WO2014141978A1 - ポリアミド樹脂の製造方法 - Google Patents

ポリアミド樹脂の製造方法 Download PDF

Info

Publication number
WO2014141978A1
WO2014141978A1 PCT/JP2014/055699 JP2014055699W WO2014141978A1 WO 2014141978 A1 WO2014141978 A1 WO 2014141978A1 JP 2014055699 W JP2014055699 W JP 2014055699W WO 2014141978 A1 WO2014141978 A1 WO 2014141978A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
polyamide
kneading
vacuum
oligomer
Prior art date
Application number
PCT/JP2014/055699
Other languages
English (en)
French (fr)
Inventor
尚史 小田
伸幸 津中
三田寺 淳
加藤 智則
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN201480015157.XA priority Critical patent/CN105073832B/zh
Priority to JP2015505424A priority patent/JP6311699B2/ja
Priority to EP14762601.4A priority patent/EP2975075B1/en
Priority to KR1020157024390A priority patent/KR102124415B1/ko
Priority to RU2015138704A priority patent/RU2015138704A/ru
Priority to US14/775,515 priority patent/US9540485B2/en
Publication of WO2014141978A1 publication Critical patent/WO2014141978A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/482Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
    • B29B7/483Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs the other mixing parts being discs perpendicular to the screw axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/481Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with paddles, gears or discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/482Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • B29B7/489Screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/842Removing liquids in liquid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/585Screws provided with gears interacting with the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/67Screws having incorporated mixing devices not provided for in groups B29C48/52 - B29C48/66
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/765Venting, drying means; Degassing means in the extruder apparatus
    • B29C48/766Venting, drying means; Degassing means in the extruder apparatus in screw extruders
    • B29C48/767Venting, drying means; Degassing means in the extruder apparatus in screw extruders through a degassing opening of a barrel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/36Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino acids, polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/9259Angular velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • B29K2077/10Aromatic polyamides [polyaramides] or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a method for producing a polyamide resin from a polyamide oligomer using an extruder composed of a co-rotating meshing twin screw.
  • Polyamide is excellent in mechanical properties and processability and has a relatively high gas barrier property, so it can be used not only as an injection molding material for automobiles and electrical and electronic parts, but also for packaging materials such as food, beverages, chemicals and electronic parts. It is also widely used as an industrial material.
  • a polyamide obtained from a polycondensation reaction between xylylenediamine and an aliphatic dicarboxylic acid has high strength and elastic modulus, and low permeability to gaseous substances such as oxygen, carbon dioxide, odor and flavor. Therefore, it is widely used as a gas barrier material in the field of packaging materials. Further, since it has resistance and gas barrier properties against alcohol, weakly alkaline chemicals, weakly acidic chemicals, fuel, various organic solvents, industrial gases, etc., it is also widely used in industrial fields.
  • a polyamide resin for example, after polycondensation of a dicarboxylic acid component and a diamine component to obtain a polyamide, the polyamide is polymerized by a solid-phase polymerization method in a heat drying apparatus such as a tumble dryer.
  • a heat drying apparatus such as a tumble dryer.
  • the solid-phase polymerization method has a problem in that a resin having a high melting point is produced and there is a limit to increasing the molecular weight of a resin having low crystallinity, and a resin having a high melting point cannot be obtained.
  • a method of obtaining a polyamide resin by melt-kneading a polyamide oligomer obtained by polycondensation of a dicarboxylic acid component and a diamine component using an extruder having a twin screw and further polycondensing it is also known.
  • an extruder having a twin screw an oligomer can be melt-kneaded in a short time, and a polyamide resin having a high melting point can be produced, and further, a self-cleaning property enables handling of a small variety of products. is there. Therefore, various methods for producing various types of polyamide resins by an extruder using a twin screw have been studied.
  • the polymerization of polyamide oligomer is dehydration polycondensation, and a large amount of water is generated in the reaction process. Therefore, depending on the molecular weight and moisture content of the oligomer, when the polymerization reaction is carried out by a normal kneading operation using a twin screw extruder, a large amount of water may flow backward. Moreover, in the vacuum vent for making the inside of a cylinder into a negative pressure, troubles, such as clogging by the raw material sucked with water, may occur.
  • the present invention has been made in view of the above problems, and an object of the present invention is to polymerize a polyamide oligomer without causing problems in the process when an extruder composed of a twin screw is used.
  • an object of the present invention is to polymerize a polyamide oligomer without causing problems in the process when an extruder composed of a twin screw is used.
  • it is to provide a method for producing a polyamide capable of producing a polyamide resin having an appropriate molecular weight and a low yellowness.
  • the present invention provides the following (1) to (10).
  • a polyamide resin is produced by polycondensation by melt kneading
  • a method for producing a polyamide resin wherein a pressure-lowering element is provided at a position closer to a supply unit than a position where the vacuum vent is provided, and a range of 30% or less of the total screw length is a vacuum region of 300 torr or less.
  • n represents an integer of 2 to 18.
  • Ar represents an arylene group.
  • the manufacturing method of the polyamide resin of description (9) The polyamide according to any one of (1) to (8), wherein a kneading part for kneading the polyamide oligomer is provided at a position closer to the supply part than the vacuum region, and the kneading part includes a kneading element having strong dispersion and mixing properties. Manufacturing method of resin. (10) Molded from the polyamide resin produced by the method for producing a polyamide resin according to any one of (1) to (9) above, and selected from the group consisting of packaging materials, packaging containers, industrial materials and industrial parts Goods.
  • a polyamide resin can be produced from a polyamide oligomer having a predetermined molecular weight and moisture content without causing problems in the process.
  • FIG. 3A and 3B are perspective views showing a rotor used in the present invention, in which FIG. 3A shows a continuous rotor and FIG. 3B shows a discontinuous rotor. It is sectional drawing and the side view which show the SME mixing element used by this invention. It is a side view which shows the mixing gear used by this invention. It is sectional drawing and the side view which show the ZME mixing element used by this invention.
  • 1 is a schematic view showing an extruder used in Examples 1 to 6 and Comparative Example 1.
  • FIG. 6 is a schematic view showing an extruder used in Comparative Example 2.
  • FIG. 1 is a schematic view showing an extruder used in Examples 1 to 6 and Comparative Example 1.
  • FIG. 6 is a schematic view showing an extruder used in Comparative Example 2.
  • FIG. 6 is a schematic view showing an extruder used in Comparative Example 2.
  • the present invention is a method for producing a polyamide by polycondensing a polyamide oligomer to produce a polyamide resin having a higher molecular weight than that of the polyamide oligomer.
  • the polyamide oligomer used as a raw material in the present invention contains a diamine unit and a dicarboxylic acid unit.
  • the proportion of the content of the diamine unit and the dicarboxylic acid unit is preferably substantially the same from the viewpoint of the polymerization reaction, and the content of the dicarboxylic acid unit is ⁇ 2 mol% of the content of the diamine unit. More preferred.
  • the polyamide oligomer may further contain a constituent unit other than the diamine unit and the dicarboxylic acid unit as long as the effects of the present invention are not impaired.
  • the diamine unit in the polyamide oligomer is a diamine unit selected from an aromatic diamine unit represented by the following general formula (I-1) and an alicyclic diamine unit represented by the following general formula (I-2): It contains 70 mol% or more in total in the diamine unit. The content is preferably 80 mol% or more, more preferably 90 mol% or more, and the upper limit is 100 mol%.
  • Examples of the compound that can constitute the aromatic diamine unit represented by the general formula (I-1) include orthoxylylenediamine, metaxylylenediamine, and paraxylylenediamine. These can be used alone or in combination of two or more.
  • Examples of the compound that can constitute the alicyclic diamine unit represented by the general formula (I-2) include bis (amino) such as 1,3-bis (aminomethyl) cyclohexane and 1,4-bis (aminomethyl) cyclohexane. Methyl) cyclohexanes. These can be used alone or in combination of two or more.
  • the cis-isomer content ratio in the bis (aminomethyl) cyclohexane is preferably 70 mol% or more, more preferably 80 mol% or more, and still more preferably 90 mol% or more.
  • the trans content in the bis (aminomethyl) cyclohexane is preferably 50 mol% or more, more preferably 60 mol% or more, and most preferably 70 mol% or more.
  • the diamine unit in the polyamide oligomer contains at least one of an aromatic diamine unit represented by the general formula (I-1) and an alicyclic diamine unit represented by the general formula (I-2).
  • an aromatic diamine unit represented by the general formula (I-1) it preferably contains an aromatic diamine unit represented by the general formula (I-1).
  • the diamine unit in the polyamide oligomer contains 70 mol% or more of metaxylylenediamine units from the viewpoint of facilitating the moldability of a general-purpose thermoplastic resin in addition to exhibiting excellent gas barrier properties in the polyamide resin.
  • the content is more preferably 80 mol% or more, still more preferably 90 mol% or more, and the upper limit is 100 mol%.
  • Examples of the compound that can constitute a diamine unit other than the diamine unit represented by any one of formulas (I-1) and (I-2) include ethylenediamine, 1,3-propylenediamine, tetramethylenediamine, pentamethylenediamine, Straight chain aliphatic diamines having 2 to 18 carbon atoms, preferably 2 to 12 carbon atoms, such as hexamethylene diamine, heptamethylene diamine, octamethylene diamine, nonamethylene diamine, decamethylene diamine, undecamethylene diamine, dodecamethylene diamine; Aromatic diamines such as paraphenylenediamine; alicyclic diamines such as 1,3-diaminocyclohexane and 1,4-diaminocyclohexane; N-methylethylenediamine, 2-methyl-1,5-pentanediamine, 1-amino-3 -Aminomethyl-3,5,5-tri Aliphatic diamines other than linear aliphatic diamine
  • the dicarboxylic acid unit in the polyamide oligomer is a linear aliphatic dicarboxylic acid unit represented by the following general formula (II-1) from the viewpoint of reactivity during polymerization, crystallinity and moldability of the polyamide resin, and A total of 50 mol% or more of dicarboxylic acid units selected from aromatic dicarboxylic acid units represented by the general formula (II-2) are contained in the dicarboxylic acid units.
  • the content is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, and the upper limit is 100 mol%.
  • n represents an integer of 2 to 18.
  • Ar represents an arylene group.
  • the linear aliphatic dicarboxylic acid unit represented by the general formula (II-1) gives an appropriate glass transition temperature and crystallinity to the polyamide resin obtained by the present production method, for example, a packaging material or a packaging container. It is preferable at the point which can provide required softness.
  • n represents an integer of 2 to 18, preferably 3 to 16, more preferably 4 to 12, and still more preferably 4 to 8.
  • Examples of the compound that can constitute the linear aliphatic dicarboxylic acid unit represented by the general formula (II-1) include succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1,10 Examples include, but are not limited to, decanedicarboxylic acid, 1,11-undecanedicarboxylic acid, 1,12-dodecanedicarboxylic acid and the like. These can be used alone or in combination of two or more.
  • the kind of the linear aliphatic dicarboxylic acid unit represented by the general formula (II-1) is appropriately determined according to the use.
  • the linear aliphatic dicarboxylic acid unit in addition to imparting excellent gas barrier properties to the polyamide resin, from the viewpoint of maintaining heat resistance after heat sterilization of packaging materials and packaging containers, adipic acid units, sebacic acid units, and It is preferable that at least one selected from the group consisting of 1,12-dodecanedicarboxylic acid units is contained in a total of 50 mol% or more in the linear aliphatic dicarboxylic acid units, and the content is more preferably 70 mol%. Above, more preferably 80 mol% or more, particularly preferably 90 mol% or more, and the upper limit is 100 mol%.
  • the linear aliphatic dicarboxylic acid unit in the polyamide oligomer is 50 parts of the adipic acid unit in the linear aliphatic dicarboxylic acid unit from the viewpoint of the gas barrier property of the polyamide resin and the thermal properties such as an appropriate glass transition temperature and melting point. It is preferable to contain more than mol%. Further, the linear aliphatic dicarboxylic acid unit in the polyamide oligomer is 50 mol% or more of the sebacic acid unit in the linear aliphatic dicarboxylic acid unit from the viewpoint of imparting appropriate gas barrier properties and moldability to the polyamide resin. It is preferable to include.
  • the linear aliphatic dicarboxylic acid unit may contain 50 mol% or more of 1,12-dodecanedicarboxylic acid units. preferable.
  • the aromatic dicarboxylic acid unit represented by the general formula (II-2) is capable of facilitating molding processability of packaging materials and packaging containers in addition to imparting further gas barrier properties to the polyamide resin.
  • Ar represents an arylene group.
  • the arylene group is preferably an arylene group having 6 to 30 carbon atoms, more preferably 6 to 15 carbon atoms, and examples thereof include a phenylene group and a naphthylene group.
  • Examples of the compound that can constitute the aromatic dicarboxylic acid unit represented by the general formula (II-2) include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, and the like, but are not limited thereto. Absent. These can be used alone or in combination of two or more.
  • the type of the aromatic dicarboxylic acid unit represented by the general formula (II-2) is appropriately determined according to the use.
  • the aromatic dicarboxylic acid unit in the polyamide oligomer contains at least one selected from the group consisting of an isophthalic acid unit, a terephthalic acid unit, and a 2,6-naphthalenedicarboxylic acid unit in a total of 50 moles in the aromatic dicarboxylic acid unit.
  • the content is 70 mol% or more, more preferably 80 mol% or more, particularly preferably 90 mol% or more, and the upper limit is 100 mol%.
  • at least one of isophthalic acid and terephthalic acid is preferably included in the aromatic dicarboxylic acid unit.
  • the content ratio of the isophthalic acid unit to the terephthalic acid unit is not particularly limited and is appropriately determined according to the application.
  • the molar ratio is preferably 0/100 to 100/0, more preferably 0/100 to 60/40, More preferably, it is 0/100 to 40/60, and most preferably 0/100 to 30/70.
  • the content ratio of the linear aliphatic dicarboxylic acid unit and the aromatic dicarboxylic acid unit is not particularly limited, It is determined appropriately according to the application.
  • the total of both units of the linear aliphatic dicarboxylic acid unit / aromatic dicarboxylic acid unit is 100.
  • the molar ratio is preferably 0/100 to 60/40, more preferably 0/100 to 40/60, and still more preferably 0/100 to 30/70.
  • the linear aliphatic dicarboxylic acid unit / aromatic dicarboxylic acid unit is 100
  • the molar ratio is preferably 40/60 to 100/0, more preferably 60/40 to 100/0, still more preferably 70/30 to 100/0.
  • Compounds that can constitute dicarboxylic acid units other than the dicarboxylic acid unit represented by the general formula (II-1) or (II-2) include oxalic acid, malonic acid, fumaric acid, maleic acid, 1,3-benzene.
  • Examples of the dicarboxylic acid include diacetic acid and 1,4-benzenediacetic acid, but are not limited thereto.
  • relative viscosity and moisture content of polyamide oligomer As an index representing the molecular weight of the polyamide oligomer or the polyamide resin described later, there is a relative viscosity.
  • the relative viscosity of the polyamide oligomer is 1.1 to 1.3.
  • the polyamide oligomer has a water content of 3% by mass or less. In the present invention, when the relative viscosity and the water content are within the above ranges, the polyamide oligomer can be polymerized and the polyamide resin can be produced without causing problems in the process by the production method described later.
  • the moisture content of the polyamide oligomer as a raw material is preferably 2.5% by mass or less, more preferably 1.8% by mass or less.
  • the moisture content is not particularly limited, but is preferably 0.5% by mass or more, and more preferably 1.0% by mass or more from the viewpoint of increasing the efficiency of the process, such as drying the oligomer in a short time.
  • the yellowness degree of the polyamide oligomer which is a raw material of the present invention is preferably 10 or less, more preferably 7 or less. By reducing the yellowness of the raw material polyamide oligomer, the yellowness of the produced polyamide resin can be improved.
  • the polyamide oligomer in the present invention is obtained by polycondensation reaction of a diamine component corresponding to the diamine unit of the polyamide resin and a dicarboxylic acid component corresponding to the dicarboxylic unit.
  • the polycondensation reaction is performed by, for example, a melt polycondensation method. Specifically, a method of performing a polycondensation reaction by heating a nylon salt composed of a dicarboxylic acid component and a diamine component in the presence of water under pressure. At this time, the reaction may be performed while dehydrating the condensed water as necessary.
  • the obtained polyamide oligomer can be finally separated from water by flashing or the like to obtain a powdery polyamide oligomer.
  • the melt polycondensation method may also include a method in which a diamine component is directly added to a molten dicarboxylic acid component and polycondensed. In this case, in order to keep the reaction system in a uniform liquid state, the diamine component is continuously added to the dicarboxylic acid component, while the reaction system is heated up so that the reaction temperature does not fall below the melting point of the generated polyamide oligomer. The polycondensation proceeds. Moreover, you may pressurize a reaction system while dripping a diamine component. Further, the polyamide oligomer may be appropriately dried after the polycondensation reaction and adjusted so as to have the above moisture content.
  • the polyamide oligomer used as a raw material is preferably obtained by polycondensation of a dicarboxylic acid component and a diamine component in the presence of a phosphorus atom-containing compound.
  • a phosphorus atom containing compound is mix
  • Examples of the phosphorus atom-containing compound include phosphinic acid compounds such as dimethylphosphinic acid and phenylmethylphosphinic acid; hypophosphorous acid, sodium hypophosphite, potassium hypophosphite, lithium hypophosphite, magnesium hypophosphite, Diphosphite compounds such as calcium hypophosphite and ethyl hypophosphite; phosphonic acid, sodium phosphonate, potassium phosphonate, lithium phosphonate, potassium phosphonate, magnesium phosphonate, calcium phosphonate, phenylphosphonic acid, ethylphosphone Phosphonic acid compounds such as acid, sodium phenylphosphonate, potassium phenylphosphonate, lithium phenylphosphonate, diethyl phenylphosphonate, sodium ethylphosphonate, potassium ethylphosphonate; phosphonous acid, sodium phosphonite, phosphorous acid Lithium phosphonate, potassium
  • Phosphonic acid compounds Phosphonic acid compounds; phosphorous acid, sodium hydrogen phosphite, sodium phosphite, lithium phosphite, potassium phosphite, magnesium phosphite, calcium phosphite, triethyl phosphite, triphenyl phosphite, pyro-subite
  • Examples thereof include phosphorous acid compounds such as phosphoric acid.
  • hypophosphorous acid metal salts such as sodium hypophosphite, calcium hypophosphite, potassium hypophosphite, lithium hypophosphite, etc. are particularly effective in promoting the polycondensation reaction, and also in preventing coloration. Since it is excellent, it is preferably used, and sodium hypophosphite is particularly preferable.
  • the phosphorus atom containing compound which can be used by this invention is not limited to these compounds.
  • the compounding amount of the phosphorus atom-containing compound is preferably 10 to 500 ppm, more preferably 20 to 300 ppm in terms of phosphorus atom concentration in the polyamide oligomer. If it is 10 ppm or more, the polycondensation reaction proceeds at an appropriate rate, and coloring is unlikely to occur during the polycondensation reaction. If it is 500 ppm or less, the polyamide oligomer and the polyamide resin are not easily gelled, and it is possible to reduce the mixing of fish eyes considered to be caused by the phosphorus atom-containing compound, and the appearance of the molded product is improved.
  • the polyamide oligomer as a raw material may be obtained by polycondensation in the presence of an alkali metal compound in addition to the phosphorus atom-containing compound.
  • an alkali metal compound in addition to the phosphorus atom-containing compound.
  • the gelation of the polyamide oligomer or the polyamide resin may be caused in some cases. There is a risk of inviting. Therefore, by blending an alkali metal compound in addition to the phosphorus atom-containing compound, the amidation reaction rate can be adjusted and gelation can be prevented.
  • alkali metal hydroxide alkali metal hydroxide, alkali metal acetate, alkali metal carbonate, alkali metal alkoxide, and the like are preferable.
  • Specific examples of the alkali metal compound that can be used in the present invention include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, lithium acetate, sodium acetate, potassium acetate, rubidium acetate, cesium acetate.
  • Sodium methoxide, sodium ethoxide, sodium propoxide, sodium butoxide, potassium methoxide, lithium methoxide, sodium carbonate and the like but can be used without being limited to these compounds.
  • the range of .05 to 1.0 / 1.5 is preferable, more preferably 1.0 / 0.1 to 1.0 / 1.2, and still more preferably 1.0 / 0.2 to 1.0. /1.1.
  • the polyamide resin obtained in the production method of the present invention has the same diamine unit as that of the polyamide oligomer and a dicarboxylic acid unit. Moreover, units other than the diamine unit and the dicarboxylic acid unit may optionally be included as in the polyamide oligomer.
  • the polyamide resin can be sufficiently polymerized and its relative viscosity can be increased.
  • the relative viscosity of the polyamide resin obtained by the production method of the present invention is preferably 1.8 to 4.0, more preferably 2.0 to 3.5. If the relative viscosity is 1.8 or more, the polyamide resin obtained in the present invention can be used without causing the problem of moldability due to insufficient melt viscosity during molding. Moreover, if relative viscosity is 4.0 or less, the polyamide resin obtained by this invention can be utilized, without producing the problem of the moldability by the melt viscosity at the time of a shaping
  • Mw / Mn molecular weight distribution
  • the polyamide resin obtained in the present invention has a relatively low degree of dispersion.
  • Mw / Mn is preferably 1.8 to 2.5, and more preferably 1.8 to 2.3. If the molecular weight distribution is 1.8 or more, there is no particular problem in moldability, and if the molecular weight distribution is 2.5 or less, there are few low molecular weight components, etc., color changes during molding at high temperatures, and molding There is little color change during high-temperature processing of the body, and it has excellent heat resistance and impact resistance.
  • the polyamide resin obtained in the present invention is sufficiently dehydrated and has a low moisture content.
  • the moisture content is preferably 0.3% or less, more preferably 0.1% or less.
  • a moisture content will be 0.01% or more, for example.
  • the moisture content mentioned here is a value measured in the case of cooling by air cooling (air cooling type).
  • the cooling method of the strand-shaped resin obtained by extruding from the extruder mentioned later includes an air cooling type and a water cooling type cooling with a water bath, it is not limited to these.
  • the water cooling type it is possible to rapidly cool, but a drying step may be required.
  • the drying process can be omitted, but a cooling distance is required.
  • the polyamide resin obtained by the present invention has little heat history due to heating, and can suppress the yellowness to a low value.
  • the yellowness is preferably 30 or less, and more preferably 25 or less.
  • melting point of polyamide resin In the present invention, even a polyamide resin having a high melting point can be produced by the production method described later.
  • the melting point of the polyamide resin is, for example, 220 ° C. or higher. However, in the present invention, a polyamide resin having a melting point of 300 ° C. or higher can be produced.
  • the melting point of the polyamide resin is usually 380 ° C. or lower, preferably 360 ° C. or lower. In the present specification, the melting point refers to the temperature of the peak on the high temperature side unless otherwise specified when the polyamide resin has two melting point peaks.
  • the polyamide resin of the present invention is a packaging container for storing and storing various products such as various liquid beverages, various liquid foods, liquid pharmaceuticals, liquid daily necessities, etc .; various foods, various pharmaceuticals, various daily necessities, various electronic materials , Gasoline, various agricultural chemicals, various organic solvents and other packaging materials, industrial materials such as fibers and CFRP; fuel tanks for automobiles, fuel tubes, connectors, sliding parts, radiator tanks, engine mounts, connectors It can be molded into articles such as parts, backlight light sources for liquid crystal displays, semiconductor substrate parts, casings of mobile phones and personal computers, and industrial parts such as metal substitute parts.
  • the polyamide oligomer is polycondensed using an extruder to obtain a polyamide resin.
  • the extruder used in the present invention is an extruder comprising a co-rotating meshing twin screw and has at least one open vent and at least one vacuum vent.
  • the extruder has a pressure-lowering element that increases the filling rate of the resin or oligomer in a portion closer to the supply unit than the position where the vacuum vent is provided, and the range of 30% or less of the total screw length is 300 torr or less. It is intended to be a vacuum region.
  • FIG. 1 is a schematic view showing an example of an extruder used in the present invention.
  • the extruder used in the present invention includes a supply unit A having a supply port such as a hopper at the most upstream position, and a plurality of kneading units B1 disposed downstream of the supply unit A for kneading or mixing the resin. To B4 and a die D arranged at the most downstream position.
  • the extruder has conveying units E1 to E5 for conveying the resin between the supply unit A and the kneading unit B1, between the kneading units B1 to B4, and between the kneading unit B4 and the die D. .
  • FIG. 1 is a schematic view showing an example of an extruder used in the present invention.
  • the extruder used in the present invention includes a supply unit A having a supply port such as a hopper at the most upstream position, and a plurality of kneading
  • kneading parts B1 to B4 are shown, but the present invention is not limited to this. However, it is preferable that one or more kneading parts are present upstream from the vacuum area VA described later, more preferably two or more kneading parts are present, and there may be three or more kneading parts. . Specifically, the number may be three as shown in FIG. 1, four, or more. Moreover, it is preferable that the vacuum area VA also has one or more kneading parts.
  • an extruder composed of a co-rotating meshing type twin screw is an extruder having a self-cleaning property in which two screws rotate in the same direction in a cylinder and the meshing ratio is 1.2 to 1.7. Machine.
  • the polyamide oligomer as a raw material is supplied from the supply unit A, and the raw material supplied from the supply unit A is heated and sent to the die D through the conveying units E1 to E5 and the kneading units B1 to B4. It is done.
  • the polyamide oligomer is heated and melted in the conveying parts E1 to E5 and the kneading parts B1 to B4, and is polycondensed by being kneaded in the kneading parts B1 to B4, thereby increasing the degree of polymerization.
  • the polyamide oligomer used as a raw material is supplied from the supply part A in a powder form, a particle form, or a pellet form.
  • the interior of the extruder is at least partially set at a temperature higher than the melting point of the polyamide resin to be produced, and from the die D
  • the resin temperature to be extruded is set higher than the melting point of the produced polyamide resin.
  • the internal temperature of the extruder may all be set constant, but may have a relatively low temperature region and a relatively high temperature region. For example, as the polymerization reaction proceeds, the softening temperature of the polyamide increases and the heat resistance also improves, so the most upstream region is set to a relatively low temperature, and the other regions are set to relatively high temperatures. It may be set.
  • the temperature on the upstream side should be slightly higher, the temperature on the middle part should be lower, and the downstream side should be set higher than the upstream side. Also good. Furthermore, when it is necessary to prevent heat degradation of the polyamide as much as possible, the resin pressure is stabilized by lowering the temperature on the downstream side to near the softening temperature at which there is no problem with the polyamide, so that the strand can be pulled out. May be stabilized.
  • the portion corresponding to each of the kneading parts B1 to B4 includes a kneading element X and a pressure-lowering element Y downstream of the kneading element X.
  • the kneading element X is appropriately selected from a kneading disk, a rotor, a mixing element, or a mixing gear.
  • the kneading element X may be a single kneading element X by combining two or more of these elements.
  • the pressure-lowering element Y has a pressure-lowering ability and increases the filling rate of the resin or oligomer in the kneading element X in each of the kneading parts B1 to B4, and is constituted by a reverse screw type full flight, a sealing disk, or the like. In each kneading part, the pressure-lowering element Y increases the filling rate of the resin or oligomer in the portion corresponding to the kneading element X, so that the kneading element X can appropriately mix and disperse the resin or oligomer.
  • voltage fall element Y can be made into a vacuum area
  • the part corresponding to the conveying units E1 to E5 is composed of a feed screw such as a full flight screw element.
  • the screw shape may be a single thread, a double thread, or a triple thread, but the double thread is the most versatile.
  • the extruder includes open vents OV1 and OV2 and vacuum vents VV1 and VV2.
  • the open vents OV1 and OV2 are arranged on the upstream side (supply part A side), and the vacuum vents VV1 and VV2 are arranged on the downstream side (die D side).
  • the vacuum vent is sucked by a vacuum pump or the like, and makes the inside of the extruder have a negative pressure.
  • the vacuum vent VV1 is disposed in the transport unit E4 between the kneading units B3 and B4, and the vacuum vent VV2 is disposed in the transport unit E5 between the kneading unit B4 and the die D.
  • the region downstream of the pressure-lowering element Y of the kneading unit B3 and from the conveying unit E4 to the end on the die D side is made the vacuum region VA by the vacuum vents VV1 and VV2.
  • the number and arrangement position of the vacuum vents in FIG. 1 are merely examples, and the present invention is not limited to this. The number and arrangement positions may be such that the vacuum area VA can have a predetermined length and a predetermined degree of vacuum. Good.
  • At least one of the vacuum vents is 25% or less of the total screw length from the end of the die D side of the extruder. It is preferable to be provided within the range.
  • the open vents OV1 and OV2 are provided between the kneading units B1 and B2 and the conveying units E2 and E3 between the kneading units B2 and B3, but at a position closer to the supply unit A than the vacuum region VA. If it exists and it arrange
  • two vents that are upstream from the vacuum region VA are open vented to the two most upstream transport units.
  • an open vent may be provided in each subsequent transport unit.
  • the two upstream conveying parts are not provided with oven vents, while the two downstream conveying parts
  • An open vent may be provided in the part.
  • the polyamide oligomer in the present invention has a low molecular weight, the reaction proceeds relatively fast in the upstream portion of the extruder, and a large amount of water is generated. Since a large amount of water is extracted from the oven vents OV1 and OV2 provided on the upstream side, dehydration proceeds appropriately, and the presence of water prevents the polycondensation reaction from being hindered.
  • the resin or oligomer has a low moisture content and a high molecular weight in the downstream portion of the extruder, but the downstream portion of the extruder is in the vacuum region VA, so that the moisture content is appropriately lowered under the negative pressure. The reaction proceeds.
  • the polyamide oligomer is completely melted before reaching at least the most upstream open vent OV1. In this way, the polyamide oligomer is melted before reaching the open vent OV1, so that water can be actively removed from the open vent OV1 without blocking the open vent with the powdered oligomer.
  • the vacuum region VA is in a range of 30% or less of the total screw length.
  • the range of the vacuum area VA is larger than 30%, the oligomer or resin is sent to the vacuum area VA without being melted or dehydrated, and the vacuum vent may be clogged.
  • the length of the vacuum region VA is more preferably 27% or less of the total screw length.
  • the length of the vacuum region VA is preferably 10% or more of the total screw length.
  • the degree of vacuum in the vacuum region VA is kept at 300 torr or less.
  • the degree of vacuum in the vacuum region VA is greater than 300 torr, the oligomer is not sufficiently dehydrated and the water content of the resulting polyamide resin cannot be sufficiently reduced.
  • the polycondensation reaction of the polyamide resin cannot proceed appropriately, and the molecular weight may not be sufficiently increased.
  • the yellowness (YI) of the polyamide resin may be increased.
  • the degree of vacuum in the vacuum region VA is preferably 200 torr or less, and more preferably 180 torr or less. By setting the degree of vacuum below these upper limit values, the moisture content of the polyamide resin can be further reduced, and the polycondensation reaction can be further promoted.
  • the lower limit of the degree of vacuum is not particularly limited, but is usually 1 torr or more depending on the characteristics of the apparatus.
  • the region upstream of the vacuum region VA in the extruder is a region where the pressure is higher than 300 torr, but is usually a normal pressure region that is not substantially negative pressure. In this region, an inert gas such as nitrogen is usually supplied from the supply unit A.
  • the degree of vacuum is measured at each vacuum vent.
  • the vacuum vent VV1 uses a negative pressure at the transport unit E4 and the kneading unit B4, and the degree of vacuum measured at the vacuum vent VV1 is the vacuum of the transport unit E4 and the kneading unit B4.
  • the vacuum vent VV2 has a negative pressure inside the conveyance unit E5 and the die D, and the degree of vacuum measured by the vacuum vent VV2 is the degree of vacuum inside the conveyance unit E5 and the die D.
  • substance mixing is divided into dispersive mixing and distributed mixing.
  • Dispersive mixing refers to mixing with particle size reduction, i.e., particle fragmentation
  • distributed mixing refers to mixing by position exchange between particles.
  • strong dispersion mixing means mixing where the mixing mode involving crushing of the polyamide oligomer or resin is dominant
  • strong distribution mixing means mixing mode by position exchange of the polyamide oligomer or resin. Means dominant mixing but does not mean that dispersive mixing does not occur when dispersive mixing occurs, or that dispersive mixing does not occur when distributive mixing occurs.
  • elements having strong dispersion and mixing include kneading disks having a wide disk width (see FIG. 2), rotors (see FIG. 3), etc., but are not limited thereto. Absent.
  • the kneading disk is a combination of a plurality of disks, and the kneading disk having a wide disk width has a ratio W / D of the disk width W to the screw diameter D of 0.15 or more. 5 or less.
  • the mixing element shown in FIG. 4 and the mixing gear shown in FIG. 5 can be mentioned, but the invention is not limited to these.
  • the mixing element shown in FIG. 4 is an SME mixing element provided with a notch in a full-flight disk with a positive thread, but the mixing element is a ZME provided with a notch in a full-flight disk with a reverse thread shown in FIG. It may be a mixing element. Further, the mixing gear may or may not have a self-cleaning property.
  • the rotor has a feature that it can apply a uniform shear stress to the material, although the maximum shear stress applied to the material is smaller than that of the kneading disk. Therefore, as described above, both the distribution mixing property and the dispersion mixing property are relatively strong.
  • the rotor is a continuous type formed so that the cross section is smoothly continuous as shown in FIG. 3A, the cross section is formed discontinuously as shown in FIG. 3B. It may be a discontinuous type.
  • the kneading element X in the kneading section (kneading sections B1 to B3 in FIG. 1) upstream from the vacuum area VA is preferably selected from the elements having strong dispersion and mixing properties described above.
  • a wide kneading disk is more preferable.
  • one or more kneading parts may be constituted by a kneading disk having a wide disk width, but all the kneading parts are constituted by a kneading disk having a wide disk width.
  • a kneading disk having a wide disk width used in the kneading element X upstream of the vacuum region VA preferably has a ratio W / D of 0.2 or more, and more preferably 0.3 or more.
  • W / D a ratio of 0.2 or more, and more preferably 0.3 or more.
  • the kneading element X of the kneading part (kneading part B4 in FIG. 1) in the vacuum region VA is preferably an element having a strong distribution and mixing property as described above, and more preferably a rotor.
  • the kneading part in the vacuum region VA a screw having a strong distribution and mixing property, it is possible to prevent excessive heat generation by applying excessive shearing force to the polyamide resin or oligomer, and thereby, YI Can be suppressed.
  • gelation etc. are prevented and molecular weight falls are also prevented.
  • kneading parts composed of elements with strong distribution and mixing properties
  • region VA for example, is the kneading part B4 in the example of FIG.
  • an element having a strong distribution mixing property is provided at a predetermined position on the downstream side, so that the balance between the dispersion mixing and the distribution mixing becomes good. Therefore, as described above, an excessive shearing force is prevented from being applied to the resin, and a high-quality polyamide resin having a high molecular weight, a low moisture content, and a moderately narrow molecular weight distribution can be produced.
  • the relative viscosity, moisture content, yellowness, glass transition temperature and melting point of the polyamide oligomer and polyamide resin, and the molecular weight and molecular weight distribution of the polyamide resin were measured as follows.
  • Relative viscosity 0.2 g of polyamide oligomer or polyamide resin was precisely weighed and dissolved in 20 ml of 96% sulfuric acid at 20-30 ° C. with stirring. After completely dissolving, 5 ml of the solution was quickly taken into a Cannon Fenceke viscometer, and allowed to stand in a constant temperature bath at 25 ° C. for 10 minutes, and then the drop time (t) was measured. Further, the dropping time (t 0 ) of 96% sulfuric acid itself was measured in the same manner.
  • the relative viscosity was calculated from t and t 0 according to the following formula.
  • Relative viscosity t / t 0
  • Moisture content Using a trace moisture measuring device AQ-2000 manufactured by Hiranuma Sangyo Co., Ltd., measurement was performed under a nitrogen atmosphere at 230 ° C. for 30 minutes.
  • Mw / Mn The number average molecular weight (Mn), the weight average molecular weight (Mw), and the molecular weight distribution (Mw / Mn) can be determined by gel permeation chromatography (GPC). Specifically, “HLC-8320GPC” manufactured by Tosoh Corporation was used as an apparatus, and two “TSK gel Super HM-H” manufactured by Tosoh Corporation were used as columns.
  • hexafluoroisopropanol having a sodium trifluoroacetate concentration of 10 mmol / L is used as the eluent, the resin or oligomer concentration is 0.02% by mass, the column temperature is 40 ° C., the flow rate is 0.3 ml / min, and the refractive index is detected.
  • the molecular weight distribution was measured under the conditions of the vessel (RI). In addition, the molecular weight of resin and oligomer was calculated
  • the polyamide oligomer used as a raw material for the polyamide resin was produced by the methods of Production Examples 1 to 7 below.
  • Production Example 1 (Production of polyamide oligomer 1) Pressure capacity of internal volume 50L equipped with stirrer, partial pressure reducer, total pressure reducer, pressure regulator, thermometer, dripping tank and pump, aspirator, nitrogen introduction pipe, bottom exhaust valve, and receiving pot for flushing oligomer
  • the temperature was raised to 220 ° C.
  • the internal pressure at this time was 2.3 MPa. Stirring was continued for 2 hours while maintaining the internal pressure at 2.3 MPa at 220 ° C. Then, after the stirring was stopped, the ball valve of the bottom discharge valve was opened to normal pressure in 90 seconds, and the slurry-like oligomer was flushed and taken out into the receiving pot. Thereafter, it was dried in a vacuum dryer at 150 ° C. for 5 hours to obtain 18 kg of powdered N-1,4-BAC6 oligomer (polyamide oligomer 1). The concentration of the phosphorus atom-containing compound in the polyamide oligomer 1 was 300 ppm in terms of phosphorus atom concentration.
  • Production Example 2 (Production of polyamide oligomer 2) Production Example 1 except that sebacic acid (produced by Ito Oil Co., Ltd.) was used as the dicarboxylic acid component, and 1,4-bisaminomethylcyclohexane (produced by Guangei Chemical Industry Co., Ltd.) having a trans ratio of 80 mol% was used as the diamine component. Similarly, a powdery N-1,4-BAC10 oligomer was obtained (polyamide oligomer 2). The concentration of the phosphorus atom-containing compound in the polyamide oligomer 2 was 300 ppm in terms of phosphorus atom concentration.
  • Production Example 3 (Production of polyamide oligomer 3) 1,3-bisaminomethylcyclohexane (manufactured by Mitsubishi Gas Chemical Co., Inc.) having a cis ratio of 70 mol% was used as the diamine component, sodium hypophosphite was used instead of calcium hypophosphite, and sodium hypophosphite 15.8 g (0.149 mol) and powdered N-1,3-BAC6 oligomer was obtained in the same manner as in Production Example 1 except that sodium acetate was used in an amount of 9.76 g (0.119 mol) (polyamide oligomer 3).
  • the concentration of the phosphorus atom-containing compound in the polyamide oligomer 3 was 300 ppm in terms of phosphorus atom concentration.
  • Production Example 4 (Production of polyamide oligomer 4) Powdered N-PXD10 oligomer in the same manner as in Production Example 1 except that paraxylylenediamine (manufactured by Showa Denko KK) was used as the diamine component, and sebacic acid (manufactured by Ito Oil Co., Ltd.) was used as the dicarboxylic acid component. (Polyamide oligomer 4) was obtained. The concentration of the phosphorus atom-containing compound in the polyamide oligomer 4 was 300 ppm in terms of phosphorus atom concentration.
  • Production Example 5 (Production of polyamide oligomer 5) Except for using 1,3-bisaminomethylcyclohexane (Mitsubishi Gas Chemical Co., Ltd.) with a cis ratio of 70 mol% as the diamine component and using high-purity terephthalic acid (Mizukushima Aroma Co., Ltd.) as the dicarboxylic acid component.
  • a powdered N-1,3-BACT oligomer was obtained (polyamide oligomer 5).
  • the concentration of the phosphorus atom-containing compound in the polyamide oligomer 5 was 300 ppm in terms of phosphorus atom concentration.
  • Production Example 6 (Production of polyamide oligomer 6) Metaxylylenediamine (Mitsubishi Gas Chemical Co., Ltd.) is used as the diamine component, adipic acid (Asahi Kasei Co., Ltd.) is used as the dicarboxylic acid component, and sodium hypophosphite is used instead of calcium hypophosphite.
  • a powdered N-MXD6 oligomer was obtained in the same manner as in Production Example 1 except that 0.0735 mol of sodium acid and 0.0588 mol of sodium acetate were used (polyamide oligomer 6).
  • the concentration of the phosphorus atom-containing compound in the polyamide oligomer 6 was 150 ppm in terms of phosphorus atom concentration.
  • Production Example 7 (Production of polyamide oligomer 7) A powdered N-1,4-BAC6 oligomer was obtained (polyamide oligomer 7) in the same manner as in Production Example 1, except that the drying condition in the vacuum dryer was 150 ° C. for 2 hours.
  • Table 1 shows the measurement results of the relative viscosity, moisture content, and yellowness of polyamide oligomers 1-7.
  • the polyamide oligomers 1 to 7 were polycondensed by melt kneading using an extruder to obtain a polyamide resin.
  • HYPERTKTX30 manufactured by Kobe Steel, Ltd. in which a plurality of barrels are assembled to form one extruder, was used.
  • This extruder is composed of a co-rotating meshing type twin screw, L / D (L: screw length, D: screw diameter) is 74.4, and the cylinder major axis ⁇ when the cylinder is viewed from the front is It was 30 mm.
  • Example 1 As shown in FIG. 7, the extruder is formed by connecting 20 barrels (including the die D) to a barrel provided with a hopper and provided with a supply unit A. Open vents OV1 to OV3 are provided in the sixth, seventh, and tenth barrels from the part A side, and vacuum vents VV1 and VV2 are provided in the sixteenth and eighteenth barrels, respectively.
  • the 3, 5, and 9 barrels were each provided with a kneading disk element having a wide disk width on the screw, and a reverse screw type full flight was connected downstream thereof to form kneading parts B1 to B3.
  • the 13th to 15th barrels were provided with kneading disk elements on their screws, and a reverse screw type full flight was connected to the most downstream side to form one kneading section B4.
  • the seventeenth barrel was provided with a rotor on its screw and connected with a reverse screw type full flight on the downstream side thereof to form a kneading part B5.
  • the barrel 16 to the barrel 20 became the vacuum region VA, and the length thereof was 25% of the total screw length.
  • the screw in the barrel other than the kneading parts B1 to B5 was a double-threaded flight screw element, and constituted a conveying part.
  • the polyamide oligomer 1 was introduced from the hopper of the supply unit A using a feeder, and further, dry nitrogen was constantly flowed from the hopper to carry out reactive extrusion, whereby a polyamide resin 1 was obtained.
  • the resin outlet temperature was 306 ° C.
  • the extrusion conditions were as follows.
  • Example 2 A polyamide resin 2 was obtained in the same manner as in Example 1 except that the polyamide oligomer 2 was used and the reactive extrusion was carried out under the following extrusion conditions.
  • the resin outlet temperature was 316 ° C.
  • ⁇ Extrusion conditions> Feeder amount: 20 kg / h Screw rotation speed: 200rpm
  • Set temperature (° C.): C1 / C2 / C3 to C16 / C17 to C19 / C20 240/300/300/290/290 Vacuum degree of vacuum vents VV1 and VV2: 100 torr
  • Example 3 A polyamide resin 3 was obtained in the same manner as in Example 1 except that the polyamide oligomer 3 was used and reactive extrusion was carried out under the following extrusion conditions.
  • the resin outlet temperature was 245 ° C.
  • ⁇ Extrusion conditions> Feeder amount: 10 kg / h Screw rotation speed: 100rpm
  • Set temperature (° C.): C1 / C2 / C3 to C16 / C17 to C19 / C20 220/250/250/240/240 Vacuum degree of vacuum vents VV1 and VV2: 100 torr
  • Example 4 A polyamide resin 4 was obtained in the same manner as in Example 1 except that the polyamide oligomer 4 was used and reactive extrusion was carried out under the following extrusion conditions.
  • the resin outlet temperature was 302 ° C.
  • ⁇ Extrusion conditions> Feeder amount: 20 kg / h Screw rotation speed: 200rpm
  • Set temperature (° C.): C1 / C2 / C3 to C16 / C17 to C19 / C20 260/300/300/290/290 Vacuum vent VV1, VV2: 90 torr
  • Example 5 A polyamide resin 5 was obtained in the same manner as in Example 1 except that the polyamide oligomer 5 was used and reactive extrusion was carried out under the following extrusion conditions.
  • the resin outlet temperature was 362 ° C.
  • ⁇ Extrusion conditions> Feeder amount: 10 kg / h Screw rotation speed: 100rpm
  • Set temperature (° C.): C1 / C2 / C3 to C16 / C17 to C19 / C20 320/350/350/350/350 Vacuum degree of vacuum vents VV1 and VV2: 160 torr
  • Example 6 A polyamide resin 6 was obtained in the same manner as in Example 1 except that the polyamide oligomer 6 was used and reactive extrusion was carried out under the following extrusion conditions.
  • the resin outlet temperature was 262 ° C.
  • ⁇ Extrusion conditions> Feeder amount: 30 kg / h Screw rotation speed: 200rpm
  • Set temperature (° C.): C1 / C2 / C3 to C16 / C17 to C19 / C20 240/260/260/240/240 Vacuum degree of vacuum vents VV1 and VV2: 96 torr
  • Comparative Example 1 Reactive extrusion was attempted in the same manner as in Example 1 except that polyamide oligomer 7 was used and reactive extrusion was performed under the following extrusion conditions. However, due to the large amount of water in the polyamide oligomer, a large amount of water is ejected from the open vent, and water vapor flows backward in the hopper direction, so that the powdered oligomer is vented up in the extruder and solidified and extruded. There wasn't.
  • the extruder is formed by connecting 20 barrels (including the die D) to a barrel provided with a hopper and provided with a supply unit A.
  • the open vent VO1 was provided with vacuum vents VV1 to VV4 in the seventh, tenth, thirteenth and sixteenth barrels, respectively.
  • the third, sixth, ninth and twelfth barrels are each provided with a kneading disk element having a wide disk width on the screw, and connected with a reverse screw type full flight downstream thereof to form kneading sections B1 to B4. .
  • a rotor was provided on the screw at the 15th barrel position, and a reverse screw type full flight was connected downstream thereof to obtain a kneading part B5.
  • the barrels 7 to 20 became the vacuum region VA, and the length thereof was 70% of the total screw length.
  • the screw in the barrel other than the kneading parts B1 to B5 was a double-threaded flight screw element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Polyamides (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

相対粘度が1.1~1.3で、水分率が3wt%以下であるポリアミドオリゴマーを、少なくとも1つ以上のオープンベントOV1,OV2及び少なくとも1つ以上の真空ベントVV1,VV2を有し、同方向回転かみ合い型二軸スクリューを備える押出機を用いて、溶融混練により、重縮合してポリアミド樹脂を製造する。真空ベントVV1,VV2を設けた位置よりも供給部側の部分に樹脂の充満率を高めるための降圧エレメントYを設け、かつ全スクリュー長さの30%以下の範囲を300torr以下の真空領域VAとする。

Description

ポリアミド樹脂の製造方法
 本発明は、同方向回転かみ合い型二軸スクリューからなる押出機を用いて、ポリアミドオリゴマーからポリアミド樹脂を製造する方法に関する。
 ポリアミドは機械物性や加工性に優れ、かつ比較的高いガスバリア性を有することから、自動車や電気電子部品などの射出成形材料としてはもちろんのこと、食品、飲料、薬品、電子部品等の包装資材や工業材料としても幅広く利用されている。例えば、キシリレンジアミンと脂肪族ジカルボン酸との重縮合反応から得られるポリアミドは、高い強度と弾性率を有するとともに、酸素、炭酸ガス、臭気及びフレーバー等のガス状物質に対して透過性が低いことから、包装材料分野におけるガスバリア材料として広く利用されている。また、アルコール、弱アルカリ性薬品、弱酸性薬品、燃料、各種有機溶剤、工業用ガスなどに対しても耐性及びガスバリア性があるため、工業用分野の材料でも広く利用されている。
 ポリアミド樹脂の製造方法は、種々知られており、例えば、ジカルボン酸成分と、ジアミン成分を重縮合してポリアミドを得た後、タンブルドライヤー等の加熱乾燥装置で、固相重合法によりポリアミドの重合度を上げる方法が知られている。しかし、固相重合法では、高融点の樹脂を製造する際や、結晶性の低い樹脂を高分子量化するには限界があり、高い融点の樹脂を得られない等の問題がある。
 一方で、ジカルボン酸成分と、ジアミン成分を重縮合して得たポリアミドオリゴマーを、二軸スクリューを有する押出機を用いて溶融混練して、さらに重縮合させてポリアミド樹脂を得る方法も知られている(例えば、特許文献1参照)。二軸スクリューを有する押出機では、短時間でオリゴマーが溶融混練できるとともに、高融点のポリアミド樹脂でも生産可能であり、さらには、セルフクリーニング性により少量多品種の製品を取り扱うことができるというメリットがある。そのため、様々な種類のポリアミド樹脂に対して、二軸スクリューを用いた押出機により製造する方法が種々検討されている。
特開2012-188557号公報
 しかし、ポリアミドオリゴマーの重合は、脱水重縮合であり、その反応過程で水が大量に発生する。したがって、オリゴマーの分子量や水分率によっては、二軸スクリューの押出機を用いた通常の混練操作でその重合反応を行うと、大量に発生した水が逆流することがある。また、シリンダー内を負圧とするための真空ベントにおいて、水とともに吸引された原料により目詰まりが発生する等の不具合が発生することがある。
 本発明は以上の問題点に鑑みて成されたものであり、本発明の課題は、二軸スクリューからなる押出機を用いた場合に、工程上の不具合を発生させること無く、ポリアミドオリゴマーを重合させて、適切な分子量を有し、かつ黄色度の低いポリアミド樹脂を製造することできるポリアミドの製造方法を提供することである。
 本発明者らは、鋭意検討の結果、真空ベントから吸引されて形成されるシリンダー内の真空領域に着目し、オリゴマーの分子量及び水分率が一定の範囲となる場合には、真空領域の長さを所定の範囲に設定することによって、工程上の不具合を生じさせることなくポリアミド樹脂を製造することを見出し、以下の本発明に至った。
 すなわち、本発明は、以下の(1)~(10)を提供するものである。
(1)下記一般式(I-1)で表される芳香族ジアミン単位、及び下記一般式(I-2)で表わされる脂環族ジアミン単位から選択されるジアミン単位を70モル%以上含むジアミン単位と、下記一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位、及び下記一般式(II-2)で表わされる芳香族ジカルボン酸単位から選択されるジカルボン酸単位を50モル%以上含むジカルボン酸単位を含有するポリアミドオリゴマーを重縮合して、ポリアミド樹脂を製造するポリアミド樹脂の製造方法であって、
 該製造方法では、相対粘度が1.1~1.3で、水分率が3質量%以下であるポリアミドオリゴマーを、少なくとも1つ以上のオープンベント及び少なくとも1つ以上の真空ベントを有し、同方向回転かみ合い型二軸スクリューを備える押出機を用いて、溶融混練により、重縮合してポリアミド樹脂を製造し、
 前記真空ベントを設けた位置よりも供給部側の位置に降圧エレメントを設け、かつ全スクリュー長さの30%以下の範囲を300torr以下の真空領域とする、ポリアミド樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000002
[一般式(II-1)中、nは2~18の整数を表す。一般式(II-2)中、Arはアリーレン基を表す。]
(2)ポリアミド樹脂の相対粘度が1.8~4.0となる上記(1)に記載のポリアミド樹脂の製造方法。
(3)ポリアミド樹脂の分子量分布(Mw/Mn)が1.8~2.5となる上記(1)又は(2)に記載のポリアミド樹脂の製造方法。
(4)前記ポリアミドオリゴマーが、リン原子濃度10~500ppmでリン化合物が配合されたものである上記(1)~(3)のいずれかに記載のポリアミド樹脂の製造方法。
(5)前記オープンベントを前記真空領域よりも供給部側に配置する上記(1)~(4)のいずれかに記載のポリアミド樹脂の製造方法。
(6)前記真空領域、及び前記真空領域よりも供給部側の位置それぞれに前記ポリアミドオリゴマーを混練する混練部を設ける上記(1)~(5)のいずれかに記載のポリアミド樹脂の製造方法。
(7)前記押出機のダイ側端部から全スクリュー長さの25%以下の範囲内に、少なくとも1つ以上の真空ベントを設ける上記(1)~(6)のいずれかに記載のポリアミド樹脂の製造方法。
(8)前記押出機のダイ側端部から全スクリュー長さの25%以下の範囲内に、分配混合性の強い混練エレメントを有する混練部を設ける上記(1)~(7)のいずれかに記載のポリアミド樹脂の製造方法。
(9)前記真空領域よりも供給部側の位置に前記ポリアミドオリゴマーを混練する混練部を設け、該混練部が分散混合性の強い混練エレメントを備える上記(1)~(8)に記載のポリアミド樹脂の製造方法。
(10)上記(1)~(9)のいずれかに記載のポリアミド樹脂の製造方法により製造されたポリアミド樹脂から成形され、包装材料、包装容器、工業材料及び工業用部品からなる群から選択される物品。
 本発明では、所定の分子量及び水分率を有するポリアミドオリゴマーから、工程上の不具合を生じさせることなくポリアミド樹脂を製造することができる。
本発明で使用する押出機を示す概略図である。 本発明で使用されるニーディングディスクを示す斜視図である。 本発明で使用されるローターを示す斜視図であって、図3(a)が連続型のローターを、図3(b)が不連続型のローターを示す。 本発明で使用されるSMEミキシングエレメントを示す断面図及び側面図である。 本発明で使用されるミキシングギアを示す側面図である。 本発明で使用されるZMEミキシングエレメントを示す断面図及び側面図である。 実施例1~6及び比較例1で使用した押出機を示す概略図である。 比較例2で使用した押出機を示す概略図である。
 本発明は、ポリアミドオリゴマーを重縮合して、ポリアミドオリゴマーよりも高分子量のポリアミド樹脂を製造するポリアミドの製造方法である。
 以下、本発明についてさらに詳細に説明する。
<ポリアミドオリゴマー>
 本発明において原料となるポリアミドオリゴマーは、ジアミン単位と、ジカルボン酸単位を含有するものである。
 ジアミン単位とジカルボン酸単位との含有量の割合は、重合反応の観点から、ほぼ同量であることが好ましく、ジカルボン酸単位の含有量がジアミン単位の含有量の±2モル%であることがより好ましい。ジカルボン酸単位の含有量がジアミン単位の含有量の±2モル%の範囲となると、ポリアミド樹脂の重合度が上がりやすく、重合が比較的短時間で済み、熱劣化が生じにくい。
 ポリアミドオリゴマーは、本発明の効果を損なわない範囲で、ジアミン単位及びジカルボン酸単位以外の構成単位を更に含んでいてもよい。
[ジアミン単位]
ポリアミドオリゴマー中のジアミン単位は、下記一般式(I-1)で表される芳香族ジアミン単位、及び下記一般式(I-2)で表される脂環族ジアミン単位から選ばれるジアミン単位を、ジアミン単位中に合計で70モル%以上含む。当該含有量は、好ましくは80モル%以上、より好ましくは90モル%以上であり、その上限値は100モル%である。
Figure JPOXMLDOC01-appb-C000003
 一般式(I-1)で表される芳香族ジアミン単位を構成しうる化合物としては、オルトキシリレンジアミン、メタキシリレンジアミン、及びパラキシリレンジアミンが挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。
 一般式(I-2)で表される脂環族ジアミン単位を構成しうる化合物としては、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン等のビス(アミノメチル)シクロヘキサン類が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。
 ビス(アミノメチル)シクロヘキサン類は、構造異性体を持つが、cis体比率を高くすることで、ポリアミド樹脂は、結晶性が高くなり、成形性も良好となる。一方、cis体比率を低くすれば、結晶性が低い、透明なポリアミド樹脂が得られる。したがって、結晶性を高くしたい場合は、ビス(アミノメチル)シクロヘキサン類におけるcis体含有比率を70モル%以上とすることが好ましく、より好ましくは80モル%以上、更に好ましくは90モル%以上とする。一方、結晶性を低くしたい場合は、ビス(アミノメチル)シクロヘキサン類におけるtrans体含有比率を50モル%以上とすることが好ましく、より好ましくは60モル%以上、最も好ましくは70モル%以上とする。
 本発明では、ポリアミドオリゴマー中のジアミン単位として、一般式(I-1)で表される芳香族ジアミン単位、及び一般式(I-2)で表される脂環族ジアミン単位の少なくとも一方を含むことで、得られるポリアミド樹脂に優れたガスバリア性を付与するとともに、透明性や色調を向上させ、成形性も良好にすることができる。また、酸素吸収性能やポリアミド樹脂の性状を良好にできる観点からは、一般式(I-1)で表される芳香族ジアミン単位を含むことが好ましい。
 ポリアミドオリゴマー中のジアミン単位は、ポリアミド樹脂に優れたガスバリア性を発現させることに加え、汎用的な熱可塑性樹脂の成形性を容易にする観点から、メタキシリレンジアミン単位を70モル%以上含むことが好ましく、当該含有量は、より好ましくは80モル%以上、更に好ましくは90モル%以上であり、その上限値は100モル%である。
 式(I-1)及び(I-2)のいずれかで表されるジアミン単位以外のジアミン単位を構成しうる化合物としては、エチレンジアミン、1,3-プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン等の炭素数2~18、好ましくは炭素数2~12の直鎖脂肪族ジアミン;パラフェニレンジアミン等の芳香族ジアミン;1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン等の脂環族ジアミン;N-メチルエチレンジアミン、2-メチル-1,5-ペンタンジアミン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン等の直鎖脂肪族ジアミン以外の脂肪族ジアミン;ハンツマン社製のジェファーミンやエラスタミン(いずれも商品名)に代表されるエーテル結合を有するポリエーテル系ジアミン等を例示できるが、これらに限定されるものではない。これらは単独で又は2種以上を組み合わせて用いることができる。
[ジカルボン酸単位]
 ポリアミドオリゴマー中のジカルボン酸単位は、重合時の反応性、並びにポリアミド樹脂の結晶性及び成形性の観点から、下記一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位、及び下記一般式(II-2)で表される芳香族ジカルボン酸単位から選ばれるジカルボン酸単位を、ジカルボン酸単位中に合計で50モル%以上含む。当該含有量は、好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90モル%以上であり、その上限値は100モル%である。
Figure JPOXMLDOC01-appb-C000004
[前記一般式(II-1)中、nは2~18の整数を表す。前記一般式(II-2)中、Arはアリーレン基を表す。]
 一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位は、本製造方法により得られるポリアミド樹脂に適度なガラス転移温度や結晶性を付与することに加え、例えば包装材料や包装容器として必要な柔軟性を付与できる点で好ましい。
 一般式(II-1)中、nは2~18の整数を表し、好ましくは3~16、より好ましくは4~12、更に好ましくは4~8である。
 一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位を構成しうる化合物としては、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,10-デカンジカルボン酸、1,11-ウンデカンジカルボン酸、1,12-ドデカンジカルボン酸等を例示できるが、これらに限定されるものではない。これらは単独で又は2種以上を組み合わせて用いることができる。
 一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位の種類は用途に応じて適宜決定される。直鎖脂肪族ジカルボン酸単位は、ポリアミド樹脂に優れたガスバリア性を付与することに加え、包装材料や包装容器の加熱殺菌後の耐熱性を保持する観点から、アジピン酸単位、セバシン酸単位、及び1,12-ドデカンジカルボン酸単位からなる群から選ばれる少なくとも1つを、直鎖脂肪族ジカルボン酸単位中に合計で50モル%以上含むことが好ましく、当該含有量は、より好ましくは70モル%以上、更に好ましくは80モル%以上、特に好ましくは90モル%以上であり、また、上限値は100モル%である。
 ポリアミドオリゴマー中の直鎖脂肪族ジカルボン酸単位は、ポリアミド樹脂のガスバリア性及び適切なガラス転移温度や融点等の熱的性質の観点からは、アジピン酸単位を直鎖脂肪族ジカルボン酸単位中に50モル%以上含むことが好ましい。また、ポリアミドオリゴマー中の直鎖脂肪族ジカルボン酸単位は、ポリアミド樹脂に適度なガスバリア性及び成形加工適性を付与する観点からは、セバシン酸単位を直鎖脂肪族ジカルボン酸単位中に50モル%以上含むことが好ましい。また、ポリアミド樹脂が低吸水性、耐候性、耐熱性を要求される用途に用いられる場合は、1,12-ドデカンジカルボン酸単位を直鎖脂肪族ジカルボン酸単位中に50モル%以上含むことが好ましい。
 一般式(II-2)で表される芳香族ジカルボン酸単位は、ポリアミド樹脂に更なるガスバリア性を付与することに加え、包装材料や包装容器の成形加工性を容易にすることができる点で好ましい。
 一般式(II-2)中、Arはアリーレン基を表す。アリーレン基は、好ましくは炭素数6~30、より好ましくは炭素数6~15のアリーレン基であり、例えば、フェニレン基、ナフチレン基等が挙げられる。
 一般式(II-2)で表される芳香族ジカルボン酸単位を構成しうる化合物としては、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸等を例示できるが、これらに限定されるものではない。これらは単独で又は2種以上を組み合わせて用いることができる。
 一般式(II-2)で表される芳香族ジカルボン酸単位の種類は用途に応じて適宜決定される。ポリアミドオリゴマー中の芳香族ジカルボン酸単位は、イソフタル酸単位、テレフタル酸単位、及び2,6-ナフタレンジカルボン酸単位からなる群から選ばれる少なくとも1つを、芳香族ジカルボン酸単位中に合計で50モル%以上含むことが好ましく、当該含有量は、より好ましくは70モル%以上、更に好ましくは80モル%以上、特に好ましくは90モル%以上であり、また、上限値は100モル%である。また、これらの中でもイソフタル酸及びテレフタル酸の少なくとも一方を芳香族ジカルボン酸単位中に含むことが好ましい。イソフタル酸単位とテレフタル酸単位との含有比(イソフタル酸単位/テレフタル酸単位)は、特に制限はなく、用途に応じて適宜決定される。例えば、適度なガラス転移温度や結晶性を下げる観点からは、両単位の合計を100としたとき、モル比で好ましくは0/100~100/0、より好ましくは0/100~60/40、更に好ましくは0/100~40/60、最も好ましくは0/100~30/70である。
 ポリアミドオリゴマー中のジカルボン酸単位において、上記した直鎖脂肪族ジカルボン酸単位と芳香族ジカルボン酸単位との含有比(直鎖脂肪族ジカルボン酸単位/芳香族ジカルボン酸単位)は、特に制限はなく、用途に応じて適宜決定される。例えば、ポリアミド樹脂のガラス転移温度を上げて、ポリアミド樹脂の結晶性を低下させることを目的とした場合、直鎖脂肪族ジカルボン酸単位/芳香族ジカルボン酸単位は、両単位の合計を100としたとき、モル比で好ましくは0/100~60/40、より好ましくは0/100~40/60、更に好ましくは0/100~30/70である。
 また、ポリアミド樹脂のガラス転移温度を下げてポリアミド樹脂に柔軟性を付与することを目的とした場合、直鎖脂肪族ジカルボン酸単位/芳香族ジカルボン酸単位は、両単位の合計を100としたとき、モル比で好ましくは40/60~100/0、より好ましくは60/40~100/0、更に好ましくは70/30~100/0である。
 一般式(II-1)又は(II-2)で表されるジカルボン酸単位以外のジカルボン酸単位を構成しうる化合物としては、シュウ酸、マロン酸、フマル酸、マレイン酸、1,3-ベンゼン二酢酸、1,4-ベンゼン二酢酸等のジカルボン酸を例示できるが、これらに限定されるものではない。
[ポリアミドオリゴマーの相対粘度・水分率]
 ポリアミドオリゴマーや後述するポリアミド樹脂の分子量を表す指標としては、相対粘度がある。本発明において、ポリアミドオリゴマーの相対粘度は1.1~1.3となるものである。また、ポリアミドオリゴマーは、その水分率が3質量%以下となるものである。本発明では、相対粘度及び水分率が上記範囲内になることで、後述する製造方法により工程上の不具合を生じさせることなく、ポリアミドオリゴマーを高分子化して、ポリアミド樹脂を製造することができる。
 例えば、水分率が3質量%より高くなる場合や相対粘度を1.1より低くすると、ポリアミド樹脂の製造過程で、押出機のオープンベントから大量の水が噴出したり、供給部側に水蒸気が逆流したりし、さらにはオリゴマーがシリンダー内で固化して押出ができなくなる等の不具合が生じる。また、相対粘度1.3より大きくなるようにオリゴマーの分子量を簡便な方法で上げるのは難しい。
 本発明において、原料となるポリアミドオリゴマーの水分率は、好ましくは2.5質量%以下、より好ましくは1.8質量%以下である。また、この水分率は、特に限定されないが、オリゴマーの乾燥を短時間にできる等、工程の効率化の観点から、0.5質量%以上が好ましく、1.0質量%以上がより好ましい。
[ポリアミドオリゴマーの黄色度]
 本発明の原料であるポリアミドオリゴマーの黄色度は、好ましくは10以下、より好ましくは7以下である。原料ポリアミドオリゴマーの黄色度を低くすることで、製造されるポリアミド樹脂の黄色度も良好なものとすることができる。
[ポリアミドオリゴマーの製造方法]
 本発明におけるポリアミドオリゴマーは、ポリアミド樹脂のジアミン単位に対応するジアミン成分と、ジカルボン単位に対応するジカルボン酸成分とを、重縮合反応することにより得られるものである。
 重縮合反応は例えば溶融重縮合法により行われる。具体的には、ジカルボン酸成分と、ジアミン成分とからなるナイロン塩を、水の存在下、加圧下で加熱して重縮合反応を行う方法が挙げられる。このとき、必要に応じて縮合水を脱水しつつ反応を行ってもよい。また、得られたポリアミドオリゴマーは、最終的に、フラッシュ等により水から分離して、粉状のポリアミドオリゴマーを得ることが可能である。
 また、溶融重縮合法としては、ジアミン成分を溶融状態のジカルボン酸成分に直接加えて、重縮合する方法を挙げることもできる。この場合、反応系を均一な液状状態に保つために、ジアミン成分をジカルボン酸成分に連続的に加え、その間、反応温度が生成するポリアミドオリゴマーの融点よりも下回らないように反応系を昇温しつつ重縮合が進められる。また、ジアミン成分を滴下する間、反応系を加圧してもよい。
 また、ポリアミドオリゴマーは、重縮合反応の後に適宜乾燥等されて、上記した水分率となるように調整されてもよい。
[リン原子含有化合物、アルカリ金属化合物]
 原料となるポリアミドオリゴマーは、ジカルボン酸成分と、ジアミン成分が、リン原子含有化合物存在下、重縮合して得られたものであることが好ましい。このように、ポリアミドオリゴマー製造前にリン原子含有化合物が配合されると、ポリアミドオリゴマー及びポリアミド樹脂を製造する際の重合性を良好にできるとともに、ポリアミドオリゴマー及びポリアミド樹脂の着色を防止することができる。
 リン原子含有化合物としては、ジメチルホスフィン酸、フェニルメチルホスフィン酸等のホスフィン酸化合物;次亜リン酸、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム、次亜リン酸マグネシウム、次亜リン酸カルシウム、次亜リン酸エチル等のジ亜リン酸化合物;ホスホン酸、ホスホン酸ナトリウム、ホスホン酸カリウム、ホスホン酸リチウム、ホスホン酸カリウム、ホスホン酸マグネシウム、ホスホン酸カルシウム、フェニルホスホン酸、エチルホスホン酸、フェニルホスホン酸ナトリウム、フェニルホスホン酸カリウム、フェニルホスホン酸リチウム、フェニルホスホン酸ジエチル、エチルホスホン酸ナトリウム、エチルホスホン酸カリウム等のホスホン酸化合物;亜ホスホン酸、亜ホスホン酸ナトリウム、亜ホスホン酸リチウム、亜ホスホン酸カリウム、亜ホスホン酸マグネシウム、亜ホスホン酸カルシウム、フェニル亜ホスホン酸、フェニル亜ホスホン酸ナトリウム、フェニル亜ホスホン酸カリウム、フェニル亜ホスホン酸リチウム、フェニル亜ホスホン酸エチル等の亜ホスホン酸化合物;亜リン酸、亜リン酸水素ナトリウム、亜リン酸ナトリウム、亜リン酸リチウム、亜リン酸カリウム、亜リン酸マグネシウム、亜リン酸カルシウム、亜リン酸トリエチル、亜リン酸トリフェニル、ピロ亜リン酸等の亜リン酸化合物等が挙げられる。
 これらの中でも特に次亜リン酸ナトリウム、次亜リン酸カルシウム、次亜リン酸カリウム、次亜リン酸リチウム等の次亜リン酸金属塩が、重縮合反応を促進する効果が高くかつ着色防止効果にも優れるため好ましく用いられ、特に次亜リン酸ナトリウムが好ましい。なお、本発明で使用できるリン原子含有化合物はこれらの化合物に限定されない。
 リン原子含有化合物の配合量は、ポリアミドオリゴマー中のリン原子濃度換算で10~500ppmであることが好ましく、より好ましくは20~300ppmである。10ppm以上であれば、適切な速度で重縮合反応が進むとともに、重縮合反応中に着色が生じにくい。500ppm以下であれば、ポリアミドオリゴマーやポリアミド樹脂がゲル化しにくく、また、リン原子含有化合物に起因すると考えられるフィッシュアイの成形品中への混入も低減でき、成形品の外観が良好となる。
 原料となるポリアミドオリゴマーは、リン原子含有化合物に加えてアルカリ金属化合物存在下で、重縮合して得られたものであってもよい。
 ポリアミド樹脂及びポリアミドオリゴマーの着色を防止するためには、十分な量のリン原子含有化合物を存在させる必要があるが、リン原子含有化合物があると、場合によってはポリアミドオリゴマーやポリアミド樹脂のゲル化を招くおそれがある。そのため、リン原子含有化合物に加えてアルカリ金属化合物を配合することで、アミド化反応速度を調整し、ゲル化を防ぐことができる。
 アルカリ金属化合物としては、アルカリ金属水酸化物やアルカリ金属酢酸塩、アルカリ金属炭酸塩、アルカリ金属アルコキシド等が好ましい。本発明で用いることのできるアルカリ金属化合物の具体例としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸ルビジウム、酢酸セシウム、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムプロポキシド、ナトリウムブトキシド、カリウムメトキシド、リチウムメトキシド、炭酸ナトリウム等が挙げられるが、これらの化合物に限定されることなく用いることができる。なお、ポリアミドオリゴマーにおけるリン原子含有化合物とアルカリ金属化合物の比率(モル比)は、重合速度制御の観点や、黄色度を低減する観点から、リン原子含有化合物/アルカリ金属化合物=1.0/0.05~1.0/1.5の範囲が好ましく、より好ましくは、1.0/0.1~1.0/1.2、更に好ましくは、1.0/0.2~1.0/1.1である。
<ポリアミド樹脂>
 本発明の製造方法において得られるポリアミド樹脂は、ポリアミドオリゴマーと同様のジアミン単位と、ジカルボン酸単位とを有する。また、ポリアミドオリゴマーと同様に、任意でジアミン単位及びジカルボン酸単位以外の単位も含んでいてもよい。
[ポリアミド樹脂の分子量]
 本発明の後述する製造方法によれば、ポリアミド樹脂は、十分に高分子化でき、その相対粘度を高めることができる。本発明の製造方法で得たポリアミド樹脂の相対粘度は、好ましくは1.8~4.0であり、より好ましくは2.0~3.5である。相対粘度が1.8以上であれば、成形加工時の溶融粘度不足に起因する成形性の問題を生じさせることなく、本発明で得たポリアミド樹脂を利用できる。また、相対粘度が4.0以下であれば、成形加工時の溶融粘度が高すぎることによる成形性の問題を生じさせることなく、本発明で得たポリアミド樹脂を利用できる。
[ポリアミド樹脂の分散度]
 ポリアミド樹脂の分散度を示す指標としては分子量分布(Mw/Mn)がある。本発明で得られるポリアミド樹脂は、その分散度が比較的低くなるものである。具体的には、Mw/Mnは、好ましくは1.8~2.5となるものであり、より好ましくは1.8~2.3である。分子量分布が1.8以上であれば、成形性に特に問題がなく、分子量分布が2.5以下であれば、低分子量成分等が少なく、高温下での成形時の色の変化や、成形体の高温加工における色の変化が少ないと共に耐熱性や耐衝撃性に優れる。
[ポリアミド樹脂の水分率]
 本発明で得られるポリアミド樹脂は、後述するように、脱水が十分に進み水分率が低くなる。水分率は、具体的には、好ましくは0.3%以下、より好ましくは0.1%以下である。また、水分率は、効率的にポリアミド樹脂を製造するために、例えば0.01%以上となるものである。ここで言う水分率は空冷による冷却を行った場合(空冷式)において測定した値である。
 なお、後述する押出機から押し出して得られたストランド状の樹脂の冷却方法には、空冷式と水浴により冷却する水冷式などが挙げられるが、これらに限定されるものではない。水冷式の場合、急冷することが可能であるが、乾燥工程が必要になる場合がある。空冷式の場合、乾燥工程を省くことが可能であるが、冷却距離が必要となる。
[ポリアミド樹脂の黄色度]
 本発明で得られるポリアミド樹脂は、加熱による熱履歴が少なく、その黄色度を低い値に抑えることができる。具体的には、黄色度は30以下が好ましく、25以下がより好ましい。
[ポリアミド樹脂の融点]
 本発明では、後述する製造方法により、融点が高いポリアミド樹脂であっても製造可能となる。ポリアミド樹脂の融点は、例えば220℃以上であるが、本発明では、融点が300℃以上のポリアミド樹脂を製造することもできる。ポリアミド樹脂の融点は、通常、380℃以下、好ましくは360℃以下である。なお、本明細書でいう融点とは、ポリアミド樹脂が2つの融点ピークを有する場合、特に言及のない限り、高温側のピークの温度をいう。
 本発明のポリアミド樹脂は、例えば、各種液体飲料、各種液体系食品、液状の医薬品、液状の日用品等の各種製品を収納し保存する包装容器;各種食料品、各種医薬品、各種日用品、各種電子材料、ガソリン、各種農薬、各種有機溶媒等、種々の製品を包装する包装材料、繊維、CFRP等の工業材料;自動車等の燃料タンク、燃料チューブ、コネクター、摺動部品、ラジエータタンク、エンジンマウント、コネクター部品等や液晶ディスプレイ用のバックライト光源、半導体基板部品、携帯電話・パソコン等の筺体、金属代替部品等の工業用部品等の物品に成形可能である。
<ポリアミド樹脂の製造方法>
 本発明では、押出機を用いて上記のポリアミドオリゴマーを重縮合して、ポリアミド樹脂を得るものである。本発明で使用される押出機は、同方向回転かみ合い型二軸スクリューからなる押出機であって、少なくとも1つ以上のオープンベント及び少なくとも1つ以上の真空ベントを有する。また、押出機は、その真空ベントを設けた位置よりも供給部側の部分に樹脂ないしオリゴマーの充満率を高める降圧エレメントを有し、かつ全スクリュー長さの30%以下の範囲を300torr以下の真空領域とするものである。以下、本発明の製造方法を図面を参照しつつより詳細に説明する。
 図1は、本発明で使用される押出機の一例を示した概略図である。
 本発明で使用する押出機は、最も上流側の位置にホッパー等の供給口を備える供給部Aと、供給部Aより下流側に配置され、樹脂を混練ないし混合するための複数の混練部B1~B4と、最も下流側の位置に配置されるダイDとを有する。また、押出機は、供給部Aと混練部B1の間、各混練部B1~B4の間、及び混練部B4とダイDとの間に、樹脂を搬送するための搬送部E1~E5を有する。なお、図1の例では、混練部B1~B4を4つ示すがこれに限定されるわけではなく、1つ以上であればいくつあってもよい。
 ただし、後述する真空領域VAより上流側に、1つ以上の混練部があることが好ましく、2つ以上の混練部があることがより好ましく、3つ以上の多数の混練部があってもよい。具体的には、図1のように3つであってもよいし、4つであってもよいし、それ以上であってもよい。また、真空領域VAにも、1つ以上の混練部があることが好ましい。
 一般的に同方向回転かみ合い型二軸スクリューからなる押出機は、シリンダー内において、二本のスクリューが同方向に回転し、かみ合い比が1.2~1.7で、セルフクリーニング性を有する押出機である。
 本発明では、原料となるポリアミドオリゴマーが、供給部Aより供給され、その供給部Aより供給された原料は、加熱されつつ搬送部E1~E5、混練部B1~B4を通ってダイDまで送られる。ここで、ポリアミドオリゴマーは、搬送部E1~E5、混練部B1~B4において加熱されて溶融され、かつ混練部B1~B4で混練されることにより重縮合して、重合度が高められ、ポリアミド樹脂としてダイDから押し出される。
 本発明では、特に限定されないが、原料となるポリアミドオリゴマーは、粉状、粒子状、あるいは、ペレット状で供給部Aより供給される。
 ポリアミド樹脂ないしオリゴマーが溶融、混練され、適切に押出ができるようにするために、押出機の内部は、少なくとも一部が、製造されるポリアミド樹脂の融点よりも高い温度に設定され、ダイDから押し出される樹脂温度が、製造されるポリアミド樹脂の融点より高くされる。
 押出機の内部温度は、全て一定に設定されていてもよいが、相対的に低い温度の領域と、相対的に高い温度の領域を有してもよい。例えば、重合反応が進むとともに、ポリアミドの軟化温度が上昇し、耐熱性も向上するため、最も上流側の領域が相対的に低い温度に設定されるとともに、その他の領域が相対的に高い温度に設定されてもよい。また、上流側でポリアミドオリゴマーを素早く軟化させ、スクリュー内に充満させる必要がある場合は、上流側の温度をやや高めにし、中間部の温度を低くし、下流側を上流側より高く設定されてもよい。さらに、できる限りポリアミドへの熱による劣化を防ぐ必要がある場合は、下流側の温度をポリアミドの問題ない軟化温度付近まで温度を下げることで、樹脂圧を安定化させ、ストランドでの抜出性を安定させてもよい。
 前記スクリューにおいて、各混練部B1~B4に対応する部位は、混練エレメントXと、その混練エレメントXの下流にある降圧エレメントYからなる。混練エレメントXは、後述するように、ニーディングディスク、ローター、ミキシングエレメント、又はミキシングギア等から適宜選択される。ただし、混練エレメントXは、これらのエレメントのうちの2つ以上を組み合わせて、1つの混練エレメントXとすることもできる。
 降圧エレメントYは、降圧能力を有し、各混練部B1~B4において、混練エレメントXにおける樹脂ないしオリゴマーの充満率を大きくするものであり、逆ネジ型フルフライト、シーリングディスク等で構成される。各混練部において、降圧エレメントYが、混練エレメントXに対応する部分の樹脂ないしオリゴマーの充満率を高めることにより、混練エレメントXが、樹脂ないしオリゴマーを適切に混合・分散できるようになる。また、降圧エレメントYは、後述するように、その下流にある真空ベントとともに、降圧エレメントYよりも下流側の領域を負圧にして真空領域とすることができる。
 また、前記スクリューにおいて、搬送部E1~E5に対応する部位は、例えばフルフライトスクリューエレメント等の送りスクリューからなる。そのスクリュー形状は一条ネジであっても二条ネジ、又は三条ネジであっても良いが、二条ネジが最も汎用的である。
 また、押出機は、オープンベントOV1、OV2と、真空ベントVV1、VV2を備える。本発明では、オープンベントOV1、OV2が上流側(供給部A側)に、真空ベントVV1,VV2が下流側(ダイD側)に配置される。真空ベントは、真空ポンプ等により吸引されており、押出機内部を負圧とするものである。
 より具体的には、真空ベントVV1は、混練部B3、B4の間の搬送部E4に、真空ベントVV2は、混練部B4とダイDの間の搬送部E5に配置される。これにより、押出機では、混練部B3の降圧エレメントYよりも下流側の領域であって、搬送部E4からダイD側の端部までの領域が、真空ベントVV1、VV2によって真空領域VAとされる。
 なお、図1における真空ベントの数及び配置位置は一例であって、これに限定されるわけではなく、真空領域VAを所定の長さと所定の真空度にできるような数と配置位置であればよい。
 ただし、下流側の領域の真空度を確保するとともに、ポリアミド樹脂又はオリゴマーの分子量を上げるために、真空ベントは、少なくとも1つが押出機のダイD側の端部から全スクリュー長さの25%以下の範囲内に設けられることが好ましい。
 また、オープンベントOV1、OV2は、図1では、混練部B1、B2の間、混練部B2、B3の間の搬送部E2、E3に設けられるが、真空領域VAより供給部A側の位置であり、かつ最も供給部A側に配置された混練部B1よりも下流側の位置に配置されれば、その配置位置や数は特に限定されない。なお、オープンベントを混練部B1よりも下流側に配置することで、完全に溶融しないオリゴマーが、粉の状態のまま舞い上がり、オープンベント口を閉塞することを防止できる。
 また、真空領域VAより上流側に、混練部及び搬送部それぞれが多数(例えば、4つ以上)ある場合には、真空領域VAより上流側においては、最も上流側の2つの搬送部にオープンベントが設けられない一方で、それ以降の各搬送部にオープンベントが設けられてもよい。例えば、真空領域VAより上流側に混練部が4つあって、搬送部が4つある場合には、上流側の2つの搬送部にオーブンベントが設けられない一方で、下流側の2つの搬送部にオープンベントが設けられてもよい。
 本発明におけるポリアミドオリゴマーは、分子量が低く、押出機の上流部分では比較的反応が速く進み、大量の水が発生する。大量に発生した水は、上流側に設けたオーブンベントOV1、OV2から抜き出されるので、脱水が適切に進み、水の存在により重縮合反応が阻害されたりすることが防止される。また、樹脂ないしオリゴマーは、押出機の下流部分では、含水率が低く、かつ分子量も高くなるが、押出機の下流部分が真空領域VAであるので、その負圧下において含水率が適切に下げられ、また反応が進行する。
 本発明では、ポリアミドオリゴマーは、少なくとも最も上流側のオープンベントOV1に到達するまでに完全に溶融していることが好ましい。
 このように、ポリアミドオリゴマーは、オープンベントOV1に到達する前に溶融されることで、オープンベントを粉状オリゴマーで閉塞させることなく、オープンベントOV1から積極的に水を抜くことができる。
 本発明では、上記真空領域VAは、全スクリュー長さの30%以下の範囲となるものである。真空領域VAの範囲が、30%より大きくなると、オリゴマーや樹脂が溶融や脱水されていない状態で、真空領域VAに送られ、真空ベントが目詰まり等を起こすことがある。また、そのような観点から、真空領域VAの長さは、全スクリュー長さの27%以下であることがより好ましい。
 また、真空領域VAの長さは、全スクリュー長さの10%以上であることが好ましい。真空領域VAの長さを10%以上とすることで、脱水を十分に行うことが可能になり、得られるポリアミド樹脂の含水率を低くできる。また、重縮合反応を十分に進行させて、得られるポリアミド樹脂の分子量を十分に大きくすることも可能になる。このような観点から、上記真空領域VAの長さは、15%以上であることが好ましく、20%以上であることがより好ましい。
 本発明では、真空領域VAの真空度は、300torr以下に保たれる。真空領域VAの真空度が300torrより大きくなると、オリゴマーは十分に脱水されずに、得られるポリアミド樹脂の含水率を十分に低下させることができない。また、ポリアミド樹脂の重縮合反応を適切に進行させることができず、分子量を十分に大きくできないおそれがある。また、ポリアミド樹脂の黄色度(YI)が高くなるおそれもある。
 真空領域VAの真空度は、200torr以下にすることが好ましく、180torr以下がより好ましい。真空度をこれら上限値以下とすることで、ポリアミド樹脂の含水率を更に低くすることができ、重縮合反応もより進行させやすくなる。
 なお、真空度の下限値は、特に限定されないが、装置の特性等により、通常1torr以上となる。
 なお、本発明では、押出機内部において、真空領域VAよりも上流側の領域は、300torrより圧力が高い領域となるが、通常、実質的に負圧にされない常圧の領域となる。この領域には、通常、供給部Aから窒素等の不活性ガスが流されている。
 本発明において、真空度の測定は、各真空ベントにて行われる。例えば、図1の例では、真空ベントVV1は、搬送部E4及び混練部B4を負圧とするものであり、真空ベントVV1で測定された真空度は、これら搬送部E4及び混練部B4の真空度とされる。同様に、真空ベントVV2は、搬送部E5及びダイD内部を負圧とするものであり、真空ベントVV2で測定された真空度は、これら搬送部E5及びダイD内部の真空度とされる。
 一般的に、物質の混合は、分散混合と分配混合に分けられる。分散混合は粒子サイズの減少すなわち粒子の破砕を伴う混合を意味し、分配混合は粒子間の位置交換による混合を意味する。本発明においても、分散混合性が強いとは、ポリアミドオリゴマーや樹脂の破砕を伴う混合様式が支配的な混合を意味し、分配混合性が強いとは、ポリアミドオリゴマーや樹脂の位置交換による混合様式が支配的な混合を意味するが、分散混合が起こるとき分配混合が起こらない、又は、分配混合が起こるとき分散混合が起こらないというものではない。
 分散混合性の強いエレメントとしては、上記で列挙した混練エレメントのうち、ディスク幅の広いニーディングディスク(図2参照)や、ローター(図3参照)等が挙げられるが、これらに限られるものではない。なお、ニーディングディスクとは、複数枚のディスクを組み合わせてなるものであって、ディスク幅の広いニーディングディスクとは、ディスク幅Wとスクリュー径Dの比W/Dが0.15以上1.5以下となるものである。
 また、分配混合性の強いエレメントとしては、ディスク幅Wとスクリュー径Dの比W/Dが0.02以上0.15未満となる、ディスク幅の狭いニーディングディスク、図3に示すローター、図4に示すミキシングエレメント、図5に示すミキシングギア等が挙げられるが、これらに限られるものではない。なお、図4に示すミキシングエレメントは、正ねじのフルフライトディスクに切り欠きを設けたSMEミキシングエレメントであるが、ミキシングエレメントは、図6に示す逆ねじのフルフライトディスクに切り欠きを設けたZMEミキシングエレメントであってもよい。また、ミキシングギアはセルフクリーニング性を有していてもいなくても良い。
 また、ローターは、ニーディングディスクと比較し、材料に与えられる最大剪断応力は小さいものの、材料に一様の剪断応力を与えることができるという特徴を有する。そのため、上記したように、分配混合性、分散混合性のいずれも比較的強いものとなる。なお、ローターは、図3(a)に示すように、断面が滑らかに連続するように形成された連続型であっても、図3(b)に示すように、断面が不連続に形成された不連続型であってもよい。
 本発明では、真空領域VAより上流にある、混練部(図1では、混練部B1~B3)における混練エレメントXは、上記した分散混合性の強いエレメントから選択されることが好ましく、ディスク幅の広いニーディングディスクであることがより好ましい。ここで、真空領域VAより上流にある混練部は、1つ以上の混練部がディスク幅の広いニーディングディスクで構成されてもよいが、全ての混練部がディスク幅の広いニーディングディスクで構成されることが好ましい。
 なお、真空領域VAより上流にある混練エレメントXで使用されるディスク幅の広いニーディングディスクは、比W/Dが、好ましくは0.2以上、さらに好ましくは0.3以上である。このように、比W/Dを大きくすることで、より分散混合性を強くすることができる。
 本発明では、真空領域VAより上流にある混練エレメントXを分散混合性の強いスクリューとすることで、剪断力が高くなり、粉状等である原料ポリアミドコポリマーを、比較的上流側の位置で均一な混合状態とすることができる。
 また、真空領域VAにある混練部(図1では混練部B4)の混練エレメントXは、上記した分配混合性の強いエレメントであることが好ましく、ローターであることがより好ましい。このように真空領域VAにある混練部を、分配混合性の強いスクリューとすることで、ポリアミド樹脂やオリゴマーに、過剰な剪断力が加わることで過剰に発熱することを防止し、それにより、YIの上昇等を抑えることができる。また、重合反応中の水分を除去しやすく、分子量を上昇しやすくすることができる。また、ゲル化等を防いで、分子量が低下することも防止する。
 上記押出機のダイD先端側から全スクリュー長さの25%以下の範囲内には、分配混合性の強いエレメントで構成される混練部が1つ以上設けられることが好ましく、その混練部は、通常、真空領域VAにあり、例えば図1の例では、混練部B4である。このように、本発明では、分配混合性の強いエレメントが、下流側の所定の位置に設けられることで、分散混合と分配混合のバランスが良好となる。したがって、上記したように、樹脂に過剰な剪断力が加わることが防止され、分子量が高く、水分率の低く、分子量分布が適度に狭い、品質のよいポリアミド樹脂を製造することができる。
 以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 なお、以下の実施例において、
  ポリ1,3-ビスアミノメチルシクロヘキサンアジパミドを「N-1,3-BAC6」、
  ポリ1,4-ビスアミノメチルシクロヘキサンアジパミドを「N-1,4-BAC6」、
  ポリ1,4-ビスアミノメチルシクロヘキサンセバカミドを「N-1,4-BAC10」、
  ポリ1,3-ビスアミノメチルシクロヘキサンテレフタラミドを「N-1,3-BACT」
  ポリメタキシリレンアジパミドを「N-MXD6」、及び
  ポリパラキシリレンセバカミドを「N-PXD10」という。
 ポリアミドオリゴマー及びポリアミド樹脂の相対粘度、水分率、黄色度、ガラス転移温度及び融点、並びにポリアミド樹脂の分子量及び分子量分布は、以下のように測定した。
(1)相対粘度
 ポリアミドオリゴマー又はポリアミド樹脂0.2gを精秤し、96%硫酸20mlに20~30℃で撹拌溶解した。完全に溶解した後、速やかにキャノンフェンスケ型粘度計に溶液5mlを取り、25℃の恒温漕中で10分間放置後、落下時間(t)を測定した。また、96%硫酸そのものの落下時間(t0)も同様に測定した。t及びt0から次式により相対粘度を算出した。
   相対粘度=t/t0
(2)水分率
 平沼産業株式会社製微量水分測定装置AQ-2000を用いて、窒素雰囲気下、230℃30分の条件で測定を行った。
(3)黄色度(YI)
 日本電色工業株式会社製Z-Σ80色差計を用いてASTM D1003に準じて透過法で測定した。
(4)分子量分布(Mw/Mn)
 数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)により求めることができる。具体的には、装置として東ソー社製「HLC-8320GPC」、カラムとして、東ソー社製「TSK gel Super HM-H」2本を使用した。また、溶離液としてトリフルオロ酢酸ナトリウム濃度が10mmol/Lのヘキサフルオロイソプロパノール(HFIP)を使用し、樹脂またはオリゴマー濃度0.02質量%、カラム温度40℃、流速0.3ml/分、屈折率検出器(RI)の条件で分子量分布を測定した。なお、樹脂およびオリゴマーの分子量は標準ポリメチルメタクリレート換算の値として求めた。
(5)ガラス転移温度及び融点
 示差走査熱量計((株)島津製作所製、商品名:DSC-60)を用い、昇温速度10℃/分で窒素気流下にDSC測定(示差走査熱量測定)を行い、ガラス転移温度(Tg)及び融点(Tm)を求めた。
 ポリアミド樹脂の原料となるポリアミドオリゴマーは、以下の製造例1~7の方法で製造した。
製造例1(ポリアミドオリゴマー1の製造)
 撹拌機、分縮器、全縮器、圧力調整器、温度計、滴下槽及びポンプ、アスピレーター、窒素導入管、底排弁、及びオリゴマーをフラッシュさせるための受け釜を備えた内容積50Lの耐圧反応容器に、精秤したアジピン酸(旭化成ケミカルズ(株)製)9000g(61.58mol)、trans比率62mol%の1,4-ビスアミノメチルシクロヘキサン(広栄化学工業(株)製)8759.8g(61.58mol)、次亜リン酸カルシウム12.7g(0.0746mol)、酢酸ナトリウム4.90g(0.0597mol)、蒸留水6241gを入れ、十分に窒素置換した後、反応容器内を密閉し、撹拌下220℃まで昇温した。このときの内圧は2.3MPaであった。220℃で内圧を2.3MPaで保持した状態で2時間撹拌を続けた。その後、撹拌を停止した後、底排弁のボールバルブを90秒で常圧に開放して、スラリー状のオリゴマーをフラッシュさせて受け釜に取り出した。その後、真空乾燥機にて、150℃、5時間乾燥して18kgの粉状N-1,4-BAC6オリゴマーを得た(ポリアミドオリゴマー1)。ポリアミドオリゴマー1におけるリン原子含有化合物濃度はリン原子濃度換算で300ppmであった。
製造例2(ポリアミドオリゴマー2の製造)
 ジカルボン酸成分としてセバシン酸(伊藤製油(株)製)、ジアミン成分としてtrans比率80mol%の1,4-ビスアミノメチルシクロヘキサン(広栄化学工業(株)製)を用いたこと以外は製造例1と同様にして、粉状N-1,4-BAC10オリゴマーを得た(ポリアミドオリゴマー2)。ポリアミドオリゴマー2におけるリン原子含有化合物濃度はリン原子濃度換算で300ppmであった。
製造例3(ポリアミドオリゴマー3の製造)
 ジアミン成分としてcis比率70mol%の1,3-ビスアミノメチルシクロヘキサン(三菱ガス化学(株)製)を用い、次亜リン酸カルシウムの代わりに次亜リン酸ナトリウムを用い,次亜リン酸ナトリウム15.8g(0.149mol)、酢酸ナトリウムを9.76g(0.119mol)としたこと以外は、製造例1と同様にして、粉状N-1,3-BAC6オリゴマーを得た(ポリアミドオリゴマー3)。ポリアミドオリゴマー3におけるリン原子含有化合物濃度はリン原子濃度換算で300ppmであった。
製造例4(ポリアミドオリゴマー4の製造)
 ジアミン成分としてパラキシリレンジアミン(昭和電工(株)製)、ジカルボン酸成分としてセバシン酸(伊藤製油(株)製)を用いたこと以外は製造例1と同様にして、粉状N-PXD10オリゴマーを得た(ポリアミドオリゴマー4)。ポリアミドオリゴマー4におけるリン原子含有化合物濃度はリン原子濃度換算で300ppmであった。
製造例5(ポリアミドオリゴマー5の製造)
 ジアミン成分としてcis比率70mol%の1,3-ビスアミノメチルシクロヘキサン(三菱ガス化学(株)製)を用い、ジカルボン酸成分として高純度テレフタル酸(水島アロマ(株)製)を用いたこと以外は、製造例1と同様にして、粉状N-1,3-BACTオリゴマーを得た(ポリアミドオリゴマー5)。ポリアミドオリゴマー5におけるリン原子含有化合物濃度はリン原子濃度換算で300ppmであった。
製造例6(ポリアミドオリゴマー6の製造)
 ジアミン成分としてメタキシリレンジアミン(三菱ガス化学(株)製)、ジカルボン酸成分としてアジピン酸(旭化成(株)製)を用い、次亜リン酸カルシウムの代わりに次亜リン酸ナトリウムを用い、次亜リン酸ナトリウム0.0735mol、酢酸ナトリウムを0.0588molとしたこと以外は製造例1と同様にして、粉状N-MXD6オリゴマーを得た(ポリアミドオリゴマー6)。ポリアミドオリゴマー6におけるリン原子含有化合物濃度はリン原子濃度換算で150ppmであった。
製造例7(ポリアミドオリゴマー7の製造)
 真空乾燥機での乾燥条件が150℃2時間としたこと以外は、製造例1と同様にして粉状N-1,4-BAC6オリゴマーを得た(ポリアミドオリゴマー7)。
 表1に、ポリアミドオリゴマー1~7の相対粘度、水分率、黄色度の測定結果を示す。
Figure JPOXMLDOC01-appb-T000005
 次に実施例1~6、及び比較例1及び2にて押出機を用いて、上記ポリアミドオリゴマー1~7を、溶融混練により重縮合してポリアミド樹脂を得た。なお、各実施例、比較例では、複数のバレルを組み立てて1つの押出機とする株式会社神戸製鋼所製のHYPER KTX30を使用した。この押出機は、同方向回転かみ合い型二軸スクリューからなるものであり、L/D(L:スクリュー長、D:スクリュー径)が74.4、シリンダーを正面から見たときのシリンダー長径φが30mmであった。
実施例1
 図7に示すように、押出機は、ホッパーが設けられ供給部Aを設けたバレルに、20個(ダイDを含む)のバレルを接続してなるものであって、それらバレルのうち、供給部A側から6、7、10個目のバレルそれぞれにオープンベントOV1~OV3を設け、16、18個目のバレルそれぞれに真空ベントVV1、VV2を設けた。また、3、5,9個のバレルは、それぞれスクリューにディスク幅の広いニーディングディスクのエレメントを設け、かつその下流に逆ネジ型フルフライトを接続し、混練部B1~B3とした。また、13~15個目のバレルは、そのスクリューにニーディングディスクのエレメントを設け、その最下流側に逆ネジ型フルフライトを接続し、1つの混練部B4とした。17個目のバレルは、そのスクリューにローターを設け、かつその下流側に逆ネジ型フルフライトを接続し、混練部B5とした。これにより、バレル16~バレル20が真空領域VAとなり、その長さは全スクリュー長さの25%であった。混練部B1~B5以外の他のバレルにおけるスクリューは、二条ネジのフライトスクリューエレメントであり、搬送部を構成した。
 下記押出条件にて、供給部Aのホッパーからフィーダーを用いてポリアミドオリゴマー1を投入し、さらに、ホッパーから乾燥窒素を常時流して反応押出を実施し、ポリアミド樹脂1を得た。樹脂出口温度は、306℃であった。また、押出条件は以下の通りであった。
〈押出条件〉
 フィーダー量:10kg/h
 スクリュー回転数:200rpm
 設定温度(℃):C1/C2/C3~C16/C17~C19/C20
        =260/320/310/300/300
 真空ベントVV1,VV2の真空度:150torr
※なお、C1~C20それぞれは、1~20個目それぞれのバレルにおける設定温度を示す。
実施例2
 ポリアミドオリゴマー2を用い、下記押出条件にて反応押出を実施したこと以外は、実施例1と同様にポリアミド樹脂2を得た。樹脂出口温度は、316℃であった。
〈押出条件〉
 フィーダー量:20kg/h
 スクリュー回転数:200rpm
 設定温度(℃):C1/C2/C3~C16/C17~C19/C20
        =240/300/300/290/290
 真空ベントVV1,VV2の真空度:100torr
実施例3
 ポリアミドオリゴマー3を用い、下記押出条件にて反応押出を実施したこと以外は、実施例1と同様にポリアミド樹脂3を得た。樹脂出口温度は、245℃であった。
〈押出条件〉
 フィーダー量:10kg/h
 スクリュー回転数:100rpm
 設定温度(℃):C1/C2/C3~C16/C17~C19/C20
        =220/250/250/240/240
 真空ベントVV1,VV2の真空度:100torr
実施例4
 ポリアミドオリゴマー4を用い、下記押出条件にて反応押出を実施したこと以外は、実施例1と同様にポリアミド樹脂4を得た。樹脂出口温度は、302℃であった。
〈押出条件〉
 フィーダー量:20kg/h
 スクリュー回転数:200rpm
 設定温度(℃):C1/C2/C3~C16/C17~C19/C20
        =260/300/300/290/290
 真空ベントVV1,VV2:90torr
実施例5
 ポリアミドオリゴマー5を用い、下記押出条件にて反応押出を実施したこと以外は、実施例1と同様にポリアミド樹脂5を得た。樹脂出口温度は、362℃であった。
〈押出条件〉
 フィーダー量:10kg/h
 スクリュー回転数:100rpm
 設定温度(℃):C1/C2/C3~C16/C17~C19/C20
        =320/350/350/350/350
 真空ベントVV1,VV2の真空度:160torr
実施例6
 ポリアミドオリゴマー6を用い、下記押出条件にて反応押出を実施したこと以外は、実施例1と同様にポリアミド樹脂6を得た。樹脂出口温度は、262℃であった。
〈押出条件〉
 フィーダー量:30kg/h
 スクリュー回転数:200rpm
 設定温度(℃):C1/C2/C3~C16/C17~C19/C20
        =240/260/260/240/240
 真空ベントVV1,VV2の真空度:96torr
比較例1
 ポリアミドオリゴマー7を用い、下記押出条件にて反応押出を実施したこと以外は、実施例1と同様の方法にて、反応押出を試みた。しかしながら、ポリアミドオリゴマーの水分量が多いことに起因して、オープンベントから大量の水が噴出するとともに、ホッパー方向へ水蒸気が逆流して、粉状オリゴマーが押出機内でベントアップして固まり押出ができなかった。
〈押出条件〉
 フィーダー量:10kg/h
 スクリュー回転数:200rpm
 設定温度(℃):C1/C2/C3~C16/C17~C19/C20
        =260/320/310/300/300
 真空ベントVV1,VV2の真空度:真空引きできず
比較例2
 図8に示すように、押出機は、ホッパーが設けられ供給部Aを設けたバレルに、20個(ダイDを含む)のバレルを接続してなるものであって、4個目のバレルにオープンベントVO1を、7、10、13、16個目のバレルそれぞれに真空ベントVV1~VV4を設けた。また、3、6、9、12個目のバレルは、それぞれスクリューにディスク幅の広いニーディングディスクのエレメントを設け、かつその下流に逆ねじ型フルフライトを接続し、混練部B1~B4とした。また、15個目のバレル位置のスクリューにローターを設け、その下流に逆ねじ型フルフライトを接続し、混練部B5とした。これにより、バレル7~バレル20が真空領域VAとなり、その長さは全スクリュー長さの70%であった。混練部B1~B5以外の他のバレルにおけるスクリューは、二条ネジのフライトスクリューエレメントとした。
 下記押出条件にて、フィーダーを用いて供給部Aのホッパーからポリアミドオリゴマー1を投入し、さらに、ホッパーから乾燥窒素を常時流して反応押出を実施した。しかしながら、オリゴマーが真空領域VAまでに十分溶融することができなかったため、真空ベントの壁面に大量のオリゴマーが付着し、閉塞したため、押出ができなかった。
〈押出条件〉
 フィーダー量:10kg/h
 スクリュー回転数:200rpm
 設定温度(℃):C1/C2/C3~C16/C17~C19/C20
        =260/320/310/300/300
 真空ベントの真空度:真空ベント閉塞
 実施例及び比較例で得られたポリアミド樹脂の相対粘度、水分率、黄色度、数平均分子量(Mn)、重量平均分子量(Mw)、ガラス転移温度、及び融点を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000006
 実施例1~6の方法では、分子量が十分増加し、適度な分子量分布であり、かつ色調が良好なポリアミドを得ることができた。一方、比較例1及び2の方法では、押出トラブルによりポリアミドを得ることができなかった。
A 供給部
B1~B5 混練部
D ダイ
E1~E4 搬送部
OV1~OV3 オーブンベント
VA 真空領域
VV1~VV4 真空ベント
X 混練エレメント
Y 降圧エレメント

Claims (10)

  1.  下記一般式(I-1)で表される芳香族ジアミン単位、及び下記一般式(I-2)で表わされる脂環族ジアミン単位から選択されるジアミン単位を70モル%以上含むジアミン単位と、下記一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位、及び下記一般式(II-2)で表わされる芳香族ジカルボン酸単位から選択されるジカルボン酸単位を50モル%以上含むジカルボン酸単位を含有するポリアミドオリゴマーを重縮合して、ポリアミド樹脂を製造するポリアミド樹脂の製造方法であって、
     該製造方法では、相対粘度が1.1~1.3で、水分率が3質量%以下であるポリアミドオリゴマーを、少なくとも1つ以上のオープンベント及び少なくとも1つ以上の真空ベントを有し、同方向回転かみ合い型二軸スクリューを備える押出機を用いて、溶融混練により、重縮合してポリアミド樹脂を製造し、
     前記真空ベントを設けた位置よりも供給部側の位置に降圧エレメントを設け、かつ全スクリュー長さの30%以下の範囲を300torr以下の真空領域とする、ポリアミド樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(II-1)中、nは2~18の整数を表す。一般式(II-2)中、Arはアリーレン基を表す。]
  2.  前記ポリアミド樹脂の相対粘度が1.8~4.0となる請求項1に記載のポリアミド樹脂の製造方法。
  3.  前記ポリアミド樹脂の分子量分布(Mw/Mn)が1.8~2.5となる請求項1又は2に記載のポリアミド樹脂の製造方法。
  4.  前記ポリアミドオリゴマーが、リン原子濃度10~500ppmでリン化合物が配合されたものである請求項1~3のいずれかに記載のポリアミド樹脂の製造方法。
  5.  前記オープンベントを前記真空領域よりも供給部側に配置する請求項1~4のいずれかに記載のポリアミド樹脂の製造方法。
  6.  前記真空領域、及び前記真空領域よりも供給部側の位置それぞれに前記ポリアミドオリゴマーを混練する混練部を設ける請求項1~5のいずれかに記載のポリアミド樹脂の製造方法。
  7.  前記押出機のダイ側端部から全スクリュー長さの25%以下の範囲内に、少なくとも1つ以上の真空ベントを設ける請求項1~6のいずれかに記載のポリアミド樹脂の製造方法。
  8.  前記押出機のダイ側端部から全スクリュー長さの25%以下の範囲内に、分配混合性の強い混練エレメントを有する混練部を設ける請求項1~7のいずれかに記載のポリアミド樹脂の製造方法。
  9.  前記真空領域よりも供給部側の位置に前記ポリアミドオリゴマーを混練する混練部を設け、該混練部が分散混合性の強い混練エレメントを備える請求項1~8のいずれかに記載のポリアミド樹脂の製造方法。
  10.  請求項1~9のいずれかに記載のポリアミド樹脂の製造方法により製造されたポリアミド樹脂から成形され、包装材料、包装容器、工業材料及び工業用部品からなる群から選択される物品。
PCT/JP2014/055699 2013-03-14 2014-03-05 ポリアミド樹脂の製造方法 WO2014141978A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201480015157.XA CN105073832B (zh) 2013-03-14 2014-03-05 聚酰胺树脂的制造方法
JP2015505424A JP6311699B2 (ja) 2013-03-14 2014-03-05 ポリアミド樹脂の製造方法
EP14762601.4A EP2975075B1 (en) 2013-03-14 2014-03-05 Method for producing polyamide resin
KR1020157024390A KR102124415B1 (ko) 2013-03-14 2014-03-05 폴리아미드 수지의 제조방법
RU2015138704A RU2015138704A (ru) 2013-03-14 2014-03-05 Способ для получения полиамидной смолы
US14/775,515 US9540485B2 (en) 2013-03-14 2014-03-05 Method for producing polyamide resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-052130 2013-03-14
JP2013052130 2013-03-14

Publications (1)

Publication Number Publication Date
WO2014141978A1 true WO2014141978A1 (ja) 2014-09-18

Family

ID=51536642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055699 WO2014141978A1 (ja) 2013-03-14 2014-03-05 ポリアミド樹脂の製造方法

Country Status (8)

Country Link
US (1) US9540485B2 (ja)
EP (1) EP2975075B1 (ja)
JP (1) JP6311699B2 (ja)
KR (1) KR102124415B1 (ja)
CN (1) CN105073832B (ja)
RU (1) RU2015138704A (ja)
TW (1) TWI605074B (ja)
WO (1) WO2014141978A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017054957A1 (de) * 2015-10-01 2017-04-06 Technip Zimmer Gmbh Verfahren und vorrichtung zur kontinuierlichen modifikation einer polymerschmelze aus unextrahiertem polyamid 6 mit einem oder mehreren additiven
WO2017090556A1 (ja) * 2015-11-27 2017-06-01 三菱瓦斯化学株式会社 ポリアミド樹脂、成形品およびポリアミド樹脂の製造方法
WO2017141969A1 (ja) * 2016-02-16 2017-08-24 三菱瓦斯化学株式会社 多層容器およびその応用
US11225552B2 (en) * 2016-02-02 2022-01-18 Mitsubishi Gas Chemical Company, Inc. Polyamide resin, molded article, and method for manufacturing polyamide resin

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105377947B (zh) * 2013-07-10 2018-01-30 三菱瓦斯化学株式会社 聚酰胺树脂的制造方法
FR3064272A1 (fr) * 2017-03-24 2018-09-28 Arkema France Composition de polyamide semi-cristallin de haute temperature de transition vitreuse a base de diamine courte pour materiau thermoplastique, son procede de fabrication et ses utilisations
KR102262531B1 (ko) * 2017-11-28 2021-06-08 한화솔루션 주식회사 아마이드계-분자량조절제를 포함하는 폴리아마이드 제조방법 및 이에 의해 제조된 폴리아마이드
WO2019147457A2 (en) 2018-01-23 2019-08-01 Eastman Chemical Company Novel polyestermides, processes for the preparation thereof, and polyesteramide compositions
CN115838476B (zh) * 2022-12-29 2023-06-16 中化学科学技术研究有限公司 一种半芳香聚酰胺及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138363A (ja) * 1993-11-12 1995-05-30 Ube Ind Ltd 高融点ポリアミドの製造方法
JPH07188410A (ja) * 1993-12-28 1995-07-25 Toray Ind Inc ポリアミド樹脂の製造方法
JPH08176298A (ja) * 1994-10-25 1996-07-09 Ube Ind Ltd 高融点ポリアミドおよびその製造方法
JPH08197601A (ja) * 1995-01-23 1996-08-06 Toray Ind Inc 共重合ポリアミド溶融成形物およびその製造法
JPH08197609A (ja) * 1995-01-25 1996-08-06 Toray Ind Inc 押出機、熱可塑性樹脂の製造方法および熱可塑性樹脂組成物の製造方法
JP2003082095A (ja) * 2001-09-06 2003-03-19 Toray Ind Inc ポリアミドの製造方法
JP2012188557A (ja) 2011-03-11 2012-10-04 Unitika Ltd ポリアミドの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130497A (ja) * 1996-11-01 1998-05-19 Mitsubishi Gas Chem Co Inc ポリアミド樹脂組成物
JP5456983B2 (ja) * 2008-04-17 2014-04-02 ポリプラスチックス株式会社 ポリアリーレンサルファイド樹脂組成物の製造法
CN102108564A (zh) * 2009-12-25 2011-06-29 东丽纤维研究所(中国)有限公司 一种防黄变聚酰胺纤维及其制造方法
EP2660292B1 (en) * 2010-12-27 2017-06-07 Mitsubishi Gas Chemical Company, Inc. Polyamide composition
CN102532528B (zh) * 2012-02-10 2014-03-19 四川大学 一种半芳香聚酰胺的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138363A (ja) * 1993-11-12 1995-05-30 Ube Ind Ltd 高融点ポリアミドの製造方法
JPH07188410A (ja) * 1993-12-28 1995-07-25 Toray Ind Inc ポリアミド樹脂の製造方法
JPH08176298A (ja) * 1994-10-25 1996-07-09 Ube Ind Ltd 高融点ポリアミドおよびその製造方法
JPH08197601A (ja) * 1995-01-23 1996-08-06 Toray Ind Inc 共重合ポリアミド溶融成形物およびその製造法
JPH08197609A (ja) * 1995-01-25 1996-08-06 Toray Ind Inc 押出機、熱可塑性樹脂の製造方法および熱可塑性樹脂組成物の製造方法
JP2003082095A (ja) * 2001-09-06 2003-03-19 Toray Ind Inc ポリアミドの製造方法
JP2012188557A (ja) 2011-03-11 2012-10-04 Unitika Ltd ポリアミドの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2975075A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017054957A1 (de) * 2015-10-01 2017-04-06 Technip Zimmer Gmbh Verfahren und vorrichtung zur kontinuierlichen modifikation einer polymerschmelze aus unextrahiertem polyamid 6 mit einem oder mehreren additiven
CN108463319A (zh) * 2015-10-01 2018-08-28 特尼吉玛有限责任公司 利用一种或多种添加剂连续改性由未萃取的聚酰胺6形成的聚合物熔体的方法和装置
US10899060B2 (en) 2015-10-01 2021-01-26 Technip Zimmer Gmbh Method and device for continuously modifying a polymer melt made of non-extracted polyamide 6 with one or more additives
CN108463319B (zh) * 2015-10-01 2021-02-02 特尼吉玛有限责任公司 利用一种或多种添加剂连续改性由未萃取的聚酰胺6形成的聚合物熔体的方法和装置
EA038444B1 (ru) * 2015-10-01 2021-08-30 Технип Зиммер Гмбх Способ и устройство для непрерывного модифицирования полимерного расплава неэтилированного полиамида 6 с одной или несколькими добавками
WO2017090556A1 (ja) * 2015-11-27 2017-06-01 三菱瓦斯化学株式会社 ポリアミド樹脂、成形品およびポリアミド樹脂の製造方法
JPWO2017090556A1 (ja) * 2015-11-27 2018-09-13 三菱瓦斯化学株式会社 ポリアミド樹脂、成形品およびポリアミド樹脂の製造方法
US11225552B2 (en) * 2016-02-02 2022-01-18 Mitsubishi Gas Chemical Company, Inc. Polyamide resin, molded article, and method for manufacturing polyamide resin
WO2017141969A1 (ja) * 2016-02-16 2017-08-24 三菱瓦斯化学株式会社 多層容器およびその応用
US11911341B2 (en) 2016-02-16 2024-02-27 Mitsubishi Gas Chemical Company, Inc. Multilayer vessel, and application thereof

Also Published As

Publication number Publication date
JP6311699B2 (ja) 2018-04-18
TW201441279A (zh) 2014-11-01
KR102124415B1 (ko) 2020-06-18
RU2015138704A (ru) 2017-04-18
US9540485B2 (en) 2017-01-10
CN105073832B (zh) 2017-12-22
EP2975075A1 (en) 2016-01-20
EP2975075B1 (en) 2019-01-30
US20160046765A1 (en) 2016-02-18
TWI605074B (zh) 2017-11-11
JPWO2014141978A1 (ja) 2017-02-16
EP2975075A4 (en) 2016-10-19
KR20150128696A (ko) 2015-11-18
CN105073832A (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
JP6311699B2 (ja) ポリアミド樹脂の製造方法
WO2015005201A1 (ja) ポリアミド樹脂の製造方法
TWI518109B (zh) 聚醯胺樹脂
JP6079484B2 (ja) ポリアミド樹脂の製造方法
TWI804479B (zh) 聚醯胺樹脂組成物、成形品及聚醯胺樹脂丸粒之製造方法
TWI525126B (zh) 聚醯胺樹脂組成物
KR20180019553A (ko) 폴리아미드 수지 및 성형품
JP6127788B2 (ja) ポリアミド樹脂の製造方法
WO2015115148A1 (ja) ポリアミドまたはポリアミド組成物の造粒方法
JP7124830B2 (ja) 樹脂組成物、成形品およびフィルム
WO2014027651A1 (ja) ポリエーテルポリアミド組成物
JP6123378B2 (ja) ポリアミド樹脂の製造方法
JP2014181242A (ja) 半芳香族ポリアミドおよびその成形体
JP2022186617A (ja) 半芳香族ポリアミド樹脂組成物およびそれを成形してなる摺動部品。
CN118251444A (zh) 聚酰胺树脂的制造方法及树脂组合物
JP2014218550A (ja) ポリアミド樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480015157.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14762601

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505424

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014762601

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157024390

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14775515

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015138704

Country of ref document: RU

Kind code of ref document: A