WO2014136708A1 - 半導体レーザモジュール及びその製造方法 - Google Patents

半導体レーザモジュール及びその製造方法 Download PDF

Info

Publication number
WO2014136708A1
WO2014136708A1 PCT/JP2014/055238 JP2014055238W WO2014136708A1 WO 2014136708 A1 WO2014136708 A1 WO 2014136708A1 JP 2014055238 W JP2014055238 W JP 2014055238W WO 2014136708 A1 WO2014136708 A1 WO 2014136708A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
semiconductor laser
lens fixing
collimating
substrate
Prior art date
Application number
PCT/JP2014/055238
Other languages
English (en)
French (fr)
Inventor
木村 直樹
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to EP14760947.3A priority Critical patent/EP2937955A4/en
Priority to CN201480010446.0A priority patent/CN105075036B/zh
Publication of WO2014136708A1 publication Critical patent/WO2014136708A1/ja
Priority to US14/825,416 priority patent/US9859679B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • Y10T29/49131Assembling to base an electrical component, e.g., capacitor, etc. by utilizing optical sighting device

Definitions

  • the present invention relates to a semiconductor laser module and a manufacturing method thereof, and more particularly to a semiconductor laser module including a semiconductor laser element and a collimating lens for collimating a laser beam emitted from the semiconductor laser element, and a manufacturing method thereof.
  • the direction perpendicular to the pn junction of the semiconductor laser element is called the first axis
  • the direction parallel to the pn junction is called the slow axis
  • the numerical aperture in the first axis direction of the semiconductor laser element is the numerical aperture in the slow axis direction.
  • the laser light emitted from the semiconductor laser element has a large spread in the first axis direction. Therefore, it is necessary to arrange a collimating lens for collimating the component in the first axis direction of the laser light emitted from the semiconductor laser element in the vicinity of the emission surface of the semiconductor laser element (see, for example, Patent Document 1 and Patent Document 2).
  • the collimating lens is fixed to the semiconductor laser element with high accuracy in the direction along the optical axis and the direction along the first axis, and the semiconductor laser It is necessary to suppress fluctuations in the positional relationship between the element and the collimating lens. Specifically, the positional relationship between the semiconductor laser element and the collimating lens needs to be fixed and maintained on the order of microns.
  • the collimating lens (optical fiber lens 26) is mounted so as to be slidable along the axis, but the optical fiber lens 26 is slid.
  • it is necessary to form a certain gap between the cylindrical clamp 52 and the optical fiber lens 26. Therefore, it is impossible to suppress the fluctuation of the position of the optical fiber lens 26 in the micron order in both the optical axis direction and the fast axis direction of the laser light emitted from the semiconductor laser element bar 10.
  • the optical fiber lens 26 of Patent Document 1 is fixed to the mounting member 40 by the epoxy resin 50.
  • the epoxy resin 50 is cured and contracted, the optical fiber lens 26 is displaced in the optical axis direction of the laser light.
  • the optical fiber lens 26 is directly fixed to the mounting member 40 by the epoxy resin 50, at least the alignment resin more than the alignment alignment amount is required to align the optical fiber lens 26 with the mounting member 40. It is necessary to provide between the fiber lens 26.
  • the optical fiber lens 26 is also displaced in the fast axis direction due to the shrinkage and expansion due to the temperature and humidity of the epoxy resin 50.
  • Patent Document 2 the semiconductor laser element 1 and the collimating lens 6 are fixed to one auxiliary object 4 by brazing layers 5 and 8, respectively.
  • a semiconductor laser module is disclosed in which the fluctuation of the positional relationship between the two is suppressed by interlocking with the deflection of 6.
  • it is necessary to position the semiconductor laser element 1 at a high temperature of about 400 ° C. for brazing the brazing layers 5 and 8, for example.
  • the collimating lens 6 is aligned while emitting the laser beam from the semiconductor laser element 1 (so-called active alignment). There is a problem that can not be.
  • the present invention has been made in view of such problems of the prior art, and reduces the influence of shrinkage and expansion of the resin that fixes the collimating lens, and keeps the collimating lens in a highly accurately aligned state. It is a first object to provide a semiconductor laser module that can be used.
  • a second object of the present invention is to provide a method of manufacturing a semiconductor laser module that can fix the collimating lens to the semiconductor laser element with high accuracy while performing active alignment of the collimating lens. .
  • a semiconductor laser module capable of reducing the influence of shrinkage and expansion of a resin for fixing a collimating lens and maintaining the collimating lens in a highly accurate alignment state.
  • the semiconductor laser module includes a semiconductor laser element that emits laser light having an optical axis along a first direction, and a first component perpendicular to the first direction among the components of the laser light emitted from the semiconductor laser element.
  • a collimating lens that collimates the components in the two directions, and a lens fixing block that is fixed to the semiconductor laser element.
  • the lens fixing block has a lens mounting surface perpendicular to a third direction perpendicular to the first direction and the second direction. At least one of the end portions of the collimating lens in the third direction is fixed to the lens mounting surface of the lens fixing block with a lens fixing resin.
  • the lens fixing resin for fixing the collimating lens is between the end portion in the third direction of the collimating lens and the lens mounting surface perpendicular to the third direction. Therefore, the change in the position of the collimating lens due to the shrinkage and expansion of the lens fixing resin due to temperature or humidity is mainly in the third direction. Further, since the collimating lens does not need to be adjusted in the third direction and may be optically positioned, it is possible to reduce the thickness of the lens fixing resin between the collimating lens and the lens mounting surface. This is possible, and the amount of change itself due to the shrinkage or expansion of the lens fixing resin can be reduced. For this reason, the position of the collimating lens hardly changes in the first direction and the second direction. Therefore, the influence of shrinkage and expansion of the lens fixing resin for fixing the collimating lens can be reduced, and the collimating lens can be held in a highly accurate state.
  • the second direction can be the direction of the first axis of the laser beam emitted from the semiconductor laser element.
  • the lens fixing resin a UV curable resin or a thermosetting resin can be used.
  • the semiconductor laser element and the lens fixing block are fixed to the same substrate.
  • a spacer may be disposed between the substrate and the semiconductor laser element.
  • the amounts of the lens fixing resins existing on both sides in the first direction with the collimating lens interposed therebetween are equal to each other. By doing so, the shrinkage or expansion of the lens fixing resin existing on both sides in the first direction across the collimating lens becomes equal and cancel each other. Therefore, collimation due to contraction and expansion of the lens fixing resin. The influence on the first direction of the lens can be substantially eliminated.
  • the amounts of the lens fixing resins existing on both sides in the second direction with the collimator lens interposed therebetween are equal to each other. By doing so, the contraction amount or expansion amount of the lens fixing resin existing on both sides in the second direction across the collimating lens becomes equal and cancel each other. Therefore, collimation due to contraction or expansion of the lens fixing resin The influence on the second direction of the lens can be substantially eliminated.
  • the lens fixing block and the collimating lens fixed thereto are first caused by contraction or expansion of the block fixing resin due to temperature or humidity.
  • the lens fixing block is fixed to the substrate via a block fixing resin having a thickness of 20 ⁇ m or less because the optical path of the laser beam emitted from the collimating lens is shifted and adversely affected. Is preferred.
  • a method for manufacturing a semiconductor laser module capable of fixing the collimating lens to the semiconductor laser element with high accuracy while performing active alignment of the collimating lens.
  • a semiconductor laser element that emits laser light having an optical axis along the first direction, and a second component perpendicular to the first direction among the components of the laser light emitted from the semiconductor laser element.
  • a semiconductor laser module having a collimating lens for collimating the component in the direction of is manufactured.
  • the semiconductor laser element is fixed to a substrate, and a lens fixing block having a lens mounting surface is provided in a third direction in which the lens mounting surface is perpendicular to the first direction and the second direction.
  • a lens fixing resin is applied to the lens mounting surface of the lens fixing block, and the end of the collimating lens in the third direction is inserted into the lens fixing resin applied to the lens mounting surface.
  • the collimating lens inserted into the lens fixing resin is positioned at a desired position while emitting laser light from the semiconductor laser element, and the lens fixing resin is cured in a state where the collimating lens is positioned, and the collimating is performed.
  • the lens is fixed to the lens fixing block.
  • the collimating lens since the collimating lens is fixed to the lens fixing block using the lens fixing resin, it is not necessary to maintain a high temperature unlike the solder joint of Patent Document 2. . Therefore, the collimating lens can be positioned (actively aligned) while emitting laser light from the semiconductor laser element.
  • the lens fixing resin is provided between the end of the collimating lens in the third direction and the lens mounting surface perpendicular to the third direction, curing shrinkage, temperature, or humidity of the lens fixing resin. The change in the position of the collimating lens due to the contraction and expansion of the lens fixing resin due to the above is mainly only in the third direction.
  • the collimating lens does not need to be adjusted in the third direction and may be optically positioned, it is possible to reduce the thickness of the lens fixing resin between the collimating lens and the lens mounting surface. This is possible, and the amount of change itself due to the shrinkage or expansion of the lens fixing resin can be reduced. Therefore, the position of the collimating lens hardly changes in the first direction and the second direction, and the collimating lens can be fixed to the semiconductor laser element with high accuracy.
  • the second direction can be the direction of the first axis of the laser beam emitted from the semiconductor laser element.
  • the lens fixing resin a UV curable resin or a thermosetting resin can be used.
  • a spacer may be disposed between the substrate and the semiconductor laser element.
  • the end portions of the collimating lens are inserted into the lens fixing resin so that the amounts of the lens fixing resin existing on both sides in the first direction with the collimating lens interposed therebetween are equal to each other.
  • the shrinkage or expansion of the lens fixing resin existing on both sides in the first direction across the collimating lens becomes equal and cancel each other. Therefore, collimation due to contraction and expansion of the lens fixing resin.
  • the influence on the first direction of the lens can be substantially eliminated.
  • the end portions of the collimating lens are inserted into the lens fixing resin so that the amounts of the lens fixing resin existing on both sides in the second direction across the collimating lens are equal to each other.
  • the lens fixing block and the collimating lens fixed thereto are first caused by contraction or expansion of the block fixing resin due to temperature or humidity.
  • a block fixing resin is applied between the lens fixing block and the substrate, and the lens fixing block and the substrate are moved. It is preferable to fix the lens fixing block to the substrate by curing the block fixing resin while pressing the lens fixing block against the substrate so that the thickness of the block fixing resin is 20 ⁇ m or less. .
  • the present invention it is possible to provide a semiconductor laser module that can reduce the influence of shrinkage and expansion of the resin that fixes the collimating lens, and can keep the collimating lens in a precisely aligned state. Further, according to the present invention, it is possible to provide a method of manufacturing a semiconductor laser module that can fix the collimating lens to the semiconductor laser element with high accuracy while performing active alignment of the collimating lens.
  • FIG. 1st Embodiment of this invention It is a top view which shows the semiconductor laser module in the 1st Embodiment of this invention. It is a front view of the semiconductor laser module of FIG. It is a side view of the semiconductor laser module of FIG. It is a figure explaining the manufacturing method of the semiconductor laser module of FIG. It is a figure explaining the manufacturing method of the semiconductor laser module of FIG. It is a figure explaining the manufacturing method of the semiconductor laser module of FIG. It is a figure explaining the manufacturing method of the semiconductor laser module of FIG. It is a figure explaining the manufacturing method of the semiconductor laser module of FIG. It is a top view which shows the semiconductor laser module in the 2nd Embodiment of this invention. It is a front view of the semiconductor laser module of FIG.
  • FIG. 1 to FIG. 9 the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted.
  • FIG. 1 is a plan view showing a semiconductor laser module 1 according to a first embodiment of the present invention
  • FIG. 2 is a front view
  • FIG. 3 is a side view.
  • the semiconductor laser module 1 according to the present embodiment includes a first substrate 10, a second substrate 20 fixed on the first substrate 10, and a second substrate 20.
  • a semiconductor laser element (laser diode) 30 mounted on the semiconductor laser, a collimating lens 40 for collimating the laser light emitted from the semiconductor laser element 30, and a lens fixing fixed on the first substrate 10 by a block fixing resin 52.
  • a block 50 a semiconductor laser element 30 emits a laser beam L along the Z direction.
  • the Y direction shown in FIG. 2 is the first axis direction of the laser light L.
  • the collimating lens 40 collimates the component in the first axis direction (Y direction) among the components of the laser light L emitted from the semiconductor laser element 30 to generate parallel light.
  • the cross-section of the collimating lens 40 in the YZ plane is such that the side on which the laser light L is incident is parallel to the Y axis, and the side on which the laser light is emitted is convex.
  • the collimating lens 40 has such a cross-sectional shape and extends in the slow axis direction (X direction) of the laser light L.
  • the length of the collimating lens 40 in the X direction is about 2 mm.
  • the collimating lens 40 is aligned to generate desired parallel light and is positioned with high accuracy in the Y direction and the Z direction.
  • the lens fixing block 50 is a substantially rectangular parallelepiped member made of glass or the like, for example, and has a lens mounting surface 50A parallel to the optical axis of the laser light L.
  • the lens mounting surface 50A in the present embodiment is configured to be parallel to the first axis (Y direction) of the laser light L, that is, perpendicular to the X direction.
  • the lens fixing block 50 is disposed in the vicinity of the second substrate 20, and is fixed to the upper surface of the first substrate 10 by a block fixing resin 52.
  • a block fixing resin 52 for example, a UV curable resin or a thermosetting resin can be used.
  • the end portion 40A in the X direction of the collimating lens 40 is fixed to the lens mounting surface 50A of the lens fixing block 50 by a lens fixing resin 42.
  • the collimating lens 40 is not in contact with the first substrate 10 and is fixed to the lens fixing block 50 in a cantilever shape.
  • the lens fixing resin 42 for example, a UV curable resin or a thermosetting resin can be used.
  • the lens fixing resin 42 fixes the end 40A of the collimating lens 40 from the X direction, the Y direction, and the Z direction.
  • the amount of the lens fixing resin 42 present on both sides in the Z direction with the collimating lens 40 interposed therebetween is equal to each other, and the lens fixing resin 42 present on both sides in the Y direction with the collimating lens 40 interposed therebetween.
  • the lens fixing resin 42 present on both sides in the Y direction with the collimating lens 40 interposed therebetween are preferably equal to each other.
  • the lens fixing resin 42 for fixing the collimating lens 40 is provided between the end portion 40A in the X direction of the collimating lens 40 and the lens mounting surface 50A perpendicular to the X direction, the lens fixing resin.
  • the change in the position of the collimating lens 40 due to the shrinkage and expansion of the lens fixing resin 42 due to curing shrinkage of 42 and temperature or humidity is mainly only in the X direction, that is, the slow axis direction.
  • the thickness of the lens fixing resin 42 between the collimating lens 40 and the lens mounting surface 50A is reduced, the amount of change itself due to the contraction or expansion of the lens fixing resin 42 can be reduced. Therefore, the position of the collimating lens 40 hardly changes in the Y direction and the Z direction, and the collimating lens 40 can be held in a highly accurately aligned state.
  • the entire end surface in the X direction of the end portion 40 ⁇ / b> A of the collimating lens 40 is fixed to the lens mounting surface 50 ⁇ / b> A by the lens fixing resin 42, but the end portion 40 ⁇ / b> A of the collimating lens 40. It is sufficient that at least a part of the end surface in the X direction is fixed to the lens mounting surface 50A by the lens fixing resin 42.
  • the amounts of the lens fixing resin 42 existing on both sides in the Z direction across the collimating lens 40 are equal. Therefore, the influence of the collimating lens 40 in the Z direction due to the contraction and expansion of the lens fixing resin 42 can be substantially eliminated. Further, by making the amounts of the lens fixing resin 42 present on both sides in the Y direction across the collimating lens 40 equal, the contraction amount or expansion amount of the lens fixing resin 42 existing on both sides of the collimating lens 40 is equal. Therefore, the influence of the collimating lens 40 in the Y direction due to contraction and expansion of the lens fixing resin 42 can be substantially eliminated.
  • the semiconductor laser module 1 is manufactured, first, the second substrate 20 on which the semiconductor laser element 30 is mounted is fixed on the first substrate 10 (FIG. 4).
  • the block fixing resin 52 is applied to a predetermined location on the first substrate 10 (FIG. 5), and the lens fixing block 50 is placed on the block fixing resin 52 (FIG. 6). Then, the block fixing resin is pressed while pressing the lens fixing block 50 against the first substrate 10 so that the thickness of the block fixing resin 52 between the lens fixing block 50 and the first substrate 10 is as thin as possible. 52 is cured to fix the lens fixing block 50 to the first substrate 10. At this time, the lens mounting surface 50A of the lens fixing block 50 is perpendicular to the X direction.
  • the lens fixing resin 42 is applied to the lens mounting surface 50A of the lens fixing block 50, and the end portion 40A in the X direction of the collimating lens 40 is inserted into the lens fixing resin 42 from the X direction (FIG. 7).
  • the collimator lens 40 is moved to perform positioning (active alignment).
  • the lens fixing resin 42 between the collimating lens 40 and the lens mounting surface 50A is as thin as possible.
  • the lens fixing resin 42 is cured to fix the collimating lens 40 to the lens fixing block 50. In this way, the semiconductor laser module 1 is completed (FIG. 1).
  • the collimating lens 40 is fixed to the lens fixing block 50 using the lens fixing resin 42. So there is no need to keep it at high temperature. Accordingly, the collimating lens 40 can be positioned (actively aligned) while emitting laser light from the semiconductor laser element 30.
  • the end 40A in the X direction of the collimating lens 40 is fixed to the lens mounting surface 50A perpendicular to the X direction, the shrinkage of the lens fixing resin 42 due to curing shrinkage of the lens fixing resin 42 or temperature or humidity, Fluctuation of the position of the collimating lens 40 due to expansion hardly occurs in the Y direction and the Z direction. Further, if the thickness of the lens fixing resin 42 between the collimating lens 40 and the lens mounting surface 50A is reduced, the amount of change itself due to the contraction or expansion of the lens fixing resin 42 can be reduced. Therefore, the collimating lens 40 can be held in a highly accurate alignment state.
  • the lens fixing block 50 it is preferable to fix the lens fixing block 50 so that the thickness of the block fixing resin 52 between the lens fixing block 50 and the first substrate 10 is 20 ⁇ m or less.
  • the thickness of the block fixing resin 52 between the lens fixing block 50 and the first substrate 10 is greater than 20 ⁇ m, the lens fixing block 50 and the lens fixing block 50 are fixed to the block fixing resin 52 due to shrinkage or expansion due to temperature or humidity. This is because the collimated lens 40 thus moved moves in the Y direction (first axis direction), and the optical path of the laser light emitted from the collimating lens 40 is shifted, resulting in an adverse effect.
  • FIG. 8 is a plan view showing a semiconductor laser module 101 according to the second embodiment of the present invention
  • FIG. 9 is a front view.
  • the semiconductor laser module 101 according to the present embodiment includes a third substrate 120 as a spacer between the first substrate 10 and the second substrate 20.
  • the spacer 120 having an appropriate thickness between the first substrate 10 and the second substrate 20.
  • the semiconductor laser module 101 in the present embodiment includes a substantially rectangular parallelepiped lens fixing block 150 made of, for example, glass.
  • the lens fixing block 150 has a lens mounting surface 150A perpendicular to the X direction.
  • An end portion 40A in the X direction of the collimating lens 40 is fixed to the lens mounting surface 150A by a lens fixing resin 42.
  • the lens fixing block 50 may be fixed to the semiconductor laser element 30 and may be fixed to a member different from the first substrate 10. As in the first and second embodiments described above, it is preferable to fix the lens fixing block 50 to the same substrate (first substrate 10) as the substrate to which the semiconductor laser element 30 is fixed.
  • the collimating lens 40 in the above-described embodiment collimates the component in the fast axis direction (Y direction) among the components of the laser light L
  • the collimating lens 40 in the slow axis direction (X direction) among the components of the laser light L can also be applied to the case of using a lens that collimates the component (1).
  • the lens mounting surface of the lens fixing block may be arranged in parallel to the XZ plane, and the end of the collimating lens in the Y direction may be fixed to this lens mounting surface.
  • the present invention is suitably used for a semiconductor laser module including a semiconductor laser element and a collimating lens for collimating laser light emitted from the semiconductor laser element.
  • L laser beam 1 semiconductor laser module 10 first substrate 20 second substrate 30 semiconductor laser element 40 collimating lens 40A end 42 lens fixing resin 50 lens fixing block 50A lens mounting surface 52 block fixing resin 120 third substrate (Spacer) 150 Lens fixing block 150A Lens mounting surface

