WO2014136898A1 - 有機薄膜、これを用いた有機半導体デバイスおよび有機トランジスタ - Google Patents

有機薄膜、これを用いた有機半導体デバイスおよび有機トランジスタ Download PDF

Info

Publication number
WO2014136898A1
WO2014136898A1 PCT/JP2014/055824 JP2014055824W WO2014136898A1 WO 2014136898 A1 WO2014136898 A1 WO 2014136898A1 JP 2014055824 W JP2014055824 W JP 2014055824W WO 2014136898 A1 WO2014136898 A1 WO 2014136898A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
phase
liquid crystal
organic thin
organic
Prior art date
Application number
PCT/JP2014/055824
Other languages
English (en)
French (fr)
Inventor
純一 半那
裕明 飯野
渡辺 泰之
淳一郎 小池
博志 牧
豊 立川
敦久 宮脇
桜井 美弥
Original Assignee
Dic株式会社
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社, 国立大学法人東京工業大学 filed Critical Dic株式会社
Priority to US14/773,053 priority Critical patent/US10158087B2/en
Priority to EP14760006.8A priority patent/EP2966701B1/en
Priority to KR1020157027671A priority patent/KR102067016B1/ko
Priority to KR1020187026076A priority patent/KR102092098B1/ko
Priority to CN201480026081.0A priority patent/CN105190926B/zh
Priority to JP2014535836A priority patent/JP5732595B2/ja
Publication of WO2014136898A1 publication Critical patent/WO2014136898A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3491Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/731Liquid crystalline materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom

Definitions

  • the present invention relates to an organic thin film having a highly ordered structure obtained from a liquid crystal substance, which can be suitably used for various devices, and further relates to an organic semiconductor device and an organic transistor using the thin film.
  • Organic substances that can transport electronic charges by holes and electrons can be used as organic semiconductors, and can be used as photoconductors, photosensors, organic EL elements, organic transistors, organic solar cells, organic memory elements, etc. It can be used as a material for electronic devices.
  • a thin film transistor using amorphous silicon or polycrystalline silicon is widely used as a switching element for a liquid crystal display device or an organic EL display device. It is used.
  • these transistors using silicon are expensive to manufacture and are formed at high temperatures, so that they cannot be developed on plastic substrates with poor heat resistance.
  • an organic transistor using an organic semiconductor as a channel semiconductor layer instead of a silicon semiconductor has been proposed.
  • Patent Document 1 and Patent Document 2 include 2,7-substituted [1] benzothieno [3,2-b] [1] benzothiophene skeleton (hereinafter referred to as [1] benzothieno [3,2-b] [1 Benzothiophene is abbreviated as BTBT), and has been reported to exhibit a mobility equal to or higher than that of amorphous silicon.
  • Liquid crystal materials are positioned as a new type of organic semiconductor that exhibits a high mobility ((10 ⁇ 4 cm 2 / Vs to 1 cm 2 / Vs)) that forms a self-organized molecular aggregate phase (liquid crystal phase).
  • Liquid crystal substances are characterized by the fact that alignment defects peculiar to liquid crystals such as domain interfaces and disclinations are difficult to form electrically active levels.
  • conventional amorphous organic semiconductor materials and crystalline organic semiconductor materials In fact, it has been clarified to have excellent characteristics that are not seen in the field of electronic devices such as photosensors, electrophotographic photoreceptors, organic EL devices, organic transistors, and organic solar cells. A prototype is being made.
  • the liquid crystal material has a great feature that in the liquid crystal phase, it is possible to easily control the molecular orientation, which is generally difficult with non-liquid crystal materials.
  • a liquid crystal material when a liquid crystal material is injected between two substrates, such as a liquid crystal cell, generally, at the liquid crystal phase temperature, the liquid crystal molecules generally lie on the surface of the substrate with respect to the molecular long axis.
  • the molecular long axis tends to be easily aligned with the substrate surface.
  • the thin film of liquid crystal aligned at the liquid crystal phase temperature is phase-changed to the crystal phase by lowering the temperature, thereby controlling the molecular orientation not only in the liquid crystal phase but also in the crystal phase (crystal thin film ) Can be easily produced. This is difficult to realize with a general non-liquid crystalline organic material.
  • liquid crystal thin film liquid crystal phase thin film
  • a liquid crystal substance can be said to be a material having a high degree of freedom as an organic semiconductor in that it can be applied to an electronic device as an organic semiconductor material not only as a liquid crystal thin film but also as a crystal thin film (for example, Non-Patent Document 1). ).
  • the key is to form a thin film with a crystalline state.
  • Patent Document 3 describes a design guideline for obtaining a liquid crystal material exhibiting high mobility.
  • a liquid crystal material exhibiting high mobility.
  • the organic thin film in any crystalline state is described. It is not known qualitatively or quantitatively whether organic transistors having high mobility and high performance stability can be obtained, and organic thin films and organic transistors having mobility and performance stability are not known. Development was an issue.
  • An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and provide an organic thin film and an organic transistor having high performance stability as well as mobility.
  • the organic thin film of the present invention is based on the above findings. More specifically, the organic thin film has a charge transporting molecular unit A having an aromatic condensed ring structure, a unit B as a side chain, and an N phase and an SmA phase. And an organic thin film having a bilayer structure obtained from a liquid crystal substance exhibiting a phase other than the SmC phase.
  • liquid crystal substances include high-molecular liquid crystals and low-molecular liquid crystals.
  • the liquid crystal phase generally has a high viscosity, so that ion conduction tends not to occur.
  • a low molecular liquid crystal when ionized impurities are present, a low-order liquid crystal having a strong liquid property such as a nematic phase (N phase), a smectic A phase (SmA phase, hereinafter described in the same manner) or an SmC phase. In the phase, ionic conduction tends to be induced.
  • ionized impurity refers to an electrically active impurity (that is, a HOMO level, a LUMO level, or both of them, which can become a trap of ions and charges generated by dissociation of ionic impurities.
  • An impurity whose level is between the HOMO and LUMO levels of the liquid crystal substance is an ionized product generated by photoionization or charge trapping (for example, M. Funahashi and J. Hanna, Impurity effect). on charge carrier transport in Smetic liquid crystals, Chem.sPhys. Lett., 397,319-323 (2004), H. Ahn, A. Ohno, and Jo nt of Impurity in Smectic Liquid Crystals, Jpn. J. Appl. Phys., Vol. 44, referring to the No. 6A, 2005, pp. 3764-37687.).
  • the above-described smectic liquid crystal material that forms a nematic phase or a molecular aggregate layer without molecular arrangement is included in the molecular layer. Since the SmA phase and the SmC phase that do not have order of molecular arrangement have high fluidity, ion conduction is easily induced, which is a big problem when used as an organic semiconductor.
  • liquid crystal phase other than N phase, SmA phase and SmC phase having molecular order in the molecular layer, that is, higher-order smectic phase (SmB, SmB cryst , SmI, SmF, SmE, SmJ, SmG, SmK, SmH, and the like) have a characteristic that it is difficult to induce ionic conduction at this point (convenient when used as an organic semiconductor). Further, in general, since the alignment order is high as compared with a low-order liquid crystal phase, it exhibits high mobility. (Refer to H. Ahn, A. Ohno, and J. Hanna, “Impactity effects on charge carrier transport in various mesophases of Sequential liquid crystal”, J.p.
  • the higher order liquid crystal phase with higher order of molecular arrangement in the smectic phase is higher It has been clarified to show mobility, and from the viewpoint of realizing high mobility as well as suppression of ion conduction, a liquid crystal substance exhibiting a high-order smectic phase is useful as an organic semiconductor.
  • a liquid crystal material when used as an organic semiconductor in the form of a crystal thin film, a liquid crystal material in which a low-order liquid crystal phase (N phase, SmA phase, or SmC phase) having a strong liquid property appears in a temperature region immediately above the crystal phase. Then, when the element is heated above the temperature at which the liquid crystal phase appears, there is a big problem that the element is destroyed by heat due to fluidity.
  • a liquid crystal substance that expresses a high-order smectic phase having molecular arrangement order in the molecular layer in the temperature region immediately above the crystal phase even when the element is heated to the liquid crystal temperature, the fluidity is high.
  • the liquid crystal material Since the device is difficult to be destroyed because it is low, a liquid crystal material exhibiting a higher-order liquid crystal phase is required even when a crystal thin film of a liquid crystal material is applied to an electronic device as an organic semiconductor. Even if it is not a phase, it may be a substance exhibiting a metastable crystal phase). In other words, if the liquid crystal material is a liquid crystal material exhibiting a liquid crystal phase other than a strongly liquid low-order liquid crystal phase (N phase, SmA phase or SmC phase) or a material exhibiting a metastable phase, it is preferably used in the present invention. It can be used.
  • the molecular orientation of the liquid crystal phase is ordered as the temperature decreases, so that in a high temperature region, the liquid crystal substance is a low-order liquid crystal phase with strong liquidity ( N phase, SmA phase, and SmC phase) appear, and it is well known that a higher-order liquid crystal phase or metastable crystal phase having the highest orientation order appears in a temperature region adjacent to the crystal phase temperature.
  • a liquid crystal phase thin film is used as an organic semiconductor material, it can be used as an organic semiconductor in principle as long as it is a phase other than the above-mentioned strong liquid crystalline low-order liquid crystal phase.
  • the aggregated phase appearing in is not a low-order liquid crystal phase (N phase, SmA phase or SmC phase) having a strong liquid property.
  • the liquid crystal property in the low liquid crystal phase is strong, so the molecular orientation Is easier to control than the higher-order liquid crystal phase.
  • an organic thin film showing not only high mobility but also high performance stability is provided.
  • FIG. 2 is a drawing of XDR measurement in Example 1.
  • FIG. 3 is a diagram for deriving mobility in the first embodiment. It is drawing which confirms the position of the sulfur atom after film forming (no post-processing). It is drawing which confirms the position of the sulfur atom after thermal annealing. 1 is a drawing of a single crystal of Compound 24. 1 is a drawing of a single crystal of Compound 24.
  • this invention is comprised from the following items.
  • (I) A film formed of a charge transporting molecular unit A having an aromatic condensed ring structure and a compound having unit B as a side chain, the compound having a bilayer structure An organic thin film characterized by that.
  • (II) The compound according to (I), further comprising a hydrogen atom, a halogen, a lower alkyl group having 1 to 4 carbon atoms, or a cyclic structure unit C connected to the charge transporting molecular unit A by a single bond.
  • Organic thin film is comprised from the following items.
  • phase other than N phase, SmA phase, and SmC phase is a liquid crystal phase selected from the group consisting of SmB, SmBcrystal, SmI, SmF, SmG, SmE, SmJ, SmK, and SmH
  • VI The organic thin film according to any one of (I) to (V), wherein the number of condensed rings (NA) of the charge transporting molecular unit A is 3 or more and 5 or less.
  • the side chain unit B may have a substituent, an alkyl group having 2 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, or a carbon group having 2 to 20 carbon atoms.
  • X represents S, O, NH
  • m is an integer of 0 to 17, and n is an integer of 2 or more.
  • the cyclic structural unit C is unsubstituted or an aromatic hydrocarbon group having a halogen or a lower alkyl group having 1 to 4 carbon atoms as a substituent, or unsubstituted, or a halogen or carbon number 1 to 1 4 is a group represented by a heteroaromatic group having a lower alkyl group as a substituent, or any one of (II) to (X) below (3) or (4) Organic thin film as described in 2.
  • Ar 1 is unsubstituted or an aromatic hydrocarbon group having a halogen or a lower alkyl group having 1 to 4 carbon atoms as a substituent, or an unsubstituted or halogen or lower alkyl group having 1 to 4 carbon atoms.
  • Heteroaromatic group as a substituent Ar 2 is an aromatic hydrocarbon group which may have a substituent, R ′ is unsubstituted, or has a halogen or a lower alkyl group having 1 to 4 carbon atoms as a substituent
  • (XII) In the method for producing an organic thin film according to any one of (I) to (XI), The manufacturing method of the organic thin film characterized by including the process of annealing this organic thin film.
  • (XIII) An organic semiconductor device using the organic thin film according to any one of (I) to (XI).
  • XIV An organic transistor using the organic thin film according to any one of (I) to (XI) as an organic semiconductor layer.
  • XV An organic semiconductor device using an organic thin film obtained by the method for producing an organic thin film of (XII).
  • (XVI) An organic transistor using an organic thin film obtained by the method for producing an organic thin film of (XII) as an organic semiconductor layer.
  • the bilayer structure of the present invention refers to a bimolecular film structure in which two charge transporting molecular units A are paired face to face to form one layer.
  • the ⁇ electron cloud is relatively expanded and the mobility is increased.
  • the bilayer structure becomes a continuously grown crystal, whereby an organic thin film with few charge transfer defects, that is, high performance stability can be obtained.
  • the bilayer structure of the present invention can be confirmed by synchrotron radiation X-ray scattering measurement.
  • the synchrotron radiation X-ray scattering measurement includes small-angle X-ray scattering and wide-angle X-ray scattering.
  • small angle X-ray scattering is a method of obtaining structural information of a substance by measuring X-rays scattered by irradiating the substance with X-rays and having a small scattering angle. Yes, the size, shape, regularity, and dispersibility of the internal structure are evaluated. The smaller the scattering angle, the larger the size of the corresponding structure.
  • Wide-angle X-ray scattering is a technique for obtaining structural information of a substance by measuring X-rays scattered by irradiating the substance with X-rays and having a large scattering angle. Yes, structural information smaller than small-angle X-ray scattering can be obtained. In addition to being used for crystal structure analysis, information on the degree of orientation of the sample can also be obtained.
  • Small-angle X-ray scattering measurement and wide-angle X-ray scattering measurement can be performed with a commercially available general-purpose X-ray apparatus, but large-sized radiation is used for measuring a small area of an organic thin film of 100 nm or less as used in an organic transistor. It is preferable to perform small-angle X-ray scattering measurement and wide-angle X-ray scattering measurement using synchrotron radiation X-rays with a large synchrotron radiation facility such as the optical facility SPring-8 (Spring Eight).
  • SPring-8 is a large synchrotron radiation facility in the city of Harima Science Park in Hyogo Prefecture that can produce the world's highest performance synchrotron radiation. Synchrotron radiation accelerates electrons to almost the same speed as light. It is a thin and powerful electromagnetic wave that is generated when the traveling direction is bent by a magnet.
  • the synchrotron X-rays available in SPring-8 are X-rays obtained by a commercially available general-purpose X-ray apparatus. Since it has a luminance of 100 million times that of a line, sufficient strength can be obtained even in the measurement of a very small area and a very thin film.
  • An example of the measurement of synchrotron radiation X-ray scattering is shown below.
  • the measurement mode is grazing incidence / small-angle X-ray scattering (Grazing Incident Small Angle Scattering / Wide Angle Scattering: GISAXS / WAXS), camera length 140mm, 2300mm, wavelength 0.1nm, X-ray incident angle 0.08 ° or 0.16 °, exposure time 1-5 seconds, measurement temperature 25 ° C, scattering angle range
  • the structure of the thin film was obtained by analyzing the obtained two-dimensional X-ray scattering image by the following method.
  • the position of the reflected X-ray beam center in the two-dimensional scattered image is determined from the X-ray incident angle at the time of measurement, and the scattering / diffraction intensity I on the straight line in the horizontal direction as viewed from the center of the reflected beam is taken.
  • a one-dimensional scattering profile H was obtained as the scattering intensity I.
  • the scattering / diffracting intensity I on a straight line in the vertical upward direction when viewed from the center of the reflected beam was taken, and a one-dimensional scattering profile V was obtained as the scattering intensity I with respect to the scattering angle 2 ⁇ from the center of the reflected beam.
  • ⁇ [nm] is an X-ray wavelength of 0.1 nm.
  • a periodic length of about 4 cm or the like derived from a periodic structure (plane spacing) having an orientation almost orthogonal to the molecular chain in the arrangement structure of the molecule is calculated.
  • a period length of about 30 cm derived from the molecular length was calculated.
  • this organic thin film has compound molecules standing perpendicular to the substrate, and is laminated every about 30 mm corresponding to the molecular length. It was confirmed that a bilayer structure was formed.
  • liquid crystal substances when the compound having the charge transporting molecular unit A having an aromatic condensed ring structure and the unit B as a side chain is a liquid crystal compound, it can be more preferably used.
  • liquid crystal substances particularly smectic liquid crystal substances, form a coherent phase (smectic liquid crystal phase) having a layered structure in a self-organized manner, so that it can be used as a precursor for forming a crystalline phase, thereby smoothing the surface. Excellent sex. This is because a uniform crystal film can be easily obtained over a large area.
  • it since it has a liquid crystal phase, it is advantageous over non-liquid crystal materials in that heat treatment can be performed at the liquid crystal phase temperature.
  • liquid crystal compounds exhibiting a liquid crystal phase described below are particularly preferable.
  • the above “liquid crystal phase other than N phase, SmA phase, and SmC phase” is a liquid crystal phase selected from the group consisting of SmB, SmBcryst, SmI, SmF, SmE, SmJ, SmG, SmK, and SmH. It is preferable. This is because, when the liquid crystal material according to the present invention is used as an organic semiconductor in a liquid crystal phase, as described above, these liquid crystal phases have a low fluidity, so that it is difficult to induce ionic conduction, and the molecular alignment order is low. This is because high mobility can be expected in the liquid crystal phase.
  • liquid crystal substance according to the present invention when used as an organic semiconductor in a crystal phase, these liquid crystal phases are less fluid than N phase, SmA phase, and SmC phase, so that the liquid crystal phase is increased by increasing the temperature. This is because the element is not easily destroyed even when it is transferred to.
  • the liquid crystal phase appears only in the temperature lowering process, once crystallized, the crystal temperature region is widened, which is convenient for application in the crystal phase.
  • the “phase other than the N phase, the SmA phase, and the SmC phase” is SmBcryst, SmE, SmF, SmI, SmJ, SmG, SmK, or SmH in the temperature lowering process.
  • SmE and SmG which are higher-order Sm phases
  • SmE and SmG are adjacent to the liquid crystal phase when the organic semiconductor material is heated from the crystal phase.
  • a liquid crystal phase appearing in the temperature range Particularly preferred as a liquid crystal phase appearing in the temperature range.
  • a liquid crystal substance in which a high-order liquid crystal phase appears in addition to a liquid-like low-order liquid crystal phase (N phase, SmA phase, or SmC phase) has high liquidity in the low-order liquid crystal phase. Since the molecular orientation is easier to control than the higher-order liquid crystal phase, the molecules are pre-aligned in the lower-order liquid crystal phase and then transferred to the higher-order liquid crystal phase. Since a liquid crystal thin film with few defects can be obtained, the quality of the liquid crystal thin film or the crystal thin film can be improved.
  • the operating temperature required for a device using the liquid crystal material is usually ⁇ 20 ° C. to 80 ° C. Therefore, in the present invention, “phases other than N phase, SmA phase and SmC phase” appear. It is required that the temperature range to be ⁇ 20 ° C. or higher.
  • the liquid crystal substance according to the present invention is used as an organic semiconductor in a crystal phase, it is effective to improve the quality by using a thin film in a liquid crystal state (liquid crystal thin film) as a precursor for producing a crystal thin film. For this reason, considering the simplicity of the process and the ease of selection of the substrate, the temperature at which the liquid crystal phase of the liquid crystal material appears is preferably 200 ° C. or lower.
  • the organic semiconductor material that can be used in the present invention is an organic semiconductor material having a charge transporting molecular unit A having an aromatic condensed ring structure and a unit B as a side chain, and preferably further comprising a single bond with the unit A. It is an organic semiconductor material having a hydrogen atom, a halogen, a lower alkyl group having 1 to 4 carbon atoms, or a cyclic structural unit C connected thereto.
  • Suitable charge transporting molecular unit A In organic semiconductors, the molecular site involved in charge transport is a conjugated ⁇ -electron unit consisting of an aromatic ring. Generally, the larger the size of the conjugated ⁇ -electron system, the more advantageous for charge transport, but the size of the ⁇ -electron system. However, the solubility in an organic solvent decreases and the melting point becomes high, so that there is a problem that a process at the time of synthesis or use as an organic semiconductor becomes difficult. For this reason, the number of condensed rings of the charge transporting molecular unit is preferably 3 or more and 5 or less.
  • the charge transporting molecular unit A may include a heterocycle.
  • the number of carbon atoms in each ring constituting the condensed ring is preferably 5 to 6 (that is, a 5 to 6 membered ring) for the convenience of synthesis.
  • the heterocycle constituting the charge transporting molecular unit A is also preferably a 5-membered to 6-membered ring.
  • the number of heterocycles is not particularly limited, but is preferably the following numbers.
  • the melting point can be used as a guide. This is because the melting point gives a measure of the cohesive energy of the compound.
  • a compound having a high melting point means a strong interaction between molecules at the time of agglomeration, which corresponds to easy crystallization and is convenient for inducing the expression of a higher-order liquid crystal phase. Therefore, the melting point of the compound constituting the unit A (the compound constituted when there is no bond with the unit B and the unit C) is preferably 120 ° C.
  • a melting point of 120 ° C. or lower is not preferable because a low-order liquid crystal phase tends to develop.
  • the compound constituting the unit A will be specifically described below with examples.
  • the compound constituting the unit A in question here excludes the single bond with the unit C, and the position of the following unit A where the single bond is present It becomes a compound of the following formula (1) in which a hydrogen atom is substituted.
  • the compound constituting the unit A is benzothieno [3,2-b] [1] benzothiophene, and the melting point of the benzothieno [3,2-b] [1] benzothiophene It is the melting point of the constituent compound.
  • the unit C is the “another structure” part for giving the freedom of flip-flop motion.
  • the unit C is preferably an aromatic condensed ring connected to the charge transporting unit A by a single bond or an alicyclic molecular structure.
  • the number of rings is preferably 1 or more and 5 or less (more preferably 3 or less, particularly 1 to 2).
  • the number of rings of the unit C is not particularly limited, but when the number of rings constituting the unit A is “NA” and the number of rings constituting the unit C is “NC”, NA ⁇ NC may be satisfied. preferable. More specifically, the following numbers are preferable.
  • Unit C may contain a heterocycle.
  • the heterocycle is preferably a 5-membered to 6-membered ring.
  • the unit C is preferably an aromatic compound, an aromatic condensed ring compound, a cycloalkane, a cycloalkene, an alicyclic saturated compound containing a hetero atom, or the like, as exemplified below.
  • cycloalkene cyclopentene, which is considered to have higher planarity than cyclohexene, is preferred.
  • the unit A and the unit C need to be directly connected by a single bond.
  • the unit B can be connected to the above unit A or unit C, for example. From the viewpoint of expanding the crystal temperature region when used as a crystal thin film, it is preferably connected to “one of” unit A or unit C described above.
  • the unit B is preferably a hydrocarbon or a compound having a linear structure such as a saturated compound having a hetero atom, particularly preferably a hydrocarbon having 2 to 20 carbon atoms, or the general formula (2)
  • the unit B existing as a side chain in at least one of the unit A and the unit C has a cyclic structure (A or C) to which the unit is bonded, and the cyclic structure is another cyclic structure (ie, C Or it is preferable that it exists in the position which is not adjacent with respect to the position connected or condensed with A).
  • the example of the coupling position is as shown in the structure exemplified later.
  • the bonding position of the unit B will be described using a specific compound used in the organic semiconductor material of the present invention.
  • the unit A is benzothieno [3,2-b] [ 1] benzothiophene
  • unit C is a phenyl group
  • unit B is C 10 H 21
  • unit A benzothieno [3,2-b] [1] benzothiophene
  • unit B indicates that C 10 H 21 is bonded.
  • the binding position can be similarly shown for the compounds of the present invention having other units.
  • the number of repeating units A may be 1 or 2, but the entire structure of the compound as in compound 58 may be repeated. 1 may be 1 or 2.
  • the transfer integral of a ⁇ -electron molecular unit that is related to charge transport, called a core, is large as a factor governing the charge transfer rate in a liquid crystal phase or a crystal phase that is molecularly oriented. Is important. In order to actually calculate this value by the quantum chemical method, it is necessary to determine the specific molecular arrangement between adjacent molecules in the target molecular aggregation state and perform the calculation. For example, a molecular structure having an extended ⁇ -electron system with redundancy is advantageous against fluctuations relative to each other's relative molecular positions.
  • a rod-like and somewhat large size ⁇ -electron conjugated system is selected as the charge transporting molecular unit consisting of a ⁇ -electron conjugated system serving as a charge transport site.
  • a condensed ring is used instead of using a small aromatic ring, which is often employed as the structure of liquid crystal molecules, for example, benzene, thiophene, etc., connected by a single bond to form a large ⁇ -electron conjugated system.
  • a molecular unit having a large ⁇ -electron conjugated system depending on the structure is used.
  • the number of condensed rings is preferably 3 or more, but if the number of rings is too large, the solubility in a solvent is lowered, so 5 or less is realistic.
  • aromatic ring structures that is, in the present invention, benzene, pyridine, pyrimidine, thiophene, thiazole, imidazole, furan are used as aromatic ring structures, and these are condensed to form a rod-like three-ring structure, four-ring structure, and five-ring structure.
  • the aromatic ⁇ -electron conjugated fused ring structure is preferable.
  • a structure in which at least another rigid structure is connected to the above-mentioned aromatic ⁇ -electron conjugated condensed ring structure through a single bond is used as the main core structure constituting the liquid crystal molecule.
  • a structure having the same or less number of rings as the aromatic ⁇ -electron conjugated condensed ring structure described above is selected, and may be 1 or 2.
  • the structure is not necessarily an aromatic ring in a broad sense including a heterocycle, but an alicyclic ring structure such as cyclohexane or cyclopentane, or cyclohexene or cyclopentene containing a double bond. Also good.
  • a flexible hydrocarbon for imparting rod-like molecular shape anisotropy and liquidity to a rigid molecular unit called a core portion.
  • the basic design of the rod-like liquid crystal material is to connect the units and to have a structure in which they are basically arranged in a straight line.
  • the core portion corresponds to a structure in which at least another rigid structure is connected to the above-mentioned aromatic ⁇ -electron conjugated condensed ring structure through a single bond. It is important for the connecting position of the unit B in the core part to give rod-like anisotropy as a whole molecule. In that case, the position of the unit B connected to the core part is either the unit A or the unit C as long as they are far from each other when viewed from the single bond connecting the unit A and the unit C. You may connect to both. Regarding the molecular shape when the units B are connected, it should be noted that, when the structure of the whole molecule has a large bend, it is generally difficult to induce a smectic phase.
  • this molecular design can be given by the fluctuation width when the molecule of the core part is rotated about the single bond between the unit B and the core part. More specifically, the carbon atom to which the unit B is bonded and the carbon or hetero element located on the outermost side of the core part of the unit A or unit C not directly bonded to the unit B when the molecule is rotated are connected. If the angle between the straight line and the axis is ⁇ , and the blur width is described, this blur width ⁇ can increase the expression of the liquid crystal phase and the mobility, and is 90 ° or less, more preferably 60 °.
  • the structure is preferably less than or equal to, more preferably less than or equal to 30 degrees.
  • the angle formed by two single bonds is preferably 90 ° or more, more preferably 120 ° or more.
  • a unit B structure containing a double bond or triple bond, or a hetero element such as oxygen, sulfur or nitrogen can also be used.
  • a hetero element such as oxygen, sulfur or nitrogen
  • a substance that exhibits a higher-order smectic liquid crystal phase and is useful as an organic semiconductor can be screened as necessary from among compounds satisfying the above-described molecular design.
  • this screening basically, when used as an organic semiconductor in a liquid crystal phase, a higher order smectic phase is expressed, and when used as an organic semiconductor in a crystal phase, when cooled from a temperature higher than the crystal phase temperature, It is preferable to select one that does not develop a low-order liquid crystal phase adjacent to the crystal phase.
  • This selection method can select a substance useful as an organic semiconductor material by making a determination according to a “screening method” described later.
  • Scheme A shows the basic concept of the present invention.
  • Unit A and unit C are called core parts in liquid crystal molecules, and unit B (preferably a unit having 3 or more carbon atoms) is arranged on one side or both sides of the core part in the molecular major axis direction of the core part.
  • unit B preferably a unit having 3 or more carbon atoms
  • the liquid crystal phase is stable in the substance in which the hydrocarbon chain is directly connected to the core part as in the examples of dialkylpentenecene and dialkylbenzothienobenzothiophene.
  • the liquid crystal phase is not developed, or even if the liquid crystal phase is developed, only the low-order liquid crystal phase such as the SmA phase is developed (Non-Patent Document Liquid Crystal. Vol. 34. No. 9 (2007). ) 1001-1007. Liquid Crystal.Vol.30.No.5 (2003) 603-610).
  • a hydrocarbon chain is connected to the structure (core part) in which another rigid structural unit is connected to such a charge transporting molecular unit, thereby giving the molecule anisotropy and liquidity of a rod-like molecular shape. Therefore, the liquid crystal phase can be induced with a high probability.
  • a liquid crystal phase can often be developed.
  • the appearance temperature region of the liquid crystal phase is often asymmetric between the temperature lowering process and the temperature increasing process. This generally helps to extend the liquid crystal phase temperature region to a low temperature during the temperature lowering process, and conversely to expand the crystal phase to a high temperature region during the temperature rising process.
  • This characteristic means that when a polycrystalline thin film of a liquid crystal material is used as an organic semiconductor, the liquid crystal thin film can be produced at a lower temperature when the polycrystalline thin film is produced using the liquid crystal thin film (thin liquid crystal phase thin film) as a precursor.
  • the process becomes easier.
  • the fact that the crystal phase temperature in the temperature rising process spreads to a high region means that the thermal stability of the produced polycrystalline film is improved, which is convenient as a material.
  • the developed liquid crystal phase is generally stabilized, which is convenient for application to a device using the liquid crystal phase.
  • the usefulness of the substance according to the present invention basically exhibits a higher-order smectic phase when used as an organic semiconductor in a liquid crystal phase.
  • the usefulness of the substance according to the present invention when used as an organic semiconductor in the crystalline phase, it is difficult to form cracks or voids in the crystalline thin film when cooled from a temperature higher than the crystalline phase temperature, and a low-order liquid crystal phase is expressed adjacent to the crystalline phase. It is made use of by choosing what does not.
  • a liquid crystal phase other than a nematic phase, an SmA phase, or an SmC phase is expressed in a temperature region adjacent to the crystal phase, or when used as an organic semiconductor in a crystal phase.
  • the criterion is that cracks and voids are less likely to form when the crystal phase is cooled and transitioned to a crystal phase from a temperature range higher than the crystal phase.
  • test substance After the isolated test substance is purified by column chromatography and recrystallization, it is confirmed by thin layer chromatography on silica gel that the test substance shows a single spot (that is, not a mixture).
  • the temperature at which this texture appears is defined as the crystallization temperature, and it is confirmed that the texture appearing in a temperature region higher than that temperature is not a nematic phase, SmA phase, or SmC phase.
  • a characteristic schlieren texture expressed as a pincushion is observed, and when it shows an SmA phase or an SmC phase, it has a fan-like texture with a uniform structure in the region. Since the characteristic texture which has is observed, it can determine easily from the characteristic texture.
  • the visual field changes instantaneously at the phase transition temperature, but the phase transition texture almost changes.
  • the texture of the formed SmB phase, SmF phase, and SmI phase may be mistaken for the SmA phase and the SmC phase, so care should be taken.
  • the energy levels of the HOMO and LUMO of the core part are also important.
  • the HOMO level of an organic semiconductor is determined by dissolving a test substance in a dehydrated organic solvent such as dichloromethane to a concentration of, for example, 1 mmol / L to 10 mmol / L, and adding a supporting electrolyte such as a tetrabutylammonium salt.
  • the HOMO level and LUMO level can be estimated from the difference between the peak potential and the reference potential, for example, a known substance such as ferrocene. If the HOMO level and LUMO level are outside the potential window of the organic solvent used, the HOMO-LUMO level is calculated from the absorption edge of the UV-visible absorption spectrum and subtracted from the measured level. Can be estimated. This method is referred to J. Pommerehne, H. Vestweber, W. Guss, sR. F. Mahrt, H. Bassler, aM. Porsch, and J. Daub, Adv. Mater., 1995, 551 (1995). be able to.
  • the HOMO and LUMO levels of an organic semiconductor material provide a measure of electrical contact with the anode and cathode, respectively, and charge injection is limited by the size of the energy barrier determined by the difference from the work function of the electrode material. So be careful.
  • the work function of a metal is often silver (Ag) 4.0 eV, aluminum (Al) 4.28 eV, gold (Au) 5.1 eV, calcium (Ca) 2.87 eV, as examples of materials used as electrodes.
  • the work function difference between the organic semiconductor material and the electrode substance is preferably 1 eV or less, more preferably 0.8 eV or less. More preferably, it is 0.6 eV or less.
  • the work function of the metal the following documents can be referred to as necessary. Reference D: Chemical Handbook Basic Edition Revised 5th Edition II-608-610 14.1 b Work Function (Maruzen Publishing Co., Ltd.) (2004)
  • the size of the conjugated system can be used as a reference when selecting materials.
  • Examples of “charge transporting molecular unit A” that can be suitably used in the present invention are as follows.
  • X represents S, O, NH.
  • annular structure unit C An example of the “annular structure unit C” that can be suitably used in the present invention is as follows. Unit C may be the same as unit A.
  • Ar 1 of the substituent represented by the general formula (3) is not particularly limited as long as it is an aromatic hydrocarbon group that may have a substituent or a heteroaromatic group that may have a substituent.
  • Ar 1 of the substituent represented by the general formula (3) is not particularly limited as long as it is an aromatic hydrocarbon group that may have a substituent or a heteroaromatic group that may have a substituent.
  • the following can be mentioned.
  • An unsubstituted monocyclic or polycyclic aromatic hydrocarbon group having 6 to 24 carbon atoms such as a p-terphenyl group or a quarterphenyl group,
  • o-tolyl group m-tolyl group, p-tolyl group, 2,4-xylyl group, 2,6-xylyl group, mesityl group, duryl group, 4-ethylphenyl group, 4-n-propylphenyl group, 4
  • An alkyl-substituted aromatic hydrocarbon group in which the aromatic hydrocarbon group is substituted with an alkyl group having 1 to 4 carbon atoms, such as isopropylphenyl group and 4-n-butylphenyl group;
  • Ar 2 of the substituent represented by the general formula (3) is not particularly limited as long as it is an aromatic hydrocarbon group which may have a substituent, but examples thereof include the following. .
  • 6 carbon atoms such as phenylene group, naphthylene group, azulylene group, acenaphthenylene group, anthrylene group, phenanthrylene group, naphthacenylene group, fluorenylene group, pyrenylene group, chrysenylene group, peryleneylene group, biphenylene group, p-terphenylene group, quarterphenylene group, etc.
  • the aromatic hydrocarbon group is an alkyl group having 1 to 10 carbon atoms, such as a tolylene group, a xylylene group, an ethylphenylene group, a propylphenylene group, a butylphenylene group, a methylnaphthylene group, or a 9,9′-dihexylfluorenylene group.
  • a substituted alkyl-substituted aromatic hydrocarbon group is an alkyl group having 1 to 10 carbon atoms, such as a tolylene group, a xylylene group, an ethylphenylene group, a propylphenylene group, a butylphenylene group, a methylnaphthylene group, or a 9,9′-dihexylfluorenylene group.
  • Examples thereof include a halogenated aromatic hydrocarbon group in which the aromatic hydrocarbon group is substituted with a halogen such as a fluorine atom, a chlorine atom, or a bromine atom, such as a fluorophenylene group, a chlorophenylene group, or a bromophenylone group.
  • a halogen such as a fluorine atom, a chlorine atom, or a bromine atom
  • fluorophenylene group such as a fluorophenylene group, a chlorophenylene group, or a bromophenylone group.
  • R ′ represented by the general formula (4) is a halogen atom such as a hydrogen atom, an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group or a butyl group, a chlorine atom, a bromine atom or an iodine atom. Is an atom.
  • the “single bond” for linking the above units A and C which can be preferably used in the present invention, is a combination of carbons in the molecular major axis direction among the carbons constituting the cyclic structure of the units A and C. Choose so that the whole is a stick. That is, in the present invention, the carbon constituting the unit A and the carbon constituting the unit C are directly connected by a “single bond”.
  • the unit B can be used in a linear form or a branched form, but a linear form is more preferred.
  • the unit B preferably has 2 or more carbon atoms.
  • the number of carbon atoms is further preferably 3-20.
  • An increase in the number of carbons generally lowers the temperature of the liquid crystal phase, which is particularly convenient when used as an organic semiconductor in the liquid crystal phase.
  • the solubility in an organic solvent is lowered, so that process suitability may be impaired.
  • use of a structure containing oxygen, sulfur and nitrogen in unit B is effective in improving the solubility.
  • a structure in which oxygen, sulfur and nitrogen atoms are not directly connected to the unit A or the unit C is preferable from the viewpoint of mobility, and from the viewpoint of chemical stability, the structure with the unit A or the unit B is preferable.
  • the connection is preferably a structure in which oxygen, sulfur, and nitrogen are connected through two or more carbon atoms.
  • the compound of unit A mentioned above may have a known and commonly used substituent capable of substituting for unit A.
  • substituents are not limited as long as they do not hinder the problems of the present invention, but preferred substituents include the following. Aliphatic compounds having hetero atoms such as alkyl groups, halogen atoms, oxygen atoms, nitrogen atoms, sulfur atoms, alkenyl groups, alkynyl groups, thiophene, thienothiophene, benzothiophene, benzene, naphthalene, biphenyl, fluorene as substituents, Aromatic compounds such as pyridine, imidazole, benzothiazole, furan.
  • substituents are not limited as long as they do not hinder the problem of the present invention, but preferred substituents include the following.
  • Aliphatic compounds having hetero atoms such as alkyl groups, halogen atoms, oxygen atoms, nitrogen atoms, sulfur atoms, alkenyl groups, alkynyl groups, thiophene, thienothiophene, benzothiophene, benzene, naphthalene, biphenyl, fluorene as substituents, Aromatic compounds such as pyridine, imidazole, benzothiazole, furan.
  • benzene, naphthalene, thiophene, thienothiophene, benzothiophene, and the like are particularly preferable because they can be expected to improve mobility by imparting planarity to the crystal structure of the compound.
  • the annealing process may or may not be performed, but it is more preferable to perform the annealing process in order to improve mobility.
  • the annealing process can be used to control the crystal phase used as a device material, such as improving the crystallinity of a film formed from a solution or the like, or transition from a metastable phase to a most stable phase due to a crystal polysystem.
  • the annealing temperature is lower than the temperature at which the charge transporting molecular unit A having an aromatic condensed ring structure used in the present invention and the compound having the unit B as a side chain transition from a crystal to a liquid crystal.
  • the temperature be as close as possible to the temperature at which the crystal transitions from the crystal.
  • the close temperature varies depending on the target compound, but examples thereof include the transition temperature and a temperature within a range of about 10 to 20 ° C. lower than the transition temperature.
  • There is no limitation on the annealing time but examples include a time of about 5 to 60 minutes.
  • Transient photocurrent measurement by the Time-of-flight method means observation of photocharge generation and charge transport by light irradiation, and this measurement system realizes a photosensor using organic semiconductor materials. Corresponds to that. Therefore, it can be confirmed by this measurement that the organic semiconductor material of the present invention can be used for semiconductor device operation.
  • the semiconductor device operation confirmation by such a method see, for example, Non-Patent Document Appl. Phys. Lett. , 74 No. 18 2584-2586 (1999).
  • the organic semiconductor material of the present invention can be used as an organic transistor by producing an organic transistor and evaluating its characteristics.
  • the semiconductor device operation confirmation by such a method, see, for example, Document S.A. F. Nelson, Y. -Y. Lin, D, J, Gundlach, and T. N. Jackson, Temperature-independent Transistors, Appl. Phys. Lett. 72No. 15 1854-1856 (1998) can be referred to.
  • the liquid crystal material used in the present invention is basically composed of a condensed ring system in which three or more aromatic rings within 5 rings are connected in a rod shape (that is, generally linear) via a single bond.
  • a structure in which a hydrocarbon chain unit having 3 or more carbon atoms is connected in the molecular long axis direction to any one of the structures in which the cyclic structure is connected in the molecular long axis direction of the condensed ring system is preferable.
  • the liquid crystal material used in the present invention has at least one other cyclic structure of a condensed ring system via a single bond to a condensed ring system connected in the form of a rod of 3 or more aromatic rings within 5 rings.
  • This is a structure in which a hydrocarbon chain unit having 3 or more carbon atoms is connected in the molecular long axis direction to any one of the structures connected in the molecular long axis direction. This is illustrated by taking the following substances (see figure) as examples.
  • the compound group used in the present invention can be molecularly designed by appropriately combining the above-mentioned units A to C.
  • Specific examples of the compound group include the following, but from the present invention, However, the compound group to be used is not limited to these.
  • liquid crystal substances are also effective.
  • Compound 24-1 (2-decylBTBT) is obtained from BTBT in two steps (Friedel-Crafts acylation) according to the literature (Liquid Crystals 2004, 31, 1367-1380 and Collect. Czech. Chem. Commun. 2002, 67, 645-664). (Wolff-Kishner reduction).
  • H-nmr (270 MHz, CDCl 3 ): ⁇ 7.68 (d, 1H, J8.2 Hz, H-9), 7.67 (broadeneds, 1H, H-6), 7.62 (d, 1H, J8. 4 Hz, H-4), 7.23 (dd, 1H, J1.5, 8.2 Hz, H-8), 7.16 (d, 1H, J to 2 Hz, H-1), 6.81 (dd , 1H, J-2, 8.4 Hz, H-3), 3.84 (lightly broadcasteds, ⁇ 2H, NH 2 ), 2.73 (t, 2H, J-7.5 Hz, ArCH 2 ), 1.68 (Quant. 2H, J to 7.5 Hz, ArCH 2 CH 2 ), to 1.2 to 1.4 (m, 14 H, CH 2 x7), 0.87 (t, 3H, J to 7 Hz, CH 3 )
  • a silicon wafer with a thermal oxide film (heavy doped p-type silicon (P + -Si), thermal oxide film (SiO 2 ) thickness: 300 nm) was cut into 20 ⁇ 25 mm, and this cut silicon wafer (hereinafter abbreviated as substrate) Ultrasonic cleaning was performed in the order of neutral detergent, ultrapure water, isopropyl alcohol (IPA), acetone, and IPA. Next, the compound of Synthesis Example 1 was dissolved in xylene to prepare a solution. The concentration of the solution was 1 wt% to 0.5 wt%.
  • This solution and a glass pipette for applying the solution to the substrate are heated in advance on a hot stage to a predetermined temperature, and the substrate is placed on a spin coater placed in an oven. After raising the temperature to 100 ° C., the solution was applied onto the substrate, and the substrate was rotated (about 3000 rpm, 30 seconds). After stopping the rotation, the substrate was quickly taken out and cooled to room temperature. Further, the obtained organic thin film was thermally annealed at 120 ° C. for 5 minutes.
  • the evaluation of the fabricated organic transistor was conducted by applying a sweep current to the gate electrode (P + -Si) using a source / measurement unit with two power supplies under normal atmospheric conditions. This was performed by measuring (transfer characteristics) while (Vsg: +10 to ⁇ 100 V) (voltage Vsd between source electrode and drain electrode: ⁇ 100 V). The mobility was calculated from the slope of ⁇ Id ⁇ Vg in the transfer characteristic by a well-known method using a saturation characteristic equation (FIG. 6).
  • the sample as it was produced was “As coated”, the obtained organic thin film was thermally annealed at 120 ° C. for 5 minutes, “after annealing”, heated to a liquid crystal phase temperature of 160 ° C. and then rapidly cooled.
  • the sample was named “160 ° C. fast cool”. In the sample that was rapidly cooled after heating to 160 ° C., a decrease in mobility was confirmed. In addition, the measurement of mobility was performed about five transistors, The average value and the standard deviation were described. The results are shown in Table 8.
  • the above measurement sample was measured under the condition of 1 to 20 °.
  • the structure of the thin film was calculated
  • the position of the reflected X-ray beam center in the two-dimensional scattered image is determined from the X-ray incident angle at the time of measurement, and the scattering / diffraction intensity I on the straight line in the horizontal direction as viewed from the center of the reflected beam is taken.
  • a one-dimensional scattering profile H was obtained as the scattering intensity I.
  • the scattering / diffracting intensity I on a straight line in the vertical upward direction when viewed from the center of the reflected beam was taken, and a one-dimensional scattering profile V was obtained as the scattering intensity I with respect to the scattering angle 2 ⁇ from the center of the reflected beam.
  • ⁇ [nm] is an X-ray wavelength of 0.1 nm.
  • a periodic length of about 4 cm or the like derived from a periodic structure (plane spacing) in an orientation almost perpendicular to the molecular chain in the arrangement structure of the molecule is calculated.
  • the molecular length of the compound is calculated.
  • a period length of about 30 cm derived from the above was calculated. From the measurement principle of GISAXS / WAXS, information on the periodic structure in the plane of the thin film is obtained from the scattering profile H, and information on the periodic structure of the laminated state of the thin film is obtained from the scattering profile V.
  • this organic thin film has compound molecules standing perpendicular to the substrate, and is laminated every about 30 mm corresponding to the molecular length. It was confirmed that a bilayer structure was formed. The results are shown in Table 8.
  • the obtained two-dimensional X-ray scattering image is shown in FIG. From the scattered image, a peak derived from a constant stacking period is observed in the Y-axis direction from the beam center, whereas a bilayer structure can be confirmed from the fact that no peak is observed in the X-axis direction.
  • Example 2 In Example 1, a liquid crystal substance of Compound 9 obtained according to WO2012 / 121393 was used in place of the compound of Synthesis Example 1, and the annealing conditions after the organic thin film formation was changed to one-minute annealing with toluene vapor. The results of evaluation in the same manner as in Example 1 are shown in Table 8.
  • Example 3 evaluation was performed in the same manner as in Example 1 except that the liquid crystal substance of Compound 64 was used instead of the compound of Synthesis Example 1 and the annealing conditions after the organic thin film formation was changed to 130 ° C. for 30 minutes. did. The results are shown in Table 8.
  • Example 4 In Example 1, except that the liquid crystal substance of Compound 23 was used instead of the compound of Synthesis Example 1, ethylbenzene was used instead of toluene, and the annealing conditions after the organic thin film formation were changed to 110 ° C. for 30 minutes. The results of evaluation in the same manner as in Example 1 are shown in Table 8.
  • Example 1 In Example 1, the same evaluation as the method described in Example 1 was performed except that thermal annealing at 120 ° C. was not performed. The results are shown in Table 8. The obtained two-dimensional X-ray scattering image is shown in FIG. From the scattered image, concentric circles are observed from the center of the beam in the X-axis direction and the Y-axis direction, so that it can be confirmed that the liquid crystal substance is not aligned and exists separately.
  • Example 2 (Comparative Example 2) In Example 2, the same evaluation as the method described in Example 2 was performed except that toluene vapor annealing for 1 minute was not performed. The results are shown in Table 8.
  • Example 3 (Comparative Example 3) In Example 3, the same evaluation as the method described in Example 3 was performed except that thermal annealing at 130 ° C. was not performed. The results are shown in Table 8.
  • Example 4 (Comparative Example 4) In Example 4, the same evaluation as the method described in Example 4 was performed, except that thermal annealing at 110 ° C. was not performed. The results are shown in Table 8.
  • the core part of compound 24 (part composed of phenyl ring and benzothienobenzothiophene) has a Herringbone structure, and has a bilayer structure in which the core parts face each other. It was revealed.
  • the profile by the TOF-SIMS in the thickness direction of sulfur atoms existing only in the core part (FIG. 7; approximately one molecule length).
  • a peak of about 5 nm corresponding to the length of two molecules was observed in the distribution profile of sulfur atoms (FIG. 8).
  • the polycrystalline thin film has a monolayer structure immediately after film formation, but with a bilayer with a core facing each other, similar to a single crystal obtained by recrystallization from a solution by thermal annealing at 120 ° C. It is thought that the structure changes.
  • T1, T2, and T3 in the layer are 55, 17, and 43 meV, respectively (FIG. 9), and the layers between the cores facing each other It was also found that it has a significant value of about 8 meV (FIG. 10).
  • the organic thin film having a bilayer structure of the present invention obtained from a specific liquid crystal substance can be expected to have high mobility because the aromatic ⁇ -conjugated system is continuously expanded, and is a high-quality organic material that is uniform and has few defects. It can be used as a semiconductor thin film. Specifically, it can be used for an optical sensor, an organic EL element, an organic transistor, an organic positive battery, an organic memory element, and the like.

Abstract

 本発明は、移動度のみならず、高い性能安定性を持つ有機薄膜および有機トランジスタを提供する。より詳しくは、芳香族縮環系の構造を有する電荷輸送性分子ユニットAと、側鎖としてユニットBを有する化合物により形成される膜であって、該化合物がバイレイヤー構造を有して形成されることを特徴とする有機薄膜、該有機薄膜を用いてなる有機半導体デバイス、及び該有機薄膜を有機半導体層として用いる有機トランジスタを提供するものである。

Description

有機薄膜、これを用いた有機半導体デバイスおよび有機トランジスタ
 本発明は、種々のデバイスに好適に使用可能な、液晶物質から得られる、高い秩序構造を有する有機薄膜に関し、更に、該薄膜を使用する有機半導体デバイス及び有機トランジスタに関する。
 正孔や電子による電子的な電荷の輸送が可能な有機物質は有機半導体として用いることができ、複写機感光体や光センサー、有機EL素子、有機トランジスタ、有機太陽電池、有機メモリー素子などの有機電子素子の材料として用いることができる。
このような材料の利用形態は、アモルファス薄膜、あるいは、多結晶薄膜が一般的であり、アモルファスシリコンや多結晶シリコンを用いてなる薄膜トランジスタが、液晶表示装置や有機EL表示装置などのスイッチング素子として広く用いられている。しかし、これらシリコンを用いたトランジスタは、製造設備が高価な上、高温下で成膜されるため、耐熱性に乏しいプラスチック基板には展開できない。これを解決するために、シリコン半導体に代えて、有機半導体をチャネル半導体層に用いた有機トランジスタが提案されている。
一般に、有機半導体はシリコン半導体に比べ、キャリア移動度が低く、その結果、トランジスタの応答速度が遅くなることが実用化の課題であったが、近年、アモルファスシリコン同等の移動度の有機半導体が開発されてきた。例えば、特許文献1および特許文献2には、2,7-置換[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェン骨格(以下、[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェンをBTBTと略する)を有する化合物が記載されており、アモルファスシリコンと同等以上の移動度を示すことが報告されている。
しかしながら、未だ移動度は高精細の液晶表示装置や有機ELを駆動するには不十分な上、また、同条件で作製したTFTであっても、移動度のバラツキが大きいため性能信頼性が低い。従って、有機半導体には更なる高移動度化とTFTにおける性能安定性が求められている。
一方、近年、従来はイオン伝導性と考えられてきた液晶物質の液晶相において、アモルファス有機半導体をはるかに上回る高い移動度を示す電子性伝導が見出され、液晶相を有機半導体として使用可能であることが明らかにされた。
 液晶物質は、自己組織的に配向した分子凝集相(液晶相)を形成する高移動度((10-4cm/Vs~1cm/Vs)を示す新しいタイプの有機半導体として位置づけられる。また、液晶物質は、ドメイン界面やディスクリネーションなどの液晶に特有の配向欠陥は、電気的に活性な準位を形成しにくいという特徴を有するなど、従来のアモルファス有機半導体材料や結晶性有機半導体材料には見られない優れた特性を持つことが明らかにされている。実際、液晶相を有機半導体として、光センサー、電子写真感光体、有機EL素子、有機トランジスタ、有機太陽電池などの電子素子の試作が行われている。
 液晶物質は、液晶相において、一般に、非液晶物質では困難な分子配向の制御が容易にできるという大きな特徴を有する。例えば、棒状液晶物質では、液晶セルなどのように、2つの基材の間に液晶物質を注入した場合、液晶相温度では、一般に、液晶分子は分子長軸を基材表面に対して寝た状態に容易に配向し、また、液晶物質を基材に塗布した場合は分子長軸を基材表面に対して立った状態に容易に配向する傾向を有する。これを利用すると、液晶相温度で配向している液晶の薄膜を温度を下げて結晶相に相転移させることによって、液晶相ばかりでなく、結晶相においても、分子配向を制御した薄膜(結晶薄膜)を容易に作製できる。これは、一般の非液晶性有機物では実現が困難である。
 このような特徴を活かして、液晶物質の液晶薄膜(液晶相の状態の薄膜)を、結晶薄膜を形成する際の前躯体として利用することにより、結晶性や平坦性に優れた結晶薄膜の作製をできることが明らかにされている。
 これによると、液晶相温度で液晶膜の形成を行い、それを結晶化温度に冷却すると、均一で表面の平坦性に優れる膜が得られると言うものである。このように、液晶物質は液晶薄膜のみならず結晶薄膜としても有機半導体材料として電子素子へ応用することができるというという点で、有機半導体として自由度の高い材料といえる(例えば、非特許文献1)。
 液晶物質を有機半導体として利用する場合には、高い電子移動度を示す液晶物質を得ることに加え、どのような結晶状態の薄膜を形成するかが鍵になる。
 従来より、これまで液晶物質としては種々の材料が合成されてはいるもの、その対象は光学的異方性を利用した表示素子のための表示材料に用いるためのネマチック液晶にほとんど限られていたため、液晶物質を有機半導体として利用する場合に好適な液晶物質の分子設計の指針、つまり、どのような考え方に基づいて液晶物質を合成すれば良いかは、これまで明らかにされていなかった。
 これを鑑みて、特許文献3には、高い移動度を示す液晶物質を得るための設計指針が記載されているが、このような液晶物質を使用しても、どのような結晶状態の有機薄膜を作製すれば、高い移動度と、高い性能安定性を兼ね備えた有機トランジスタが得られるか、定性的、定量的には分かっておらず、移動度と性能安定性を備える有機薄膜および有機トランジスタの開発が課題であった。
WO2006-077888号公報 WO2008-047896号公報 WO2012-121393号公報
Advanced Materials,電子版、25 FEB 2011,DOI:10.1002/adma.201004474
 本発明の目的は、上記した従来技術の欠点を解消し、移動度のみならず、高い性能安定性を持つ有機薄膜および有機トランジスタを提供することにある。
 本発明者は鋭意研究の結果、特定の電荷輸送性分子ユニットAと、側鎖としてユニットBを有する化合物のバイレイヤー構造を形成する有機薄膜によって、上記の課題が解決されることを見出した。
 本発明の有機薄膜は、上記知見に基づくものであり、より詳しくは、芳香族縮環系の構造を有する電荷輸送性分子ユニットAと、側鎖としてユニットBを有し、N相、SmA相およびSmC相以外の相を示す液晶物質から得られる、バイレイヤー構造を有する有機薄膜を特徴とするものである。
 本発明者の知見によれば、上記の液晶物質が好適な特性を示す理由は、以下のように推定することができる。
 一般的に、液晶物質には、高分子液晶と低分子液晶があるが、高分子液晶の場合は液晶相においては一般に粘性が高いため、イオン伝導は起きにくい傾向を有する。他方、低分子液晶の場合は、イオン化した不純物が存在する場合、ネマチック相(N相)やスメクチックA相(SmA相、以下同様に記載する)やSmC相などの液体性の強い低次の液晶相では、イオン伝導が誘起される傾向がある。ここで言う「イオン化した不純物」とは、イオン性の不純物が解離して生成したイオンや電荷のトラップとなりうる電気的に活性な不純物(つまり、HOMO準位、LUMO準位、あるいは、その両方の準位が、液晶物質のHOMO,LUMO準位の間に準位を持つ不純物)が、光イオン化や電荷の捕獲によって生成したイオン化したものをいう(例えば、M. Funahashi and J. Hanna, Impurity effect on charge carrier transport in Smectic liquid crystals、 Chem. Phys. Lett., 397,319-323(2004)、H. Ahn, A. Ohno, and J. Hanna, Detection of Trace Amount of Impurity in Smectic Liquid Crystals, Jpn. J. Appl. Phys., Vol. 44, No. 6A, 2005, pp. 3764-37687.を参照)。
 このため、有機半導体として低分子液晶物質を液晶薄膜として利用する場合は前述の、分子配置の秩序性を持たないネマチック相、分子凝集層を形成するスメクチック液晶物質にあっては、分子層内に分子配置の秩序性を持たないSmA相やSmC相では流動性が高いため、イオン伝導が誘起されやすく、有機半導体として利用する際に大きな問題となる。これに対して、分子層内に分子配置の秩序性を持つ「N相、SmA相およびSmC相以外の液晶相」、すなわち、高次のスメクチック相(SmB,SmBcryst、SmI、SmF、SmE、SmJ、SmG、SmK、SmHなど)は、この点でイオン伝導を誘起しにくいという(有機半導体として用いる際に都合が良い)特性を有している。また、一般に、低次の液晶相に比べて、配向秩序が高いため高い移動度を示す。(H. Ahn, A. Ohno, and J. Hanna, “Impurity effects on charge carrier transport in various mesophases of Smectic liquid crystal”, J.Appl.Phys.,102, 093718 (2007)を参照)。
 また、これまでの種々の液晶物質の液晶相における電荷輸送特性の研究から、同一のコア構造を持つ液晶物質においては、スメクチック相内の分子配置の秩序性の高い高次の液晶相ほど、高い移動度を示すことが明らかにされており、イオン伝導の抑制のみならず、高い移動度を実現する観点からも、高次のスメクチック相を示す液晶物質が有機半導体として有用である。
 一方、液晶物質を有機半導体として結晶薄膜の形態で利用する場合、結晶相の直上の温度領域において、液体性の強い低次の液晶相(N相、SmA相やSmC相)が出現する液晶物質では、その液晶相が出現する温度以上に素子が加熱された場合、流動性のために素子が熱により破壊されるという大きな問題点がある。これに対し、結晶相の直上の温度領域において、分子層内に分子配置の秩序性を有する高次のスメクチック相を発現する液晶物質では、液晶温度に素子が加熱された場合でも、流動性が低いため素子は破壊されにくいため、液晶物質の結晶薄膜を有機半導体として電子素子に応用する際にも、高次の液晶相を示す液晶物質が必要となる(ただし、この場合に限れば、液晶相でなくとも、準安定な結晶相を示す物質でも良い)。換言すれば、液晶物質が液体性の強い低次の液晶相(N相、SmA相やSmC相)以外の液晶相を示す液晶物質や準安定相を示す物質であれば、本発明において好適に使用可能である。
 一般に、複数の液晶相や中間相を示す物質では、温度の低下に伴って液晶相の分子配向は秩序化するため、温度が高い領域において、液晶物質が液体性の強い低次の液晶相(N相、SmA相やSmC相)が現れ、最も配向秩序の高い高次の液晶相や準安定な結晶相は、結晶相温度に隣接した温度領域で発現することが良く知られている。液晶相薄膜を有機半導体材料として利用する場合、前述の液体性の強い低次の液晶相以外の相であれば、原理的に、有機半導体として利用可能であるので、結晶相に隣接した温度領域に出現する凝集相が液体性の強い低次の液晶相(N相、SmA相やSmC相)で無ければよいということになる。液体性の強い低次の液晶相(N相、SmA相やSmC相)に加えてそれ以外の高次の液晶相が出現する液晶物質では、低次の液晶相では液体性が強いため分子配向の制御が高次の液晶相に比べて容易であるので、低次の液晶相で分子を配向させておき、高次の液晶相へ転移させることにより、分子配向の揺らぎや配向欠陥の少ない液晶薄膜を得ることができるので、液晶薄膜や結晶薄膜の高品質化が期待できる。
 本発明によれば、上記の液晶物質を使用すれば、高い移動度のみならず、高い性能安定性を示す有機薄膜が提供される。
実施例1で示した、本発明のバイレイヤー構造を持つ有機薄膜のSpring8の測定結果である。 比較例1で示した、バイレイヤー構造を持たない有機薄膜のSpring8の測定結果である。 実施例1で示した、本発明のバイレイヤー構造を持つ有機薄膜の単結晶構造解析である。 実施例2で示した、本発明のバイレイヤー構造を持つ有機薄膜の単結晶構造解析である。 実施例1におけるXDR測定の図面である。 実施例1において移動度を導き出すための図面である。 製膜後(後処理無)における硫黄原子の位置の確認を行う図面である。 熱アニール後における硫黄原子の位置の確認を行う図面である。 化合物24の単結晶の図面である。 化合物24の単結晶の図面である。
 以下、必要に応じて図面を参照しつつ本発明を更に具体的に説明する。以下の記載において量比を表す「部」および「%」は、特に断らない限り質量基準とする。
 即ち、本発明は、以下の項目から構成される。
(I)芳香族縮環系の構造を有する電荷輸送性分子ユニットAと、側鎖としてユニットBを有する化合物により形成される膜であって、該化合物がバイレイヤー構造を有して形成されることを特徴とする有機薄膜。
(II)前記化合物が更に、電荷輸送性分子ユニットAと単結合で連結された、水素原子、ハロゲン、炭素数1~4の低級アルキル基、又は環状構造ユニットCを有する(I)に記載の有機薄膜。
(III)芳香族縮環系の構造を有する電荷輸送性分子ユニットAと、側鎖としてユニットBを有する化合物が液晶化合物である請求項1又は2に記載の有機薄膜。
(IV)(I)~(III)のいずれかに記載の化合物が、N相、SmA相及びSmC相以外の相を示す(I)~(III)のいずれかに記載の有機薄膜。
(V)前記「N相、SmA相及びSmC相以外の相」が、SmB、SmBcrystal、SmI、SmF、SmG、SmE、SmJ、SmK、およびSmHからなる群から選ばれる液晶相である(I)~(IV)のいずれか一つに記載の有機薄膜。
(VI)前記電荷輸送性分子ユニットAの縮環の数(NA)が3以上5以下である(I)~(V)のいずれか一つに記載の有機薄膜。
(VII)前記電荷輸送性分子ユニットAのそれぞれの縮環を構成する個々の環が、炭素数5~6の環である(I)~(VI)のいずれか一つに記載の有機薄膜。
(VIII)前記環状構造ユニットCを構成する環の数(NC)と、電荷輸送性分子ユニットAの縮環数の数(NA)が下記の関係を満たす(II)~(VII)のいずれか一つに記載の有機薄膜。         
   NA≧NC
(IX)前記電荷輸送性分子ユニットAが一般式(1)で表される(I)~(VIII)のいずれか一つに記載の有機薄膜。
Figure JPOXMLDOC01-appb-C000005
(X)前記側鎖ユニットBが、置換基を有してもよい炭素数2~20のアルキル基、置換基を有してもよい炭素数2~20のアルケニル基、炭素数2~20のアルキルオキシ基、炭素数2~20のアルキルチオ基、若しくは一般式(2)
Figure JPOXMLDOC01-appb-C000006
(式中、Xは、S、O、NHを表し、mは0~17の整数、nは2以上の整数である。)
で表される基である(I)~(IX)のいずれか一つに記載の有機薄膜。
(XI)前記環状構造ユニットCが、無置換、或いは、ハロゲン又は炭素数1~4の低級アルキル基を置換基として持つ芳香族炭化水素基、又は、無置換、或いは、ハロゲン又は炭素数1~4の低級アルキル基を置換基として持つ複素芳香族基で表される基であるか、又は、下記(3)又は(4)の何れかである(II)~(X)のいずれか一つに記載の有機薄膜。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
(Arは無置換、或いは、ハロゲン又は炭素数1~4の低級アルキル基を置換基として持つ芳香族炭化水素基、又は、無置換、或いは、ハロゲン又は炭素数1~4の低級アルキル基を置換基として持つ複素芳香族基、Arは置換基を有してもよい芳香族炭化水素基、R’は無置換、或いは、ハロゲン又は炭素数1~4の低級アルキル基を置換基として持つ芳香族炭化水素基、又は、無置換、或いは、ハロゲン又は炭素数1~4の低級アルキル基を置換基として持つ複素芳香族基である。)
(XII)(I)~(XI)の何れかに記載の有機薄膜の製造方法において、
該有機薄膜をアニール化する工程を含むことを特徴とする有機薄膜の製造方法。
(XIII)(I)~(XI)のいずれか一つに記載の有機薄膜を用いてなる有機半導体デバイス。
(XIV)(I)~(XI)のいずれか一つに記載の有機薄膜を有機半導体層として用いる有機トランジスタ。
(XV)(XII)の有機薄膜の製造方法により得られる有機薄膜を用いてなる有機半導体デバイス。
(XVI)(XII)の有機薄膜の製造方法により得られる有機薄膜を有機半導体層として用いる有機トランジスタ。
(バイレイヤー構造)
 本発明の有機薄膜がとるバイレイヤー構造について記載する。
 本発明のバイレイヤー構造とは、2つの電荷輸送性分子ユニットAが向かい合わせに一対になって、一つの層を形成した2分子膜状の構造をいう。2つの電荷輸送性ユニットAが対になることで、相対的にπ電子雲が拡がり、移動度が高くなる。更に、液晶物質の自己組織化能により、このバイレイヤー構造が連続的に成長した結晶になることで、電荷移動の欠陥の少ない、即ち、高い性能安定性の有機薄膜を得ることができる。
 本発明のバイレイヤー構造は、放射光X線散乱測定により確認することができる。ここで、述べる放射光X線散乱測定とは、小角X線散乱と広角X線散乱を含んでいる。
 まず、小角X線散乱(small angle X-ray scattering)とは、X線を物質に照射して散乱するX線のうち、散乱角が小さいものを測定することにより物質の構造情報を得る手法であり、内部構造の大きさや形状、規則性、分散性を評価するものである。散乱角の小さいところほど対応する構造の大きさは大きいことを示す。
 また、広角X線散乱(wide angle X-ray scattering)とは、X線を物質に照射して散乱するX線のうち、散乱角が大きいものを測定することにより物質の構造情報を得る手法であり、小角X線散乱よりも小さな構造情報が得られる。結晶構造解析などに用いられる他に、試料の配向度の情報も得られる。
 小角X線散乱測定および広角X線散乱測定は市販の汎用X線装置でも測定可能であるが、有機トランジスタに使用されるような、小面積で、100nm以下の有機薄膜の測定には、大型放射光施設SPring-8(スプリングエイト)等の大型放射光施設により、放射光X線による小角X線散乱測定および広角X線散乱測定を行なうことが好ましい。
 SPring-8とは、兵庫県の播磨科学公園都市内にある世界最高性能の放射光を生み出すことができる大型放射光施設のことであり、放射光とは、電子を光とほぼ等しい速度まで加速し、磁石によって進行方向を曲げた時に発生する、細く強力な電磁波のことである。
 小角X線散乱測定および広角X線散乱測定ではX線の強度が強いほど短時間での測定が可能となるが、SPring-8で利用可能な放射光X線は市販の汎用X線装置によるX線の1億倍以上の輝度を持つので、極小面積、極薄膜の測定でも十分な強度が得られる。
 放射光X線散乱の測定の一例を以下に示す。
 高輝度放射光実験施設SPring-8内のフロンティアソフトマター開発産学連合体が所有するビームラインBL03XU 第1ハッチを使用して、測定モードがすれすれ入射小角/広角エックス線散乱法(Grazing Incident Small Angle Scattering/Wide Angle Scattering:GISAXS/WAXS)にて、カメラ長140mm、2300mm、波長0.1nm、エックス線入射角0.08°または0.16°、露光時間1~5秒、測定温度25℃、散乱角範囲2θ=0.1~20°の条件などで、本発明の有機薄膜を測定した。
 得られた2次元エックス線散乱像を以下の方法で解析することで薄膜の構造を求めた。測定時のエックス線入射角から2次元散乱像における反射エックス線ビーム中心位置を決めて、その反射ビーム中心からみて水平方向の直線上の散乱・回折強度Iをとり、反射ビーム中心からの散乱角2θに対する散乱強度Iとして1次元化した散乱プロファイルHを得た。同様に、反射ビーム中心からみて垂直上方向の直線上の散乱・回折強度Iをとり、反射ビーム中心からの散乱角2θに対する散乱強度Iとして1次元化した散乱プロファイルVを得た。それぞれ散乱プロファイルH,Vに現れたもっとも強度の強いピークに着目し、ピーク位置の散乱角2θの値から2dsin(2θ/2)=λの式を用いて周期長d[nm]を算出した。ここでλ[nm]はエックス線波長0.1nmである。
その結果、散乱プロファイルHからは、当該分子の配列構造の中で分子鎖とほぼ直交する方位の周期構造(面間隔)に由来する約4Åの周期長等が算出され、散乱プロファイルVからは化合物の分子長さに由来する約30Åの周期長が算出された。GISAXS/WAXSの測定原理から、散乱プロファイルHからは薄膜の面内の周期構造の情報が得られ、散乱プロファイルVからは薄膜の積層状態の周期構造の情報が得られる。高次スメクチック相に特徴的な回折プロファイル、および該液晶相の構造的特徴から、この有機薄膜は基板に対して化合物分子が垂直に立っており、分子長さに相当する約30Åごとに積層したバイレイヤー構造を形成していることが確認できた。
 本発明では、芳香族縮環系の構造を有する電荷輸送性分子ユニットAと、側鎖としてユニットBを有する化合物が液晶化合物を示す場合、より、好ましく用いることができる。その理由は、液晶物質、中でも、スメクチック液晶物質は自己組織的に層状構造を有する凝集相(スメクチック液晶相)を形成するため、結晶相を形成するための前駆体として利用することにより、表面平滑性にすぐれ。大きな面積にわたり均一な結晶膜を、容易に得ることができるからである。また、液晶相を持つことから、液晶相温度での熱処理を行なうことができるという点でも、非液晶物質に比べて有利である。スメクチック液晶物質の中でも、中でも以下に説明する液晶相を示す液晶化合物が特に好ましい。
(所定の液晶相)
 本発明において、上記の「N相、SmA相およびSmC相以外の液晶相」は、SmB,SmBcryst、SmI、SmF、SmE、SmJ、SmG、SmK、およびSmHからなる群から選ばれる液晶相であることが好ましい。この理由は、本発明に関わる液晶物質を液晶相で有機半導体して用いる場合、既に述べたように、これらの液晶相は流動性が小さいためイオン伝導を誘起しにくく、また、分子配向秩序が高いため液晶相において高い移動度が期待できるからである。また、本発明に関わる液晶物物質を結晶相で有機半導体として用いる場合には、これらの液晶相は、N相、SmA相およびSmC相に比べて流動性が小さいため、温度の上昇により液晶相に転移した場合にも素子の破壊が起こりにくいためである。液晶相の発現が降温過程においてのみみられる場合は、一旦結晶化すると、結晶温度領域が広がるため、結晶相で応用する場合に好都合である。本発明では、降温過程において、「N相、SmA相及びSmC相以外の相」が、SmBcryst、SmE、SmF、SmI、SmJ、SmG、SmK、又はSmHであることを特徴とする。
 更に、この「SmA相およびSmC相以外の液晶相」のうち、より高次のSm相であるSmE、SmGが、前記有機半導体材料を結晶相から昇温させた際に、液晶相に隣接した温度領域で現れる液晶相として特に好ましい。また、液体性の強い低次の液晶相(N相、SmA相やSmC相)に加えてそれ以外の高次の液晶相が出現する液晶物質では、低次の液晶相では液体性が強いため、分子配向の制御が高次の液晶相に比べて容易であるので、低次の液晶相で分子をあらかじめ配向させておき、高次の液晶相へ転移させることにより、分子配向の揺らぎや配向欠陥の少ない液晶薄膜を得ることができるので、液晶薄膜や結晶薄膜の高品質化が実現できる。
 液晶物質を有機半導体として用いる場合、それを用いたデバイスに求められる動作温度は通常-20℃~80℃であるので、本願発明では、「N相、SmA相及びSmC相以外の相」が出現する温度領域が-20℃以上であることが求められる。また、本発明に関わる液晶物質を結晶相において有機半導体として用いる場合、液晶状態の薄膜(液晶薄膜)を結晶薄膜の作製の前駆体として利用することがその高品質化に有効である。このため、プロセスの簡便さや基材の選択の容易さを考慮すると、液晶物質の液晶相が出現する温度は200℃以下が望ましい。
(有機半導体材料)
 本発明に使用できる有機半導体材料は、芳香族縮環系の構造を有する電荷輸送性分子ユニットAと、側鎖としてユニットBを有する有機半導体材料であり、好ましくは更に、ユニットAと単結合で連結された、水素原子、ハロゲン、炭素数1~4の低級アルキル基、又は環状構造ユニットCを有する有機半導体材料である。
(好適な電荷輸送性分子ユニットA)
 有機半導体においては電荷輸送にあずかる分子部位は芳香環などからなる共役したπ電子系ユニットで、一般には共役したπ電子系のサイズが大きいほど電荷輸送には有利であるが、π電子系のサイズが大きくなると、有機溶媒に対する溶解度が低下し、また、高融点となるため、合成時、あるいは、有機半導体として利用する際のプロセスが難しくなるという問題がある。このため、電荷輸送性分子ユニットの縮環数は3以上5以下であることが好ましい。電荷輸送性分子ユニットAは、ヘテロ環を含んでもよい。該縮環を構成する個々の環の炭素数は、合成の利便性から5~6個(すなわち、5員環~6員環)であることが好ましい。
 電荷輸送性分子ユニットAを構成するヘテロ環も、5員環~6員環であることが好ましい。ヘテロ環の数は、特に制限されないが、以下のような数であることが好ましい。
 <ユニットAの環数>    <ヘテロ環の数>
     3個          1個
     4個          1~2個
     5個          1~3個(特に1~2個)
 高次の液晶相の発現を目指す観点からユニットAを構成する化合物を選択する場合、その融点を目安とすることができる。融点はその化合物の凝集エネルギーの目安を与えるからである。融点が高い化合物は凝集時の分子間の相互作用が強いことを意味し、結晶化しやすいことにも対応し、高次の液晶相の発現を誘起するのに都合がよい。したがって、ユニットAを構成する化合物(ユニットB及びユニットCとの結合がないとした場合に構成される化合物)の融点は、120℃以上であることが好ましく、より好ましくは150℃以上であり、更に好ましくは180℃以上、特に、好ましくは200℃以上である。融点が、120℃以下であると、低次の液晶相の発現が起こりやすく、好ましくない。
 上記ユニットAを構成する化合物について、以下に実例で具体的に説明する。
 対象とする化合物が下記式(5)である場合、ここで問題とするユニットAを構成する化合物は、ユニットCとの単結合を排除し、当該単結合していた、以下のユニットAの位置に水素原子が置換された、下記式(1)の化合物となる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 即ち、本例では、ユニットAを構成する化合物はベンゾチエノ[3,2-b][1]ベンゾチオフェンであり、該ベンゾチエノ[3,2-b][1]ベンゾチオフェンの融点が、ユニットAを構成する化合物の融点となる。
 本例の場合には、単結合がユニットAとユニットBとの間で存在していたが、ユニットCとの間で単結合が形成されている場合も同様にして、ユニットAを構成する化合物の融点を規定することが可能である。
 また、ユニットAの繰り返し数は1であっても良いし、2であってもよい。
(好適な環状構造ユニットC)
 本発明において、ユニットCは、フリップーフロップ運動の自由度を与えるための、「もう一つの構造」部である。ユニットCは、単結合で電荷輸送性ユニットAと連結された芳香族縮環、または、脂環式分子構造であることが好ましい。環数は1以上5以下(更には、3以下、特に1~2)であることが好ましい。
 ユニットCの環数は、特に制限されないが、ユニットAを構成する環の数を「NA」とし、ユニットCを構成する環の数を「NC」とした場合に、NA≧NCであることが好ましい。より具体的には、以下のような数であることが好ましい。
 <ユニットAの環数>  <ユニットCの環数>
    3個       1~3個、更には1~2個(特に、1個)
    4個       1~4個、更には1~3個(特に、1~2個)
    5個       1~5個、更には1~4個(特に、1~3個)
 ユニットCは、ヘテロ環を含んでもよい。該ヘテロ環は、5員環~6員環であることが好ましい。
 また、ユニットCは、下記に具体例を挙げるような芳香族化合物、芳香族縮環化合物、あるいは、シクロアルカン、シクロアルケン、ヘテロ原子を含む脂環式飽和化合物等が好ましい。シクロアルケンである場合には、シクロヘキセンより、平面性がより高いと考えられるシクロペンテンの方が好ましい。本発明において、上記のユニットAとユニットCとは直接単結合で連結する必要がある。
(ユニットB)
 ユニットBは、例えば、上記のユニットA又はユニットCに連結することができる。結晶薄膜として用いる場合の結晶温度領域を広げるという点からは、上記のユニットAまたはユニットCの「いずれか一方」に連結していることが好ましい。好ましいユニットBとしては、炭化水素、或いはヘテロ原子を有する飽和化合物等の直線状構造を有する化合物が好ましく、特に好ましくは、炭素数2~20の炭化水素、又は一般式(2)
Figure JPOXMLDOC01-appb-C000011
(式中、Xは、S、O、NHを表し、mは0~17の整数、nは2以上の整数である。)
で表される基を挙げることができる。
前記ユニットAと、ユニットCとの少なくとも一方に、側鎖として存在するユニットBは、該ユニットが結合している環状構造(AまたはC)において、該環状構造が他の環状構造(すなわち、CまたはA)と連結ないし縮合している位置に対して、隣接しない位置にあることが好ましい。その結合位置の例は、後述の例示する構造に示す通りである。
 上記のユニットBの結合位置について、本発明の有機半導体材料に用いられる具体的な化合物で説明すると、例えば、下記式(5)の場合には、ユニットAがベンゾチエノ[3,2-b][1]ベンゾチオフェン、ユニットCがフェニル基、ユニットBがC1021であるが、ユニットCのベンゼンのパラ位で、ユニットA;ベンゾチエノ[3,2-b][1]ベンゾチオフェンと、ユニットB;C1021が結合している関係にあることを示す。
Figure JPOXMLDOC01-appb-C000012
 他のユニットを有する本発明の化合物についても同様に結合位置を示すことができる。
 二つの環状化合物を単結合で連結した場合、二つの化合物の軸周りの回転運動は、近くに置換基や立体的に大きな構造があるとその相互作用のために阻害され、分子の凝集時のコンフォメーションに揺らぎを与え、また、分子間の電荷移動速度に影響を与える再構築エネルギーを大きくする結果となる。このため、このような分子構造をもつ液晶物質は高次の液晶相が発現したとしても、電荷輸送特性が低下する場合が多い。
 前記で、ユニットAの繰り返し数は1であっても良いし、2であってもよいことを述べたが、化合物58のように化合物の全体構造を繰り返したものであってもよく、その場合の繰り返し数は1であっても良いし、2であってもよい。
(分子設計の要点)
 本発明においては、高い移動度を持つ液晶物質を実現するためには、次の点を考慮して分子設計を行うことが好ましい。
(1)本発明においては、分子配向した液晶相や結晶相において、電荷の移動速度を支配する因子として、コア部と呼ばれる電荷の輸送関わるπ-電子系分子ユニットのTransfer積分の値が大きいことが重要となる。この値を実際に量子化学的手法により計算するためには、目的とする分子凝集状態における隣接する分子間の具体的な分子配置決定し、計算を行うことが必要となるが、相対的に言えば、互いの相対的な分子位置に対する揺らぎに対して、冗長性のある拡張されたπ-電子系を有する分子構造が有利となる。
 つまり、スメクチック液晶物質の場合、電荷輸送のサイトとなるπ-電子共役系からなる電荷輸送性分子ユニットには棒状でかつある程度大きなサイズのπ-電子共役系を選ぶ。この場合、液晶分子の構造としてしばしば採用される小さな芳香環、例えば、ベンゼンやチオフェンなどを複数、単結合で連結し、大きなπ-電子共役系を構成した分子ユニットを用いるのではなく、縮環構造による大きなπ-電子共役系を持つ分子ユニットを用いる。縮環の環数は3以上が好ましいが、環数が大きすぎると溶媒に対する溶解度が低下するため5以下が現実的である。
 すなわち、本発明においては、ベンゼン、ピリジン、ピリミジン、チオフェン、チアゾール、イミダゾール、フランを芳香環構造として、これらが縮環して棒状の3環構造、4環構造、5環構造をとったものが、芳香族π-電子共役系縮環構造として好ましい。
(2)本発明においては、高い移動度を実現するためには、高次の液晶相を発現させることが必要となる。一般に、スメクチック液晶相では、分子層内の分子配置に秩序性を持たないSmA相やSmC相から、高次の液晶相になるに従い、液晶分子の分子運動は逐次、凍結されて行き、最も秩序性の高いSmE相やSmG相などでは、最終的に、分子のフリップーフロップ運動(フラッピング運動と表現されることもある)が残ると考えられる。
 この点を考慮し、液晶分子を構成する主たるコア構造に、前述の芳香族π-電子共役系縮環構造に単結合を介して、少なくとももう一つの剛直な構造を連結させた構造を用いることが好ましい。この場合、連結するもう一つの剛直な構造ユニットは、前述の芳香族π-電子共役系縮環構造と同数以下の環数を持つ構造が選ばれ、1または2でも良い。また、その構造には、必ずしも、ヘテロ環を含む広い意味での芳香環ばかりでなく、シクロヘキサンやシクロペンタン、あるいは、二重結合を含むシクロヘキセンやシクロペンテン、などの脂環式の環状構造であっても良い。
(3)本発明においては、スメクチック液晶性を発現させるためには、前述のようにコア部と呼ばれる剛直な分子ユニットに棒状の分子形状の異方性と液体性を与えるためのフレキシブルな炭化水素ユニットを連結し、基本的に、直線状に配置した構造を持たせることが、棒状液晶物質の基本デザインである。
 本発明ではコア部とは、前述の芳香族π-電子共役系縮環構造に単結合を介して、少なくとももう一つの剛直な構造を連結させた構造がそれにあたる。コア部におけるユニットBの連結位置は、分子全体として棒状の異方性を与えることが重要となる。その場合、コア部に連結するユニットBの位置は、ユニットAとユニットCを連結した単結合から見て、それぞれのユニットの遠い位置であればユニットAあるいは、ユニットCのいずれか、あるいは、その両方に連結しても良い。ユニットBを連結した際の分子形状に関して、分子全体の構造が大きな折れ曲がりを持つ場合は、一般に、スメクチック相が誘起されにくくなることに注意が必要である。
 この目安として、本分子設計においては、ユニットBとコア部の単結合を軸として、コア部の分子を回転させた場合のぶれ幅で与えることができる。より詳しくは、ユニットBが結合している炭素原子と、分子を回転させた場合のユニットBに直接結合していないユニットAまたはユニットCのコア部の最も外側にある炭素もしくはヘテロ元素を結んだ直線と、軸とのなす角をθとし、ぶれ幅を記述すると、このぶれ幅θは、液晶相の発現と、移動度を高くすることが可能なことから、90度以下、より好ましくは60度以下、さらに好ましくは30度以下となるような構造が好ましい。
 さらにまた、別の目安として、ユニットAとユニットCを連結する単結合と、ユニットBとユニットA、もしくは、ユニットBとユニットCを連結する単結合が一直線上に並ぶ、あるいは、平行であるか、あるいは、二つの単結合のなす角が、90°以上であること、より好ましくは120°以上であることが好ましい。
 (スキーム1)「a」には、θが30°以下で、二つの単結合一直線上に並ぶ例を、(スキーム1)「b」には、θが30°以下で、二つの単結合が平行である例を、(スキーム2)「a」には、θが30°以上、60°以下で、二つの単結合のなす角が120°である例を、(スキーム2)「b」には、θが30°以上60°以下で、二つの単結合のなす角が120°以上である例を、(スキーム3)「a」には、θが30°以下で、二つの単結合が平行である例を、(スキーム3)「b」には、θが30°以下で、二つの単結合が一直線上に並ぶ例を、それぞれ記す。
(スキーム1)
Figure JPOXMLDOC01-appb-C000013
(スキーム2)
Figure JPOXMLDOC01-appb-C000014
(スキーム3)
Figure JPOXMLDOC01-appb-C000015
 液晶相を発現させる場合、また、ユニットBの構造にニ重結合や三重結合、あるいは、酸素、硫黄、窒素などのヘテロ元素を含んだものを用いることもできる。しかし、移動度という観点では、コア部に、酸素、硫黄、窒素などを介することなく直接、ユニットBを連結させたものの方が好都合である。
(スクリーニング法)
 本発明において、上記の分子設計を満足する化合物中から、高次のスメクチック液晶相を発現し、有機半導体として有用な物質を、必要に応じてスクリーニングすることができる。このスクリーニングにおいて、基本的には、液晶相で有機半導体として用いる場合は高次のスメクチック相を発現すること、結晶相で有機半導体として用いる場合は、結晶相温度より高い温度から冷却したときに、結晶相に隣接して低次の液晶相を発現しないものを選ぶことが好ましい。この選択の方法は、後述する「スクリーニング法」にしたがって判定することにより、有機半導体材料として有用な物質を選択することができる。
 スキームAは、本発明に関する基本的な概念を示したものである。ユニットAとユニットCは、液晶分子においてはコア部と呼ばれるもので、このコア部の片側、または両側に、ユニットB(好ましくは、炭素数3以上のユニット)を、コア部の分子長軸方向に連結させたものが本発明における液晶物質の基本デザインとなる。
(スキームA)
Figure JPOXMLDOC01-appb-C000016
(電荷輸送性分子ユニット)
 液晶分子におけるコア部に対応する電荷輸送性分子ユニットとして、環数3以上の芳香族π-電子縮環系の分子ユニットを用いることにより、分子位置の揺らぎに対するtransfer積分の冗長性を確保でき、同様に、ベンゼンやチオフェンなどを複数、単結合で連結したπ-電子共役系の分子ユニットではなく、縮環構造を持つ分子ユニットを採用することにより、分子配座が固定されるため、transfer積分の増大が期待でき、移動度の向上に役立つ。
 一方、大きな縮環構造を電荷輸送性分子ユニットをコア部として採用しても、dialkylpentaceneやdialkylbenzothienobenzothiopheneなどの例のように、コア部に直接、炭化水素鎖を連結させた物質では、液晶相の安定化がはかれず、一般に、液晶相を発現しないか、液晶相を発現したとしてもSmA相などの低次の液晶相しか発現しない(非特許文献 Liquid Crystal.Vol.34.No.9(2007)1001-1007. Liquid Crystal.Vol.30.No.5(2003)603-610)。このため、単に電荷輸送性分子ユニットに大きな縮環構造を用いても、液晶相で高い移動度を実現することはできない。図に示したように、電荷輸送性分子ユニットに分子のフリップーフロップ運動の自由度を与えるためのもう一つの構造ユニットを連結した分子構造をコア部に採用することにより、初めて、高次の液晶相の発現と液晶相における高い移動度の実現が期待される。
 このような電荷輸送性分子ユニットにもう一つの剛直な構造ユニットを連結した構造(コア部)に炭化水素鎖を連結し、分子に、棒状の分子形状の異方性と液体性を付与することによって、高い確率で液晶相の発現を誘起することができる。炭化水素鎖を連結する場合、2本の炭化水素鎖を連結することが一般であるが、炭化水素鎖が1本の場合でも、液晶相はしばしば発現させることができる。この場合、液晶相の出現温度領域は、一般に、降温過程と昇温過程で非対称となることが多い。これは降温過程では、一般に液晶相温度領域が低温まで広がり、逆に、昇温過程では結晶相を高温領域まで広げることに役立つ。この特性は液晶物質の多結晶薄膜を有機半導体として利用する際に、液晶薄膜(液晶相状態の薄膜)をその前駆体として多結晶薄膜を作製する際により低い温度で液晶薄膜を作製できることを意味し、プロセスがより容易になるというメリットがある。また、昇温過程における結晶相温度が高領域まで広がることは、作製された多結晶膜の熱的安定性が向上することを意味し、材料として都合が良い。一方、炭化水素鎖を2本付与すると、一般に、発現した液晶相を安定化されるため、液晶相を用いたデバイス等への応用には都合が良い。
 以上述べた基本的な分子設計に基づいて物質を合成した場合、その物質の本発明に関わる有用性は、基本的には、液晶相で有機半導体として用いる場合は高次のスメクチック相を発現すること、結晶相で有機半導体として用いる場合は、結晶相温度より高い温度から冷却したときに結晶薄膜に亀裂や空隙を形成しにくく、かつ、結晶相に隣接して、低次の液晶相を発現しないものを選ぶことにより、生かされる。言い換えれば、液晶相で有機半導体として用いる場合は、結晶相に隣接する温度領域において、ネマチック相やSmA相やSmC相以外の液晶相を発現すること、また、結晶相で有機半導体として用いる場合には、結晶相より高い温度領域から冷却して結晶相へ転移させたとき、亀裂や空隙が形成されにくいことが判定基準となる。
 これは、以下に述べるスクリーニング法(判定法)によって、容易に判定することができる。このスクリーニング法に用いる各測定法の詳細に関しては、必要に応じて、下記の文献を参照することができる。
 文献A:偏光顕微鏡の使い方:実験化学講第4版1巻、丸善、P429~435
 文献B:液晶材料の評価:実験化学講座第5版27巻P295~300、丸善
    :液晶科学実験入門日本液晶学会編、シグマ出版
 (S1)単離した被検物質をカラムクロマトグラフィーと再結晶により精製した後、シリカゲルの薄層クロマトグラフィーにより、該被検物質が単一スポットを示す(すなわち、混合物でない)ことを確認する。
 (S2)等方相に加熱したサンプルを毛細管現象を利用して、スライドガラスをスペーサーを介して張り合わせた15μm厚のセルに注入する。一旦、セルを等方相温度まで加熱し、偏光顕微鏡でそのテクスチャーを観察し、等方相より低い温度領域で暗視野とならないことを確認する。これは、分子長軸が基板に対して水平配向していることを示すもので、以後のテクスチャー観察に必要な要件となる。
 (S3)適当な降温速度、例えば、5℃/分程度の速度でセルを冷却しながら、顕微鏡によるテクスチャーを観察する。その際、冷却速度が速すぎると、形成される組織が小さくなり、詳細な観察が難しくなるので、再度、等方相まで温度を上げて、冷却速度を調整して、組織が容易に観察しやすい、組織のサイズが50μm以上となる条件を設定する。
 (S4)上記(S3)項で設定した条件で、等方相から室温(20℃)まで冷却しながらテクスチャーを観察する。この間にセル中で試料が結晶化すると、格子の収縮に伴い、亀裂や空隙が生じ、観察されるテクスチャーに黒い線、または、ある大きさを有する領域が現れる。サンプルを注入する際に空気がはいると同様の黒い領域(一般には丸い)が局所的に生じるが、結晶化によって生じた黒い線や領域は組織内や境界に分布して現われるので容易に区別できる。これらは、偏光子、及び、検光子を回転させても、消失や色の変化が見られないことから、テクスチャーに見られるこれ以外の組織とは容易に識別できる。このテクスチャーが現れる温度を結晶化温度として、その温度より高い温度領域で現れるテクスチャーがネマチック相、SmA相、SmC相でないことを確認する。サンプルがネマチック相を示す場合は、糸巻き状と表現される特徴的なシュリーレンテクスチャーが観察され、SmA相やSmC相を示す場合は、fan-likeテクスチャーと呼ばれる扇型でその領域内は均一組織を有する特徴的なテクスチャーが観察されるので、その特徴的なテクスチャーから容易に判定することができる。
 特殊なケースとして、SmA相からSmB相、SmC相からSmF、SmI相に転移する物質では、相転移温度で一瞬に、視野の変化が見られるが、相転移したテクスチャーにはほとんど変化が見られない場合があり、形成されたSmB相やSmF相、SmI相のテクスチャーをSmA相、SmC相と誤認する場合があるので注意が必要である。その場合は、相転移温度で見られる一瞬の視野の変化に気をつけることが重要である。この確認が必要な場合は、DSCにより、中間相の数を確認した後、それぞれの温度領域でX線回折を測定し、各相に特有の高角度領域(θ-2θの判定において15~30度)においてピークの有無を確認すれば、SmA相、SmC相(いずれもピークなし)とSmB相、SmF相、SmI相(いずれもピーク有り)を容易に判定することができる。
 (S5)室温(20℃)で、偏光顕微鏡によるテクスチャー観察によって、黒い組織が見られないものは、有機半導体材料として利用可能であるので、この物質が室温で高次の液晶相、あるいは、結晶相(準安定な結晶相を含む)の如何に関わらず、本発明の範疇として取り扱うものとする。
 本発明に関わる有機半導体材料をデバイスに応用する観点からみると、コア部のHOMO、LUMOのエネルギー準位も重要となる。一般に、有機半導体のHOMOレベルは、脱水されたジクロロメタンなどの有機溶媒に被検物質を、例えば、1mmol/Lから10mmol/Lの濃度となるように溶解し、テトラブチルアンモニウム塩などの支持電解質を0.2mol/L程度加え、この溶液にPtなどの作用電極とPtなどの対向電極、およびAg/AgClなど参照電極を挿入後、ポテンショスタットにて50mV/sec程度の速度で掃引し、CV曲線を書かせ、ピークの電位および基準となる、例えばフェロセンなどの既知物質との電位の差より、HOMOレベル、LUMOレベルを見積ることができる。HOMOレベル、LUMOレベルが用いた有機溶媒の電位窓よりも外れている場合、紫外可視吸収スペクトラムの吸収端より、HOMO-LUMOレベルを計算し、測定できたレベルから差し引くことでHOMOレベルやLUMOレベルを見積ることができる。この方法は、J. Pommerehne, H. Vestweber, W. Guss、 R. F. Mahrt, H. Bassler, M. Porsch, and J. Daub, Adv. Mater.,7,551(1995)を参照にすることができる。
 一般に、有機半導体材料のHOMO,LUMOレベルは、それぞれ陽極、陰極と電気的な接触の目安を与え、電極材料の仕事関数との差によって決まるエネルギー障壁の大きさによって電荷注入が制限されることになるので、注意が必要である。金属の仕事関数は、しばしば、電極として用いられる物質の例をあげると、銀(Ag)4.0eV、アルミニウム(Al)4.28eV、金(Au)5.1eV、カルシウム(Ca)2.87eV、クロム(Cr)4.5eV、銅(Cu)4.65eV、マグネシウム(Mg)3.66eV、モリブデン(Mo)4.6eV、白金(Pt)5.65eV、インジウムスズ酸化物(ITO)4.35~4.75eV、酸化亜鉛(ZnO)4.68eVであるが、前述の観点から、有機半導体材料と電極物質との仕事関数の差は1eV以下が好ましく、より、好ましくは0.8eV以下、さらに好ましくは、0.6eV以下である。金属の仕事関数は、必要に応じて、下記の文献を参照することができる。
文献D:化学便覧 基礎編 改訂第5版II-608-610 14.1 b仕事関数 (丸善出版株式会社)(2004)
 コア部の共役したπ-電子系の大きさによりHOMO,LUMOエネルギー準位は影響を受けるため、共役系の大きさは材料を選択する際に参考となる。また、HOMO、LUMOエネルギー準位を変化させる方法として、コア部にヘテロ元素を導入することは有効である。
(好適な電荷輸送性分子ユニットAの例示)
 本発明において好適に使用可能な「電荷輸送性分子ユニットA」を例示すれば、以下の通りである。Xは、S、O、NHを表す。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
(好適な環状構造ユニットCの例示)
 本発明において好適に使用可能な「環状構造ユニットC」を例示すれば、以下の通りである。ユニットCはユニットAと同一でも良い。
Figure JPOXMLDOC01-appb-C000019
 或いは、エチニル構造を持つ下記一般式(3)又は(4)の置換基でもよい。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 一般式(3)で表される置換基のArは、置換基を有してもよい芳香族炭化水素基または置換基を有してもよい複素芳香族基であれば、特に制限はないが、例えば以下のものを挙げることができる。
 置換基を有してもよい芳香族炭化水素基としては、フェニル基、ナフチル基、アズレニル基、アセナフテニル基、アントラニル基、フェナントリル基、ナフタセニル基、フルオレニル基、ピレニル基、クリセニル基、ペリレニル基、ビフェニル基、p-ターフェニル基、クォーターフェニル基などの無置換の炭素数6~24の単環または多環式芳香族炭化水素基、
o-トリル基、m-トリル基、p-トリル基、2,4-キシリル基、2,6-キシリル基、メシチル基、ジュリル基、4-エチルフェニル基、4-n-プロピルフェニル基、4-イソプロピルフェニル基、4-n-ブチルフェニル基など、前記芳香族炭化水素基が炭素数1~4のアルキル基で置換されたアルキル置換芳香族炭化水素基、
また、置換基を有してもよい複素芳香族基としては、ピロリル基、インドリル基、フリル基、チエニル基、イミダゾリル基、ベンゾフリル基、トリアゾリル基、ベンゾトリアゾリル基、ベンゾチエニル基、ピラゾリル基、インドリジニル基、キノリニル基、イソキノリニル基、カルバゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、インドリニル基、チアゾリル基、ピリジル基、ピリミジル基、ピラジニル基、ピリダジニル基、チアジアジニル基、オキサジアゾリル基、ベンゾキノリニル基、チアジアゾリル基、ピロロチアゾリル基、ピロロピリダジニル基、テトラゾリル基、オキサゾリル基など、5員環または6員環の複素芳香族基や、該複素芳香族基にベンゼンが縮合した多環式複素芳香族基、
5-メチルチエニル基など、前記複素芳香族基が炭素数1~4のアルキル基で置換されたアルキル置換複素芳香族基、
 また、一般式(3)で表される置換基のArは、置換基を有してもよい芳香族炭化水素基であれば、特に制限はないが、例えば以下のものを挙げることができる。
 フェニレン基、ナフチレン基、アズレニレン基、アセナフテニレン基、アントリレン基、フェナントリレン基、ナフタセニレン基、フルオレニレン基、ピレニレン基、クリセニレン基、ペリレニレン基、ビフェニレン基、p-ターフェニレン基、クォーターフェニレン基などの炭素数6~24の単環または多環式芳香族炭化水素基、
トリレン基、キシリレン基、エチルフェニレン基、プロピルフェニレン基、ブチルフェニレン基、メチルナフチレン、9,9‘-ジヘキシルフルオレニレン基など、前記芳香族炭化水素基が炭素数1~10のアルキル基で置換されたアルキル置換芳香族炭化水素基、
フルオロフェニレン基、クロロフェニレン基、ブロモフェニルン基など、前記の芳香族炭化水素基がフッ素原子、塩素原子、臭素原子などのハロゲンで置換されたハロゲン化芳香族炭化水素基などが挙げられる。
 更に、一般式(4)で表されるR‘は水素原子、メチル基、エチル基、プロピル基、ブチル基などの炭素数1~4のアルキル基、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子である。
(好適な単結合の例示)
 本発明において好適に使用可能な、上記のユニットAおよびCを連結するための「単結合」は、ユニットAとユニットCの環状構造を構成する炭素のうち分子長軸方向にある炭素どうしを分子全体が棒状となる様に選ぶ。すなわち、本発明においては、ユニットAを構成する炭素と、ユニットCを構成する炭素とが、直接に「単結合」(single bond)で連結されている。
(好適なユニットAおよびユニットCの組合せの例示)
 本発明において好適に使用可能な「ユニットAおよびユニットCの組合せ」(前記に従って連絡したもの)を例示すれば、以下の通りである。
Figure JPOXMLDOC01-appb-C000022
(好適なユニットB)
 ユニットBは、直鎖状でも、分枝状でも使用可能であるが、直鎖状である方が、より好ましい。該ユニットBの炭素数は、2個以上であることが好ましい。この炭素数は、更には3~20個であることが好ましい。炭素数の増加は一般に液晶相温度を低下させることになるため、特に、液晶相で有機半導体として用いる場合は都合が良い。しかし、一方で、炭素数が長すぎると有機溶媒に対する溶解度を低下させることになるため、プロセス適性を損なう場合がある。炭素数を用いる場合、ユニットB中に酸素、硫黄、窒素を含む構造の用いると、溶解度の改善には有効である。その際、直接、酸素、硫黄、窒素原子がユニットA、または、ユニットCを連結されない構造が移動度の点からは好ましく、化学的安定性の点からは、ユニットA,または、ユニットBとの連結は2以上の炭素を介した後、酸素、硫黄、窒素が連結する構造が好ましい。上記例示の中で、本発明の課題を解決するのに特に好適なユニットA、ユニットB、ユニットCの具体例として、以下を挙げることができる。
<ユニットA>
Figure JPOXMLDOC01-appb-C000023
 これらの中でも[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェンは電荷移動度が高いため特に好ましい。
 上記で挙げたユニットAの化合物には、ユニットAに置換が可能な公知慣用の置換基を有していてもよい。このような置換基は、本発明の課題を解決するのに支障がなければ、限定がないが、好ましい置換基としては、下記を挙げることができる。
アルキル基、ハロゲン原子、酸素原子、窒素原子、硫黄原子等のヘテロ原子を有する脂肪族化合物、アルケニル基、アルキニル基、置換基としてのチオフェン、チエノチオフェン、ベンゾチオフェン、ベンゼン、ナフタレン、ビフェニル、フルオレン、ピリジン、イミダゾール、ベンゾチアゾール、フラン等の芳香族化合物。
<ユニットC>
 チオフェン、チエノチオフェン、ベンゾチオフェン、ベンゼン、ナフタレン、ビフェニル、フルオレン、ピリジン、イミダゾール、ベンゾチアゾール、フラン、シクロペンテン、シクロヘキセン、テトラヒドロフラン、テトラヒドロピラン、テトラヒドロチオフェン、ピロリジン、ピペリジン
 上記で挙げたユニットCの化合物には、公知慣用の置換基を有していてもよい。
 このような置換基は、本発明の課題を解決するのに支障がなければ、限定がないが、好ましい置換基としては、下記を挙げることができる。
 アルキル基、ハロゲン原子、酸素原子、窒素原子、硫黄原子等のヘテロ原子を有する脂肪族化合物、アルケニル基、アルキニル基、置換基としてのチオフェン、チエノチオフェン、ベンゾチオフェン、ベンゼン、ナフタレン、ビフェニル、フルオレン、ピリジン、イミダゾール、ベンゾチアゾール、フラン等の芳香族化合物。
 上記で挙げたユニットC中でも、ベンゼン、ナフタレン、チオフェン、チエノチオフェン、ベンゾチオフェン等においては、化合物の結晶構造への平面性付与による移動度の向上が見込まれ、特に好ましい。
<ユニットB>
 炭素数2~20の直鎖アルキル基、
Figure JPOXMLDOC01-appb-C000024
(アニール工程)
 本発明の有機薄膜を作製する際には、アニール工程を行っても行わなくてもよいが、移動度の向上のためには、アニール工程を行った方がより好ましい。アニール工程は、溶液等から作製した膜の結晶性の向上や、結晶多系による準安定相から最安定相への転移など、デバイス材料として用いる結晶相の制御に活用することができる。
 アニールを行う温度は、本発明に用いられる芳香族縮環系の構造を有する電荷輸送性分子ユニットAと、側鎖としてユニットBを有する化合物が、結晶から液晶に転移する温度より低い温度であって、当該結晶から液晶転移する温度になるべく近い温度で行うことが好ましい。ここで、近い温度とは、対象とする化合物により異なるが、例えば、前記転移温度と、当該転移温度より10~20℃程度低い温度の範囲内である温度を挙げることができ、化合物24の場合には、120℃近辺の温度を挙げることができる。アニール化を行う時間に制限はないが、5~60分前後の時間を挙げることができる。
(半導体デバイス動作の確認)
 Time-of-flight法による過渡光電流の測定は、光照射による光電荷の発生と電荷輸送を観測することを意味しており、この測定系は、有機半導体材料を用いた光センサーを実現していることに対応する。したがって、この測定により、本発明の有機半導体材料が、半導体デバイス動作に使用可能なことが確認可能である。このような方法による半導体デバイス動作確認の詳細に関しては、例えば非特許文献Appl.Phys.Lett.,74 No.18 2584-2586(1999)を参照することができる。
 また、有機トランジスタを作製し、その特性を評価することにより本発明の有機半導体材料が、有機トランジスタとして使用可能であることを確認可能である。このような方法による半導体デバイス動作確認の詳細に関しては、例えば文献S.F.Nelsona, Y.-Y.Lin, D,J,Gundlach, and T.N.Jackson, Temperature-independent Transistors, Appl.Phys.Lett.,72No.15 1854-1856(1998)などを参照することができる。
 (好適な構造)
 本発明に使用する液晶物質は、基本的に、3環以上の5環以内の芳香環が棒状(すなわち、概ね直線状)に連結した縮環系に、単結合を介して、少なくとももう一つの環状構造を縮環系の分子長軸方向に連結させた構造のいずれか一方に、炭素数3以上の炭化水素鎖ユニットを分子長軸方向に連結させた構造であることが好ましい。
 上述したように、本発明に使用する液晶物質は、3環以上の5環以内の芳香環の棒状に連結した縮環系に単結合を介して、少なくとももう一つの環状構造を縮環系の分子長軸方向に連結させた構造のいずれか一方に、炭素数3以上の炭化水素鎖ユニットを分子長軸方向に連結させた構造である。これを下記の物質(図参照)を例として、例示する。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
 さらに、本発明で用いられる化合物群は、上記のユニットA~Cを適宜組み合わせて分子設計を行うことが可能であり、具体的化合物としては下記を挙げることができるが、もとより本発明で対象とする化合物群はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 更に、上記化合物の他にも、下記で表される液晶物質も有効である。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
 上記の液晶物質の特性を以下の表に纏める。表中、各記号の意味は、以下の通りである。
 (a)化学構造式
 (b)相転移挙動(冷却過程)
 *I:等方相、
 N:ネマチック相、
 SmA:スメクチックA相、
 SmC:スメクチックC相、
 SmE:スメクチックE相、
SmG:スメクチックG相、
 SmX:高次のスメクチック相もしくは準安定な結晶、
 K:結晶相
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
 本発明を実施例でさらに詳細に説明する。
(合成例1)
 化合物24はWO2012/121393号公報に記載の方法によって、[1]benzothieno[3,2-b][1]benzothiophene(BTBTと略す)から、以下の(化32)示すスキームにより合成した。
Figure JPOXMLDOC01-appb-C000043
 化合物24-1(2-decylBTBT)は文献(Liquid Crystals 2004,31,1367-1380及びCollect.Czech.Chem.Commun.2002,67,645-664)に従いBTBTから2工程(Friedel-Craftsアシル化、Wolff-Kishner還元)で合成した。
 化合物24-2(2-decyl-7-nitroBTBT)の合成
 化合物24-1(2.48g,6.52 mmol)のジクロロメタン(160mL)溶液を-50℃に冷却し(固体を析出する)、発煙硝酸の1.2Mジクロロメタン溶液(12mL)を30分で滴下した。-50℃で更に2時間撹拌した後、飽和炭酸水素ナトリウム水溶液(~13mL)を加え反応を停止した。分液して下層を取り、10%食塩水で洗浄、無水硫酸マグネシウムで乾燥し濃縮乾固して粗製固体(2.75g)を得た。この固体を2‐ブタノン(~40mL)から再結晶化し、化合物24-2の黄色結晶、1.86g (収率、67%)を得た。
 H-nmr(270MHz,CDCl):δ8.83(d,1H,J2.2Hz,H-6),8.31(dd,1H,J8.8,2.2Hz,H-8),7.92(d,1H,J8.8Hz,H-9),7.84(d,1H,J8.2Hz,H-4),7.75(d,1H,J1.4Hz,H-1),7.33(dd,1H,J8.2,1.4Hz,H-3),2.78(t,2H,J~7.5Hz,ArCH),1.71(quint.2H,J~7.5Hz,ArCHCH),~1.2~1.4(m,14H,CHx7),0.88(t,3H,J~7Hz,CH
 化合物24-3(7-decylBTBT-2-amine)の合成
 化合物24-2(1.28g,30mmol),錫(0.92g)を酢酸(15mL)に懸濁し、約70℃で加熱、撹拌下、濃塩酸(2.7mL)をゆっくりと滴下した。さらに100℃で1時間反応後、10℃以下に冷却し固体を濾取した。この固体をクロロホルム(~100mL)に取り、濃アンモニア水、飽和食塩水で順次洗い、無水硫酸マグネシウムで乾燥後、濃縮乾固し粗製固体(1.1g)を得た。この固体をシリカゲルカラム(クロロホルム-シクロヘキサン1:1、1%トリエチルアミンを添加)で分離精製し、石油ベンジンから結晶化し、微灰色の化合物24-3の化合物0.86g(収率、72%)を得た。
 H-nmr(270MHz,CDCl):δ7.68(d,1H,J8.2Hz,H-9),7.67(broadeneds,1H,H-6),7.62(d,1H,J8.4Hz,H-4),7.23(dd,1H,J1.5,8.2Hz,H-8),7.16(d,1H,J~2Hz,H-1),6.81(dd,1H,J~2,8.4Hz,H-3),3.84(slightlybroadeneds,~2H,NH),2.73(t,2H,J~7.5Hz,ArCH),1.68(quint.2H,J~7.5Hz,ArCHCH),~1.2~1.4(m,14H,CHx7),0.87(t,3H,J~7Hz,CH
化合物24-4(2-decyl-7-iodoBTBT)の合成
 化合物24-3(396mg,1mmol)のジクロロメタン(15mL)溶液に-15℃冷却下、BF-EtO(216mg),亜硝酸t‐ブチル(126mg)を滴下した。約1時間で反応温度を5℃まで上げた後、沃素(400mg),沃化カリウム(330mg)、沃化テトラブチルアンモニウム(25mg)のジクロロメタン-THF混液(1:2,3mL)の溶液を加えた。さらに加熱環流下、8時間反応した後、クロロホルムで希釈し、10%チオ硫酸ナトリウム、5M水酸化ナトリウム、10%食塩水で順次洗い、無水硫酸ナトリウムで乾燥し、濃縮乾固した。得られた濃褐色の粗製固体(500mg)をシリカゲルカラム(クロロホルム-シクロヘキサン、1:1)で精製し、クロロホルム-メタノールから結晶化した。さらに、リグロインから再結晶化し、化合物24-4の化合物228mg(収率、45%)を得た。
 H-nmr(500MHz,CDCl):δ8.23(d,1H,J1.4Hz,H-6),7.77(d,1H,J8.2Hz,H-4),7.72(dd,1H,J1.4,8.2Hz,H-8),7.71(d,1H,J1.4Hz,H-1),7.59(d,1H,J8.2Hz,H-9),7.29(dd,1H,J1.4,8.2Hz,H-3),2.76(t,2H,J7.8Hz,ArCH),1.69(quint.,2H,J~7.5Hz,ArCHCH),~1.2~1.4(m,14H,CHx7),0.88(t,3H,J~7Hz,CH
 化合物24(2-decyl-7-phenylBTBT)の合成
 化合物24-4(228mg,0.45mmol)のジオキサン(8mL)溶液に、2Mリン酸三カリウム(0.45mL)、フェニルボロン酸(東京化成工業、110mg,0.9mmol)を加え、20分アルゴンガスをバブリングした後、テトラキス(トリフェニルホスフィン)パラジウム(東京化成工業、30mg,0.025mmol),トリシクロヘキシルホスフィン(和光純薬工業、13mg、0.045mmol)を加え、95℃で22時間加熱撹拌した。反応液をクロロホルムで希釈し、10%食塩水で洗い、下層を濃縮乾固して粗製固体(293mg)を得た。この固体をトルエンから再結晶化し、化合物24の化合物130mg(収率、63%)を得た。
 H-nmr(500MHz,CDCl):δ8.12(d,1H,J1.8Hz,H-6),7.92(d,1H,J8.2Hz,H-9),7.79(d,1H,J7.8Hz,H-4),7.73(br.s,1H,H-1),7.69(dx2,3H,H-8,2’,6’(‘denotePh)),7.49(t,2H,J~8Hz,H-3’,5’),7.38(tt,1H,J>1,~8Hz,H-4’),7.29(dd,1H,J>1,7.8Hz,H-3),2.77(t,2H,J~7Hz,ArCH),1.70(quint.2H,J~7Hz,ArCHCH),~1.2~1.4(m,14H,CHx7),0.88(t,3H,J~7Hz,CH
(合成例2)
 合成例1において、C19COClの替わりに、C1123COClを用いて化合物64(2-dodecyl-7-phenylBTBT)を合成した。
(実施例1)
 合成例1で得た化合物(化合物24)を用いて、以下の方法により、バイレイヤー構造およびトランジスタ特性を確認した。
(薄膜の作製)
熱酸化膜付シリコンウエハー(ヘビードープp型シリコン(P+-Si)、熱酸化膜(SiO)厚さ:300nm)を20×25mmに切断後、この切断したシリコンウエハー(こののち基板と略す)を中性洗剤、超純水、イソプロピルアルコール(IPA)、アセトン、IPAの順に超音波洗浄を行った。
次に、合成例1の化合物をキシレンに溶解させ、溶液を調整した。溶液の濃度は1wt%から0.5wt%とした。この溶液、および、溶液を基板に塗布するガラス製のピペットを予め、ホットステージ上で所定の温度に加熱しておき、上記の基板をオーブン内に設置したスピンコータ上に設置し、オーブン内を約100℃に昇温した後、溶液を基板上に塗布し、基板を回転(約3000rpm、30秒)させた。回転停止後、基板を素早く取り出し室温まで冷却させた。更に、得られた有機薄膜を120℃、5分間の熱アニールを行った。
(XRD測定)
低角の面外XRD測定をRIGAKU RAD-2B(X線源 CuKα線 波長1.54Å、発散スリット1/6°、散乱スリット0.15mm、受光スリット1/6°)を用いてθ-2θスキャンで1°から5°まで測定した。
化合物24に関するデータを図5に示した。
(トランジスタの作製)
更に、有機半導体層を塗布した基板に、真空蒸着法(2×10-6Torr)を用いて、金をメタルマスクを介してパターン蒸着することにより、ソース・ドレイン電極を形成した(チャネル長:チャネル幅=100μm:500μm)。
 作製した有機トランジスタの評価は、通常の大気雰囲気下において、2電源のソース・メジャーメントユニットを用いて、ソース電極、ドレイン電極間に流れる電流を、ゲート電極(P+-Si)に電圧をスイープ印加(Vsg:+10~-100V)しながら測定(伝達特性)することによりおこなった(ソース電極、ドレイン電極間電圧Vsd:-100V)。移動度は、該伝達特性における、√Id-Vgの傾きから、飽和特性の式を用いた周知の方法により算出した(図6)。
 図6において、薄膜作製そのままのサンプルを「As coated」、得られた有機薄膜を120℃で5分間の熱アニールをしたものを「after anneal」、液晶相温度である160℃に加熱後急冷したサンプルを「160℃ fast cool」とした。160℃に加熱後急冷したサンプルでは、移動度の低下が確認された。
 なお、移動度の測定は5つのトランジスタについて行い、その平均値と標準偏差を記載した。その結果を表8に示した。
(バイレイヤー構造の確認)
 抵抗率0.02Ω・cmのシリコン基板に、厚さ200nmの熱酸化膜(SiO)を形成した。この上に、合成例1の化合物の0.5wt%キシレン溶液を直径1インチのシリコン基板上にバーコーター#26にて塗布、乾燥し、膜厚が約80nmの有機薄膜の測定試料を作製した。
次に、高輝度放射光実験施設SPring-8内のフロンティアソフトマター開発産学連合体が所有するビームラインBL03XU第1ハッチを使用して、測定モードがすれすれ入射小角/広角エックス線散乱法(GrazingIncidentSmallAngleScattering/WideAngleScattering:GISAXS/WAXS)にて、カメラ長140mm、2300mm、波長0.1nm、エックス線入射角0.08°または0.16°、露光時間1~5秒、測定温度25℃、散乱角範囲2θ=0.1~20°の条件などで、上記の測定試料を測定した。
得られた2次元エックス線散乱像を以下の方法で解析することで薄膜の構造を求めた。測定時のエックス線入射角から2次元散乱像における反射エックス線ビーム中心位置を決めて、その反射ビーム中心からみて水平方向の直線上の散乱・回折強度Iをとり、反射ビーム中心からの散乱角2θに対する散乱強度Iとして1次元化した散乱プロファイルHを得た。同様に、反射ビーム中心からみて垂直上方向の直線上の散乱・回折強度Iをとり、反射ビーム中心からの散乱角2θに対する散乱強度Iとして1次元化した散乱プロファイルVを得た。それぞれ散乱プロファイルH,Vに現れたもっとも強度の強いピークに着目し、ピーク位置の散乱角2θの値から2dsin(2θ/2)=λの式を用いて周期長d[nm]を算出した。ここでλ[nm]はエックス線波長0.1nmである。
散乱プロファイルHからは、当該分子の配列構造の中で分子鎖とほぼ直交する方位の周期構造(面間隔)に由来する約4Åの周期長等が算出され、散乱プロファイルVからは化合物の分子長さに由来する約30Åの周期長が算出された。GISAXS/WAXSの測定原理から、散乱プロファイルHからは薄膜の面内の周期構造の情報が得られ、散乱プロファイルVからは薄膜の積層状態の周期構造の情報が得られる。高次スメクチック相に特徴的な回折プロファイル、および該液晶相の構造的特徴から、この有機薄膜は基板に対して化合物分子が垂直に立っており、分子長さに相当する約30Åごとに積層したバイレイヤー構造を形成していることが確認できた。その結果を表8に示した。
また、得られた2次元エックス線散乱像を図1に示した。散乱像から、ビーム中心からY軸方向に一定の積層周期に由来するピークが観察されるのに対し、X軸方向にはピークが観察されないことからもバイレイヤー構造が確認できる。
(実施例2)
 実施例1において、合成例1の化合物の代わりにWO2012/121393号公報に従って得た化合物9の液晶物質を用い、有機薄膜成膜後のアニール条件をトルエン蒸気による1分間のアニールに変更した以外は、実施例1と同様の方法で評価した結果を表8に示した。
(実施例3)
 実施例1において、合成例1の化合物の代わりに化合物64の液晶物質を用い、有機薄膜成膜後のアニール条件を130℃、30分間に変更した以外は、実施例1と同様の方法で評価した。結果を表8に示した。
(実施例4)
 実施例1において、合成例1の化合物の代わりに化合物23の液晶物質を用い、トルエンの替わりにエチルベンゼンを用い、有機薄膜成膜後のアニール条件を110℃、30分間に変更した以外は、実施例1と同様の方法で評価した結果を表8に示した。
(比較例1)
 実施例1において、120℃の熱アニールを行わなかった以外、実施例1記載の方法と同様の評価を行った。結果を表8に示す。
また、得られた2次元エックス線散乱像を図2に示した。散乱像から、ビーム中心から同心円がX軸方向とY軸方向に観察されることからも、該液晶物質が配向せずバラバラに存在することが確認できる。
(比較例2)
 実施例2において、1分間のトルエン蒸気アニールを行わなかった以外、実施例2記載の方法と同様の評価を行った。結果を表8に示す。
(比較例3) 
 実施例3において、130℃の熱アニールを行わなかった以外、実施例3記載の方法と同様の評価を行った。結果を表8に示した。
(比較例4)
 実施例4において、110℃の熱アニールを行わなかった以外、実施例4記載の方法と同様の評価を行った。結果を表8に示した。
Figure JPOXMLDOC01-appb-T000044
 実施例と比較例との比較より、同一液晶物質であっても、バイレイヤー構造が観察される有機薄膜、またはアニール工程を行ったものは、高い移動度を示すことが明らかである。
 (化合物24の単結晶構造解析と多結晶薄膜の分子配向の検討)
 化合物24の単結晶は、キシレン溶液から再結晶化により作製した。単結晶構造解析はRigaku社製のR-AXIS RAPID II/Rを用いて行った。多結晶薄膜における分子の配向の情報を得るためTOF-SIMSによる厚さ方向の組成分析を行なった。また、単結晶における分子配置よりTransferIntegralについても検討を加えた。
 X線構造解析の結果から、化合物24のコア部(フェニル環とベンゾチエノベンゾチオフェンから構成される部分)はHerringbone構造をとり、レイヤー間ではコア部が向かい合ったバイレイヤー構造をとっていることが明らかになった。
 モノレイヤー構造をとる製膜直後の膜では、コア部にのみ存在する硫黄原子の厚さ方向のTOF-SIMSによるプロファイルには分布が見られないのに対し(図7;1分子長である約2.5nmごとに硫黄原子が存在)、120℃5分間の熱アニールを行った薄膜では、硫黄原子の分布プロファイルには2分子長に対応した約5nmごとのピークが観測され(図8)、バイレイヤー構造であることが判明した。
 これらの結果を総合すると、多結晶薄膜は製膜直後ではモノレイヤー構造であるが、120℃の熱アニールにより、溶液から再結晶により得られた単結晶と同様に、コア部が向かい合ったバイレイヤー構造に変化するものと考えられる。
 この単結晶構造解析の分子配置をもとにTransferIntegralを計算すると、レイヤー内のT1、T2、T3がそれぞれ55、17、43meVであるのに加えて(図9)、コア部が向かい合ったレイヤー間にも8meV程度の有意な値を持つことが分かった(図10)。
 特定の液晶物質から得られる、本発明のバイレイヤー構造を持つ有機薄膜は、芳香族π共役系が連続的に拡がっているため、高い移動度が期待でき、均一で欠陥の少ない高品質な有機半導体薄膜として利用できる。
 具体的には、光センサー、有機EL素子、有機トランジスタ、有機陽電池、有機メモリー素子などに用いることができる。

Claims (16)

  1. 芳香族縮環系の構造を有する電荷輸送性分子ユニットAと、側鎖としてユニットBを有する化合物により形成される膜であって、該化合物がバイレイヤー構造を有して形成されることを特徴とする有機薄膜。
  2. 前記化合物が更に、電荷輸送性分子ユニットAと単結合で連結された、水素原子、ハロゲン、炭素数1~4の低級アルキル基、又は環状構造ユニットCを有する請求項1に記載の有機薄膜。
  3. 芳香族縮環系の構造を有する電荷輸送性分子ユニットAと、側鎖としてユニットBを有する化合物が液晶化合物である請求項1又は2に記載の有機薄膜。
  4. 請求項1~3のいずれかに記載の化合物が、N相、SmA相及びSmC相以外の相を示す請求項1~3のいずれかに記載の有機薄膜。
  5. 前記「N相、SmA相及びSmC相以外の相」が、SmB、SmBcrystal、SmI、SmF、SmG、SmE、SmJ、SmK、およびSmHからなる群から選ばれる液晶相である請求項1~4のいずれか1項に記載の有機薄膜。
  6. 前記電荷輸送性分子ユニットAの縮環の数(NA)が3以上5以下である請求項1~5のいずれか1項に記載の有機薄膜。
  7. 前記電荷輸送性分子ユニットAのそれぞれの縮環を構成する個々の環が、炭素数5~6の環である請求項1~6のいずれか1項に記載の有機薄膜。
  8. 前記環状構造ユニットCを構成する環の数(NC)と、電荷輸送性分子ユニットAの縮環数の数(NA)が下記の関係を満たす請求項2~7のいずれか1項に記載の有機薄膜。
       NA≧NC
  9. 前記電荷輸送性分子ユニットAが一般式(1)で表される請求項1~8のいずれか1項に記載の有機薄膜。
    Figure JPOXMLDOC01-appb-C000001
  10. 前記側鎖ユニットBが、置換基を有してもよい炭素数2~20のアルキル基、置換基を有してもよい炭素数2~20のアルケニル基、炭素数2~20のアルキルオキシ基、炭素数2~20のアルキルチオ基、若しくは一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Xは、S、O、NHを表し、mは0~17の整数、nは2以上の整数である。)
    で表される基である請求項1~9のいずれか1項に記載の有機薄膜。
  11. 前記環状構造ユニットCが、無置換、或いは、ハロゲン又は炭素数1~4の低級アルキル基を置換基として持つ芳香族炭化水素基、又は、無置換、或いは、ハロゲン又は炭素数1~4の低級アルキル基を置換基として持つ複素芳香族基で表される基であるか、又は、下記(3)又は(4)の何れかである請求項2~10のいずれか1項に記載の有機薄膜。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    (Arは無置換、或いは、ハロゲン又は炭素数1~4の低級アルキル基を置換基として持つ芳香族炭化水素基、又は、無置換、或いは、ハロゲン又は炭素数1~4の低級アルキル基を置換基として持つ複素芳香族基、Arは置換基を有してもよい芳香族炭化水素基、R’は無置換、或いは、ハロゲン又は炭素数1~4の低級アルキル基を置換基として持つ芳香族炭化水素基、又は、無置換、或いは、ハロゲン又は炭素数1~4の低級アルキル基を置換基として持つ複素芳香族基である。)
  12. 請求項1~11のいずれかに記載の有機薄膜の製造方法において、
    該有機薄膜をアニール化する工程を含むことを特徴とする有機薄膜の製造方法。
  13. 請求項1~11のいずれか1項に記載の有機薄膜を用いてなる有機半導体デバイス。
  14. 請求項1~11のいずれか1項に記載の有機薄膜を有機半導体層として用いる有機トランジスタ。
  15. 請求項12の有機薄膜の製造方法により得られる有機薄膜を用いてなる有機半導体デバイス。
  16. 請求項12の有機薄膜の製造方法により得られる有機薄膜を有機半導体層として用いる有機トランジスタ。
PCT/JP2014/055824 2013-03-07 2014-03-06 有機薄膜、これを用いた有機半導体デバイスおよび有機トランジスタ WO2014136898A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/773,053 US10158087B2 (en) 2013-03-07 2014-03-06 Organic thin film, and organic semiconductor device and organic transistor using same
EP14760006.8A EP2966701B1 (en) 2013-03-07 2014-03-06 Organic thin film, and organic semiconductor device and organic transistor using same
KR1020157027671A KR102067016B1 (ko) 2013-03-07 2014-03-06 유기 박막, 이것을 사용한 유기 반도체 디바이스 및 유기 트랜지스터
KR1020187026076A KR102092098B1 (ko) 2013-03-07 2014-03-06 유기 박막, 이것을 사용한 유기 반도체 디바이스 및 유기 트랜지스터
CN201480026081.0A CN105190926B (zh) 2013-03-07 2014-03-06 有机薄膜、使用其的有机半导体装置及有机晶体管
JP2014535836A JP5732595B2 (ja) 2013-03-07 2014-03-06 有機薄膜、これを用いた有機半導体デバイスおよび有機トランジスタ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-045269 2013-03-07
JP2013045269 2013-03-07
JP2013-159033 2013-07-31
JP2013159033 2013-07-31

Publications (1)

Publication Number Publication Date
WO2014136898A1 true WO2014136898A1 (ja) 2014-09-12

Family

ID=51491406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055824 WO2014136898A1 (ja) 2013-03-07 2014-03-06 有機薄膜、これを用いた有機半導体デバイスおよび有機トランジスタ

Country Status (7)

Country Link
US (1) US10158087B2 (ja)
EP (1) EP2966701B1 (ja)
JP (1) JP5732595B2 (ja)
KR (2) KR102092098B1 (ja)
CN (1) CN105190926B (ja)
TW (2) TWI658120B (ja)
WO (1) WO2014136898A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137304A1 (ja) * 2014-03-12 2015-09-17 Dic株式会社 化合物、並びにそれを含有する有機半導体材料、有機半導体インク及び有機トランジスタ
JP2016102087A (ja) * 2014-11-28 2016-06-02 Dic株式会社 有機結晶構造物、及びそれを与える有機化合物を含有する有機半導体材料
JP2017052707A (ja) * 2015-09-07 2017-03-16 Dic株式会社 ベンゾチエノベンゾチオフェン誘導体、有機半導体材料、及び有機トランジスタ
JP2018056546A (ja) * 2016-09-26 2018-04-05 日本化薬株式会社 撮像素子用光電変換素子用材料及びそれを含む光電変換素子
JP2018067583A (ja) * 2016-10-18 2018-04-26 山本化成株式会社 有機トランジスタ
JP2018090684A (ja) * 2016-12-01 2018-06-14 Dic株式会社 有機半導体薄膜形成用インクジェットインク
WO2019124506A1 (ja) * 2017-12-22 2019-06-27 Jnc株式会社 電荷注入を補助する材料を混合させた有機半導体インク

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105609641B (zh) * 2015-12-26 2021-12-17 中国乐凯集团有限公司 一种钙钛矿型太阳能电池及其制备方法
WO2017150474A1 (ja) * 2016-02-29 2017-09-08 国立研究開発法人産業技術総合研究所 有機半導体組成物及びそれらからなる有機薄膜、並びにその用途
CN111418079B (zh) * 2018-01-10 2023-05-16 香港科技大学 基于稠环噻吩的芳香体系

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050214952A1 (en) * 2003-12-04 2005-09-29 Stupp Samuel I Oligo(p-phenylene vinylene) amphiphiles and methods for self-assembly
WO2006077888A1 (ja) 2005-01-19 2006-07-27 National University Of Corporation Hiroshima University 新規な縮合多環芳香族化合物およびその利用
WO2006121040A1 (ja) * 2005-05-09 2006-11-16 Tokyo Institute Of Technology 液晶および液晶ディスプレイ
WO2008047896A1 (fr) 2006-10-20 2008-04-24 Nippon Kayaku Kabushiki Kaisha Transistor à effet de champ
WO2008117579A1 (ja) * 2007-03-26 2008-10-02 National University Corporation University Of Toyama 薄膜積層体及びそれを用いた有機トランジスタ
WO2012121393A1 (ja) 2011-03-10 2012-09-13 国立大学法人東京工業大学 有機半導体材料

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186290A (ja) * 2004-11-30 2006-07-13 Fuji Electric Holdings Co Ltd 薄膜トランジスタ素子およびその製造方法
JP5499422B2 (ja) * 2006-06-28 2014-05-21 コニカミノルタ株式会社 有機半導体材料、有機半導体膜、有機薄膜トランジスタ及び有機薄膜トランジスタの製造方法
EP2073290A4 (en) * 2006-10-12 2011-06-15 Idemitsu Kosan Co THIN-FILM ORGANIC TRANSISTOR DEVICE AND LIGHT-EMITTING ORGANIC THIN-FILM TRANSISTOR
US20140061616A1 (en) * 2010-12-28 2014-03-06 Idemitsu Kosan Co., Ltd. Organic semiconductor material, coating liquid containing the material, and organic thin film transistor
CN103596966A (zh) * 2011-04-15 2014-02-19 乔治亚州技术研究公司 萘二酰亚胺的甲锡烷基衍生物以及相关组合物和方法
CN104956490B (zh) * 2013-02-12 2018-05-18 国立研究开发法人科学技术振兴机构 使用有机薄膜的电子设备以及含有它而形成的电子器械

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050214952A1 (en) * 2003-12-04 2005-09-29 Stupp Samuel I Oligo(p-phenylene vinylene) amphiphiles and methods for self-assembly
WO2006077888A1 (ja) 2005-01-19 2006-07-27 National University Of Corporation Hiroshima University 新規な縮合多環芳香族化合物およびその利用
WO2006121040A1 (ja) * 2005-05-09 2006-11-16 Tokyo Institute Of Technology 液晶および液晶ディスプレイ
WO2008047896A1 (fr) 2006-10-20 2008-04-24 Nippon Kayaku Kabushiki Kaisha Transistor à effet de champ
WO2008117579A1 (ja) * 2007-03-26 2008-10-02 National University Corporation University Of Toyama 薄膜積層体及びそれを用いた有機トランジスタ
WO2012121393A1 (ja) 2011-03-10 2012-09-13 国立大学法人東京工業大学 有機半導体材料

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
"Advanced Materials, electronic", 25 February 2011
"Ekisho Kagaku Jikken Nyumon (Manual of Liquid Crystal Science Experiments", SIGMA SHUPPAN
"Jikken Kagaku Kouza (Experimental Chemistry Course", vol. 27, MARUZEN, article "Ekisho Zairyo no Hyoka (Evaluation of Liquid Crystal Materials", pages: 295 - 300
"Jikken Kagaku-Kou (Experimental Chemistry Course", vol. 1, MARUZEN, article "Henko Kenbikyo no Tsukaikata (How to Use Polarizing Microscope", pages: 429 - 435
"Kagaku Binran (Handbook of Chemistry", 2004, MARUZEN PUBLISHING CO., LTD.
APPL. PHYS. LETT., vol. 74, no. 18, 1999, pages 2584 - 2586
H. AHN; A. OHNO; J. HANNA: "Detection of Trace Amount of Impurity in Smectic Liquid Crystals", JPN. J. APPL. PHYS., vol. 44, no. 6A, 2005, pages 3764 - 37687
H. AHN; A. OHNO; J. HANNA: "Impurity effects on charge carrier transport in various mesophases of Smectic liquid crystal", J. APPL. PHYS., vol. 102, 2007, pages 093718
HIROAKI IINO ET AL.: "Highly Thermally-Stable OFETs Fabricated with Liquid Crystalline Organic Semiconductors", SID SYMPOSIUM DIGEST OF TECHNICAL PAPERS, vol. 43, no. 1, 1 June 2012 (2012-06-01), pages 497 - 500, XP055280995, DOI: 10.1002/J.2168-0159.2012.TB05826.X *
J. POMMEREHNE; H. VESTWEBER; W. GUSS; R. F. MAHRT; H. BASSLER; M. PORSCH; J. DAUB, ADV. MATER., vol. 7, 1995, pages 551
LIQUID CRYSTAL, vol. 30, no. 5, 2003, pages 603 - 610
LIQUID CRYSTAL, vol. 34, no. 9, 2007, pages 1001 - 1007
M. FUNAHASHI; J. HANNA: "Impurity effect on charge carrier transport in Smectic liquid crystals", CHEM. PHYS. LETT., vol. 397, 2004, pages 319 - 323
S. F. NELSONA; Y. -Y. LIN; D. J. GUNDLACH; T. N. JACKSON: "Temperature-independent Transistors", APPL. PHYS. LETT., vol. 72, no. 15, 1998, pages 1854 - 1856
See also references of EP2966701A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137304A1 (ja) * 2014-03-12 2015-09-17 Dic株式会社 化合物、並びにそれを含有する有機半導体材料、有機半導体インク及び有機トランジスタ
JP2016102087A (ja) * 2014-11-28 2016-06-02 Dic株式会社 有機結晶構造物、及びそれを与える有機化合物を含有する有機半導体材料
JP2017052707A (ja) * 2015-09-07 2017-03-16 Dic株式会社 ベンゾチエノベンゾチオフェン誘導体、有機半導体材料、及び有機トランジスタ
JP2018056546A (ja) * 2016-09-26 2018-04-05 日本化薬株式会社 撮像素子用光電変換素子用材料及びそれを含む光電変換素子
JP2018067583A (ja) * 2016-10-18 2018-04-26 山本化成株式会社 有機トランジスタ
JP2018090684A (ja) * 2016-12-01 2018-06-14 Dic株式会社 有機半導体薄膜形成用インクジェットインク
WO2019124506A1 (ja) * 2017-12-22 2019-06-27 Jnc株式会社 電荷注入を補助する材料を混合させた有機半導体インク

Also Published As

Publication number Publication date
JP5732595B2 (ja) 2015-06-10
TWI639678B (zh) 2018-11-01
KR20180104175A (ko) 2018-09-19
CN105190926A (zh) 2015-12-23
KR20150129784A (ko) 2015-11-20
EP2966701B1 (en) 2020-02-19
EP2966701A4 (en) 2016-10-05
TWI658120B (zh) 2019-05-01
JPWO2014136898A1 (ja) 2017-02-16
KR102092098B1 (ko) 2020-03-23
TW201444950A (zh) 2014-12-01
CN105190926B (zh) 2019-03-08
EP2966701A1 (en) 2016-01-13
TW201829737A (zh) 2018-08-16
US10158087B2 (en) 2018-12-18
US20160049596A1 (en) 2016-02-18
KR102067016B1 (ko) 2020-01-16

Similar Documents

Publication Publication Date Title
JP5732595B2 (ja) 有機薄膜、これを用いた有機半導体デバイスおよび有機トランジスタ
JP6188663B2 (ja) 有機半導体材料
JP5615459B2 (ja) ベンゾチエノベンゾチオフェン誘導体、有機半導体材料、及び有機トランジスタ
JP2014175392A (ja) 有機薄膜の製造方法、及び有機半導体デバイス
JP2013041984A (ja) 有機半導体材料
JP5964703B2 (ja) 有機半導体材料、及び有機トランジスタ
JPWO2018043725A1 (ja) 有機半導体材料及び有機化合物並びに有機半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480026081.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014535836

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014760006

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157027671

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14773053

Country of ref document: US