WO2021200373A1 - 蓄電素子 - Google Patents

蓄電素子 Download PDF

Info

Publication number
WO2021200373A1
WO2021200373A1 PCT/JP2021/011895 JP2021011895W WO2021200373A1 WO 2021200373 A1 WO2021200373 A1 WO 2021200373A1 JP 2021011895 W JP2021011895 W JP 2021011895W WO 2021200373 A1 WO2021200373 A1 WO 2021200373A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
material layer
positive electrode
Prior art date
Application number
PCT/JP2021/011895
Other languages
English (en)
French (fr)
Inventor
祥太 伊藤
明彦 宮崎
謙太 尾木
史也 中野
佑平 板井
慧 熊林
小山 貴之
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Publication of WO2021200373A1 publication Critical patent/WO2021200373A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage element.
  • Patent Document 1 includes an exterior member, an electrode body and a non-aqueous electrolytic solution housed in the outer container, and the electrode body has a positive electrode body and a negative electrode body which are overlapped with each other sandwiching a separator, and the positive electrode body has a positive electrode body and a negative electrode body.
  • a positive electrode current collector having an outer edge, a positive electrode tab protruding from the outer edge of the positive electrode current collector and integrally formed with the positive electrode current collector, and a positive electrode active material layer supported over the entire width of the positive electrode current collector.
  • the negative electrode includes a negative electrode current collector having an outer edge, a negative electrode tab protruding from the outer edge of the negative electrode current collector and integrally formed with the negative electrode current collector, and the entire width of the negative electrode current collector. It also has a negative electrode active material layer containing lithium titanate supported on the base end portion of the negative electrode tab, and the negative electrode has a portion other than a portion where the negative electrode active material layer is formed on the negative electrode tab.
  • the width H1 of the negative electrode active material layer including the portion overlapped with the positive electrode and formed at the base end portion of the negative electrode tab in a state of being located inside the outer edge of the positive electrode active material layer, in a portion other than the negative electrode tab.
  • the width H2 of the negative electrode active material layer and the negative electrode current collector, and the width H3 of the positive electrode current collector and the positive electrode active material layer are H2 ⁇ H3 and (H1-H2) ⁇ (H3-H2) / 2.
  • a non-aqueous electrolyte secondary battery is described.
  • An object of the present invention is to provide a power storage element in which a decrease in discharge capacity is suppressed, particularly after repeated charging and discharging.
  • the power storage element includes a positive electrode having a positive electrode active material layer and a negative electrode having a negative electrode active material layer facing the positive electrode active material layer, and the negative electrode is a sheet-shaped current collecting base material. And the negative electrode active material layer overlapped with at least one surface of the current collecting base material, and the current collecting base material has a main body portion and a tab portion protruding outward from the main body portion.
  • the negative electrode active material layer also overlaps a part of the tab portion beyond the boundary between the main body portion and the tab portion, and the following conditions: (1) The mass per unit area of the negative electrode active material layer is smaller in the tab portion than in the main body portion; (2) The thickness of the negative electrode active material layer is thinner in the tab portion than in the main body portion; Satisfy at least one of the above.
  • the power storage element according to one aspect of the present invention is particularly suppressed from a decrease in discharge capacity after repeated charging and discharging.
  • FIG. 1 is a perspective view of a power storage element according to the present embodiment.
  • FIG. 2 is a perspective view of a wound electrode body of the power storage element according to the present embodiment.
  • FIG. 3 is a cross-sectional view of the laminated negative electrode (tab portion of the current collecting base material) and the positive electrode cut in the thickness direction.
  • FIG. 4 is a schematic view of a part of the negative electrode viewed from one side in the thickness direction.
  • FIG. 5 is a cross-sectional view of a part of the negative electrode cut in the thickness direction.
  • FIG. 6 is a schematic view of a power storage device including a plurality of power storage elements according to the present embodiment.
  • FIG. 7 is a graph showing the discharge capacity retention rate after repeating charging and discharging of the power storage element.
  • FIG. 8 is a graph showing the discharge capacity retention rate after repeating charging and discharging of the power storage element.
  • FIG. 9 is a graph showing the discharge capacity retention rate after the power storage element is left unat
  • the power storage element 1 includes a positive electrode 40 having a positive electrode active material layer 42 and a negative electrode 50 having a negative electrode active material layer 52 facing the positive electrode active material layer 42, and the negative electrode 50 is a negative electrode 50. It has a sheet-shaped current collecting base material 51 and the negative electrode active material layer 52 that overlaps at least one surface of the current collecting base material 51, and the current collecting base material 51 has a main body portion 511 and the main body.
  • the negative electrode active material layer 52 has a tab portion 512 protruding outward from the portion 511, and the negative electrode active material layer 52 extends beyond the boundary between the main body portion 511 and the tab portion 512 and overlaps a part of the tab portion 512.
  • the mass per unit area of the negative electrode active material layer 52 is smaller in the tab portion 512 than in the main body portion 511; (2) The thickness of the negative electrode active material layer 52 is thinner in the tab portion 512 than in the main body portion 511; Satisfy at least one of the above.
  • the power storage element 1 it is possible to suppress a decrease in discharge capacity after repeated charging and discharging.
  • the reason why such an effect occurs is presumed as follows, for example. That is, in the above-mentioned power storage element 1 in which the current tends to concentrate in the tab portion 512 of the negative electrode 50 during charging / discharging, in the case of (1), the mass per unit area of the negative electrode active material layer 52 of the negative electrode 50 is in the tab portion 512. It is smaller than the main body 511. Since the mass of the negative electrode active material layer 52 per unit area is small, the electrolyte salt ions (for example, lithium ions) are trapped in the negative electrode active material layer 52 that overlaps the tab portion 512 where the current tends to concentrate, and the film grows.
  • the electrolyte salt ions for example, lithium ions
  • the thickness of the negative electrode active material layer 52 overlapping the tab portion 512 of the negative electrode 50 is thinner than that of the main body portion 511.
  • the mass per unit area of the negative electrode active material layer 52 can be made smaller at the tab portion 512. Therefore, for the same reason as described above, the decrease in discharge capacity after repeated charging and discharging is suppressed.
  • the mass W1 per unit area of the negative electrode active material layer 52 overlapping the tab portion 512 and the mass W2 per unit area of the negative electrode active material layer 52 overlapping the main body portion 511 are , The following formula (I) may be satisfied. 0.3 ⁇ W2 ⁇ W1 ⁇ 0.9 ⁇ W2 Equation (I)
  • the average thickness T1 of the negative electrode active material layer 52 overlapping the tab portion 512 and the average thickness T2 of the negative electrode active material layer 52 overlapping the main body portion 511 are expressed by the following equations (II). ) May be satisfied. 0.3 ⁇ T2 ⁇ T1 ⁇ 0.9 ⁇ T2 equation (II)
  • the negative electrode active material layer 52 has a relatively thick portion and a relatively thin portion in the direction of the protrusion of the tab portion 512 in this order.
  • the length from the boundary between the thick portion and the thin portion to the edge of the negative electrode active material layer 52 is defined as X
  • the negative electrode active material is formed from the boundary between the main body portion 511 and the tab portion 512.
  • the ratio (X / Y) of the X to the Y may be 0.4 or more and 1.4 or less.
  • each component (each component) used in each embodiment may be different from the name of each component (each component) used in the background technology.
  • the non-aqueous electrolyte power storage element (hereinafter, also simply referred to as “storage element”) according to the embodiment of the present invention includes an electrode body 2 having a positive electrode 40, a negative electrode 50, and a separator 60, a non-aqueous electrolyte, and the electrode body 2. And a case for accommodating a non-aqueous electrolyte.
  • the electrode body 2 is usually wound in a laminated type in which a plurality of positive electrodes 40 and a plurality of negative electrodes 50 are laminated via a separator 60, or in a state in which a positive electrode 40 and a negative electrode 50 are laminated via a separator 60.
  • the non-aqueous electrolyte exists in a state of being contained in the positive electrode 40, the negative electrode 50, and the separator 60.
  • a non-aqueous electrolyte secondary battery (particularly, a lithium ion secondary battery, hereinafter also simply referred to as a “secondary battery”) will be described as an example of a non-aqueous electrolyte power storage element, but the scope of application of the present invention is limited. Not intended.
  • the power storage element 1 of the present embodiment includes a wound electrode body 2 in a wound state and a case 3 accommodating the electrode body 2. Further, the power storage element 1 includes two external terminals (positive electrode terminal 4 and negative electrode terminal 5) that are attached to the case 3 with at least a part exposed or are composed of at least a part of the case 3.
  • the electrode body 2 is connected to each of the external terminals 4 and 5 in the case 3 via a current collector or the like.
  • the power storage element 1 of the present embodiment includes an electrode body 2 housed in a case 3.
  • the case 3 has a flat rectangular parallelepiped shape, and has a case main body 31 that opens toward one side and a long and thin rectangular lid 32 that covers the opening of the case main body 31.
  • the two external terminals 4 and 5 are arranged apart from each other in the long side direction of the lid 32.
  • the electrode body 2 is formed by stacking a long sheet-shaped positive electrode 40, a long sheet-shaped negative electrode 50, and two sheet-shaped separators 60 and 60, and further winding the electrode body 2. Is formed.
  • the two separators 60 and 60 are arranged so as to electrically insulate the positive electrode 40 and the negative electrode 50, respectively.
  • the electrode body 2 is a flat wound body.
  • the electrode body 2 is arranged in the case 3 so that the winding axis direction of the electrode body 2 is the same as the opening direction of the case body 31.
  • the electrode body 2 has a plurality of positive electrode tab portions 412 in which one long side in the width direction of the strip-shaped positive electrode 40 protrudes.
  • the tab portions 412 of the plurality of positive electrodes are formed of a part of the positive electrode base material 41 (current collecting base material 41).
  • the electrode body 2 has a plurality of tab portions 512 (tab portions 512 of the negative electrode) in which one long side in the width direction of the strip-shaped negative electrode 50 protrudes.
  • the plurality of tab portions 512 (negative electrode tab portions 512) are composed of a part of the negative electrode base material 51 (current collector base material 51).
  • the tab portions 412 of the plurality of positive electrodes of the positive electrode 40 are arranged side by side in the direction in which the positive electrode 40 and the negative electrode 50 are laminated. The same applies to the plurality of tab portions 512 of the negative electrode 50 (tab portions 512 of the negative electrode). Further, the tab portions 412 of the plurality of positive electrodes of the positive electrode 40 and the plurality of tab portions 512 (tab portions 512 of the negative electrode) of the negative electrode 50 are the lids of the case 3 as well as the two external terminals 4 and 5 which are separated from each other. They are arranged apart from each other in the long side direction of 32.
  • the positive electrode 40 has a positive electrode base material 41 (a positive electrode current collecting base material 41) and a positive electrode active material layer 42 arranged directly on the positive electrode base material 41 or via an intermediate layer (not shown).
  • the positive electrode active material layer 42 is laminated on both sides of the positive electrode base material 41 (the positive electrode current collecting base material 41).
  • the positive electrode base material 41 current collecting base material 41 of the positive electrode
  • the positive electrode base material 41 has a main body portion of the positive electrode and a tab portion 412 of the positive electrode protruding outward from the main body portion of the positive electrode.
  • the positive electrode active material layer 42 overlaps the main body portion of the positive electrode and does not overlap the tab portion 412 of the positive electrode.
  • the positive electrode base material 41 (current collecting base material 41 of the positive electrode) is exposed.
  • the edge of the positive electrode active material layer 42 is arranged inside the edge of the negative electrode active material layer 52 facing each other via the separator 60.
  • the positive electrode base material 41 (current collecting base material 41) has conductivity. Whether it has a "conductive” is the volume resistivity is measured according to JIS-H-0505 (1975 years) is equal to 10 7 ⁇ ⁇ cm as a threshold value.
  • the material of the positive electrode base material 41 metals such as aluminum, titanium, tantalum, and stainless steel, or alloys thereof are used. Among these, aluminum or an aluminum alloy is preferable from the viewpoint of potential resistance, high conductivity, and cost.
  • Examples of the positive electrode base material 41 include a foil and a vapor-deposited film, and the foil is preferable from the viewpoint of cost. Therefore, the positive electrode base material 41 is preferably an aluminum foil or an aluminum alloy foil. Examples of aluminum or aluminum alloy include A1085 and A3003 specified in JIS-H-4000 (2014).
  • the average thickness of the positive electrode base material 41 is preferably 3 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 40 ⁇ m or less, further preferably 8 ⁇ m or more and 30 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • the intermediate layer is a layer arranged between the positive electrode base material 41 and the positive electrode active material layer 42.
  • the intermediate layer contains conductive particles such as carbon particles to reduce the contact resistance between the positive electrode base material 41 and the positive electrode active material layer 42.
  • the composition of the intermediate layer is not particularly limited, and includes, for example, a resin binder and conductive particles.
  • the positive electrode active material layer 42 contains a positive electrode active material.
  • the positive electrode active material layer 42 contains optional components such as a conductive agent, a binder, a thickener, and a filler, if necessary.
  • the positive electrode active material can be appropriately selected from known positive electrode active materials.
  • As the positive electrode active material for a lithium ion secondary battery a material capable of occluding and releasing lithium ions is usually used.
  • Examples of the positive electrode active material include a lithium transition metal composite oxide having an ⁇ -NaFeO type 2 crystal structure, a lithium transition metal composite oxide having a spinel type crystal structure, a polyanion compound, a chalcogen compound, sulfur and the like.
  • lithium transition metal composite oxide having an ⁇ -NaFeO type 2 crystal structure examples include Li [Li x Ni (1-x) ] O 2 (0 ⁇ x ⁇ 0.5) and Li [Li x Ni ⁇ Co ( 1-x- ⁇ )] O 2 (0 ⁇ x ⁇ 0.5,0 ⁇ ⁇ 1), Li [Li x Co (1-x)] O 2 (0 ⁇ x ⁇ 0.5), Li [ Li x Ni ⁇ Mn (1-x- ⁇ ) ] O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ ⁇ 1), Li [Li x Ni ⁇ Mn ⁇ Co (1-x- ⁇ - ⁇ ) ] O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ , 0 ⁇ , 0.5 ⁇ + ⁇ ⁇ 1), Li [Li x Ni ⁇ Co ⁇ Al (1-x- ⁇ - ⁇ ) ] O 2 ( Examples thereof include 0 ⁇ x ⁇ 0.5, 0 ⁇ , 0 ⁇ , 0.5 ⁇ + ⁇
  • Examples of the lithium transition metal composite oxide having a spinel-type crystal structure include Li x Mn 2 O 4 , Li x Ni ⁇ Mn (2- ⁇ ) O 4 .
  • Examples of the polyanion compound include LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , and Li 2 CoPO 4 F.
  • the chalcogen compound include titanium disulfide, molybdenum disulfide, molybdenum dioxide and the like.
  • the atoms or polyanions in these materials may be partially substituted with atoms or anion species consisting of other elements.
  • the surface of these materials may be coated with other materials. In the positive electrode active material layer 42, one of these materials may be used alone, or two or more of these materials may be mixed and used.
  • the positive electrode active material is usually particles (powder).
  • the average particle size of the positive electrode active material is preferably 0.1 ⁇ m or more and 20 ⁇ m or less, for example. By setting the average particle size of the positive electrode active material to the above lower limit or more, the production or handling of the positive electrode active material becomes easy. By setting the average particle size of the positive electrode active material to be equal to or less than the above upper limit, the electron conductivity of the positive electrode active material layer 42 is improved. When a complex of a positive electrode active material and another material is used, the average particle size of the complex is taken as the average particle size of the positive electrode active material.
  • Average particle size is based on JIS-Z-8825 (2013) and is based on the particle size distribution measured by laser diffraction / scattering method for a diluted solution obtained by diluting particles with a solvent.
  • -2 (2001) means a value at which the volume-based integrated distribution calculated in accordance with (2001) is 50%.
  • a crusher, a classifier, etc. are used to obtain powder with a predetermined particle size.
  • the crushing method include a method using a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling airflow type jet mill, a sieve, and the like.
  • wet pulverization in which water or an organic solvent such as hexane coexists can also be used.
  • a classification method a sieve, a wind power classifier, or the like is used as needed for both dry and wet types.
  • the content of the positive electrode active material in the positive electrode active material layer 42 is preferably 50% by mass or more and 99% by mass or less, more preferably 70% by mass or more and 98% by mass or less, and further preferably 80% by mass or more and 95% by mass or less.
  • the conductive agent is not particularly limited as long as it is a conductive material.
  • a conductive agent include carbonaceous materials, metals, conductive ceramics and the like.
  • the carbonaceous material include graphitized carbon, non-graphitized carbon, graphene-based carbon and the like.
  • non-graphitized carbon include carbon nanofibers, pitch-based carbon fibers, and carbon black.
  • carbon black include furnace black, acetylene black, and ketjen black.
  • Examples of graphene-based carbon include graphene, carbon nanotubes (CNT), and fullerenes.
  • the shape of the conductive agent include powder and fibrous.
  • one of these materials may be used alone, or two or more of these materials may be mixed and used. Further, these materials may be used in combination.
  • a material in which carbon black and CNT are composited may be used.
  • carbon black is preferable from the viewpoint of electron conductivity and coatability, and acetylene black is particularly preferable.
  • the content of the conductive agent in the positive electrode active material layer 42 is preferably 1% by mass or more and 10% by mass or less, and more preferably 3% by mass or more and 9% by mass or less.
  • binder examples include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, polyacrylic, and polyimide; ethylene-propylene-diene rubber (EPDM), sulfone.
  • elastomers such as propylene propylene rubber, styrene butadiene rubber (SBR), and fluororubber; and thermoplastic polymers.
  • solvent-based binders such as fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.) are preferable.
  • the binder content in the positive electrode active material layer 42 is preferably 1% by mass or more and 10% by mass or less, and more preferably 3% by mass or more and 9% by mass or less. By setting the binder content within the above range, the active material can be stably retained.
  • the thickener examples include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose.
  • CMC carboxymethyl cellulose
  • methyl cellulose examples include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose.
  • this functional group may be deactivated in advance by methylation or the like.
  • the content of the thickener in the positive electrode active material layer 42 is preferably 8% by mass or less, more preferably 5% by mass or less.
  • the technique disclosed herein can be preferably carried out in a manner in which the positive electrode active material layer 42 does not contain the thickener.
  • the filler is not particularly limited. Fillers include polyolefins such as polypropylene and polyethylene, silicon dioxide, alumina, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, inorganic oxides such as aluminosilicate, magnesium hydroxide, calcium hydroxide, and hydroxide.
  • Hydroxides such as aluminum, carbonates such as calcium carbonate, sparingly soluble ionic crystals such as calcium fluoride, barium fluoride, barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc, montmorillonite, boehmite, zeolite, Mineral resource-derived substances such as apatite, kaolin, mulite, spinel, olivine, sericite, bentonite, and mica, or man-made products thereof and the like can be mentioned.
  • the content of the filler in the positive electrode active material layer 42 is preferably 8% by mass or less, more preferably 5% by mass or less.
  • the technique disclosed herein can be preferably carried out in a manner in which the positive electrode active material layer 42 does not contain the above filler.
  • the positive electrode active material layer 42 includes typical non-metal elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, and Ba.
  • Main group elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb, W and other transition metal elements are used as positive electrode active materials, conductive agents, binders, thickeners, etc. It may be contained as a component other than the filler.
  • the negative electrode 50 has a negative electrode base material 51 (a negative electrode current collecting base material 51) and a negative electrode active material layer 52 arranged directly on the negative electrode base material 51 or via an intermediate layer.
  • the configuration of the intermediate layer is not particularly limited, and for example, it can be selected from the configurations exemplified by the positive electrode 40.
  • the negative electrode active material layer 52 is laminated on both sides of the negative electrode base material 51 (the negative electrode current collecting base material 51).
  • the negative electrode base material 51 (negative electrode current collecting base material 51) has a main body portion 511 and a tab portion 512 (negative electrode tab portion 512) protruding outward from the main body portion 511.
  • the negative electrode active material layer 52 overlaps the entire main body portion 511, and also overlaps a part of the tab portion 512 beyond the boundary between the main body portion 511 and the tab portion 512.
  • the negative electrode base material 51 (negative electrode current collecting base material 51) is exposed in most of the tab portion 512.
  • the edge of the negative electrode active material layer 52 is arranged outside the edge of the positive electrode active material layer 42 facing each other via the separator 60.
  • At least one of the following (1) or (2) is satisfied.
  • (1) The mass per unit area of the negative electrode active material layer 52 is smaller in the tab portion 512 than in the main body portion 511.
  • (2) The thickness of the negative electrode active material layer 52 is thinner in the tab portion 512 than in the main body portion 511.
  • the current tends to concentrate at the tab portion 512 of the negative electrode 50 during charging / discharging.
  • the formation of a film is likely to occur due to the influence of the current concentration.
  • the film growth is particularly promoted in the tab portion 512 where the current tends to concentrate, and the negative electrode active material in which more lithium ions overlap the tab portion 512. Capacity reduction can occur because it can be trapped in layer 52.
  • the coating is formed on the tab portion 512 where the current tends to concentrate. The amount of lithium ions trapped by growth can be suppressed. As a result, a decrease in discharge capacity after repeated charging and discharging is suppressed.
  • the thickness of the negative electrode active material layer 52 in the tab portion 512 of the negative electrode 50 is thin, the mass per unit area of the negative electrode active material layer 52 can be smaller in the tab portion 512. Further, since the thickness is thin, the negative electrode active material layer 52 is less likely to come into contact with the separator in the tab portion 512. As a result, the precipitation of lithium in the tab portion 512 is effectively suppressed. Therefore, the decrease in discharge capacity after repeated charging and discharging is suppressed.
  • the mass W2 per unit area of the negative electrode active material layer 52 overlapping the main body portion 511 is larger than the mass W1 per unit area of the negative electrode active material layer 52 overlapping the tab portion 512. It may be large (that is, W1 ⁇ W2), and is not particularly limited.
  • W2 is the mass per unit area of the negative electrode active material layer 52 arranged on one surface when the negative electrode active material layer 52 is formed on both surfaces of the negative electrode base material 51 (per unit area for two layers). Is half the mass of). It is appropriate that W2 is, for example, 0.1 g or more per 100 cm 2 of an area, and is usually 0.2 g or more, typically 0.3 g or more.
  • W2 is preferably 0.4 g / 100 cm 2 or more, more preferably 0.45 g / 100 cm 2 or more, and further preferably 0.48 g / 100 cm 2 or more. In some embodiments, W2 may be 0.5 g / 100 cm 2 or greater, 0.52 g / 100 cm 2 or greater (eg, 0.6 g / 100 cm 2 or greater, typically 0.8 g / 100 cm 2 or greater). ) May be. Further, W2 can be, for example, 2.0 g / 100 cm 2 or less. W2 is preferably 1.5 g / 100 cm 2 or less, more preferably 1.2 g / 100 cm 2 or less, and even more preferably 1.1 g / 100 cm 2 or less.
  • W2 may be 1.0 g / 100 cm 2 or less, or 0.9 g / 100 cm 2 or less.
  • the value of W2 represents the mass of the negative electrode active material layer 52 that overlaps the entire main body portion 511 as the mass per 100 cm 2 of the area.
  • the area of the negative electrode active material layer 52 that overlaps the entire main body 511 is arbitrary although it has a predetermined size, and the unit "g / 100 cm 2 " is the area of the negative electrode active material layer 52 that overlaps the entire main body 511. Has no direct relationship.
  • the mass W1 per unit area of the negative electrode active material layer 52 overlapping the tab portion 512 should be smaller than the mass W2 per unit area of the negative electrode active material layer 52 overlapping the main body portion 511. It suffices, and is not particularly limited. W1 is the mass per unit area of the negative electrode active material layer 52 overlapping on one surface when the negative electrode active material layer 52 is formed on both surfaces of the negative electrode base material 51 (mass per unit area for two layers). Is half the value of). In a preferred embodiment, the mass W1 per unit area of the negative electrode active material layer 52 overlapping the tab portion 512 and the mass W2 per unit area of the negative electrode active material layer 52 overlapping the main body portion 511 are expressed by the following equations (I-I).
  • W1 is obtained by dividing the mass of the negative electrode active material layer 52 that overlaps the area of the portion where the negative electrode active material layer 52 overlaps the part of the tab portion 512.
  • the area of the negative electrode active material layer 52 overlapping the tab portion 512 is relatively small, it is arbitrary, and the unit “g / 100 cm 2 " has a direct relationship with the area of the negative electrode active material layer 52 overlapping the tab portion 512. I don't have it.
  • the thickness of the negative electrode active material layer 52 overlapping the tab portion 512 is thinner than the thickness of the negative electrode active material layer 52 overlapping the main body portion 511.
  • the mass per unit area of the negative electrode active material layer 52 is smaller in the tab portion 512 than in the main body portion 511, and the average thickness of the negative electrode active material layer 52 is thinner in the tab portion 512 than in the main body portion 511. ..
  • the mixture composition is applied less in the tab portion 512. , It is preferable to apply more on the main body 511.
  • the negative electrode active material layer 52 satisfying the above-mentioned relationship of W1 ⁇ W2 can be easily formed by using the same mixture composition.
  • the mass of the negative electrode active material per unit volume may be the same in the entire negative electrode active material layer 52. Further, the mass of the negative electrode active material layer per unit volume may be the same in the entire negative electrode active material layer 52.
  • the thickness of the negative electrode active material layer 52 overlapping the main body portion 511 and the thickness of the negative electrode active material layer 52 overlapping the tab portion 512 are substantially the same. ..
  • the mass per unit volume of the negative electrode active material layer 52 is smaller in the tab portion 512 than in the main body portion 511, so that the negative electrode active material layer 52 per unit area.
  • the mass of the tab portion 512 may be smaller than that of the main body portion 511.
  • a mixture composition having a lower content of the negative electrode active material is applied to the tab portion 512. Therefore, it is preferable to apply the mixture composition having a higher content of the negative electrode active material to the main body portion 511.
  • the thickness of the negative electrode active material layer 52 is thinner in the tab portion 512 than in the main body portion 511.
  • the thickness of the negative electrode active material layer 52 may be gradually reduced toward the tip of the tab portion 512, for example, as shown in FIG.
  • the thickness of the negative electrode active material layer 52 may be thinner at the tab portion 512 than at the main body portion 511 so as to have a step, for example.
  • the average thickness T2 of the negative electrode active material layer 52 overlapping the main body portion 511 may be thicker than the average thickness T1 of the negative electrode active material layer 52 overlapping the tab portion 512 ( That is, T1 ⁇ T2), and is not particularly limited.
  • T2 is the average thickness of the negative electrode active material layer 52 arranged on one surface when the negative electrode active material layer 52 is formed on both sides of the negative electrode base material 51 (arithmetic mean of the average thickness of each layer). Value). It is appropriate that T2 is, for example, 10 ⁇ m or more, usually 12 ⁇ m or more, and typically 15 ⁇ m or more.
  • T2 is preferably 20 ⁇ m or more, more preferably 22 ⁇ m or more, still more preferably 25 ⁇ m or more. In some embodiments, T2 may be 30 ⁇ m or greater and 35 ⁇ m or greater (eg, 50 ⁇ m or greater, typically 70 ⁇ m or greater). Further, T2 can be, for example, 200 ⁇ m or less. T2 is preferably 180 ⁇ m or less, more preferably 170 ⁇ m or less, still more preferably 160 ⁇ m or less. In some embodiments, T2 may be 150 ⁇ m or less and 140 ⁇ m or less.
  • the average thickness T1 of the negative electrode active material layer 52 overlapping the tab portion 512 may be thinner than the average thickness T2 of the negative electrode active material layer 52 overlapping the main body portion 511.
  • T1 is the average thickness of the negative electrode active material layer 52 arranged on one surface when the negative electrode active material layer 52 is formed on both sides of the negative electrode base material 51 (arithmetic mean of the average thickness of each layer). Value).
  • the average thickness T1 of the negative electrode active material layer 52 overlapping the tab portion 512 and the average thickness T2 of the negative electrode active material layer 52 overlapping the main body portion 511 satisfy the following formula (II-I).
  • the average thickness is calculated by averaging the measured values of the thicknesses at five randomly selected places.
  • the average thickness T2 of the negative electrode active material layer 52 overlapping the main body portion 511 is obtained by measuring the thickness of the negative electrode active material layer 52 overlapping the central portion of the main body portion 511.
  • the average thickness T1 of the negative electrode active material layer 52 overlapping the tab portion 512 is the thickness at five points at the midpoint from the boundary C between the main body portion 511 and the tab portion 512 to the edge B of the negative electrode active material layer 52. It is obtained by averaging the measured values of the tab.
  • the technique disclosed herein is, for example, an embodiment in which the relationship between T1 and T2 is 0.3 ⁇ T2 ⁇ T1 ⁇ 0.9 ⁇ T2 equation (II-II), and further, 0.5 ⁇ T2 ⁇ . It can be preferably carried out in the embodiment of T1 ⁇ 0.8 ⁇ T2 equation (II-III), particularly in the embodiment of 0.60 ⁇ T2 ⁇ T1 ⁇ 0.75 ⁇ T2 equation (II-IV).
  • the mixture composition is applied less in the tab portion 512.
  • the mass of the negative electrode active material per unit volume may be the same in the entire negative electrode active material layer 52. Further, the mass per unit volume may be the same in the entire negative electrode active material layer 52.
  • the negative electrode active material layer 52 has a relatively thick portion and a relatively thin portion in this order in the direction of projecting outward from the tab portion 512.
  • the length from the boundary between the thick portion and the thin portion of the negative electrode active material layer 52 to the edge of the negative electrode active material layer 52 is X
  • the length from the boundary between the main body portion 511 and the tab portion 512 to the negative electrode active material layer 52 is defined as X.
  • the ratio (X / Y) of the above X to the above Y may be 0.1 or more and 1.8 or less.
  • the thick portion and the thin portion of the negative electrode active material layer 52 are defined as follows.
  • the thickness of the negative electrode active material layer 52 is measured along a straight line extending along the protruding direction of the tab portion 512.
  • the protruding direction is one of the width directions perpendicular to the longitudinal direction of the negative electrode active material layer 52.
  • the thickness of the negative electrode active material layer 52 is directed from the main body portion 511 of the negative electrode base material 51 to the tab portion 512 at equal intervals of 0.1 mm at a plurality of points in succession. taking measurement.
  • the maximum value of the thickness of the negative electrode active material layer 52 overlapping the main body portion 511 is recorded.
  • the region where the rate of decrease from the maximum value of such thickness is less than 3% is defined as a "thick portion".
  • a region where the rate of decrease from the maximum thickness is 3% or more is defined as a "thin portion”.
  • the length from the boundary (indicated by A) between the thick portion and the thin portion in the negative electrode active material layer 52 to the edge (indicated by B) of the negative electrode active material layer 52 is X.
  • the length from the boundary (indicated by C) between the main body portion 511 and the tab portion 512 to the edge (indicated by B) of the negative electrode active material layer 52 is Y.
  • the boundary (A) between the thick portion and the thin portion and the edge (B) of the negative electrode active material layer 52 were discriminated by cutting the negative electrode 50 in the thickness direction so as to include the main body portion 511 and the tab portion 512. This is done in a micrograph of the cross section.
  • the boundary (C) between the main body portion 511 and the tab portion 512 is determined by the measurement using the above-mentioned micrograph.
  • the above ratio (X / Y) is preferably 0.2 or more.
  • the above ratio (X / Y) is preferably 0.4 or more, more preferably 0.6 or more, still more preferably 0.8 or more, particularly from the viewpoint of further suppressing a decrease in discharge capacity after being left to stand. It is preferably 0.9 or more.
  • the above ratio (X / Y) is preferably 1.6 or less.
  • the above ratio (X / Y) is preferably 1.4 or less, more preferably 1.3 or less, still more preferably 1.2 or less, particularly from the viewpoint of further suppressing a decrease in discharge capacity after being left to stand. It is preferably 1.1 or less.
  • the relationship between X and Y is, for example, 0.4 ⁇ X / Y ⁇ 1.4, further 0.6 ⁇ X / Y ⁇ 1.2, and particularly 0.8 ⁇ . It can be preferably carried out in an embodiment where X / Y ⁇ 1.1.
  • the length X from the boundary A between the thick portion and the thin portion of the negative electrode active material layer 52 to the edge B of the negative electrode active material layer 52 is not particularly limited, but is preferably 0.5 mm or more, for example. , Usually 0.8 mm or more, typically 1 mm or more. From the viewpoint of further suppressing a decrease in the discharge capacity after being left to stand, X is preferably 2 mm or more, more preferably 3 mm or more, and particularly preferably 4 mm or more. Further, it is appropriate that X is 15 mm or less, and is usually 10 mm or less, typically 8 mm or less.
  • X is preferably 7 mm or less, more preferably 6 mm or less.
  • the length Y from the boundary C between the main body portion 511 and the tab portion 512 to the edge B of the negative electrode active material layer 52 is not particularly limited, but is preferably 0.5 mm or more and 15 mm or less, and is usually used.
  • the boundary A between the thick portion and the thin portion in the negative electrode active material layer 52 is set so as not to face the positive electrode active material layer 42 via the separator 60 (see FIGS. 3 and 5).
  • the boundary A between the thick portion and the thin portion of the negative electrode active material layer 52 so as not to face the positive electrode active material layer 42 in this way, the above-mentioned performance improvement effect (for example, suppression of decrease in discharge capacity after the cycle) is suppressed. At least one of the effect and the effect of suppressing a decrease in the discharge capacity after being left in a charged state for a long period of time, preferably both) can be more effectively exhibited.
  • a mixture composition having a relatively low viscosity is used as the current collecting base material 51.
  • the mixture composition is applied to the main body portion 511 and the tab portion 512, and the mixture composition applied in the tab portion 512 is wetted and spread.
  • the thickness of the negative electrode active material layer 52 in the tab portion 512 becomes thinner toward the edge.
  • the length X between (A) and (B) shown in FIG. 5 (the length from the boundary between the thick portion and the thin portion in the negative electrode active material layer 52 to the edge of the negative electrode active material layer 52) is set.
  • a less viscous mixture composition is used.
  • the mixture composition after application becomes more wet and spreads, so that the above-mentioned length X can be made longer.
  • the negative electrode base material 51 has conductivity.
  • metals such as copper, nickel, stainless steel, nickel-plated steel, and aluminum, or alloys thereof are used. Among these, copper or a copper alloy is preferable.
  • the negative electrode base material 51 include a foil and a vapor-deposited film, and the foil is preferable from the viewpoint of cost. Therefore, the negative electrode base material 51 is preferably a copper foil or a copper alloy foil. Examples of the copper foil include rolled copper foil, electrolytic copper foil and the like.
  • the average thickness of the negative electrode base material 51 is preferably 2 ⁇ m or more and 35 ⁇ m or less, more preferably 3 ⁇ m or more and 30 ⁇ m or less, further preferably 4 ⁇ m or more and 25 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the negative electrode active material layer 52 contains a negative electrode active material.
  • the negative electrode active material layer 52 contains optional components such as a conductive agent, a binder, a thickener, and a filler, if necessary.
  • Optional components such as a conductive agent, a binder, a thickener, and a filler can be selected from the materials exemplified by the positive electrode 40.
  • an aqueous binder such as ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, and styrene-butadiene rubber (SBR).
  • the binder content in the negative electrode active material layer 52 is preferably 1% by mass or more and 10% by mass or less, and more preferably 3% by mass or more and 9% by mass or less. By setting the binder content within the above range, the active material can be stably retained.
  • the content of the thickener in the negative electrode active material layer 52 is preferably 0.5% by mass or more and 8% by mass or less, and more preferably 1% by mass or more and 5% by mass or less.
  • the content of the conductive agent in the negative electrode active material layer 52 is preferably 8% by mass or less, more preferably 5% by mass or less.
  • the technique disclosed here can be preferably carried out in a manner in which the negative electrode active material layer 52 does not contain the above-mentioned conductive agent.
  • the content of the filler in the negative electrode active material layer 52 is preferably 8% by mass or less, more preferably 5% by mass or less.
  • the technique disclosed herein can be preferably carried out in a manner in which the negative electrode active material layer 52 does not contain the above filler.
  • the negative electrode active material layer 52 includes typical non-metal elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, and Ba. , Etc., and transition metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, W as negative electrode active materials, conductive agents, binders, etc. , Thickener, may be contained as a component other than the filler.
  • the negative electrode active material can be appropriately selected from known negative electrode active materials.
  • a material capable of occluding and releasing lithium ions is usually used.
  • the negative electrode active material e.g., metal Li; Si, metal or metalloid, such as Sn; Si oxide, Ti oxide, a metal oxide such as Sn oxide or semi-metal oxide; Li 4 Ti 5 O1 2, Titanium-containing oxides such as LiTIO 2 and TiNb 2 O 7 ; polyphosphate compounds; silicon carbide; carbon materials such as graphite (graphite) and non-graphitable carbon (easy-to-graphite carbon or non-graphite-resistant carbon) can be mentioned. Be done. Among these materials, graphite and non-graphitic carbon are preferable. In the negative electrode active material layer 52, one of these materials may be used alone, or two or more of these materials may be mixed and used.
  • Graphite refers to a carbon material having an average lattice spacing (d 002 ) of (002) planes determined by X-ray diffraction before charging / discharging or in a discharged state of 0.33 nm or more and less than 0.34 nm.
  • Examples of graphite include natural graphite and artificial graphite. Artificial graphite is preferable from the viewpoint that a material having stable physical properties can be obtained.
  • Non-graphitic carbon refers to a carbon material having an average lattice spacing (d 002 ) of (002) planes determined by X-ray diffraction before charging / discharging or in a discharged state of 0.34 nm or more and 0.42 nm or less. say.
  • Examples of non-graphitizable carbon include non-graphitizable carbon and easily graphitizable carbon.
  • the non-graphic carbon include a resin-derived material, a petroleum pitch or a petroleum pitch-derived material, a petroleum coke or a petroleum coke-derived material, a plant-derived material, an alcohol-derived material, and the like.
  • the discharged state means a state in which the open circuit voltage is 0.7 V or more in a unipolar battery in which the negative electrode 50 containing a carbon material as the negative electrode active material is used as the working electrode and the metal Li is used as the counter electrode. .. Since the potential of the metal Li counter electrode in the open circuit state is substantially equal to the redox potential of Li, the open circuit voltage in the single pole battery is substantially equal to the potential of the negative electrode 50 containing the carbon material with respect to the redox potential of Li. be. That is, the fact that the open circuit voltage in the single-pole battery is 0.7 V or more means that lithium ions that can be occluded and discharged are sufficiently released from the carbon material that is the negative electrode active material during charging and discharging. ..
  • non-graphitizable carbon refers to a carbon material in which d 002 is 0.36 nm or more and 0.42 nm or less.
  • the “graphitizable carbon” refers to a carbon material in which d 002 is 0.34 nm or more and less than 0.36 nm.
  • the negative electrode active material is usually particles (powder).
  • the average particle size of the negative electrode active material can be, for example, 1 nm or more and 100 ⁇ m or less.
  • the negative electrode active material is a carbon material, a titanium-containing oxide or a polyphosphate compound
  • the average particle size thereof may be 1 ⁇ m or more and 100 ⁇ m or less.
  • the negative electrode active material is Si, Sn, Si oxide, Sn oxide or the like
  • the average particle size thereof may be 1 nm or more and 1 ⁇ m or less.
  • the electron conductivity of the negative electrode active material layer 52 is improved.
  • a crusher, a classifier, or the like is used to obtain a powder having a predetermined particle size.
  • the pulverization method and the powder grade method can be selected from, for example, the methods exemplified by the positive electrode 40.
  • the negative electrode active material is a metal such as metal Li
  • the negative electrode active material may be in the form of a foil.
  • the content of the negative electrode active material in the negative electrode active material layer 52 is preferably 60% by mass or more and 99% by mass or less, and more preferably 90% by mass or more and 98% by mass or less. By setting the content of the negative electrode active material within the above range, it is possible to achieve both high energy density and manufacturability of the negative electrode active material layer 52.
  • the separator 60 can be appropriately selected from known separators.
  • a separator 60 composed of only a base material layer, a separator in which a heat-resistant layer containing heat-resistant particles and a binder is formed on one surface or both surfaces of the base material layer can be used.
  • the shape of the base material layer of the separator 60 include a woven fabric, a non-woven fabric, and a porous resin film. Among these shapes, a porous resin film is preferable from the viewpoint of strength, and a non-woven fabric is preferable from the viewpoint of liquid retention of a non-aqueous electrolyte.
  • polyolefins such as polyethylene and polypropylene are preferable from the viewpoint of shutdown function, and polyimide and aramid are preferable from the viewpoint of oxidative decomposition resistance.
  • base material layer of the separator 60 a material in which these resins are composited may be used.
  • the heat-resistant particles contained in the heat-resistant layer preferably have a mass loss of 5% or less when heated from room temperature to 500 ° C. in an air atmosphere of 1 atm, and are heated from room temperature to 800 ° C. in an air atmosphere of 1 atm. It is more preferable that the mass reduction at the time is 5% or less.
  • Inorganic compounds can be mentioned as materials whose mass reduction is less than or equal to a predetermined value. As inorganic compounds, for example, oxides such as iron oxide, silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, aluminosilicate; magnesium hydroxide, calcium hydroxide, water.
  • Hydroxides such as aluminum oxide; nitrides such as aluminum nitride and silicon nitride; carbonates such as calcium carbonate; sulfates such as barium sulfate; sparingly soluble ionic crystals such as calcium fluoride, barium fluoride, barium titanate, etc.
  • Covalently bonded crystals such as silicon and diamond; talc, montmorillonite, boehmite, zeolite, apatite, kaolin, mulite, spinel, olivine, sericite, bentonite, mica and other mineral resource-derived substances or man-made products thereof. ..
  • the inorganic compound a simple substance or a complex of these substances may be used alone, or two or more kinds thereof may be mixed and used.
  • silicon oxide, aluminum oxide, or aluminosilicate is preferable from the viewpoint of safety of the power storage element 1.
  • the porosity of the separator 60 is preferably 80% by volume or less from the viewpoint of strength, and preferably 20% by volume or more from the viewpoint of discharge performance.
  • the "porosity” is a volume-based value, and means a value measured by a mercury porosity meter.
  • a polymer gel composed of a polymer and a non-aqueous electrolyte may be used.
  • the polymer include polyacrylonitrile, polyethylene oxide, polypropylene oxide, polymethylmethacrylate, polyvinylacetate, polyvinylpyrrolidone, polyvinylidene fluoride and the like.
  • the use of polymer gel has the effect of suppressing liquid leakage.
  • a polymer gel may be used in combination with the above-mentioned porous resin film, non-woven fabric, or the like.
  • Non-aqueous electrolyte The non-aqueous electrolyte can be appropriately selected from known non-aqueous electrolytes.
  • a non-aqueous electrolyte solution may be used as the non-aqueous electrolyte.
  • the non-aqueous electrolyte solution contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the non-aqueous solvent can be appropriately selected from known non-aqueous solvents.
  • the non-aqueous solvent include cyclic carbonate, chain carbonate, carboxylic acid ester, phosphoric acid ester, sulfonic acid ester, ether, amide, nitrile and the like.
  • the non-aqueous solvent those in which some of the hydrogen atoms contained in these compounds are replaced with halogen may be used.
  • cyclic carbonate examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinylethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), and difluoroethylene carbonate.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • VC vinylene carbonate
  • VEC vinylethylene carbonate
  • FEC fluoroethylene carbonate
  • DFEC difluoroethylene carbonate
  • styrene carbonate 1-phenylvinylene carbonate
  • 1,2-diphenylvinylene carbonate and the like can be mentioned.
  • EC is preferable.
  • chain carbonate examples include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diphenyl carbonate, trifluoroethyl methyl carbonate, and bis (trifluoroethyl) carbonate.
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • diphenyl carbonate trifluoroethyl methyl carbonate
  • bis (trifluoroethyl) carbonate bis (trifluoroethyl) carbonate.
  • EMC is preferable.
  • the non-aqueous solvent it is preferable to use cyclic carbonate or chain carbonate, and it is more preferable to use cyclic carbonate and chain carbonate in combination.
  • the cyclic carbonate By using the cyclic carbonate, the dissociation of the electrolyte salt can be promoted and the ionic conductivity of the non-aqueous electrolyte solution can be improved.
  • the chain carbonate By using the chain carbonate, the viscosity of the non-aqueous electrolytic solution can be kept low.
  • the volume ratio of the cyclic carbonate to the chain carbonate is preferably in the range of, for example, 5:95 to 50:50.
  • the electrolyte salt can be appropriately selected from known electrolyte salts.
  • Examples of the electrolyte salt include lithium salt, sodium salt, potassium salt, magnesium salt, onium salt and the like. Of these, lithium salts are preferred.
  • Lithium salts include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , LiN (SO 2 F) 2 , LiSO 3 CF 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2). C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiC (SO 2 C 2 F 5 ) 3 and other halogenated hydrocarbon groups Examples thereof include lithium salts having. Among these, an inorganic lithium salt is preferable, and LiPF 6 is more preferable.
  • the content of the electrolyte salt in the nonaqueous electrolytic solution preferable to be 0.1 mol / dm 3 or more 2.5 mol / dm 3 or less, 0.3 mol / dm 3 or more 2.0 mol / dm more preferable to be 3 or less, more preferable to be 0.5 mol / dm 3 or more 1.7 mol / dm 3 or less, and particularly preferably 0.7 mol / dm 3 or more 1.5 mol / dm 3 or less.
  • the non-aqueous electrolyte solution may contain additives in addition to the non-aqueous solvent and the electrolyte salt.
  • additives include oxalate esters such as lithium bis (oxalate) borate (LiBOB), lithium difluorooxalate borate (LiFOB), and lithium bis (oxalate) difluorophosphate (LiFOP); biphenyl, alkylbiphenyl, terphenyl, and the like.
  • the content of the additive contained in the non-aqueous electrolyte solution is preferably 0.01% by mass or more and 10% by mass or less, preferably 0.1% by mass or more and 7% by mass or less, based on the total mass of the non-aqueous electrolyte solution. It is more preferable to have it, more preferably 0.2% by mass or more and 5% by mass or less, and particularly preferably 0.3% by mass or more and 3% by mass or less.
  • non-aqueous electrolyte a solid electrolyte may be used, or a non-aqueous electrolyte solution and a solid electrolyte may be used in combination.
  • the solid electrolyte can be selected from any material having ionic conductivity such as lithium, sodium and calcium and being solid at room temperature (for example, 15 ° C to 25 ° C).
  • Examples of the solid electrolyte include sulfide solid electrolytes, oxide solid electrolytes, oxynitride solid electrolytes, polymer solid electrolytes and the like.
  • lithium ion secondary battery examples include Li 2 SP 2 S 5 , Li I-Li 2 SP 2 S 5 , Li 10 Ge-P 2 S 12 , and the like as the sulfide solid electrolyte. ..
  • the shape of the power storage element 1 of the present embodiment is not particularly limited, and examples thereof include a cylindrical battery, a square battery, a flat battery, a coin battery, and a button battery.
  • FIG. 1 shows a power storage element 1 (non-aqueous electrolyte power storage element) as an example of a square battery.
  • the electrode body 2 having the positive electrode 40 and the negative electrode 50 wound around the separator 60 is housed in the square case 3.
  • the positive electrode 40 is electrically connected to the positive electrode terminal 4 via a positive electrode lead (not shown).
  • the negative electrode 50 is electrically connected to the negative electrode terminal 5 via a negative electrode lead (not shown).
  • the power storage element 1 of the present embodiment is used as a power source for automobiles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV), a power source for electronic devices such as a personal computer and a communication terminal, or a power storage device. It can be mounted on a power source or the like as a power storage unit 10 (battery module) composed of a plurality of power storage elements 1. In this case, the technique of the present invention may be applied to at least one power storage element 1 included in the power storage device.
  • the power storage device 100 may include a bus bar (not shown) that electrically connects two or more power storage elements 1, a bus bar (not shown) that electrically connects two or more power storage units 10.
  • the power storage unit 10 or the power storage device 100 may include a condition monitoring device (not shown) that monitors the state of one or more power storage elements 1.
  • the method for manufacturing the power storage element 1 of the present embodiment can be appropriately selected from known methods.
  • the manufacturing method includes, for example, preparing an electrode body 2, preparing a non-aqueous electrolyte, and accommodating the electrode body 2 and the non-aqueous electrolyte in a case.
  • Preparing the electrode body 2 includes preparing the positive electrode 40 and the negative electrode 50, and forming the electrode body 2 by laminating or winding the positive electrode 40 and the negative electrode 50 via the separator 60.
  • Containing the non-aqueous electrolyte in the case can be appropriately selected from known methods.
  • the non-aqueous electrolyte solution may be injected from the injection port formed in the case, and then the injection port may be sealed.
  • the power storage element of the present invention is not limited to the above embodiment, and various modifications may be made without departing from the gist of the present invention.
  • the configuration of one embodiment can be added to the configuration of another embodiment, and a part of the configuration of one embodiment can be replaced with the configuration of another embodiment or a well-known technique.
  • some of the configurations of certain embodiments can be deleted.
  • a well-known technique can be added to the configuration of a certain embodiment.
  • the power storage element 1 is used as a chargeable / dischargeable non-aqueous electrolyte secondary battery (for example, a lithium ion secondary battery) has been described, but the type, shape, dimensions, capacity, etc. of the power storage element are arbitrary. be.
  • the present invention can also be applied to capacitors such as various secondary batteries, electric double layer capacitors and lithium ion capacitors.
  • the electrode body in which the positive electrode 40 and the negative electrode 50 are laminated via the separator 60 has been described, but the electrode body does not have to include the separator 60.
  • the positive electrode and the negative electrode may be in direct contact with each other in a state where a non-conductive layer is formed on the active material layer of the positive electrode or the negative electrode.
  • the so-called winding type electrode body has been described in detail, but the electrode body may be a laminated type in which a sheet-shaped positive electrode, a sheet-shaped separator, and a sheet-shaped negative electrode are repeatedly stacked. good.
  • a non-aqueous electrolyte secondary battery (lithium ion secondary battery) was manufactured as shown below.
  • the lithium ion secondary battery according to this example includes a positive electrode having a positive electrode active material layer and a negative electrode having a negative electrode active material layer facing the positive electrode active material layer.
  • Each of the positive electrode and the negative electrode has a sheet-shaped current collecting base material and an active material layer overlapped on both sides of the current collecting base material.
  • NMP N-methyl-2-pyrrolidone
  • Conductive aid Carbon black (5 parts by mass)
  • Particles of active material LiNi 0.6 Co 0.2 Mn 0.2 O 2
  • Binder PVDF (5 parts by mass)
  • the above raw materials were mixed and kneaded to prepare a mixture composition for a positive electrode.
  • the density of the negative electrode active material layer was 1.4 g / cm 3 .
  • the current collecting base material of the negative electrode has a main body portion (central portion) and a tab portion protruding outward from the main body portion.
  • the negative electrode active material layer extends beyond the boundary between the main body portion and the tab portion and also overlaps a part of the tab portion.
  • the negative electrode active material layer has a relatively thick portion and a relatively thin portion in this order in the direction of protrusion of the tab portion.
  • the mass (weight) per unit area of the negative electrode active material layer is smaller in the tab portion than in the main body portion.
  • W2 was set to have the values shown in Table 1.
  • the production of the negative electrode by applying the mixture composition less in the tab portion, the basis weight of the negative electrode active material layer overlapping the tab portion is reduced, and the average thickness of the negative electrode active material layer overlapping the tab portion is reduced. I thinned the electrode.
  • Separator base material A polyethylene microporous membrane having a thickness of 22 ⁇ m was used as the separator base material. The separator was composed only of this separator base material.
  • non-aqueous electrolytic solution one prepared by the following method was used.
  • the non-aqueous solvent a solvent obtained by mixing 1 volume by volume of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate was used, and LiPF 6 was dissolved in this non-aqueous solvent at a salt concentration of 1 mol / dm 3 , and non-aqueous.
  • An electrolyte was prepared.
  • a lithium ion secondary battery was assembled by a general method. First, a sheet-like material formed by arranging and laminating a separator between the positive electrode and the negative electrode was wound around. Next, the wound electrode body was placed in the case body of the aluminum square battery case as a case. Subsequently, the positive electrode and the negative electrode were electrically connected to the two external terminals, respectively. Furthermore, a lid was attached to the case body. Then, the above-mentioned non-aqueous electrolytic solution was injected into the case through a liquid injection port formed on the lid of the case. Finally, the case was sealed by sealing the injection port of the case.
  • Example 2 A lithium ion secondary battery was manufactured in the same manner as in Example 1 except that the negative electrode was changed to the configuration shown in Table 1.
  • Example 1 A lithium ion secondary battery was manufactured in the same manner as in Example 1 except that the negative electrode was changed to the configuration shown in Table 1.
  • Table 1 shows the results of evaluation of the lithium ion secondary batteries of Examples 1 to 4 and Comparative Example 1. Further, FIG. 7 shows a graph of such results.
  • Examples 5 to 9 and Comparative Example 2 In this example, in the above-mentioned manufacturing process of the lithium ion secondary battery, the lithium ion secondary battery was manufactured by varying the average thickness of the negative electrode active material layer in the tab portion and the main body portion (central portion). For each example, Table 2 summarizes the ratio (T1 / T2) of the average thickness T1 of the negative electrode active material layer overlapping the tab portion and the average thickness T2 of the negative electrode active material layer overlapping the main body portion (center portion). show.
  • Table 2 shows the results of evaluation of the discharge capacity of the lithium ion secondary batteries of Examples 5 to 9 and Comparative Example 2 after the above-mentioned repeated charge / discharge test. Further, FIG. 8 shows a graph of such results.
  • the discharge capacity C4 when the above-mentioned one cycle of charging and discharging was performed was measured.
  • the percentage of C4 with respect to C3 was calculated as a relative value of the discharge capacity after being left unattended.
  • Table 3 shows the results of evaluating the discharge capacity of the lithium ion secondary batteries of Examples 10 to 17 after being left at a high temperature. Further, FIG. 9 shows a graph of such results.
  • the power storage element of the example suppressed the decrease in discharge capacity after repeated charging and discharging or after being left at a high temperature.
  • the power storage element of the comparative example tends to have a reduced discharge capacity.
  • the amount of active material W1 per unit area of the negative electrode active material layer overlapping the tab portion and the amount of active material W2 per unit area of the negative electrode active material layer overlapping the main body portion satisfy the following formula (A).
  • the decrease in discharge capacity after repeated charging and discharging was particularly suppressed.
  • the average thickness T1 of the negative electrode active material layer overlapping the tab portion and the average thickness T2 of the negative electrode active material layer overlapping the main body portion satisfy the following formula (B), so that charging and discharging are repeated.
  • the decrease in discharge capacity was particularly suppressed.
  • the length from the boundary between the thick portion and the thin portion of the negative electrode active material layer to the edge of the negative electrode active material layer is defined as X, and the length from the boundary between the main body and the tab portion to the edge of the negative electrode active material layer.
  • the ratio of X to Y (X / Y) was 0.4 or more and 1.4 or less, so that the decrease in discharge capacity after being left to stand was particularly suppressed.
  • a ratio (X / Y) of 0.6 or more and 1.2 or less a decrease in discharge capacity after being left to stand was further suppressed.
  • 1 Power storage element (non-aqueous electrolyte secondary battery), 2: Electrode body, 3: Case, 31: Case body, 32: Cover body, 4: Positive electrode terminal, 5: Negative electrode terminal, 40: Positive electrode, 41: Positive electrode current collecting base material (positive electrode base material), 42: Positive electrode active material layer, 412: Positive electrode tab portion, 50: Negative electrode, 51: Current collecting base material of negative electrode (negative electrode base material), 511: Main body part, 512: Tab part (tab part of negative electrode), 52: Negative electrode active material layer, 60: Separator, 10: Power storage unit, 100: Power storage device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の一側面に係る蓄電素子は、正極活物質層を有する正極と、前記正極活物質層と対向する負極活物質層を有する負極とを備え、前記負極は、シート状の集電基材と、該集電基材の少なくとも一方の面に重なった前記負極活物質層とを有し、前記集電基材は、本体部と、該本体部から外側へ突出したタブ部とを有し、前記負極活物質層は、前記本体部と前記タブ部との境界を越えて前記タブ部の一部にも重なり、以下の条件: (1)前記負極活物質層の単位面積当たりの質量は、前記タブ部では前記本体部よりも小さい;および、 (2)前記負極活物質層の厚さは、前記タブ部では前記本体部よりも薄い; の少なくとも一方を満たす。

Description

蓄電素子
 本発明は、蓄電素子に関する。
 特許文献1には、外装部材と、外装容器内に収容された電極体および非水電解液と、を備え、前記電極体は、セパレータを挟んで重ね合わされた正極および負極を有し前記正極は、外縁を有する正極集電体と、前記正極集電体の外縁から突出し正極集電体と一体に形成された正極タブと、前記正極集電体の全幅に亘って担持された正極活物質層と、を有し、前記負極は、外縁を有する負極集電体と、負極集電体の外縁から突出し負極集電体と一体に形成された負極タブと、前記負極集電体の全幅に亘って、かつ前記負極タブの基端部上に担持されたチタン酸リチウムを含む負極活物質層と、有し、前記負極は、前記負極活物質層が前記負極タブに形成された部分を除いて、前記正極活物質層の外縁の内側に位置した状態で前記正極と重ね合わされ、前記負極タブの基端部に形成された部分を含む負極活物質層の幅H1、前記負極タブ以外の部分における前記負極活物質層および前記負極集電体の幅H2、前記正極集電体および正極活物質層の幅H3は、H2<H3、かつ、(H1-H2)≧(H3-H2)÷2である非水電解質二次電池が記載されている。
日本国特許出願公開2010-86813号公報
 本発明の目的は、特に充放電を繰り返した後における放電容量の低下が抑制された蓄電素子を提供することである。
 本発明の一側面に係る蓄電素子は、正極活物質層を有する正極と、前記正極活物質層と対向する負極活物質層を有する負極とを備え、前記負極は、シート状の集電基材と、該集電基材の少なくとも一方の面に重なった前記負極活物質層とを有し、前記集電基材は、本体部と、該本体部から外側へ突出したタブ部とを有し、前記負極活物質層は、前記本体部と前記タブ部との境界を越えて前記タブ部の一部にも重なり、以下の条件:
(1)前記負極活物質層の単位面積当たりの質量は、前記タブ部では前記本体部よりも小さい;および、
(2)前記負極活物質層の厚さは、前記タブ部では前記本体部よりも薄い;
の少なくとも一方を満たす。
 本発明の一側面に係る蓄電素子は、特に充放電を繰り返した後における放電容量の低下が抑制されている。
図1は、本実施形態に係る蓄電素子の斜視図である。 図2は、本実施形態に係る蓄電素子の巻回型電極体の斜視図である。 図3は、積層された負極(集電基材のタブ部)及び正極を厚さ方向に切断した断面図である。 図4は、負極の一部を厚さ方向の一方から見た模式図である。 図5は、負極の一部を厚さ方向に切断した断面図である。 図6は、本実施形態に係る蓄電素子を複数備えた蓄電装置の概略図である。 図7は、蓄電素子に対して充放電を繰り返した後の放電容量維持率を表すグラフである。 図8は、蓄電素子に対して充放電を繰り返した後の放電容量維持率を表すグラフである。 図9は、蓄電素子を放置した後の放電容量維持率を表すグラフである。
 始めに、本明細書によって開示される蓄電素子の概要について説明する。
 本発明の一側面に係る蓄電素子1は、正極活物質層42を有する正極40と、前記正極活物質層42と対向する負極活物質層52を有する負極50とを備え、前記負極50は、シート状の集電基材51と、該集電基材51の少なくとも一方の面に重なった前記負極活物質層52とを有し、前記集電基材51は、本体部511と、該本体部511から外側へ突出したタブ部512とを有し、前記負極活物質層52は、前記本体部511と前記タブ部512との境界を越えて前記タブ部512の一部にも重なり、以下の条件:
(1)前記負極活物質層52の単位面積当たりの質量は、前記タブ部512では前記本体部511よりも小さい;および、
(2)前記負極活物質層52の厚さは、前記タブ部512では前記本体部511よりも薄い;
の少なくとも一方を満たす。
 上記蓄電素子1によれば、充放電を繰り返した後における放電容量の低下を抑制することができる。このような効果が生じる理由は、例えば以下のように推測される。
 すなわち、充放電時に負極50のタブ部512において電流が集中しやすい上記の蓄電素子1において、(1)の場合、負極50の負極活物質層52の単位面積当たりの質量が、タブ部512において本体部511よりも小さい。負極活物質層52の単位面積当たりの質量が小さい分、電流が集中しやすいタブ部512に重なる負極活物質層52において、電解質塩のイオン(例えばリチウムイオン)がトラップされて被膜が成長することを抑制できる。これにより、充放電を繰り返した後における放電容量の低下が抑制される。また、(2)の場合、負極50のタブ部512に重なる負極活物質層52の厚さが本体部511よりも薄い。このことによって、上記と同様に、負極活物質層52の単位面積当たりの質量が、タブ部512でより小さくなり得る。よって、上記と同様の理由により、充放電を繰り返した後における放電容量の低下が抑制される。ただし、上記理由に限定的に解釈されるものではない。
 ここで、蓄電素子1では、前記タブ部512に重なる前記負極活物質層52の単位面積当たりの質量W1と、前記本体部511に重なる前記負極活物質層52の単位面積当たりの質量W2とが、下記式(I)を満たしてもよい。
    0.3×W2≦W1≦0.9×W2   式(I)
 この蓄電素子1では、充放電を繰り返した後における放電容量の低下をより抑制できる。
 また、蓄電素子1では、前記タブ部512に重なる前記負極活物質層52の平均厚さT1と、前記本体部511に重なる前記負極活物質層52の平均厚さT2とが、下記式(II)を満たしてもよい。
    0.3×T2≦T1≦0.9×T2   式(II)
 この蓄電素子1では、充放電を繰り返した後における放電容量の低下をより抑制できる。
 また、蓄電素子1では、前記負極活物質層52は、前記タブ部512の前記突出の方向に向かって相対的に厚い部位と相対的に薄い部位とをこの順で有しており、前記負極活物質層52において前記厚い部位と前記薄い部位との境界から前記負極活物質層52の端縁までの長さをXとし、前記本体部511と前記タブ部512との境界から前記負極活物質層52の前記端縁までの長さをYとしたときに、前記Xと前記Yとの比(X/Y)は、0.4以上1.4以下であってもよい。
 この蓄電素子1では、充電された状態で長期間放置した後における放電容量の低下を抑制できる。
 本発明の一実施形態に係る蓄電素子の一例として、非水電解質蓄電素子の構成、非水電解質蓄電装置の構成、及び非水電解質蓄電素子の製造方法、並びにその他の実施形態について詳述する。なお、各実施形態に用いられる各構成部材(各構成要素)の名称は、背景技術に用いられる各構成部材(各構成要素)の名称と異なる場合がある。
<非水電解質蓄電素子の構成>
 本発明の実施形態に係る非水電解質蓄電素子(以下、単に「蓄電素子」ともいう。)は、正極40、負極50及びセパレータ60を有する電極体2と、非水電解質と、上記電極体2及び非水電解質を収容するケースと、を備える。電極体2は、通常、複数の正極40及び複数の負極50がセパレータ60を介して積層された積層型、又は、正極40及び負極50がセパレータ60を介して積層された状態で巻回された巻回型(以下、詳細に説明)である。非水電解質は、正極40、負極50及びセパレータ60に含まれた状態で存在する。以下、非水電解質蓄電素子の一例として、非水電解質二次電池(特にリチウムイオン二次電池、以下、単に「二次電池」ともいう。)について説明するが、本発明の適用対象を限定する意図ではない。
 本実施形態の蓄電素子1は、図1及び図2に示すように、巻回された状態の巻回型の電極体2と、電極体2を収容するケース3と、を備える。また、蓄電素子1は、少なくとも一部を露出させた状態でケース3に取り付けられる又はケース3の少なくとも一部によって構成される2つの外部端子(正極端子4及び負極端子5)を備える。電極体2は、ケース3内において、集電部材などを介して各外部端子4,5と接続されている。
 本実施形態の蓄電素子1は、ケース3に収容された電極体2を備える。ケース3は、扁平な直方体状であり、一方に向けて開口したケース本体31と、ケース本体31の開口を覆う長細い矩形状の蓋体32とを有する。2つの外部端子4,5は、蓋体32の長辺方向に離間して配置されている。
 電極体2は、図2及び図3に示すように、長尺シート状の正極40と、長尺シート状の負極50と、シート状の2つのセパレータ60,60とが重ねられ、さらに巻回されて形成されている。2つのセパレータ60,60は、正極40及び負極50を電気的に絶縁するようにそれぞれ配置されている。本実施形態では、電極体2は、扁平な巻回体である。電極体2の巻回軸方向がケース本体31の開口方向と同じ方向となるように、電極体2がケース3内に配置されている。
 電極体2は、帯状の正極40における幅方向の一方の長辺が突出した複数の正極のタブ部412を有する。斯かる複数の正極のタブ部412は、正極基材41(集電基材41)の一部で構成されている。また、電極体2は、同様に、帯状の負極50における幅方向の一方の長辺が突出した複数のタブ部512(負極のタブ部512)を有する。斯かる複数のタブ部512(負極のタブ部512)は、負極基材51(集電基材51)の一部で構成されている。
 正極40の複数の正極のタブ部412は、正極40及び負極50が積層する方向に並んで配置されている。負極50の複数のタブ部512(負極のタブ部512)も同様である。また、正極40の複数の正極のタブ部412と負極50の複数のタブ部512(負極のタブ部512)とは、互いに離間した2つの外部端子4,5と同様に、ケース3の蓋体32の長辺方向に離間して配置されている。
(正極)
 正極40は、正極基材41(正極の集電基材41)と、当該正極基材41に直接又は中間層(図示せず)を介して配される正極活物質層42とを有する。本実施形態では、図3に示すように、正極基材41(正極の集電基材41)の両面に正極活物質層42がそれぞれ重ねられている。
 正極基材41(正極の集電基材41)は、正極の本体部と、正極の本体部から外側へ突出した正極のタブ部412とを有する。正極活物質層42は、正極の本体部に重なり、正極のタブ部412には重なっていない。正極のタブ部412では、正極基材41(正極の集電基材41)が露出している。
 正極活物質層42の端縁は、セパレータ60を介して対向する負極活物質層52の端縁よりも内側に配置されている。
 正極基材41(集電基材41)は、導電性を有する。「導電性」を有するか否かは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が107Ω・cmを閾値として判定する。正極基材41の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はこれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ、及びコストの観点からアルミニウム又はアルミニウム合金が好ましい。正極基材41としては、箔、蒸着膜等が挙げられ、コストの観点から箔が好ましい。したがって、正極基材41としてはアルミニウム箔又はアルミニウム合金箔が好ましい。アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)に規定されるA1085、A3003等が例示できる。
 正極基材41(集電基材41)の平均厚さは、3μm以上50μm以下が好ましく、5μm以上40μm以下がより好ましく、8μm以上30μm以下がさらに好ましく、10μm以上25μm以下が特に好ましい。正極基材41の平均厚さを上記の範囲とすることで、正極基材41の強度を高めつつ、二次電池の体積当たりのエネルギー密度を高めることができる。
 中間層は、正極基材41と正極活物質層42との間に配される層である。中間層は、炭素粒子等の導電性を有する粒子を含むことで正極基材41と正極活物質層42との接触抵抗を低減する。中間層の構成は特に限定されず、例えば、樹脂バインダ及び導電性を有する粒子を含む。
 正極活物質層42は、正極活物質を含む。正極活物質層42は、必要に応じて、導電剤、バインダ、増粘剤、フィラー等の任意成分を含む。
 正極活物質としては、公知の正極活物質の中から適宜選択できる。リチウムイオン二次電池用の正極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。正極活物質としては、例えば、α-NaFeO2型結晶構造を有するリチウム遷移金属複合酸化物、スピネル型結晶構造を有するリチウム遷移金属複合酸化物、ポリアニオン化合物、カルコゲン化合物、硫黄等が挙げられる。α-NaFeO2型結晶構造を有するリチウム遷移金属複合酸化物として、例えば、Li[LixNi(1-x)]O2(0≦x<0.5)、Li[LixNiγCo(1-x-γ)]O2(0≦x<0.5、0<γ<1)、Li[LixCo(1-x)]O2(0≦x<0.5)、Li[LixNiγMn(1-x-γ)]O2(0≦x<0.5、0<γ<1)、Li[LixNiγMnβCo(1-x-γ-β)]O2(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)、Li[LixNiγCoβAl(1-x-γ-β)]O2(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)等が挙げられる。スピネル型結晶構造を有するリチウム遷移金属複合酸化物として、LixMn24、LixNiγMn(2-γ)4等が挙げられる。ポリアニオン化合物として、LiFePO4、LiMnPO4、LiNiPO4、LiCoPO4,Li32(PO43、Li2MnSiO4、Li2CoPO4F等が挙げられる。カルコゲン化合物として、二硫化チタン、二硫化モリブデン、二酸化モリブデン等が挙げられる。これらの材料中の原子又はポリアニオンは、他の元素からなる原子又はアニオン種で一部が置換されていてもよい。これらの材料は表面が他の材料で被覆されていてもよい。正極活物質層42においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 正極活物質は、通常、粒子(粉体)である。正極活物質の平均粒径は、例えば、0.1μm以上20μm以下とすることが好ましい。正極活物質の平均粒径を上記下限以上とすることで、正極活物質の製造又は取り扱いが容易になる。正極活物質の平均粒径を上記上限以下とすることで、正極活物質層42の電子伝導性が向上する。なお、正極活物質と他の材料との複合体を用いる場合、該複合体の平均粒径を正極活物質の平均粒径とする。「平均粒径 」とは、JIS-Z-8825(2013年)に準拠し、粒子を溶媒で希釈した希釈液に対しレーザ回折・散乱法により測定した粒径分布に基づき、JIS-Z-8819-2(2001年)に準拠し計算される体積基準積算分布が50%となる値を意味する。
 粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。粉砕方法として、例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェットミル、旋回気流型ジェットミル又は篩等を用いる方法が挙げられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、篩や風力分級機等が、乾式、湿式ともに必要に応じて用いられる。
 正極活物質層42における正極活物質の含有量は、50質量%以上99質量%以下が好ましく、70質量%以上98質量%以下がより好ましく、80質量%以上95質量%以下がさらに好ましい。正極活物質の含有量を上記の範囲とすることで、正極活物質層42の高エネルギー密度化と製造性を両立できる。
(任意成分)
 導電剤は、導電性を有する材料であれば特に限定されない。このような導電剤としては、例えば、炭素質材料、金属、導電性セラミックス等が挙げられる。炭素質材料としては、黒鉛化炭素、非黒鉛化炭素、グラフェン系炭素等が挙げられる。非黒鉛化炭素としては、カーボンナノファイバー、ピッチ系炭素繊維、カーボンブラック等が挙げられる。カーボンブラックとしては、ファーネスブラック、アセチレンブラック、ケッチェンブラック等が挙げられる。グラフェン系炭素としては、グラフェン、カーボンナノチューブ(CNT)、フラーレン等が挙げられる。導電剤の形状としては、粉状、繊維状等が挙げられる。導電剤としては、これらの材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。また、これらの材料を複合化して用いてもよい。例えば、カーボンブラックとCNTとを複合化した材料を用いてもよい。これらの中でも、電子伝導性及び塗工性の観点よりカーボンブラックが好ましく、中でもアセチレンブラックが好ましい。
 導電剤を使用する場合、正極活物質層42における導電剤の含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。導電剤の含有量を上記の範囲とすることで、二次電池のエネルギー密度を高めることができる。
 バインダとしては、例えば、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリアクリル、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子等が挙げられる。なかでも、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)等の溶剤系バインダが好ましい。
 バインダを使用する場合、正極活物質層42におけるバインダの含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。バインダの含有量を上記の範囲とすることで、活物質を安定して保持することができる。
 増粘剤としては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。増粘剤がリチウム等と反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させてもよい。増粘剤を使用する場合、正極活物質層42における増粘剤の含有量は、8質量%以下が好ましく、5質量%以下がより好ましい。ここで開示される技術は、正極活物質層42が上記増粘剤を含まない態様で好ましく実施され得る。
 フィラーは、特に限定されない。フィラーとしては、ポリプロピレン、ポリエチレン等のポリオレフィン、二酸化ケイ素、アルミナ、二酸化チタン、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の無機酸化物、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物、炭酸カルシウム等の炭酸塩、フッ化カルシウム、フッ化バリウム、硫酸バリウム等の難溶性のイオン結晶、窒化アルミニウム、窒化ケイ素等の窒化物、タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。フィラーを使用する場合、正極活物質層42におけるフィラーの含有量は、8質量%以下が好ましく、5質量%以下がより好ましい。ここで開示される技術は、正極活物質層42が上記フィラーを含まない態様で好ましく実施され得る。
 正極活物質層42は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Nb、W等の遷移金属元素を正極活物質、導電剤、バインダ、増粘剤、フィラー以外の成分として含有してもよい。
(負極)
 負極50は、負極基材51(負極の集電基材51)と、当該負極基材51に直接又は中間層を介して配される負極活物質層52とを有する。中間層の構成は特に限定されず、例えば上記正極40で例示した構成から選択することができる。
 本実施形態では、図3に示すように、負極基材51(負極の集電基材51)の両面に負極活物質層52がそれぞれ重ねられている。
 負極基材51(負極の集電基材51)は、本体部511と、本体部511から外側へ突出したタブ部512(負極のタブ部512)とを有する。負極活物質層52は、例えば図4に示すように、本体部511の全体に重なり、また、本体部511とタブ部512との境界を越えてタブ部512の一部にも重なっている。タブ部512の大部分では、負極基材51(負極の集電基材51)が露出している。
 負極活物質層52の端縁は、セパレータ60を介して対向する正極活物質層42の端縁よりも外側に配置されている。
 本実施形態では、下記の(1)又は(2)の少なくともいずれか一方が満たされる。
(1)負極活物質層52の単位面積当たりの質量は、タブ部512では本体部511よりも小さい。
(2)負極活物質層52の厚さは、タブ部512では本体部511よりも薄い。
 上記の蓄電素子1において、充放電時に負極50のタブ部512において電流が集中しやすい。タブ部512に重なった負極活物質層52では、上記電流集中の影響を受けて被膜の形成が起こりやすい。タブ部512に重なる負極活物質層52の単位面積当たりの質量が大きいと、電流が集中しやすいタブ部512において、被膜成長が特に促進され、リチウムイオンがより多くタブ部512に重なる負極活物質層52にトラップされ得るため、容量低下が起こり得る。これに対して、上記構成によれば、(1)の場合、負極50のタブ部512における単位面積当たりの負極活物質層52の質量が小さいため、電流が集中しやすいタブ部512において、被膜成長によってリチウムイオンがトラップされる量を抑制できる。これにより、充放電を繰り返した後における放電容量の低下が抑制される。また、(2)の場合、負極50のタブ部512における負極活物質層52の厚さが薄いことによって、負極活物質層52の単位面積当たりの質量がタブ部512でより小さくなり得る。また、厚さが薄い分、タブ部512において負極活物質層52がセパレータと接触し難くなる。これにより、タブ部512におけるリチウムの析出が効果的に抑えられる。よって、充放電を繰り返した後における放電容量の低下が抑制される。
 上記(1)の条件が満たされる場合、上記本体部511に重なる負極活物質層52の単位面積当たりの質量W2は、タブ部512に重なる負極活物質層52の単位面積当たりの質量W1よりも大きければよく(すなわちW1<W2であればよく)、特に限定されない。W2は、負極基材51の両面に負極活物質層52が形成されている場合、片方の面に配される負極活物質層52の単位面積当たりの質量である(2層分の単位面積当たりの質量の半分の値である)。W2は、例えば、面積100cm2あたり、0.1g以上とすることが適当であり、通常は0.2g以上、典型的には0.3g以上である。W2は、好ましくは0.4g/100cm2以上、より好ましくは0.45g/100cm2以上、さらに好ましくは0.48g/100cm2以上である。いくつかの態様において、W2は、0.5g/100cm2以上であってもよく、0.52g/100cm2以上(例えば0.6g/100cm2以上、典型的には0.8g/100cm2以上)であってもよい。また、W2は、例えば、2.0g/100cm2以下とすることができる。W2は、好ましくは1.5g/100cm2以下、より好ましくは1.2g/100cm2以下、さらに好ましくは1.1g/100cm2以下である。いくつかの態様において、W2は、1.0g/100cm2以下であってもよく、0.9g/100cm2以下であってもよい。なお、上記W2の値は、本体部511全体に重なる負極活物質層52の質量を面積100cm2当たりの質量で表したものである。本体部511全体に重なる負極活物質層52の面積は、所定の大きさを有するものの任意であり、「g/100cm2」という単位は、本体部511全体に重なる負極活物質層52の面積と直接的な関係を有しない。
 上記(1)の条件が満たされる場合、タブ部512に重なる負極活物質層52の単位面積当たりの質量W1は、本体部511に重なる負極活物質層52の単位面積当たりの質量W2よりも小さければよく、特に限定されない。W1は、負極基材51の両面に負極活物質層52が形成されている場合、片方の面に重なる負極活物質層52の単位面積当たりの質量である(2層分の単位面積当たりの質量の半分の値である)。
 好ましい一態様では、タブ部512に重なる負極活物質層52の単位面積当たりの質量W1と、本体部511に重なる負極活物質層52の単位面積当たりの質量W2とが、下記式(I-I)を満たす。
     0.10×W2≦W1≦0.95×W2   式(I-I)
 上記式(I-I)が満たされることによって、充放電を繰り返した後における放電容量の低下をより抑制できる。ここに開示される技術は、例えば、W1とW2との関係が、0.3×W2≦W1≦0.9×W2 式(I-II)である態様、さらには、0.5×W2≦W1≦0.8×W2 式(I-III)である態様、特には、0.60×W2≦W1≦0.75×W2 式(I-IV)である態様で好ましく実施され得る。
 なお、W1は、タブ部512の一部に負極活物質層52が重なっている部分の面積で、その部分に重なった負極活物質層52の質量を除することで求められる。タブ部512に重なる負極活物質層52の面積は、比較的狭いものの任意であり、「g/100cm2」という単位は、タブ部512に重なる負極活物質層52の面積と直接的な関係を有しない。
 上記(1)の条件が満たされる場合、好ましい一態様では、タブ部512に重なる負極活物質層52の厚さは、本体部511に重なる負極活物質層52の厚さよりも薄い。換言すると、負極活物質層52の単位面積当たりの質量は、タブ部512では本体部511よりも小さく、かつ、負極活物質層52の平均厚さは、タブ部512では本体部511よりも薄い。かかる負極活物質層52において、負極活物質層52の平均厚さを本体部511よりもタブ部512において薄くするためには、例えば、合剤組成物をタブ部512においてより少なく塗布する一方で、本体部511においてより多く塗布するとよい。このようにすれば、同一の合剤組成物を用いて、前記W1<W2の関係を満たす負極活物質層52を簡易に形成することができる。この場合、負極活物質層52の全体において単位体積当たりの負極活物質の質量が同じであってもよい。また、負極活物質層52の全体において単位体積当たりの負極活物質層の質量が同じであってもよい。
 上記(1)の条件が満たされる場合、他の好ましい一態様では、本体部511に重なる負極活物質層52の厚さと、タブ部512に重なる負極活物質層52の厚さとが略同じである。例えば負極活物質層52の厚さが同じであっても、負極活物質層52の単位体積当たりの質量が本体部511よりもタブ部512において小さいことによって、負極活物質層52の単位面積当たりの質量が本体部511よりもタブ部512において小さくなっていてもよい。かかる態様において、負極活物質層52の質量を本体部511よりもタブ部512において小さくするためには、例えば、負極活物質の含有量がより少ない合剤組成物をタブ部512に塗布する一方で、負極活物質の含有量がより多い合剤組成物を本体部511に塗布するとよい。
 上記(2)の条件が満たされる場合、例えば図5に示すように、負極活物質層52の厚さは、タブ部512では本体部511よりも薄い。負極活物質層52の厚さは、例えば図5に示すように、タブ部512の先端へ向けて次第に薄くなっていてもよい。一方、負極活物質層52の厚さは、例えば段差を有するように、タブ部512では本体部511よりも薄くなっていてもよい。
 上記(2)の条件が満たされる場合、本体部511に重なる負極活物質層52の平均厚さT2は、タブ部512に重なる負極活物質層52の平均厚さT1よりも厚ければよく(すなわちT1<T2であればよく)、特に限定されない。T2は、負極基材51の両面に負極活物質層52が形成されている場合、片方の面に配される負極活物質層52の平均厚さである(各層の平均厚さの相加平均値である)。T2は、例えば、10μm以上であることが適当であり、通常は12μm以上、典型的には15μm以上である。T2は、好ましくは20μm以上、より好ましくは22μm以上、さらに好ましくは25μm以上である。いくつかの態様において、T2は、30μm以上であってもよく、35μm以上(例えば50m以上、典型的には70μm以上)であってもよい。また、T2は、例えば、200μm以下とすることができる。T2は、好ましくは180μm以下、より好ましくは170μm以下、さらに好ましくは160μm以下である。いくつかの態様において、T2は、150μm以下であってもよく、140μm以下であってもよい。
 上記(2)の条件が満たされる場合、タブ部512に重なる負極活物質層52の平均厚さT1は、本体部511に重なる負極活物質層52の平均厚さT2よりも薄ければよく、特に限定されない。T1は、負極基材51の両面に負極活物質層52が形成されている場合、片方の面に配される負極活物質層52の平均厚さである(各層の平均厚さの相加平均値である)。好ましい一態様では、タブ部512に重なる負極活物質層52の平均厚さT1と、本体部511に重なる負極活物質層52の平均厚さT2とが、下記式(II-I)を満たす。
    0.10×T2≦T1≦0.95×T2   式(II-I)
 なお、平均厚さは、ランダムに選んだ5ケ所の厚さの測定値を平均することによって算出される。本体部511に重なる負極活物質層52の平均厚さT2は、本体部511の中央部分に重なる負極活物質層52の厚さを測定することによって求められる。一方、タブ部512に重なる負極活物質層52の平均厚さT1は、本体部511とタブ部512との境界Cから、負極活物質層52の端縁Bまでの中間点における5ケ所の厚さの測定値を平均することで求められる。斯かる中間点での測定は、タブ部512の突出方向に垂直な方向における幅の中央で実施する。
 上記式(II-I)が満たされることによって、充放電を繰り返した後における放電容量の低下をより抑制できる。ここに開示される技術は、例えば、T1とT2との関係が、0.3×T2≦T1≦0.9×T2 式(II-II)である態様、さらには、0.5×T2≦T1≦0.8×T2 式(II-III)である態様、特には、0.60×T2≦T1≦0.75×T2 式(II-IV)である態様で好ましく実施され得る。
 上記(2)の条件が満たされる場合、負極活物質層52の平均厚さを本体部511よりもタブ部512において薄くするためには、例えば、合剤組成物をタブ部512においてより少なく塗布する一方で、本体部511においてより多く塗布するとよい。この場合、負極活物質層52の全体において単位体積当たりの負極活物質の質量が同じであってもよい。また、負極活物質層52の全体において単位体積当たりの質量が同じであってもよい。
 上記(2)の条件が満たされる場合、負極活物質層52は、タブ部512の外側へ突出する方向に向けて、相対的に厚い部位と相対的に薄い部位とをこの順で有しており、 負極活物質層52において厚い部位と薄い部位との境界から負極活物質層52の端縁までの長さをXとし、本体部511とタブ部512との境界から負極活物質層52の端縁までの長さをYとしたときに、上記Xと上記Yとの比(X/Y)は、0.1以上1.8以下であってもよい。ここで、本明細書において、負極活物質層52の上記厚い部位と上記薄い部位とを以下のように規定する。タブ部512の突出方向に沿って延びる直線に沿って、負極活物質層52の厚さを測定する。突出方向は、負極50が長尺シート状である場合、負極活物質層52の長手方向に垂直な幅方向の一方である。この方向に延びる上記直線に沿って、負極活物質層52の厚さを、負極基材51の本体部511からタブ部512へ向けて、0.1mmの等間隔で、連続して複数点で測定する。このとき、本体部511に重なる負極活物質層52の厚さの最大値を記録する。斯かる厚さの最大値からの減少率が3%未満である領域を「厚い部位」と規定する。一方、厚さの最大値からの減少率が3%以上である領域を「薄い部位」と規定する。
 図5に示すように、負極活物質層52において厚い部位と薄い部位との境界(Aで示す)から負極活物質層52の端縁(Bで示す)までの長さがXである。また、本体部511とタブ部512との境界(Cで示す)から負極活物質層52の端縁(Bで示す)までの長さがYである。
 厚い部位と薄い部位との境界(A)、及び、負極活物質層52の端縁(B)の判別は、本体部511及びタブ部512を含むように、負極50を厚さ方向に切断した断面の顕微鏡写真において行う。本体部511とタブ部512との境界(C)の判別は、上記の顕微鏡写真を用いた計測によって行う。
 上記の比(X/Y)が0.1以上1.8以下であることによって、充電された状態で長期間放置した後における放電容量の低下も抑制できる。また、タブ部512における負極活物質層52とセパレータとの接触をより効果的に抑制でき、タブ部512におけるリチウムの析出を抑制できる。
 上記の比(X/Y)は、0.2以上であることが好ましい。上記比(X/Y)は、放置した後の放電容量の低下をより抑制する等の観点から、好ましくは0.4以上、より好ましくは0.6以上、さらに好ましくは0.8以上、特に好ましくは0.9以上である。また、上記の比(X/Y)は、1.6以下であることが好ましい。上記比(X/Y)は、放置した後の放電容量の低下をより抑制する等の観点から、好ましくは1.4以下、より好ましくは1.3以下、さらに好ましくは1.2以下、特に好ましくは1.1以下である。ここに開示される技術は、XとYとの関係が、例えば、0.4≦X/Y≦1.4、さらには0.6≦X/Y≦1.2、特には0.8≦X/Y≦1.1である態様で好ましく実施され得る。
 負極活物質層52において厚い部位と薄い部位との境界Aから負極活物質層52の端縁Bまでの長さXとしては、特に限定されないが、例えば0.5mm以上であることが適当であり、通常は0.8mm以上、典型的には1mm以上である。放置した後の放電容量の低下をより抑制する等の観点から、Xは、好ましくは2mm以上、より好ましくは3mm以上、特に好ましくは4mm以上である。また、Xは、15mm以下であることが適当であり、通常は10mm以下、典型的には8mm以下である。放置した後の放電容量の低下をより抑制する等の観点から、Xは、好ましくは7mm以下、より好ましくは6mm以下である。
 本体部511とタブ部512との境界Cから負極活物質層52の端縁Bまでの長さYとしては、特に限定されないが、例えば0.5mm以上15mm以下とすることが適当であり、通常は1mm以上10mm以下、典型的には3mm以上8mm以下、例えば3mm以上6mm以下であり得る。
 好ましい一態様では、負極活物質層52における厚い部位と薄い部位との境界Aは、セパレータ60を介して正極活物質層42と対向しないように設定されている(図3、図5参照)。このように負極活物質層52における厚い部位と薄い部位との境界Aを正極活物質層42と対向しないように設定することにより、前述した性能向上効果(例えば、サイクル後における放電容量の低下抑制効果、および、充電された状態で長期間放置した後における放電容量の低下抑制効果のうちの少なくとも一方、好ましくは両方)がより効果的に発揮され得る。
 図5に示すように、タブ部512の先端に向かうほど負極活物質層52の厚さを連続的に薄くするためには、例えば、比較的粘度の低い合剤組成物を集電基材51の本体部511とタブ部512とに塗布し、タブ部512において塗布した合剤組成物を濡れ広がらせる。これにより、タブ部512における負極活物質層52の厚さが端縁に向かうほど薄くなる。
 また、図5に示す(A)と(B)との間の長さX(負極活物質層52において厚い部位と薄い部位との境界から負極活物質層52の端縁までの長さ)をより長くするためには、例えば、より粘度の低い合剤組成物を用いる。これにより、塗布後の合剤組成物がより濡れ広がるため、上記の長さXをより長くできる。
 負極基材51は、導電性を有する。負極基材51の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼、アルミニウム等の金属又はこれらの合金が用いられる。これらの中でも銅又は銅合金が好ましい。負極基材51としては、箔、蒸着膜等が挙げられ、コストの観点から箔が好ましい。したがって、負極基材51としては銅箔又は銅合金箔が好ましい。銅箔の例としては、圧延銅箔、電解銅箔等が挙げられる。
 負極基材51の平均厚さは、2μm以上35μm以下が好ましく、3μm以上30μm以下がより好ましく、4μm以上25μm以下がさらに好ましく、5μm以上20μm以下が特に好ましい。負極基材51の平均厚さを上記の範囲とすることで、負極基材51の強度を高めつつ、二次電池の体積当たりのエネルギー密度を高めることができる。
 負極活物質層52は、負極活物質を含む。負極活物質層52は、必要に応じて導電剤、バインダ、増粘剤、フィラー等の任意成分を含む。導電剤、バインダ、増粘剤、フィラー等の任意成分は、上記正極40で例示した材料から選択できる。バインダを使用する場合、エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)等の水系バインダを用いることが好ましい。負極活物質層52におけるバインダの含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。バインダの含有量を上記の範囲とすることで、活物質を安定して保持することができる。増粘剤を使用する場合、負極活物質層52における増粘剤の含有量は、0.5質量%以上8質量%以下が好ましく、1質量%以上5質量%以下がより好ましい。導電剤を使用する場合、負極活物質層52における導電剤の含有量は、8質量%以下が好ましく、5質量%以下がより好ましい。ここで開示される技術は、負極活物質層52が上記導電剤を含まない態様で好ましく実施され得る。フィラーを使用する場合、負極活物質層52におけるフィラーの含有量は、8質量%以下が好ましく、5質量%以下がより好ましい。ここで開示される技術は、負極活物質層52が上記フィラーを含まない態様で好ましく実施され得る。
 負極活物質層52は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba、等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を負極活物質、導電剤、バインダ、増粘剤、フィラー以外の成分として含有してもよい。
 負極活物質としては、公知の負極活物質の中から適宜選択できる。リチウムイオン二次電池用の負極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。負極活物質としては、例えば、金属Li;Si、Sn等の金属又は半金属;Si酸化物、Ti酸化物、Sn酸化物等の金属酸化物又は半金属酸化物;Li4Ti5O12、LiTiO2、TiNb27等のチタン含有酸化物;ポリリン酸化合物;炭化ケイ素;黒鉛(グラファイト)、非黒鉛質炭素(易黒鉛化性炭素又は難黒鉛化性炭素)等の炭素材料等が挙げられる。これらの材料の中でも、黒鉛及び非黒鉛質炭素が好ましい。負極活物質層52においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 「黒鉛」とは、充放電前又は放電状態において、X線回折法により決定される(002)面の平均格子面間隔(d002)が0.33nm以上0.34nm未満の炭素材料をいう。黒鉛としては、天然黒鉛、人造黒鉛が挙げられる。安定した物性の材料を入手できるという観点で、人造黒鉛が好ましい。
 「非黒鉛質炭素」とは、充放電前又は放電状態においてX線回折法により決定される(002)面の平均格子面間隔(d002)が0.34nm以上0.42nm以下の炭素材料をいう。非黒鉛質炭素としては、難黒鉛化性炭素や、易黒鉛化性炭素が挙げられる。非黒鉛質炭素としては、例えば、樹脂由来の材料、石油ピッチまたは石油ピッチ由来の材料、石油コークスまたは石油コークス由来の材料、植物由来の材料、アルコール由来の材料等が挙げられる。
 ここで、「放電状態」とは、負極活物質として炭素材料を含む負極50を作用極として、金属Liを対極として用いた単極電池において、開回路電圧が0.7V以上である状態をいう。開回路状態での金属Li対極の電位は、Liの酸化還元電位とほぼ等しいため、上記単極電池における開回路電圧は、Liの酸化還元電位に対する炭素材料を含む負極50の電位とほぼ同等である。つまり、上記単極電池における開回路電圧が0.7V以上であることは、負極活物質である炭素材料から、充放電に伴い吸蔵放出可能なリチウムイオンが十分に放出されていることを意味する。
 「難黒鉛化性炭素」とは、上記d002が0.36nm以上0.42nm以下の炭素材料をいう。
 「易黒鉛化性炭素」とは、上記d002が0.34nm以上0.36nm未満の炭素材料をいう。
 負極活物質は、通常、粒子(粉体)である。負極活物質の平均粒径は、例えば、1nm以上100μm以下とすることができる。負極活物質が炭素材料、チタン含有酸化物又はポリリン酸化合物である場合、その平均粒径は、1μm以上100μm以下であってもよい。負極活物質が、Si、Sn、Si酸化物、又は、Sn酸化物等である場合、その平均粒径は、1nm以上1μm以下であってもよい。負極活物質の平均粒径を上記下限以上とすることで、負極活物質の製造又は取り扱いが容易になる。負極活物質の平均粒径を上記上限以下とすることで、負極活物質層52の電子伝導性が向上する。粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。粉砕方法及び粉級方法は、例えば、上記正極40で例示した方法から選択できる。負極活物質が金属Li等の金属である場合、負極活物質は、箔状であってもよい。
 負極活物質層52における負極活物質の含有量は、60質量%以上99質量%以下が好ましく、90質量%以上98質量%以下がより好ましい。負極活物質の含有量を上記の範囲とすることで、負極活物質層52の高エネルギー密度化と製造性を両立できる。
(セパレータ)
 セパレータ60は、公知のセパレータの中から適宜選択できる。セパレータ60として、例えば、基材層のみからなるセパレータ60、基材層の一方の面又は双方の面に耐熱粒子とバインダとを含む耐熱層が形成されたセパレータ等を使用することができる。セパレータ60の基材層の形状としては、例えば、織布、不織布、多孔質樹脂フィルム等が挙げられる。これらの形状の中でも、強度の観点から多孔質樹脂フィルムが好ましく、非水電解質の保液性の観点から不織布が好ましい。セパレータ60の基材層の材料としては、シャットダウン機能の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましく、耐酸化分解性の観点から例えばポリイミドやアラミド等が好ましい。セパレータ60の基材層として、これらの樹脂を複合した材料を用いてもよい。
 耐熱層に含まれる耐熱粒子は、1気圧の空気雰囲気下で室温から500℃に加熱したときの質量減少が5%以下であるものが好ましく、1気圧の空気雰囲気下で室温から800℃に加熱したときの質量減少が5%以下であるものがさらに好ましい。質量減少が所定以下である材料として無機化合物が挙げられる。無機化合物として、例えば、酸化鉄、酸化ケイ素、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の酸化物;水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物;窒化アルミニウム、窒化ケイ素等の窒化物;炭酸カルシウム等の炭酸塩;硫酸バリウム等の硫酸塩;フッ化カルシウム、フッ化バリウム、チタン酸バリウム等の難溶性のイオン結晶;シリコン、ダイヤモンド等の共有結合性結晶;タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。無機化合物として、これらの物質の単体又は複合体を単独で用いてもよく、2種以上を混合して用いてもよい。これらの無機化合物の中でも、蓄電素子1の安全性の観点から、酸化ケイ素、酸化アルミニウム、又はアルミノケイ酸塩が好ましい。
 セパレータ60の空孔率は、強度の観点から80体積%以下が好ましく、放電性能の観点から20体積%以上が好ましい。ここで、「空孔率」とは、体積基準の値であり、水銀ポロシメータでの測定値を意味する。
 セパレータ60として、ポリマーと非水電解質とで構成されるポリマーゲルを用いてもよい。ポリマーとして、例えば、ポリアクリロニトリル、ポリエチレンオキシド、ポリプロピレンオキシド、ポリメチルメタアクリレート、ポリビニルアセテート、ポリビニルピロリドン、ポリフッ化ビニリデン等が挙げられる。ポリマーゲルを用いると、漏液を抑制する効果がある。セパレータ60として、上述したような多孔質樹脂フィルム又は不織布等とポリマーゲルを併用してもよい。
(非水電解質)
 非水電解質としては、公知の非水電解質の中から適宜選択できる。非水電解質には、非水電解液を用いてもよい。非水電解液は、非水溶媒と、この非水溶媒に溶解されている電解質塩とを含む。
 非水溶媒としては、公知の非水溶媒の中から適宜選択できる。非水溶媒としては、環状カーボネート、鎖状カーボネート、カルボン酸エステル、リン酸エステル、スルホン酸エステル、エーテル、アミド、ニトリル等が挙げられる。非水溶媒として、これらの化合物に含まれる水素原子の一部がハロゲンに置換されたものを用いてもよい。
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、クロロエチレンカーボネート、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)、スチレンカーボネート、1-フェニルビニレンカーボネート、1,2-ジフェニルビニレンカーボネート等が挙げられる。これらの中でもECが好ましい。
 鎖状カーボネートとしては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジフェニルカーボネート、トリフルオロエチルメチルカーボネート、ビス(トリフルオロエチル)カーボネート等が挙げられる。これらの中でもEMCが好ましい。
 非水溶媒として、環状カーボネート又は鎖状カーボネートを用いることが好ましく、環状カーボネートと鎖状カーボネートとを併用することがより好ましい。環状カーボネートを用いることで、電解質塩の解離を促進して非水電解液のイオン伝導度を向上させることができる。鎖状カーボネートを用いることで、非水電解液の粘度を低く抑えることができる。環状カーボネートと鎖状カーボネートとを併用する場合、環状カーボネートと鎖状カーボネートとの体積比率(環状カーボネート:鎖状カーボネート)としては、例えば、5:95から50:50の範囲とすることが好ましい。
 電解質塩としては、公知の電解質塩から適宜選択できる。電解質塩としては、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩等が挙げられる。これらの中でもリチウム塩が好ましい。
 リチウム塩としては、LiPF6、LiPO22、LiBF4、LiClO4、LiN(SO2F)2等の無機リチウム塩、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、LiC(SO2CF33、LiC(SO2253等のハロゲン化炭化水素基を有するリチウム塩等が挙げられる。これらの中でも、無機リチウム塩が好ましく、LiPF6がより好ましい。
 非水電解液における電解質塩の含有量は、20℃1気圧下において、0.1mol/dm3以上2.5mol/dm3以下であると好ましく、0.3mol/dm3以上2.0mol/dm3以下であるとより好ましく、0.5mol/dm3以上1.7mol/dm3以下であるとさらに好ましく、0.7mol/dm3以上1.5mol/dm3以下であると特に好ましい。電解質塩の含有量を上記の範囲とすることで、非水電解液のイオン伝導度を高めることができる。
 非水電解液は、非水溶媒と電解質塩以外に、添加剤を含んでもよい。添加剤としては、例えば、リチウムビス(オキサレート)ボレート(LiBOB)、リチウムジフルオロオキサレートボレート(LiFOB)、リチウムビス(オキサレート)ジフルオロホスフェート(LiFOP)等のシュウ酸エステル;ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分ハロゲン化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等のハロゲン化アニソール化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物;亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、プロパンスルトン、プロペンスルトン、ブタンスルトン、メタンスルホン酸メチル、ブスルファン、トルエンスルホン酸メチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルフィド、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド、パーフルオロオクタン、ホウ酸トリストリメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリル、モノフルオロリン酸リチウム等が挙げられる。これら添加剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 非水電解液に含まれる添加剤の含有量は、非水電解液全体の質量に対して0.01質量%以上10質量%以下であると好ましく、0.1質量%以上7質量%以下であるとより好ましく、0.2質量%以上5質量%以下であるとさらに好ましく、0.3質量%以上3質量%以下であると特に好ましい。添加剤の含有量を上記の範囲とすることで、高温保存後の容量維持性能又はサイクル性能を向上させたり、安全性をより向上させたりすることができる。
 非水電解質には、固体電解質を用いてもよく、非水電解液と固体電解質とを併用してもよい。
 固体電解質としては、リチウム、ナトリウム、カルシウム等のイオン伝導性を有し、常温(例えば15℃から25℃)において固体である任意の材料から選択できる。固体電解質としては、例えば、硫化物固体電解質、酸化物固体電解質、及び酸窒化物固体電解質、ポリマー固体電解質等が挙げられる。
 硫化物固体電解質としては、リチウムイオン二次電池の場合、例えば、Li2S-P25、LiI-Li2S-P25、Li10Ge-P212、等が挙げられる。
 本実施形態の蓄電素子1の形状については特に限定されるものではなく、例えば、円筒型電池、角型電池、扁平型電池、コイン型電池、ボタン型電池等が挙げられる。
 図1に角型電池の一例としての蓄電素子1(非水電解質蓄電素子)を示す。セパレータ60を挟んで巻回された正極40及び負極50を有する電極体2が角型のケース3に収納される。正極40は正極リード(図示せず)を介して正極端子4と電気的に接続されている。負極50は負極リード(図示せず)を介して負極端子5と電気的に接続されている。
<非水電解質蓄電装置の構成>
 本実施形態の蓄電素子1は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源、パーソナルコンピュータ、通信端末等の電子機器用電源、又は電力貯蔵用電源等に、複数の蓄電素子1を集合して構成した蓄電ユニット10(バッテリーモジュール)として搭載することができる。この場合、蓄電装置に含まれる少なくとも一つの蓄電素子1に対して、本発明の技術が適用されていればよい。
 図6に、電気的に接続された二以上の蓄電素子1が集合した蓄電ユニット10をさらに集合した蓄電装置100の一例を示す。蓄電装置100は、二以上の蓄電素子1を電気的に接続するバスバ(図示せず)、二以上の蓄電ユニット10を電気的に接続するバスバ(図示せず)等を備えていてもよい。蓄電ユニット10又は蓄電装置100は、一以上の蓄電素子1の状態を監視する状態監視装置(図示せず)を備えていてもよい。
<非水電解質蓄電素子の製造方法>
 本実施形態の蓄電素子1の製造方法は、公知の方法から適宜選択できる。当該製造方法は、例えば、電極体2を準備することと、非水電解質を準備することと、電極体2及び非水電解質をケースに収容することと、を備える。電極体2を準備することは、正極40及び負極50を準備することと、正極40及び負極50を、セパレータ60を介して積層又は巻回することにより電極体2を形成することとを備える。
 非水電解質をケースに収容することは、公知の方法から適宜選択できる。例えば、非水電解質に非水電解液を用いる場合、ケースに形成された注入口から非水電解液を注入した後、注入口を封止すればよい。
<その他の実施形態>
 尚、本発明の蓄電素子は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもよい。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成又は周知技術に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。また、ある実施形態の構成に対して周知技術を付加することができる。
 上記実施形態では、蓄電素子1が充放電可能な非水電解質二次電池(例えばリチウムイオン二次電池)として用いられる場合について説明したが、蓄電素子の種類、形状、寸法、容量等は任意である。本発明は、種々の二次電池、電気二重層キャパシタ又はリチウムイオンキャパシタ等のキャパシタにも適用できる。
 上記実施形態では、正極40及び負極50がセパレータ60を介して積層された電極体について説明したが、電極体は、セパレータ60を備えなくてもよい。例えば、正極又は負極の活物質層上に導電性を有さない層が形成された状態で、正極及び負極が直接接してもよい。
 上記実施形態では、いわゆる巻回型の電極体について詳しく説明したが、電極体は、シート状の正極、シート状のセパレータ、及びシート状の負極が繰り返し積み重なって構成された積層型であってもよい。
 以下、実施例によって本発明をさらに具体的に説明する。本発明は以下の実施例に限定されない。
 以下に示すようにして、非水電解質二次電池(リチウムイオン二次電池)を製造した。
(実施例1)
 本例に係るリチウムイオン二次電池は、正極活物質層を有する正極と、正極活物質層と対向する負極活物質層を有する負極とを備える。正極及び負極は、それぞれ、シート状の集電基材と、該集電基材の両面に重なった活物質層とを有する。
(1)正極の作製
  溶媒:N-メチル-2-ピロリドン(NMP)
  導電助剤:カーボンブラック(5質量部)
  活物質(LiNi0.6Co0.2Mn0.22)の粒子:(90質量部)
  バインダ:PVDF(5質量部)
 上記の原料を混合し、混練することで、正極用の合剤組成物を調製した。調製した正極用の合剤組成物を、乾燥後の正極活物質層の単位面積当たりの質量(目付量)が1.8g/100cm2 となるように、アルミニウム箔(厚さ20μmの正極の集電基材)の両面にそれぞれ塗布した。加熱による乾燥後、ロールプレスを行った。その後、真空乾燥して、水分等を除去した。プレス後の活物質層(1層分)の厚さは、150μmであった。正極活物質層の密度は、2.1g/cm3であった。
(2)負極の作製
  溶媒:水
  活物質:黒鉛(98質量部)
  バインダ:SBR(1質量部)
  増粘剤:CMC(1質量部)
 上記の原料を混合し、混練することで、負極用の合剤組成物を調製した。調製した負極用の合剤組成物を、乾燥後の銅箔の本体部に重なる負極活物質層の単位面積当たりの質量(目付量、1層分)が1.0g/100cm2 となるように、銅箔(厚さ10μmの負極の集電基材)の両面にそれぞれ塗布した。加熱による乾燥後、ロールプレスを行った。その後、真空乾燥して、水分等を除去した。集電基材の本体部に重なるプレス後の負極活物質層(1層分)の厚さは、150μmであった。負極活物質層の密度は、1.4g/cm3であった。
 負極の集電基材は、本体部(中央部)と、該本体部から外側へ突出したタブ部とを有する。負極活物質層は、本体部とタブ部との境界を越えてタブ部の一部にも重なる。負極活物質層は、タブ部の突出の方向に向かって相対的に厚い部位と相対的に薄い部位とをこの順で有する。負極活物質層の単位面積当たりの質量(目付量)は、タブ部では本体部よりも小さい。この例では、タブ部に重なる負極活物質層の単位面積当たりの質量(目付量)W1と、本体部に重なる負極活物質層の単位面積当たりの質量(目付量)W2との比(W1/W2)を、表1に示す値となるように設定した。
 なお、負極の作製において、合剤組成物をタブ部においてより少なく塗布することによって、タブ部に重なる負極活物質層の目付量を小さくし、また、タブ部に重なる負極活物質層の平均厚さを薄くした。
(3)セパレータ(セパレータ基材)
 セパレータ基材として厚さが22μmのポリエチレン製微多孔膜を用いた。このセパレータ基材のみでセパレータを構成した。
(4)非水電解液の調製
 非水電解液としては、以下の方法で調製したものを用いた。非水溶媒として、エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートを、いずれも1体積部ずつ混合した溶媒を用い、この非水溶媒に、1mol/dm3の塩濃度でLiPF6を溶解させ、非水電解液を調製した。
(5)ケース内への電極体の配置
 上記の正極、上記の負極、上記の非水電解液、セパレータ、及びケースを用いて、一般的な方法によってリチウムイオン二次電池を組み立てた。
 まず、セパレータが上記の正極および負極の間に配されて積層されてなるシート状物を巻回した。次に、巻回されてなる電極体を、ケースとしてのアルミニウム製の角形電槽缶のケース本体内に配置した。続いて、正極及び負極を2つの外部端子にそれぞれ電気的に接続させた。さらに、ケース本体に蓋体を取り付けた。そして、上記の非水電解液を、ケースの蓋体に形成された注液口からケース内に注入した。最後に、ケースの注液口を封止することにより、ケースを密閉した。
(実施例2から4)
 負極について、表1に示す構成に変えた点以外は、実施例1と同様にしてリチウムイオン二次電池を製造した。
(比較例1)
 負極について、表1に示す構成に変えた点以外は、実施例1と同様にしてリチウムイオン二次電池を製造した。
<繰り返し充放電試験後の放電容量の評価>
 1サイクルの充放電は、以下の条件とした。充電電流1.0C、充電終止電圧4.2Vでの定電流定電圧充電をおこなった。充電終止条件は、充電電流が0.01Cとなるまでとした。5分間の休止の後、放電電流1.0C、放電終止電圧2.75Vでの定電流放電をおこない、5分間の休止をおこなった。まず25℃の環境温度条件において上記の1サイクルの充放電をおこなった際の放電容量C1を初期容量とした。その後、45℃の環境温度条件で上記の充放電を500サイクル実施した。その後、25℃の環境温度条件にて上記の1サイクルの充放電をおこなった際の放電容量C2を測定した。C1に対するC2の百分率を充放電500サイクル後放電容量維持率として算出した。
 実施例1から4、及び、比較例1のリチウムイオン二次電池について評価を行った結果を表1に示す。また、斯かる結果をグラフ化したものを図7に示す。
Figure JPOXMLDOC01-appb-T000001
(実施例5から9、及び、比較例2)
 本例では、前述したリチウムイオン二次電池の製造工程において、タブ部および本体部(中央部)における負極活物質層の平均厚さを種々異ならせてリチウムイオン二次電池を製造した。各例について、タブ部に重なる負極活物質層の平均厚さT1と、本体部(中央部)に重なる負極活物質層の平均厚さT2との比(T1/T2)を表2にまとめて示す。
 実施例5から9、及び、比較例2のリチウムイオン二次電池について上記の繰り返し充放電試験後の放電容量の評価を行った結果を表2に示す。また、斯かる結果をグラフ化したものを図8に示す。
Figure JPOXMLDOC01-appb-T000002
(実施例10から17)
 本例では、前述したリチウムイオン二次電池の製造工程において、負極活物質層の厚い部位と薄い部位との境界から負極活物質層の端縁までの長さXと、本体部とタブ部との境界から負極活物質層の端縁までの長さYとの比(図5参照)を種々異ならせてリチウムイオン二次電池を製造した。
 製造した電池の負極について、図5に示す上記したX及びYを表3に示す。
<高温放置後の放電容量の評価>
 1サイクルの充放電は、以下の条件とした。充電電流1.0C、充電終止電圧4.2Vでの定電流定電圧充電をおこなった。充電終止条件は、充電電流が0.01Cとなるまでとした。5分間の休止の後、放電電流1.0C、放電終止電圧2.75Vでの定電流放電をおこない、5分間の休止をおこなった。まず25℃の環境温度条件において上記の1サイクルの充放電をおこなった際の放電容量C3を初期容量とした。その後、上記充電条件にて電池を充電した後、45℃の環境温度条件にて90日保管した。その後、25℃の環境温度条件にて上記放電条件にて電池を放電した後、上記の1サイクルの充放電をおこなった際の放電容量C4を測定した。C3に対するC4の百分率を放置後の放電容量の相対値として算出した。
 実施例10から17のリチウムイオン二次電池について上記の高温放置後の放電容量の評価を行った結果を表3に示す。また、斯かる結果をグラフ化したものを図9に示す。
Figure JPOXMLDOC01-appb-T000003
 表1、表2及び表3から把握されるように、実施例の蓄電素子は、充放電を繰り返した後、又は、高温で放置した後の放電容量の低下が抑制されていた。一方、比較例の蓄電素子は、放電容量が低下しやすかった。
 また、タブ部に重なる負極活物質層の単位面積当たりの活物質量W1と、本体部に重なる負極活物質層の単位面積当たりの活物質量W2とが、下記式(A)を満たすことによって、充放電を繰り返した後の放電容量の低下が特に抑制された。
    0.3×W2≦W1≦0.9×W2   式(A)
 また、タブ部に重なる負極活物質層の平均厚さT1と、本体部に重なる負極活物質層の平均厚さT2とが、下記式(B)を満たすことによって、充放電を繰り返した後の放電容量の低下が特に抑制された。
    0.3×T2≦T1≦0.9×T2   式(B)
 また、負極活物質層において厚い部位と薄い部位との境界から負極活物質層の端縁までの長さをXとし、本体部とタブ部との境界から負極活物質層の端縁までの長さをYとしたときに、XとYとの比(X/Y)が0.4以上1.4以下であることによって、放置した後の放電容量の低下が特に抑制された。斯かる比(X/Y)が0.6以上1.2以下であることによって、放置した後の放電容量の低下がさらに抑制された。
 1:蓄電素子(非水電解質二次電池)、
 2:電極体、
 3:ケース、 31:ケース本体、 32:蓋体、
 4:正極端子、 5:負極端子、
 40:正極、
 41:正極の集電基材(正極基材)、 42:正極活物質層、 412:正極のタブ部、
 50:負極、
 51:負極の集電基材(負極基材)、 511:本体部、 512:タブ部(負極のタブ部)、
 52:負極活物質層、
 60:セパレータ、
 10:蓄電ユニット、 100:蓄電装置。

Claims (4)

  1.  正極活物質層を有する正極と、前記正極活物質層と対向する負極活物質層を有する負極とを備え、
     前記負極は、シート状の集電基材と、該集電基材の少なくとも一方の面に重なった前記負極活物質層とを有し、
     前記集電基材は、本体部と、該本体部から外側へ突出したタブ部とを有し、
     前記負極活物質層は、前記本体部と前記タブ部との境界を越えて前記タブ部の一部にも重なり、以下の条件:
    (1)前記負極活物質層の単位面積当たりの質量は、前記タブ部では前記本体部よりも小さい;および、
    (2)前記負極活物質層の厚さは、前記タブ部では前記本体部よりも薄い;
    の少なくとも一方を満たす、蓄電素子。
  2.  前記タブ部に重なる前記負極活物質層の単位面積当たりの質量W1と、前記本体部に重なる前記負極活物質層の単位面積当たりの質量W2とが、下記式(A)を満たす、請求項1に記載の蓄電素子。
        0.3×W2≦W1≦0.9×W2   式(A)
  3.  前記タブ部に重なる前記負極活物質層の平均厚さT1と、前記本体部に重なる前記負極活物質層の平均厚さT2とが、下記式(B)を満たす、請求項1又は2に記載の蓄電素子。
        0.3×T2≦T1≦0.9×T2   式(B)
  4.  前記負極活物質層は、前記タブ部の前記突出の方向に向かって相対的に厚い部位と相対的に薄い部位とをこの順で有しており、
     前記負極活物質層において前記厚い部位と前記薄い部位との境界から前記負極活物質層の端縁までの長さをXとし、
     前記本体部と前記タブ部との境界から前記負極活物質層の前記端縁までの長さをYとしたときに、
     前記Xと前記Yとの比(X/Y)は、0.4以上1.4以下である、請求項1から3のいずれか1項に記載の蓄電素子。
PCT/JP2021/011895 2020-03-31 2021-03-23 蓄電素子 WO2021200373A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020062536 2020-03-31
JP2020-062536 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021200373A1 true WO2021200373A1 (ja) 2021-10-07

Family

ID=77930000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011895 WO2021200373A1 (ja) 2020-03-31 2021-03-23 蓄電素子

Country Status (1)

Country Link
WO (1) WO2021200373A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119216A (ja) * 2009-11-30 2011-06-16 Samsung Sdi Co Ltd 二次電池
WO2014136714A1 (ja) * 2013-03-07 2014-09-12 Necエナジーデバイス株式会社 非水電解液二次電池
CN210535760U (zh) * 2019-08-14 2020-05-15 宁德时代新能源科技股份有限公司 电极组件和二次电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119216A (ja) * 2009-11-30 2011-06-16 Samsung Sdi Co Ltd 二次電池
WO2014136714A1 (ja) * 2013-03-07 2014-09-12 Necエナジーデバイス株式会社 非水電解液二次電池
CN210535760U (zh) * 2019-08-14 2020-05-15 宁德时代新能源科技股份有限公司 电极组件和二次电池

Similar Documents

Publication Publication Date Title
WO2021246186A1 (ja) 正極及び蓄電素子
US20230112577A1 (en) Energy storage device
WO2023286718A1 (ja) 蓄電素子
JP7411161B2 (ja) 蓄電素子
WO2021100858A1 (ja) 蓄電素子及び蓄電装置
JP7532898B2 (ja) 正極及び蓄電素子
US20230006188A1 (en) Energy storage device
JP2021077641A (ja) 蓄電素子
WO2021200373A1 (ja) 蓄電素子
JP2022091626A (ja) 蓄電素子
WO2023224071A1 (ja) 非水電解質蓄電素子
WO2023190422A1 (ja) 非水電解質蓄電素子用の正極及びこれを備える非水電解質蓄電素子
WO2022168845A1 (ja) 非水電解質蓄電素子、及び蓄電装置
WO2023224070A1 (ja) 非水電解質蓄電素子
WO2022138452A1 (ja) 非水電解質蓄電素子、電子機器及び自動車
WO2024029333A1 (ja) 非水電解質蓄電素子
US20240339663A1 (en) Nonaqueous electrolyte energy storage device, device, and method for using nonaqueous electrolyte energy storage device
US20240186514A1 (en) Nonaqueous electrolyte energy storage device
WO2022163125A1 (ja) 非水電解質蓄電素子、蓄電装置及び非水電解質蓄電素子の製造方法
WO2023199942A1 (ja) 非水電解質蓄電素子
WO2022091825A1 (ja) 電極、蓄電素子及び蓄電装置
WO2022102591A1 (ja) 非水電解質蓄電素子及び非水電解質蓄電装置
WO2023248769A1 (ja) 活物質粒子、電極、蓄電素子及び蓄電装置
WO2021200431A1 (ja) 蓄電素子、その製造方法及び蓄電装置
JP2021128851A (ja) 蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP