JP2015128193A - 半導体レーザモジュール - Google Patents

半導体レーザモジュール Download PDF

Info

Publication number
JP2015128193A
JP2015128193A JP2015077370A JP2015077370A JP2015128193A JP 2015128193 A JP2015128193 A JP 2015128193A JP 2015077370 A JP2015077370 A JP 2015077370A JP 2015077370 A JP2015077370 A JP 2015077370A JP 2015128193 A JP2015128193 A JP 2015128193A
Authority
JP
Japan
Prior art keywords
lens
semiconductor laser
collimating lens
lens fixing
laser module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015077370A
Other languages
English (en)
Inventor
木村 直樹
Naoki Kimura
直樹 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2015077370A priority Critical patent/JP2015128193A/ja
Publication of JP2015128193A publication Critical patent/JP2015128193A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】コリメートレンズを固定する樹脂の収縮や膨張による影響を低減し、コリメートレンズを調心された状態に保持することができる半導体レーザモジュールを提供する。
【解決手段】半導体レーザモジュール1は、Z方向に沿った光軸を有するレーザ光Lを出射する半導体レーザ素子30と、レーザ光Lの成分のうちファースト軸方向(Y方向)の成分をコリメートするコリメートレンズ40と、半導体レーザ素子30に対して固定されたレンズ固定ブロック50とを備えている。レンズ固定ブロック50は、X方向に垂直なレンズ取付面50Aを有している。コリメートレンズ40のX方向における端部40Aがレンズ固定ブロック50のレンズ取付面50Aにレンズ固定用樹脂42により固定されている。
【選択図】図1

Description

本発明は、半導体レーザモジュールに係り、特に半導体レーザ素子と半導体レーザ素子から出射されたレーザ光をコリメートするコリメートレンズとを含む半導体レーザモジュールに関するものである。
一般に、半導体レーザ素子のpn接合に垂直な方向はファースト軸と呼ばれ、pn接合に平行な方向はスロー軸と呼ばれるが、半導体レーザ素子のファースト軸方向の開口数はスロー軸方向の開口数に比べてはるかに大きい。このため、半導体レーザ素子から出射されるレーザ光は、ファースト軸方向に大きな広がりを有することとなる。したがって、半導体レーザ素子から出射されたレーザ光のファースト軸方向の成分をコリメートするコリメートレンズを半導体レーザ素子の出射面の近傍に配置する必要がある(例えば特許文献1及び特許文献2参照)。
このようなコリメートレンズを用いて所望の光学系を構成するためには、光軸に沿った方向及びファースト軸に沿った方向においてコリメートレンズを半導体レーザ素子に対して高い精度で固定し、半導体レーザ素子とコリメートレンズとの間の位置関係の変動を抑える必要がある。具体的には、半導体レーザ素子とコリメートレンズとの間の位置関係はミクロンオーダで固定及び維持する必要がある。
例えば、特許文献1の第4図に開示された光ファイバ取付装置では、コリメートレンズ(光ファイバレンズ26)がその軸線に沿って摺動可能に取り付けられているが、光ファイバレンズ26を摺動可能とするためには円筒形クランプ52と光ファイバレンズ26との間に一定の隙間を形成する必要がある。したがって、半導体レーザ素子バー10から出射されるレーザ光の光軸方向及びファースト軸方向の両方において光ファイバレンズ26の位置の変動をミクロンオーダで抑えることは不可能である。
また、特許文献1の光ファイバレンズ26はエポキシ樹脂50により取付部材40に固定されているが、このエポキシ樹脂50の硬化収縮に伴い、光ファイバレンズ26がレーザ光の光軸方向にずれてしまう。さらに、この光ファイバレンズ26はエポキシ樹脂50により直接取付部材40に固定されているので、光ファイバレンズ26の調心を行うために少なくとも調心アライメント分以上のエポキシ樹脂50を取付部材40と光ファイバレンズ26との間に設ける必要がある。このエポキシ樹脂50の温度や湿度による収縮や膨張によって光ファイバレンズ26はファースト軸方向にもずれてしまう。
また、特許文献2には、半導体レーザ素子1とコリメーティングレンズ6とをそれぞれロウ付け層5,8により1つの補助物体4に固定することにより、半導体レーザ素子1のたわみとコリメーティングレンズ6のたわみとを連動させて両者間の位置関係の変動を抑制する半導体レーザモジュールが開示されている。半導体レーザ素子1の位置を調整する際には、ロウ付け層5,8のロウ付けのために例えば約400℃の高温下で半導体レーザ素子1の位置決めを行う必要がある。しかしながら、そのような温度下では半導体レーザ素子1からレーザ光を出射させることができないため、半導体レーザ素子1からレーザ光を出射させながらコリメーティングレンズ6を調心すること(いわゆるアクティブ調心)ができないという問題がある。
この場合において、ロウ付け層5,8に代えて樹脂などを用いて半導体レーザ素子1及びコリメーティングレンズ6を固定すればアクティブ調心が可能になるが、その場合であっても、樹脂の収縮や膨張によって半導体レーザ素子1に対して補助物体4及びコリメーティングレンズ6の位置が大きく変動してしまうため、コリメーティングレンズ6が調心位置からずれてしまうという問題がある。
特開2004−200634号公報 特許第3423723号公報
本発明は、このような従来技術の問題点に鑑みてなされたもので、コリメートレンズを固定する樹脂の収縮や膨張による影響を低減し、コリメートレンズを高精度に調心された状態に保持することができる半導体レーザモジュールを提供することを目的とする。
本発明の一態様によれば、コリメートレンズを固定する樹脂の収縮や膨張による影響を低減し、コリメートレンズを高精度に調心された状態に保持することができる半導体レーザモジュールが提供される。この半導体レーザモジュールは、第1の方向に沿った光軸を有するレーザ光を出射する半導体レーザ素子と、上記半導体レーザ素子から出射されるレーザ光の成分のうち上記第1の方向に垂直な第2の方向の成分をコリメートするが上記第1の方向及び上記第2の方向に垂直な第3の方向の成分はコリメートしないコリメートレンズと、上記半導体レーザ素子に対して固定されるレンズ固定ブロックとを備えている。このレンズ固定ブロックは、上記第3の方向に対して垂直なレンズ取付面を有している。上記レンズ固定ブロックは、基板上にブロック固定用樹脂により固定される。上記コリメートレンズを上記レンズ固定ブロックに固定するレンズ固定用樹脂の収縮又は膨張による上記コリメートレンズの位置の変化が上記第1の方向及び上記第2の方向よりも上記第3の方向に生じるように、上記コリメートレンズの上記第3の方向における端部の少なくとも一方が上記レンズ固定ブロックのレンズ取付面に上記レンズ固定用樹脂により固定されている。
このように、本発明の一態様によれば、コリメートレンズを固定するレンズ固定用樹脂が、コリメートレンズの第3の方向における端部と第3の方向に垂直なレンズ取付面との間に設けられているため、レンズ固定用樹脂の硬化収縮や温度又は湿度によるレンズ固定用樹脂の収縮や膨張によるコリメートレンズの位置の変化が主として第3の方向のみとなる。さらに、コリメートレンズは第3の方向には位置を調整する必要がなく光学的にはどの位置でもよいため、コリメートレンズとレンズ取付面との間のレンズ固定用樹脂の厚さを薄くすることも可能であり、レンズ固定用樹脂の収縮又は膨張による変化量自体を小さくすることができる。このため、コリメートレンズの位置が第1の方向及び第2の方向にはほとんど変化することがない。したがって、コリメートレンズを固定するレンズ固定用樹脂の収縮や膨張による影響を低減しコリメートレンズを高精度に調心された状態に保持することができる。
ここで、上記第2の方向を、上記半導体レーザ素子から出射されるレーザ光のファースト軸の方向とすることができる。また、上記レンズ固定用樹脂として、UV硬化樹脂を用いることができる。さらに、上記半導体レーザ素子と上記レンズ固定ブロックとを同一の基板に固定することが好ましい。また、上記基板と上記半導体レーザ素子との間にスペーサを配置してもよい。
また、上記コリメートレンズを挟んで上記第1の方向の両側に存在するレンズ固定用樹脂の量を互いに等しくすることが好ましい。このようにすることで、コリメートレンズを挟んで第1の方向の両側に存在するレンズ固定用樹脂の収縮量又は膨張量が等しくなり互いに相殺し合うため、レンズ固定用樹脂の収縮や膨張によるコリメートレンズの第1の方向への影響を実質的になくすことができる。同様に、上記コリメートレンズを挟んで上記第2の方向の両側に存在するレンズ固定用樹脂の量を互いに等しくすることが好ましい。このようにすることで、コリメートレンズを挟んで第2の方向の両側に存在するレンズ固定用樹脂の収縮量又は膨張量が等しくなり互いに相殺し合うため、レンズ固定用樹脂の収縮や膨張によるコリメートレンズの第2の方向への影響を実質的になくすことができる。
さらに、レンズ固定ブロックと基板との間のブロック固定用樹脂の厚さが20μmよりも厚くなると、温度又は湿度によるブロック固定用樹脂の収縮や膨張によってレンズ固定ブロック及びそれに固定されたコリメートレンズが第2の方向に動いてしまい、コリメートレンズから出射されるレーザ光の光路がずれて悪影響が生じるので、厚さが20μm以下のブロック固定用樹脂を介して上記レンズ固定ブロックを上記基板に固定することが好ましい。
本発明によれば、コリメートレンズを固定する樹脂の収縮や膨張による影響を低減し、コリメートレンズを高精度に調心された状態に保持することができる半導体レーザモジュールを提供することができる。
本発明の第1の実施形態における半導体レーザモジュールを示す平面図である。 図1の半導体レーザモジュールの正面図である。 図1の半導体レーザモジュールの側面図である。 図1の半導体レーザモジュールの製造方法を説明する図である。 図1の半導体レーザモジュールの製造方法を説明する図である。 図1の半導体レーザモジュールの製造方法を説明する図である。 図1の半導体レーザモジュールの製造方法を説明する図である。 本発明の第2の実施形態における半導体レーザモジュールを示す平面図である。 図8の半導体レーザモジュールの正面図である。
以下、本発明に係る半導体レーザモジュールの実施形態について図1から図9を参照して詳細に説明する。なお、図1から図9において、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。
図1は本発明の第1の実施形態における半導体レーザモジュール1を示す平面図、図2は正面図、図3は側面図である。図1から図3に示すように、本実施形態における半導体レーザモジュール1は、第1の基板10と、第1の基板10上に固定された第2の基板20と、第2の基板20上に実装された半導体レーザ素子(レーザダイオード)30と、半導体レーザ素子30から出射されたレーザ光をコリメートするコリメートレンズ40と、第1の基板10上にブロック固定用樹脂52により固定されたレンズ固定ブロック50とを備えている。図1において、半導体レーザ素子30はZ方向に沿ってレーザ光Lを出射する。なお、以下では、図2に示すY方向がレーザ光Lのファースト軸方向であるものとして説明する。
コリメートレンズ40は、半導体レーザ素子30から出射されるレーザ光Lの成分のうちファースト軸方向(Y方向)の成分をコリメートして平行光を生成するものである。本実施形態では、図2に示すように、YZ平面におけるコリメートレンズ40の断面は、レーザ光Lが入射する側がY軸に平行になっており、レーザ光が出射する側が凸面状になっている。コリメートレンズ40は、このような断面形状を有してレーザ光Lのスロー軸方向(X方向)に延びている。例えば、コリメートレンズ40のX方向の長さは2mm程度である。コリメートレンズ40は、所望の平行光を生成するために調心され、Y方向及びZ方向に関して高精度に位置決めされる。
レンズ固定ブロック50は、例えばガラスなどからなる略直方体状の部材であり、レーザ光Lの光軸に平行なレンズ取付面50Aを有している。本実施形態におけるレンズ取付面50Aは、レーザ光Lのファースト軸(Y方向)にも平行になるように、すなわちX方向に垂直に構成されている。
図1及び図3に示すように、レンズ固定ブロック50は、第2の基板20の近傍に配置され、第1の基板10の上面にブロック固定用樹脂52により固定されている。このブロック固定用樹脂52としては例えばUV硬化樹脂又は熱硬化樹脂を用いることができる。
コリメートレンズ40のX方向の端部40Aは、レンズ固定ブロック50のレンズ取付面50Aにレンズ固定用樹脂42により固定されている。コリメートレンズ40は、第1の基板10に接触しないようになっており、レンズ固定ブロック50に片持ち梁状に固定されている。このレンズ固定用樹脂42としては例えばUV硬化樹脂又は熱硬化樹脂を用いることができる。レンズ固定用樹脂42は、コリメートレンズ40の端部40AをX方向、Y方向、及びZ方向から固定している。ここで、コリメートレンズ40を挟んでX方向の両側に存在するレンズ固定用樹脂42の量が互いに等しいことが好ましく、また、コリメートレンズ40を挟んでY方向の両側に存在するレンズ固定用樹脂42の量が互いに等しいことが好ましい。さらに、コリメートレンズ40とレンズ取付面50Aとの間のレンズ固定用樹脂42の厚さを薄くすることが好ましい。
ここで、コリメートレンズ40を固定するレンズ固定用樹脂42が、コリメートレンズ40のX方向の端部40AとX方向に垂直なレンズ取付面50Aとの間に設けられているため、レンズ固定用樹脂42の硬化収縮や温度又は湿度によるレンズ固定用樹脂42の収縮や膨張によるコリメートレンズ40の位置の変化は主としてX方向、すなわちスロー軸方向のみとなる。さらに、コリメートレンズ40とレンズ取付面50Aとの間のレンズ固定用樹脂42の厚さを薄くすれば、レンズ固定用樹脂42の収縮又は膨張による変化量自体を小さくすることができる。したがって、コリメートレンズ40の位置がY方向及びZ方向にはほとんど変化することがなく、コリメートレンズ40を高精度に調心された状態に保持することができる。
なお、図1から図3に示す例では、コリメートレンズ40の端部40AのX方向の端面全体がレンズ固定用樹脂42によりレンズ取付面50Aに固定されているが、コリメートレンズ40の端部40AのX方向の端面の少なくとも一部がレンズ固定用樹脂42によりレンズ取付面50Aに固定されていればよい。
また、コリメートレンズ40を挟んでX方向の両側に存在するレンズ固定用樹脂42の量を互いに等しくすることにより、コリメートレンズ40の両側に存在するレンズ固定用樹脂42の収縮量又は膨張量が等しくなり互いに相殺し合うため、レンズ固定用樹脂42の収縮や膨張によるコリメートレンズ40のX方向への影響を実質的になくすことができる。また、コリメートレンズ40を挟んでY方向の両側に存在するレンズ固定用樹脂42の量を互いに等しくすることにより、コリメートレンズ40の両側に存在するレンズ固定用樹脂42の収縮量又は膨張量が等しくなり互いに相殺し合うため、レンズ固定用樹脂42の収縮や膨張によるコリメートレンズ40のY方向への影響を実質的になくすことができる。
次に、本実施形態における半導体レーザモジュール1を製造する方法について説明する。半導体レーザモジュール1を製造する際には、まず、半導体レーザ素子30が実装された第2の基板20を第1の基板10上に固定する(図4)。
次に、第1の基板10上の所定の箇所にブロック固定用樹脂52を塗布し(図5)、そのブロック固定用樹脂52の上にレンズ固定ブロック50を置く(図6)。そして、レンズ固定ブロック50と第1の基板10との間のブロック固定用樹脂52の厚さがなるべく薄くなるように、レンズ固定ブロック50を第1の基板10に押圧しつつ、ブロック固定用樹脂52を硬化させてレンズ固定ブロック50を第1の基板10に固定する。このとき、レンズ固定ブロック50の取付面50AはX方向に垂直になっている。
次に、レンズ固定ブロック50のレンズ取付面50Aにレンズ固定用樹脂42を塗布し、コリメートレンズ40のX方向の端部40AをX方向からレンズ固定用樹脂42に挿入する(図7)。
そして、半導体レーザ素子30からレーザ光を出射させ、その状態でコリメートレンズ40を移動させて位置決めを行う(アクティブ調心)。このとき、コリメートレンズ40とレンズ取付面50Aとの間のレンズ固定用樹脂42の厚さがなるべく薄くなるようにすることが好ましい。コリメートレンズ40が高精度に位置決めされた状態で、レンズ固定用樹脂42を硬化させてコリメートレンズ40をレンズ固定ブロック50に固定する。このようにして、半導体レーザモジュール1が完成する(図1)。
上述したように、本実施形態における半導体レーザモジュール1の製造方法によれば、レンズ固定用樹脂42を用いてコリメートレンズ40をレンズ固定ブロック50に固定しているため、特許文献2のはんだ接合のように高温に保つ必要がない。したがって、半導体レーザ素子30からレーザ光を出射させながらコリメートレンズ40の位置決め(アクティブ調心)をすることができる。
また、コリメートレンズ40のX方向の端部40AをX方向に垂直なレンズ取付面50Aに固定しているので、レンズ固定用樹脂42の硬化収縮や温度又は湿度によるレンズ固定用樹脂42の収縮や膨張によるコリメートレンズ40の位置の変動がY方向及びZ方向にはほとんど生じることがない。また、コリメートレンズ40とレンズ取付面50Aとの間のレンズ固定用樹脂42の厚さを薄くすれば、レンズ固定用樹脂42の収縮又は膨張による変化量自体を小さくすることができる。したがって、コリメートレンズ40を高精度に調心された状態に保持することができる。
ここで、レンズ固定ブロック50と第1の基板10との間のブロック固定用樹脂52の厚さが20μm以下となるようにレンズ固定ブロック50を固定することが好ましい。レンズ固定ブロック50と第1の基板10との間のブロック固定用樹脂52の厚さが20μmよりも厚くなると、温度又は湿度によるブロック固定用樹脂52の収縮や膨張によってレンズ固定ブロック50及びそれに固定されたコリメートレンズ40がY方向(ファースト軸方向)に動いてしまい、コリメートレンズ40から出射されるレーザ光の光路がずれて悪影響が生じてしまうからである。
図8は本発明の第2の実施形態における半導体レーザモジュール101を示す平面図、図9は正面図である。図8及び図9に示すように、本実施形態における半導体レーザモジュール101は、第1の基板10と第2の基板20との間にスペーサとしての第3の基板120を備えている。このように、第1の基板10と第2の基板20との間に適切な厚さのスペーサ120を設けることにより、半導体レーザ素子30を所望の高さに設置することができる。
また、本実施形態における半導体レーザモジュール101は、例えばガラスなどからなる略直方体状のレンズ固定ブロック150を備えている。このレンズ固定ブロック150は、X方向に垂直なレンズ取付面150Aを有している。レンズ取付面150Aにはコリメートレンズ40のX方向の端部40Aがレンズ固定用樹脂42により固定される。
なお、上述した各実施形態において、レンズ固定ブロック50は、半導体レーザ素子30に対して固定的に設けられていればよく、第1の基板10とは別の部材に固定されていてもよいが、上述した第1及び第2の実施形態のように、レンズ固定ブロック50を半導体レーザ素子30が固定される基板と同一の基板(第1の基板10)に固定することが好ましい。
また、上述した各実施形態では、コリメートレンズ40のX方向の端部の一方のみを固定する構成を説明したが、他方の端部に対しても同様のレンズ固定ブロック50を設け、コリメートレンズ40のX方向の両端部を固定するようにしてもよい。
さらに、上述した実施形態におけるコリメートレンズ40は、レーザ光Lの成分のうちファースト軸方向(Y方向)の成分をコリメートするものであったが、レーザ光Lの成分のうちスロー軸方向(X方向)の成分をコリメートするレンズを用いる場合にも本発明を適用することができる。その場合には、レンズ固定ブロックのレンズ取付面をXZ平面に平行に配置し、このレンズ取付面にコリメートレンズのY方向の端部を固定すればよい。
これまで本発明の好ましい実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。
L レーザ光
1 半導体レーザモジュール
10 第1の基板
20 第2の基板
30 半導体レーザ素子
40 コリメートレンズ
40A 端部
42 レンズ固定用樹脂
50 レンズ固定ブロック
50A レンズ取付面
52 ブロック固定用樹脂
120 第3の基板(スペーサ)
150 レンズ固定ブロック
150A レンズ取付面

Claims (7)

  1. 第1の方向に沿った光軸を有するレーザ光を出射する半導体レーザ素子と、
    前記半導体レーザ素子から出射されるレーザ光の成分のうち前記第1の方向に垂直な第2の方向の成分をコリメートするが前記第1の方向及び前記第2の方向に垂直な第3の方向の成分はコリメートしないコリメートレンズと、
    前記第3の方向に対して垂直なレンズ取付面を有し、前記半導体レーザ素子に対して固定され、基板上にブロック固定用樹脂により固定されたレンズ固定ブロックと、
    を備え、
    前記コリメートレンズを前記レンズ固定ブロックに固定するレンズ固定用樹脂の収縮又は膨張による前記コリメートレンズの位置の変化が前記第1の方向及び前記第2の方向よりも前記第3の方向に生じるように、前記コリメートレンズの前記第3の方向における端部の少なくとも一方が、前記レンズ固定ブロックのレンズ取付面に前記レンズ固定用樹脂により固定されている、
    ことを特徴とする半導体レーザモジュール。
  2. 前記第2の方向は、前記半導体レーザ素子から出射されるレーザ光のファースト軸の方向であることを特徴とする請求項1に記載の半導体レーザモジュール。
  3. 前記レンズ固定用樹脂は、UV硬化樹脂であることを特徴とする請求項1又は2に記載の半導体レーザモジュール。
  4. 前記コリメートレンズを挟んで前記第1の方向の両側に存在する前記レンズ固定用樹脂の量が互いに等しく、
    前記コリメートレンズを挟んで前記第2の方向の両側に存在する前記レンズ固定用樹脂の量が互いに等しい、
    ことを特徴とする請求項1から3のいずれか一項に記載の半導体レーザモジュール。
  5. 前記半導体レーザ素子と前記レンズ固定ブロックは、同一の基板に固定されていることを特徴とする請求項1から4のいずれか一項に記載の半導体レーザモジュール。
  6. 前記レンズ固定ブロックは、厚さが20μm以下のブロック固定用樹脂を介して前記基板に固定されていることを特徴とする請求項5に記載の半導体レーザモジュール。
  7. 前記基板と前記半導体レーザ素子との間に配置された、所定の厚さのスペーサをさらに備えたことを特徴とする請求項5又は6に記載の半導体レーザモジュール。
JP2015077370A 2015-04-06 2015-04-06 半導体レーザモジュール Pending JP2015128193A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015077370A JP2015128193A (ja) 2015-04-06 2015-04-06 半導体レーザモジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015077370A JP2015128193A (ja) 2015-04-06 2015-04-06 半導体レーザモジュール

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013043014A Division JP5781110B2 (ja) 2013-03-05 2013-03-05 半導体レーザモジュール及びその製造方法

Publications (1)

Publication Number Publication Date
JP2015128193A true JP2015128193A (ja) 2015-07-09

Family

ID=53838018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015077370A Pending JP2015128193A (ja) 2015-04-06 2015-04-06 半導体レーザモジュール

Country Status (1)

Country Link
JP (1) JP2015128193A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027096A1 (ja) * 2021-08-26 2023-03-02 三菱電機株式会社 光モジュール及び光モジュールの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050002615A1 (en) * 2003-04-24 2005-01-06 Masud Azimi Methods and apparatus for alignment and assembly of optoelectronic components
JP2005243659A (ja) * 2003-12-26 2005-09-08 Toshiba Corp 半導体レーザ装置
JP2006059934A (ja) * 2004-08-18 2006-03-02 Ricoh Co Ltd 光源装置及び画像形成装置
WO2009087974A1 (ja) * 2008-01-11 2009-07-16 Panasonic Corporation 複眼カメラモジュール
JP2010232370A (ja) * 2009-03-26 2010-10-14 Furukawa Electric Co Ltd:The レンズ、半導体レーザモジュール、および光学デバイスの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050002615A1 (en) * 2003-04-24 2005-01-06 Masud Azimi Methods and apparatus for alignment and assembly of optoelectronic components
JP2005243659A (ja) * 2003-12-26 2005-09-08 Toshiba Corp 半導体レーザ装置
JP2006059934A (ja) * 2004-08-18 2006-03-02 Ricoh Co Ltd 光源装置及び画像形成装置
WO2009087974A1 (ja) * 2008-01-11 2009-07-16 Panasonic Corporation 複眼カメラモジュール
JP2010232370A (ja) * 2009-03-26 2010-10-14 Furukawa Electric Co Ltd:The レンズ、半導体レーザモジュール、および光学デバイスの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027096A1 (ja) * 2021-08-26 2023-03-02 三菱電機株式会社 光モジュール及び光モジュールの製造方法

Similar Documents

Publication Publication Date Title
JP5616471B2 (ja) 半導体レーザモジュール及びその製造方法
JP5781110B2 (ja) 半導体レーザモジュール及びその製造方法
US9252885B2 (en) Method for manufacturing wavelength division multiplexing transmission apparatus and wavelength division multiplexing transmission apparatus
US7539233B2 (en) Lens holder and laser array unit using the same
JP6340902B2 (ja) 光モジュールの製造方法
US7444046B2 (en) Diode laser array coupling optic and system
JP6459296B2 (ja) 発光モジュール及び多チャネル発光モジュール
JP2009163213A (ja) 光結合素子およびこれを備えた光モジュール
JP2015162591A (ja) 光モジュール及び光伝送方法
US8085468B2 (en) Line generator
JP2010103323A (ja) 半導体レーザモジュール及びその製造方法
US9261652B2 (en) Optical components including bonding slots for adhesion stability
CN106918330B (zh) 激光模块和激光标线仪
JP7117138B2 (ja) レーザモジュール
JP6129066B2 (ja) 半導体レーザモジュール及びその製造方法
JP2015128193A (ja) 半導体レーザモジュール
KR20110056218A (ko) 렌즈 고정 장치 및 광 픽업 장치
JP2017208483A (ja) 半導体レーザ装置
JP2011197081A (ja) 光走査光学装置
KR20200033328A (ko) 광학 렌즈, 카메라 모듈 및 이의 조립 방법
JP5708379B2 (ja) 光モジュール
JP2004219478A (ja) 光ファイバコリメートユニット
JP2008040086A (ja) 光ファイバアレイ
JP6596998B2 (ja) 光学装置及び光照射装置
JP2017098335A (ja) 波長多重レーザダイオードモジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161004