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 半導体レーザモジュール1は、Z方向に沿った光軸を有するレーザ光Lを出射する半導体レーザ素子30と、レーザ光Lの成分のうちファースト軸方向(Y方向)の成分をコリメートするコリメートレンズ40と、半導体レーザ素子30に対して固定されたレンズ固定ブロック50とを備えている。レンズ固定ブロック50は、X方向に垂直なレンズ取付面50Aを有している。コリメートレンズ40のX方向における端部40Aがレンズ固定ブロック50のレンズ取付面50Aにレンズ固定用樹脂42により固定されている。

Description

半導体レーザモジュール及びその製造方法
 本発明は、半導体レーザモジュール及びその製造方法に係り、特に半導体レーザ素子と半導体レーザ素子から出射されたレーザ光をコリメートするコリメートレンズとを含む半導体レーザモジュール及びその製造方法に関するものである。
 一般に、半導体レーザ素子のpn接合に垂直な方向はファースト軸と呼ばれ、pn接合に平行な方向はスロー軸と呼ばれるが、半導体レーザ素子のファースト軸方向の開口数はスロー軸方向の開口数に比べてはるかに大きい。このため、半導体レーザ素子から出射されるレーザ光は、ファースト軸方向に大きな広がりを有することとなる。したがって、半導体レーザ素子から出射されたレーザ光のファースト軸方向の成分をコリメートするコリメートレンズを半導体レーザ素子の出射面の近傍に配置する必要がある(例えば特許文献1及び特許文献2参照)。
 このようなコリメートレンズを用いて所望の光学系を構成するためには、光軸に沿った方向及びファースト軸に沿った方向においてコリメートレンズを半導体レーザ素子に対して高い精度で固定し、半導体レーザ素子とコリメートレンズとの間の位置関係の変動を抑える必要がある。具体的には、半導体レーザ素子とコリメートレンズとの間の位置関係はミクロンオーダで固定及び維持する必要がある。
 例えば、特許文献1の第4図に開示された光ファイバ取付装置では、コリメートレンズ(光ファイバレンズ26)がその軸線に沿って摺動可能に取り付けられているが、光ファイバレンズ26を摺動可能とするためには円筒形クランプ52と光ファイバレンズ26との間に一定の隙間を形成する必要がある。したがって、半導体レーザ素子バー10から出射されるレーザ光の光軸方向及びファースト軸方向の両方において光ファイバレンズ26の位置の変動をミクロンオーダで抑えることは不可能である。
 また、特許文献1の光ファイバレンズ26はエポキシ樹脂50により取付部材40に固定されているが、このエポキシ樹脂50の硬化収縮に伴い、光ファイバレンズ26がレーザ光の光軸方向にずれてしまう。さらに、この光ファイバレンズ26はエポキシ樹脂50により直接取付部材40に固定されているので、光ファイバレンズ26の調心を行うために少なくとも調心アライメント分以上のエポキシ樹脂50を取付部材40と光ファイバレンズ26との間に設ける必要がある。このエポキシ樹脂50の温度や湿度による収縮や膨張によって光ファイバレンズ26はファースト軸方向にもずれてしまう。
 また、特許文献2には、半導体レーザ素子1とコリメーティングレンズ6とをそれぞれロウ付け層5,8により1つの補助物体4に固定することにより、半導体レーザ素子1のたわみとコリメーティングレンズ6のたわみとを連動させて両者間の位置関係の変動を抑制する半導体レーザモジュールが開示されている。半導体レーザ素子1の位置を調整する際には、ロウ付け層5,8のロウ付けのために例えば約400℃の高温下で半導体レーザ素子1の位置決めを行う必要がある。しかしながら、そのような温度下では半導体レーザ素子1からレーザ光を出射させることができないため、半導体レーザ素子1からレーザ光を出射させながらコリメーティングレンズ6を調心すること(いわゆるアクティブ調心)ができないという問題がある。
 この場合において、ロウ付け層5,8に代えて樹脂などを用いて半導体レーザ素子1及びコリメーティングレンズ6を固定すればアクティブ調心が可能になるが、その場合であっても、樹脂の収縮や膨張によって半導体レーザ素子1に対して補助物体4及びコリメーティングレンズ6の位置が大きく変動してしまうため、コリメーティングレンズ6が調心位置からずれてしまうという問題がある。
特開2004-200634号公報 特許第3423723号公報
 本発明は、このような従来技術の問題点に鑑みてなされたもので、コリメートレンズを固定する樹脂の収縮や膨張による影響を低減し、コリメートレンズを高精度に調心された状態に保持することができる半導体レーザモジュールを提供することを第1の目的とする。
 また、本発明は、コリメートレンズのアクティブ調心を行いつつ、コリメートレンズを半導体レーザ素子に対して高い精度で固定することができる半導体レーザモジュールの製造方法を提供することを第2の目的とする。
 本発明の第1の態様によれば、コリメートレンズを固定する樹脂の収縮や膨張による影響を低減し、コリメートレンズを高精度に調心された状態に保持することができる半導体レーザモジュールが提供される。この半導体レーザモジュールは、第1の方向に沿った光軸を有するレーザ光を出射する半導体レーザ素子と、上記半導体レーザ素子から出射されるレーザ光の成分のうち上記第1の方向に垂直な第2の方向の成分をコリメートするコリメートレンズと、上記半導体レーザ素子に対して固定されるレンズ固定ブロックとを備えている。このレンズ固定ブロックは、上記第1の方向及び上記第2の方向に垂直な第3の方向に対して垂直なレンズ取付面を有している。上記コリメートレンズの上記第3の方向における端部の少なくとも一方が上記レンズ固定ブロックのレンズ取付面にレンズ固定用樹脂により固定されている。
 このように、本発明の第1の態様によれば、コリメートレンズを固定するレンズ固定用樹脂が、コリメートレンズの第3の方向における端部と第3の方向に垂直なレンズ取付面との間に設けられているため、レンズ固定用樹脂の硬化収縮や温度又は湿度によるレンズ固定用樹脂の収縮や膨張によるコリメートレンズの位置の変化が主として第3の方向のみとなる。さらに、コリメートレンズは第3の方向には位置を調整する必要がなく光学的にはどの位置でもよいため、コリメートレンズとレンズ取付面との間のレンズ固定用樹脂の厚さを薄くすることも可能であり、レンズ固定用樹脂の収縮又は膨張による変化量自体を小さくすることができる。このため、コリメートレンズの位置が第1の方向及び第2の方向にはほとんど変化することがない。したがって、コリメートレンズを固定するレンズ固定用樹脂の収縮や膨張による影響を低減しコリメートレンズを高精度に調心された状態に保持することができる。
 ここで、上記第2の方向を、上記半導体レーザ素子から出射されるレーザ光のファースト軸の方向とすることができる。また、上記レンズ固定用樹脂として、UV硬化樹脂又は熱硬化樹脂を用いることができる。さらに、上記半導体レーザ素子と上記レンズ固定ブロックとを同一の基板に固定することが好ましい。また、上記基板と上記半導体レーザ素子との間にスペーサを配置してもよい。
 また、上記コリメートレンズを挟んで上記第1の方向の両側に存在するレンズ固定用樹脂の量を互いに等しくすることが好ましい。このようにすることで、コリメートレンズを挟んで第1の方向の両側に存在するレンズ固定用樹脂の収縮量又は膨張量が等しくなり互いに相殺し合うため、レンズ固定用樹脂の収縮や膨張によるコリメートレンズの第1の方向への影響を実質的になくすことができる。同様に、上記コリメートレンズを挟んで上記第2の方向の両側に存在するレンズ固定用樹脂の量を互いに等しくすることが好ましい。このようにすることで、コリメートレンズを挟んで第2の方向の両側に存在するレンズ固定用樹脂の収縮量又は膨張量が等しくなり互いに相殺し合うため、レンズ固定用樹脂の収縮や膨張によるコリメートレンズの第2の方向への影響を実質的になくすことができる。
 さらに、レンズ固定ブロックと基板との間のブロック固定用樹脂の厚さが20μmよりも厚くなると、温度又は湿度によるブロック固定用樹脂の収縮や膨張によってレンズ固定ブロック及びそれに固定されたコリメートレンズが第2の方向に動いてしまい、コリメートレンズから出射されるレーザ光の光路がずれて悪影響が生じるので、厚さが20μm以下のブロック固定用樹脂を介して上記レンズ固定ブロックを上記基板に固定することが好ましい。
 本発明の第2の態様によれば、コリメートレンズのアクティブ調心を行いつつ、コリメートレンズを半導体レーザ素子に対して高い精度で固定することができる半導体レーザモジュールの製造方法が提供される。この製造方法により、第1の方向に沿った光軸を有するレーザ光を出射する半導体レーザ素子と、該半導体レーザ素子から出射されるレーザ光の成分のうち上記第1の方向に垂直な第2の方向の成分をコリメートするコリメートレンズとを備えた半導体レーザモジュールを製造する。この製造方法では、上記半導体レーザ素子を基板に対して固定し、レンズ取付面を有するレンズ固定ブロックを、該レンズ取付面が上記第1の方向及び上記第2の方向に垂直な第3の方向に対して垂直となるように上記基板に固定する。上記レンズ固定ブロックのレンズ取付面にレンズ固定用樹脂を塗布し、上記コリメートレンズの上記第3の方向における端部を上記レンズ取付面に塗布されたレンズ固定用樹脂に挿入する。上記半導体レーザ素子からレーザ光を出射しつつ上記レンズ固定用樹脂に挿入されたコリメートレンズを所望の位置に位置決めし、上記コリメートレンズが位置決めされた状態で上記レンズ固定用樹脂を硬化させて上記コリメートレンズを上記レンズ固定ブロックに固定する。
 このように、本発明の第2の態様によれば、レンズ固定用樹脂を用いてコリメートレンズをレンズ固定ブロックに固定しているので、特許文献2のはんだ接合のように高温に保つ必要がない。したがって、半導体レーザ素子からレーザ光を出射させながらコリメートレンズの位置決め(アクティブ調心)をすることができる。しかも、レンズ固定用樹脂が、コリメートレンズの第3の方向における端部と第3の方向に垂直なレンズ取付面との間に設けられているため、レンズ固定用樹脂の硬化収縮や温度又は湿度によるレンズ固定用樹脂の収縮や膨張によるコリメートレンズの位置の変化が主として第3の方向のみとなる。さらに、コリメートレンズは第3の方向には位置を調整する必要がなく光学的にはどの位置でもよいため、コリメートレンズとレンズ取付面との間のレンズ固定用樹脂の厚さを薄くすることも可能であり、レンズ固定用樹脂の収縮又は膨張による変化量自体を小さくすることができる。したがって、コリメートレンズの位置が第1の方向及び第2の方向にはほとんど変化することがなく、コリメートレンズを半導体レーザ素子に対して高い精度で固定することができる。
 ここで、上記第2の方向を、上記半導体レーザ素子から出射されるレーザ光のファースト軸の方向とすることができる。また、上記レンズ固定用樹脂として、UV硬化樹脂又は熱硬化樹脂を用いることができる。また、上記基板と上記半導体レーザ素子との間にスペーサを配置してもよい。
 また、上記コリメートレンズを挟んで上記第1の方向の両側に存在するレンズ固定用樹脂の量が互いに等しくなるように上記コリメートレンズの端部を上記レンズ固定用樹脂に挿入することが好ましい。このようにすることで、コリメートレンズを挟んで第1の方向の両側に存在するレンズ固定用樹脂の収縮量又は膨張量が等しくなり互いに相殺し合うため、レンズ固定用樹脂の収縮や膨張によるコリメートレンズの第1の方向への影響を実質的になくすことができる。同様に、上記コリメートレンズを挟んで上記第2の方向の両側に存在するレンズ固定用樹脂の量が互いに等しくなるように上記コリメートレンズの端部を上記レンズ固定用樹脂に挿入することが好ましい。このようにすることで、コリメートレンズを挟んで第2の方向の両側に存在するレンズ固定用樹脂の収縮量又は膨張量が等しくなり互いに相殺し合うため、レンズ固定用樹脂の収縮や膨張によるコリメートレンズの第2の方向への影響を実質的になくすことができる。
 さらに、レンズ固定ブロックと基板との間のブロック固定用樹脂の厚さが20μmよりも厚くなると、温度又は湿度によるブロック固定用樹脂の収縮や膨張によってレンズ固定ブロック及びそれに固定されたコリメートレンズが第2の方向に動いてしまうので、上記レンズ固定ブロックを上記基板に固定する際に、上記レンズ固定ブロックと上記基板との間にブロック固定用樹脂を塗布し、上記レンズ固定ブロックと上記基板との間の上記ブロック固定用樹脂の厚さが20μm以下となるように上記レンズ固定ブロックを上記基板に押圧しながら上記ブロック固定用樹脂を硬化させて上記レンズ固定ブロックを上記基板に固定することが好ましい。
 本発明によれば、コリメートレンズを固定する樹脂の収縮や膨張による影響を低減し、コリメートレンズを高精度に調心された状態に保持することができる半導体レーザモジュールを提供することができる。また、本発明によれば、コリメートレンズのアクティブ調心を行いつつ、コリメートレンズを半導体レーザ素子に対して高い精度で固定することができる半導体レーザモジュールの製造方法を提供することができる。
本発明の第1の実施形態における半導体レーザモジュールを示す平面図である。 図1の半導体レーザモジュールの正面図である。 図1の半導体レーザモジュールの側面図である。 図1の半導体レーザモジュールの製造方法を説明する図である。 図1の半導体レーザモジュールの製造方法を説明する図である。 図1の半導体レーザモジュールの製造方法を説明する図である。 図1の半導体レーザモジュールの製造方法を説明する図である。 本発明の第2の実施形態における半導体レーザモジュールを示す平面図である。 図8の半導体レーザモジュールの正面図である。
 以下、本発明に係る半導体レーザモジュールの実施形態について図1から図9を参照して詳細に説明する。なお、図1から図9において、同一又は相当する構成要素には、同一の符号を付して重複した説明を省略する。
 図1は本発明の第1の実施形態における半導体レーザモジュール1を示す平面図、図2は正面図、図3は側面図である。図1から図3に示すように、本実施形態における半導体レーザモジュール1は、第1の基板10と、第1の基板10上に固定された第2の基板20と、第2の基板20上に実装された半導体レーザ素子(レーザダイオード)30と、半導体レーザ素子30から出射されたレーザ光をコリメートするコリメートレンズ40と、第1の基板10上にブロック固定用樹脂52により固定されたレンズ固定ブロック50とを備えている。図1において、半導体レーザ素子30はZ方向に沿ってレーザ光Lを出射する。なお、以下では、図2に示すY方向がレーザ光Lのファースト軸方向であるものとして説明する。
 コリメートレンズ40は、半導体レーザ素子30から出射されるレーザ光Lの成分のうちファースト軸方向(Y方向)の成分をコリメートして平行光を生成するものである。本実施形態では、図2に示すように、YZ平面におけるコリメートレンズ40の断面は、レーザ光Lが入射する側がY軸に平行になっており、レーザ光が出射する側が凸面状になっている。コリメートレンズ40は、このような断面形状を有してレーザ光Lのスロー軸方向(X方向)に延びている。例えば、コリメートレンズ40のX方向の長さは2mm程度である。コリメートレンズ40は、所望の平行光を生成するために調心され、Y方向及びZ方向に関して高精度に位置決めされる。
 レンズ固定ブロック50は、例えばガラスなどからなる略直方体状の部材であり、レーザ光Lの光軸に平行なレンズ取付面50Aを有している。本実施形態におけるレンズ取付面50Aは、レーザ光Lのファースト軸(Y方向)にも平行になるように、すなわちX方向に垂直に構成されている。
 図1及び図3に示すように、レンズ固定ブロック50は、第2の基板20の近傍に配置され、第1の基板10の上面にブロック固定用樹脂52により固定されている。このブロック固定用樹脂52としては例えばUV硬化樹脂又は熱硬化樹脂を用いることができる。
 コリメートレンズ40のX方向の端部40Aは、レンズ固定ブロック50のレンズ取付面50Aにレンズ固定用樹脂42により固定されている。コリメートレンズ40は、第1の基板10に接触しないようになっており、レンズ固定ブロック50に片持ち梁状に固定されている。このレンズ固定用樹脂42としては例えばUV硬化樹脂又は熱硬化樹脂を用いることができる。レンズ固定用樹脂42は、コリメートレンズ40の端部40AをX方向、Y方向、及びZ方向から固定している。ここで、コリメートレンズ40を挟んでZ方向の両側に存在するレンズ固定用樹脂42の量が互いに等しいことが好ましく、また、コリメートレンズ40を挟んでY方向の両側に存在するレンズ固定用樹脂42の量が互いに等しいことが好ましい。さらに、コリメートレンズ40とレンズ取付面50Aとの間のレンズ固定用樹脂42の厚さを薄くすることが好ましい。
 ここで、コリメートレンズ40を固定するレンズ固定用樹脂42が、コリメートレンズ40のX方向の端部40AとX方向に垂直なレンズ取付面50Aとの間に設けられているため、レンズ固定用樹脂42の硬化収縮や温度又は湿度によるレンズ固定用樹脂42の収縮や膨張によるコリメートレンズ40の位置の変化は主としてX方向、すなわちスロー軸方向のみとなる。さらに、コリメートレンズ40とレンズ取付面50Aとの間のレンズ固定用樹脂42の厚さを薄くすれば、レンズ固定用樹脂42の収縮又は膨張による変化量自体を小さくすることができる。したがって、コリメートレンズ40の位置がY方向及びZ方向にはほとんど変化することがなく、コリメートレンズ40を高精度に調心された状態に保持することができる。
 なお、図1から図3に示す例では、コリメートレンズ40の端部40AのX方向の端面全体がレンズ固定用樹脂42によりレンズ取付面50Aに固定されているが、コリメートレンズ40の端部40AのX方向の端面の少なくとも一部がレンズ固定用樹脂42によりレンズ取付面50Aに固定されていればよい。
 また、コリメートレンズ40を挟んでZ方向の両側に存在するレンズ固定用樹脂42の量を互いに等しくすることにより、コリメートレンズ40の両側に存在するレンズ固定用樹脂42の収縮量又は膨張量が等しくなり互いに相殺し合うため、レンズ固定用樹脂42の収縮や膨張によるコリメートレンズ40のZ方向への影響を実質的になくすことができる。また、コリメートレンズ40を挟んでY方向の両側に存在するレンズ固定用樹脂42の量を互いに等しくすることにより、コリメートレンズ40の両側に存在するレンズ固定用樹脂42の収縮量又は膨張量が等しくなり互いに相殺し合うため、レンズ固定用樹脂42の収縮や膨張によるコリメートレンズ40のY方向への影響を実質的になくすことができる。
 次に、本実施形態における半導体レーザモジュール1を製造する方法について説明する。半導体レーザモジュール1を製造する際には、まず、半導体レーザ素子30が実装された第2の基板20を第1の基板10上に固定する(図4)。
 次に、第1の基板10上の所定の箇所にブロック固定用樹脂52を塗布し(図5)、そのブロック固定用樹脂52の上にレンズ固定ブロック50を置く(図6)。そして、レンズ固定ブロック50と第1の基板10との間のブロック固定用樹脂52の厚さがなるべく薄くなるように、レンズ固定ブロック50を第1の基板10に押圧しつつ、ブロック固定用樹脂52を硬化させてレンズ固定ブロック50を第1の基板10に固定する。このとき、レンズ固定ブロック50のレンズ取付面50AはX方向に垂直になっている。
 次に、レンズ固定ブロック50のレンズ取付面50Aにレンズ固定用樹脂42を塗布し、コリメートレンズ40のX方向の端部40AをX方向からレンズ固定用樹脂42に挿入する(図7)。
 そして、半導体レーザ素子30からレーザ光を出射させ、その状態でコリメートレンズ40を移動させて位置決めを行う(アクティブ調心)。このとき、コリメートレンズ40とレンズ取付面50Aとの間のレンズ固定用樹脂42の厚さがなるべく薄くなるようにすることが好ましい。コリメートレンズ40が高精度に位置決めされた状態で、レンズ固定用樹脂42を硬化させてコリメートレンズ40をレンズ固定ブロック50に固定する。このようにして、半導体レーザモジュール1が完成する(図1)。
 上述したように、本実施形態における半導体レーザモジュール1の製造方法によれば、レンズ固定用樹脂42を用いてコリメートレンズ40をレンズ固定ブロック50に固定しているため、特許文献2のはんだ接合のように高温に保つ必要がない。したがって、半導体レーザ素子30からレーザ光を出射させながらコリメートレンズ40の位置決め(アクティブ調心)をすることができる。
 また、コリメートレンズ40のX方向の端部40AをX方向に垂直なレンズ取付面50Aに固定しているので、レンズ固定用樹脂42の硬化収縮や温度又は湿度によるレンズ固定用樹脂42の収縮や膨張によるコリメートレンズ40の位置の変動がY方向及びZ方向にはほとんど生じることがない。また、コリメートレンズ40とレンズ取付面50Aとの間のレンズ固定用樹脂42の厚さを薄くすれば、レンズ固定用樹脂42の収縮又は膨張による変化量自体を小さくすることができる。したがって、コリメートレンズ40を高精度に調心された状態に保持することができる。
 ここで、レンズ固定ブロック50と第1の基板10との間のブロック固定用樹脂52の厚さが20μm以下となるようにレンズ固定ブロック50を固定することが好ましい。レンズ固定ブロック50と第1の基板10との間のブロック固定用樹脂52の厚さが20μmよりも厚くなると、温度又は湿度によるブロック固定用樹脂52の収縮や膨張によってレンズ固定ブロック50及びそれに固定されたコリメートレンズ40がY方向(ファースト軸方向)に動いてしまい、コリメートレンズ40から出射されるレーザ光の光路がずれて悪影響が生じてしまうからである。
 図8は本発明の第2の実施形態における半導体レーザモジュール101を示す平面図、図9は正面図である。図8及び図9に示すように、本実施形態における半導体レーザモジュール101は、第1の基板10と第2の基板20との間にスペーサとしての第3の基板120を備えている。このように、第1の基板10と第2の基板20との間に適切な厚さのスペーサ120を設けることにより、半導体レーザ素子30を所望の高さに設置することができる。
 また、本実施形態における半導体レーザモジュール101は、例えばガラスなどからなる略直方体状のレンズ固定ブロック150を備えている。このレンズ固定ブロック150は、X方向に垂直なレンズ取付面150Aを有している。レンズ取付面150Aにはコリメートレンズ40のX方向の端部40Aがレンズ固定用樹脂42により固定される。
 なお、上述した各実施形態において、レンズ固定ブロック50は、半導体レーザ素子30に対して固定的に設けられていればよく、第1の基板10とは別の部材に固定されていてもよいが、上述した第1及び第2の実施形態のように、レンズ固定ブロック50を半導体レーザ素子30が固定される基板と同一の基板(第1の基板10)に固定することが好ましい。
 また、上述した各実施形態では、コリメートレンズ40のX方向の端部の一方のみを固定する構成を説明したが、他方の端部に対しても同様のレンズ固定ブロック50を設け、コリメートレンズ40のX方向の両端部を固定するようにしてもよい。
 さらに、上述した実施形態におけるコリメートレンズ40は、レーザ光Lの成分のうちファースト軸方向(Y方向)の成分をコリメートするものであったが、レーザ光Lの成分のうちスロー軸方向(X方向)の成分をコリメートするレンズを用いる場合にも本発明を適用することができる。その場合には、レンズ固定ブロックのレンズ取付面をXZ平面に平行に配置し、このレンズ取付面にコリメートレンズのY方向の端部を固定すればよい。
 これまで本発明の好ましい実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。
 本発明は、半導体レーザ素子と半導体レーザ素子から出射されたレーザ光をコリメートするコリメートレンズとを含む半導体レーザモジュールに好適に用いられる。
  L  レーザ光
  1  半導体レーザモジュール
 10  第1の基板
 20  第2の基板
 30  半導体レーザ素子
 40  コリメートレンズ
 40A 端部
 42  レンズ固定用樹脂
 50  レンズ固定ブロック
 50A レンズ取付面
 52  ブロック固定用樹脂
120  第3の基板(スペーサ)
150  レンズ固定ブロック
150A レンズ取付面

Claims (12)

  1.  第1の方向に沿った光軸を有するレーザ光を出射する半導体レーザ素子と、
     前記半導体レーザ素子から出射されるレーザ光の成分のうち前記第1の方向に垂直な第2の方向の成分をコリメートするコリメートレンズと、
     前記第1の方向及び前記第2の方向に垂直な第3の方向に対して垂直なレンズ取付面を有し、前記半導体レーザ素子に対して固定されたレンズ固定ブロックと、
    を備え、
     前記コリメートレンズの前記第3の方向における端部の少なくとも一方が、前記レンズ固定ブロックのレンズ取付面にレンズ固定用樹脂により固定されている、
    ことを特徴とする半導体レーザモジュール。
  2.  前記第2の方向は、前記半導体レーザ素子から出射されるレーザ光のファースト軸の方向であることを特徴とする請求項1に記載の半導体レーザモジュール。
  3.  前記レンズ固定用樹脂は、UV硬化樹脂又は熱硬化樹脂であることを特徴とする請求項1又は2に記載の半導体レーザモジュール。
  4.  前記コリメートレンズを挟んで前記第1の方向の両側に存在する前記レンズ固定用樹脂の量が互いに等しく、
     前記コリメートレンズを挟んで前記第2の方向の両側に存在する前記レンズ固定用樹脂の量が互いに等しい、
    ことを特徴とする請求項1から3のいずれか一項に記載の半導体レーザモジュール。
  5.  前記半導体レーザ素子と前記レンズ固定ブロックは、同一の基板に固定されていることを特徴とする請求項1から4のいずれか一項に記載の半導体レーザモジュール。
  6.  前記レンズ固定ブロックは、厚さが20μm以下のブロック固定用樹脂を介して前記基板に固定されていることを特徴とする請求項5に記載の半導体レーザモジュール。
  7.  前記基板と前記半導体レーザ素子との間に配置された、所定の厚さのスペーサをさらに備えたことを特徴とする請求項5又は6に記載の半導体レーザモジュール。
  8.  第1の方向に沿った光軸を有するレーザ光を出射する半導体レーザ素子と、該半導体レーザ素子から出射されるレーザ光の成分のうち前記第1の方向に垂直な第2の方向の成分をコリメートするコリメートレンズとを備えた半導体レーザモジュールの製造方法であって、
     前記半導体レーザ素子を基板に対して固定し、
     レンズ取付面を有するレンズ固定ブロックを、該レンズ取付面が前記第1の方向及び前記第2の方向に垂直な第3の方向に対して垂直となるように前記基板に固定し、
     前記レンズ固定ブロックのレンズ取付面にレンズ固定用樹脂を塗布し、
     前記コリメートレンズの前記第3の方向における端部を前記レンズ取付面に塗布されたレンズ固定用樹脂に挿入し、
     前記半導体レーザ素子からレーザ光を出射しつつ前記レンズ固定用樹脂に挿入されたコリメートレンズを所望の位置に位置決めし、
     前記コリメートレンズが位置決めされた状態で前記レンズ固定用樹脂を硬化させて前記コリメートレンズを前記レンズ固定ブロックに固定する、
    ことを特徴とする半導体レーザモジュールの製造方法。
  9.  前記第2の方向は、前記半導体レーザ素子から出射されるレーザ光のファースト軸の方向であることを特徴とする請求項8に記載の半導体レーザモジュールの製造方法。
  10.  前記コリメートレンズを挟んで前記第1の方向の両側に存在する前記レンズ固定用樹脂の量が互いに等しくなり、前記コリメートレンズを挟んで前記第2の方向の両側に存在する前記レンズ固定用樹脂の量が互いに等しくなるように、前記コリメートレンズの前記第3の方向における端部を前記レンズ固定用樹脂に挿入することを特徴とする請求項8又は9に記載の半導体レーザモジュールの製造方法。
  11.  前記レンズ固定ブロックを前記基板に固定する際に、
      前記レンズ固定ブロックと前記基板との間にブロック固定用樹脂を塗布し、
      前記レンズ固定ブロックと前記基板との間の前記ブロック固定用樹脂の厚さが20μm以下となるように前記レンズ固定ブロックを前記基板に押圧しながら前記ブロック固定用樹脂を硬化させて前記レンズ固定ブロックを前記基板に固定する、
    ことを特徴とする請求項8から10のいずれか一項に記載の半導体レーザモジュールの製造方法。
  12.  前記基板と前記半導体レーザ素子との間に所定の厚さのスペーサを配置することを特徴とする請求項8から11のいずれか一項に記載の半導体レーザモジュールの製造方法。
PCT/JP2014/055238 2013-03-05 2014-03-03 半導体レーザモジュール及びその製造方法 WO2014136708A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14760947.3A EP2937955A4 (en) 2013-03-05 2014-03-03 Semiconductor laser module and production method for same
CN201480010446.0A CN105075036B (zh) 2013-03-05 2014-03-03 半导体激光模块及其制造方法
US14/825,416 US9859679B2 (en) 2013-03-05 2015-08-13 Semiconductor laser module and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-043014 2013-03-05
JP2013043014A JP5781110B2 (ja) 2013-03-05 2013-03-05 半導体レーザモジュール及びその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/825,416 Continuation US9859679B2 (en) 2013-03-05 2015-08-13 Semiconductor laser module and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2014136708A1 true WO2014136708A1 (ja) 2014-09-12

Family

ID=51491226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055238 WO2014136708A1 (ja) 2013-03-05 2014-03-03 半導体レーザモジュール及びその製造方法

Country Status (5)

Country Link
US (1) US9859679B2 (ja)
EP (1) EP2937955A4 (ja)
JP (1) JP5781110B2 (ja)
CN (1) CN105075036B (ja)
WO (1) WO2014136708A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6140670B2 (ja) * 2014-11-17 2017-05-31 株式会社フジクラ 半導体レーザ装置及びその製造方法
US9977235B2 (en) 2016-06-21 2018-05-22 Abl Ip Holding Llc Variable total internal reflection electrowetting lens assembly for a detector
US10072822B2 (en) 2016-06-21 2018-09-11 Abl Ip Holding Llc Variable total internal reflection electrowetting lens assembly
US10247935B2 (en) * 2016-07-06 2019-04-02 Abl Ip Holding Llc MicroLED with integrated controllable beam steering and/or shaping
CN210605074U (zh) * 2019-11-27 2020-05-22 苏州旭创科技有限公司 一种光学组件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793792A (en) * 1996-05-08 1998-08-11 Polaroid Corporation Laser assembly with integral beam-shaping lens
JP3423723B2 (ja) 1995-06-01 2003-07-07 スペクトラ−フィジックス レイザーズ インコーポレイテッド 多エミッタレーザーダイオードの多モード光ファイバへの結合装置
JP2004200634A (ja) 2002-12-13 2004-07-15 Hentze-Lissotschenko Patentverwaltungs Gmbh & Co Kg 半導体レーザ装置、および半導体レーザ装置のための半導体レーザモジュール、ならびに半導体レーザ装置を製造するための方法
JP2006284851A (ja) * 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd レンズホルダおよびそれを用いたレーザアレイユニット
JP2007219337A (ja) * 2006-02-20 2007-08-30 Sony Corp 光学部品の接着固定方法およびレーザ光源装置
JP2010232370A (ja) * 2009-03-26 2010-10-14 Furukawa Electric Co Ltd:The レンズ、半導体レーザモジュール、および光学デバイスの製造方法
US20120294326A1 (en) * 2009-12-23 2012-11-22 Claus Seibert Method for Producing a Laser Device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131810A (ja) 1990-09-25 1992-05-06 Fujitsu Ltd 光半導体装置の製造方法
JPH07140361A (ja) * 1993-11-15 1995-06-02 Canon Inc 光伝送用モジュール及びそれに用いられるレンズホルダー受け
JPH085876A (ja) * 1994-06-23 1996-01-12 Canon Inc 光伝送用モジュール及びそれに用いられるレンズホルダ部材
JP4083825B2 (ja) * 1996-03-05 2008-04-30 株式会社リコー 光源装置
JP3764199B2 (ja) * 1996-03-05 2006-04-05 株式会社リコー 光源装置
US5758950A (en) 1996-03-05 1998-06-02 Ricoh Company, Ltd. Light source device for an image forming apparatus
JP2004273545A (ja) * 2003-03-05 2004-09-30 Toshiba Corp 半導体レーザ装置、半導体レーザシステムおよび半導体レーザ装置の製造方法
US7062133B2 (en) 2003-04-24 2006-06-13 Ahura Corporation Methods and apparatus for alignment and assembly of optoelectronic components
JP2005243659A (ja) 2003-12-26 2005-09-08 Toshiba Corp 半導体レーザ装置
JP2006059934A (ja) * 2004-08-18 2006-03-02 Ricoh Co Ltd 光源装置及び画像形成装置
US20100053414A1 (en) 2008-01-11 2010-03-04 Satoshi Tamaki Compound eye camera module
EP3428702B1 (en) * 2010-01-06 2020-02-19 Fujikura Ltd. Optical coupling structure and optical transreceiver module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3423723B2 (ja) 1995-06-01 2003-07-07 スペクトラ−フィジックス レイザーズ インコーポレイテッド 多エミッタレーザーダイオードの多モード光ファイバへの結合装置
US5793792A (en) * 1996-05-08 1998-08-11 Polaroid Corporation Laser assembly with integral beam-shaping lens
JP2004200634A (ja) 2002-12-13 2004-07-15 Hentze-Lissotschenko Patentverwaltungs Gmbh & Co Kg 半導体レーザ装置、および半導体レーザ装置のための半導体レーザモジュール、ならびに半導体レーザ装置を製造するための方法
JP2006284851A (ja) * 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd レンズホルダおよびそれを用いたレーザアレイユニット
JP2007219337A (ja) * 2006-02-20 2007-08-30 Sony Corp 光学部品の接着固定方法およびレーザ光源装置
JP2010232370A (ja) * 2009-03-26 2010-10-14 Furukawa Electric Co Ltd:The レンズ、半導体レーザモジュール、および光学デバイスの製造方法
US20120294326A1 (en) * 2009-12-23 2012-11-22 Claus Seibert Method for Producing a Laser Device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2937955A4 *

Also Published As

Publication number Publication date
EP2937955A4 (en) 2017-04-05
CN105075036B (zh) 2018-06-15
JP2014170887A (ja) 2014-09-18
US9859679B2 (en) 2018-01-02
CN105075036A (zh) 2015-11-18
US20150349488A1 (en) 2015-12-03
EP2937955A1 (en) 2015-10-28
JP5781110B2 (ja) 2015-09-16

Similar Documents

Publication Publication Date Title
JP5616471B2 (ja) 半導体レーザモジュール及びその製造方法
WO2014136708A1 (ja) 半導体レーザモジュール及びその製造方法
US9252885B2 (en) Method for manufacturing wavelength division multiplexing transmission apparatus and wavelength division multiplexing transmission apparatus
JP6340902B2 (ja) 光モジュールの製造方法
US7830945B2 (en) Laser apparatus in which laser diodes and corresponding collimator lenses are fixed to block, and fiber module in which laser apparatus is coupled to optical fiber
US7444046B2 (en) Diode laser array coupling optic and system
JP6459296B2 (ja) 発光モジュール及び多チャネル発光モジュール
JP2006284851A (ja) レンズホルダおよびそれを用いたレーザアレイユニット
JP4280290B2 (ja) 光モジュール及びその製造方法
WO2010047147A1 (ja) 半導体レーザモジュール及びその製造方法
JP7117138B2 (ja) レーザモジュール
US20130183010A1 (en) Optical Components Including Bonding Slots For Adhesion Stability
JP2015143732A (ja) 光学部品の固定構造
JP6129066B2 (ja) 半導体レーザモジュール及びその製造方法
JP2015128193A (ja) 半導体レーザモジュール
JP2017208483A (ja) 半導体レーザ装置
CA2806411C (fr) Passive mechanical athermalization device, and related optical system
US6816323B2 (en) Coupling with strong lens and weak lens on flexure
JP5812116B2 (ja) 光モジュール及びその製造方法
JP6596998B2 (ja) 光学装置及び光照射装置
JP2017098335A (ja) 波長多重レーザダイオードモジュール
JP2019053230A (ja) 光モジュールとその製造方法
WO2016080188A1 (ja) 半導体レーザ装置及びその製造方法
JP2005189762A (ja) 光合分波器、光送受信モジュール及び光合分波器の調整方法
JP2013238665A (ja) 半導体レーザモジュールの製造方法、半導体レーザモジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480010446.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760947

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014760947

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE