WO2014136607A1 - 2次元フォトニック結晶面発光レーザ - Google Patents

2次元フォトニック結晶面発光レーザ Download PDF

Info

Publication number
WO2014136607A1
WO2014136607A1 PCT/JP2014/054429 JP2014054429W WO2014136607A1 WO 2014136607 A1 WO2014136607 A1 WO 2014136607A1 JP 2014054429 W JP2014054429 W JP 2014054429W WO 2014136607 A1 WO2014136607 A1 WO 2014136607A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
dimensional photonic
lattice
dimensional
light
Prior art date
Application number
PCT/JP2014/054429
Other languages
English (en)
French (fr)
Inventor
野田 進
剛士 沖野
恭子 北村
田中 良典
永 梁
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to US14/773,584 priority Critical patent/US9531160B2/en
Priority to EP14760954.9A priority patent/EP2966737B1/en
Priority to CN201480013121.8A priority patent/CN105191029B/zh
Priority to JP2015504246A priority patent/JP6080941B2/ja
Publication of WO2014136607A1 publication Critical patent/WO2014136607A1/ja
Priority to US15/050,993 priority patent/US9627850B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0085Modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/11Comprising a photonic bandgap structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1215Multiplicity of periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/18Semiconductor lasers with special structural design for influencing the near- or far-field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • H01S5/04253Electrodes, e.g. characterised by the structure characterised by the material having specific optical properties, e.g. transparent electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape

Definitions

  • the present invention relates to a two-dimensional photonic crystal surface-emitting laser, and more particularly to a two-dimensional photonic crystal surface-emitting laser that emits a laser beam in a direction inclined from a normal to the crystal plane.
  • Semiconductor lasers have many advantages such as small size, low cost, low power consumption, and long life, and are used in a wide range of fields such as optical recording light sources, communication light sources, laser displays, laser printers, and laser pointers.
  • Laser displays and laser printers generally use a system that scans the beam to form letters and figures.
  • the laser beam of a semiconductor laser that is used is a polygonal reflector (polygon mirror) or MEMS (Micro- Electro-Mechanical System) Scanning is realized by controlling the emission direction of the laser beam by an additional element provided outside such as a micro mirror or an acousto-optic device.
  • a scanning mechanism is added to the semiconductor laser in this way, there is a problem that it is difficult to reduce the size and improve the operation speed and durability.
  • Patent Document 1 and Non-Patent Document 1 two-dimensional photonic crystal surface emitting lasers in which the emission direction of the laser beam is made variable (hereinafter referred to as “emission direction variable two-dimensional photonic crystal surface emitting laser”). Is described.
  • a general two-dimensional photonic crystal surface (in itself, the light emission direction is the normal direction of the crystal plane and is not variable).
  • the light emitting laser will be described.
  • an active layer and a region in the plate-like member having a refractive index different from that of the member referred to as a “different refractive index region”, typically a hole).
  • a different refractive index region typically a hole.
  • this two-dimensional photonic crystal surface emitting laser light in a wavelength region determined by the material of the active layer is generated by injecting an electric charge into the active layer, and the predetermined wavelength determined by the period of the different refractive index region of the light. Is amplified by forming a standing wave.
  • the amplified light is scattered in various directions by the different refractive index regions in the two-dimensional photonic crystal layer.
  • two different adjacent light beams can be scattered.
  • the optical path difference between the two lights scattered in the normal direction of the two-dimensional photonic crystal layer by the refractive index region matches the wavelength, and the phases of the scattered lights are aligned. When this condition is satisfied, a laser beam is emitted in a direction perpendicular to the two-dimensional photonic crystal layer.
  • the emission direction variable two-dimensional photonic crystal surface emitting laser described in Patent Document 1 has an active layer and two two-dimensional photonic crystal layers having different periods of different refractive index regions.
  • light having different wavelengths corresponding to the period of the different refractive index region is amplified by forming a standing wave.
  • a beat is generated spatially due to the frequency difference between the standing waves, so that the emitted laser beam is directed in a direction inclined with respect to the normal line of the two-dimensional photonic crystal layer.
  • the laser beam emitted in such a direction is referred to as a “tilted beam”.
  • the angle (tilt angle) of the tilted beam with respect to the normal line of the two-dimensional photonic crystal layer increases as the frequency difference increases. Then, by forming the period of the different refractive index region in at least one of the two-dimensional photonic crystal layers so as to vary depending on the position in the plane, it depends on the position where charges are injected into the active layer (the position in the plane where laser oscillation is performed) It becomes possible to emit inclined beams having different inclination angles.
  • the emission direction variable two-dimensional photonic crystal surface emitting laser described in Non-Patent Document 1 is a single layer in which a different refractive index region is disposed at a lattice point where a square lattice and an orthorhombic lattice are superimposed. It has a two-dimensional photonic crystal layer.
  • the square lattice has a role of forming the resonance state of the light generated in the active layer in the two-dimensional photonic crystal layer, and the oblique lattice tilts the light in the resonance state from the normal line of the two-dimensional photonic crystal layer. It is said that it has a role of emitting light in the selected direction.
  • the emission direction variable two-dimensional photonic crystal surface emitting laser described in Patent Document 1 is a combination of two two-dimensional photonic crystals having a characteristic that a laser beam is emitted in a direction perpendicular to the two-dimensional photonic crystal layer. Therefore, it is difficult to increase the tilt angle.
  • Non-Patent Document 1 In the emission direction variable two-dimensional photonic crystal surface emitting laser described in Non-Patent Document 1, light in a resonance state formed by a square lattice is scattered in various directions by the oblique lattice. Thereby, in addition to the tilted beam having the target tilt angle, light is scattered in a direction different from the tilt angle, so that light loss occurs.
  • the problem to be solved by the present invention is to provide a two-dimensional photonic crystal surface emitting laser that emits a tilted beam that can increase the tilt angle and reduce the loss of light as compared with the prior art. It is.
  • the two-dimensional photonic crystal surface emitting laser according to the present invention which has been made to solve the above problems, includes an active layer that generates light having a wavelength ⁇ L when a current is injected, and a plate-like base material.
  • the two-dimensional photonic crystal layer in which a refractive index distribution is formed by two-dimensionally arranging different refractive index regions having different refractive indexes from the base material is laminated.
  • Respective refractive index regions in the two-dimensional photonic crystal layer form a two-dimensional standing wave to form a resonance state of the light having the wavelength ⁇ L and prevent the light having the wavelength ⁇ L from being emitted to the outside.
  • the active layer includes one that generates light in a wavelength range including the wavelength ⁇ L.
  • the two-dimensional photonic crystal surface emitting laser according to the present invention may have a cladding layer, a spacer layer, and the like in addition to the active layer and the two-dimensional photonic crystal layer.
  • the wavelength ⁇ L is defined as a wavelength in a vacuum.
  • n eff is an effective refractive index in consideration of the ratio of the electric field intensity of light distributed in the two-dimensional photonic crystal layer in the structure in which the respective layers are stacked and the filling rate of the different refractive index region with respect to the base material.
  • Basic two-dimensional grating A basic two-dimensional grating, that is, a two-dimensional grating that forms a resonance state of light having a wavelength ⁇ L and does not emit light having the wavelength ⁇ L to the outside is known. .
  • a rectangular lattice (including face-centered rectangular lattice) that satisfies the relational expression of, and a lattice constant a is a (2/3) ⁇ PC
  • the triangular lattice which is is also an example of the basic two-dimensional lattice.
  • the light with the wavelength ⁇ PC in the crystal layer is scattered in various directions.
  • light L1 scattered (180 ° scattered) in a direction different by 180 ° from the traveling direction before scattering at one lattice point 911 is the four lattices closest to the lattice point. Since the optical path difference from the light L2 scattered at 180 ° at each point 912 matches the wavelength ⁇ PC in the crystal layer, it is amplified by interference (FIG. 1A).
  • the light with the wavelength ⁇ PC in the crystal layer propagating in the two-dimensional photonic crystal layer is also scattered at a lattice point 91 in a direction having an angle with respect to the layer.
  • such scattered light has an optical path difference of ⁇ PC / 2 between the light scattered at the lattice point 911 and the light scattered at the lattice point 912 (light L5 and light L6 in FIG. 1B), Since the phase of both is shifted by ⁇ , they cancel each other. Therefore, light is not emitted outside the two-dimensional photonic crystal layer.
  • the basic two-dimensional lattice is a square lattice
  • the basic two-dimensional lattice is a triangular lattice (hexagonal lattice)
  • the light amplified by the interference is scattered (120 ° scattered) in a direction different from the traveling direction before scattering in the lattice plane by 120 °. Except for certain points, this is the same as the case of the square lattice.
  • modulation refers to a spatial period (modulation) that is different from the period of the basic two-dimensional grating with respect to a state in which different refractive index regions having the same form are arranged at each lattice point of the basic two-dimensional grating.
  • Period means that a periodic change is given. This periodic change is formed, for example, by disposing a different refractive index region at a position shifted from the lattice point at each lattice point and periodically changing the direction or / and the magnitude of the shift with the modulation period. Can do. Alternatively, this periodic change can also be formed by periodically changing the area of the different refractive index region with the modulation period.
  • the modulation at each lattice point of the basic two-dimensional lattice can be expressed by a phase ⁇ (modulation phase).
  • the modulation phase ⁇ of each lattice point is determined by the position vector r ⁇ and reciprocal lattice vector G ′ ⁇ of each lattice point of the basic two-dimensional lattice.
  • This reciprocal lattice vector G ′ ⁇ corresponds to the reciprocal lattice vector of the orthorhombic lattice in Non-Patent Document 1.
  • the different refractive index regions are arranged in a modulated manner at each lattice point of the basic two-dimensional lattice.
  • the modulation of the different refractive index region at each lattice point includes both the position of the different refractive index region (deviation from each lattice point) and the area of the different refractive index region. Specifically, it is as follows.
  • the modulation phase ⁇ of each lattice point is obtained as follows.
  • the grid point position vector r ⁇ is an integer m x in the orthogonal coordinate system
  • the reciprocal lattice vector G ' (g' x , g ' y ) is ... (3),
  • the reciprocal lattice vector is ...(Five) Or ... (6) Any combination of these can be used.
  • the two-dimensional photonic crystal surface emitting laser As described above, a plurality of grating structures are not stacked, but a different refractive index region is arranged at a position shifted from a lattice point of one basic two-dimensional grating. Therefore, unlike the laser described in Patent Document 1, there is no restriction of combining two two-dimensional photonic crystals having characteristics of being emitted in a direction perpendicular to the two-dimensional photonic crystal layer.
  • the two-dimensional photonic crystal surface emitting laser is arranged at each lattice point so that the different refractive index regions are shifted from the lattice point by the same distance and represents the direction of the shift. It can be configured that the angle formed with a predetermined reference line of the grating is modulated by the modulation phase ⁇ . By giving modulation in the direction of deviation in this way, outgoing light having circularly polarized light can be obtained.
  • the different refractive index region is shifted from the lattice point in the same direction, and the absolute value of the distance d of the shift is A configuration in which modulation is performed with a modulation phase ⁇ between zero and a maximum value d max can also be adopted.
  • Current injection position control means for controlling the position of injecting current into the active layer (current injection position); Since the modulation phase ⁇ of each lattice point is different for each modulation region in the two-dimensional photonic crystal layer, which is a region where light emission from the current injection position is amplified, the emission direction variable 2 A two-dimensional photonic crystal surface emitting laser is obtained. That is, in this emission direction variable two-dimensional photonic crystal surface emitting laser, light generated by injecting current into a part of the active layer (different from the different refractive index region) by the current injection position control means is generated. , Introduced into a part of the two-dimensional photonic crystal layer corresponding to the region. Then, an inclined beam is emitted at an inclination angle ⁇ and an azimuth angle ⁇ determined by the modulation phase ⁇ at the position of the two-dimensional photonic crystal layer into which light is introduced.
  • the current injection position control means includes a pair of electrodes sandwiching the active layer and the two-dimensional photonic crystal layer, the pair of electrodes One or both of a plurality of one-dimensionally or two-dimensionally arranged electrodes parallel to the active layer and the two-dimensional photonic crystal layer, and an electrode for injecting current into the active layer among the plurality of electrodes
  • a switch provided with switching means for switching can be used.
  • a plurality of electrodes arranged two-dimensionally it is possible to provide more modulation regions than in the case of a one-dimensional shape, and to set a larger number of combinations of inclination angles ⁇ and azimuth angles ⁇ . Can do.
  • the present invention it is possible to obtain a two-dimensional photonic crystal surface emitting laser capable of increasing the tilt angle and emitting a tilt beam with less light loss than before.
  • the basic two-dimensional grating amplifies the light of wavelength ⁇ L and (b) illustrates the reason why the light of wavelength ⁇ L is not emitted to the outside.
  • 1 is a perspective view showing a first embodiment of a two-dimensional photonic crystal surface emitting laser according to the present invention.
  • the top view (a) which shows the two-dimensional photonic crystal layer in the two-dimensional photonic crystal surface emitting laser of 1st Example,
  • the partial enlarged view which shows the square lattice which is a basic two-dimensional lattice, and the gravity center of a hole (b) .
  • a micrograph (a) showing the two-dimensional photonic crystal layer in the two-dimensional photonic crystal surface emitting laser of the first example having a wavelength ⁇ L 987.4 nm and a design value of the tilt angle ⁇ of 36.2 °, and obtained.
  • Micrograph (a-1) showing a two-dimensional photonic crystal layer in the two-dimensional photonic crystal surface emitting laser of the first embodiment having a wavelength ⁇ L 987.4 nm and design values of the tilt angle ⁇ of 30 ° and 40 ° And (a-2), and far-field images (b-1) and (b-2) of the obtained tilted beam.
  • An oscillation spectrum obtained by the two-dimensional photonic crystal surface emitting laser of the first embodiment having a wavelength ⁇ L 987.4 nm and a design value of the inclination angle ⁇ of 30 °.
  • the tilted beam obtained from the two-dimensional photonic crystal surface emitting laser of the first embodiment in which the wavelength ⁇ L 987.4 nm, the tilt angle ⁇ is 30 °, and the azimuth angle is 60 °.
  • the graph which shows the result of having measured the polarization characteristic.
  • the longitudinal cross-sectional view (a) which shows the emission direction variable two-dimensional photonic crystal surface emitting laser which is 2nd Example, and the top view (b) of a two-dimensional photonic crystal layer.
  • the top view (a) which shows the two-dimensional photonic crystal layer in the two-dimensional photonic crystal surface emitting laser of 3rd Example,
  • the partial enlarged view which shows the square lattice which is a basic two-dimensional lattice, and the gravity center of a hole (b) .
  • 14 is a graph showing the result of measuring the polarization characteristics of the tilted beam shown in FIGS. 13 (b-1) to (b-3).
  • Three tilted beams obtained from the two-dimensional photonic crystal surface emitting laser of the third embodiment having a wavelength ⁇ L 987.4 nm, a tilt angle ⁇ of 30 °, and different azimuth angle design values.
  • FIG. 2 is a perspective view of a two-dimensional photonic crystal surface emitting laser (hereinafter referred to as “photonic crystal laser”) 10 of the first embodiment.
  • the photonic crystal laser 10 includes a lower electrode 151, a lower substrate 141, a first cladding layer 131, a two-dimensional photonic crystal layer 11, an active layer 12, a second cladding layer 132, an upper substrate 142, The upper electrode 152 is laminated in this order.
  • the laser beam is inclined by the emission angle ⁇ from the normal line of the two-dimensional photonic crystal layer 11 through a window (cavity) 1521 provided in the center of the upper electrode 152. It is emitted in the direction.
  • a transparent electrode made of ITO (indium tin oxide) or the like may be used instead of the one having the window 1521.
  • ITO indium tin oxide
  • the order of the two-dimensional photonic crystal layer 11 and the active layer 12 may be reversed.
  • the terms “upper” and “lower” are used in the present application, but these terms do not define the direction (up and down) when the photonic crystal laser is actually used.
  • a member such as a spacer may be inserted between the active layer and the two-dimensional photonic crystal.
  • the lower substrate 141 is made of p-type semiconductor gallium arsenide (GaAs)
  • the upper substrate 142 is made of n-type GaAs
  • the first cladding layer 131 is made of p-type semiconductor aluminum gallium arsenide (AlGaAs).
  • the second cladding layer 132 is made of n-type AlGaAs.
  • the active layer 12 has a multiple-quantum well (MQW) made of indium gallium arsenide / gallium arsenide (InGaAs / GaAs). Gold was used as the material of the lower electrode 151 and the upper electrode 152.
  • the material of each layer is not limited to the above, and the material of each layer used in a conventional photonic crystal surface emitting laser can be used as it is.
  • other layers such as a spacer layer, may be interposed between the above layers.
  • the two-dimensional photonic crystal layer 11 is a plate-shaped base material (slab) 114 in which holes (different refractive index regions) 111 are arranged as described later.
  • p-type GaAs is used as the material of the base material 114.
  • the shape of the air holes 111 is an equilateral triangle in this embodiment (FIG. 3), but other shapes such as a circle may be used.
  • the material of the base material 114 is not limited to that described above, and a material used in a conventional photonic crystal laser can be used.
  • a member having a refractive index different from that of the base material 114 may be used.
  • the holes are excellent in that they can be easily processed, whereas the different refractive index member is advantageous when the base material may be deformed by heating during processing.
  • FIG. 3A is a top view of the two-dimensional photonic crystal layer 11.
  • holes 111 actually provided in the two-dimensional photonic crystal layer 11 are shown by solid lines, and square lattices that are basic two-dimensional lattices are shown by alternate long and short dash lines, and virtual lattice points of the square lattices are virtually displayed.
  • a state where the center of gravity of the hole 111V is arranged is indicated by a broken line.
  • FIG. 3B shows only the square lattice (dotted line) and the center of gravity (black circle) of the hole 111 after enlarging (a).
  • the distance between the lattice point and the center of gravity of the hole 111V (the distance d of the positional deviation) is the same for all the lattice points, and the direction of the deviation is modulated as follows.
  • the difference in displacement azimuth angle ⁇ between two lattice points adjacent in the x direction (hereinafter referred to as “ ⁇ x ”) is (3/4) ⁇ , that is, 135 °.
  • the difference in the deviation azimuth angle ⁇ (hereinafter referred to as “ ⁇ y ”) between two lattice points adjacent in the y direction is ⁇ , that is, 180 °.
  • a photonic crystal laser having a two-dimensional photonic crystal layer 11 as a basic two-dimensional lattice was actually fabricated. The distance d of the positional deviation from the lattice point was 0.1a.
  • An electron micrograph of the prepared two-dimensional photonic crystal layer 11 is shown in FIG. When current was injected into this photonic crystal laser, a laser beam with a wavelength of 987.4 nm was observed.
  • This laser beam is a tilted beam 19 having a measured angle of 36.1 ° with respect to the normal of the two-dimensional photonic crystal layer 11 as shown in a far-field image in FIG.
  • Two beams 19 (two inclined beam spots 19S) were observed.
  • the difference between the measured value of the tilt angle ⁇ and the design value was 0.01 °, and a tilted beam almost as designed was obtained.
  • FIG. 5 shows the far-field images of the tilted beam obtained by injecting current into the photonic crystal laser.
  • an inclined beam having an inclination angle ⁇ close to the design value was obtained.
  • the measured values of the inclination angle ⁇ were 29.5 ° in (i) and (ii) 39.2 °.
  • FIG. 6 shows the oscillation spectrum of the laser beam obtained with the photonic crystal laser (i). It can be confirmed that the oscillation wavelength ⁇ L is 987.4 nm.
  • FIGS. 7 (a-1) and (ii) FIG. 7 (a-2) show far-field images of tilted beams obtained by injecting current into the photonic crystal laser.
  • (b-1) and (ii) are shown in FIG. 7 (b-2), respectively. In either case, a tilted beam was obtained in which the measured value of the tilt angle ⁇ was 29.5 ° and the measured value of the azimuth angle ⁇ was as designed.
  • One laser beam has clockwise circularly polarized light and the other laser beam is counterclockwise. It means having circularly polarized light. Utilizing the fact that one of the laser beams is shielded in this manner, only one inclined beam is emitted using the photonic crystal laser of the present invention and a combination of a quarter-wave plate and a polarizing plate. A laser light source is obtained.
  • FIG. 10A is a longitudinal sectional view of the emitting direction variable photonic crystal laser 20 of the second embodiment.
  • the emission direction variable photonic crystal laser 20 includes a lower electrode, a lower substrate 141, a first cladding layer 131, a two-dimensional photonic crystal layer 21, an active layer 12, a second cladding layer 132, and an upper substrate 142.
  • the upper electrode 252 are laminated in this order.
  • the upper electrode 252 is a transparent electrode that covers the entire upper substrate 142.
  • the emission direction variable photonic crystal laser 20 is divided into a plurality of regions (called “modulation regions”, which are different from the different refractive index regions) A, B, C.
  • modulation regions which are different from the different refractive index regions
  • lower electrodes 251A, 251B, 251C,... are provided independently of each other (FIG. 10A)
  • the two-dimensional photonic crystal layer 21 has a different structure for each modulation region. (FIG. 10 (b)).
  • the emission direction variable photonic crystal laser 20 is provided with a current injection position control unit 29 for switching the lower electrodes 251A, 251B, and 251C for injecting current.
  • the other components have the same configuration in all modulation regions. Both the lower electrode and the modulation region are arranged one-dimensionally.
  • [delta] [Psi] x is a two-dimensional photonic different values [delta] [Psi] xA for each crystal structure, [delta] [Psi] xB, a [delta] [Psi] xC In this way, ⁇ y is ⁇ in all two-dimensional photonic crystal structures.
  • a current is passed between one of the lower electrodes 251A, 251B, 251C.
  • the emission direction of the laser beam can be changed as follows.
  • the lower electrode through which the current flows is switched from the lower electrode 251A to the lower electrode 251B, this time it is amplified in the two-dimensional photonic crystal structure 21B and corresponds to the shift azimuth angle ⁇ B in the two-dimensional photonic crystal structure 21B.
  • An inclined beam is emitted at an inclination angle ⁇ B different from the inclination angle ⁇ A.
  • the inclination angle ⁇ changes in the same manner even when switching to another lower electrode such as the lower electrode 251C. In this way, by switching the lower electrode through which the current flows, the tilted beam can be emitted at different tilt angles.
  • FIG. 11 shows a modification of the emission direction variable photonic crystal laser.
  • the lower electrodes 251XY (X: A, B, C..., Y: A, B, C...) are two-dimensionally arranged.
  • the two-dimensional photonic crystal layer 21 has a two-dimensional photonic crystal structure XY (X: A, B, C..., Y: A, as shown in FIG. 11B).
  • B, C ...) are arranged two-dimensionally.
  • ⁇ x is set to have different values ⁇ xXY (X: A, B, C..., Y: A, B, C).
  • an inclined beam can be emitted at different inclination angles by switching the lower electrode 251XY through which a current flows. Since the lower electrode 251XY and the two-dimensional photonic crystal structure XY are two-dimensionally arranged, a larger number of combinations of inclination angles ⁇ and azimuth angles ⁇ can be set than in the case of the one-dimensional arrangement.
  • one upper electrode and many lower electrodes are arranged one-dimensionally or two-dimensionally.
  • one lower electrode and many upper electrodes are arranged one-dimensionally or two-dimensionally.
  • both the lower electrode and the upper electrode may be arranged in a one-dimensional or two-dimensional manner.
  • the third embodiment shows an example in which, at each lattice point of the basic two-dimensional lattice of the photonic crystal layer, holes (different refractive index regions) are displaced in the same direction from the lattice points, and the distance of the displacement is modulated. .
  • holes different refractive index regions
  • the basic two-dimensional lattice in the present embodiment is a square lattice similar to that in the first embodiment.
  • the holes 111 which are different refractive index regions are arranged at positions shifted from the lattice points of the basic two-dimensional lattice.
  • the direction of deviation is the x direction which is the reference direction in any of the holes 111 as shown in FIG.
  • the modulation phase ⁇ is set so that the difference ⁇ y between lattice points adjacent in the x direction is 3 ⁇ / 4.
  • the observed polarization direction of the tilted beam for these three photonic crystal lasers is shown in the graph of FIG. From these graphs, (1) linearly polarized light in the y direction when the hole displacement is in the x direction, (2) linearly polarized light in the x direction when the void displacement is in the y direction, and (3) the void displacement is x. It can be seen that when the direction is 135 ° from the direction, linearly polarized light in the direction of 45 ° from the x direction can be obtained. In other words, it can be said that linearly polarized light in a direction different from the direction of hole displacement by 90 ° is obtained.
  • the direction of hole displacement is the x direction
  • the design value of the azimuth angle ⁇ from the x direction is (1) 0 °
  • the value of ⁇ x is 0.792 ⁇ in (1), 0.853 ⁇ in (2), and ⁇ in (3).
  • the value of ⁇ y is 0 ° in any example.
  • FIGS. 15 (1) to 15 (3) show far-field images of tilted beams obtained by these photonic crystal lasers. In any of the examples, the tilted beam was obtained with the designed tilt angle ⁇ and azimuth angle ⁇ .
  • Example 4 In the fourth embodiment, an example is shown in which holes (different refractive index regions) are arranged at each lattice point so that the center of gravity and the lattice point coincide with each other, and the area of each hole is modulated. Also in this example, since the configuration other than the photonic crystal layer is the same as that of the first embodiment, the description is omitted, and the configuration of the photonic crystal layer will be described.
  • the basic two-dimensional lattice in the present embodiment is a square lattice similar to that in the first embodiment.
  • the modulation phase ⁇ is set so that the difference ⁇ x between lattice points adjacent in the x direction becomes 3 ⁇ / 4, as in the third embodiment.
  • Two-dimensional photonic crystal structure 29 ...
  • Current injection position control unit 90 ...

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 本発明は、傾斜角を大きくすることができ、光の損失が少ない、傾斜ビームを出射する2次元フォトニック結晶面発光レーザを提供する。板状の母材114に空孔111が2次元的に配置されることで屈折率分布が形成された2次元フォトニック結晶(2DPC)層11と、電流の注入により波長λLの光を生じさせる活性層12とが積層された構成を有し、2DPC層11の法線から傾斜角θの方向にレーザビームを発振するレーザであって、2DPC層11において各空孔111が、2次元定在波を形成することによって波長λLの光の共振状態を形成し且つ該光を外部に出射させないように定められる周期性を持つ基本2次元格子の各格子点において変調して配置されており、該変調の位相Ψが、2DPC層11内における波長λLの光の波数ベクトルk↑=(kx, ky)、2DPC層11の有効屈折率neff、及び基本2次元格子の所定の基準線からの方位角φを用いて表される逆格子ベクトルG'↑=(g'x, g'y)=(kx±|k↑|(sinθcosφ)/neff, ky±|k↑|(sinθsinφ)/neff)と、各格子点の位置ベクトルr↑とを用いて、Ψ=r↑・G'↑で表される。

Description

2次元フォトニック結晶面発光レーザ
 本発明は、2次元フォトニック結晶面発光レーザに関し、より詳しくは、レーザビームを結晶面の法線から傾斜した方向に出射する2次元フォトニック結晶面発光レーザに関する。
 半導体レーザは小型、安価、低消費電力、長寿命等の多くの利点を有し、光記録用光源、通信用光源、レーザディスプレイ、レーザプリンタ、レーザポインタ等の幅広い分野で使用されている。レーザディスプレイやレーザプリンタではビームを走査して文字や図形を形成する方式が一般的であるが、現在用いられている半導体レーザのレーザビームは、多角形状反射鏡(ポリゴンミラー)やMEMS(Micro-Electro Mechanical System)マイクロミラー、音響光学素子を用いたものなど、外部に設けた付加的な要素によりレーザビームの出射方向を制御することによって走査が実現されている。しかしながら、このように半導体レーザに走査のための機構を付加すると、小型化、並びに動作速度及び耐久性の向上が困難になるという問題がある。
 特許文献1及び非特許文献1には、2次元フォトニック結晶面発光レーザにおいて、レーザビームの出射方向を可変にしたもの(以下、「出射方向可変2次元フォトニック結晶面発光レーザ」と呼ぶ)が記載されている。
 出射方向可変2次元フォトニック結晶面発光レーザを説明する前に、まず、一般的な(それ自体では光出射方向が結晶面の法線方向であって、可変ではない)2次元フォトニック結晶面発光レーザについて説明する。一般的な2次元フォトニック結晶面発光レーザは、活性層と、板状の部材内に該部材とは屈折率が異なる領域(「異屈折率領域」と呼ぶ。典型的には空孔。)を周期的に配置した2次元フォトニック結晶層を有する。この2次元フォトニック結晶面発光レーザでは、活性層に電荷を注入することにより、その活性層の材料により定まる波長域の光が発生し、その光のうち、異屈折率領域の周期により定まる所定の波長を有する光が定在波を形成することによって増幅される。このように増幅された光は2次元フォトニック結晶層内において、異屈折率領域により様々な方向に散乱されるが、設定された異屈折率領域の周期によっては、互いに隣接する2個の異屈折率領域によって2次元フォトニック結晶層の法線方向に散乱された2つの光の光路差が波長と一致すると共に、それら散乱光の位相が揃う。この条件を満たす場合に、2次元フォトニック結晶層に垂直な方向にレーザビームが出射される。
 一方、特許文献1に記載の出射方向可変2次元フォトニック結晶面発光レーザは、活性層と、異屈折率領域の周期が互いに異なる2層の2次元フォトニック結晶層を有する。これにより、2つの2次元フォトニック結晶層では、異屈折率領域の周期に対応した互いに異なる波長の光が、定在波を形成することによって増幅される。そして、それらの定在波の周波数差によって、うなりが空間的に生じることにより、出射されるレーザビームは2次元フォトニック結晶層の法線に対して傾斜した方向を向く。このような方向に出射するレーザビームを、以下では「傾斜ビーム」と呼ぶ。2次元フォトニック結晶層の法線に対する傾斜ビームの角度(傾斜角)は、上記周波数差が大きくなるほど大きくなる。そして、少なくとも一方の2次元フォトニック結晶層における異屈折率領域の周期を、面内の位置によって異なるように形成することで、活性層に電荷を注入する位置(レーザ発振させる面内位置)によって傾斜角の異なる傾斜ビームを出射させることが可能となる。
 また、非特許文献1に記載の出射方向可変2次元フォトニック結晶面発光レーザは、活性層と、正方格子と斜方格子を重ね合わせた格子点に異屈折率領域が配置された1層の2次元フォトニック結晶層を有する。正方格子は、活性層で生成された光の共振状態を2次元フォトニック結晶層内において形成する役割を有し、斜方格子は共振状態の光を2次元フォトニック結晶層の法線から傾斜した方向に出射させる役割を有するとされている。
特開2009-076900号公報
信岡俊之、他3名「正方格子M点フォトニック結晶共振器を用いた2次元ビーム偏向制御」、第59回応用物理学関係連合講演会講演予稿集、公益社団法人応用物理学会、2012年2月29日発行、講演番号16a-E5-2
 特許文献1に記載の出射方向可変2次元フォトニック結晶面発光レーザでは、レーザビームが2次元フォトニック結晶層に垂直な方向に出射される特性を有する2つの2次元フォトニック結晶を組み合わせるという制約があるため、傾斜角を大きくすることが難しい。
 非特許文献1に記載の出射方向可変2次元フォトニック結晶面発光レーザでは、正方格子によって形成された共振状態の光が、斜方格子によって様々な方向に散乱される。それにより、目的とする傾斜角を有する傾斜ビームの他に、その傾斜角とは異なる方向にも光が散乱されるため、光の損失が生じる。
 本発明が解決しようとする課題は、傾斜角を大きくすることができると共に、光の損失を従来よりも少なくすることができる、傾斜ビームを出射する2次元フォトニック結晶面発光レーザを提供することである。
 上記課題を解決するために成された本発明に係る2次元フォトニック結晶面発光レーザは、電流が注入されることにより波長λLの光を生じさせる活性層と、板状の母材に、該母材とは屈折率が異なる異屈折率領域が2次元的に配置されることにより屈折率分布が形成されて成る2次元フォトニック結晶層とが積層された構成を有し、該2次元フォトニック結晶層の法線から傾斜角θの方向にレーザビームを発振するレーザであって、
 該2次元フォトニック結晶層において各異屈折率領域が、2次元定在波を形成することによって前記波長λLの光の共振状態を形成し且つ該波長λLの光を外部に出射させないように定められる周期性を持つ基本2次元格子の各格子点において変調して配置されており、
 前記各格子点における変調位相Ψが、前記2次元フォトニック結晶層内における前記波長λLの光の波数ベクトルk↑=(kx, ky)、前記2次元フォトニック結晶層の有効屈折率neff、及び前記基本2次元格子の所定の基準線からの方位角φを用いて表される逆格子ベクトルG'↑=(g'x, g'y)=(kx±|k↑|(sinθcosφ)/neff, ky±|k↑|(sinθsinφ)/neff)と、前記各格子点の位置ベクトルr↑とを用いて、Ψ=r↑・G'↑で表されることを特徴とする。
 前記活性層には、波長λLを含む波長範囲の光を生じさせるものが含まれる。
 また、本発明に係る2次元フォトニック結晶面発光レーザは、上記活性層及び上記2次元フォトニック結晶層の他に、クラッド層やスペーサ層等を有していてもよい。
 前記波長λLは、真空中における波長で定義する。波長λLの光は、2次元フォトニック結晶層内では波長(以下、「結晶層内波長λPC」とする)がλPCL/neffとなる。ここで、neffは、上記各層が積層した構造において2次元フォトニック結晶層に分布する光の電界強度の割合、及び母材に対する異屈折率領域の充填率を考慮した有効屈折率である。
 以下、本発明における(1)基本2次元格子、(2)変調について説明する。
(1)基本2次元格子
 基本2次元格子、すなわち波長λLの光の共振状態を形成し且つ該波長λLの光を外部に出射させない2次元格子は、従来より知られているものである。基本2次元格子の例の1つとして、格子定数aが
  a=2-1/2λL/neff=2-1/2λPC
である正方格子が挙げられる。また、格子定数a1及びa2
  (1/2)×(a1 -2+a2 -2)1/2=1/λPC
の関係式を満たす長方格子(面心長方格子を含む)や、格子定数aが
  a=(2/3)λPC
である三角格子も、前記基本2次元格子の例として挙げられる。
 このような基本2次元格子が波長λLの光を増幅し且つ該波長λLの光を外部に出射させない理由を、上記の式a=2-1/2λPCを満たす正方格子の場合を例に、図1を用いて説明する。
 2次元フォトニック結晶層内では、基本2次元格子90の正方格子の格子点91に異屈折率領域が配置されていると、結晶層内波長λPCの光が様々な方向に散乱される。それら散乱光のうち、ある1個の格子点911において、散乱前の進行方向とは180°異なる方向に散乱(180°散乱)された光L1は、その格子点に最隣接の4個の格子点912においてそれぞれ180°散乱された光L2との光路差が結晶層内波長λPCに一致するため、干渉により増幅される(図1(a)。この図では、1個の格子点912に散乱された光L2のみを示す。)。また、格子点911において格子面内で散乱前の進行方向とは90°異なる方向に散乱(90°散乱)された光L3は、4個の格子点912においてそれぞれ格子面内で90°散乱された光L4との光路差が結晶層内波長λPCに一致するため、干渉により増幅される(図1(a))。このように、180°散乱と90°散乱の双方によって2次元定在波が形成され、光が増幅される。
 一方、2次元フォトニック結晶層内を伝播する結晶層内波長λPCの光は、格子点91において、該層に対して角度をもった方向にも散乱される。しかしながら、このような散乱光は、格子点911において散乱されるものと、格子点912において散乱されるものの光路差がλPC/2になり(図1(b)の光L5と光L6)、両者の位相がπだけずれるため、打ち消し合う。そのため、光は2次元フォトニック結晶層の外部に出射されない。
 なお、ここでは基本2次元格子が正方格子の場合を例に説明したが、長方格子においても同様である。基本2次元格子が三角格子(六方格子)の場合には、干渉により増幅される光が、格子面内で散乱前の進行方向とは120°異なる方向に散乱(120°散乱)された光である点を除いて、正方格子の場合と同様である。
(2)変調
 上記のように、異屈折率領域は各格子点において変調して配置されている。本発明において「変調」とは、基本2次元格子の各格子点に同じ形態の異屈折率領域が配置された状態に対して、基本2次元格子の周期とは別個の空間的な周期(変調周期)で周期的変化が与えられていることをいう。この周期的変化は、例えば各格子点において異屈折率領域を該格子点から位置をずらして配置し、そのずれの方向又は/及び大きさを変調周期で周期的に変化させることにより形成することができる。あるいは、この周期的変化は、異屈折率領域の面積を変調周期で周期的に変化させることにより形成することもできる。
 基本2次元格子の各格子点における変調は位相Ψ(変調位相)で表すことができる。各格子点の変調位相Ψは、基本2次元格子の各格子点の位置ベクトルr↑と、逆格子ベクトルG'↑により定まる。この逆格子ベクトルG'↑は、ちょうど、非特許文献1における斜方格子の逆格子ベクトルに相当する。しかしながら、本発明では、この逆格子ベクトルG'↑に対応する格子は存在せず、その代わりに、基本2次元格子の各格子点において、異屈折率領域が変調して配置されている。本発明において、この各格子点における異屈折率領域の変調には、異屈折率領域の位置(各格子点からのずれ)、及び、異屈折率領域の面積の双方を含む。具体的には、以下のものである。
 (i)各格子点において、異屈折率領域が該格子点から同一の距離だけずれて配置されており、該ずれの方向を表す、基本2次元格子の所定の基準線との成す角度が変調位相Ψで変調されているもの。この場合、この角度の値がΨとなり、0~2πの間で変動する。
 (ii)各格子点において、異屈折率領域が該格子点から同一方向にずれて配置されており、該ずれの距離dの絶対値がゼロと最大値dmaxの間で、変調位相Ψで変調されているもの。具体的には、d=dmaxsinΨと表される。
 (iii)異屈折率領域は各格子点に配置されており、各異屈折率領域の面積Sが最小値(S0-S')と最大値(S0+S')の間で、変調位相Ψで変調されているもの。具体的には、S=S0+S'sinΨと表される。
 前記基本2次元格子が格子定数aの正方格子である場合には、各格子点の変調位相Ψは以下のように求められる。まず、格子点の位置ベクトルr↑は、直交座標系において整数mx, myを用いてr↑=(mxa, mya)と表される。この場合、波数ベクトルk↑はk↑=(π/a, π/a)であり、逆格子ベクトルG'=(g'x, g'y)は
Figure JPOXMLDOC01-appb-M000001

…(1)
である。従って、この場合の各格子点の変調位相Ψ=r↑・G'↑は
Figure JPOXMLDOC01-appb-M000002

…(2)
である。
 同様に、基本2次元格子が格子定数a1, a2の長方格子の場合には、格子点の位置ベクトルr↑は直交座標系において整数mx, myを用いてr↑=(mxa1, mya2)と表される。逆格子ベクトルG'=(g'x, g'y)は
Figure JPOXMLDOC01-appb-M000003

…(3)、
各格子点の変調位相Ψ=r↑・G'↑は
Figure JPOXMLDOC01-appb-M000004

…(4)
となる。
 基本2次元格子が格子定数aの三角格子の場合には、格子点の位置ベクトルr↑は直交座標系において整数m1, m2を用いてr↑=(m1a+(1/2)m2a, (31/2/2)m2a)と表される。逆格子ベクトルは
Figure JPOXMLDOC01-appb-M000005

…(5)
または
Figure JPOXMLDOC01-appb-M000006

…(6)
のいずれかの組み合わせを用いることができる。各格子点の変調位相Ψ=r↑・G'↑は、G↑が前者の場合には
Figure JPOXMLDOC01-appb-M000007

…(7)、
後者の場合には
Figure JPOXMLDOC01-appb-M000008

…(8)
となる。
(3) 本発明に係る2次元フォトニック結晶面発光レーザの動作
 本発明に係る2次元フォトニック結晶面発光レーザの動作を説明する。活性層に電流が注入されると、波長λLの光が生じ、該光が2次元フォトニック結晶層において基本2次元格子の周期性によって定在波が形成される。それにより、位相が揃った波長λLの光が増幅される。このように増幅された光は、変調位相Ψで変調された屈折率分布により、逆格子ベクトルG'↑を回折ベクトルとする光の回折が生じ、光が2次元フォトニック結晶層の法線に対して傾斜して出射される。この出射光は、波長及び位相が揃ったレーザビームとなる。
 本発明に係る2次元フォトニック結晶面発光レーザでは上述のように、複数の格子構造を重ねるのではなく、1つの基本2次元格子の格子点からずれた位置に異屈折率領域を配置する。そのため、特許文献1に記載のレーザとは異なり、2次元フォトニック結晶層に垂直な方向に出射される特性を有する2つの2次元フォトニック結晶を組み合わせるという制約が無い。同様の理由により、本発明に係る2次元フォトニック結晶面発光レーザでは、非特許文献1に記載のレーザとは異なり、正方格子(本発明の基本2次元格子に相当)に重ねた斜方格子による不要な散乱が生じることも無い。
 本発明に係る2次元フォトニック結晶面発光レーザは、各格子点において、前記異屈折率領域が該格子点から同一の距離だけずれて配置されており、該ずれの方向を表す、基本2次元格子の所定の基準線との成す角度が前記変調位相Ψで変調されている、という構成を取ることができる。このようにずれの方向に変調を与えることにより、円偏光を有する出射光が得られる。
 また、本発明に係る2次元フォトニック結晶面発光レーザは、各格子点において、前記異屈折率領域が該格子点から同一方向にずれて配置されており、該ずれの距離dの絶対値がゼロと最大値dmaxの間で、変調位相Ψで変調されている、という構成を取ることもできる。このように異屈折率領域を同一方向にずらすことにより、当該ずれの方向に垂直な方向の直線偏光を有する出射光が得られる。
 本発明に係る2次元フォトニック結晶面発光レーザにおいて、
 前記活性層中に電流を注入する位置(電流注入位置)を制御する電流注入位置制御手段を有し、
 前記電流注入位置からの発光が増幅される領域である、前記2次元フォトニック結晶層における変調領域毎に、各格子点の変調位相Ψが異なるように形成されている
ことにより、出射方向可変2次元フォトニック結晶面発光レーザが得られる。すなわち、この出射方向可変2次元フォトニック結晶面発光レーザでは、電流注入位置制御手段により活性層中の一部の領域(異屈折率領域とは異なる)に電流を注入することにより発生する光が、その領域に対応した2次元フォトニック結晶層の一部分に導入される。そして、光が導入された2次元フォトニック結晶層の位置における変調位相Ψにより定まる傾斜角θ、及び方位角φに傾斜ビームが出射される。
 前記出射方向可変2次元フォトニック結晶面発光レーザにおいて、前記電流注入位置制御手段には、前記活性層及び前記2次元フォトニック結晶層を挟むように対をなす電極であって、該対の電極の一方又は両方が該活性層及び該2次元フォトニック結晶層に平行に1次元状又は2次元状に複数配置された電極と、該複数の電極のうち該活性層に電流を注入する電極を切り換える切替手段を備えるものを用いることができる。特に、2次元状に複数配置された電極を用いることにより、1次元状の場合よりも変調領域を多く設けることが可能になり、より多数の傾斜角θ及び方位角φの組み合わせを設定することができる。
 本発明により、傾斜角を大きくすることができると共に、光の損失が従来よりも少ない、傾斜ビームを出射する2次元フォトニック結晶面発光レーザが得られる。
(a)基本2次元格子が波長λLの光を増幅し、且つ(b)該波長λLの光を外部に出射させない理由を説明するための図。 本発明に係る2次元フォトニック結晶面発光レーザの第1実施例を示す斜視図。 第1実施例の2次元フォトニック結晶面発光レーザにおける2次元フォトニック結晶層を示す上面図(a)、及び基本2次元格子である正方格子と空孔の重心を示す部分拡大図(b)。 波長λL=987.4nm、傾斜角θの設計値が36.2°である第1実施例の2次元フォトニック結晶面発光レーザにおける2次元フォトニック結晶層を示す顕微鏡写真(a)、及び得られた傾斜ビームの遠視野像(b)。 波長λL=987.4nm、傾斜角θの設計値が30°及び40°である第1実施例の2次元フォトニック結晶面発光レーザにおける2次元フォトニック結晶層を示す顕微鏡写真(a-1)及び(a-2)、並びに、得られた傾斜ビームの遠視野像(b-1)及び(b-2)。 波長λL=987.4nm、傾斜角θの設計値が30°である第1実施例の2次元フォトニック結晶面発光レーザにより得られた発振スペクトル。 波長λL=987.4nm、傾斜角θの設計値が30°であって、方位角の設計値が60°及び90°である第1実施例の2次元フォトニック結晶面発光レーザにおける2次元フォトニック結晶層を示す顕微鏡写真(a-1)及び(a-2)、並びに、得られた傾斜ビームの遠視野像(b-1)及び(b-2)。 波長λL=987.4nm、傾斜角θの設計値が30°であって、方位角の設計値が60°である第1実施例の2次元フォトニック結晶面発光レーザから得られた傾斜ビームの偏光特性を測定した結果を示すグラフ。 図8の例と同じ2次元フォトニック結晶面発光レーザにおいて、1/4波長板を通過した後に偏光板を通過した傾斜ビームの遠視野像。 第2実施例である出射方向可変2次元フォトニック結晶面発光レーザを示す縦断面図(a)及び2次元フォトニック結晶層の平面図(b)。 第2実施例の変形例である、2次元状に配置された下部電極を有する出射方向可変2次元フォトニック結晶面発光レーザにおける下部電極の平面図(a)及び2次元フォトニック結晶層の平面図(b)。 第3実施例の2次元フォトニック結晶面発光レーザにおける2次元フォトニック結晶層を示す上面図(a)、及び基本2次元格子である正方格子と空孔の重心を示す部分拡大図(b)。 波長λL=987.4nm、傾斜角θの設計値が30°、方位角φの設計値が0°である第3実施例の2次元フォトニック結晶面発光レーザにおける2次元フォトニック結晶層を示す顕微鏡写真(a-1)~(a-3)、及び得られた傾斜ビームの遠視野像(b-1)~(b-3)。 図13(b-1)~(b-3)に示した傾斜ビームの偏光特性を測定した結果を示すグラフ。 波長λL=987.4nm、傾斜角θの設計値が30°であって、方位角の設計値が異なる3つの、第3実施例の2次元フォトニック結晶面発光レーザから得られた傾斜ビームの遠視野像。 第4実施例の2次元フォトニック結晶面発光レーザにおける2次元フォトニック結晶層を示す上面図。
 本発明に係る2次元フォトニック結晶面発光レーザの実施例を、図2~図16を用いて説明する。
[実施例1]
 図2は、第1実施例の2次元フォトニック結晶面発光レーザ(以下、「フォトニック結晶レーザ」とする)10の斜視図である。このフォトニック結晶レーザ10は、下部電極151と、下部基板141と、第1クラッド層131と、2次元フォトニック結晶層11と、活性層12と、第2クラッド層132と、上部基板142と、上部電極152とを、この順に積層したものである。本実施例のフォトニック結晶レーザ10では、レーザビームは、上部電極152の中央部に設けられた窓(空洞)1521を通って、2次元フォトニック結晶層11の法線から出射角θだけ傾斜した方向に出射される。上部電極152には、窓1521を有するものの代わりに、ITO(インジウム錫酸化物)等から成る透明電極を用いてもよい。なお、2次元フォトニック結晶層11と、活性層12の順番は上記のものとは逆であってもよい。また、本願では便宜上、「上」及び「下」という語を用いるが、これらの語は実際にフォトニック結晶レーザを使用する際の向き(上下)を規定するものではない。また、活性層と2次元フォトニック結晶の間には、スペーサ等の部材が挿入されていてもよい。
 本実施例では、下部基板141にはp型半導体のガリウムヒ素(GaAs)を、上部基板142にはn型GaAsを、第1クラッド層131にはp型半導体のアルミニウム・ガリウム砒素(AlGaAs)を、第2クラッド層132にはn型AlGaAsを、それぞれ用いた。活性層12には、インジウム・ガリウム砒素/ガリウムヒ素(InGaAs/GaAs)から成る多重量子井戸(Multiple-Quantum Well; MQW)を有するものを用いた。下部電極151及び上部電極152の材料には金を用いた。なお、これら各層の材料は上記のものには限定されず、従来のフォトニック結晶面発光レーザで用いられている各層の材料をそのまま用いることができる。また、上記各層の間には、スペーサ層などの他の層が介挿されていてもよい。
 2次元フォトニック結晶層11は、板状の母材(スラブ)114内に空孔(異屈折率領域)111を後述のように配置したものである。本実施例では、母材114の材料にはp型GaAsを用いた。空孔111の形状は、本実施例では正三角形である(図3)が、円形などの他の形状を用いてもよい。なお、母材114の材料は上記のものには限られず、従来のフォトニック結晶レーザで用いられているものを用いることができる。また、異屈折率領域には、空孔111の代わりに、母材114とは屈折率が異なる部材(異屈折率部材)を用いてもよい。空孔は容易に加工することができるという点において優れているのに対して、異屈折率部材は加工時の加熱などにより母材が変形するおそれがある場合に有利である。
 図3を用いて、母材114内での空孔111の配置を説明する。図3(a)は2次元フォトニック結晶層11の上面図である。この図には、2次元フォトニック結晶層11に実際に設けられた空孔111を実線で示した他、基本2次元格子である正方格子を一点鎖線で示し、その正方格子の格子点に仮想的に空孔111Vの重心が配置された状態を破線で示す。また、図3(b)に、(a)を拡大したうえで、正方格子(一点鎖線)及び空孔111の重心(黒丸)のみを示す。
 本実施例では、格子点と空孔111Vの重心の距離(位置ずれの距離d)は全ての格子点で同一とし、以下のように、ずれの方向を変調した。
 x方向を基準線の方向とし、傾斜ビームの設計値を傾斜角θ=36.2°、方位角φ=0°とした。変調位相、すなわちずれの方向と前記基準線との成す角度(以下、「ずれ方位角」とする)Ψは、(2)式に復号(「±」)があるため4つの値が得られるが、そのうちここでは
  Ψ≡Ψθ=36.2°=(3/4)πmx+πmy
を用いた。この場合、x方向に隣接する2個の格子点同士でのずれ方位角Ψの差(以下、"δΨx"とする)は、(3/4)π、すなわち135°である。また、y方向に隣接する2個の格子点同士でのずれ方位角Ψの差(以下、"δΨy"とする)はπ、すなわち180°である。また、有効屈折率はneff=3.4とした。
 そこで、隣接する格子点間でx方向に135°ずつ、y方向に180°ずつずれ方位角Ψを変化させた、有効屈折率neff=3.4であって、格子定数a=208nmの正方格子を基本2次元格子とする2次元フォトニック結晶層11を有するフォトニック結晶レーザを実際に作製した。格子点からの位置ずれの距離dは0.1aとした。作製した2次元フォトニック結晶層11の電子顕微鏡写真を図4(a)に示す。このフォトニック結晶レーザに電流を注入したところ、波長987.4nmのレーザビームが観測された。このレーザビームは、図4(b)に遠視野像で示すように、2次元フォトニック結晶層11の法線に対して実測値で36.1°の傾斜角θを有する傾斜ビーム19であり、傾斜ビーム19は2本(傾斜ビームのスポット19Sが2個)観測された。傾斜角θの実測値と設計値の差は0.01°であり、ほぼ設計通りの傾斜ビームが得られた。
 また、この例と格子定数が同じa=208nmであって、設計値を(i)θ=30°、φ=0°、(ii)θ=40°、φ=0°とした例についても、同様の実験を行った。これらの例におけるδΨxは、(i)では0.792π、(ii)では0.733πである。δΨyは、(i)、(ii)共にπである。作製した2次元フォトニック結晶層11の顕微鏡写真を(i)図5(a-1)、及び(ii)図5(a-2)に、それぞれ示す。また、フォトニック結晶レーザに電流を注入することで得られた傾斜ビームの遠視野像を(i)図5(b-1)、及び(ii)図5(b-2)に、それぞれ示す。いずれの実験においても、設計値に近い傾斜角θを有する傾斜ビームが得られた。傾斜角θの実測値は、(i)では29.5°、(ii)39.2°であった。また、(i)のフォトニック結晶レーザで得られたレーザ光の発振スペクトルを図6に示す。発振波長λLが987.4nmであることが確認できる。
 さらに、傾斜角の設計値をθ=30°とし、方位角φの設計値を(i)60°、(ii)90°とした例につき、作製した2次元フォトニック結晶層11の顕微鏡写真を(i)図7(a-1)、及び(ii)図7(a-2)に、フォトニック結晶レーザに電流を注入することで得られた傾斜ビームの遠視野像を(i)図7(b-1)、及び(ii)図7(b-2)に、それぞれ示す。いずれも、傾斜角θの実測値が29.5°であって、方位角φの実測値が設計値通りである傾斜ビームが得られた。
 傾斜角θ及び方位角φの設計値がθ=30°、φ=60°である上記(図7(a-1), (b-1))のフォトニック結晶レーザにおいて、観測した傾斜ビームの偏光方向を図8のグラフに示す。このグラフは方向に依存しない強度の光を検出していることを示しており、ビームが円偏光又は無偏光(電界の振動方向が異なる様々な光が混合したもの)であることを意味している。そこで、ビームを、1/4波長板を通過させたうえで偏光板を通過させる実験を行った。ここで1/4波長板は、円偏光を直線偏光に変換する機能を有する。この実験の結果、図9に示すように、偏光板の向きを変えてゆくと、特定の向きにおいて2個のレーザスポットのうちの一方が消失し(図9(a))、そこから更に偏光板を90°回動させると、他方のレーザスポットが消失した。これは、本実施例で得られた傾斜ビームは無偏光ではなく円偏光を有することを意味する。レーザスポットが消失する理由は、傾斜ビームの円偏光が1/4波長板によって直線偏光に変換され、その直線偏光が特定の向きの偏光板により遮蔽されることにある。また、レーザスポットが消失するときの偏光板の向きが2本のレーザビームの間で90°異なることは、一方のレーザビームが右回りの円偏光を有し、他方のレーザビームが左回りの円偏光を有することを意味する。このように一方のレーザビームが遮蔽されることを利用して、本発明のフォトニック結晶レーザと、1/4波長板及び偏光板を組み合わせたものとを用いて、傾斜ビームを1本のみ出射するレーザ光源が得られる。
[実施例2]
 次に、第2実施例として、出射方向可変2次元フォトニック結晶面発光レーザ(以下、「出射方向可変フォトニック結晶レーザ」とする)20の実施例を説明する。図10(a)は、第2実施例の出射方向可変フォトニック結晶レーザ20の縦断面図である。ここでは、第1実施例のフォトニック結晶レーザ10と同様の構成要素には、第1実施例と同じ符号を付し、詳細な説明を省略する。出射方向可変フォトニック結晶レーザ20は、下部電極と、下部基板141と、第1クラッド層131と、2次元フォトニック結晶層21と、活性層12と、第2クラッド層132と、上部基板142と、上部電極252とを、この順に積層したものである。上部電極252は、本実施例では上部基板142の全体を覆う透明電極を用いている。
 出射方向可変フォトニック結晶レーザ20は、仮想的に複数の領域(「変調領域」と呼ぶ。これは、異屈折率領域とは異なるものである。)A、B、C…に分かれている。各変調領域では、それに対応して互いに独立に下部電極251A、251B、251C…が設けられている(図10(a))と共に、2次元フォトニック結晶層21が変調領域毎に異なる構造を有している(図10(b))。また、出射方向可変フォトニック結晶レーザ20には、電流を注入する下部電極251A、251B、251Cを切り替える電流注入位置制御部29が設けられている。その他の構成要素は、全ての変調領域において同じ構成を有している。下部電極及び変調領域は共に1次元状に並んでいる。
 各変調領域A、B、C…における2次元フォトニック結晶層21内の2次元フォトニック結晶構造21A、21B、21C…はいずれも、格子定数aの正方格子の格子点からずれ方位角Ψの方向にずれた位置に空孔111が配置されており、ずれ方位角Ψのみが2次元フォトニック結晶構造毎に異なっている。ここでは、各変調領域A、B、C…におけるずれ方位角ΨA、ΨB、ΨC…は、δΨxが2次元フォトニック結晶構造毎に異なる値δΨxA、δΨxB、δΨxCとなるように設定し、δΨyは全ての2次元フォトニック結晶構造においてπとした。
 本実施例の出射方向可変フォトニック結晶レーザ20では、下部電極251A、251B、251C…のうちの1個と上部電極252の間に電流を流す。ここで、電流を流す下部電極を切り替えることにより、以下のように、レーザビームの出射方向を変化させることができる。
 まず、下部電極251Aと上部電極252の間に電流を流す場合を例に説明する。このように電流を流すと、活性層12のうち、下部電極251Aの直上付近の部分において、波長λLの光が生じる。この光は、当該部分の直上にある2次元フォトニック結晶構造21Aにおいて増幅される。そして、2次元フォトニック結晶構造21Aにおけるずれ方位角ΨAに対応した傾斜角θAで傾斜ビームが出射される。
 そして、電流を流す下部電極を、下部電極251Aから下部電極251Bに切り替えると、今度は2次元フォトニック結晶構造21Bにおいて増幅され、2次元フォトニック結晶構造21Bにおけるずれ方位角ΨBに対応した、前記傾斜角θAとは異なる傾斜角θBで傾斜ビームが出射される。さらに、下部電極251C等の他の下部電極に切り替えても同様に傾斜角θが変化する。このように、電流を流す下部電極を切り替えることにより、異なる傾斜角で傾斜ビームを出射させることができる。
 図11に、出射方向可変フォトニック結晶レーザの変形例を示す。この変形例では、図11(a)に示すように、下部電極251XY(X:A、B、C…、Y:A、B、C…)が2次元状に配置されている。これら下部電極251XYに対応して、2次元フォトニック結晶層21には、図11(b)に示すように、2次元フォトニック結晶構造XY(X:A、B、C…、Y:A、B、C…)が2次元状に配置されている。各2次元フォトニック結晶構造XYにおいては、δΨxが互いに異なる値δΨxXY(X:A、B、C…、Y:A、B、C…)となるように設定されている。この出射方向可変フォトニック結晶レーザでは、電流を流す下部電極251XYを切り換えることにより、異なる傾斜角で傾斜ビームを出射させることができる。そして、下部電極251XY及び2次元フォトニック結晶構造XYが2次元状に配置されているため、1次元状配置の場合よりも多数の傾斜角θ及び方位角φの組み合わせを設定することができる。
 なお、ここまでは上部電極を1個、下部電極を1次元状又は2次元状に多数配置した例を示したが、下部電極を1個、上部電極を1次元状又は2次元状に多数配置してもよいし、下部電極と上部電極の双方を1次元状又は2次元状に多数配置してもよい。
[実施例3]
 第3実施例では、フォトニック結晶層の基本2次元格子の各格子点において、空孔(異屈折率領域)が格子点から同一方向にずれ、そのずれの距離が変調されている例を示す。以下では、フォトニック結晶層以外の構成は第1実施例と同様であるため説明を省略し、フォトニック結晶層の構成について説明する。
 図12(a)に示すように、本実施例における基本2次元格子は、第1実施例と同様の正方格子である。異屈折率領域である空孔111は、基本2次元格子の格子点からずれた位置に配置されている。ずれの方向は、図12(b)に示すように、いずれの空孔111においても基準方向であるx方向である。ずれの距離dは、変調位相Ψによりd=dmaxcosΨ、すなわち|d|が0と最大値dmaxの間で変調されるように定められている。本実施例では、変調位相Ψは、x方向で隣接する格子点の間における差δΨyが3π/4になるように設定した。このδΨyの値は、第1実施例で示したδΨyの値の一例と同じであることから、この出射方向可変フォトニック結晶レーザは、第1実施例における当該一例と同様に、傾斜角θ=36.2°の傾斜ビームを出射する。なお、ここで示した変調位相Ψ(及び隣接格子点間の変調位相の差δΨx、δΨy)は一例であり、上述の式(2)を用いて、傾斜角θ及び方位角φの設計値に応じて設定すればよい。
 以下に、有効屈折率neffが3.4であって、格子定数a=206nmの正方格子を基本2次元格子とする2次元フォトニック結晶層を有する第3実施例のフォトニック結晶レーザを作製した例を示す。ここでは、レーザビームの傾斜角θ及びx方向からの方位角φの設計値がθ=30°、φ=0°であって、空孔のずれの方向が(1)x方向、(2)y方向、(3)x方向から135°の方向である3つのフォトニック結晶レーザを作製した。δΨx及びδΨyの値は、(1)ではδΨx=0.792π、δΨy=0、(2)ではδΨx=0、δΨy=0.792π、(3)ではδΨx=0.792π、δΨy=0.792πである。なお、フォトニック結晶層に形成する空孔の平面形状は、本実施例では円形とした。これらフォトニック結晶レーザにおけるフォトニック結晶層の電子顕微鏡写真を図13(a-1)~(a-3)に、得られた傾斜ビームの遠視野像を図13(b-1)~(b-3)に、それぞれ示す。いずれの例においても、設計通りにθ=30°、方位角φ=0°の傾斜ビームが得られた。
 これら3つのフォトニック結晶レーザにつき、観測した傾斜ビームの偏光方向を図14のグラフに示す。これらのグラフから、(1)空孔のずれがx方向のときにはy方向の直線偏光、(2)空孔のずれがy方向のときにはx方向の直線偏光、(3)空孔のずれがx方向から135°方向であるときには、x方向から45°方向の直線偏光、がそれぞれ得られることがわかる。すなわち、空孔のずれの方向とは90°異なる方向の直線偏光が得られる、といえる。
 次に、空孔のずれの方向がx方向、レーザビームの傾斜角θの設計値がθ=30°であって、x方向からの方位角φの設計値が(1)0°、(2)45°、(3)90°である3つのフォトニック結晶レーザを作製した。δΨxの値は、(1)では0.792π、(2)では0.853π、(3)ではπである。δΨyの値はいずれの例においても0°である。有効屈折率が3.4であり、基本2次元格子が格子定数a=206nmの正方格子である点は上記の例と同じである。これらフォトニック結晶レーザにより得られた傾斜ビームの遠視野像を図15(1)~(3)に示す。いずれの例においても、設計通りの傾斜角θ及び方位角φで傾斜ビームが得られた。
[実施例4]
 第4実施例では、空孔(異屈折率領域)は重心と格子点が一致するように各格子点に配置され、各空孔の面積が変調されている例を示す。この例においても、フォトニック結晶層以外の構成は第1実施例と同様であるため説明を省略し、フォトニック結晶層の構成について説明する。
 図16に示すように、本実施例における基本2次元格子は、第1実施例と同様の正方格子である。各空孔111の面積Sは、S=S0+S'cosΨ、すなわち最小値(S0-S')と最大値(S0+S')の間で変調されるように定められている。本実施例では、変調位相Ψは、第3実施例と同様に、x方向で隣接する格子点の間における差δΨxが3π/4になるように設定した。また、S'=(1/2)S0とした。このような構成により、本実施例の出射方向可変フォトニック結晶レーザは、第3実施例(及び第1実施例における一例)と同様に、傾斜角θ=36.2°の傾斜ビームを出射する。
 ここまでの各実施例では、基本2次元格子が正方格子である場合の例を示したが、これらの例に倣って、長方格子の場合には上式(4)、三角格子の場合には上式(7)又は(8)に示した変調位相Ψによる変調を与えればよい。
10…フォトニック結晶レーザ
11、21…2次元フォトニック結晶層
111…空孔
111V…仮想的な空孔
114…母材
12…活性層
131…第1クラッド層
132…第2クラッド層
141…下部基板
142…上部基板
151、251A、251B、251C、251XY(X=A、B、C…、Y=A、B、C…)…下部電極
152、252…上部電極
1521…上部電極の窓
19…傾斜ビーム
19S…傾斜ビームのスポット
20…出射方向可変フォトニック結晶レーザ
21A、21B、21C、21XY(X=A、B、C…、Y=A、B、C…)…2次元フォトニック結晶構造
29…電流注入位置制御部
90…基本2次元格子
91、911、912…基本2次元格子の格子点

Claims (6)

  1.  電流が注入されることにより波長λLの光を生じさせる活性層と、板状の母材に、該母材とは屈折率が異なる異屈折率領域が2次元的に配置されることにより屈折率分布が形成されて成る2次元フォトニック結晶層とが積層された構成を有し、該2次元フォトニック結晶層の法線から傾斜角θの方向にレーザビームを発振するレーザであって、
     該2次元フォトニック結晶層において各異屈折率領域が、2次元定在波を形成することによって前記波長λLの光の共振状態を形成し且つ該波長λLの光を外部に出射させないように定められる周期性を持つ基本2次元格子の各格子点において変調して配置されており、
     前記各格子点における変調位相Ψが、前記2次元フォトニック結晶層内における前記波長λLの光の波数ベクトルk↑=(kx, ky)、前記2次元フォトニック結晶層の有効屈折率neff、及び前記基本2次元格子の所定の基準線からの方位角φを用いて表される逆格子ベクトルG'↑=(g'x, g'y)=(kx±|k↑|(sinθcosφ)/neff, ky±|k↑|(sinθsinφ)/neff)と、前記各格子点の位置ベクトルr↑とを用いて、Ψ=r↑・G'↑で表されることを特徴とする2次元フォトニック結晶面発光レーザ。
  2.  各格子点において前記異屈折率領域が該格子点から同一の距離だけずれて配置されており、該ずれの方向を表す、基本2次元格子の所定の基準線との成す角度が前記変調位相Ψで変調されていることを特徴とする請求項1に記載の2次元フォトニック結晶面発光レーザ。
  3.  各格子点において前記異屈折率領域が該格子点から同一方向にずれて配置されており、該ずれの距離dの絶対値がゼロと最大値dmaxの間で、変調位相Ψで変調されていることを特徴とする請求項1に記載の2次元フォトニック結晶面発光レーザ。
  4.  前記異屈折率領域が各格子点に配置されており、各異屈折率領域の面積Sが最小値(S0-S')と最大値(S0+S')の間で、変調位相Ψで変調されていることを特徴とする請求項1に記載の2次元フォトニック結晶面発光レーザ。
  5.  前記活性層中に電流を注入する電流注入位置を制御する電流注入位置制御手段を有し、
     前記電流注入位置からの発光が増幅される領域である、前記2次元フォトニック結晶層における変調領域毎に、各格子点の変調位相Ψが異なる
    ことを特徴とする請求項1~4のいずれかに記載の2次元フォトニック結晶面発光レーザ。
  6.  前記電流注入位置制御手段が、
     前記活性層及び前記2次元フォトニック結晶層を挟むように対をなす電極であって、該対の電極の一方又は両方が該活性層及び該2次元フォトニック結晶層に平行に2次元状に複数配置された電極と、
     該複数の電極のうち該活性層に電流を注入する電極を切り換える切替手段を備える
    ことを特徴とする請求項5に記載の2次元フォトニック結晶面発光レーザ。
PCT/JP2014/054429 2013-03-08 2014-02-25 2次元フォトニック結晶面発光レーザ WO2014136607A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/773,584 US9531160B2 (en) 2013-03-08 2014-02-25 Two-dimensional photonic crystal surface-emitting laser
EP14760954.9A EP2966737B1 (en) 2013-03-08 2014-02-25 Two-dimensional photonic crystal surface-emitting laser
CN201480013121.8A CN105191029B (zh) 2013-03-08 2014-02-25 二维光子晶体面发光激光器
JP2015504246A JP6080941B2 (ja) 2013-03-08 2014-02-25 2次元フォトニック結晶面発光レーザ
US15/050,993 US9627850B2 (en) 2013-03-08 2016-02-23 Two-dimensional photonic crystal surface-emitting laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-046564 2013-03-08
JP2013046564 2013-03-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/773,584 A-371-Of-International US9531160B2 (en) 2013-03-08 2014-02-25 Two-dimensional photonic crystal surface-emitting laser
US15/050,993 Continuation-In-Part US9627850B2 (en) 2013-03-08 2016-02-23 Two-dimensional photonic crystal surface-emitting laser

Publications (1)

Publication Number Publication Date
WO2014136607A1 true WO2014136607A1 (ja) 2014-09-12

Family

ID=51491128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054429 WO2014136607A1 (ja) 2013-03-08 2014-02-25 2次元フォトニック結晶面発光レーザ

Country Status (5)

Country Link
US (1) US9531160B2 (ja)
EP (1) EP2966737B1 (ja)
JP (1) JP6080941B2 (ja)
CN (1) CN105191029B (ja)
WO (1) WO2014136607A1 (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148075A1 (ja) * 2015-03-13 2016-09-22 浜松ホトニクス株式会社 半導体発光素子
WO2018030523A1 (ja) * 2016-08-10 2018-02-15 浜松ホトニクス株式会社 発光装置
JP2018041832A (ja) * 2016-09-07 2018-03-15 浜松ホトニクス株式会社 半導体発光素子及び発光装置
WO2018159606A1 (ja) * 2017-02-28 2018-09-07 国立大学法人京都大学 フォトニック結晶レーザ
JP2018198302A (ja) * 2016-07-25 2018-12-13 浜松ホトニクス株式会社 半導体発光素子およびその製造方法
WO2018230612A1 (ja) * 2017-06-15 2018-12-20 浜松ホトニクス株式会社 発光装置
JP2019079863A (ja) * 2017-10-20 2019-05-23 浜松ホトニクス株式会社 半導体発光素子
JP2019106397A (ja) * 2017-12-08 2019-06-27 浜松ホトニクス株式会社 発光装置
JP2019106396A (ja) * 2017-12-08 2019-06-27 浜松ホトニクス株式会社 位相変調層設計方法
JP2019106398A (ja) * 2017-12-08 2019-06-27 浜松ホトニクス株式会社 発光装置
JP2019216148A (ja) * 2018-06-11 2019-12-19 浜松ホトニクス株式会社 発光装置
JP2020017663A (ja) * 2018-07-26 2020-01-30 セイコーエプソン株式会社 発光装置およびプロジェクター
US10734786B2 (en) 2016-09-07 2020-08-04 Hamamatsu Photonics K.K. Semiconductor light emitting element and light emitting device including same
US11031751B2 (en) 2016-08-10 2021-06-08 Hamamatsu Photonics K.K. Light-emitting device
US20210226420A1 (en) * 2018-06-08 2021-07-22 Hamamatsu Photonics K.K. Light-emitting element
WO2021200994A1 (ja) 2020-03-31 2021-10-07 国立大学法人京都大学 2次元フォトニック結晶レーザ
WO2021241701A1 (ja) * 2020-05-29 2021-12-02 浜松ホトニクス株式会社 光学デバイスおよび発光デバイス
WO2022181723A1 (ja) 2021-02-25 2022-09-01 国立大学法人京都大学 2次元フォトニック結晶レーザ
US11626709B2 (en) 2017-12-08 2023-04-11 Hamamatsu Photonics K.K. Light-emitting device and production method for same
US11637409B2 (en) 2017-03-27 2023-04-25 Hamamatsu Photonics K.K. Semiconductor light-emitting module and control method therefor
US11646546B2 (en) 2017-03-27 2023-05-09 Hamamatsu Photonics K.K. Semiconductor light emitting array with phase modulation regions for generating beam projection patterns
WO2023228268A1 (ja) * 2022-05-24 2023-11-30 日本電信電話株式会社 レーザモジュール、レーザモジュールの制御方法および制御装置
US11923655B2 (en) 2018-08-27 2024-03-05 Hamamatsu Photonics K.K. Light emission device
US12126140B2 (en) * 2018-06-08 2024-10-22 Hamamatsu Photonics K.K. Light-emitting element

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6281869B2 (ja) * 2014-02-27 2018-02-21 国立大学法人大阪大学 方向性結合器および合分波器デバイス
JP6808336B2 (ja) * 2016-03-15 2021-01-06 株式会社東芝 半導体レーザ装置
US9843160B1 (en) * 2016-12-29 2017-12-12 X Development Llc Integrated digital laser
DE112018001622T5 (de) * 2017-03-27 2020-01-16 Hamamatsu Photonics K.K. Lichtemittierendes halbleitermodul und steuerungsverfahren dafür
JP7227060B2 (ja) * 2018-04-13 2023-02-21 浜松ホトニクス株式会社 半導体発光素子
JP7219552B2 (ja) 2018-05-15 2023-02-08 浜松ホトニクス株式会社 発光デバイス
US10698291B2 (en) * 2018-05-22 2020-06-30 Quanergy Systems, Inc. Integrated phased array for two dimensional beem steering through constructive interference by light emitting structures comprising select elements on a two-dimensional lattice
WO2020081533A1 (en) * 2018-10-15 2020-04-23 Lightmatter, Inc. Photonic packages and related methods
JP7125327B2 (ja) * 2018-10-25 2022-08-24 浜松ホトニクス株式会社 発光素子及び発光装置
TW202113412A (zh) 2019-01-15 2021-04-01 美商萊特美特股份有限公司 高效率多槽式波導奈米光機電相位調變器
KR20220118406A (ko) * 2019-10-28 2022-08-25 인스티튜트 오브 피직스, 차이니즈 아카데미 오브 사이언시즈 토폴로지 광결정 캐비티 및 레이저에서의 그 응용
CN110727047B (zh) * 2019-10-28 2020-09-18 中国科学院物理研究所 二维拓扑光子晶体腔及其设计方法和在激光器中的应用
US20210262787A1 (en) * 2020-02-21 2021-08-26 Hamamatsu Photonics K.K. Three-dimensional measurement device
CN112490683B (zh) * 2020-12-02 2021-09-07 南京大学 一种机械可调的电磁偏折器及其电磁波反射角度调控方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288558A (ja) * 2007-04-20 2008-11-27 Canon Inc 面発光レーザ
JP2009076900A (ja) 2007-08-31 2009-04-09 Japan Science & Technology Agency フォトニック結晶レーザ
JP2013041948A (ja) * 2011-08-12 2013-02-28 Kyoto Univ フォトニック結晶面発光レーザ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1156063C (zh) * 2000-06-06 2004-06-30 中国科学院物理研究所 一种光子晶体微腔结构
JP3561244B2 (ja) * 2001-07-05 2004-09-02 独立行政法人 科学技術振興機構 二次元フォトニック結晶面発光レーザ
JP4484134B2 (ja) * 2003-03-25 2010-06-16 独立行政法人科学技術振興機構 2次元フォトニック結晶面発光レーザ
JP4927411B2 (ja) * 2006-02-03 2012-05-09 古河電気工業株式会社 2次元フォトニック結晶面発光レーザ
JP2008216883A (ja) * 2007-03-07 2008-09-18 Nec Corp フォトニック結晶共振器、光子対発生装置、光子位相変調装置
JP4347369B2 (ja) * 2007-07-31 2009-10-21 キヤノン株式会社 面発光レーザの製造方法
JP5303221B2 (ja) 2008-08-29 2013-10-02 独立行政法人科学技術振興機構 2次元フォトニック結晶レーザ
JP6083703B2 (ja) * 2012-02-28 2017-02-22 国立大学法人京都大学 2次元フォトニック結晶面発光レーザ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288558A (ja) * 2007-04-20 2008-11-27 Canon Inc 面発光レーザ
JP2009076900A (ja) 2007-08-31 2009-04-09 Japan Science & Technology Agency フォトニック結晶レーザ
JP2013041948A (ja) * 2011-08-12 2013-02-28 Kyoto Univ フォトニック結晶面発光レーザ

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP2966737A4
TAKESHI OKINO ET AL.: "Photonic Kessho Laser no Beam Shussha Hoko Seigyo -Hencho Photonic Kessho Kozo no Donyu", THE JAPAN SOCIETY OF APPLIED PHYSICS SHUNKI GAKUJUTSU KOENKAI KOEN YOKOSHU, vol. 60 TH, no. 28, 11 March 2013 (2013-03-11), pages CL-17, XP008178020 *
TOSHIYUKI NOBUOKA: "The Japan Society of Applied Physics and Related Societies extended abstracts of the 59th meeting", 29 February 2012, THE JAPAN SOCIETY OF APPLIED PHYSICS, article "Two-dimensional beam-direction control by photonic-crystal lasers with square-lattice M-point oscillation"

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016148075A1 (ja) * 2015-03-13 2017-12-28 浜松ホトニクス株式会社 半導体発光素子
WO2016148075A1 (ja) * 2015-03-13 2016-09-22 浜松ホトニクス株式会社 半導体発光素子
US10389088B2 (en) 2015-03-13 2019-08-20 Hamamatsu Photonics K.K. Semiconductor light emitting element
US11088511B2 (en) 2015-03-13 2021-08-10 Hamamatsu Photonics K.K. Semiconductor light emitting element
JP2018198302A (ja) * 2016-07-25 2018-12-13 浜松ホトニクス株式会社 半導体発光素子およびその製造方法
US11031751B2 (en) 2016-08-10 2021-06-08 Hamamatsu Photonics K.K. Light-emitting device
JP2018026463A (ja) * 2016-08-10 2018-02-15 浜松ホトニクス株式会社 発光装置
US11031747B2 (en) 2016-08-10 2021-06-08 Hamamatsu Photonics K.K. Light-emitting device
WO2018030523A1 (ja) * 2016-08-10 2018-02-15 浜松ホトニクス株式会社 発光装置
CN109690890B (zh) * 2016-09-07 2021-09-24 浜松光子学株式会社 半导体发光元件和包含其的发光装置
WO2018047717A1 (ja) * 2016-09-07 2018-03-15 浜松ホトニクス株式会社 半導体発光素子およびそれを含む発光装置
JP2018041832A (ja) * 2016-09-07 2018-03-15 浜松ホトニクス株式会社 半導体発光素子及び発光装置
CN109690890A (zh) * 2016-09-07 2019-04-26 浜松光子学株式会社 半导体发光元件和包含其的发光装置
US10734786B2 (en) 2016-09-07 2020-08-04 Hamamatsu Photonics K.K. Semiconductor light emitting element and light emitting device including same
WO2018159606A1 (ja) * 2017-02-28 2018-09-07 国立大学法人京都大学 フォトニック結晶レーザ
JPWO2018159606A1 (ja) * 2017-02-28 2019-12-19 国立大学法人京都大学 フォトニック結晶レーザ
US10879669B2 (en) 2017-02-28 2020-12-29 Kyoto University Photonic crystal laser
JP7057949B2 (ja) 2017-02-28 2022-04-21 国立大学法人京都大学 フォトニック結晶レーザ
US11646546B2 (en) 2017-03-27 2023-05-09 Hamamatsu Photonics K.K. Semiconductor light emitting array with phase modulation regions for generating beam projection patterns
US11637409B2 (en) 2017-03-27 2023-04-25 Hamamatsu Photonics K.K. Semiconductor light-emitting module and control method therefor
US11777276B2 (en) 2017-03-27 2023-10-03 Hamamatsu Photonics K.K. Semiconductor light emitting array with phase modulation regions for generating beam projection patterns
US11686956B2 (en) 2017-06-15 2023-06-27 Hamamatsu Photonics K.K. Light-emitting device
JP2019003041A (ja) * 2017-06-15 2019-01-10 浜松ホトニクス株式会社 発光装置
WO2018230612A1 (ja) * 2017-06-15 2018-12-20 浜松ホトニクス株式会社 発光装置
US11374383B2 (en) 2017-10-20 2022-06-28 Hamamatsu Photonics K.K. Semiconductor light emitting element
JP2019079863A (ja) * 2017-10-20 2019-05-23 浜松ホトニクス株式会社 半導体発光素子
JP7036567B2 (ja) 2017-10-20 2022-03-15 浜松ホトニクス株式会社 半導体発光素子
JP2019106397A (ja) * 2017-12-08 2019-06-27 浜松ホトニクス株式会社 発光装置
JP7109179B2 (ja) 2017-12-08 2022-07-29 浜松ホトニクス株式会社 発光装置
US11626709B2 (en) 2017-12-08 2023-04-11 Hamamatsu Photonics K.K. Light-emitting device and production method for same
JP7015684B2 (ja) 2017-12-08 2022-02-03 浜松ホトニクス株式会社 位相変調層設計方法
JP2019106398A (ja) * 2017-12-08 2019-06-27 浜松ホトニクス株式会社 発光装置
JP2019106396A (ja) * 2017-12-08 2019-06-27 浜松ホトニクス株式会社 位相変調層設計方法
US20210226420A1 (en) * 2018-06-08 2021-07-22 Hamamatsu Photonics K.K. Light-emitting element
US12126140B2 (en) * 2018-06-08 2024-10-22 Hamamatsu Photonics K.K. Light-emitting element
US11870218B2 (en) 2018-06-11 2024-01-09 Hamamatsu Photonics K.K. Light emission device
CN112262508B (zh) * 2018-06-11 2024-06-07 浜松光子学株式会社 发光装置
JP7125865B2 (ja) 2018-06-11 2022-08-25 浜松ホトニクス株式会社 発光装置
CN112262508A (zh) * 2018-06-11 2021-01-22 浜松光子学株式会社 发光装置
WO2019239960A1 (ja) * 2018-06-11 2019-12-19 浜松ホトニクス株式会社 発光装置
JP2019216148A (ja) * 2018-06-11 2019-12-19 浜松ホトニクス株式会社 発光装置
JP2020017663A (ja) * 2018-07-26 2020-01-30 セイコーエプソン株式会社 発光装置およびプロジェクター
JP7105441B2 (ja) 2018-07-26 2022-07-25 セイコーエプソン株式会社 発光装置およびプロジェクター
US11923655B2 (en) 2018-08-27 2024-03-05 Hamamatsu Photonics K.K. Light emission device
WO2021200994A1 (ja) 2020-03-31 2021-10-07 国立大学法人京都大学 2次元フォトニック結晶レーザ
WO2021241701A1 (ja) * 2020-05-29 2021-12-02 浜松ホトニクス株式会社 光学デバイスおよび発光デバイス
WO2022181723A1 (ja) 2021-02-25 2022-09-01 国立大学法人京都大学 2次元フォトニック結晶レーザ
WO2023228268A1 (ja) * 2022-05-24 2023-11-30 日本電信電話株式会社 レーザモジュール、レーザモジュールの制御方法および制御装置

Also Published As

Publication number Publication date
EP2966737B1 (en) 2019-05-01
EP2966737A1 (en) 2016-01-13
CN105191029B (zh) 2018-01-09
JP6080941B2 (ja) 2017-02-15
US20160261093A1 (en) 2016-09-08
JPWO2014136607A1 (ja) 2017-02-09
US9531160B2 (en) 2016-12-27
EP2966737A4 (en) 2016-04-27
CN105191029A (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
JP6080941B2 (ja) 2次元フォトニック結晶面発光レーザ
US9627850B2 (en) Two-dimensional photonic crystal surface-emitting laser
JP6083703B2 (ja) 2次元フォトニック結晶面発光レーザ
JP6788574B2 (ja) 半導体発光素子
JP6401701B2 (ja) 半導体レーザ装置
JP4484134B2 (ja) 2次元フォトニック結晶面発光レーザ
US8619830B2 (en) Photonic crystal surface emission laser
EP3893340A1 (en) Laser device and method for its operation
JP4941127B2 (ja) 光共振器
JP2020017663A (ja) 発光装置およびプロジェクター
US20070109639A1 (en) Electromagnetic polarizing structure and polarized electromagnetic device
US7991036B2 (en) Two-dimensional photonic crystal plane emission laser
WO2019077997A1 (ja) 半導体発光素子
US8228604B2 (en) Electromagnetic (EM) wave polarizing structure and method for providing polarized electromagnetic (EM) wave
JP4185697B2 (ja) 2次元フォトニック結晶面発光レーザアレイ及び2次元フォトニック結晶面発光レーザ
JP6162465B2 (ja) 半導体レーザ装置
WO2018159606A1 (ja) フォトニック結晶レーザ
JP5309877B2 (ja) フォトニック結晶面発光レーザ素子
CN116073231A (zh) 多波长拓扑腔面发射激光器阵列
WO2021200994A1 (ja) 2次元フォトニック結晶レーザ
WO2014030361A1 (ja) レーザ用反射鏡及び該反射鏡を用いた面発光レーザ装置
WO2021149618A1 (ja) 光源モジュールおよび光変調モジュール
JPH05275806A (ja) 光子バンド構造を備えたミラーを使用するレーザ・アレイ結合

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480013121.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504246

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14773584

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014760954

Country of ref document: EP