WO2014136714A1 - 非水電解液二次電池 - Google Patents

非水電解液二次電池 Download PDF

Info

Publication number
WO2014136714A1
WO2014136714A1 PCT/JP2014/055255 JP2014055255W WO2014136714A1 WO 2014136714 A1 WO2014136714 A1 WO 2014136714A1 JP 2014055255 W JP2014055255 W JP 2014055255W WO 2014136714 A1 WO2014136714 A1 WO 2014136714A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
negative electrode
tab
material layer
Prior art date
Application number
PCT/JP2014/055255
Other languages
English (en)
French (fr)
Inventor
浩一 座間
明生 浮田
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to EP14760377.3A priority Critical patent/EP2966721B1/en
Priority to JP2015504290A priority patent/JP6249493B2/ja
Priority to CN201480011783.1A priority patent/CN105027347B/zh
Priority to US14/767,804 priority patent/US9601745B2/en
Publication of WO2014136714A1 publication Critical patent/WO2014136714A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery having high reliability and excellent charge / discharge capacity even under impact or at high temperatures.
  • Lithium ion secondary batteries with excellent characteristics such as charge / discharge capacity can be reduced in size and weight, and have a high energy density, so power sources for portable devices, power sources for electric bicycles, electric vehicles, etc., or commercial power sources Various proposals have been made to improve performance.
  • lithium ions move from the positive electrode side to the negative electrode side during charging, but in order to prevent lithium from depositing in a dendritic form around the negative electrode and causing a short circuit with the counter electrode.
  • JP 2002-252023 A Japanese Patent Laid-Open No. 07-302616 JP 2006-147392 A
  • FIG. 8 is a diagram illustrating a conventional lithium ion battery.
  • FIG. 8A is a plan view illustrating the positional relationship between the positive electrode 100 and the negative electrode 200, and is a view of the state in which the positive electrode is disposed on the negative electrode, as viewed from above the positive electrode.
  • FIG. 8B is a diagram showing a cross section taken along line AA ′ of FIG.
  • the outer shape of the positive electrode 100 is smaller than the outer shape of the negative electrode 200, and the negative electrode is present in all portions facing the positive electrode through the separator 50.
  • the size of the positive electrode and the negative electrode it is an indispensable condition in the design of a lithium ion battery to prevent lithium from precipitating in the dendritic form around the positive electrode during charging. ing.
  • lithium ions move from the portion covered with the insulating tape to the portion not covered, and the amount of lithium ions transferred from the portion not covered with the insulating tape increases, so that lithium ions are transferred to the periphery of the negative electrode. There is also a possibility that is precipitated in a dendrite form.
  • the present invention reduces the diffusion amount of lithium ions from the periphery of the positive electrode during charging of the non-aqueous electrolyte secondary battery, and further reduces the conductivity of the surface of the positive electrode extraction tab, so that the positive electrode extraction tab and the negative electrode
  • An object of the present invention is to provide a lithium ion battery in which the deposition of lithium is suppressed at the same time while suppressing a short circuit with the active material layer, and the reliability is improved.
  • An object of the present invention is to have a negative electrode in which a negative electrode active material layer is formed on a negative electrode current collector, and a positive electrode in which a positive electrode active material layer is formed on a positive electrode current collector, which is laminated via the negative electrode and a separator.
  • the positive electrode tab surface pulled out from the positive electrode current collector extends in the extraction direction of the positive electrode tab beyond the portion where the opposite negative electrode active material layer is vertically projected, and the abundance of the positive electrode active material at the tip is reduced. This can be solved by a non-aqueous electrolyte secondary battery having a region.
  • the region where the amount of the positive electrode active material is small is an inclined surface where the thickness is reduced along the direction in which the positive electrode tab is pulled out, or the region where the proportion of the positive electrode active material is decreased is the non-aqueous electrolyte solution 2.
  • the positive electrode tab and the negative electrode tab are opposite to each other in the drawing direction, and an insulating member extending in the drawing direction of the positive electrode tab from a portion where the amount of the positive electrode active material in the positive electrode drawing tab decreases is bonded, and the insulating member
  • the end of the positive electrode tab in the direction opposite to the direction in which the positive electrode tab is drawn has a thickness up to the surface of the negative electrode active material layer of the negative electrode adjacent to the positive electrode tab stacking direction and reaching the negative electrode current collector. It is a non-aqueous electrolyte secondary battery.
  • the positive electrode extraction tab surface drawn from the positive electrode current collector of the present invention has a positive electrode active material layer extending in the extraction direction of the positive electrode extraction tab beyond the vertically projected portion of the opposing negative electrode active material layer.
  • the abundance of the positive electrode active material decreases toward the tip of the positive electrode extraction tab. Therefore, it is possible to prevent lithium from precipitating in a dendrite shape by reducing the amount of lithium ions that migrate to the outer peripheral portion of the opposing negative electrode during charging.
  • the positive electrode active material layer formed on the positive electrode tab surface is less conductive than the aluminum surface, preventing a large short-circuit current from flowing during direct contact with the negative electrode. Thus, a battery with high reliability can be provided.
  • FIG. 1 is a diagram illustrating a nonaqueous electrolyte secondary battery according to the present invention, and FIG. 1A is a plan view of an appearance.
  • FIG. 1B is a diagram illustrating the positional relationship between the positive electrode and the negative electrode.
  • FIG. 1C is a cross-sectional view illustrating the positional relationship between the positive electrode and the negative electrode obtained by cutting the positive electrode tab portion of FIG. 1B along the line A-A ′ together with the separator.
  • FIG. 1D is a cross-sectional view illustrating the positional relationship between the positive electrode and the negative electrode obtained by cutting the positive electrode and the negative electrode along the line B-B ′ together with the separator.
  • FIG. 1 is a diagram illustrating a nonaqueous electrolyte secondary battery according to the present invention, and FIG. 1A is a plan view of an appearance.
  • FIG. 1B is a diagram illustrating the positional relationship between the positive electrode and the negative electrode.
  • FIG. 1C is a cross-sectional
  • FIG. 2 is a diagram for explaining the positional relationship between the negative electrode and a region where the amount of the positive electrode active material provided in the positive electrode extraction tab is small.
  • FIG. 2A is a diagram illustrating an example in which a region where the amount of the positive electrode active material is small is provided in a tapered shape.
  • FIG. 2B is a diagram illustrating an example in which a region where the amount of the positive electrode active material is small is formed by a stepped portion.
  • FIG. 3 is a diagram for explaining an example of the battery of the present invention
  • FIG. 3A is a plan view seen from above the laminated surface of the laminated body of battery elements housed in the exterior material, and FIG. It is sectional drawing in CC 'line
  • FIG. 4 is a diagram illustrating a structure for suppressing negative electrode movement by the insulating member of the present invention
  • FIG. 4A is a diagram illustrating an example of a structure for suppressing negative electrode movement
  • FIG. It is a figure explaining the other example of a suppression structure.
  • FIG. 5 is a diagram for explaining a manufacturing process of the electrode of the present invention
  • FIG. 5A shows a coating process by a die coater
  • FIG. 5B is a diagram for explaining a cross section of the BB ′ cut surface of FIG. 5A. is there.
  • FIG. 6 is a diagram for explaining the manufacturing process of the electrode of the present invention, and is a diagram for explaining the compression process of the active material layer formed on the current collector surface.
  • FIG. 6A is a diagram for explaining a case where an end portion of a coating layer is manufactured with a tapered shape
  • FIG. 6B is a step where a step is formed at the end portion to form a coating layer connected to a thin coating layer. It is a figure explaining the electrode which did.
  • FIG. 7 is a diagram illustrating an electrode cutting-out process according to the present invention
  • FIG. 7A is a view in which a part of a strip-shaped current collector is cut out.
  • FIG. 7B is a figure explaining the cut-out electrode.
  • FIG. 8 is a diagram for explaining the prior art.
  • FIG. 1A shows a plan view of the appearance.
  • the non-aqueous electrolyte secondary battery 10 of the present invention is one in which at least one unit cell in which a positive electrode and a negative electrode are arranged to face each other with a separator interposed therebetween is sealed with a film-like packaging material 20 or the like, The positive electrode terminal 30 and the negative electrode terminal 40 are taken out from the film-shaped packaging material 20.
  • FIG. 1B is a diagram illustrating the arrangement of the positive electrode and the negative electrode, and is a diagram illustrating the mutual positional relationship between the positive electrode 100, the negative electrode 200, and a separator (not shown).
  • FIG. It is a figure explaining the cross section of an AA 'line, Comprising: It is a figure explaining the mutual relationship of the positive electrode 100, the separator 50, and the negative electrode 200.
  • FIG. 1D is a diagram illustrating a cross section taken along line B-B ′ in FIG. 1B, and is a diagram illustrating a mutual relationship among the positive electrode 100, the separator 50, and the negative electrode 200.
  • the positive electrode 100 of the present invention has a positive electrode active material layer 103 on the surface of the positive electrode current collector 101, and the negative electrode 200 has a negative electrode active material layer 203 on the surface of the negative electrode current collector 201.
  • the positive electrode active material layer 103 is coated with a high density region 105 responsible for charge / discharge of the battery whose packing density of the active material layer is increased by compression, and an active material of the positive electrode extraction tab 109 drawn from the positive electrode current collector 101.
  • a step is provided compared to the adjacent high-density region to reduce the amount of active material applied, or the thickness increases from the non-coated region 102 toward the high-density region 105.
  • it can be formed by the tapered portion 108 coated with the active material.
  • the negative electrode 200 has a negative electrode active material layer 203 on the surface of the negative electrode current collector 201, and a negative electrode current collector extraction tab 209 is drawn from the negative electrode current collector 201.
  • the negative electrode active material coating layer 203 of the negative electrode 200 other than the negative electrode portion facing the positive electrode extraction tab has a larger area than the positive electrode active material layer, and the negative electrode exists in a portion facing the positive electrode via the separator. This prevents the current density from increasing in the periphery of the negative electrode. As a result, lithium ions that have migrated to the negative electrode side during charging cannot be received at the periphery of the negative electrode, thereby preventing dendritic metallic lithium from precipitating.
  • the region 107 with a small amount of active material provided on the positive electrode extraction tab 109 extends to the periphery of the opposing negative electrode disposed through the separator. It extends.
  • the surface on the negative electrode side of the region 107 with a small amount of active material provided on the positive electrode extraction tab 109 of the present invention extends to a region where no negative electrode exists, but moves to the periphery of the negative electrode when the battery is charged. Since the amount of lithium ions to be reduced is smaller than that of other portions, it is possible to prevent metallic lithium from being precipitated by lithium ions that migrate from a portion extending from the outer peripheral portion of the negative electrode.
  • FIG. 2 is a diagram for explaining the positional relationship between the negative electrode and a region where the amount of the positive electrode active material provided in the positive electrode extraction tab is small.
  • FIG. 2A is a diagram illustrating an example in which a region 107 with a small amount of the positive electrode active material is provided in a tapered shape.
  • the region 107 where the amount of the positive electrode active material is small varies depending on the shape of the electrode to be manufactured (width of the non-coated region, thickness of the current collector), the porosity of the active material layer after compression, and the like.
  • it is necessary that the amount of insertion and desorption of lithium ions of the negative electrode active material in the facing region is larger than the amount of insertion and desorption.
  • the distance D from the leading end portion of the positive electrode pulling tab in the region 107 where the amount of the positive electrode active material is small to the leading end portion of the opposing negative electrode is 8 mm or less. This is because when the distance D is 8 mm or less, lithium precipitation at the tip of the negative electrode is sufficiently suppressed.
  • D is preferably larger than 3 mm. Further, the distance D needs to be shorter than the region 107 where the amount of the positive electrode active material is small.
  • FIG. 2B is a diagram illustrating an example in which the region 107 where the amount of the positive electrode active material is small is formed by a stepped portion.
  • the distance D from the leading end portion of the positive electrode extraction tab in the region 107 where the amount of the positive electrode active material is small to the leading end portion of the opposing negative electrode is 8 mm or less. It is preferable that On the other hand, in order to prevent a short circuit between the positive electrode extraction tab and the negative electrode active material layer, D is preferably larger than 3 mm. Further, the distance D needs to be shorter than the region 107 where the amount of the positive electrode active material is small.
  • the negative electrode active surface of the positive electrode extraction tab opposite to the positive electrode active material application surface. Even when the material surface is in contact, the conductivity of the positive electrode active material is much smaller than that of aluminum, so that the current that flows is slightly smaller than when the aluminum surface of the positive electrode extraction tab is in contact with the negative electrode surface. It is. Therefore, it is possible to improve safety compared to the case where the aluminum surface of the positive electrode extraction tab and the negative electrode surface are in direct contact.
  • the lithium ion battery can be provided with higher safety because it has lower conductivity than the lithium cobalt composite oxide.
  • FIG. 3 is a diagram for explaining an example of the battery of the present invention.
  • FIG. 3A is a plan view of the battery element stack accommodated in the exterior material as seen from above the stack surface.
  • FIG. It is sectional drawing in CC 'line
  • the non-aqueous electrolyte battery 10 has a battery element laminate 70 inside a film-shaped exterior member 20 indicated by phantom lines.
  • the positive electrode extraction tab 109 and the negative electrode extraction tab 209 are taken out in the opposite directions from the positive electrode 100 and the negative electrode 200.
  • four pairs of the positive electrode 100 and the negative electrode 200 are connected via the separator 50.
  • An insulating member 60 such as an insulating adhesive tape is bonded from the lead-out portion of the positive-electrode pull-out tab 109 of each positive electrode to the region 107 where the amount of positive-electrode active material is small.
  • the battery element laminate 70 is formed by laminating a positive electrode and a negative electrode via a separator, and then connecting a plurality of positive electrode extraction tabs 109 and a plurality of negative electrode extraction tabs 209 to the positive electrode terminals 30, After bonding to the negative electrode terminal 40 at the positive electrode side bonding portion 110 and the negative electrode side bonding portion 210, the laminated body can be integrated by pasting the binding tape 72 at a plurality of locations.
  • the end surface of the negative electrode active material layer of the negative electrode adjacent to the stack direction of the positive electrode pull-out tab or the end surface of the negative electrode current collector of the negative electrode It has a thickness up to
  • electrodes having the same polarity are arranged at both ends of the laminate.
  • the negative electrode 200 is disposed at both ends. Therefore, even if the film-like packaging material 20 is broken, it is possible to prevent a short-circuit current from flowing by the external conductive member, and thus safety can be improved.
  • FIG. 4 is a diagram illustrating a structure for suppressing negative electrode movement by the insulating member of the present invention
  • FIG. 4A is a diagram illustrating an example of a structure for suppressing negative electrode movement
  • FIG. It is a figure explaining the other example of a suppression structure.
  • an insulating member 60 such as an insulating adhesive tape is bonded to the surface of the positive electrode extraction tab 109 of the positive electrode 100 between the region 107 where the amount of the positive electrode active material is small.
  • the insulating member 60 extends in the stacking direction of the battery stack and reaches a portion that does not exceed one half of the thickness in the end face direction of the negative electrode 200.
  • the width W of the insulating member is preferably 4 mm ⁇ w ⁇ 12 mm. If it is smaller than 4 mm, the effect of inhibiting movement is not sufficient, and if it is larger than 12 mm, the battery volume unrelated to the battery capacity increases, which is not preferable.
  • FIG. 4B illustrates an example in which the insulating member 60 covers a part of the tapered portion of the region 107 where the amount of the positive electrode active material is small.
  • An electrolyte impervious portion 107a is formed in an adhesive portion covered by a part of the insulating member of the tapered portion of the region 107 where the amount of the positive electrode active material is small. In this way, by forming the electrolyte impervious portion 107a, lithium ion migration from a portion covered with the insulating member of the tapered portion during charging to a portion not covered with the insulating member is prevented. be able to.
  • the electrolyte impervious portion 107a can be formed by impregnating or filling a stable insulating material in the battery electrolyte.
  • a thermoplastic material such as polypropylene is used. It can be formed by filling a resin material while applying pressure and heating.
  • Main material particles of positive electrode active material such as lithium manganese composite oxide (volume average diameter measured by a laser diffraction particle size distribution analyzer, 10 ⁇ m), carbon black as a conductivity imparting agent, and polyvinylidene fluoride as a binder
  • PVDF volume average diameter measured by a laser diffraction particle size distribution analyzer
  • carbon black as a conductivity imparting agent
  • polyvinylidene fluoride as a binder
  • N-methylpyrrolidone was evaporated and dried through a drying oven to form a positive electrode mixture layer.
  • a region where the coating thickness changes stepwise that is, a region where the amount of active material is small because no pressure is applied during compression is formed.
  • the length of the stepped portion can be controlled by changing the die head shim.
  • the electrode porosity of the positive electrode mixture layer before compression was about 50%. Next, this electrode is compressed using a compressor to form a high-density region.
  • FIG. 5 is a diagram for explaining a coating process by a die coater
  • FIG. 5A is a diagram for explaining the operation of the die coater
  • FIG. 5B is a sectional view taken along the line BB ′ of the head portion of FIG. 5A.
  • the die coater 150 is an apparatus for continuously applying an active material layer in the longitudinal direction of the strip-shaped positive electrode current collector 101.
  • positive electrode active material main particles such as lithium manganese composite oxide
  • a binder such as carbon black or polyvinylidene fluoride as a conductivity imparting agent is added to an organic solvent such as N-methylpyrrolidone.
  • FIG. 5B is a view for explaining a cross section of the die head 161 along the BB ′ cut surface.
  • the die head 161 has shims 166a and 166b for adjusting the interval of the discharge port 164 at both ends of the discharge port 164 from which the slurry is discharged.
  • Each shim includes a flow path restriction member 166c, 166d including a tapered portion or a stepped portion whose thickness decreases toward the central portion of the discharge port 164.
  • the flow restricting members are attached to both ends of the die head 161, the amount of slurry discharged from both ends is reduced. As a result, both ends of the coating layer face the exposed surface of the current collector.
  • the coating device is not limited to the die coater, and other types of coating devices such as knife coating may be used.
  • FIG. 6 is a diagram for explaining the manufacturing process of the positive electrode of the present invention, and is a diagram for explaining the compression process of the active material layer formed on the current collector surface.
  • FIG. 6A is a diagram for explaining a case where an end portion of a coating layer is manufactured with a tapered shape
  • FIG. 6B is a step where a step is formed at the end portion to form a coating layer connected to a thin coating layer. It is a figure explaining the electrode which did.
  • FIG. 6A is a cross-sectional view of the positive electrode active material layer cut along a plane parallel to the plane passing through the rotation axis of the roll press after passing through the roll presses 172a and 172b.
  • the positive electrode active material layer 103 continuously applied in the longitudinal direction of the positive electrode current collector 101 is continuously compressed by the roll presses 172a and 172b to form the high density region 105.
  • a tapered portion 108 is formed in the active material layer in the region adjacent to the exposed surface 102.
  • a region 107 with a small amount of active material that does not act on the compression pressure can be formed in a part of the tapered portion.
  • FIG. 6B is a cross-sectional view of the active material layer cut along a plane parallel to the plane passing through the rotation axis of the roll press after passing through the roll presses 172a and 172b, as in FIG. 5A.
  • the active material layer has a tapered shape in which the thickness decreases toward the exposed surface of the current collector
  • FIG. 6B includes a step portion 111 and a thin layer portion 113 having a small thickness. Is different.
  • FIG. 7 is a diagram illustrating an electrode cutting-out process according to the present invention.
  • FIG. 7A is a view in which a part of the belt-like current collector is cut away.
  • a high-density region 105 is formed in the center by compressing with a roll press as shown in FIG.
  • the region 107 having a small amount of active material that is not compressed by the roll press is formed.
  • the positive electrode shown in FIG. 7B can be efficiently manufactured by punching along the electrode extraction tab 109, the cutting line 180 around each unit electrode, and the center line 173.
  • the positive electrode active material layer extends beyond the portion of the positive electrode extraction tab surface drawn out from the positive electrode current collector and the opposite negative electrode active material layer is vertically projected. Since the positive electrode active material layer extending toward the positive electrode tab and extending in the lead-out direction of the positive electrode tab decreases in the amount of the positive electrode active material toward the tip, the amount of lithium ions transferred to the outer peripheral portion of the negative electrode facing during charging is reduced. By reducing it, lithium can be prevented from precipitating in a dendritic form, and even when the separator shrinks when the temperature rises, it is possible to provide a highly reliable battery that prevents direct contact between the aluminum in the positive electrode tab and the negative electrode It becomes.
  • Nonaqueous electrolyte secondary battery 20 ... Film-like exterior material, 30 ... Positive electrode terminal, 40 ... Negative electrode terminal, 50 ... Separator, 60 ... Insulating member, 70 * .. Stack of battery elements, 72... Binding tape, 100... Positive electrode, 101... Positive electrode current collector, 102. .. High density region, 107... Region with a small amount of active material, 108... Tapered portion, 109... Positive electrode extraction tab, 110. 113 ... Thin layer part, 150 ... Die coater, 152 ... Backup roller, 160 ... Slot die, 161 ... Die head, 162 ... Slurry, 164 ... Discharge port, 166a, 166b...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

【課題】 充電時の負極へのリチウムの形成を防止し、温度上昇時のセパレーターの収縮よる、正極と負極との短絡を防止した非水電解液二次電池を提供する。 【解決手段】 負極集電体に負極活物質層を形成した負極と、前記負極とセパレーターを介して積層した、正極集電体に正極活物質層を形成した正極を有し、前記正極集電体から引き出した正極タブ面には、対向する負極活物質層を垂直投影した部分を越えて正極タブの引出方向へ延びた、先端部ほど正極活物質の存在量が減少した領域を有する非水電解液二次電池。

Description

非水電解液二次電池
 本発明は、非水電解液二次電池に関し、衝撃が加わったり、高温度状態でも信頼性が高く充放電容量が優れた非水電解液二次電池に関するものである。
 充放電容量等の特性が優れたリチウムイオン二次電池は、小型化、軽量化が可能であって、エネルギー密度が大きいので、携帯機器の電源、電動自転車、電気自動車等の電源、あるいは商用電源のバックアップ用途等で用いられており、性能向上のための様々な提案が行われている。
 リチウムイオン二次電池では、充電時には正極電極側からリチウムイオンが負極電極側に移行するが、負極電極の周辺部にリチウムがデンドライト状に析出して対極と短絡等が生じないようにするために、正極電極の外周部が対向する負極電極の外周部よりも内側となるように配置することが提案されている(例えば、特許文献1,2参照)。
 また、正極合剤の終端部の傾斜によって厚みが減少している部分に絶縁テープを貼着することで電極の周辺部から活物質が脱落して内部リークの原因となることを防止することが提案されている(例えば、特許文献3参照)。
特開2002-252023号公報 特開平07-302616号公報 特開2006-147392号公報
 リチウムイオン二次電池は、充放電時を通じて電池内部にはリチウムが金属状態では存在しない実用的非水電解液二次電池として広く用いられている。
 ところが、充電時に正極電極側からのリチウムイオンを負極電極側で受け入れることができなかった場合には負極電極の周辺部に金属リチウムがデンドライト状に析出することがある。
 図8は、従来のリチウムイオン電池を説明する図である。
 図8Aは、正極電極100、負極電極200の位置関係を説明する平面図であって、負極電極上に正極電極を配置した状態を正極電極上から見た図である。また、図8Bは、図8AのA-A’線の断面をセパレーターを含めて示す図であり、厚み方向を拡大して示した図である。
 正極電極100の外形は、負極電極200の外形よりも小さく、正極電極にセパレーター50を介して対向するすべての部分には負極電極が存在するような大きさとしている。
 このように、正極電極と負極電極の大きさを特定することで、充電時に正極電極の周辺部にリチウムがデンドライト状に析出することを防止することがリチウムイオン電池の設計において不可欠の条件とされている。
 一方、正極電極に比べて負極電極を大きくした場合には、正極電極と負極電極の間に配置したセパレーターが高温時に収縮すると、正極電極と負極電極との間、とりわけ正極活物質を塗布していない正極引出タブ等と負極電極との間で短絡が生じると大きな電流が流れる可能性がある。
 このような短絡は、特許文献3に記載のように、正極活物質の塗布終端部のテーパー部に絶縁テープを配置することで防止が可能と考えられている。
 しかしながら、充電時にリチウムイオンが絶縁テープで被覆された部分から被覆されていない部分へと移行し、絶縁テープで覆われていない部分からのリチウムイオンの移行量が多くなって負極電極周辺部にリチウムがデンドライト状に析出する可能性も考えられる。
 本発明は、非水電解液二次電池の充電時に正極電極の周辺部からのリチウムイオンの拡散量を小さくし、更に正極引出タブの表面の導電性を低下させることで、正極引出タブと負極活物質層との短絡を抑制しながらリチウムの析出をも同時に抑制し、信頼性を向上したリチウムイオン電池を提供することを課題とするものである。
 本発明の課題は、負極集電体に負極活物質層を形成した負極電極と、前記負極電極とセパレーターを介して積層した、正極集電体に正極活物質層を形成した正極電極を有し、前記正極集電体から引き出した正極タブ面には、対向する負極活物質層を垂直投影した部分を越えて正極タブの引出方向へ延びた、先端部に正極活物質の存在量が減少した領域を有する非水電解液二次電池によって解決することができる。
 また、前記正極活物質の存在量が少ない領域は、前記正極タブの引出方向に沿って厚みが薄くなる傾斜面、または正極活物質の存在割合が減少した領域である前記の非水電解液二次電池である。
 また、正極タブと負極タブは引出方向が互いに逆方向であって、前記正極引出タブの正極活物質の存在量が減少する部分から正極タブの引出方向に延びる絶縁部材を接着し、前記絶縁部材の正極タブの引出方向と逆方向の端部は、前記正極タブの積層方向に隣接する負極電極の負極活物質層の表面を越えて、負極集電体に達するまでの厚さを有する前記の非水電解液二次電池である。
 本発明の正極集電体から引き出した正極引出タブ面には、対向する負極活物質層を垂直投影した部分を越えて正極活物質層が正極引出タブの引出方向へ延び、前記正極タブの引出方向へ延びる正極活物質層は、正極引出タブの先端部ほど正極活物質の存在量が減少している。
 したがって、充電時に対向する負極電極の外周部分に移行するリチウムイオンの量を減少させることでリチウムがデンドライト状に析出することを防止することができる。
 また、セパレーターが温度上昇時に収縮した場合にも、正極タブ面に形成した正極活物質層は、アルミニウム面に比べて導電性が小さいので負極電極との直接接触時に大きな短絡電流が流れることを防止して信頼性が高い電池を提供することができる。
図1は、本発明の非水電解液二次電池を説明する図であり、図1Aは、外観の平面図である。図1Bは、正極電極と負極電極の位置関係を説明する図である。図1Cは、図1Bの正極タブ部をA-A’線部で切断した正極電極と負極電極の位置関係をセパレーターと共に説明する断面図である。図1Dは、正極電極と負極電極をB-B’線部で切断した正極電極と負極電極の位置関係をセパレーターと共に説明する断面図である。 図2は、正極引出タブに設けた正極活物質の存在量が少ない領域と負極電極との位置関係を説明する図である。図2Aは、正極活物質の存在量が少ない領域をテーパー状に設けた例を説明する図である。図2Bは、正極活物質の存在量が少ない領域を段差部によって形成した例を説明する図である。 図3は、本発明の電池の一例を説明する図であり、図3Aは、外装材の内部に収容した電池要素の積層体の積層面上から見た平面図であり、図3Bは、図3AのC-C’線での断面図である。 図4は、本発明の絶縁部材による負極電極移動の抑制構造を説明する図であり、図4Aは、負極電極移動の抑制構造の一例を説明する図であり、図4Bは、負極電極移動の抑制構造の他の例を説明する図である。 図5は、本発明の電極の製造工程を説明する図であり、図5Aは、ダイコーターによる塗布工程を示し、図5Bは、図5AのB-B’切断面の断面を説明する図である。 図6は、本発明の電極の製造工程を説明する図であり、集電体面に形成した活物質層の圧縮工程を説明する図である。図6Aは、塗布層の端部がテーパー状の電極を製造する場合を説明する図であり、図6Bは、端部に段差を形成して厚さが薄い塗布層へと連なる塗布層を形成した電極を説明する図である。 図7は、本発明の電極の切り出し工程を説明する図であり、図7Aは、帯状の集電体の一部を切り欠いた図である。また、図7Bは、切り出した電極を説明する図である。 図8は、従来技術を説明する図である。
 以下に、図面を参照して本発明を説明する。
 図1Aに外観の平面図を示す。本発明の非水電解液二次電池10は、フィルム状外装材20等によって、正極電極と負極電極をセパレーターを介して対向して配置した単位電池の少なくとも1個を封口したものであって、フィルム状外装材20から正極端子30および負極端子40が取り出されている。
 図1Bは、正極電極と負極電極の配置を説明する図であり、正極電極100と負極電極200とセパレーター(図示しない)の相互の位置関係を説明する図であり、図1Cは、図1BにおけるA-A’線の断面を説明する図であって、正極電極100、セパレーター50、負極電極200の相互の関係を説明する図である。また、図1Dは、図1BにおけるB-B’線の断面を説明する図であって、正極電極100、セパレーター50、負極電極200の相互の関係を説明する図である。
 本発明の正極電極100は、正極集電体101の表面に正極活物質層103を有しており、負極電極200は、負極集電体201の表面に負極活物質層203を有している。
 正極活物質層103には、圧縮によって活物質層の充填密度を高めた電池の充放電を担う高密度領域105と、正極集電体101から引き出した正極引出タブ109の活物質を塗布していない非塗布領域102に隣接して高密度領域105に比べて活物質の存在量が少ない領域107を有している。
 活物質の存在量が少ない領域107は、隣接した高密度領域に比べて段差を設けて活物質の塗布量を少なくするか、あるいは非塗布領域102から高密度領域105に向けて厚みが増加するように活物質を塗布したテーパー部108によって形成することができる。
 負極電極200は、負極集電体201の表面に負極活物質層203を有しており、負極集電体201から負極集電引出タブ209を引き出している。
 正極引出タブと対向する負極部以外の負極電極200の負極活物質塗布層203は、正極活物質層よりも面積が大きく、セパレーターを介して正極電極に対向する部分には負極電極が存在するように配置することで、負極電極の周辺部において電流密度が大きくなることを防止している。
 これによって、充電時に負極電極側へ移行したリチウムイオンが負極電極の周辺部において受け入れができなくなって、デンドライト状の金属リチウムが析出することを防止している。
 一方、正極引出タブ近傍では、図1B、図1Cで示す様に、正極引出タブ109に設けた活物質の存在量が少ない領域107は、セパレーターを介して配置して対向する負極電極の周囲まで延びている。
 本発明の正極引出タブ109に設けた活物質の存在量が少ない領域107の負極電極側の面には負極電極が存在しない領域まで広がっているが、電池の充電時に負極電極の周辺部へ移行するリチウムイオンは他の部分に比べて少ないので、負極電極の外周部よりも延びた部分から移行するリチウムイオンによって金属リチウムが析出することを防止することができる。
 図2は、正極引出タブに設けた正極活物質の存在量が少ない領域と負極電極との位置関係を説明する図である。図2Aは、正極活物質の存在量が少ない領域107をテーパー状に設けた例を説明する図である。
 正極活物質の存在量が少ない領域107は、作製する電極の形状(非塗布領域の幅、集電体の厚さ)や圧縮後の活物質層の空隙率等によっても異なるが、リチウムイオンを挿入脱離する量よりも、対面する領域の負極活物質のリチウムイオンを挿入脱離する量が大きいことが、本発明の効果を発するためには必要となる。
 さらに正極活物質の存在量が少ない領域107の正極引出タブの引出方向の先端部から、対向する負極電極の先端部までの距離Dは、8mm以下とすることが好ましい。これは、距離Dが8mm以下では負極電極の先端部でのリチウム析出が十分に抑制されるからである。一方、正極引出タブと負極活物質層との短絡を防止するためには、Dは3mmよりも大きいことが好ましい。また、距離Dは、正極活物質の存在量が少ない領域107よりも短かくすることが必要である。
 また、図2Bは、正極活物質の存在量が少ない領域107を段差部によって形成した例を説明する図である。図2Aで示したテーパー状の場合と同様に、正極活物質の存在量が少ない領域107の正極引出タブの引出方向の先端部から、対向する負極電極の先端部までの距離Dは、8mm以下とすることが好ましい。
 一方、正極引出タブと負極活物質層との短絡を防止するためには、Dは3mmよりも大きいことが好ましい。また、距離Dは、正極活物質の存在量が少ない領域107よりも短かくすることが必要である。
 以上の様に、正極引出タブの表面時に正極活物質の存在量が少ない領域107を設けることで、セパレーターが熱収縮を起こした場合に、正極引出タブの正極活物質塗布面と対極の負極活物質面とが接触した場合であっても、正極活物質の導電率はアルミニウムに比べて遙かに小さいので正極引出タブのアルミニウム面と負極電極面とが接触した場合に比べて流れる電流はわずかである。
 したがって、正極引出タブのアルミニウム面と負極電極面とが直接接触した場合に比べても安全性を高めることが可能となる。特に、正極活物質としてリチウムマンガン複合酸化物を使用した場合は、リチウムコバルト複合酸化物に比べて導電性が小さいので、より安全性が高いリチウムイオン電池を提供することができる。
 図3は、本発明の電池の一例を説明する図であり、図3Aは、外装材の内部に収容した電池要素の積層体を積層面上から見た平面図であり、図3Bは、図3AのC-C’線での断面図である。
 非水電解液電池10は、仮想線で示すフィルム状外装材20の内部に電池要素の積層体70を有している。
 正極電極100と負極電極200から、正極引出タブ109と負極引出タブ209を互いに反対方向に取り出した電池であり、この例では、4対の正極電極100と負極電極200とをセパレーター50を介して積層している。
 各正極電極の正極引出タブ109の引出部から正極活物質の存在量が少ない領域107まで、絶縁性の粘着テープ等の絶縁部材60を接着している。
 電池要素の積層体70は、正極電極、負極電極をセパレーターを介して積層した後に、正極引出タブ109の複数個と、負極引出タブ209の複数個を、超音波溶接等によってそれぞれ正極端子30,負極端子40に、正極側接合部110、負極側接合部210において接合した後に、結束テープ72を複数個所に貼り付けることで積層体を一体化することができる。
 前記絶縁部材の正極タブの引出方向と反対方向の端部には、前記正極引出タブの積層方向に隣接する負極電極の負極活物質層の端面、あるいは更に前記負極電極の負極集電体の端面に達するまでの厚みを有している。
 このように、負極電極200の端部にまで達する厚みが厚い絶縁部材60を正極電極に接着することで、負極電極の端部も保持することが可能となる。
 したがって、電池が正極引出タブ方向への大きな衝撃を受けて負極引出タブ209が切断して、負極電極が正極引出タブ側へ移動した場合にも正極タブと負極電極との接触を防止することができるので、より安全性が高い非水電解液二次電池を提供することができる。
 また、本発明の電池は、積層体の両端部には同極性の電極を配置している。図示する例では、負極電極200を両端部に配置している。したがって、万が一フィルム状外装材20が破断した場合でも外部の導電性部材によって短絡電流が流れるのを防止することができるので安全性を高めることができる。
 図4は、本発明の絶縁部材による負極電極移動の抑制構造を説明する図であり、図4Aは、負極電極移動の抑制構造の一例を説明する図であり、図4Bは、負極電極移動の抑制構造の他の例を説明する図である。
 図4Aに示すように、正極電極100の正極引出タブ109面に正極活物質の存在量が少ない領域107との間に、絶縁性の粘着テープ等の絶縁部材60を接着している。
 絶縁部材60は、電池積層体の積層方向に延びて、負極電極200の端面方向の厚さの2分の1を越えない部分にまで達している。
 具体的には、隣接する絶縁部材60の間隔sと、負極電極200の厚みtとの間には、0≦s≦0.8tの関係を満たす様に配置することで、衝撃が加わった際に負極電極移動を抑制することができる。
 また、絶縁部材の幅Wは、4mm≦w≦12mmとすることが好ましい。4mmよりも小さい場合には、移動抑止効果が十分ではなく、12mmよりも大きい場合には、電池容量に関係しない電池体積が増えるので好ましくない。
 また、図4Bに示す例は、正極活物質の存在量が少ない領域107のテーパー部の一部を絶縁部材60が覆う例を示している。
 正極活物質の存在量が少ない領域107のテーパー部の一部の絶縁部材が覆う接着部分には、電解液不浸透部107aを形成している。
 このように、電解液不浸透部107aを形成することで、充電時に前記テーパー状の部分の絶縁性部材で被覆した部分から、絶縁部材で被覆していない部分へのリチウムイオンの移行を防止することができる。
 その結果、絶縁部材で被覆した部分との境界部からの負極電極側へ移行するリチウムイオンの量を減少することで、負極側でリチウムが析出することを防止することができる。
 電解液不浸透部107aは、電池の電解液に安定な絶縁性材料を含浸、あるいは充填することで形成することができるが、一例を挙げると、正極電極を作製する際にポリプロピレン等の熱可塑性樹脂材料を加圧、加熱しながら充填することで形成することが可能である。
 以下に、本発明の非水電解二次電池の製造方法の一例を挙げる。
 リチウムマンガン複合酸化物等の正極活物質主材粒子(レーザ回折式粒度分布測定装置で測定した、体積平均径10μm)、導電性付与剤であるカーボンブラック、および結着剤であるポリフッ化ビニリデン(PVDF)を、有機溶剤であるN-メチルピロリドン中に分散したスラリーを、後述のダイヘッドを用いて厚さ20μmのアルミニウム集電体上に両端18mmを非塗布部分として連続的に帯状に塗布した後、乾燥炉を通してN-メチルピロリドンを蒸発させて乾燥し、正極合剤層を形成した。
 正極中の固形分比率は正極活物質:導電性付与剤:PVDF=89:4:7(質量%)とした。
 非塗布部分に隣接する塗布領域には、段差状に塗布厚さが変化した領域、すなわち圧縮時に圧力が加わらないために活物質の存在量が少ない領域が形成されている。
 この段差部の長さは、ダイヘッドのシムを変えることで制御できる。この正極合剤層の圧縮前の電極空隙率は、約50%であった。次にこの電極を、圧縮機を用いて圧縮することで高密領域を形成することができる。
 図5は、ダイコーターによる塗布工程を説明する図であり、図5Aは、ダイコーターの動作を説明する図であり、図5Bは、図5Aのヘッド部のB-B’の断面図である。
 ダイコーター150は、帯状の正極集電体101の長手方向に連続的に活物質層を塗布する装置である。
 スロットダイ160のダイヘッド161から、リチウムマンガン複合酸化物等の正極活物質主材粒子に、導電性付与剤であるカーボンブラック、ポリフッ化ビニリデン等の結着剤をN-メチルピロリドン等の有機溶剤に分散したスラリー162を所定の圧力によって吐出することで、バックアップローラー152上を移動する帯状の正極集電体101面に連続的に塗布を行うことができる。
 図5Bは、ダイヘッド161のB-B'切断面での断面を説明する図である。
 ダイヘット161は、スラリーが吐出する吐出口164の両端部に、吐出口164の間隔調整のシム166a、166bを有している。また、それぞれのシムは、吐出口164の中央部に向かって厚みが減少するテーパー部、または段差部からなる流路制限部材166c、166dを備えている。
 このようにダイヘッド161の両端部には各流路制限部材を装着しているために両端部から吐出するスラリーの量が減少する結果、塗布層の両端部には集電体の露出面に向かってテーパー状、あるいは段差状に厚みが減少する塗布層を形成することができる。
 以上の説明では、ダイコーターによる塗布層の形成の例を説明したが、ダイコーターに限らずナイフコーティング等の他の方式の塗布装置を用いてもよい。
 図6は、本発明の正極電極の製造工程を説明する図であり、集電体面に形成した活物質層の圧縮工程を説明する図である。図6Aは、塗布層の端部がテーパー状の電極を製造する場合を説明する図であり、図6Bは、端部に段差を形成して厚さが薄い塗布層へと連なる塗布層を形成した電極を説明する図である。
 図6Aで示す圧縮工程170は、ロールプレス172a,172bの通過後のロールプレスの回転軸をとおる面に平行な面で正極活物質層を切断した断面図である。
 正極集電体101の長手方向に連続的に塗布した正極活物質層103は、ロールプレス172a、172bによって、連続的に圧縮されて、高密度領域105が形成されるが、正極集電体101の露出面102に隣接する領域の活物質層は、テーパー部108が形成されている。
 圧縮時には、圧縮圧力を調節することでテーパー部の一部には、圧縮圧力が作用しない活物質の存在量が少ない領域107を形成することができる。
 図6Bで示す圧縮工程170は、図5Aと同様に、ロールプレス172a,172b通過後のロールプレスの回転軸をとおる面に平行な面で活物質層を切断した断面図である。
 図6Aでは活物質層は、集電体の露出面へ向かって厚さが薄くなるテーパー状であるのに対して、図6Bは、段差部111、および厚みの薄い薄層部113を有している点が異なっている。集電体の露出面に隣接する活物質層の厚みの薄い部分およびその隣接する段差部を除いてロールプレスによって圧縮されるように圧縮圧力の調節を行うことで、高密度領域105と活物質の存在量が少ない領域107とを形成することができる。
 以上の説明では、ロールプレスによって集電体の長手方向に連続的に圧縮する方法について説明したが、平板プレスをはじめとする各種の圧縮装置を使用して圧縮を行ってもよい。
 図7は、本発明の電極の切り出し工程を説明する図である。
 図7Aは、帯状の集電体の一部を切り欠いた図である。
 帯状の正極集電体101の長手方向に沿って、活物質層を塗布した後に、図6で示したようにロールプレスによって圧縮することで中央部に高密度領域105を形成するとともに、両端部には、ロールプレスによって圧縮されない活物質の存在量が少ない領域107を形成する。
 次いで、電極引出タブ109、各単位電極の周囲の切断線180、および中心線173に沿って打ち抜くことで、図7Bに示す正極電極を効率的に製造することができる。
 本発明の非水電解液二次電池は、正極集電体から引き出した正極引出タブ面には、対向する負極活物質層を垂直投影した部分を越えて正極活物質層が正極タブの引出方向へ延び、前記正極タブの引出方向へ延びる正極活物質層は、先端部ほど正極活物質の存在量が減少しているので、充電時に対向する負極電極の外周部分に移行するリチウムイオンの量を減少させることでリチウムがデンドライト状に析出することを防止し、セパレーターが温度上昇時に収縮した場合にも、正極タブのアルミニウムと負極電極との直接接触を防止した信頼性が高い電池の提供が可能となる。
 10・・・非水電解液二次電池、20・・・フィルム状外装材、30・・・正極端子、40・・・負極端子、50・・・セパレーター、60・・・絶縁部材、70・・・電池要素の積層体、72・・・結束テープ、100・・・正極電極、101・・・正極集電体、102・・・非塗布領域、103・・・正極活物質層、105・・・高密度領域、107・・・活物質の存在量が少ない領域、108・・・テーパー部、109・・・正極引出タブ、110・・・正極側接合部、111・・・段差部、113・・・薄層部、150・・・ダイコーター、152・・・バックアップローラー、160・・・スロットダイ、161・・・ダイヘッド、162・・・スラリー、164・・・吐出口、166a,166b・・・間隔調整のシム、166c,166d・・・流路制限部材、170・・・圧縮工程、172a,172b・・・ロールプレス、200・・・負極電極、201・・・負極集電体、203・・・負極活物質層、209・・・負極引出タブ、210・・・負極側接合部

Claims (3)

  1.   負極集電体に負極活物質層を形成した負極と、前記負極とセパレーターを介して積層した、正極集電体に正極活物質層を形成した正極を有し、前記正極集電体から引き出した正極タブ面には、対向する負極活物質層を垂直投影した部分を越えて正極タブの引出方向へ延びた、先端部に正極活物質の存在量が減少した領域を有することを特徴とする非水電解液二次電池。
  2.  前記正極活物質の存在量が少ない領域は、前記正極タブの引出方向に沿って厚みが薄くなる傾斜面、または正極活物質の存在割合が減少した領域であることを特徴とする請求項1記載の非水電解液二次電池。
  3.  正極タブと負極タブは引出方向が互いに逆方向であって、前記正極引出タブの正極活物質の存在量が減少する部分から正極タブの引出方向に延びる絶縁部材を接着し、前記絶縁部材の正極タブの引出方向と逆方向の端部は、前記正極タブの積層方向に隣接する負極電極の負極活物質層の表面を越えて、負極集電体に達するまでの厚さを有することを特徴とする請求項1または2記載の非水電解液二次電池。
PCT/JP2014/055255 2013-03-07 2014-03-03 非水電解液二次電池 WO2014136714A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14760377.3A EP2966721B1 (en) 2013-03-07 2014-03-03 Non-aqueous electrolyte secondary battery
JP2015504290A JP6249493B2 (ja) 2013-03-07 2014-03-03 非水電解液二次電池
CN201480011783.1A CN105027347B (zh) 2013-03-07 2014-03-03 非水电解液二次电池
US14/767,804 US9601745B2 (en) 2013-03-07 2014-03-03 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013045344 2013-03-07
JP2013-045344 2013-03-07

Publications (1)

Publication Number Publication Date
WO2014136714A1 true WO2014136714A1 (ja) 2014-09-12

Family

ID=51491232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055255 WO2014136714A1 (ja) 2013-03-07 2014-03-03 非水電解液二次電池

Country Status (5)

Country Link
US (1) US9601745B2 (ja)
EP (1) EP2966721B1 (ja)
JP (1) JP6249493B2 (ja)
CN (1) CN105027347B (ja)
WO (1) WO2014136714A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187958A (ja) * 2014-03-27 2015-10-29 三洋電機株式会社 非水電解質二次電池
JP2016062875A (ja) * 2014-09-22 2016-04-25 株式会社豊田自動織機 蓄電装置
EP3038187A1 (en) * 2014-12-26 2016-06-29 Automotive Energy Supply Corporation Lithium ion secondary battery
US20160190539A1 (en) * 2014-12-26 2016-06-30 Automotive Energy Supply Corporation Lithium ion secondary battery
WO2016121734A1 (ja) * 2015-01-30 2016-08-04 Necエナジーデバイス株式会社 二次電池
JP2016219255A (ja) * 2015-05-20 2016-12-22 日産自動車株式会社 電池、電池モジュールおよび電池の設計方法
WO2018021214A1 (ja) * 2016-07-28 2018-02-01 三洋電機株式会社 二次電池及びその製造方法
JP2020057587A (ja) * 2018-10-02 2020-04-09 プライムアースEvエナジー株式会社 電極体、二次電池及び二次電池の製造方法
US10847803B2 (en) 2017-02-23 2020-11-24 Panasonic Intellectual Property Management Co., Ltd. Lithium-ion secondary battery and method of manufacture thereof
WO2021176960A1 (ja) * 2020-03-06 2021-09-10 三洋電機株式会社 非水電解質二次電池及び非水電解質二次電池の製造方法
WO2021200373A1 (ja) * 2020-03-31 2021-10-07 株式会社Gsユアサ 蓄電素子

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3032632B1 (en) * 2013-08-09 2020-04-08 Envision AESC Energy Devices Ltd. Secondary battery and method for manufacturing same
JP6569490B2 (ja) 2015-11-17 2019-09-04 オムロン株式会社 バッテリパックおよびこれを備えたバッテリシステム、バッテリパックの用途判別方法
JP6597219B2 (ja) 2015-11-17 2019-10-30 オムロン株式会社 バッテリパックおよびこれを備えたバッテリシステム
JP2017093253A (ja) * 2015-11-17 2017-05-25 オムロン株式会社 バッテリパックおよびこれを備えたバッテリシステム
JP6729690B2 (ja) * 2016-05-31 2020-07-22 株式会社村田製作所 二次電池の製造方法
JP7024734B2 (ja) * 2017-01-17 2022-02-24 大日本印刷株式会社 保護フィルム、電池、及び電池の製造方法
WO2019039412A1 (ja) * 2017-08-23 2019-02-28 株式会社村田製作所 積層構造体及びその製造方法、並びに、ロールプレス装置
JP6988393B2 (ja) * 2017-11-13 2022-01-05 トヨタ自動車株式会社 電池モジュール及び電池パック
CN108336286A (zh) * 2018-03-26 2018-07-27 珠海格力电器股份有限公司 一种大软包锂离子电池及其制备方法
KR102384970B1 (ko) * 2018-08-13 2022-04-11 주식회사 엘지에너지솔루션 전극조립체 및 그 전극조립체의 제조 방법
JP7156387B2 (ja) * 2018-10-29 2022-10-19 株式会社村田製作所 固体電池
CN110661002B (zh) 2018-12-29 2021-06-29 宁德时代新能源科技股份有限公司 一种电极极片和电化学装置
CN111180665A (zh) * 2019-06-28 2020-05-19 宁德时代新能源科技股份有限公司 一种电极极片和电化学装置
EP4207428A4 (en) * 2021-02-08 2024-07-17 Ningde Amperex Technology Ltd BATTERY
CN113725496B (zh) * 2021-09-01 2024-04-19 骆驼集团新能源电池有限公司 一种三元体系启停锂离子电池及其制备方法
JP2024506877A (ja) * 2021-12-06 2024-02-15 エルジー エナジー ソリューション リミテッド 電極組立体、その製造方法、およびこれを含むリチウム二次電池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302616A (ja) 1994-04-28 1995-11-14 Sony Corp 角型リチウムイオン二次電池
JP2002222643A (ja) * 2001-01-26 2002-08-09 Matsushita Electric Ind Co Ltd 非水溶媒系リチウム電池とその製造法
JP2002252023A (ja) 2001-02-23 2002-09-06 Nec Tokin Tochigi Ltd 積層型二次電池
JP2006147392A (ja) 2004-11-22 2006-06-08 Matsushita Electric Ind Co Ltd 電池
WO2009008160A1 (ja) * 2007-07-09 2009-01-15 Panasonic Corporation 非水電解質二次電池用電極板およびそれを用いた非水電解質二次電池
JP2009238487A (ja) * 2008-03-26 2009-10-15 Tdk Corp 電気化学デバイス
JP2012204335A (ja) * 2011-03-28 2012-10-22 Mitsubishi Heavy Ind Ltd 非水電解質二次電池及び非水電解質二次電池の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1571969A1 (de) * 1965-11-04 1971-06-03 Sonnenschein Accumulatoren Verfahren zur Verhinderung der Silberwanderung bei galvanischen Primaer-und Sekundaer-Elementen
JP5378718B2 (ja) 2007-07-09 2013-12-25 パナソニック株式会社 非水電解質二次電池用電極板およびそれを用いた非水電解質二次電池
JP5858325B2 (ja) 2010-09-03 2016-02-10 株式会社Gsユアサ 電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302616A (ja) 1994-04-28 1995-11-14 Sony Corp 角型リチウムイオン二次電池
JP2002222643A (ja) * 2001-01-26 2002-08-09 Matsushita Electric Ind Co Ltd 非水溶媒系リチウム電池とその製造法
JP2002252023A (ja) 2001-02-23 2002-09-06 Nec Tokin Tochigi Ltd 積層型二次電池
JP2006147392A (ja) 2004-11-22 2006-06-08 Matsushita Electric Ind Co Ltd 電池
WO2009008160A1 (ja) * 2007-07-09 2009-01-15 Panasonic Corporation 非水電解質二次電池用電極板およびそれを用いた非水電解質二次電池
JP2009238487A (ja) * 2008-03-26 2009-10-15 Tdk Corp 電気化学デバイス
JP2012204335A (ja) * 2011-03-28 2012-10-22 Mitsubishi Heavy Ind Ltd 非水電解質二次電池及び非水電解質二次電池の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2966721A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187958A (ja) * 2014-03-27 2015-10-29 三洋電機株式会社 非水電解質二次電池
JP2016062875A (ja) * 2014-09-22 2016-04-25 株式会社豊田自動織機 蓄電装置
EP3038187A1 (en) * 2014-12-26 2016-06-29 Automotive Energy Supply Corporation Lithium ion secondary battery
US20160190539A1 (en) * 2014-12-26 2016-06-30 Automotive Energy Supply Corporation Lithium ion secondary battery
CN105742690A (zh) * 2014-12-26 2016-07-06 汽车能源供应公司 锂离子二次电池
CN105742715A (zh) * 2014-12-26 2016-07-06 汽车能源供应公司 锂离子二次电池
JP2016126888A (ja) * 2014-12-26 2016-07-11 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池
US10217988B2 (en) 2015-01-30 2019-02-26 Nec Energy Devices, Ltd. Secondary battery
WO2016121734A1 (ja) * 2015-01-30 2016-08-04 Necエナジーデバイス株式会社 二次電池
JP2016219255A (ja) * 2015-05-20 2016-12-22 日産自動車株式会社 電池、電池モジュールおよび電池の設計方法
WO2018021214A1 (ja) * 2016-07-28 2018-02-01 三洋電機株式会社 二次電池及びその製造方法
JPWO2018021214A1 (ja) * 2016-07-28 2019-05-09 三洋電機株式会社 二次電池及びその製造方法
US10847803B2 (en) 2017-02-23 2020-11-24 Panasonic Intellectual Property Management Co., Ltd. Lithium-ion secondary battery and method of manufacture thereof
JP2020057587A (ja) * 2018-10-02 2020-04-09 プライムアースEvエナジー株式会社 電極体、二次電池及び二次電池の製造方法
JP7118021B2 (ja) 2018-10-02 2022-08-15 プライムアースEvエナジー株式会社 電極体、二次電池及び二次電池の製造方法
WO2021176960A1 (ja) * 2020-03-06 2021-09-10 三洋電機株式会社 非水電解質二次電池及び非水電解質二次電池の製造方法
WO2021200373A1 (ja) * 2020-03-31 2021-10-07 株式会社Gsユアサ 蓄電素子

Also Published As

Publication number Publication date
EP2966721A1 (en) 2016-01-13
EP2966721B1 (en) 2018-01-17
CN105027347B (zh) 2018-01-05
JPWO2014136714A1 (ja) 2017-02-09
CN105027347A (zh) 2015-11-04
US20150380716A1 (en) 2015-12-31
US9601745B2 (en) 2017-03-21
JP6249493B2 (ja) 2017-12-20
EP2966721A4 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP6249493B2 (ja) 非水電解液二次電池
EP3404740B1 (en) Battery
US10217988B2 (en) Secondary battery
JP6003041B2 (ja) 耐熱絶縁層付セパレータ
US20090169986A1 (en) Non-aqueous secondary battery and method for producing the same
US10665850B2 (en) Stacked battery
JPWO2013187172A1 (ja) 電極の製造方法
WO2018079817A1 (ja) 電気化学デバイス用の電極と、電気化学デバイスと、それらの製造方法
CN111509287B (zh) 二次电池以及二次电池的制造方法
CN103109408A (zh) 堆叠二次电池
JP6930497B2 (ja) 積層電池
CN111095613B (zh) 电极、非水电解质电池及电池包
CN115336076A (zh) 锂二次电池
CN109565069B (zh) 电极组件及其制造方法
JP2010160985A (ja) リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
JP7108052B2 (ja) 蓄電素子及び蓄電素子の製造方法
JP7182159B2 (ja) 全固体電池
KR20160027364A (ko) 이차전지용 전극조립체
JP2009199962A (ja) セパレータ合体型の電極およびその製造方法、並びにそれを用いた蓄電装置
JP6535261B2 (ja) リチウムイオン二次電池の製造方法及びリチウムイオン二次電池の電極構造
JP2016131056A (ja) 蓄電装置
CN114586217A (zh) 电化学装置及包括该电化学装置的电子装置
JP2011233408A (ja) 非水電解質二次電池
US20240194856A1 (en) Battery cell having improved safety
JP4507300B2 (ja) 非水系ゲル2次電池とその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480011783.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760377

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014760377

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14767804

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015504290

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE