ml / min Detection: UV (220 nm)
  • Ethyl 2′-chloro-4′-methoxybiphenyl-2-carboxylate (67.7 g) was dissolved in ethanol (100 ml), 4N aqueous sodium hydroxide solution (100 ml) was added, and the oil bath temperature was 110 ° C. at 4.5 ° C. Stir for hours.
  • the reaction mixture was cooled to room temperature, water (200 ml) and toluene (100 ml) were added and stirred overnight.
  • Activated carbon (3.6 g) was added to the reaction mixture, and the mixture was further stirred for 1 hour.
  • the insoluble material was filtered off through celite, and the filtrate was washed with toluene (30 ml) and water (300 ml).
  • the obtained filtrates were combined and separated.
  • the obtained aqueous layer was washed with toluene (100 ml), acidified with concentrated hydrochloric acid (40 ml), and stirred at room temperature for 1 hour.
  • the precipitated solid was collected by filtration.
  • the obtained solid was air-dried for 3 hours and then dried under reduced pressure at 60 ° C. overnight to obtain the title compound (50.2 g).
  • Eaton reagent phosphorus pentoxide-methanesulfonic acid (weight ratio 1:10) solution) (330 ml) was added to 2′-chloro-4′-methoxybiphenyl-2-carboxylic acid (65.4 g), The mixture was stirred at an oil bath temperature of 100 ° C. for 1 hour. The reaction mixture was ice-cooled, water (650 ml) was slowly added dropwise, and the mixture was stirred at room temperature for 1 hr. The precipitated solid was collected by filtration and washed with water (500 ml). The resulting solid was air dried overnight to give the title compound (92.0 g).
  • N-methylpyrrolidone (120 ml) and pyridine hydrochloride (144 g) were added to 4-chloro-2-methoxy-9H-fluoren-9-one (92.0 g) under an argon atmosphere.
  • the reaction mixture was stirred at an oil bath temperature of 200 ° C. for 3 hours while distilling off water with a Dean-Stark apparatus. After cooling the reaction mixture to 90 ° C., water (600 ml) was added dropwise and stirred at room temperature for 2 hours. The precipitated solid was collected by filtration, and the filtrate was washed with water (400 ml).
  • the obtained solid was air-dried for 3 days, a mixed solvent of hexane and ethyl acetate (hexane: ethyl acetate 1: 1, 300 ml) was added, and the mixture was stirred at room temperature for 1 hour.
  • the obtained solid was dried under reduced pressure at 50 ° C. for 3 hours to obtain the title compound (48.6 g).
  • Step 6 4-[(9R) -4-Chloro-9-hydroxy-9- (trifluoromethyl) -9H-fluoren-2-yloxy] ethyl butyrate
  • Acetic acid (23.0 ml) and 1M tetrabutylammonium fluoride / THF solution (222 ml) were sequentially added to the reaction mixture, followed by stirring at room temperature for 1 hour.
  • the solvent of the reaction mixture was distilled off, and toluene (500 ml) and saturated aqueous sodium hydrogen carbonate (200 ml) were added to the resulting residue to separate the layers.
  • the obtained organic layer was washed twice with saturated aqueous sodium hydrogen carbonate (150 ml), successively with 1N aqueous sodium hydroxide solution (100 ml), water (100 ml), 1N hydrochloric acid (100 ml), water (100 ml), and saturated brine (100 ml). did.
  • cleaning liquid was distilled off, the silica gel (40g) and the mixed solvent (ethyl acetate: hexane 2: 1, 300 ml) of hexane and ethyl acetate were added to the obtained residue, and it stirred at room temperature.
  • the solvent of the obtained filtrate was distilled off to further obtain the title compound (20.3 g).
  • Step 7 4-[(9R) -4-Chloro-9-hydroxy-9- (trifluoromethyl) -9H-fluoren-2-yloxy] butyric acid
  • the obtained ethyl acetate extract was washed successively with water (100 ml) twice and saturated brine (100 ml), anhydrous magnesium sulfate and activated carbon (4.2 g) were added, and the mixture was stirred at room temperature for 10 minutes.
  • the insoluble material was removed by filtration, and the solvent of the filtrate was distilled off.
  • Chloroform (80 ml) was added to the resulting residue and heated to 50 ° C., and then hexane (400 ml) was added dropwise, followed by stirring at the same temperature for 30 minutes and at room temperature for 2 hours.
  • Step 9 4-[(9R) -4-Chloro-9-hydroxy-9- (trifluoromethyl) -9H-fluoren-2-yloxy] butyric acid
  • Step 10 (9R) -4-Chloro-9- (trifluoromethyl) -9H-fluorene-2,9-diol
  • Anhydrous magnesium sulfate and activated carbon (10 g) were added to the obtained organic layer, and the mixture was stirred at room temperature.
  • the solvent of the obtained organic layer was distilled off, hexane was added to the residue, and the mixture was stirred at room temperature.
  • the precipitated solid was collected by filtration and dried under reduced pressure at room temperature.
  • the obtained crude product was dissolved in ethyl acetate (500 ml), washed with water three times, and dried over anhydrous magnesium sulfate. The insoluble material was removed by filtration, and the solvent of the filtrate was distilled off. Hexane was added to the residue and stirred at room temperature.
  • Step 11 (9R) -4-Chloro-2- (3-hydroxy-3-methylbutyloxy) -9- (trifluoromethyl) -9H-fluoren-9-ol
  • the reaction mixture was ice-cooled, water (800 ml) was added, and the mixture was extracted with ethyl acetate (900 ml).
  • the obtained organic layer was washed with water (500 ml) three times and with saturated saline (500 ml).
  • the obtained organic layer was dried over anhydrous sodium sulfate, insoluble matter was removed by filtration, and the solvent of the filtrate was distilled off.
  • the obtained residue was subjected to silica gel column chromatography (a mixed solution of hexane and ethyl acetate was used as an elution solvent. First, a mixed solution of 3: 1 (hexane: ethyl acetate) was eluted.
  • Step 12 2- ⁇ 4-[(9R) -9-hydroxy-2- (3-hydroxy-3-methylbutyloxy) -9- (trifluoromethyl) -9H-fluoren-4-yl] -1H-pyrazole-1 -Yl ⁇ -2-methylpropionate ethyl
  • the reaction mixture was cooled to room temperature, water (300 ml) was added, the insoluble material was filtered off through Celite, and washed with toluene (150 ml) and water (50 ml). The obtained filtrates were combined and separated. The obtained organic layer was washed successively with water (500 ml) and saturated brine (500 ml). The obtained organic layer was dried over anhydrous sodium sulfate, insoluble matter was removed by filtration, and the solvent of the filtrate was distilled off. The obtained residue was subjected to silica gel column chromatography (a mixed solution of hexane and ethyl acetate was used as an elution solvent.
  • a mixed solution having a mixing ratio of 2: 1 (hexane: ethyl acetate) was eluted. Then, a mixing ratio of 1: 1, Elution was performed with a 2: 3 mixture, and further with a 1: 2 mixture. Furthermore, silica gel column chromatography (a mixed solution of hexane and acetone was used as an elution solvent. First, a mixed solution having a mixing ratio of 2: 1 (hexane: acetone) was eluted. Then, a mixing ratio of 4: 1, 3: 1, 2 was used. Elution was performed sequentially with a mixture of 1: 1, 1: 1, 2: 3, and further with a mixture of 1: 2).
  • Step 13 2- ⁇ 4-[(9R) -9-hydroxy-2- (3-hydroxy-3-methylbutyloxy) -9- (trifluoromethyl) -9H-fluoren-4-yl] -1H-pyrazole-1 -Yl ⁇ -2-methylpropionic acid
  • the obtained organic layer was washed successively with water (400 ml) twice and saturated brine (400 ml).
  • the obtained organic layer was dried over anhydrous sodium sulfate, insolubles were removed by filtration, and the solvent of the filtrate was distilled off to obtain the title compound (70.0 g).
  • Step 14 2- ⁇ 4-[(9R) -9-hydroxy-2- (3-hydroxy-3-methylbutyloxy) -9- (trifluoromethyl) -9H-fluoren-4-yl] -1H-pyrazole-1 -Yl ⁇ -2-methylpropanamide (compound (2))
  • the reaction mixture was ice-cooled, water (630 ml) and 2N hydrochloric acid (330 ml) were added dropwise, and the mixture was extracted with ethyl acetate (800 ml). The resulting aqueous layer was re-extracted with ethyl acetate (500 ml).
  • the obtained organic layers were combined and washed twice with water (500 ml), successively with saturated aqueous sodium hydrogen carbonate (500 ml) and saturated brine (500 ml).
  • the obtained organic layer was dried over anhydrous sodium sulfate, insoluble matter was removed by filtration, and the solvent of the filtrate was distilled off to obtain the title compound (60.0 g).
  • Step 15 2- ⁇ 4-[(9R) -9-hydroxy-2- (3-hydroxy-3-methylbutyloxy) -9- (trifluoromethyl) -9H-fluoren-4-yl] -1H-pyrazole-1 -Il ⁇ -2-methylpropanamide monohydrate (compound (2h))
  • Hexane (226 ml) and a mixed solvent of hexane and ethyl acetate (hexane: ethyl acetate 2: 1, 150 ml) were successively added dropwise to the mixture, and the mixture was returned to room temperature and stirred overnight.
  • the obtained solid was dried under reduced pressure at room temperature overnight to obtain the title compound (52.2 g, optical purity 98.6% ee).
  • the optical purity was determined under HPLC analysis condition 2.
  • Step 16 2- ⁇ 4-[(9R) -9-hydroxy-2- (3-hydroxy-3-methylbutyloxy) -9- (trifluoromethyl) -9H-fluoren-4-yl] -1H-pyrazole-1 -Yl ⁇ -2-methylpropanamide (compound (2))
  • the precipitated solid was collected by filtration, and the filtrate was washed with toluene (100 ml).
  • the obtained solid was dried under reduced pressure at room temperature for 3 days and further dried under reduced pressure at 60 ° C. for 1 day to obtain the title compound (21.5 g).
  • Cinchonidine (10.6 g) was dissolved in tetrahydrofuran (200 ml), 4-tert-butylbenzyl bromide (10.1 g) and tetrabutylammonium iodide (0.66 g) were added, and the mixture was stirred at 70 ° C. overnight.
  • the reaction mixture was cooled to room temperature, and the solid was collected by filtration and washed with ethyl acetate (50 ml). The obtained solid was dried under reduced pressure overnight to obtain the title compound (18.5 g).
  • Step C-2 Synthesis of N- (4-tert-butylbenzyl) cinchonidium 4-methoxyphenoxide
  • 3-methylbutane-1,3-diol 300 g was dissolved in pyridine (900 ml), and 4-methylbenzenesulfonyl chloride (500 g) in toluene (900 ml) and acetonitrile (125 ml) was added over 2 hours. It was dripped. The reaction mixture was stirred at room temperature for 4 hours, toluene (500 ml) and water (1800 ml) were added, and the layers were separated. The obtained organic layer was washed successively with sulfuric acid water and water twice.
  • Example 1 (9R) -4-Chloro-9- (trifluoromethyl) -9H-fluorene-2,9-diol (200 mg) obtained in Step 10 was dissolved in N, N-dimethylformamide (2 ml). , Potassium carbonate (185 mg) and ethyl 4-bromobutyrate (105 ⁇ l) were added, and the mixture was stirred at room temperature for 7 hours. Water was added to the reaction mixture, and the mixture was extracted twice with ethyl acetate. The obtained organic layer was washed successively with water twice and saturated brine. The obtained organic layer was dried over anhydrous magnesium sulfate, insoluble matter was removed by filtration, and the solvent of the filtrate was distilled off.
  • the obtained residue was subjected to silica gel column chromatography (a mixture of hexane and ethyl acetate was used as an elution solvent. First, the mixture was eluted with a mixture of 5: 1 (hexane: ethyl acetate). Then, the mixture ratio was 3: 1. And then eluted with a mixed solution having a mixing ratio of 2: 1.) To give the title compound (197 mg).
  • the obtained residue was subjected to silica gel column chromatography (a mixed solution of hexane and ethyl acetate was used as an elution solvent. First, a mixed solution of 3: 1 (hexane: ethyl acetate) was eluted. The title compound (169 mg) was obtained by purification.
  • the reaction mixture was cooled to room temperature, water was added, and the mixture was extracted twice with ethyl acetate.
  • the obtained organic layer was washed successively with water twice and saturated brine.
  • the obtained organic layer was dried over anhydrous magnesium sulfate, insoluble matter was removed by filtration, and the solvent of the filtrate was distilled off.
  • the obtained residue was purified by silica gel column chromatography (eluted with a mixed solution of 1: 1 (hexane: ethyl acetate) as an elution solvent) to give the title compound (218 mg).
  • Examples of the preparation of the present invention include the following preparations. However, the present invention is not limited by these formulation examples.
  • Formulation Example 2 Manufacture of tablets
  • the total amount of 1), 2) and 3) and 30 g of 4) are kneaded with water, and after vacuum drying, the particles are sized.
  • 14 g of 4) and 1 g of 5) are mixed with the sized powder, and tableted with a tableting machine. In this way, 1000 tablets containing 10 mg of the compound of Example 1 (compound (2)) per tablet are obtained.
  • Test Example 1 In vitro PDHK activity inhibitory action PDHK activity inhibitory action was indirectly evaluated by conducting a kinase reaction in the presence of a test compound and then measuring the remaining PDH activity.
  • PDHK1 activity inhibitory action In the case of human PDHK1 (hPDHK1, Genebank accession number L42450.1), a 1.3 kbp fragment encoding this protein was isolated from human liver cDNA by polymerase chain reaction (PCR). A modified hPDHK1 cDNA having a FLAG-Tag sequence added to the N-terminus was prepared by PCR and cloned into a vector (pET17b-Novagen). The recombinant construct was transformed into E. coli (DH5 ⁇ -TOYOBO). Recombinant clones were identified and plasmid DNA was isolated and analyzed for DNA sequence. One clone with the expected nucleic acid sequence was selected for expression work.
  • the pET17b vector containing the modified hPDHK1 cDNA was transformed into E. coli strain BL21 (DE3) (Novagen). E. coli was grown at 30 ° C. until an optical density of 0.6 (600 nmol / L) was reached. Protein expression was induced by addition of 500 ⁇ mol / L isopropyl- ⁇ -thiogalactopyranoside. E. coli was cultured at 30 ° C. for 5 hours and then collected by centrifugation. The E. coli paste resuspension was crushed with a microfloudizer. FLAG-Tag addition protein was separated by FLAG affinity gel (Sigma).
  • Elution fractions containing FLAG-Tag added protein are pooled and 20 mmol / L HEPES-NaOH, 150 mmol / L sodium chloride, 0.5 mmol / L ethylenediaminetetraacetic acid (EDTA), 1% ethylene glycol, 0.1% pluronic. Dialyzed against F-68 (pH 8.0) and stored at -80 ° C. In the assay, the enzyme concentration of hPDHK1 was set to the minimum concentration that exhibited suppression of PDH activity exceeding 90%.
  • Buffer 50 mmol / L 3-morpholinopropanesulfonic acid (pH 7.0), 20 mmol / L dipotassium hydrogen phosphate, 60 mmol / L potassium chloride, 2 mmol / L magnesium chloride, 0.4 mmol / L EDTA, 0.2%
  • Pluronic F-68, 2 mmol / L dithiothreitol, 0.05 U / mL PDH (pig heart PDH complex, Sigma P7032) and 1.0 ⁇ g / mL hPDHK1 were mixed and incubated at 4 ° C. overnight. PDH / hPDHK1 complex was prepared.
  • test compound was diluted with dimethyl sulfoxide (DMSO).
  • DMSO dimethyl sulfoxide
  • test compound 1.5 ⁇ L and 3.53 ⁇ mol / L ATP diluted with buffer
  • 8.5 ⁇ L were added to a 96-well half-area UV transmission microplate (Corning 3679) and 45 at room temperature.
  • the PDHK reaction was performed for a minute.
  • DMSO was added to control wells instead of the test compound. Further, 1.5 ⁇ L of DMSO was added to the blank well for measuring the maximum rate of the PDH reaction instead of the test compound, and hPDHK1 was removed.
  • the NADH produced by the PDH reaction was detected by measuring the absorbance at 340 nm before and after the PDH reaction with a microplate reader.
  • the hPDHK1 inhibition rate (%) of the test compound was calculated from the formula [ ⁇ (PDH activity of test compound-PDH activity of control) / PDH activity of blank-PDH activity of control) ⁇ ⁇ 100].
  • the IC 50 value was calculated from the concentration of the test compound at two points across the hPDHK1 inhibition rate of 50%.
  • Table 1 The results obtained when using Compound (2), Compound (2h) and Compound (3) as test compounds are shown in Table 1 below.
  • PDHK2 activity inhibitory action In the case of human PDHK2 (hPDHK2, Genebank accession number BC040478.1), based on the hPDHK2 cDNA clone (pReceiver-M01 / PDK2-GeneCopoia), modified hPDHK2 with FLAG-Tag sequence added to the N-terminus by PCR cDNA was prepared and cloned into a vector (pET17b-Novagen). The recombinant construct was transformed into E. coli (DH5 ⁇ -TOYOBO). Recombinant clones were identified and plasmid DNA was isolated and analyzed for DNA sequence. One clone with the expected nucleic acid sequence was selected for expression work.
  • the pET17b vector containing the modified hPDHK2 cDNA was transformed into E. coli strain BL21 (DE3) (Novagen). E. coli was grown at 30 ° C. until an optical density of 0.6 (600 nmol / L) was reached. Protein expression was induced by addition of 500 ⁇ mol / L isopropyl- ⁇ -thiogalactopyranoside. E. coli was cultured at 30 ° C. for 5 hours and then collected by centrifugation. The E. coli paste resuspension was crushed with a microfloudizer. FLAG-Tag addition protein was separated by FLAG affinity gel.
  • Elution fractions containing the FLAG-Tag added protein are pooled and 20 mmol / L HEPES-NaOH, 150 mmol / L sodium chloride, 0.5 mmol / L EDTA, 1% ethylene glycol, 0.1% Pluronic F-68 (pH 8). 0) and stored at -80 ° C.
  • the enzyme concentration of hPDHK2 was set to the minimum concentration that exhibited suppression of PDH activity exceeding 90%.
  • Buffer 50 mmol / L 3-morpholinopropanesulfonic acid (pH 7.0), 20 mmol / L dipotassium hydrogen phosphate, 60 mmol / L potassium chloride, 2 mmol / L magnesium chloride, 0.4 mmol / L EDTA, 0.2% PDU / hPDHK2 complex was prepared by mixing 0.05 U / mL PDH and 0.8 ⁇ g / mL hPDHK2 in Pluronic F-68, 2 mmol / L dithiothreitol) and incubating overnight at 4 ° C. Test compounds were diluted with DMSO.
  • the IC 50 value was calculated from the concentration of the test compound at two points across the hPDHK2 inhibition rate of 50%.
  • Table 1 shows.
  • Test Example 2 Ex vivo PDH activation test (test method) The tissue PDH activation action in the animals to which the test compound was administered was evaluated. PDH activity was measured by detecting NADH production via a p-iodonitrotetrazolium violet (INT) conjugate system. Normal male Sprague-Dawley rats were randomly grouped into vehicle groups or test compound groups. Rats were orally administered vehicle (0.5% aqueous methylcellulose solution, 5 mL / kg) or test compound. Five or 20 hours after the administration, 60 mg / kg of pentobarbital sodium was intraperitoneally administered and anesthesia was performed, and the liver section and the epididymis adipose tissue were removed.
  • INT p-iodonitrotetrazolium violet
  • This precipitate was resuspended in 1 mL of a homogenizing buffer and centrifuged in the same manner to wash the precipitate.
  • This precipitate was used as a liver mitochondrial fraction, frozen in liquid nitrogen, and stored at ⁇ 80 ° C.
  • an ice-cooled homogenization buffer of 3 times the wet weight was quickly added and homogenized using a Polytron homogenizer.
  • the homogenate was centrifuged at 600 ⁇ g and 4 ° C. for 10 minutes to recover the supernatant.
  • the whole supernatant was centrifuged at 16000 ⁇ g and 4 ° C. for 10 minutes to obtain a precipitate.
  • This precipitate was resuspended in 1 mL of a homogenizing buffer and centrifuged in the same manner to wash the precipitate.
  • This precipitate was used as the adipose tissue mitochondrial fraction, frozen in liquid nitrogen, and stored at ⁇ 80 ° C.
  • the mitochondrial fraction was thawed and sample buffer (0.25 mol / L sucrose, 20 mmol / L tris (hydroxymethyl) aminomethane hydrochloride (pH 7.5), 50 mmol / L potassium chloride, 1 mL / L 4- (1, 1,3,3-tetramethylbutyl) phenyl-polyethylene glycol (Triton X-100)).
  • PDH activity active PDH activity
  • PDHt activity total PDH activity
  • mitochondrial suspension and activation buffer 0.25 mol / L sucrose, 20 mmol / L tris (hydroxymethyl) aminomethane hydrochloride (pH 7.5), 50 mmol / L potassium chloride, 1 mL / L Triton X-100, 4 mmol / L calcium chloride, 40 mmol / L magnesium chloride, 10 mmol / L sodium dichloroacetate
  • PDH activity was determined by subtracting the absorbance change of the blank well from the absorbance change of the activity measurement well. The percentage of PDHa activity relative to PDHt activity was calculated and used as an index for PDH activation.
  • Table 2 shows the results obtained when compound (2h), compound (3), compound (A), compound (B), compound (C) and compound (D) were used as test compounds, FIG. 1 (liver) And FIG. 2 (adipose tissue).
  • Table 3 shows the results obtained when the compound (2) was used.
  • Test Example 3 Effect on HbA1c of repeated administration of test compound in ZDF rats (test method) Type 2 diabetes model Zucker Diabetic Fatty rats (male, 7 weeks old, Charles River, Japan) fed with purified feed (5.9% fat diet, Oriental Yeast Co., Ltd.) to blood glucose level, plasma insulin concentration, HbA1c and body weight The group was divided into the vehicle group and the test compound group so that there was no difference.
  • the test compound (1 mg / kg / 5 mL) was orally administered to rats once a day 3 hours before the dark period. Similarly, 0.5% methylcellulose aqueous solution was orally administered to the rats in the vehicle group.
  • On day 14 of administration blood was collected from the tail vein, and HbA1c (%) was measured.
  • Statistical significance was tested by the Dunnett method, and a risk factor p ⁇ 0.05 was considered significant.
  • Table 4 The results obtained when compound (2) and compound (3) were used as test compounds are shown in Table 4 below.
  • hERG Human Ether-a-go-go Related Gene
  • Whole Cell Patch Clamp Test (Test Method) Using human ether-a-go-go related gene (hERG) -introduced HEK293 cells (Cytomix Limited), the effect on hERG current was examined by the whole cell patch clamp method.
  • the hERG-introduced HEK293 cells were subcultured using a CO 2 incubator (BNA-111, Tabai Espec Co., Ltd.) under the conditions of a temperature of 37 ° C., a carbon dioxide concentration of 5%, and saturated humidity.
  • Collagen Type I Coated 75 cm 2 flask (4123-010, Asahi Techno Glass Co., Ltd.) and Collagen Type I Coated 35 mm culture dish (4000-010, Asahi Techno Glass Co., Ltd.) were used as the culture vessel.
  • E-MEM Eagle Minimum Essentials, Earl's Medium, Earl's Medium, supplemented with 10% FCS (Fetal calf serum, BioWest), 1% MEM Non-Essential Amino Acids Solution (NEAA, Invitrogen Corporation) was added to the culture solution. Nikken Biomedical Research Laboratories)).
  • geneticin for selecting hERG gene-expressing cells was added to a concentration of 400 ⁇ g / mL.
  • HEK293 cells 3 to 10 4 hERG-introduced HEK293 cells were seeded on a 35 mm culture dish 4 to 7 days before hERG current measurement.
  • the culture dish prepared for measurement the culture medium to which geneticin (Invitrogen Corporation) was not added was used.
  • the highest concentration of each compound evaluated is the standard extracellular solution (NaCl: 140 mmol / L, KCl: 2.5 mmol / L, MgCl 2 : 2 mmol / L, CaCl 2 : 2 mmol / L, HEPES: 10 mmol / L, glucose: 10 mmol) / L (adjusted to pH 7.4 using Tris-base))).
  • each application solution was ejected with a Y-tube having a tip diameter of about 0.25 mm brought close to the cell (about 2 mm) and applied to the cell.
  • the ejection speed was about 0.4 mL / min.
  • the experiment was performed at room temperature under a phase contrast microscope. A 35 mm culture dish in which the cells were seeded was set in a measuring apparatus, and a standard extracellular fluid was constantly applied to the cells from Y-tube.
  • intracellular fluid Potassium Gluconate: 130 mmol / L, KCl: 20 mmol / L, MgCl 2 : 1 mmol / L, ATP-Mg: 5 mmol / L, EGTA: 3.5 mmol / L, HEPES: 10 mmol / L (adjusted to pH 7.2 using Tris-base)).
  • the conventional whole cell patch clamp method was applied to the cells, and the holding potential was set to -80 mV.
  • the whole cell current was amplified by a patch clamp amplifier (AXOPATCH-200B, Axon Instruments, Inc.) with the potential fixed, and the data was analyzed using data acquisition analysis software (pCLAMP 9.2, Axon Instruments, Inc.). IMC-P642400, International Co., Ltd.).
  • the hERG current was measured in the following two steps. In either case, a command potential (holding potential ⁇ 80 mV, prepulse +20 mV, 1.5 seconds, test-pulse ⁇ 50 mV, 1.5 seconds) was applied to induce the hERG current. Step (1): The above command potential was given at 0.1 Hz for 2 minutes.
  • Step (2) The command potential was subjected to P / 3 subtraction of pCLAMP 9.2 to remove leak current, and this was repeated three times to obtain the hERG current as an average. Following step (1), step (2) was performed (about 3 minutes), and the maximum value of the tail current in the test-pulse of the hERG current obtained by the method of step (2) was defined as the hERG current value. Thereafter, the operations (1) and (2) were alternately repeated until the end of the experiment, and the hERG current value was measured. After recording a stable hERG current value three times (about 10 minutes), the standard extracellular fluid was instantly replaced with each application fluid.
  • the hERG current value was measured three times during the application liquid perfusion (about 10 minutes), and the current value obtained by the third measurement was used as the hERG current value after the application liquid perfusion.
  • the data was converted into a relative value where the average value (Before value) of three hERG current values recorded for about 10 minutes before perfusion of the applied solution was 100%. This was measured for 2 cells, and the average value was calculated as the relative current (%).
  • Relative current (%) 100 ⁇ A ⁇ B A: hERG current value after perfusion of applied liquid B: Average value of three hERG current values (Before value) recorded in about 10 minutes before perfusion of applied liquid Moreover, the suppression rate with respect to DMSO group was computed according to the following formula
  • equation. Suppression rate (%) 100 ⁇ (C ⁇ D) ⁇ 100 C: Average value of relative current (%) of each test compound group D: Average value of relative current (%) of DMSO group Compound (2), Compound (3), Compound (A), Compound (B) as test compounds Table 5 shows the results obtained when the compounds (C) and (D) were used.
  • Test Example 5 Metabolic stability test in liver microsomes (test method) Human liver microsomes (Xenotech, H0620, final concentration (after dilution), 0.2 mg protein / mL) in 100 mM potassium phosphate buffer (pH 7.4, ⁇ -nicotinamide adenine phosphate phosphate: 1.3 mM, D- suspended in glucose-6-phosphate: 3.3 mM, magnesium chloride: 3.3 mM, glucose-6-phosphate dehydrogenase: 0.45 U / mL), and further dissolved in MeCN / DMSO (95/5) Mixed with test compound (final concentration 5 ⁇ M). After incubating the mixture at 37 ° C.
  • the compound of the present invention or a pharmaceutically acceptable salt thereof has PDHK inhibitory activity, diabetes (type 1 diabetes, type 2 diabetes etc.), insulin resistance syndrome, metabolic syndrome, hyperglycemia, hyperlactic acidemia, diabetes Complications (diabetic neuropathy, diabetic retinopathy, diabetic nephropathy, cataract, etc.), heart failure (acute heart failure, chronic heart failure), cardiomyopathy, myocardial ischemia, myocardial infarction, angina, dyslipidemia, For prevention or treatment of atherosclerosis, peripheral arterial disease, intermittent claudication, chronic obstructive pulmonary disease, cerebral ischemia, stroke, mitochondrial disease, mitochondrial encephalomyopathy, cancer, pulmonary hypertension, or Alzheimer's disease It is useful as an active ingredient of medicine.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Diabetes (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Urology & Nephrology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Vascular Medicine (AREA)
  • Child & Adolescent Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Pulmonology (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Endocrinology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 下記式:[Ⅰ][式中、nは1または2を示す。]、 [Ⅱ][Ⅱh]または、[Ⅲ]で表される化合物あるいはその製薬上許容される塩、 およびそれらの医薬用途。

Description

ピラゾール-アミド化合物およびその医薬用途
 本発明は、ピラゾール-アミド化合物およびその医薬用途である。より詳細には、ピルビン酸デヒドロゲナーゼキナーゼ(以下、PDHKと略記する。)阻害活性を有するピラゾール-アミド化合物またはその製薬上許容される塩、それらを含む医薬組成物、および糖尿病(1型糖尿病、2型糖尿病等)、インスリン抵抗性症候群、メタボリックシンドローム、高血糖症、高乳酸血症、糖尿病合併症(糖尿病性神経障害、糖尿病性網膜症、糖尿病性腎症、白内障等)、心不全(急性心不全、慢性心不全)、心筋症、心筋虚血症、心筋梗塞、狭心症、脂質異常症、アテローム性硬化症、末梢動脈疾患、間欠性跛行、慢性閉塞性肺疾患、脳虚血症、脳卒中、ミトコンドリア病、ミトコンドリア脳筋症、癌、肺高血圧症、またはアルツハイマー病の予防または治療剤等に関する。
 組織内において、エネルギーを使う反応、例えば、生合成、能動輸送、筋肉の収縮等ではアデノシン三リン酸(ATP)の加水分解により、エネルギーが供給される。ATPはグルコースまたは遊離脂肪酸のようなエネルギーの多い代謝燃料の酸化により生成される。筋肉のような酸化的組織において、ATPの大部分はクエン酸サイクルに入るアセチルCoAから生じる。アセチルCoAは解糖経路によるグルコースの酸化または遊離脂肪酸のβ酸化によって生成される。グルコースからのアセチルCoA産生を調節する司令的役割を果たす酵素はPDHである。PDHはピルビン酸からアセチルCoAおよび二酸化炭素への酸化と同時に、ニコチンアミドアデニンジヌクレオチド(NAD)のNADHへの還元を触媒する(例えば、非特許文献1、2)。
 PDHは、ミトコンドリアマトリックスに局在する3つの酵素成分(E1、E2およびE3)といくつかのサブユニットからなる多重酵素複合体である。E1、E2およびE3は、それぞれ、ピルビン酸の脱炭酸、アセチルCoAの生成およびNADの還元によるNADHの生成を行う。
 PDHには、調節的役割をもつ2種類の酵素が結合している。一つはPDHKであり、PDHに特異性を示すプロテインキナーゼである。その役割は、複合体のE1αサブユニットをリン酸化して不活性化することである。他の一つはPDHホスファターゼであり、E1αサブユニットの脱リン酸化を介してPDHを活性化する特異的なプロテインホスファターゼである。活性(脱リン酸化)状態のPDHの割合は、キナーゼ活性とホスファターゼ活性のバランスにより決定される。キナーゼ活性は、代謝基質の相対濃度により調節を受ける。例えば、キナーゼ活性は、NADH/NAD、アセチルCoA/CoAおよびATP/アデノシン二リン酸(ADP)の各比率の上昇により活性化し、ピルビン酸で阻害される(例えば、非特許文献3)。
 哺乳類の組織においては4種のPDHKアイソザイムが同定されている。なかでも、PDHK2は、糖代謝に関与する肝臓、骨格筋、脂肪組織を含む広範囲な組織に発現している。さらに、PDHK2は、NADH/NADやアセチルCoA/CoAの上昇による活性化およびピルビン酸による阻害への感受性が比較的高いことから、短期的な糖代謝調節に関与することが示唆される(例えば、非特許文献4)。
 また、PDHK1は、心筋、骨格筋、膵β細胞等に多く発現している。さらに、PDHK1は、虚血状態において、低酸素誘導因子(HIF)1の活性化を介して発現が誘導されることから、虚血性疾患や癌性疾患に関与することが示唆される(例えば、非特許文献5)。
 インスリン依存性(1型)糖尿病および非インスリン依存性(2型)糖尿病等の疾患では、脂質の酸化が亢進し、同時にグルコースの利用が低下する。このグルコース利用低下が高血糖を呈する一因となる。1型および2型糖尿病、肥満のような酸化的グルコース代謝が低下した状態においてPDH活性は低下していることから、1型および2型糖尿病におけるグルコース利用の低下にはPDH活性の低下が関与することが示唆される(例えば、非特許文献6、7)。
 また、1型および2型糖尿病では肝臓における糖新生が亢進しており、このことも高血糖を呈する一因となる。PDH活性の低下はピルビン酸を上昇させ、その結果、肝臓における糖新生基質としての乳酸利用能が増大する。このことから、1型および2型糖尿病における糖新生の亢進にPDH活性の低下が関与する可能性がある(例えば、非特許文献8、9)。
 PDHK阻害によりPDHを活性化すると、グルコース酸化速度が増加すると考えられる。その結果、生体のグルコース利用が亢進し、また、肝臓における糖新生が抑制されることで、1型および2型糖尿病における高血糖を改善することができると期待される(例えば、非特許文献10、11、12)。
 糖尿病に関与する別の因子はインスリン分泌障害であり、これには膵β細胞におけるPDH活性の低下やPDHK1、2および4の誘導が関与することが知られている(例えば、非特許文献13、14)。
 また、糖尿病による持続的な高血糖は糖尿病性神経障害、糖尿病性網膜症、糖尿病性腎症等の合併症を起こすことが知られている。チアミンやα-リポ酸は補酵素としてPDHの活性化に寄与する。これら、もしくは、チアミン誘導体やα-リポ酸誘導体は糖尿病合併症の治療に有望な効果を有することが示されている。従って、PDHの活性化は、糖尿病合併症を改善することができると期待される(例えば、非特許文献15、16)。
 虚血状態では、酸素供給が限られるため、グルコースおよび脂肪酸両方の酸化が低下し、組織における酸化的リン酸化によって産生されるATP量が減少する。十分な酸素がない状態では、ATPレベルを維持しようとして嫌気的解糖が亢進する。その結果、乳酸の増加および細胞内pHの低下が起こる。エネルギーを消費してイオンの恒常性を維持しようとするが、異常に低いATPレベルおよび細胞の浸透性崩壊の結果、細胞死が起こる。加えて、アデノシン一リン酸活性化キナーゼが虚血中に活性化されてリン酸化することで、アセチルCoAカルボキシラーゼを不活化する。組織のマロニルCoAレベルが低下することで、カルニチンパルミトイルトランスフェラーゼ-I活性が上昇し、アシルCoAのミトコンドリア内への輸送が促進されるため、脂肪酸酸化がグルコース酸化よりも有利となる。グルコースの酸化は、脂肪酸の酸化より消費される酸素1分子あたりのATP産生量が高い。よって、虚血状態では、PDHを活性化することによりエネルギー代謝をグルコース酸化優位に移行させると、ATPレベルを維持する能力が高まると考えられる(例えば、非特許文献17)。
 また、PDHを活性化すると、解糖を経て生成したピルビン酸が酸化され、乳酸産生が低下するので、虚血組織におけるプロトン負荷の正味の低下が起こると考えられる。従って、PDHK阻害によるPDHの活性化は、虚血性疾患、例えば、心筋虚血において、保護的に作用することが期待される(例えば、非特許文献18、19)。
 PDHK阻害によりPDHを活性化する薬剤は、ピルビン酸代謝を亢進させることにより、乳酸産生を減少させると考えられる。従って、ミトコンドリア病、ミトコンドリア脳筋症または敗血症のような高乳酸血症に対する治療に有用であると考えられる(例えば、非特許文献20)。
 癌細胞では、PDHK1または2の発現が上昇している。また、癌細胞では、ミトコンドリアにおける酸化的リン酸化によるATP産生が低下し、細胞質における嫌気的解糖系を介したATP産生が増加している。PDHK阻害によりPDHを活性化すると、ミトコンドリア内での酸化的リン酸化が亢進し、活性酸素の産生が高まることで、癌細胞のアポトーシスが誘導されると期待される。よって、PDHK阻害によるPDHの活性化は癌性疾患治療に有用であると考えられる(例えば、非特許文献21)。
 また、肺高血圧症は肺動脈の細胞増殖が亢進し、肺動脈が部分的に縮小することにより血圧が高くなることを特徴とする疾患である。肺高血圧症における肺動脈細胞のPDHを活性化すると、ミトコンドリア内での酸化的リン酸化が亢進し、活性酸素の産生が高まることで、肺動脈細胞のアポトーシスを誘導することが期待される。従って、PDHK阻害によるPDHの活性化は、肺高血圧症に対する治療に有用であると考えられる(例えば、非特許文献22)。
 アルツハイマー病では大脳におけるエネルギー産生及びグルコース代謝が低下し、また、PDH活性が低下している。PDH活性が低下するとアセチルCoAの産生が低下する。アセチルCoAはクエン酸回路を介して電子伝達系でATP産生に利用される。また、アセチルCoAは神経伝達物質の一つであるアセチルコリンを合成する原料である。よって、アルツハイマー病における脳PDH活性の低下は、ATP産生の低下によって神経細胞死を引き起こすと考えられる。また、コリン作動性神経において、その伝達物質であるアセチルコリン合成が抑制され、記憶力の低下等を引き起こすと考えられる。アルツハイマー病において脳のPDHを活性化すると、エネルギー産生及びアセチルコリン合成の亢進が期待される。従って、PDHK阻害によるPDHの活性化は、アルツハイマー病に対する治療に有用であると考えられる(例えば、非特許文献23、24)。
 PDH活性化作用を有する薬剤であるジクロロ酢酸は、糖尿病、心筋虚血、心筋梗塞、狭心症、心不全、高乳酸血症、脳虚血症、脳卒中、末梢動脈疾患、慢性閉塞性肺疾患、癌性疾患、肺高血圧症の治療に有望な効果を有することが示されている(例えば、非特許文献10、18、20、22、25、26、27)。
 これらの知見から、PDHK阻害剤は、グルコース利用障害に関連した疾患、例えば、糖尿病(1型糖尿病、2型糖尿病等)、インスリン抵抗性症候群、メタボリックシンドローム、高血糖症、高乳酸血症、糖尿病合併症(糖尿病性神経障害、糖尿病性網膜症、糖尿病性腎症、白内障等)の治療または予防に有益であると考えられる。また、PDHK阻害剤は、組織へのエネルギー基質供給が制限される疾患、例えば、心不全(急性心不全、慢性心不全)、心筋症、心筋虚血症、心筋梗塞、狭心症、脂質異常症、アテローム性硬化症、末梢動脈疾患、間欠性跛行、慢性閉塞性肺疾患、脳虚血症および脳卒中の治療または予防に有益であると考えられる。さらに、PDHK阻害剤はミトコンドリア病、ミトコンドリア脳筋症、癌、肺高血圧症等の治療または予防に有益であると考えられる。
 したがって、PDHK阻害剤は、糖尿病(1型糖尿病、2型糖尿病等)、インスリン抵抗性症候群、メタボリックシンドローム、高血糖症、高乳酸血症、糖尿病合併症(糖尿病性神経障害、糖尿病性網膜症、糖尿病性腎症、白内障等)、心不全(急性心不全、慢性心不全)、心筋症、心筋虚血症、心筋梗塞、狭心症、脂質異常症、アテローム性硬化症、末梢動脈疾患、間欠性跛行、慢性閉塞性肺疾患、脳虚血症、脳卒中、ミトコンドリア病、ミトコンドリア脳筋症、癌、肺高血圧症、またはアルツハイマー病の治療または予防に有益であると考えられる。
Reed LJ, Hackert ML. Structure-function relationships in dihydrolipoamide acyltransferases. J Biol Chem. 1990 Jun 5;265(16):8971-4. Patel MS, Roche TE. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J. 1990 Nov;4(14):3224-33. Sugden MC, Holness MJ. Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am J Physiol Endocrinol Metab. 2003 May;284(5):E855-62. Bowker-Kinley MM, Davis WI, Wu P, Harris RA, Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J. 1998 Jan 1;329 ( Pt 1):191-6. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006 Mar;3(3):177-85. Morino K, Petersen KF, Dufour S, Befroy D, Frattini J, Shatzkes N, et al. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest. 2005 Dec;115(12):3587-93. Caterson ID, Fuller SJ, Randle PJ. Effect of the fatty acid oxidation inhibitor 2-tetradecylglycidic acid on pyruvate dehydrogenase complex activity in starved and alloxan-diabetic rats. Biochem J. 1982 Oct 15;208(1):53-60. Boden G, Chen X, Stein TP. Gluconeogenesis in moderately and severely hyperglycemic patients with type 2 diabetes mellitus. Am J Physiol Endocrinol Metab. 2001 Jan;280(1):E23-30. Shangraw RE, Fisher DM. Pharmacokinetics and pharmacodynamics of dichloroacetate in patients with cirrhosis.Clin Pharmacol Ther. 1999 Oct;66(4):380-90. Stacpoole PW, Moore GW, Kornhauser DM. Metabolic effects of dichloroacetate in patients with diabetes mellitus and hyperlipoproteinemia. N Engl J Med. 1978 Mar 9;298(10):526-30. Mayers RM, Leighton B, Kilgour E. PDH kinase inhibitors: a novel therapy for Type II diabetes? Biochem Soc Trans. 2005 Apr;33(Pt 2):367-70. Jeoung NH, Rahimi Y, Wu P, Lee WN, Harris RA. Fasting induces ketoacidosis and hypothermia in PDHK2/PDHK4-double-knockout mice. Biochem J. 2012 May 1;443(3):829-39. Zhou YP, Berggren PO, Grill V. A fatty acid-induced decrease in pyruvate dehydrogenase activity is an important determinant of beta-cell dysfunction in the obese diabetic db/db mouse. Diabetes. 1996 May;45(5):580-6. Xu J, Han J, Epstein PN, Liu YQ. Regulation of PDK mRNA by high fatty acid and glucose in pancreatic islets. Biochem Biophys Res Commun. 2006 Jun 9;344(3):827-33. Benfotiamine. Monograph. Altern Med Rev. 2006 Sep;11(3):238-42. Vallianou N, Evangelopoulos A, Koutalas P. Alpha-lipoic Acid and diabetic neuropathy. Rev Diabet Stud. 2009 Winter;6(4):230-6. Ussher JR, Lopaschuk GD. The malonyl CoA axis as a potential target for treating ischaemic heart disease. Cardiovasc Res. 2008 Jul 15;79(2):259-68. Wargovich TJ, MacDonald RG, Hill JA, Feldman RL, Stacpoole PW, Pepine CJ. Myocardial metabolic and hemodynamic effects of dichloroacetate in coronary artery disease. Am J Cardiol. 1988 Jan 1;61(1):65-70. Taniguchi M, Wilson C, Hunter CA, Pehowich DJ, Clanachan AS, Lopaschuk GD. Dichloroacetate improves cardiac efficiency after ischemia independent of changes in mitochondrial proton leak. Am J Physiol Heart Circ Physiol. 2001 Apr;280(4):H1762-9. Stacpoole PW, Nagaraja NV, Hutson AD. Efficacy of dichloroacetate as a lactate-lowering drug. J Clin Pharmacol. 2003 Jul;43(7):683-91. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007 Jan;11(1):37-51. McMurtry MS, Bonnet S, Wu X, Dyck JR, Haromy A, Hashimoto K, et al. Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res. 2004 Oct 15;95(8):830-40. Saxena U. Bioenergetics breakdown in Alzheimer's disease: targets for new therapies. Int J Physiol Pathophysiol Pharmacol. 2011;3(2):133-9. Stacpoole PW. The pyruvate dehydrogenase complex as a therapeutic target for age-related diseases. Aging Cell. 2012 Jun;11(3):371-7. Marangos PJ, Turkel CC, Dziewanowska ZE, Fox AW. Dichloroacetate and cerebral ischaemia therapeutics. Expert Opin Investig Drugs. 1999 Apr;8(4):373-82. Calvert LD, Shelley R, Singh SJ, Greenhaff PL, Bankart J, Morgan MD, et al. Dichloroacetate enhances performance and reduces blood lactate during maximal cycle exercise in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008 May 15;177(10):1090-4. Flavin DF. Non-Hodgkin's Lymphoma Reversal with Dichloroacetate. J Oncol. Hindawi Publishing Corporation Journal of OncologyVolume 2010, Article ID 414726, 4 pages doi:10.1155/2010/414726.
 本発明は、以下の通りである。
[1]式[I]:
Figure JPOXMLDOC01-appb-C000006
[式中、nは1または2を示す。]
で表される化合物またはその製薬上許容される塩、
[2]式:
Figure JPOXMLDOC01-appb-C000007
で表される化合物、
[3]式[II]:
Figure JPOXMLDOC01-appb-C000008
で表される上記[2]記載の化合物、
[4]式[IIh]:
Figure JPOXMLDOC01-appb-C000009
で表される上記[2]記載の化合物、
[5]式[III]:
Figure JPOXMLDOC01-appb-C000010
で表される化合物、
[6]上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩、および製薬上許容される担体を含む、医薬組成物、
[7]上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩を含む、PDHK阻害剤、
[8]上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩を含む、PDHK1阻害剤、
[9]上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩を含む、PDHK2阻害剤、
[10]上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩を含む、血糖低下剤、
[11]上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩を含む、乳酸低下剤、
[12]上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩を含む、糖尿病、インスリン抵抗性症候群、メタボリックシンドローム、高血糖症、高乳酸血症、糖尿病合併症、心不全、心筋症、心筋虚血症、心筋梗塞、狭心症、脂質異常症、アテローム性硬化症、末梢動脈疾患、間欠性跛行、慢性閉塞性肺疾患、脳虚血症、脳卒中、ミトコンドリア病、ミトコンドリア脳筋症、癌または肺高血圧症の予防または治療剤、
[12’]上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩を含む、糖尿病、インスリン抵抗性症候群、メタボリックシンドローム、高血糖症、高乳酸血症、糖尿病合併症、心不全、心筋症、心筋虚血症、心筋梗塞、狭心症、脂質異常症、アテローム性硬化症、末梢動脈疾患、間欠性跛行、慢性閉塞性肺疾患、脳虚血症、脳卒中、ミトコンドリア病、ミトコンドリア脳筋症、癌、肺高血圧症、またはアルツハイマー病の予防または治療剤、
[13]糖尿病が、1型糖尿病または2型糖尿病である上記[12]記載の予防または治療剤、
[14]糖尿病合併症が、糖尿病性神経障害、糖尿病性網膜症、糖尿病性腎症および白内障からなる群から選択される、上記[12]記載の予防または治療剤、
[15]心不全が、急性心不全または慢性心不全である上記[12]記載の予防または治療剤、
[16](a)上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩、ならびに
(b)糖尿病(1型糖尿病、2型糖尿病)、インスリン抵抗性症候群、メタボリックシンドローム、高血糖症、高乳酸血症、糖尿病合併症(糖尿病性神経障害、糖尿病性網膜症、糖尿病性腎症、白内障)、心不全(急性心不全、慢性心不全)、心筋症、心筋虚血症、心筋梗塞、狭心症、脂質異常症、アテローム性硬化症、末梢動脈疾患、間欠性跛行、慢性閉塞性肺疾患、脳虚血症、脳卒中、ミトコンドリア病、ミトコンドリア脳筋症、癌および肺高血圧症からなる群より選択される疾患の予防または治療に有効な少なくとも1つの他の薬剤を含有する医薬組成物、
[16’](a)上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩、ならびに
(b)糖尿病(1型糖尿病、2型糖尿病)、インスリン抵抗性症候群、メタボリックシンドローム、高血糖症、高乳酸血症、糖尿病合併症(糖尿病性神経障害、糖尿病性網膜症、糖尿病性腎症、白内障)、心不全(急性心不全、慢性心不全)、心筋症、心筋虚血症、心筋梗塞、狭心症、脂質異常症、アテローム性硬化症、末梢動脈疾患、間欠性跛行、慢性閉塞性肺疾患、脳虚血症、脳卒中、ミトコンドリア病、ミトコンドリア脳筋症、癌、肺高血圧症、およびアルツハイマー病からなる群より選択される疾患の予防または治療に有効な少なくとも1つの他の薬剤を含有する医薬組成物、
[17](a)上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩、ならびに
(b)糖尿病(1型糖尿病、2型糖尿病)、インスリン抵抗性症候群、メタボリックシンドローム、高血糖症、高乳酸血症、糖尿病合併症(糖尿病性神経障害、糖尿病性網膜症、糖尿病性腎症、白内障)、心不全(急性心不全、慢性心不全)、心筋症、心筋虚血症、心筋梗塞、狭心症、脂質異常症、アテローム性硬化症、末梢動脈疾患、間欠性跛行、慢性閉塞性肺疾患、脳虚血症、脳卒中、ミトコンドリア病、ミトコンドリア脳筋症、癌および肺高血圧症からなる群より選択される疾患の予防または治療に有効な少なくとも1つの他の薬剤を、同時に、別々にまたは連続的に投与する、組み合わせ医薬、
[17’](a)上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩、ならびに
(b)糖尿病(1型糖尿病、2型糖尿病)、インスリン抵抗性症候群、メタボリックシンドローム、高血糖症、高乳酸血症、糖尿病合併症(糖尿病性神経障害、糖尿病性網膜症、糖尿病性腎症、白内障)、心不全(急性心不全、慢性心不全)、心筋症、心筋虚血症、心筋梗塞、狭心症、脂質異常症、アテローム性硬化症、末梢動脈疾患、間欠性跛行、慢性閉塞性肺疾患、脳虚血症、脳卒中、ミトコンドリア病、ミトコンドリア脳筋症、癌、肺高血圧症、およびアルツハイマー病からなる群より選択される疾患の予防または治療に有効な少なくとも1つの他の薬剤を、同時に、別々にまたは連続的に投与する、組み合わせ医薬、
[18]哺乳動物に対し、医薬上有効量の上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩を投与することを含む、当該哺乳動物におけるPDHK阻害方法、
[19]哺乳動物に対し、医薬上有効量の上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩を投与することを含む、当該哺乳動物におけるPDHK1阻害方法、
[20]哺乳動物に対し、医薬上有効量の上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩を投与することを含む、当該哺乳動物におけるPDHK2阻害方法、
[21]哺乳動物に対し、医薬上有効量の上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩を投与することを含む、当該哺乳動物における糖尿病(1型糖尿病、2型糖尿病)、インスリン抵抗性症候群、メタボリックシンドローム、高血糖症、高乳酸血症、糖尿病合併症(糖尿病性神経障害、糖尿病性網膜症、糖尿病性腎症、白内障)、心不全(急性心不全、慢性心不全)、心筋症、心筋虚血症、心筋梗塞、狭心症、脂質異常症、アテローム性硬化症、末梢動脈疾患、間欠性跛行、慢性閉塞性肺疾患、脳虚血症、脳卒中、ミトコンドリア病、ミトコンドリア脳筋症、癌または肺高血圧症の予防または治療方法、
[21’]哺乳動物に対し、医薬上有効量の上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩を投与することを含む、当該哺乳動物における糖尿病(1型糖尿病、2型糖尿病)、インスリン抵抗性症候群、メタボリックシンドローム、高血糖症、高乳酸血症、糖尿病合併症(糖尿病性神経障害、糖尿病性網膜症、糖尿病性腎症、白内障)、心不全(急性心不全、慢性心不全)、心筋症、心筋虚血症、心筋梗塞、狭心症、脂質異常症、アテローム性硬化症、末梢動脈疾患、間欠性跛行、慢性閉塞性肺疾患、脳虚血症、脳卒中、ミトコンドリア病、ミトコンドリア脳筋症、癌、肺高血圧症またはアルツハイマー病の予防または治療方法、
[22]哺乳動物に対し、医薬上有効量の上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩を投与することを含む、当該哺乳動物における血糖値の低下方法、
[23]哺乳動物に対し、医薬上有効量の上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩を投与することを含む、当該哺乳動物における乳酸値の低下方法、
[24]PDHK阻害剤を製造するための上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩の使用、
[25]PDHK1阻害剤を製造するための上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩の使用、
[26]PDHK2阻害剤を製造するための上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩の使用、
[27]血糖値低下剤を製造するための上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩の使用、
[28]乳酸値低下剤を製造するための上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩の使用、
[29]糖尿病(1型糖尿病、2型糖尿病)、インスリン抵抗性症候群、メタボリックシンドローム、高血糖症、高乳酸血症、糖尿病合併症(糖尿病性神経障害、糖尿病性網膜症、糖尿病性腎症、白内障)、心不全(急性心不全、慢性心不全)、心筋症、心筋虚血症、心筋梗塞、狭心症、脂質異常症、アテローム性硬化症、末梢動脈疾患、間欠性跛行、慢性閉塞性肺疾患、脳虚血症、脳卒中、ミトコンドリア病、ミトコンドリア脳筋症、癌または肺高血圧症の予防または治療剤を製造するための上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩の使用、
[29’]糖尿病(1型糖尿病、2型糖尿病)、インスリン抵抗性症候群、メタボリックシンドローム、高血糖症、高乳酸血症、糖尿病合併症(糖尿病性神経障害、糖尿病性網膜症、糖尿病性腎症、白内障)、心不全(急性心不全、慢性心不全)、心筋症、心筋虚血症、心筋梗塞、狭心症、脂質異常症、アテローム性硬化症、末梢動脈疾患、間欠性跛行、慢性閉塞性肺疾患、脳虚血症、脳卒中、ミトコンドリア病、ミトコンドリア脳筋症、癌、肺高血圧症、またはアルツハイマー病の予防または治療剤を製造するための上記[1]乃至[5]のいずれかに記載の化合物またはその製薬上許容される塩の使用、
[30]糖尿病(1型糖尿病、2型糖尿病)、インスリン抵抗性症候群、メタボリックシンドローム、高血糖症、高乳酸血症、糖尿病合併症(糖尿病性神経障害、糖尿病性網膜症、糖尿病性腎症、白内障)、心不全(急性心不全、慢性心不全)、心筋症、心筋虚血症、心筋梗塞、狭心症、脂質異常症、アテローム性硬化症、末梢動脈疾患、間欠性跛行、慢性閉塞性肺疾患、脳虚血症、脳卒中、ミトコンドリア病、ミトコンドリア脳筋症、癌または肺高血圧症からなる群より選択される疾患の予防または治療に有効な少なくとも1つの他の薬剤と組み合わせての、上記[24]乃至[29]のいずれかに記載の使用、ならびに
[30’]糖尿病(1型糖尿病、2型糖尿病)、インスリン抵抗性症候群、メタボリックシンドローム、高血糖症、高乳酸血症、糖尿病合併症(糖尿病性神経障害、糖尿病性網膜症、糖尿病性腎症、白内障)、心不全(急性心不全、慢性心不全)、心筋症、心筋虚血症、心筋梗塞、狭心症、脂質異常症、アテローム性硬化症、末梢動脈疾患、間欠性跛行、慢性閉塞性肺疾患、脳虚血症、脳卒中、ミトコンドリア病、ミトコンドリア脳筋症、癌、肺高血圧症またはアルツハイマー病からなる群より選択される疾患の予防または治療に有効な少なくとも1つの他の薬剤と組み合わせての、上記[24]乃至[29]のいずれかに記載の使用等に関する。
 本発明化合物またはその製薬上許容される塩は、PDHK活性を阻害するので、糖尿病(1型糖尿病、2型糖尿病)、インスリン抵抗性症候群、メタボリックシンドローム、高血糖症、高乳酸血症、糖尿病合併症(糖尿病性神経障害、糖尿病性網膜症、糖尿病性腎症、白内障)、心不全(急性心不全、慢性心不全)、心筋症、心筋虚血症、心筋梗塞、狭心症、脂質異常症、アテローム性硬化症、末梢動脈疾患、間欠性跛行、慢性閉塞性肺疾患、脳虚血症、脳卒中、ミトコンドリア病、ミトコンドリア脳筋症、癌、肺高血圧症、またはアルツハイマー病等の治療剤または予防剤として有用である。
図1は、非絶食SD(IGS)ラットにおける被験化合物の肝PDH活性に対する効果(肝total PDH活性に対する肝active PDH活性の百分率)を示す(平均±標準偏差(n=3))。 図2は、非絶食SD(IGS)ラットにおける被験化合物の脂肪組織PDH活性に対する効果(脂肪組織total PDH活性に対する脂肪組織active PDH活性の百分率)を示す(平均±標準偏差(n=3))。
 以下に、本発明を詳細に説明する。
 本発明化合物は、一般式[I]:
Figure JPOXMLDOC01-appb-C000011
[式中、nは1または2を示す。]
で表される化合物(以下、化合物(1)ともいう)またはその製薬上許容される塩である。
 本発明化合物は、式[II]:
Figure JPOXMLDOC01-appb-C000012
で表される化合物(2-{4-[(9R)-9-ヒドロキシ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロパンアミド)(以下、化合物(2)ともいう)である。
 本発明化合物は、式[IIh]:
Figure JPOXMLDOC01-appb-C000013
で表される化合物(2-{4-[(9R)-9-ヒドロキシ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロパンアミド・1水和物)(以下、化合物(2h)ともいう)である。
 本発明化合物は、式[III]:
Figure JPOXMLDOC01-appb-C000014
で表される化合物(2-{4-[(9R)-9-ヒドロキシ-2-(4-ヒドロキシ-4-メチルペンチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロパンアミド)(以下、化合物(3)ともいう)である。
 本発明化合物の製薬上許容される塩とは、本発明化合物と無毒の塩を形成するものであればいかなる塩でもよく、例えば、無機酸との塩、有機酸との塩、アミノ酸との塩等が挙げられる。
 無機酸との塩として、例えば、塩酸、硝酸、硫酸、リン酸、臭化水素酸等との塩が挙げられる。
 有機酸との塩として、例えば、シュウ酸、マレイン酸、クエン酸、フマル酸、乳酸、リンゴ酸、コハク酸、酒石酸、酢酸、トリフルオロ酢酸、グルコン酸、アスコルビン酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等との塩が挙げられる。
 アミノ酸との塩として、例えば、リジン、アルギニン、アスパラギン酸、グルタミン酸等との塩が挙げられる。
 本発明化合物の製薬上許容される塩として、好ましくは、無機酸との塩である。
 また、本発明化合物またはその製薬上許容される塩は、同位元素(例えば、H、H、14C、35S等)で標識されていてもよい。
 本発明化合物またはその製薬上許容される塩としては、実質的に精製された、化合物(1)またはその製薬上許容される塩が好ましい。さらに好ましくは、80%以上の純度に精製された、本発明化合物またはその製薬上許容される塩である。
 一般式[I]で表される化合物又はその製薬上許容される塩は溶媒和物として存在することもある。「溶媒和物」とは、一般式[I]で表される化合物又はその医薬上許容される塩に、溶媒の分子が配位したものであり、水和物も包含される。溶媒和物は、製薬上許容される溶媒和物が好ましい。例えば、一般式[I]で表される化合物又はその医薬上許容される塩の水和物、エタノール和物、ジメチルスルホキシド和物等が挙げられる。具体的には、一般式[I]で表される化合物の半水和物、1水和物、2水和物又は1エタノール和物、或いは一般式[I]で表される化合物の製薬上許容される塩の1水和物又は2塩酸塩の2/3エタノール和物等が挙げられる。公知の方法に従って、その溶媒和物を得ることができる。
 「医薬組成物」としては、錠剤、カプセル剤、顆粒剤、散剤、トローチ剤、シロップ剤、乳剤、懸濁剤等の経口剤、あるいは外用剤、坐剤、注射剤、点眼剤、経鼻剤、経肺剤等の非経口剤が挙げられる。
 本発明の医薬組成物は、医薬製剤の技術分野において自体公知の方法に従って、本発明化合物またはその製薬上許容される塩を、少なくとも1種以上の製薬上許容される担体等と、適宜、適量混合等することによって、製造される。該医薬組成物中の本発明化合物またはその製薬上許容される塩の含有率は、剤形、投与量等により異なるが、例えば、組成物全体の0.1から100重量%である。
 該「製薬上許容される担体」としては、製剤素材として慣用の各種有機または無機担体物質が挙げられ、例えば、固形製剤における賦形剤、崩壊剤、結合剤、流動化剤、滑沢剤等、あるいは液状製剤における溶剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤、無痛化剤等が挙げられる。さらに必要に応じて、保存剤、抗酸化剤、着色剤、甘味剤等の添加物が用いられる。
 「賦形剤」としては、例えば、乳糖、白糖、D-マンニトール、D-ソルビトール、トウモロコシデンプン、デキストリン、微結晶セルロース、結晶セルロース、カルメロース、カルメロースカルシウム、カルボキシメチルスターチナトリウム、低置換度ヒドロキシプロピルセルロース、アラビアゴム等が挙げられる。
 「崩壊剤」としては、例えば、カルメロース、カルメロースカルシウム、カルメロースナトリウム、カルボキシメチルスターチナトリウム、クロスカルメロースナトリウム、クロスポビドン、低置換度ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、結晶セルロース等が挙げられる。
 「結合剤」としては、例えば、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポビドン、結晶セルロース、白糖、デキストリン、デンプン、ゼラチン、カルメロースナトリウム、アラビアゴム等が挙げられる。
 「流動化剤」としては、例えば、軽質無水ケイ酸、ステアリン酸マグネシウム等が挙げられる。
 「滑沢剤」としては、例えば、ステアリン酸マグネシウム、ステアリン酸カルシウム、タルク等が挙げられる。
 「溶剤」としては、例えば、精製水、エタノール、プロピレングリコール、マクロゴール、ゴマ油、トウモロコシ油、オリーブ油等が挙げられる。
 「溶解補助剤」としては、例えば、プロピレングリコール、D-マンニトール、安息香酸ベンジル、エタノール、トリエタノールアミン、炭酸ナトリウム、クエン酸ナトリウム等が挙げられる。
 「懸濁化剤」としては、例えば、塩化ベンザルコニウム、カルメロース、ヒドロキシプロピルセルロース、プロピレングリコール、ポビドン、メチルセルロース、モノステアリン酸グリセリン等が挙げられる。
 「等張化剤」としては、例えば、ブドウ糖、D-ソルビトール、塩化ナトリウム、D-マンニトール等が挙げられる。
 「緩衝剤」としては、例えば、リン酸水素ナトリウム、酢酸ナトリウム、炭酸ナトリウム、クエン酸ナトリウム等が挙げられる。
 「無痛化剤」としては、例えば、ベンジルアルコール等が挙げられる。
 「保存剤」としては、例えば、パラオキシ安息香酸エチル、クロロブタノール、ベンジルアルコール、デヒドロ酢酸ナトリウム、ソルビン酸等が挙げられる。
 「抗酸化剤」としては、例えば、亜硫酸ナトリウム、アスコルビン酸等が挙げられる。
 「着色剤」としては、例えば、食用色素(例:食用赤色2号もしくは3号、食用黄色4号もしくは5号等)、β-カロテン等が挙げられる。
 「甘味剤」としては、例えば、サッカリンナトリウム、グリチルリチン酸二カリウム、アスパルテーム等が挙げられる。
 本発明の医薬組成物は、ヒトはもちろんのこと、ヒト以外の哺乳動物(例:マウス、ラット、ハムスター、モルモット、ウサギ、ネコ、イヌ、ブタ、ウシ、ウマ、ヒツジ、サル等)に対しても、経口的または非経口的(例:局所、筋肉内、皮下、直腸、静脈投与等)に投与することができる。投与量は、投与対象、疾患、症状、剤形、投与ルート等により異なるが、例えば、成人の患者(体重:約60kg)に経口投与する場合の投与量は、有効成分である化合物(1)として、1日あたり、通常約1mgから1gの範囲である。これらの量を1回から数回に分けて投与することができる。
 本発明化合物またはその製薬上許容される塩は、PDHK(PDHK1および/またはPDHK2)を阻害する活性を有するので、グルコース利用障害に関連した疾患、例えば、糖尿病(1型糖尿病、2型糖尿病等)、インスリン抵抗性症候群、メタボリックシンドローム、高血糖症、高乳酸血症、糖尿病合併症(糖尿病性神経障害、糖尿病性網膜症、糖尿病性腎症、白内障等)の治療または予防に有益であると考えられる。また、PDHK阻害剤は、組織へのエネルギー基質供給が制限される疾患、例えば、心不全(急性心不全、慢性心不全)、心筋症、心筋虚血症、心筋梗塞、狭心症、脂質異常症、アテローム性硬化症、末梢動脈疾患、間欠性跛行、慢性閉塞性肺疾患、脳虚血症および脳卒中の治療または予防に有益であると考えられる。さらに、PDHK阻害剤はミトコンドリア病、ミトコンドリア脳筋症、癌、肺高血圧症、アルツハイマー病等の治療または予防に有益であると考えられる。
 糖尿病とは、例えば、1型糖尿病、2型糖尿病である。
 糖尿病合併症としては、例えば、糖尿病性神経障害、糖尿病性網膜症、糖尿病性腎症、白内障が挙げられる。
 心不全とは、例えば、急性心不全、慢性心不全である。
 「PDHKを阻害する」とは、PDHKの機能を阻害してその活性を消失もしくは減弱することを意味する。「PDHKを阻害する」として、好ましくは、「ヒトPDHKを阻害する」である。「PDHK阻害剤」として、好ましくは、「ヒトPDHK阻害剤」である。
 「PDHK1を阻害する」とは、PDHK1の機能を阻害してその活性を消失もしくは減弱することを意味し、例えば、後述する試験例1の条件に基づいて、PDHK1の機能を阻害することを意味する。「PDHK1を阻害する」として、好ましくは、「ヒトPDHK1を阻害する」である。「PDHK1阻害剤」として、好ましくは、「ヒトPDHK1阻害剤」である。さらに好ましくは、「ヒト標的臓器におけるPDHK1阻害剤」である。
 「PDHK2を阻害する」とは、PDHK2の機能を阻害してその活性を消失もしくは減弱することを意味し、例えば、後述する試験例1の条件に基づいて、PDHK2の機能を阻害することを意味する。「PDHK2を阻害する」として、好ましくは、「ヒトPDHK2を阻害する」である。「PDHK2阻害剤」として、好ましくは、「ヒトPDHK2阻害剤」である。さらに好ましくは、「ヒト標的臓器におけるPDHK2阻害剤」である。
 「PDHを活性化する」とは、標的臓器(例、肝臓、骨格筋、脂肪組織、心臓、脳)等または癌等のPDHを活性化することを意味する。
 「血糖値を低下させる」とは、血中(血清中または血漿中を含む)のグルコース濃度を低下させることを意味し、好ましくは高い血糖値を低下させることを意味する。さらに好ましくは、血糖値を、治療学的に有効なヒトの正常値に低下させることを意味する。
 「乳酸値を低下させる」とは、血中(血清中または血漿中を含む)の乳酸濃度を低下させることを意味し、好ましくは高い乳酸値を低下させることを意味する。さらに好ましくは、乳酸値を、治療学的に有効なヒトの正常値に低下させることを意味する。
 本発明化合物またはその製薬上許容される塩を、医薬分野で行われている一般的な方法で、1または複数の他の薬剤(以下、併用薬剤ともいう)と組み合わせて使用(以下、併用ともいう)することができる。
 本発明化合物またはその製薬上許容される塩、および併用薬剤の投与時期は限定されず、これらを投与対象に対し、配合剤として投与してもよいし、両製剤を同時にまたは一定の間隔をおいて投与してもよい。また、本発明の医薬組成物および併用薬剤とからなるキットであることを特徴とする医薬として用いてもよい。併用薬剤の投与量は、臨床上用いられている投与量に準ずればよく、投与対象、疾患、症状、剤形、投与ルート、投与時間、組み合わせ等により適宜選択することができる。併用薬剤の投与形態は、特に限定されず、本発明化合物またはその製薬上許容される塩と併用薬剤とが組み合わされていればよい。
 併用薬剤としては、例えば、糖尿病(1型糖尿病、2型糖尿病)、インスリン抵抗性症候群、メタボリックシンドローム、高血糖症、高乳酸血症、糖尿病合併症(糖尿病性神経障害、糖尿病性網膜症、糖尿病性腎症、白内障)、心不全(急性心不全、慢性心不全)、心筋症、心筋虚血症、心筋梗塞、狭心症、脂質異常症、アテローム性硬化症、末梢動脈疾患、間欠性跛行、慢性閉塞性肺疾患、脳虚血症、脳卒中、ミトコンドリア病、ミトコンドリア脳筋症、癌、肺高血圧症、またはアルツハイマー病の治療剤および/または予防剤等が挙げられ、これらのうち1剤から複数剤と本発明化合物またはその製薬上許容される塩とを組み合わせて用いることができる。
 「糖尿病の治療剤および/または予防剤」としては、例えば、インスリン製剤、スルホニルウレア系血糖降下剤、メトフォルミン、DPP-4阻害剤、インスリン抵抗性改善薬(例えばチアゾリジン誘導体)、GLP-1受容体作動薬等が挙げられる。
 次に、本発明化合物またはその製薬上許容される塩の製造方法を実施例によって具体的に説明する。しかしながら、本発明はこれら実施例によって限定されるものではない。
 本製法に記載はなくとも、必要に応じて官能基に保護基を導入し、後工程で脱保護を行う;官能基を前駆体として各工程に処し、しかるべき段階で所望の官能基に変換する;各製法および工程の順序を入れ替える等の工夫により効率のよい製造を実施してもよい。
 また、各工程において、反応後の処理は、通常行われる方法で行えばよく、単離精製は、必要に応じて、結晶化、再結晶、蒸留、分液、シリカゲルクロマトグラフィー、分取HPLC等の慣用される方法を適宜選択し、また組み合わせて行えばよい。全ての試薬および溶媒は、市販用の品質を備えており、精製することなく使用した。
 百分率%は重量%を示す。その他の本文中で用いられている略号は下記の意味を示す。
  s:シングレット
  d:ダブレット
  t:トリプレット
  q:カルテット
  m:マルチプレット
  br:ブロード
  dd:ダブルダブレット
  td:トリプルダブレット
  ddd:ダブルダブルダブレット
  J:カップリング定数
  CDCl:重クロロホルム
  DMSO-D:重ジメチルスルホキシド
  H NMR:プロトン核磁気共鳴
  HPLC:高速液体クロマトグラフィー
  DPPA:ジフェニルリン酸アジド
 H-NMRスペクトルはCDClまたはDMSO-D中、テトラメチルシランを内部標準として測定し、全δ値をppmで示した。
(10mM リン酸塩緩衝液(pH2.0))
 リン酸二水素ナトウム(3.60g)を水(3000ml)に溶解し、リン酸を用いてpHを2.0にすることで、標題緩衝液を得た。
HPLC分析条件
分析条件1
測定機器:HPLCシステム 島津製作所 高速液体クロマトグラフ Prominence
カラム:ダイセル CHIRALCEL OD-3R 4.6mmφ×150mm
カラム温度:40℃
移動相:(A液)10mM リン酸塩緩衝液(pH2.0)、(B液)アセトニトリル
移動相の組成(A液:B液)を50:50から20:80まで20分間かけて直線的に変化させ、その後、20:80で5分間保持した。
流速:0.5ml/min
検出:UV(220nm)
分析条件2
測定機器:HPLCシステム 島津製作所 高速液体クロマトグラフ Prominence
カラム:ダイセル CHIRALCEL OJ-RH 4.6mmφ×150mm
カラム温度:40℃
移動相:(A液)10mM リン酸塩緩衝液(pH2.0)、(B液)アセトニトリル
移動相の組成(A液:B液)を70:30から40:60まで20分間かけて直線的に変化させ、その後、40:60で10分間保持した。
流速:0.5ml/min
検出:UV(220nm)
分析条件3
測定機器:HPLCシステム 島津製作所 高速液体クロマトグラフ Prominence
カラム:ダイセル CHIRALPAK AD-3R 4.6mmφ×150mm
カラム温度:40℃
移動相:(A液)10mM リン酸塩緩衝液(pH2.0)、(B液)アセトニトリル
移動相の組成(A液:B液)を50:50から20:80まで20分間かけて直線的に変化させ、その後、20:80で5分間保持した。
流速:0.5ml/min
検出:UV(220nm)
実施例1
2-{4-[(9R)-9-ヒドロキシ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロパンアミド(化合物(2))の合成
工程1
2’-クロロ-4’-メトキシビフェニル-2-カルボン酸エチル
Figure JPOXMLDOC01-appb-C000015
 アルゴン雰囲気下、1-ブロモ-2-クロロ-4-メトキシベンゼン(44.3g)をトルエン(220ml)に溶解し、2-(4,4,5,5-テトラメチル[1,3,2]ジオキサボロラン-2-イル)安息香酸エチル(60.8g)、水(132ml)、炭酸水素ナトリウム(33.6g)およびジクロロビス(トリフェニルホスフィン)パラジウム(II)(2.8g)を加えた後、油浴温度120℃で7時間撹拌した。反応混合物に2-(4,4,5,5-テトラメチル[1,3,2]ジオキサボロラン-2-イル)安息香酸エチル(5.2g)を追加し、さらに2時間撹拌した。反応混合物を室温まで冷却し、トルエン(100ml)および水(200ml)を加え、一晩撹拌した。反応混合物に活性炭(3g)を加え、さらに1時間撹拌した。不溶物をセライトでろ去し、ろ過物をトルエン(100ml)および水(200ml)で洗浄した。得られたろ液を合わせて分層した。得られた有機層を水(100ml)で洗浄した後、溶媒を留去して、標題化合物(67.7g)を得た。
1H-NMR (400MHz, DMSO-D6) δ: 7.88-7.86 (1H, m), 7.63 (1H, td, J = 7.6, 1.4 Hz), 7.51 (1H, td, J = 7.6, 1.4 Hz), 7.27 (1H, dd, J = 7.6, 0.9 Hz), 7.18 (1H, d, J =8.6 Hz), 7.06 (1H, d, J = 2.6 Hz), 6.95 (1H, dd, J = 8.6, 2.6 Hz), 4.01 (2H, m), 3.80 (3H, s), 0.96 (3H, t, J = 7.1 Hz).
工程2
2’-クロロ-4’-メトキシビフェニル-2-カルボン酸
Figure JPOXMLDOC01-appb-C000016
 2’-クロロ-4’-メトキシビフェニル-2-カルボン酸エチル(67.7g)をエタノール(100ml)に溶解し、4N水酸化ナトリウム水溶液(100ml)を加え、油浴温度110℃で4.5時間撹拌した。反応混合物を室温まで冷却し、水(200ml)およびトルエン(100ml)を加えて一晩撹拌した。反応混合物に活性炭(3.6g)を加え、さらに1時間撹拌した。不溶物をセライトろ去し、ろ過物をトルエン(30ml)および水(300ml)で洗浄した。得られたろ液を合わせて分層した。得られた水層をトルエン(100ml)で洗浄した後、水層に濃塩酸(40ml)を加えて酸性にし、室温で1時間撹拌した。析出した固体をろ取した。得られた固体を3時間風乾した後、60℃で一晩減圧乾燥して、標題化合物(50.2g)を得た。
1H-NMR (400MHz, DMSO-D6) δ: 12.57 (1H, s), 7.90-7.88 (1H, m), 7.60 (1H, td, J = 7.6, 1.3 Hz), 7.49 (1H, td, J = 7.6, 1.3 Hz), 7.24 (1H, dd, J = 7.6, 1.0 Hz), 7.19 (1H, d, J = 8.4 Hz), 7.06 (1H, d, J = 2.4 Hz), 6.95 (1H, dd, J = 8.5, 2.4 Hz), 3.81 (3H, s).
工程3
4-クロロ-2-メトキシ-9H-フルオレン-9-オン
Figure JPOXMLDOC01-appb-C000017
 アルゴン雰囲気下、2’-クロロ-4’-メトキシビフェニル-2-カルボン酸(65.4g)にEaton試薬(五酸化りん-メタンスルホン酸(重量比1:10)溶液)(330ml)を加え、油浴温度100℃で1時間撹拌した。反応混合物を氷冷し、水(650ml)をゆっくり滴下した後、室温で1時間撹拌した。析出した固体をろ取し、水(500ml)で洗浄した。得られた固体を一晩風乾して、標題化合物を(92.0g)を得た。
1H-NMR (400MHz, DMSO-D6) δ: 8.01 (1H, d, J = 7.4 Hz), 7.64-7.60 (2H, m), 7.36 (1H, td, J = 7.4, 0.9 Hz), 7.17 (2H, dd, J = 8.4, 2.3 Hz), 3.85 (3H, s). 
工程4
4-クロロ-2-ヒドロキシ-9H-フルオレン-9-オン
Figure JPOXMLDOC01-appb-C000018
 アルゴン雰囲気下、4-クロロ-2-メトキシ-9H-フルオレン-9-オン(92.0g)にN-メチルピロリドン(120ml)およびピリジン塩酸塩(144g)を加えた。反応混合物をディーン・スターク装置で水を留去しながら、油浴温度200℃で3時間撹拌した。反応混合物を90℃まで冷却した後、水(600ml)を滴下し、室温で2時間撹拌した。析出した固体をろ取し、ろ過物を水(400ml)で洗浄した。得られた固体を3日間風乾後、ヘキサンと酢酸エチルの混合溶媒(ヘキサン:酢酸エチル 1:1、300ml)を加え室温で1時間撹拌した。固体をろ取し、ろ過物をヘキサンと酢酸エチルの混合溶媒(ヘキサン:酢酸エチル=1:1、500ml)で洗浄した。得られた固体を50℃で3時間減圧乾燥して、標題化合物(48.6g)を得た。
1H-NMR (400MHz, DMSO-D6) δ: 10.56 (1H, s), 7.96 (1H, d, J = 8.4 Hz), 7.61-7.57 (2H, m), 7.32 (1H, td, J = 7.4, 0.9 Hz), 6.97 (1H, d, J = 2.2 Hz), 6.94 (1H, d, J = 2.2 Hz).
工程5
4-(4-クロロ-9-オキソ-9H-フルオレン-2-イルオキシ)酪酸エチル
Figure JPOXMLDOC01-appb-C000019
 4-クロロ-2-ヒドロキシ-9H-フルオレン-9-オン(48.6g)を、N,N-ジメチルホルムアミド(150ml)に溶解し、炭酸カリウム(58.3g)および4-ブロモ酪酸エチル(33.5ml)を加え、60℃で2時間撹拌した。反応混合物を40℃まで冷却し、トルエン(300ml)および水(300ml)を加え、分層した。得られた水層をトルエン(100ml)で再抽出した。得られた有機層を合わせて、水(100ml)で2回洗浄した後、無水硫酸ナトリウムおよび活性炭(2.5g)を加え、室温で5分間撹拌した。不溶物をセライトろ去し、ろ液の溶媒を留去した。得られた残渣にヘキサン(220ml)を加え、50℃で10分間、室温で1時間撹拌した。析出した固体をろ取し、ろ過物をヘキサンで洗浄した。得られた固体を減圧乾燥して、標題化合物(66.9g)を得た。また、得られたろ液は溶媒を留去し、残渣に酢酸エチル(5ml)およびヘキサン(20ml)を加えて、室温で1時間撹拌した。析出した固体をろ取し、ろ過物をヘキサンで洗浄した。得られた固体を減圧乾燥して、標題化合物(2.5g)をさらに得た。
1H-NMR (400MHz, DMSO-D6) δ: 8.01 (1H, d, J = 7.6 Hz), 7.65-7.61 (2H, m), 7.37 (1H, t, J = 7.6 Hz), 7.17-7.14 (2H, m), 4.13-4.05 (4H, m), 2.47 (2H, t, J = 7.3 Hz), 2.02-1.95 (2H, m), 1.19 (3H, td, J = 7.2, 0.7 Hz).
工程6
4-[(9R)-4-クロロ-9-ヒドロキシ-9-(トリフルオロメチル)-9H-フルオレン-2-イルオキシ]酪酸エチル
Figure JPOXMLDOC01-appb-C000020
 アルゴン雰囲気下、4-(4-クロロ-9-オキソ-9H-フルオレン-2-イルオキシ)酪酸エチル(69.4g)をTHF(700ml)に溶解し、N-(4-tert-ブチルベンジル)シンコニジウム 4-メトキシフェノキシド(6.4g)を加えた。反応混合物に-16℃でトリメチル(トリフルオロメチル)シラン(52.0ml)のTHF(140ml)溶液を滴下し、同温で15分間撹拌した。反応混合液に酢酸(23.0ml)および1Mテトラブチルアンモニウムフルオリド/THF溶液(222ml)を順次加えた後、室温で1時間撹拌した。反応混合液の溶媒を留去し、得られた残渣にトルエン(500ml)および飽和重曹水(200ml)を加え、分層した。得られた有機層を飽和重曹水(150ml)で2回、1N水酸化ナトリウム水溶液(100ml)、水(100ml)、1N塩酸(100ml)、水(100ml)、飽和食塩水(100ml)で順次洗浄した。得られた有機層に無水硫酸マグネシウムおよびシリカゲル(150g)を加え、10分間撹拌した。不溶物をろ去し、ろ過物をトルエン(300ml)および酢酸エチル(800ml)で順次洗浄した。得られたろ液とトルエン洗浄液を合わせて溶媒を留去し、標題化合物(72.1g)を得た。また、酢酸エチル洗浄液の溶媒を留去し、得られた残渣にシリカゲル(40g)ならびに、ヘキサンと酢酸エチルの混合溶媒(酢酸エチル:ヘキサン 2:1、300ml)を加え、室温で撹拌した。不溶物をろ去し、ろ過物をヘキサンと酢酸エチルの混合溶媒(酢酸エチル:ヘキサン=2:1、300ml)で洗浄した。得られたろ液の溶媒を留去して標題化合物(20.3g)をさらに得た。
1H-NMR (400MHz, DMSO-D6) δ: 8.14 (1H, d, J = 7.7 Hz), 7.66 (1H, d, J = 7.5 Hz),7.53 (1H, t, J = 7.6 Hz), 7.42-7.38 (2H, m), 7.14 (2H, s), 4.11-4.05 (4H, m), 2.47 (2H, t, J = 7.5 Hz), 2.03-1.96 (2H, m), 1.19 (3H, td, J = 7.1, 0.8 Hz).
(絶対立体配置について)
 後述する工程10において4-クロロ-2-メチル-9-(トリフルオロメチル)-9H-フルオレン-9-オールの絶対立体配置を同定したことにより、本工程で得られた標題化合物は(R)体であることが確認された。光学純度は52.9%e.e.であった。
 光学純度は、HPLC分析条件1にて決定した。(S)体の保持時間19.6分、(R)体の保持時間23.0分。
工程7
4-[(9R)-4-クロロ-9-ヒドロキシ-9-(トリフルオロメチル)-9H-フルオレン-2-イルオキシ]酪酸
Figure JPOXMLDOC01-appb-C000021
 4-[(9R)-4-クロロ-9-ヒドロキシ-9-(トリフルオロメチル)-9H-フルオレン-2-イルオキシ]酪酸エチル(92.2g)をエタノール(100ml)に溶解し、4N水酸化ナトリウム水溶液(100ml)を加え、80℃で一晩撹拌した。反応混合物を室温まで冷却した後、水(200ml)を加え、トルエン(100ml)で2回洗浄した。得られた水層を濃塩酸(40ml)で中和し、酢酸エチル(300ml)で2回抽出した。得られた酢酸エチル抽出液を水(100ml)で2回、飽和食塩水(100ml)で順次洗浄した後、無水硫酸マグネシウムおよび活性炭(4.2g)を加え、室温で10分間撹拌した。不溶物をろ去し、ろ液の溶媒を留去した。得られた残渣にクロロホルム(80ml)を加え、50℃に加熱した後、ヘキサン(400ml)を滴下し、同温で30分間、室温で2時間撹拌した。析出した固体をろ取し、ヘキサンとクロロホルムの混合溶媒(ヘキサン:クロロホルム=9:1、50ml)で洗浄した後、80℃で2時間減圧乾燥して、標題化合物(72.5g)を得た。
1H-NMR (400MHz, DMSO-D6) δ: 12.17 (1H, br s), 8.14 (1H, d, J = 7.7 Hz), 7.66 (1H, d, J = 7.5 Hz), 7.54 (1H, td, J = 7.7, 1.2 Hz), 7.42-7.30 (2H, m), 7.18-7.15 (2H, m), 4.09 (2H, t, J = 6.4 Hz), 2.41 (2H, t, J = 7.3 Hz), 2.00-1.93 (2H, m).
工程8
4-[(9R)-4-クロロ-9-ヒドロキシ-9-(トリフルオロメチル)-9H-フルオレン-2-イルオキシ]酪酸の(1S)-1-(4-メチルフェニル)エチルアミンの塩
Figure JPOXMLDOC01-appb-C000022
 窒素雰囲気下、(1S)-1-(4-メチルフェニル)エチルアミン(19.5g)を酢酸エチル(720ml)に溶解し、4-[(9R)-4-クロロ-9-ヒドロキシ-9-(トリフルオロメチル)-9H-フルオレン-2-イルオキシ]酪酸(72.5g)を加えた。反応混合物を60℃で2時間、室温で一晩撹拌した。析出した固体をろ取し、ろ過物を酢酸エチル(100ml)で洗浄した。得られた固体を60℃で5時間減圧乾燥して、標題化合物(68.6g)を得た。一方、ろ液から4-[(9S)-4-クロロ-9-ヒドロキシ-9-(トリフルオロメチル)-9H-フルオレン-2-イルオキシ]酪酸を得ることができた。
(光学純度について)
 4-[(9R)-4-クロロ-9-ヒドロキシ-9-(トリフルオロメチル)-9H-フルオレン-2-イルオキシ]酪酸の光学純度は、HPLC分析条件1にて決定した(光学純度90.2%e.e.)。(R)体の保持時間12.9分、(S)体の保持時間10.4分。
1H-NMR (400MHz, DMSO-D6) δ: 8.14 (1H, d, J = 7.7 Hz), 7.66 (1H, d, J = 7.7 Hz), 7.53 (1H, td, J = 7.6, 1.1 Hz), 7.40 (1H, td, J = 7.6, 1.0 Hz), 7.26 (2H, d, J = 7.9 Hz), 7.16-7.10 (4H, m), 4.08 (2H, t, J = 6.5 Hz), 4.01 (1H, q, J = 6.7 Hz), 2.32 (2H, t, J = 7.3 Hz), 2.26 (3H, s), 1.98-1.91 (2H, m), 1.26 (3H, d, J = 6.7 Hz).
工程9
4-[(9R)-4-クロロ-9-ヒドロキシ-9-(トリフルオロメチル)-9H-フルオレン-2-イルオキシ]酪酸
Figure JPOXMLDOC01-appb-C000023
 4-[(9R)-4-クロロ-9-ヒドロキシ-9-(トリフルオロメチル)-9H-フルオレン-2-イルオキシ]酪酸と(1S)-1-(4-メチルフェニル)エチルアミンの塩(68.6g)に酢酸エチル(500ml)、2N塩酸(300ml)を加え、室温で10分撹拌した。この混合液を分層した。得られた有機層を水(250ml)、飽和食塩水(200ml)で順次洗浄した。得られた有機層を無水硫酸マグネシウムで乾燥した後、不溶物をろ去し、ろ液の溶媒を留去して、標題化合物(60.0g)を得た。
1H-NMR (400MHz, DMSO-D6) δ: 12.17 (1H, br s), 8.14 (1H, d, J = 7.7 Hz), 7.66 (1H, d, J = 7.5 Hz), 7.54 (1H, td, J = 7.7, 1.2 Hz), 7.42-7.30 (2H, m), 7.18-7.15 (2H, m), 4.09 (2H, t, J = 6.4 Hz), 2.41 (2H, t, J = 7.3 Hz), 2.00-1.93 (2H, m).
工程10
(9R)-4-クロロ-9-(トリフルオロメチル)-9H-フルオレン-2,9-ジオール
Figure JPOXMLDOC01-appb-C000024
 4-[(9R)-4-クロロ-9-ヒドロキシ-9-(トリフルオロメチル)-9H-フルオレン-2-イルオキシ]酪酸(50g)に、N-メチルピロリドン(200ml)とピリジン塩酸塩(298g)を加え、油浴温度200℃で2日間撹拌した。反応混合液を室温まで冷却した後、酢酸エチル(500ml)で希釈し、水で2回洗浄した。得られた水層を酢酸エチル(300ml)で再抽出し、先に得られた有機層と合わせて、水、1N塩酸、飽和食塩水で順次洗浄した。得られた有機層に無水硫酸マグネシウムおよび活性炭(10g)を加え、室温で攪拌した後、不溶物をセライトろ去した。得られた有機層の溶媒を留去し、残渣にヘキサンを加え、室温で撹拌した。析出した固体をろ取し、室温で減圧乾燥した。得られた粗生成物を酢酸エチル(500ml)に溶解し、水で3回洗浄した後、無水硫酸マグネシウムで乾燥した。不溶物をろ去し、ろ液の溶媒を留去した。残渣にヘキサンを加え、室温で撹拌した。析出した固体をろ取し、室温で減圧乾燥して、標題化合物(22.4g)を得た。
1H-NMR (400MHz, DMSO-D6) δ: 10.37 (1H, br s), 8.09 (1H, d, J = 7.5 Hz), 7.63 (1H, d, J = 7.5 Hz), 7.50 (1H, td, J = 7.6, 1.0 Hz), 7.36 (1H, td, J = 7.6, 1.0 Hz), 7.32 (1H, br s), 7.06 (1H, s), 6.91 (1H, br d, J = 2.0 Hz).
(絶対立体配置について)
 標題化合物の絶対立体配置は、下記の工程(工程A-1から工程A-2および工程B-1)により調製した化合物(100A)と化合物(100B)の光学活性カラムを用いたHPLC分析によって決定した。
工程A-1
Figure JPOXMLDOC01-appb-C000025
 4-クロロ-2-メチル-9H-フルオレン-9-オンに対して、トリフルオロメチル化、ブロモ酢酸エチルとの反応、および加水分解を行い、[4-クロロ-2-メチル-9-(トリフルオロメチル)-9H-フルオレン-9-イルオキシ]酢酸を得た。この化合物を(1R)-1-フェニルエチルアミンを用いて光学分割し、得られた(1R)-1-フェニルエチルアミンの塩(100AA)を単結晶X線構造解析により、絶対立体配置を(R)と決定した。
工程A-2
Figure JPOXMLDOC01-appb-C000026
 化合物100AAから酸処理等により、(9R)-4-クロロ-2-メチル-9-(トリフルオロメチル)-9H-フルオレン-9-オール(化合物(100A))を合成した。
工程B-1
Figure JPOXMLDOC01-appb-C000027
 工程10で得られた4-クロロ-9-(トリフルオロメチル)-9H-フルオレン-2,9-ジオールの2位水酸基を、上記の方法によりメチル基に変換し、4-クロロ-2-メチル-9-(トリフルオロメチル)-9H-フルオレン-9-オール(化合物(100B))を得た。
(光学活性カラムを用いたHPLC分析)
 化合物(100)の両対掌体は、光学活性カラムを用いたHPLCで分離することができた(HPLC分析条件3)。化合物100AのHPLC分析結果から、(R)体の保持時間18.4分、(S)体の保持時間17.0分であることが明らかとなった。このHPLC条件により、化合物(100A)と化合物(100B)を分析したところ、保持時間が一致した。
 上記化合物(100A)および化合物(100B)の製造の際に、不斉炭素の立体配置の変換は起こらないと考えられる。この結果から、工程10で得られた4-クロロ-9-(トリフルオロメチル)-9H-フルオレン-2,9-ジオールは(R)の絶対立体配置を持つことが確認された。
工程11
(9R)-4-クロロ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-9-オール
Figure JPOXMLDOC01-appb-C000028
 窒素雰囲気下、(9R)-4-クロロ-9-(トリフルオロメチル)-9H-フルオレン-2,9-ジオール(55.5g)をN,N-ジメチルホルムアミド(550ml)に溶解し、トルエン-4-スルホン酸 3-ヒドロキシ-3-メチルブチルエステル(49.6g)と炭酸カリウム(39.5g)を加え、油浴温度70℃で一晩撹拌した。反応混合液にトルエン-4-スルホン酸 3-ヒドロキシ-3-メチルブチルエステル(4.0g)のN,N-ジメチルホルムアミド(5ml)溶液を追加し、同温でさらに9.5時間撹拌した。反応混合液を氷冷後、水(800ml)を加え、酢酸エチル(900ml)で抽出した。得られた有機層を水(500ml)で3回、飽和食塩水(500ml)で洗浄した。得られた有機層を無水硫酸ナトリウムで乾燥し、不溶物をろ去し、ろ液の溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒としてヘキサンと酢酸エチルの混合液を用いた。まず混合比3:1(ヘキサン:酢酸エチル)の混合液を溶出した。ついで混合比2:1の混合液で溶出し、さらに混合比3:2の混合液で溶出した。)で精製して、標題化合物(49.5g)を得た。
1H-NMR (400MHz, DMSO-D6) δ: 8.12 (1H, d, J = 7.6 Hz), 7.64 (1H, d, J = 7.4 Hz), 7.52 (1H, td, J = 7.6, 0.9 Hz), 7.40-7.36 (2H, m), 7.15-7.13 (2H, m), 4.41 (1H,s), 4.16 (2H, t, J = 7.1 Hz), 1.85 (2H, t, J = 7.1 Hz), 1.17 (6H, s).
工程12
2-{4-[(9R)-9-ヒドロキシ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロピオン酸エチル
Figure JPOXMLDOC01-appb-C000029
 アルゴン雰囲気下、(9R)-4-クロロ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-9-オール(49.5g)をトルエン(445ml)に溶解し、2-メチル-2-[4-(4,4,5,5-テトラメチル[1,3,2]ジオキサボロラン-2-イル)-1H-ピラゾール-1-イル]プロピオン酸エチル(59.2g)、水(149ml)、リン酸三カリウム(54.3g)、酢酸パラジウム(2.9g)および2-ジシクロヘキシルフォスフィノ-2’,6’-ジメトキシビフェニル(SPhos)(10.5g)を加え、油浴温度100℃で3.5時間撹拌した。反応混合液を室温まで冷却し、水(300ml)を加えた後、不溶物をセライトろ去し、トルエン(150ml)および水(50ml)で洗浄した。得られたろ液を合わせて分層した。得られた有機層を水(500ml)、飽和食塩水(500ml)で順次洗浄した。得られた有機層を無水硫酸ナトリウムで乾燥し、不溶物をろ去し、ろ液の溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒としてヘキサンと酢酸エチルの混合液を用いた。まず混合比2:1(ヘキサン:酢酸エチル)の混合液を溶出した。ついで混合比1:1、2:3の混合液で溶出し、さらに混合比1:2の混合液で溶出した。)にて精製した。さらに、シリカゲルカラムクロマトグラフィー(溶出溶媒としてヘキサンとアセトンの混合液を用いた。まず混合比2:1(ヘキサン:アセトン)の混合液を溶出した。ついで混合比4:1、3:1、2:1、1:1、2:3の混合液で順次溶出し、さらに混合比1:2の混合液にて溶出した。)で精製し、標題化合物(68.4g)を得た。
1H-NMR (400MHz, DMSO-D6) δ: 8.18 (1H, s), 7.65 (1H, s), 7.59-7.57 (1H, m), 7.25-7.21 (4H, m), 7.13 (1H, br d, J = 1.6 Hz), 6.84 (1H, d, J = 2.3 Hz), 4.38 (1H, s), 4.16-4.11 (4H, m), 1.86 (2H, t, J = 7.1 Hz), 1.84 (6H, s), 1.16 (6H, s), 1.13 (3H, t, J = 7.0 Hz).
工程13
2-{4-[(9R)-9-ヒドロキシ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロピオン酸
Figure JPOXMLDOC01-appb-C000030
 2-{4-[(9R)-9-ヒドロキシ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロピオン酸エチル(68.4g)をエタノール(256ml)に溶解し、4N水酸化ナトリウム水溶液(128ml)を加え、室温で2.5時間撹拌した。反応混合物を氷冷し、2N塩酸(333ml)を滴下後、酢酸エチル(500ml)で抽出した。得られた有機層を水(400ml)で2回、飽和食塩水(400ml)で順次洗浄した。得られた有機層を無水硫酸ナトリウムで乾燥し、不溶物をろ去し、ろ液の溶媒を留去して、標題化合物(70.0g)を得た。
1H-NMR (400MHz, DMSO-D6) δ:13.06 (1H, br s), 8.14 (1H, s), 7.62 (1H, s), 7.57 (1H, dd, J = 6.4, 0.6 Hz), 7.27-7.19 (4H, m), 7.12 (1H, s), 6.84 (1H, d, J = 2.3 Hz), 4.38 (1H, s), 4.14 (2H, t, J = 7.2 Hz), 1.85 (2H, t, J = 7.2 Hz), 1.82 (3H,s), 1.81 (3H, s), 1.16 (6H, s).
工程14
2-{4-[(9R)-9-ヒドロキシ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロパンアミド(化合物(2))
Figure JPOXMLDOC01-appb-C000031
 窒素雰囲気下、2-{4-[(9R)-9-ヒドロキシ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロピオン酸(66.7g)をN,N-ジメチルホルムアミド(480ml)に溶解し、1-ヒドロキシベンゾトリアゾール(HOBt)1水和物(27.6g)、1-エチル-3-(3’-ジメチルアミノプロピル)カルボジイミド(WSC)塩酸塩(34.6g)および28%アンモニア水(24.5ml)を加え、室温で一晩撹拌した。反応混合物を氷冷し、水(630ml)および2N塩酸(330ml)を滴下後、酢酸エチル(800ml)で抽出した。得られた水層を酢酸エチル(500ml)で再抽出した。得られた有機層を合わせて、水(500ml)で2回、飽和重曹水(500ml)、飽和食塩水(500ml)で順次洗浄した。得られた有機層を無水硫酸ナトリウムで乾燥し、不溶物をろ去し、ろ液の溶媒を留去して、標題化合物(60.0g)を得た。
1H-NMR (400MHz, DMSO-D6) δ: 8.08 (1H, s), 7.66 (1H, s), 7.58-7.56 (1H, m), 7.32-7.30 (1H, m), 7.25-7.22 (4H, m), 7.12 (1H, br s), 6.96 (1H, br s), 6.87 (1H, d, J = 2.3 Hz), 4.38 (1H, s), 4.14 (2H, t, J = 7.2 Hz), 1.85 (2H, t, J = 7.2 Hz), 1.78 (3H, s), 1.78 (3H, s), 1.17 (6H, s).
工程15
2-{4-[(9R)-9-ヒドロキシ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロパンアミド・1水和物(化合物(2h))
Figure JPOXMLDOC01-appb-C000032
 前工程で得られた2-{4-[(9R)-9-ヒドロキシ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロパンアミド(化合物(2))(60.0g)を酢酸エチル(109ml)に溶解し、水(2ml)を加え、50℃に加熱した。この混合液にヘキサン(226ml)、ヘキサンと酢酸エチルの混合溶媒(ヘキサン:酢酸エチル 2:1、150ml)を順次滴下した後、室温に戻し一晩撹拌した。析出した固体をろ取し、ろ過物をヘキサンと酢酸エチルの混合溶媒(ヘキサン:酢酸エチル=2:1、180ml)で洗浄した。得られた固体を室温で一晩減圧乾燥して、標題化合物(52.2g、光学純度98.6%e.e.)を得た。光学純度は、HPLC分析条件2にて決定した。(R)体の保持時間11.3分、(S)体の保持時間13.9分。
比旋光度[α] +37.9°(c=1.01 MeOH 25℃).
1H-NMR (400MHz, DMSO-D6) δ: 8.08 (1H, s), 7.66 (1H, s), 7.58-7.56 (1H, m), 7.32-7.30 (1H, m), 7.25-7.22 (4H, m), 7.12 (1H, br s), 6.96 (1H, br s), 6.87 (1H, d,J = 2.3 Hz), 4.38 (1H, s), 4.14 (2H, t, J = 7.2 Hz), 1.85 (2H, t, J = 7.2 Hz), 1.78 (3H, s), 1.78 (3H, s), 1.17 (6H, s).
(元素分析測定)
 元素分析結果は、化合物(2h)の理論値と良く一致した。
計算値:C,59.88;H,5.80;N,8.06(1水和物としての計算値)
実測値:C,59.86;H,5.74;N,8.00.
工程16
2-{4-[(9R)-9-ヒドロキシ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロパンアミド(化合物(2))
Figure JPOXMLDOC01-appb-C000033
 前工程で得られた2-{4-[(9R)-9-ヒドロキシ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2メチルプロパンアミド・1水和物(化合物(2h))(22.63g)にトルエン(340ml)を加えた。窒素雰囲気下、反応混合物をディーン・スターク装置で脱水しながら、油浴温度130℃で2時間攪拌した。反応混合物を油浴温度70℃でさらに1時間半攪拌した後、室温に戻し一晩撹拌した。析出した固体をろ取し、ろ過物をトルエン(100ml)で洗浄した。得られた固体を室温で3日間減圧乾燥後、さらに60℃で1日減圧乾燥して、標題化合物(21.5g)を得た。
1H-NMR (400MHz, DMSO-D6) δ: 8.08 (1H, s), 7.66 (1H, s), 7.58-7.56 (1H, m), 7.32-7.30 (1H, m), 7.25-7.22 (4H, m), 7.12 (1H, br s), 6.96 (1H, br s), 6.87 (1H, d,J = 2.3 Hz), 4.38 (1H, s), 4.14 (2H, t, J = 7.2 Hz), 1.85 (2H, t, J = 7.2 Hz), 1.78 (3H, s), 1.78 (3H, s), 1.17 (6H, s).
(元素分析測定)
 元素分析結果は、化合物(2)の理論値と良く一致した。
計算値:C,62.02;H,5.61;N,8.35(無水和物としての計算値)
実測値:C,62.17;H,5.60;N,8.47.
工程C-1
N-(4-tert-ブチルベンジル)シンコニジウムブロミドの合成
Figure JPOXMLDOC01-appb-C000034
 シンコニジン(10.6g)をテトラヒドロフラン(200ml)に溶解し、4-tert-ブチルベンジルブロミド(10.1g)、テトラブチルアンモニウムヨージド(0.66g)を加え、70℃で一晩撹拌した。反応混合物を室温まで冷却した後、固体をろ取し、酢酸エチル(50ml)で洗浄した。得られた固体を一晩減圧乾燥して、標題化合物(18.5g)を得た。
1H-NMR (400MHz, DMSO-D6) δ: 8.99 (1H, d, J = 4.4 Hz), 8.27 (1H, d, J = 8.2 Hz), 8.11 (1H, dd, J = 8.5, 1.0 Hz), 7.89-7.79 (2H, m), 7.78-7.71 (1H, m), 7.63 (2H,d, J = 8.4 Hz), 7.59 (2H, t, J = 8.4 Hz), 6.72 (1H, d, J = 4.2 Hz), 6.57-6.51 (1H, br s), 5.67 (1H, ddd, J = 17.0, 10.4, 6.4 Hz), 5.14 (1H, d, J = 17.2 Hz), 5.08 (1H, d, J = 12.6 Hz), 5.00-4.90 (2H, m), 4.30-4.18 (1H, m), 3.91 (1H, t, J = 8.7 Hz), 3.74-3.64 (1H, m), 3.35-3.18 (2H, m), 2.76-2.65 (1H, m), 2.18-1.94 (3H,m), 1.90-1.78 (1H, m), 1.40-1.22 (1H, m), 1.34 (9H, s).
工程C-2
N-(4-tert-ブチルベンジル)シンコニジウム 4-メトキシフェノキシドの合成
Figure JPOXMLDOC01-appb-C000035
 N-(4-tert-ブチルベンジル)シンコニジウムブロミド(18.5g)、アンバーリスト(登録商標)A26(スチレン、ジビニルベンゼンマトリックスの強塩基性イオン交換樹脂)(18.5g)およびメタノール(280ml)を加え、室温で一晩撹拌した。不溶物をセライトろ去し、メタノール(100ml)で洗浄した。ろ液に4-メトキシフェノール(4.8g)を加え、溶媒を留去した。残渣をトルエン(100ml)で3回共沸後、トルエン(20ml)を加え、次いでジイソプロピルエーテル(200ml)を滴下し、室温で3時間撹拌した。析出した固体をろ取し、ジイソプロピルエーテル(50ml)で洗浄した後、室温で一晩減圧乾燥して標題化合物(21.8g)を得た。
1H-NMR (400MHz, DMSO-D6) δ: 8.91 (1H, d, J = 4.4 Hz), 8.17 (1H, d, J = 8.2 Hz), 8.07 (1H, d, J = 8.4 Hz), 7.89 (1H, d, J = 4.4 Hz), 7.79 (1H, t, J = 7.6 Hz), 7.64 (1H, t, J = 7.5 Hz), 7.57-7.52 (5H, m), 6.56-6.55 (2H, m), 6.43-6.42 (3H, m), 5.67-5.59 (1H, m), 5.28 (1H, d, J = 12.1 Hz), 5.12 (1H, d, J = 17.2 Hz), 4.92 (1H, d, J = 10.6 Hz), 4.84 (1H, d, J = 12.1 Hz), 4.65-4.53 (1H, m), 3.80 (1H, t, J = 8.8 Hz), 3.65-3.63 (1H, m), 3.57 (3H, s), 3.25 (1H, t, J = 11.6 Hz), 3.10-3.07 (1H, m), 2.67 (1H, br s), 2.07-2.02 (2H, m), 1.95 (1H, br s), 1.79-1.76 (1H, br m), 1.33 (9H, s), 1.16-1.11 (1H, m).
工程D
トルエン-4-スルホン酸 3-ヒドロキシ-3-メチルブチルエステルの合成
Figure JPOXMLDOC01-appb-C000036
 窒素雰囲気下、3-メチルブタン-1,3-ジオール(300g)をピリジン(900ml)に溶解し、4-メチルベンゼンスルホニルクロリド(500g)のトルエン(900ml)、アセトニトリル(125ml)溶液を2時間かけて滴下した。反応混合物を室温で4時間撹拌した後、トルエン(500ml)と水(1800ml)を加え、分層した。得られた有機層を硫酸水、水2回で順次洗浄した。得られた有機層の溶媒を留去した後、トルエン(500ml)で共沸して、標題化合物(535g)を得た。
1H-NMR (CDCl3) δ: 7.81-7.76 (2H, m), 7.36-7.31 (2H, m), 4.20 (2H, td, J = 6.8, 1.6 Hz), 2.44 (3H, s), 1.85 (2H, td, J = 6.8, 1.6 Hz), 1.33 (1H, s), 1.21 (6H, s).
実施例2
2-{4-[(9R)-9-ヒドロキシ-2-(4-ヒドロキシ-4-メチルペンチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロパンアミド(化合物(3))の合成
工程1
4-[(9R)-4-クロロ-9-ヒドロキシ-9-(トリフルオロメチル)-9H-フルオレン-2-イルオキシ]酪酸エチル
Figure JPOXMLDOC01-appb-C000037
 実施例1工程10で得られた(9R)-4-クロロ-9-(トリフルオロメチル)-9H-フルオレン-2,9-ジオール(200mg)をN,N-ジメチルホルムアミド(2ml)に溶解し、炭酸カリウム(185mg)および4-ブロモ酪酸エチル(105μl)を加え、室温で7時間撹拌した。反応混合物に水を加え、酢酸エチルで2回抽出した。得られた有機層を、水で2回、飽和食塩水で順次洗浄した。得られた有機層を無水硫酸マグネシウムで乾燥し、不溶物をろ去し、ろ液の溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒としてヘキサンと酢酸エチルの混合液を用いた。まず混合比5:1(ヘキサン:酢酸エチル)の混合液にて溶出した。ついで混合比3:1の混合液にて順次溶出し、さらに混合比2:1の混合液にて溶出した。)にて精製し、標題化合物(197mg)を得た。
1H-NMR (400MHz, CDCl3) δ: 8.19 (1H, d, J = 7.7 Hz), 7.66 (1H, d, J = 7.7 Hz), 7.46 (1H, td, J = 7.6, 1.0 Hz), 7.32 (1H, td, J = 7.6, 1.0 Hz), 7.16 (1H, br s), 6.93 (1H, d, J = 2.1 Hz), 4.14 (2H, q, J = 7.1 Hz), 4.05 (2H, t, J = 7.1 Hz), 2.82 (1H, s), 2.50 (2H, t, J = 7.1 Hz), 2.15-2.06 (2H, m), 1.25 (3H, t, J = 7.1 Hz).
工程2
(9R)-4-クロロ-2-(4-ヒドロキシ-4-メチルペンチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-9-オール
Figure JPOXMLDOC01-appb-C000038
 窒素雰囲気下、4-[(9R)-4-クロロ-9-ヒドロキシ-9-(トリフルオロメチル)-9H-フルオレン-2-イルオキシ]酪酸エチル(197mg)をTHF(2ml)に溶解し、0℃でメチルリチウム/ジエチルエーテル溶液(1.07M、2.2ml)を滴下した。反応混合液を同温で2時間撹拌した後、水を加え、酢酸エチルで2回抽出した。得られた有機層を水で2回、飽和食塩水で順次洗浄した。得られた有機層を無水硫酸マグネシウムで乾燥し、不溶物をろ去し、ろ液の溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒としてヘキサンと酢酸エチルの混合液を用いた。まず混合比3:1(ヘキサン:酢酸エチル)の混合液を溶出した。ついで混合比2:1の混合液にて溶出した。)にて精製して、標題化合物(169mg)を得た。
1H-NMR (400MHz, CDCl3) δ: 8.19 (1H, d, J = 7.7 Hz), 7.66 (1H, d, J = 7.7 Hz), 7.47 (1H, td, J = 7.7, 1.0 Hz), 7.32 (1H, td, J = 7.7, 1.0 Hz), 7.17 (1H, br s), 6.93 (1H, d, J = 2.3 Hz), 4.02 (2H, t, J = 6.4 Hz), 2.82 (1H, s), 1.92-1.85 (2H, m), 1.65-1.62 (2H, m), 1.26 (3H, s), 1.25 (3H, s).
工程3
2-{4-[(9R)-9-ヒドロキシ-2-(4-ヒドロキシ-4-メチルペンチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロピオン酸エチル
Figure JPOXMLDOC01-appb-C000039
 アルゴン雰囲気下、(9R)-4-クロロ-2-(4-ヒドロキシ-4-メチルペンチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-9-オール(169mg)を1,4-ジオキサン(1.5ml)で溶解し、2-メチル-2-[4-(4,4,5,5-テトラメチル[1,3,2]ジオキサボロラン-2-イル)-1H-ピラゾール-1-イル]プロピオン酸エチル(194mg)、水(0.5ml)、リン酸三カリウム(178mg)、酢酸パラジウム(9mg)、SPhos(33mg)を加え、100℃で4.5時間撹拌した。反応混合液を室温まで冷却した後、水を加え、酢酸エチルで2回抽出した。得られた有機層を、水で2回、飽和食塩水で順次洗浄した。得られた有機層を無水硫酸マグネシウムで乾燥し、不溶物をろ去し、ろ液の溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒として混合比1:1(ヘキサン:酢酸エチル)の混合液にて溶出した。)にて精製して、標題化合物(218mg)を得た。
1H-NMR (400MHz, CDCl3) δ: 7.69 (1H, s), 7.63-7.62 (2H, m), 7.21-7.19 (4H, m), 6.81 (1H, d, J = 2.3 Hz), 4.21 (2H, q, J = 7.1 Hz), 4.04 (2H, t, J = 6.3 Hz), 2.82 (1H, s), 1.92 (3H, s), 1.91 (3H, s), 1.89-1.88 (2H, m), 1.66-1.64 (2H, m), 1.26 (6H, s), 1.26-1.23 (3H, m).
工程4
2-{4-[(9R)-9-ヒドロキシ-2-(4-ヒドロキシ-4-メチルペンチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロピオン酸
Figure JPOXMLDOC01-appb-C000040
 2-{4-[(9R)-9-ヒドロキシ-2-(4-ヒドロキシ-4-メチルペンチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロピオン酸エチル(218mg)をエタノール(2.2ml)に溶解し、4N水酸化ナトリウム水溶液(320μl)を加え、室温で一晩撹拌した。反応混合液を1N塩酸で中和し、酢酸エチルで2回抽出した。得られた有機層を水で2回、飽和食塩水で順次洗浄した。得られた有機層を無水硫酸マグネシウムで乾燥し、不溶物をろ去し、ろ液の溶媒を留去して、標題化合物(179mg)を得た。
1H-NMR (400MHz, CDCl3) δ: 7.73 (1H, s), 7.68 (1H, s), 7.63-7.62 (1H, m), 7.23-7.09 (4H, m), 6.78 (1H, d, J = 2.6 Hz), 4.02 (2H, t, J = 6.3 Hz), 1.93 (6H, s), 1.89-1.86 (2H, m), 1.65-1.61 (2H, m), 1.25 (6H, s).
工程5
2-{4-[(9R)-9-ヒドロキシ-2-(4-ヒドロキシ-4-メチルペンチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロパンアミド(化合物(3))
Figure JPOXMLDOC01-appb-C000041
 窒素雰囲気下、2-{4-[(9R)-9-ヒドロキシ-2-(4-ヒドロキシ-4-メチルペンチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロピオン酸(89mg)をN,N-ジメチルホルムアミド(1ml)に溶解し、塩化アンモニウム(28mg)、N,N-ジイソプロピルエチルアミン(148μl)および1-[ビス(ジメチルアミノ)メチレン]-1H-1,2,3-トリアゾロ[4,5-b]ピリジン-1-イウム 3-オキシド ヘキサフルオロフォスフェート(HATU)(99mg)を加え、室温で一晩撹拌した。反応混合液に水を加え、酢酸エチルで2回抽出した。得られた有機層を、食塩水で2回、飽和食塩水で1回順次洗浄した。得られた有機層を無水硫酸マグネシウムで乾燥し、不溶物をろ去し、ろ液の溶媒を留去した。得られた残渣をシリカゲル薄層クロマトグラフィー(展開溶媒としてクロロホルムとメタノールの混合液を用いた。混合比9:1(クロロホルム:メタノール)の混合液を用いた。)にて精製して、標題化合物(48mg、光学純度96.9%e.e.)を得た。光学純度は、HPLC分析条件2にて決定した。(R)体の保持時間13.0分、(S)体の保持時間14.4分。
比旋光度[α] +37.5°(c=1.04 MeOH 25℃).
1H-NMR (400MHz, DMSO-D6) δ: 8.07 (1H, s), 7.66 (1H, s), 7.57-7.55 (1H, m), 7.34-7.31 (1H, m), 7.24-7.23 (3H, m), 7.18 (1H, s), 7.11 (1H, br s), 6.94 (1H, br s), 6.86 (1H, d, J = 2.3 Hz), 4.16 (1H, s), 4.03 (2H, t, J = 6.5 Hz), 1.80 (3H, s), 1.79 (3H, s), 1.80-1.75 (2H, m), 1.51-1.47 (2H, m), 1.11 (6H, s).
(化合物(3)の結晶の調製例)
 上記実施例の手順で合成した化合物(3)(40mg)にMeOHと水の混合液(容量比1:3(0.5mL))を添加した。ついで、この溶液に化合物(2h)の結晶(0.5mg)を添加し室温にて3日間撹拌した。析出した固体を濾取し、化合物(3)の結晶(41mg)を得た。
(化合物(A)、(B)、(C)、および(D)の合成)
 下記式で表される化合物(A)、化合物(B)、化合物(C)及び化合物(D)は、国際公開第2010/041748号に記載の製造方法に従い、それぞれ光学活性体として得た。
Figure JPOXMLDOC01-appb-C000042
 化合物(A)
2-(4-{(9R)-9-ヒドロキシ-2-[2-(3-ヒドロキシアダマンタン-1-イル)エトキシ]-9-(トリフルオロメチル)-9H-フルオレン-4-イル}-1H-ピラゾール-1-イル)酢酸アミド
Figure JPOXMLDOC01-appb-C000043
 化合物(B)
(9R)-2-(2-ヒドロキシ-2-メチルプロポキシ)-4-(1-メチル-1H-ピラゾール-4-イル)-9-(トリフルオロメチル)-9H-フルオレン-9-オール
Figure JPOXMLDOC01-appb-C000044
 化合物(C)
(9R)-4-[1-(2-ヒドロキシエチル)-1H-ピラゾール-4-イル]-2-(2-ヒドロキシ-2-メチルプロポキシ)-9-(トリフルオロメチル)-9H-フルオレン-9-オール
Figure JPOXMLDOC01-appb-C000045
 化合物(D)
2-{4-[(9R)-2-フルオロ-9-ヒドロキシ-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロパンアミド
 本発明の製剤例としては、例えば下記の製剤が挙げられる。しかしながら、本発明はこれら製剤例によって限定されるものではない。
製剤例1(カプセルの製造)
1)実施例1の化合物(化合物(2))      30mg
2)微結晶セルロース              10mg
3)乳糖                    19mg
4)ステアリン酸マグネシウム           1mg
 1)、2)、3)および4)を混合して、ゼラチンカプセルに充填する。
製剤例2(錠剤の製造)
1)実施例1の化合物(化合物(2))       10g
2)乳糖                     50g
3)トウモロコシデンプン             15g
4)カルメロースカルシウム            44g
5)ステアリン酸マグネシウム            1g
 1)、2)、3)の全量および30gの4)を水で練合し、真空乾燥後、整粒を行う。この整粒末に14gの4)および1gの5)を混合し、打錠機により打錠する。このようにして、1錠あたり実施例1の化合物(化合物(2))10mgを含有する錠剤1000錠を得る。
試験例1:インビトロにおけるPDHK活性阻害作用
 PDHK活性阻害作用は被験化合物存在下においてキナーゼ反応を行い、その後、残存したPDH活性を測定することにより、間接的に評価した。
(PDHK1活性阻害作用)
 ヒトPDHK1(hPDHK1,ジーンバンク(Genbank)寄託番号L42450.1)の場合、このタンパク質をコードする1.3kbpフラグメントをポリメラーゼ連鎖反応(PCR)によりヒト肝cDNAから単離した。PCRでN末端にFLAG-Tag配列を付加した改変hPDHK1 cDNAを作製し、ベクター(pET17b-Novagen社)にクローニングした。組換え構築体を大腸菌(DH5α-TOYOBO社)内へ形質転換した。組換えクローンを同定し、プラスミドDNAを単離し、DNA配列分析した。予想核酸配列を持つ1クローンを発現作業用に選択した。
 hPDHK1活性発現のために、改変hPDHK1 cDNAを含むpET17bベクターを大腸菌株BL21(DE3)(Novagen社)内に形質転換した。大腸菌を光学濃度0.6(600nmol/L)に達するまで30℃で増殖させた。500μmol/L イソプロピル-β-チオガラクトピラノシドの添加によりタンパク質発現を誘導した。大腸菌を30℃で5時間培養した後、遠心分離により採集した。大腸菌ペースト再懸濁液をマイクロフロイダイザーにより破砕した。FLAG-Tag付加タンパク質を、FLAGアフィニティーゲル(Sigma社)により分離した。
 20mmol/L N-(2-ヒドロキシエチル)ピペラジン-N’-2-エタンスルホン酸-水酸化ナトリウム(HEPES-NaOH)、500mmol/L 塩化ナトリウム、1% エチレングリコール、0.1% ポリオキシエチレン-ポリオキシプロピレンブロック共重合体(プルロニックF-68)(pH8.0)でゲルを洗浄した後、20mmol/L HEPES-NaOH,100μg/mL FLAGペプチド、500mmol/L 塩化ナトリウム、1% エチレングリコール、0.1% プルロニックF-68(pH8.0)で結合タンパク質を溶離した。
 FLAG-Tag付加タンパク質を含有する溶離画分をプールし、20mmol/L HEPES-NaOH、150mmol/L 塩化ナトリウム、0.5mmol/L エチレンジアミン四酢酸(EDTA)、1% エチレングリコール、0.1% プルロニックF-68(pH8.0)に対し透析し、-80℃に保存した。アッセイに際し、hPDHK1の酵素濃度は90%を上回るPDH活性抑制を示す最少濃度に設定した。
 緩衝液(50mmol/L 3-モルホリノプロパンスルホン酸(pH7.0)、20mmol/L リン酸水素二カリウム、60mmol/L 塩化カリウム、2mmol/L 塩化マグネシウム、0.4mmol/L EDTA、0.2% プルロニックF-68、2mmol/L ジチオスレイトール)中において、0.05U/mL PDH(ブタ心臓PDH複合体、Sigma社 P7032)および1.0μg/mL hPDHK1を混合し、4℃で一晩インキュベーションしてPDH/hPDHK1複合体を調製した。
 被験化合物はジメチルスルホキシド(DMSO)で希釈した。96穴ハーフエリアUV透過マイクロプレート(Corning社 3679)にPDH/hPDHK1複合体20μL、被験化合物1.5μLおよび3.53μmol/L ATP(緩衝液にて希釈)8.5μLを添加し、室温で45分間PDHK反応を行った。対照ウェルには被験化合物の代わりにDMSOを1.5μL添加した。また、PDH反応の最大速度を測定するためのブランクウェルには、被験化合物の代わりにDMSOを1.5μL添加し、hPDHK1を除いた。
 続いて、基質(5mmol/L ピルビン酸ナトリウム、5mmol/L コエンザイムA、12mmol/L NAD、5mmol/L チアミンピロリン酸、緩衝液にて希釈)を10μL添加し、室温で90分間インキュベーションすることにより、残存PDH活性を測定した。
 PDH反応前後における340nmの吸光度をマイクロプレートリーダーにて測定することにより、PDH反応により産生されるNADHを検出した。被験化合物のhPDHK1阻害率(%)は式[{(被験化合物のPDH活性-対照のPDH活性)/ブランクのPDH活性-対照のPDH活性)}×100]から算出した。IC50値はhPDHK1阻害率50%を挟む2点の被験化合物濃度より算出した。
 被験化合物として化合物(2)、化合物(2h)および化合物(3)を用いた場合に得られた結果を以下の表1に示す。
(PDHK2活性阻害作用)
 ヒトPDHK2(hPDHK2、ジーンバンク(Genbank)寄託番号BC040478.1)の場合、hPDHK2 cDNAクローン(pReceiver-M01/PDK2-GeneCopoeia社)を基に、PCRでN末端にFLAG-Tag配列を付加した改変hPDHK2 cDNAを作製し、ベクター(pET17b-Novagen社)にクローニングした。組換え構築体を大腸菌(DH5α-TOYOBO社)内へ形質転換した。組換えクローンを同定し、プラスミドDNAを単離し、DNA配列分析した。予想核酸配列を持つ1クローンを発現作業用に選択した。
 hPDHK2活性発現のために、改変hPDHK2 cDNAを含むpET17bベクターを大腸菌株BL21(DE3)(Novagen社)内に形質転換した。大腸菌を光学濃度0.6(600nmol/L)に達するまで30℃で増殖させた。500μmol/L イソプロピル-β-チオガラクトピラノシドの添加によりタンパク質発現を誘導した。大腸菌を30℃で5時間培養した後、遠心分離により採集した。大腸菌ペースト再懸濁液をマイクロフロイダイザーにより破砕した。FLAG-Tag付加タンパク質を、FLAGアフィニティーゲルにより分離した。20mmol/L HEPES-NaOH、500mmol/L 塩化ナトリウム、1% エチレングリコール、0.1% プルロニックF-68(pH8.0)でゲルを洗浄した後、20mmol/L HEPES-NaOH、100μg/mL FLAGペプチド、500mmol/L 塩化ナトリウム、1% エチレングリコール、0.1% プルロニックF-68(pH8.0)で結合タンパク質を溶離した。FLAG-Tag付加タンパク質を含有する溶離画分をプールし、20mmol/L HEPES-NaOH、150mmol/L 塩化ナトリウム、0.5mmol/L EDTA、1% エチレングリコール、0.1% プルロニックF-68(pH8.0)に対し透析し、-80℃に保存した。アッセイに際し、hPDHK2の酵素濃度は90%を上回るPDH活性抑制を示す最少濃度に設定した。
 緩衝液(50mmol/L 3-モルホリノプロパンスルホン酸(pH7.0)、20mmol/L リン酸水素二カリウム、60mmol/L 塩化カリウム、2mmol/L 塩化マグネシウム、0.4mmol/L EDTA、0.2% プルロニックF-68、2mmol/L ジチオスレイトール)中において、0.05U/mL PDHおよび0.8μg/mL hPDHK2を混合し、4℃で一晩インキュベーションしてPDH/hPDHK2複合体を調製した。被験化合物はDMSOで希釈した。96穴ハーフエリアUV透過マイクロプレートにPDH/hPDHK2複合体20μL、被験化合物1.5μLおよび3.53μmol/L ATP(緩衝液にて希釈)8.5μLを添加し、室温で45分間PDHK反応を行った。対照ウェルには被験化合物の代わりにDMSOを1.5μL添加した。また、PDH反応の最大速度を測定するためのブランクウェルには、化合物の代わりにDMSOを1.5μL添加し、hPDHK2を除いた。続いて、基質(5mmol/L ピルビン酸ナトリウム、5mmol/L コエンザイムA、12mmol/L NAD、5mmol/L チアミンピロリン酸、緩衝液にて希釈)を10μL添加し、室温で90分間インキュベーションすることにより、残存PDH活性を測定した。PDH反応前後における340nmの吸光度をマイクロプレートリーダーにて測定することにより、PDH反応により産生されるNADHを検出した。被験化合物のhPDHK2阻害率(%)は式[{(被験化合物のPDH活性-対照のPDH活性)/ブランクのPDH活性-対照のPDH活性)}×100]から算出した。IC50値はhPDHK2阻害率50%を挟む2点の被験化合物濃度より算出した。
 被験化合物として化合物(2)、化合物(2h)、化合物(3)、化合物(A)、化合物(B)、化合物(C)、および化合物(D)を用いた場合に得られた結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000046
試験例2:Ex vivo PDH活性化試験
(試験方法)
 被験化合物を投与した動物における組織のPDH活性化作用を評価した。p-ヨードニトロテトラゾリウムバイオレット(INT)共役系を介してNADH生成を検出することによりPDH活性を測定した。
 正常な雄性Sprague-Dawleyラットを媒体群または被験化合物群にランダムに群分けした。ラットに媒体(0.5%メチルセルロース水溶液,5mL/kg)または被験化合物を経口投与した。投与後、5または20時間後に、ペントバルビタールナトリウム60mg/kgを腹腔内投与して麻酔を施し、肝切片および副睾丸上脂肪組織を摘出した。
 摘出した肝切片に湿重量の9倍容の氷冷したホモジナイズ緩衝液(0.25mol/L スクロース、5mmol/L トリス(ヒドロキシメチル)アミノメタン塩酸塩(pH7.5)、2mmol/L EDTA)を速やかに添加し、ポリトロンホモジナイザーを用いてホモジナイズした。ホモジネートを600×g、4℃、10分間遠心して上清を回収した。上清1mLを16000×g、4℃、10分間遠心して沈殿を得た。この沈殿をホモジナイズ緩衝液1mLに再懸濁し、同様に遠心して沈殿を洗浄した。この沈殿を肝ミトコンドリア画分とし、液体窒素にて凍結後、-80℃に保存した。
 摘出した脂肪組織に湿重量の3倍容の氷冷したホモジナイズ緩衝液を速やかに添加し、ポリトロンホモジナイザーを用いてホモジナイズした。ホモジネートを600×g、4℃、10分間遠心して上清を回収した。上清全量を16000×g、4℃、10分間遠心して沈殿を得た。この沈殿をホモジナイズ緩衝液1mLに再懸濁し、同様に遠心して沈殿を洗浄した。この沈殿を脂肪組織ミトコンドリア画分とし、液体窒素にて凍結後、-80℃に保存した。
 ミトコンドリア画分を解凍し、サンプル緩衝液(0.25mol/L スクロース、20mmol/L トリス(ヒドロキシメチル)アミノメタン塩酸塩(pH7.5)、50mmol/L 塩化カリウム、1mL/L 4-(1,1,3,3-テトラメチルブチル)フェニル-ポリエチレングリコール(トリトンX-100))に懸濁した。PDH活性は活性型PDH活性(PDHa活性)と総PDH活性(PDHt活性)の2種類を測定した。PDHt活性を測定するために、ミトコンドリア懸濁液と活性化緩衝液(0.25mol/L スクロース、20mmol/L トリス(ヒドロキシメチル)アミノメタン塩酸塩(pH7.5)、50mmol/L 塩化カリウム、1mL/L トリトンX-100、4mmol/L 塩化カルシウム、40mmol/L 塩化マグネシウム、10mmol/L ジクロロ酢酸ナトリウム)を等量混合し、37℃にて10分間インキュベーションした。サンプル緩衝液で希釈したミトコンドリア懸濁液40μLを活性測定用およびブランク測定用としてそれぞれ96穴マイクロプレートに添加した。これに反応混合液(0.056mmol/L リン酸カリウム緩衝液(pH7.5)、5.6mmol/L DL-カルニチン、2.8mmol/L NAD、0.22mmol/L チアミンピロリン酸、0.11mmol/L コエンザイムA、1.1mL/L トリトンX-100、1.1mmol/L 塩化マグネシウム、1.1g/L ウシ血清アルブミン、0.67mmol/L INT、7.2μmol/L フェナジンメトサルフェート、28mmol/L オキサミド酸ナトリウム)を180μL添加した。活性測定用に50mmol/L ピルビン酸ナトリウムを、ブランク測定用に精製水をそれぞれ20μL添加し、室温、遮光下にてインキュベーションした。最終的な電子受容体であるINTの還元に起因する500-750nmにおける吸光度をマイクロプレートリーダーにて経時的に測定して吸光度変化を算出した。活性測定ウェルの吸光度変化からブランクウェルの吸光度変化を差し引いて、PDH活性とした。PDHt活性に対するPDHa活性の百分率を算出し、PDH活性化の指標とした。
 被験化合物として化合物(2h)、化合物(3)、化合物(A)、化合物(B)、化合物(C)および化合物(D)を用いた場合に得られた結果を表2、図1(肝)及び図2(脂肪組織)に示す。また、化合物(2)を用いた場合に得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
試験例3:ZDFラットにおける被験化合物反復投与のHbA1cに対する効果
(試験方法)
 精製飼料(5.9% fat diet、オリエンタル酵母工業)を供与した2型糖尿病モデルZucker Diabetic Fattyラット(雄、7週齢、日本チャールス・リバー)を血糖値、血漿中インスリン濃度、HbA1cおよび体重に差がでないように、媒体群および被験化合物群に群わけを行った。ラットに被験化合物(1mg/kg/5mL)を暗期3時間前に1日1回反復経口投与した。媒体群のラットには0.5%メチルセルロース水溶液を同様に経口投与した。投与14日目に尾静脈から採血を行い、HbA1c(%)を測定した。統計的有意性は、Dunnett法により検定し、危険率p<0.05を有意とみなした。
 被験化合物として化合物(2)および化合物(3)を用いた場合に得られた結果を以下の表4に示す。
Figure JPOXMLDOC01-appb-T000049
試験例4:hERG(human Ether-a-go-go Related Gene)ホールセルパッチクランプ試験
(試験方法)
 Human ether-a-go-go related gene(hERG)導入HEK293細胞(Cytomyx Limited)を用いて、hERG電流に及ぼす影響をホールセルパッチクランプ法により検討した。hERG導入HEK293細胞は、COインキュベーター(BNA-111、タバイエスペック株式会社)を使用し、温度37℃、炭酸ガス濃度5%、飽和湿度の設定条件下で継代培養した。培養容器には、Collagen Type I Coated 75cmフラスコ(4123-010、旭テクノグラス株式会社)およびCollagen Type I Coated 35mm培養皿(4000-010、旭テクノグラス株式会社)を使用した。培養液には10%FCS(Fetal calf serum、バイオウェスト社)、1%MEM Non-Essential Amino Acids Solution(NEAA、インビトロジェン株式会社)を添加したE-MEM(Eagle Minimum Essential Medium(Earle’s Salts、株式会社日研生物医学研究所))を使用した。これにhERG遺伝子発現細胞を選別するためのgeneticinを400μg/mLの濃度になるように加えた。測定用の細胞として、hERG電流測定の4から7日前に、35mm培養皿に3×10個のhERG導入HEK293細胞を播種した。測定用に作製する培養皿内には、上記培養液にgeneticin(インビトロジェン株式会社)を加えないものを使用した。
 各化合物の評価最高濃度は、標準細胞外液(NaCl:140mmol/L、KCl:2.5mmol/L、MgCl:2mmol/L、CaCl:2mmol/L、HEPES:10mmol/L、glucose:10mmol/L(Tris-baseを用いてpH7.4に調整))中で析出の認められなかった最高濃度から設定した。適用方法として、細胞に近接(約2mm)させた先端径約0.25mmのY-tubeにより各適用液を噴出させて細胞に適用した。噴出速度は、約0.4mL/minとした。
 実験は室温、位相差顕微鏡下にて行った。細胞を播種した35mm培養皿を測定装置にセットし、細胞に常時Y-tubeより標準細胞外液を与えた。測定用ガラス電極内には細胞内液(Potassium Gluconate:130mmol/L、KCl:20mmol/L、MgCl:1mmol/L、ATP-Mg:5mmol/L、EGTA:3.5mmol/L、HEPES:10mmol/L(Tris-baseを用いてpH7.2に調整))を充填した。細胞にconventional whole cell patch clamp法を適用し、保持電位を-80mVとした。電位固定下に全細胞電流をパッチクランプ用アンプ(AXOPATCH-200B、Axon Instruments, Inc.)により増幅し、データ取得解析ソフトウェア(pCLAMP 9.2、Axon Instruments,Inc.)を用いてデータをコンピュータ(IMC-P642400、Intermedical Co.,Ltd.)に取り込んだ。
 hERG電流の測定は次の2段階で実施した。なお、どちらの場合においてもcommand potential(保持電位-80mV、prepulse +20mV、1.5秒間、test-pulse -50mV、1.5秒間)を与えてhERG電流を惹起させた。
 工程(1):上記command potentialを0.1Hzで2分間与えた。
 工程(2):上記command potentialにpCLAMP 9.2のP/3 subtractionを行なって、leak電流を取り除き、これを3度繰り返してその平均をhERG電流とした。
 工程(1)に続いて工程(2)を行い(約3分間)、工程(2)の方法で得られたhERG電流のtest-pulseにおけるtail電流の最大値をhERG電流値とした。以後、実験終了まで(1)、(2)の操作を交互に繰り返し行い、hERG電流値を測定した。
 安定したhERG電流値を3回記録した(約10分間)後、標準細胞外液を各適用液に瞬時に交換した。適用液灌流中も同様にhERG電流値を3回測定し(約10分間)、3回目の測定で得られた電流値を適用液灌流後のhERG電流値とした。
 データは各細胞において、適用液灌流前の約10分間で記録した3回のhERG電流値の平均値(Before値)を100%とする相対値に変換した。これを2細胞について測定し、その平均値をRelative current(%)として算出した。
  Relative current(%)=100×A÷B
  A:適用液灌流後のhERG電流値
  B:適用液灌流前の約10分間で記録した3回のhERG電流値の平均値(Before値)
 また、DMSO群に対する抑制率を以下の式に従い算出した。
  抑制率(%)=100-(C÷D)×100
  C:各被験化合物群のRelative current(%)の平均値
  D:DMSO群のRelative current(%)の平均値
 被験化合物として化合物(2)、化合物(3)、化合物(A)、化合物(B)、化合物(C)および化合物(D)を用いた場合に得られた結果を表5に示す。
Figure JPOXMLDOC01-appb-T000050
試験例5:肝ミクロソーム中での代謝安定性試験
(試験方法)
 ヒトの肝ミクロソーム(Xenotech社製、H0620、終濃度(希釈後)、0.2mg protein/mL)を100mMリン酸カリウム緩衝液(pH7.4、β-nicotinamide adenine dinucleotide phosphate:1.3mM、D-glucose-6-phosphate:3.3mM、塩化マグネシウム:3.3mM、glucose-6-phosphate dehydrogenase:0.45U/mLを含む)に懸濁し、さらに、MeCN/DMSO(95/5)にて溶解した被験化合物(終濃度5μM)と混合した。混合液を37℃にて10分および60分インキュベート後、ギ酸(終濃度0.1%)を含むアセトニトリルを加え、遠心分離した上清中の被験化合物(未変化体)を高速液体クロマトグラフィー/マススペクトロメトリー(LC/MS)(Waters社製、LC:Acquity UPLC、MS:SQ Detectorまたは TQ Detector)を用いて測定した。得られた測定値より、残存率(%)を算出した。
 被験化合物として化合物(2)、化合物(3)、化合物(A)、化合物(B)、化合物(C)および化合物(D)を用いた場合に得られた結果を表6に示す。
Figure JPOXMLDOC01-appb-T000051
 本発明化合物またはその製薬上許容される塩は、PDHK阻害活性を有するので、糖尿病(1型糖尿病、2型糖尿病等)、インスリン抵抗性症候群、メタボリックシンドローム、高血糖症、高乳酸血症、糖尿病合併症(糖尿病性神経障害、糖尿病性網膜症、糖尿病性腎症、白内障等)、心不全(急性心不全、慢性心不全)、心筋症、心筋虚血症、心筋梗塞、狭心症、脂質異常症、アテローム性硬化症、末梢動脈疾患、間欠性跛行、慢性閉塞性肺疾患、脳虚血症、脳卒中、ミトコンドリア病、ミトコンドリア脳筋症、癌、肺高血圧症、またはアルツハイマー病の予防または治療のための医薬の有効成分として有用である。
 

Claims (15)

  1.  式[I]:
    Figure JPOXMLDOC01-appb-C000001
    [式中、nは1または2を示す。]
    で表される化合物またはその製薬上許容される塩。
  2.  式:
    Figure JPOXMLDOC01-appb-C000002
    で表される化合物。
  3.  式[II]:  
    Figure JPOXMLDOC01-appb-C000003
    で表される請求項2記載の化合物。
  4.  式[IIh]:
    Figure JPOXMLDOC01-appb-C000004
    で表される請求項2記載の化合物。
  5.  式[III]:  
    Figure JPOXMLDOC01-appb-C000005
    で表される化合物。
  6.  請求項1乃至5のいずれか1項に記載の化合物またはその製薬上許容される塩、および製薬上許容される担体を含む、医薬組成物。
  7.  請求項1乃至5のいずれか1項に記載の化合物またはその製薬上許容される塩を含む、PDHK阻害剤。
  8.  請求項1乃至5のいずれか1項に記載の化合物またはその製薬上許容される塩を含む、PDHK1阻害剤。
  9.  請求項1乃至5のいずれか1項に記載の化合物またはその製薬上許容される塩を含む、PDHK2阻害剤。
  10.  請求項1乃至5のいずれか1項に記載の化合物またはその製薬上許容される塩を含む、血糖低下剤。
  11.  請求項1乃至5のいずれか1項に記載の化合物またはその製薬上許容される塩を含む、乳酸低下剤。
  12.  請求項1乃至5のいずれか1項に記載の化合物またはその製薬上許容される塩を含む、糖尿病、インスリン抵抗性症候群、メタボリックシンドローム、高血糖症、高乳酸血症、糖尿病合併症、心不全、心筋症、心筋虚血症、心筋梗塞、狭心症、脂質異常症、アテローム性硬化症、末梢動脈疾患、間欠性跛行、慢性閉塞性肺疾患、脳虚血症、脳卒中、ミトコンドリア病、ミトコンドリア脳筋症、癌または肺高血圧症の予防または治療剤。
  13.  糖尿病が、1型糖尿病または2型糖尿病である請求項12記載の予防または治療剤。
  14.  糖尿病合併症が、糖尿病性神経障害、糖尿病性網膜症、糖尿病性腎症および白内障からなる群から選択される、請求項12記載の予防または治療剤。
  15.  心不全が、急性心不全または慢性心不全である請求項12記載の予防または治療剤。
PCT/JP2014/056825 2013-03-15 2014-03-14 ピラゾール-アミド化合物およびその医薬用途 WO2014142290A1 (ja)

Priority Applications (26)

Application Number Priority Date Filing Date Title
SI201430703T SI2975028T1 (en) 2013-03-15 2014-03-14 PIRAZOL-AMIDIC COMPOUNDS AND MEDICINAL USE FORM
RS20180492A RS57188B1 (sr) 2013-03-15 2014-03-14 Jedinjenje pirazol-amida i njegove medicinske upotrebe
EP18156002.0A EP3348545A1 (en) 2013-03-15 2014-03-14 Pyrazole-amide compound and medicinal uses therefor
AU2014230569A AU2014230569B2 (en) 2013-03-15 2014-03-14 Pyrazole-amide compound and medicinal uses therefor
NZ712292A NZ712292B2 (en) 2013-03-15 2014-03-14 Pyrazole-amide compound and medicinal uses therefor
LTEP14763385.3T LT2975028T (lt) 2013-03-15 2014-03-14 Pirazol-amido junginys ir jo medicininis panaudojimas
ES14763385.3T ES2663789T3 (es) 2013-03-15 2014-03-14 Compuesto de pirazol-amida y usos medicinales del mismo
CN201480016173.0A CN105051015B (zh) 2013-03-15 2014-03-14 吡唑-酰胺化合物和其医药用途
BR112015022077A BR112015022077A2 (pt) 2013-03-15 2014-03-14 composto de pirazol-amida e usos medicinais do mesmo
PL14763385T PL2975028T3 (pl) 2013-03-15 2014-03-14 Związek pirazoloamidowy i jego zastosowania medyczne
EP14763385.3A EP2975028B1 (en) 2013-03-15 2014-03-14 Pyrazole-amide compound and medicinal uses therefor
SG11201507327TA SG11201507327TA (en) 2013-03-15 2014-03-14 Pyrazole-amide compound and medicinal uses therefor
KR1020157028869A KR102226096B1 (ko) 2013-03-15 2014-03-14 피라졸-아미드 화합물 및 그의 의약 용도
CA2904985A CA2904985C (en) 2013-03-15 2014-03-14 Pyrazole-amide compound and medicinal uses therefor
RU2015144182A RU2664532C2 (ru) 2013-03-15 2014-03-14 Пиразоламидное соединение и его применения в медицине
DK14763385.3T DK2975028T3 (en) 2013-03-15 2014-03-14 PYRAZOLAMIDE COMPOUND AND MEDICAL APPLICATIONS THEREOF
MYPI2015703124A MY182884A (en) 2013-03-15 2014-03-14 Pyrazole-amide compound and medicinal uses therefor
EP20204677.7A EP3805205A1 (en) 2013-03-15 2014-03-14 Pyrazole-amide compound and medicinal uses therefor
MX2015012743A MX2015012743A (es) 2013-03-15 2014-03-14 Compuesto de pirazol-amida y sus usos farmaceuticos.
PH12015501993A PH12015501993A1 (en) 2013-03-15 2015-09-08 Pyrazole-amide compound and medicinal uses therefor
IL241355A IL241355B (en) 2013-03-15 2015-09-09 Pyrazole-amide compounds, preparations containing them and their uses
SA515361182A SA515361182B1 (ar) 2013-03-15 2015-09-15 مركب بيرازول-أميد والاستخدامات الدوائية الخاصة به
HK16103742.7A HK1215808A1 (zh) 2013-03-15 2016-04-01 吡唑-酰胺化合物和其醫藥用途
MEP-2018-110A ME03090B (me) 2013-03-15 2018-03-14 Pirazolamidni spoj i njegova upotreba u medicini
CY20181100419T CY1120173T1 (el) 2013-03-15 2018-04-20 Ενωση πυραζολο-αμιδιου και φαρμακευτικες χρησεις αυτης
HRP20180635TT HRP20180635T1 (hr) 2013-03-15 2018-04-23 Pirazolamidni spoj i njegova upotreba u medicini

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201361791164P 2013-03-15 2013-03-15
JP2013053195 2013-03-15
US61/791,164 2013-03-15
JP2013-053195 2013-03-15
JP2013-127318 2013-06-18
JP2013127318 2013-06-18

Publications (1)

Publication Number Publication Date
WO2014142290A1 true WO2014142290A1 (ja) 2014-09-18

Family

ID=51536938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056825 WO2014142290A1 (ja) 2013-03-15 2014-03-14 ピラゾール-アミド化合物およびその医薬用途

Country Status (31)

Country Link
US (4) US9040717B2 (ja)
EP (3) EP2975028B1 (ja)
JP (6) JP6208603B2 (ja)
KR (1) KR102226096B1 (ja)
CN (1) CN105051015B (ja)
AU (1) AU2014230569B2 (ja)
BR (1) BR112015022077A2 (ja)
CA (1) CA2904985C (ja)
CL (1) CL2015002608A1 (ja)
CY (1) CY1120173T1 (ja)
DK (1) DK2975028T3 (ja)
ES (1) ES2663789T3 (ja)
HK (1) HK1215808A1 (ja)
HR (1) HRP20180635T1 (ja)
HU (1) HUE036672T2 (ja)
IL (1) IL241355B (ja)
LT (1) LT2975028T (ja)
ME (1) ME03090B (ja)
MX (1) MX2015012743A (ja)
MY (1) MY182884A (ja)
NO (1) NO2975028T3 (ja)
PE (1) PE20151595A1 (ja)
PH (1) PH12015501993A1 (ja)
PL (1) PL2975028T3 (ja)
PT (1) PT2975028T (ja)
RS (1) RS57188B1 (ja)
RU (1) RU2664532C2 (ja)
SG (1) SG11201507327TA (ja)
SI (1) SI2975028T1 (ja)
TW (1) TWI633885B (ja)
WO (1) WO2014142290A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9540347B2 (en) 2015-05-29 2017-01-10 Incyte Corporation Pyridineamine compounds useful as Pim kinase inhibitors
US9550765B2 (en) 2013-01-15 2017-01-24 Incyte Holdings Corporation Thiazolecarboxamides and pyridinecarboxamide compounds useful as Pim kinase inhibitors
US9676750B2 (en) 2013-01-14 2017-06-13 Incyte Corporation Bicyclic aromatic carboxamide compounds useful as pim kinase inhibitors
US9822124B2 (en) 2014-07-14 2017-11-21 Incyte Corporation Bicyclic heteroaromatic carboxamide compounds useful as Pim kinase inhibitors
US9862705B2 (en) 2015-09-09 2018-01-09 Incyte Corporation Salts of a pim kinase inhibitor
WO2018021508A1 (ja) * 2016-07-29 2018-02-01 日本たばこ産業株式会社 ピラゾール-アミド化合物の製造方法
US9890162B2 (en) 2014-07-14 2018-02-13 Incyte Corporation Bicyclic aromatic carboxamide compounds useful as pim kinase inhibitors
US9920032B2 (en) 2015-10-02 2018-03-20 Incyte Corporation Heterocyclic compounds useful as pim kinase inhibitors
US10000507B2 (en) 2013-08-23 2018-06-19 Incyte Corporation Furo- and thieno-pyridine carboxamide compounds useful as pim kinase inhibitors
WO2020054734A1 (ja) 2018-09-11 2020-03-19 日本たばこ産業株式会社 ピラゾール-アミド化合物を含有する慢性腎臓病の治療又は予防剤
US10596161B2 (en) 2017-12-08 2020-03-24 Incyte Corporation Low dose combination therapy for treatment of myeloproliferative neoplasms
WO2020179770A1 (ja) 2019-03-04 2020-09-10 日本たばこ産業株式会社 ピラゾール-アミド化合物の非晶質固体分散体
WO2023032940A1 (ja) * 2021-09-01 2023-03-09 日本たばこ産業株式会社 含窒素三環性化合物及びその医薬用途
WO2024071629A1 (ko) * 2022-09-28 2024-04-04 (주)제이디바이오사이언스 신규한 플루오렌 유도체 및 이의 용도

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2664532C2 (ru) * 2013-03-15 2018-08-20 Джапан Тобакко Инк. Пиразоламидное соединение и его применения в медицине
CN111655692B (zh) * 2018-02-01 2023-10-10 日本烟草产业株式会社 含氮杂环酰胺化合物及其医药用途
CA3166747A1 (en) * 2020-03-04 2021-09-10 Japan Tobacco Inc. Fused tricyclic compound and medicinal use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003011844A2 (fr) * 2001-07-10 2003-02-13 Rhodia Chimie Reactif et procede pour la perfluoroalcoylation
WO2010041748A1 (ja) 2008-10-10 2010-04-15 日本たばこ産業株式会社 フルオレン化合物及びその医薬用途
WO2010123016A1 (ja) * 2009-04-22 2010-10-28 アステラス製薬株式会社 カルボン酸化合物

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI329111B (en) 2002-05-24 2010-08-21 X Ceptor Therapeutics Inc Azepinoindole and pyridoindole derivatives as pharmaceutical agents
TW200418825A (en) 2002-12-16 2004-10-01 Hoffmann La Roche Novel (R)-and (S) enantiomers of thiophene hydroxamic acid derivatives
CA2521784C (en) 2003-04-08 2012-03-27 Yeda Research And Development Co. Ltd. Reversible pegylated drugs
RU2006107371A (ru) 2004-02-20 2006-09-10 Астеллас Фарма Инк. (Jp) Флуореновые производные
FR2885904B1 (fr) 2005-05-19 2007-07-06 Aventis Pharma Sa Nouveaux derives du fluorene, compositions les contenant et utilisation
RU2007147844A (ru) * 2005-05-23 2009-06-27 Джапан Тобакко Инк. (Jp) Пиразольное соединение и содержащее его терапевтическое средство для лечения сахарного диабета
US7767685B2 (en) * 2006-06-29 2010-08-03 King Pharmaceuticals Research And Development, Inc. Adenosine A2B receptor antagonists
FR2936173B1 (fr) * 2008-09-22 2012-09-21 Snecma Procede pour la fabrication d'une piece en titane avec forgeage initial dans le domaine beta
WO2014142291A1 (ja) * 2013-03-15 2014-09-18 日本たばこ産業株式会社 フルオレン化合物の水和物、およびその結晶
RU2664532C2 (ru) * 2013-03-15 2018-08-20 Джапан Тобакко Инк. Пиразоламидное соединение и его применения в медицине
TW201536748A (zh) 2013-07-01 2015-10-01 Japan Tobacco Inc 茀-醯胺化合物及其醫藥用途
WO2015002119A1 (ja) 2013-07-01 2015-01-08 日本たばこ産業株式会社 ピラゾール-アルコール化合物およびその医薬用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003011844A2 (fr) * 2001-07-10 2003-02-13 Rhodia Chimie Reactif et procede pour la perfluoroalcoylation
WO2010041748A1 (ja) 2008-10-10 2010-04-15 日本たばこ産業株式会社 フルオレン化合物及びその医薬用途
WO2010123016A1 (ja) * 2009-04-22 2010-10-28 アステラス製薬株式会社 カルボン酸化合物

Non-Patent Citations (29)

* Cited by examiner, † Cited by third party
Title
"Benfotiamine", MONOGRAPH. ALTERN MED REV., vol. 11, no. 3, September 2006 (2006-09-01), pages 238 - 42
BODEN G; CHEN X; STEIN TP.: "Gluconeogenesis in moderately and severely hyperglycemic patients with type 2 diabetes mellitus", AM J PHYSIOL ENDOCRINOL METAB., vol. 280, no. 1, January 2001 (2001-01-01), pages E23 - 30
BONNET S; ARCHER SL; ALLALUNIS-TURNER J; HAROMY A; BEAULIEU C; THOMPSON R ET AL.: "A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth", CANCER CELL, vol. 11, no. 1, January 2007 (2007-01-01), pages 37 - 51, XP009133827, DOI: doi:10.1016/j.ccr.2006.10.020
BOWKER-KINLEY MM; DAVIS WI; WU P; HARRIS RA; POPOV KM.: "Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex", BIOCHEM J., vol. 329, 1 January 1998 (1998-01-01), pages 191 - 6
CALVERT LD; SHELLEY R; SINGH SJ; GREENHAFF PL; BANKART J; MORGAN MD ET AL.: "Dichloroacetate enhances performance and reduces blood lactate during maximal cycle exercise in chronic obstructive pulmonary disease", AM J RESPIR CRIT CARE MED., vol. 177, no. 10, 15 May 2008 (2008-05-15), pages 1090 - 4
CATERSON ID; FULLER SJ; RANDLE PJ.: "Effect of the fatty acid oxidation inhibitor 2-tetradecylglycidic acid on pyruvate dehydrogenase complex activity in starved and alloxan-diabetic rats", BIOCHEM J., vol. 208, no. 1, 15 October 1982 (1982-10-15), pages 53 - 60
FLAVIN DF.: "Non-Hodgkin's Lymphoma Reversal with Dichloroacetate", J ONCOL. HINDAWI PUBLISHING CORPORATION JOURNAL OF ONCOLOGY, vol. 2010, pages 4
JEOUNG NH; RAHIMI Y; WU P; LEE WN; HARRIS RA.: "Fasting induces ketoacidosis and hypothermia in PDHK2/PDHK4-double-knockout mice", BIOCHEM J., vol. 443, no. 3, 1 May 2012 (2012-05-01), pages 829 - 39
KARPOV,V.M. ET AL.: "SKELETAL TRANSFORMATIONS OF PERFLUORO-1-PHENYLINDAN UNDER THE ACTION OF ANTIMONYPENTAFLUORIDE", JOURNAL OF FLUORINE CHEMISTRY, vol. 107, no. 11, 2001, pages 53 - 57, XP004228143 *
KIM JW; TCHERNYSHYOV I; SEMENZA GL; DANG CV.: "HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia", CELL METAB., vol. 3, no. 3, March 2006 (2006-03-01), pages 177 - 85
MARANGOS PJ; TURKEL CC; DZIEWANOWSKA ZE; FOX AW.: "Dichloroacetate and cerebral ischaemia therapeutics", EXPERT OPIN INVESTIG DRUGS., vol. 8, no. 4, April 1999 (1999-04-01), pages 373 - 82
MAYERS RM; LEIGHTON B; KILGOUR E.: "PDH kinase inhibitors: a novel therapy for Type II diabetes?", BIOCHEM SOC TRANS., vol. 33, April 2005 (2005-04-01), pages 367 - 70, XP003021543, DOI: doi:10.1042/BST0330367
MCMURTRY MS; BONNET S; WU X; DYCK JR; HAROMY A; HASHIMOTO K ET AL.: "Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis", CIRC RES., vol. 95, no. 8, 15 October 2004 (2004-10-15), pages 830 - 40, XP003001198
MORINO K; PETERSEN KF; DUFOUR S; BEFROY D; FRATTINI J; SHATZKES N ET AL.: "Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents", J CLIN INVEST., vol. 115, no. 12, December 2005 (2005-12-01), pages 3587 - 93
PATEL MS; ROCHE TE.: "Molecular biology and biochemistry of pyruvate dehydrogenase complexes", FASEB J., vol. 4, no. 14, November 1990 (1990-11-01), pages 3224 - 33
REED LJ; HACKERT ML.: "Structure-function relationships in dihydrolipoamide acyltransferases", J BIOL CHEM., vol. 265, no. 16, 5 June 1990 (1990-06-05), pages 8971 - 4
SAXENA U.: "Bioenergetics breakdown in Alzheimer's disease: targets for new therapies", INT J PHYSIOL PATHOPHYSIOL PHARMACOL., vol. 3, no. 2, 2011, pages 133 - 9
See also references of EP2975028A4
SHANGRAW RE; FISHER DM.: "Pharmacokinetics and pharmacodynamics of dichloroacetate in patients with cirrhosis", CLIN PHARMACOL THER., vol. 66, no. 4, October 1999 (1999-10-01), pages 380 - 90
STACPOOLE PW.: "The pyruvate dehydrogenase complex as a therapeutic target for age-related diseases", AGING CELL, vol. 11, no. 3, June 2012 (2012-06-01), pages 371 - 7
STACPOOLE PW; MOORE GW; KORNHAUSER DM.: "Metabolic effects of dichloroacetate in patients with diabetes mellitus and hyperlipoproteinemia", N ENGL J MED., vol. 298, no. 10, 9 March 1978 (1978-03-09), pages 526 - 30
STACPOOLE PW; NAGARAJA NV; HUTSON AD.: "Efficacy of dichloroacetate as a lactate-lowering drug", J CLIN PHARMACOL., vol. 43, no. 7, July 2003 (2003-07-01), pages 683 - 91
SUGDEN MC; HOLNESS MJ.: "Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs", AM J PHYSIOL ENDOCRINOL METAB., vol. 284, no. 5, May 2003 (2003-05-01), pages E855 - 62, XP008101778, DOI: doi:10.1152/ajpendo.00526.2002
TANIGUCHI M; WILSON C; HUNTER CA; PEHOWICH DJ; CLANACHAN AS; LOPASCHUK GD.: "Dichloroacetate improves cardiac efficiency after ischemia independent of changes in mitochondrial proton leak", AM J PHYSIOL HEART CIRC PHYSIOL., vol. 280, no. 4, April 2001 (2001-04-01), pages H1762 - 9
USSHER JR; LOPASCHUK GD.: "The malonyl CoA axis as a potential target for treating ischaemic heart disease", CARDIOVASC RES., vol. 79, no. 2, 15 July 2008 (2008-07-15), pages 259 - 68
VALLIANOU N; EVANGELOPOULOS A; KOUTALAS P.: "Alpha-lipoic Acid and diabetic neuropathy", REV DIABET STUD., vol. 6, no. 4, 2009, pages 230 - 6
WARGOVICH TJ; MACDONALD RG; HILL JA; FELDMAN RL; STACPOOLE PW; PEPINE CJ.: "Myocardial metabolic and hemodynamic effects of dichloroacetate in coronary artery disease", AM J CARDIOL., vol. 61, no. 1, 1 January 1988 (1988-01-01), pages 65 - 70, XP023276043, DOI: doi:10.1016/0002-9149(88)91306-9
XU J; HAN J; EPSTEIN PN; LIU YQ.: "Regulation of PDK mRNA by high fatty acid and glucose in pancreatic islets", BIOCHEM BIOPHYS RES COMMUN., vol. 344, no. 3, 9 June 2006 (2006-06-09), pages 827 - 33, XP024924968, DOI: doi:10.1016/j.bbrc.2006.03.211
ZHOU YP; BERGGREN PO; GRILL V.: "A fatty acid-induced decrease in pyruvate dehydrogenase activity is an important determinant of beta-cell dysfunction in the obese diabetic db/db mouse", DIABETES, vol. 45, no. 5, May 1996 (1996-05-01), pages 580 - 6

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9676750B2 (en) 2013-01-14 2017-06-13 Incyte Corporation Bicyclic aromatic carboxamide compounds useful as pim kinase inhibitors
US10517858B2 (en) 2013-01-15 2019-12-31 Incyte Holdings Corporation Thiazolecarboxamides and pyridinecarboxamide compounds useful as PIM kinase inhibitors
US9550765B2 (en) 2013-01-15 2017-01-24 Incyte Holdings Corporation Thiazolecarboxamides and pyridinecarboxamide compounds useful as Pim kinase inhibitors
US9849120B2 (en) 2013-01-15 2017-12-26 Incyte Holdings Corporation Thiazolecarboxamides and pyridinecarboxamide compounds useful as Pim kinase inhibitors
US11229631B2 (en) 2013-01-15 2022-01-25 Incyte Corporation Thiazolecarboxamides and pyridinecarboxamide compounds useful as Pim kinase inhibitors
US10828290B2 (en) 2013-01-15 2020-11-10 Incyte Corporation Thiazolecarboxamides and pyridinecarboxamide compounds useful as pim kinase inhibitors
US10265307B2 (en) 2013-01-15 2019-04-23 Incyte Corporation Thiazolecarboxamides and pyridinecarboxamide compounds useful as Pim kinase inhibitors
US10000507B2 (en) 2013-08-23 2018-06-19 Incyte Corporation Furo- and thieno-pyridine carboxamide compounds useful as pim kinase inhibitors
US9822124B2 (en) 2014-07-14 2017-11-21 Incyte Corporation Bicyclic heteroaromatic carboxamide compounds useful as Pim kinase inhibitors
US9890162B2 (en) 2014-07-14 2018-02-13 Incyte Corporation Bicyclic aromatic carboxamide compounds useful as pim kinase inhibitors
US9802918B2 (en) 2015-05-29 2017-10-31 Incyte Corporation Pyridineamine compounds useful as Pim kinase inhibitors
US9540347B2 (en) 2015-05-29 2017-01-10 Incyte Corporation Pyridineamine compounds useful as Pim kinase inhibitors
US12043614B2 (en) 2015-09-09 2024-07-23 Incyte Corporation Salts of a Pim kinase inhibitor
US10336728B2 (en) 2015-09-09 2019-07-02 Incyte Corporation Salts of a Pim kinase inhibitor
US9862705B2 (en) 2015-09-09 2018-01-09 Incyte Corporation Salts of a pim kinase inhibitor
US11505540B2 (en) 2015-09-09 2022-11-22 Incyte Corporation Salts of a Pim kinase inhibitor
US11066387B2 (en) 2015-09-09 2021-07-20 Incyte Corporation Salts of a Pim kinase inhibitor
US11053215B2 (en) 2015-10-02 2021-07-06 Incyte Corporation Heterocyclic compounds useful as Pim kinase inhibitors
US9920032B2 (en) 2015-10-02 2018-03-20 Incyte Corporation Heterocyclic compounds useful as pim kinase inhibitors
US10450296B2 (en) 2015-10-02 2019-10-22 Incyte Corporation Heterocyclic compounds useful as Pim kinase inhibitors
WO2018021508A1 (ja) * 2016-07-29 2018-02-01 日本たばこ産業株式会社 ピラゾール-アミド化合物の製造方法
RU2736722C2 (ru) * 2016-07-29 2020-11-19 Джапан Тобакко Инк. Способ получения соединения пиразоламида
US10981877B2 (en) 2016-07-29 2021-04-20 Japan Tobacco Inc. Production method for pyrazole-amide compound
JPWO2018021508A1 (ja) * 2016-07-29 2019-05-23 日本たばこ産業株式会社 ピラゾール−アミド化合物の製造方法
JP7036724B2 (ja) 2016-07-29 2022-03-15 日本たばこ産業株式会社 ピラゾール-アミド化合物の製造方法
US11278541B2 (en) 2017-12-08 2022-03-22 Incyte Corporation Low dose combination therapy for treatment of myeloproliferative neoplasms
US10596161B2 (en) 2017-12-08 2020-03-24 Incyte Corporation Low dose combination therapy for treatment of myeloproliferative neoplasms
WO2020054734A1 (ja) 2018-09-11 2020-03-19 日本たばこ産業株式会社 ピラゾール-アミド化合物を含有する慢性腎臓病の治療又は予防剤
KR20210135266A (ko) 2019-03-04 2021-11-12 니뽄 다바코 산교 가부시키가이샤 피라졸-아미드 화합물의 비정질 고체 분산체
WO2020179770A1 (ja) 2019-03-04 2020-09-10 日本たばこ産業株式会社 ピラゾール-アミド化合物の非晶質固体分散体
WO2023032940A1 (ja) * 2021-09-01 2023-03-09 日本たばこ産業株式会社 含窒素三環性化合物及びその医薬用途
WO2024071629A1 (ko) * 2022-09-28 2024-04-04 (주)제이디바이오사이언스 신규한 플루오렌 유도체 및 이의 용도

Also Published As

Publication number Publication date
IL241355B (en) 2019-03-31
JP2019194197A (ja) 2019-11-07
JP2020189855A (ja) 2020-11-26
HK1215808A1 (zh) 2016-09-15
MY182884A (en) 2021-02-05
ES2663789T3 (es) 2018-04-17
HUE036672T2 (hu) 2018-07-30
US20180256547A1 (en) 2018-09-13
PE20151595A1 (es) 2015-11-24
RU2015144182A3 (ja) 2018-03-06
CN105051015A (zh) 2015-11-11
TWI633885B (zh) 2018-09-01
SG11201507327TA (en) 2015-10-29
SI2975028T1 (en) 2018-07-31
PL2975028T3 (pl) 2018-10-31
TW201501711A (zh) 2015-01-16
ME03090B (me) 2019-01-20
US20160074364A1 (en) 2016-03-17
PH12015501993B1 (en) 2016-01-11
LT2975028T (lt) 2018-04-10
CL2015002608A1 (es) 2016-03-04
KR102226096B1 (ko) 2021-03-09
AU2014230569A1 (en) 2015-10-08
JP2015024984A (ja) 2015-02-05
IL241355A0 (en) 2015-11-30
EP2975028A4 (en) 2016-08-17
HRP20180635T1 (hr) 2018-06-01
RU2015144182A (ru) 2017-04-24
PH12015501993A1 (en) 2016-01-11
US20200163937A1 (en) 2020-05-28
CY1120173T1 (el) 2018-12-12
CN105051015B (zh) 2018-09-25
RS57188B1 (sr) 2018-07-31
MX2015012743A (es) 2016-02-19
JP2018021061A (ja) 2018-02-08
US20140296315A1 (en) 2014-10-02
EP2975028A1 (en) 2016-01-20
EP3348545A1 (en) 2018-07-18
EP3805205A1 (en) 2021-04-14
KR20150131221A (ko) 2015-11-24
PT2975028T (pt) 2018-03-29
US9040717B2 (en) 2015-05-26
DK2975028T3 (en) 2018-03-12
BR112015022077A2 (pt) 2017-07-18
CA2904985A1 (en) 2014-09-18
EP2975028B1 (en) 2018-02-21
CA2904985C (en) 2021-07-20
JP2022000453A (ja) 2022-01-04
NO2975028T3 (ja) 2018-07-21
JP2018188449A (ja) 2018-11-29
AU2014230569B2 (en) 2017-11-23
JP6208603B2 (ja) 2017-10-04
RU2664532C2 (ru) 2018-08-20

Similar Documents

Publication Publication Date Title
JP6208603B2 (ja) ピラゾール−アミド化合物およびその医薬用途
WO2015002118A1 (ja) フルオレン-アミド化合物およびその医薬用途
EP3919498B3 (en) Pyrrolopyrimidine derivative and use thereof
WO2015002119A1 (ja) ピラゾール-アルコール化合物およびその医薬用途
WO2014142291A1 (ja) フルオレン化合物の水和物、およびその結晶
NZ712292B2 (en) Pyrazole-amide compound and medicinal uses therefor
NZ712292A (en) Pyrazole-amide compound and medicinal uses therefor
US20230310376A1 (en) Prophylactic and/or therapeutic agent for idiopathic pulmonary fibrosis
BR112015016433B1 (pt) Uso de um composto de formula (i) para tratar um disturbio associado com a tensão do dobramento incorreto da proteína

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480016173.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2014763385

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14763385

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12015501993

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2904985

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 241355

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 001993-2015

Country of ref document: PE

Ref document number: MX/A/2015/012743

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014230569

Country of ref document: AU

Date of ref document: 20140314

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201506522

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 20157028869

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015144182

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15245546

Country of ref document: CO

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015022077

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: JP

ENP Entry into the national phase

Ref document number: 112015022077

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150909