WO2014136510A1 - パワーモジュール - Google Patents

パワーモジュール Download PDF

Info

Publication number
WO2014136510A1
WO2014136510A1 PCT/JP2014/052264 JP2014052264W WO2014136510A1 WO 2014136510 A1 WO2014136510 A1 WO 2014136510A1 JP 2014052264 W JP2014052264 W JP 2014052264W WO 2014136510 A1 WO2014136510 A1 WO 2014136510A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
signal
dead time
power module
switch element
Prior art date
Application number
PCT/JP2014/052264
Other languages
English (en)
French (fr)
Inventor
東 聖
秀太 石川
輝明 田中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015504204A priority Critical patent/JP6072222B2/ja
Priority to CN201480012898.2A priority patent/CN105191109B/zh
Priority to US14/773,507 priority patent/US9748829B2/en
Priority to DE112014001204.1T priority patent/DE112014001204T5/de
Publication of WO2014136510A1 publication Critical patent/WO2014136510A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches

Definitions

  • the present invention relates to a power module and is preferably used for a power module having a DC-AC conversion function or an AC-DC conversion function, for example.
  • IPM Intelligent Power Modules
  • Patent Document 1 In the three-phase PWM (Pulse Width Modulation) inverter described in Japanese Patent Application Laid-Open No. 2001-327171 (Patent Document 1), three PWM signals for U phase, V phase, and W phase and all power elements are connected. An off signal for turning off is input.
  • the internal signal generation circuit generates three phase-inverted PWM inverted signals based on the three PWM signals. Switching of all six power elements is controlled by these PWM signals and PWM inversion signals.
  • the inverter of this document is further provided with a circuit for generating a dead time so that the input PWM signal and the ON period do not overlap with the ON period of the PWM inverted signal corresponding to the PWM signal.
  • JP 2001-327171 A Japanese Patent Laid-Open No. 10-304675
  • Patent Document 2 Japanese Patent Laid-Open No. 10-304675
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-327171
  • the main object of the present invention is to provide a power module capable of reducing the number of input signals and compensating for output voltage distortion accompanying the addition of dead time.
  • a power module includes a power conversion unit and a control circuit.
  • the power conversion unit includes N switch element pairs each composed of first and second switch elements connected in series, and a plurality of diodes connected in antiparallel to the first and second switch elements, respectively. including.
  • the control circuit receives N command signals and common enable signals respectively corresponding to the N switch element pairs. When the enable signal is negated, the control circuit performs all-off control to turn off each of the first and second switch elements. When the enable signal is asserted, the control circuit responds to each switch element pair.
  • the normal control, the dead time addition control, and the dead time compensation control are performed every one cycle of the command signal. In the dead time addition control, the control circuit turns off the first and second switch elements during a predetermined dead time.
  • the control circuit After the dead time addition control, the control circuit performs normal control to turn on one of the first and second switch elements and turn off the other according to the logical value of the corresponding command signal.
  • the control circuit starts normal control according to the direction of change of the logical value and the polarity of the load current output from the connection node of the first and second switch elements.
  • the process shifts to dead time addition control, or shifts to dead time compensation control that maintains the state of the previous normal control.
  • the control circuit executes dead time addition control after dead time compensation control.
  • FIG. 1 is a block diagram showing a configuration of a power module according to Embodiment 1.
  • FIG. 2 is a block diagram illustrating an example of a detailed configuration of a logic circuit unit in FIG. 1.
  • FIG. 4 is a timing diagram showing an operation of the U-phase control unit of FIG. 3 when the U-phase load current is positive.
  • FIG. 4 is a timing diagram showing an operation of the U-phase control unit of FIG. 3 when the U-phase load current is negative.
  • FIG. 6 is a block diagram illustrating a configuration of a logic circuit unit in a power module according to a second embodiment.
  • FIG. 10 is a diagram for explaining a problem of the power module according to the second embodiment.
  • the power module by Embodiment 3 it is a figure which shows the output operation of each control part according to the direction of a corresponding command signal and load current in a table format.
  • FIG. 10 is a block diagram illustrating a configuration of a logic circuit unit in a power module according to a fifth embodiment.
  • FIG. 10 is a block diagram illustrating a configuration of a logic circuit unit in a power module according to a fifth embodiment.
  • FIG. 18 is a timing chart showing the operation of the input enabler of FIG. 17 (when the rise of the command signal is slower than the rise of the enable signal).
  • FIG. 18 is a timing chart showing the operation of the input enabler of FIG. 17 (when the rise of the command signal is earlier than the rise of the enable signal).
  • It is a circuit diagram which shows an example of a structure of the input enabler of FIG.
  • FIG. 10 is a block diagram showing a configuration of a power module according to a sixth embodiment.
  • FIG. 10 is a block diagram showing a configuration of a power module according to a seventh embodiment.
  • FIG. 10 is a block diagram showing a configuration of a power module according to an eighth embodiment. It is a figure for demonstrating an example of the usage method of the power module of FIG.
  • FIG. 1 is a block diagram showing a configuration of a power module according to the first embodiment.
  • the case of a three-phase inverter is shown as an example of a power module.
  • power module 1 includes a power conversion unit 30, a logic circuit unit 10 (also referred to as a control circuit unit), an insulation circuit unit 20, a drive circuit unit 21, and a current detection unit 22. .
  • the power module 1 is fully turned off when a U-phase command signal Uin, a V-phase command signal Vin, and a W-phase command signal Win are respectively input from the outside (also referred to as a Uin terminal, a Vin terminal, and a Win terminal). And a terminal (also referred to as an EN terminal) to which a signal ALLOFF (also referred to as an enable signal EN) is input from the outside.
  • the power module 1 further outputs the high-potential-side power supply terminal HV, the low-potential-side power supply terminal LV, and the U-phase load current IU, the V-phase load current IV, and the W-phase load current IW, respectively. Terminals Uout, Vout, Wout are included.
  • FIG. 2 is a circuit diagram showing a detailed configuration of the power conversion unit of FIG.
  • the power converter 30 converts the DC voltage input from the power supply terminals HV and LV into a three-phase AC voltage.
  • N 3
  • switch element pairs 31, 32, and 33 connected in parallel to each other and to the switch elements constituting each switch element pair.
  • reverse parallel means that the diode is in parallel with the corresponding switch element and in the reverse bias direction, that is, the cathode of the diode is connected to the high potential side and the anode of the diode is connected to the low potential side.
  • the switch element pair 31 includes a first switch element (also referred to as a high potential side switch element or an upper arm side switch element) 31P connected in series between the power supply terminals HV and LV, and a second switch element ( Low-potential side switch element or lower arm side switch element) 31N.
  • a U-phase load current IU is output from a connection node NU of switch elements 31P and 31N.
  • Control signals UP and UN are input to the control electrodes of the switch elements 31P and 31N, respectively.
  • the switch elements 31P and 31N are switched on or off according to the logical values of the control signals UP and UN.
  • diodes 34P and 34N are connected in antiparallel with the switch elements 31P and 31N, respectively. When the corresponding switch element is off, a reflux current flows through the diode.
  • the switch element pair 32 includes switch elements 32P and 32N connected in series between the power supply terminals HV and LV.
  • a V-phase load current IV is output from connection node NV of switch elements 32P and 32N.
  • V-phase control signals VP and VN are input to the control electrodes of the switch elements 32P and 32N, respectively.
  • Diodes 35P and 35N are connected in antiparallel to the switch elements 32P and 32N, respectively.
  • the switch element pair 33 includes switch elements 33P and 33N connected in series between the power supply terminals HV and LV.
  • a W-phase load current IW is output from connection node NW of switch elements 33P and 33N.
  • W-phase control signals WP and WN are input to the control electrodes of the switch elements 33P and 33N, respectively.
  • Diodes 36P and 36N are connected in antiparallel to the switch elements 33P and 33N, respectively.
  • each switch element is turned on when the corresponding control signal is asserted and turned off when it is negated.
  • an example of an NPN-type bipolar transistor is shown as each switch element, but it may be a power MOS (Metal Oxide Semiconductor) transistor or IGBT (Insulated Gate Bipolar Transistor) instead.
  • MOS Metal Oxide Semiconductor
  • IGBT Insulated Gate Bipolar Transistor
  • the direction of current flowing out from the power converter 30 is positive, and the direction of current flowing into the power converter 30 is negative.
  • the logic circuit unit 10 switches the switching elements based on the phase signals Uin, Vin, Win, the enable signal EN, and the polarity information of the load currents IU, IV, IW. Control signals UP, UN, VP, VN, WP, and WN are generated. The detailed configuration and operation of the logic circuit unit 10 will be described later with reference to FIGS.
  • the control signals UP, UN, VP, VN, WP, and WN output from the logic circuit unit 10 are amplified by the drive circuit unit 21 after passing through the insulating circuit unit 20 for input / output separation.
  • the amplified control signals UP, UN, VP, VN, WP, and WN are input to the control electrodes of the switch elements 31P, 31N, 32P, 32N, 33P, and 33N, respectively.
  • Current detector 22 is provided to detect information including the polarity of each load current, detector 22U for detecting U-phase load current IU, detector 22V for detecting V-phase load current IV, and W-phase load.
  • a detector 22W for detecting current IW is included. Since the total load current of the three phases is 0 according to Kirchhoff's current law, a detector is provided in any two of the three phases, and the remaining one-phase load current is calculated from the detected two-phase load current You may do it.
  • the current detection unit 22 is provided outside the power module 1, and the power module 1 receives the three-phase load currents IU, IV, IW (or any two of them) from the current detection unit 22 provided outside. (Load current) may be acquired.
  • FIG. 3 is a block diagram illustrating an example of a detailed configuration of the logic circuit unit 10 of FIG.
  • logic circuit unit 10 ⁇ / b> A includes a signal distribution circuit unit 11, an all-off circuit unit 12, a dead time (Td) compensation circuit unit 13, and a dead time (Td) addition circuit unit 14. .
  • the control signals UP, VP, VN are signals obtained by inverting the command signals Uin, Vin, Win, and the control signals UN, VN, WN are used as the command signals Uin, Vin.
  • Win may be a signal synchronized with Win.
  • the all-off circuit unit 12 When the all-off signal is asserted (that is, when the enable signal EN is negated), the all-off circuit unit 12 is controlled by the signal distribution circuit unit 11 regardless of the logical values of the command signals Uin, Vin, and Win. All the generated control signals UP, UN, VP, VN, WP, WN are negated. Thereby, all the switch elements 31P, 31N, 32P, 32N, 33P, and 33N configuring the power conversion unit 30 of FIG. 1 are turned off.
  • the dead time addition circuit unit 14 delays switching from negation to assertion by a predetermined dead time Td for each of the control signals UP, UN, VP, VN, WP, and WN generated by the signal distribution circuit unit 11. .
  • Td a dead time period
  • a short-circuit state a state in which both the high-potential side and low-potential side switch elements are turned on
  • the set value of the dead time Td may be given from the outside of the power module, or may be given from a register provided inside the power module.
  • the value of the dead time Td is set to 1 ⁇ sec, for example, in order to reliably prevent a short circuit state.
  • the dead time By providing the dead time, the assertion period of each control signal is shortened compared to the assertion period of the command signal, so that the output voltage of the power conversion unit 30 is distorted. In order to suppress the distortion of the output voltage, a dead time compensation circuit unit 13 is provided.
  • the dead time compensation circuit unit 13 changes the U-phase control signal UP generated by the signal distribution circuit unit 11 according to the direction of the change and the polarity of the U-phase load current IU. , UN are extended for one assert period and the other negate period is extended. As a result, the switching timing of the control signals UP and UN is delayed by either the rising or falling of the U-phase command signal.
  • the dead time compensation circuit unit 13 extends the assertion period of the U-phase control signal UP supplied to the switch element 31P on the high potential side, and the U-phase load current When IU is negative, the assertion period of the U-phase control signal UN supplied to the low potential side switch element 31N is extended.
  • the extension period is equal to the dead time period. Even if the extension period is set slightly shorter than the dead time period, the effect of dead time compensation can be obtained.
  • the dead time compensation circuit unit 13 extends the assertion period of the high-potential-side V-phase control signal VP, and when the V-phase load current IV is negative, the dead-time compensation circuit unit 13 The assertion period of the V-phase control signal VN is extended.
  • the dead time compensation circuit unit 13 extends the assertion period of the W-phase control signal WP on the high potential side when the W-phase load current IW is positive, and the W-phase on the low potential side when the W-phase load current IW is negative. Extend the assertion period of the control signal WN. A more detailed operation of the dead time compensation circuit unit 13 will be described later with reference to FIGS.
  • Control signals UP, UN, VP, VN, WP, WN after passing through all-off circuit unit 12, dead time compensation circuit unit 13, and dead time addition circuit unit 14 are output from logic circuit unit 10 in FIG.
  • the in FIG. 3, the dead time compensation circuit unit 13 is arranged in front of the dead time addition circuit unit 14, but the order may be reversed.
  • the all-off circuit unit 12 is disposed at the subsequent stage of the signal distribution circuit unit 11. However, the all-off circuit unit 12 may be disposed at the subsequent stage of the dead time compensation circuit unit 13 or a dead time addition circuit. You may arrange
  • U-phase control unit 15U generates U-phase control signals UP and UN based on the U-phase command signal Uin, enable signal EN, and information on the polarity of U-phase load current IU.
  • the V-phase control unit 15V generates the V-phase control signals VP and VN based on information regarding the polarity of the V-phase command signal Vin, the enable signal EN, and the V-phase load current IV.
  • W-phase control unit 15W generates W-phase control signals WP and WN based on information regarding the polarity of W-phase command signal Win, enable signal EN, and W-phase load current IW.
  • FIG. 4 is a timing chart showing the operation of the U-phase control unit of FIG. 3 when the U-phase load current is positive.
  • FIG. 4 shows a comparison between the operation when dead time compensation is not performed and the operation when dead time compensation is performed.
  • control signal UP maintains the L level (negate), and the control signal UN maintains the H level (asserted). Accordingly, normal control is performed in which the high-potential side switch element 31P is turned off and the low-potential side switch element 31N is turned on.
  • the load current IU is positive during the dead time period (from time t1 to t2, from time t4 to t5, and from time t7 to t8), the low potential side diode 34N in FIG. As a result, the U-phase output voltage is equal to -Ed / 2. Therefore, when compared with the U-phase command signal Uin, the time for the U-phase output voltage to be high level is reduced by the dead time and the time for the low level is increased by the dead time per cycle of the command signal Uin. The output voltage is distorted.
  • the dead time compensation circuit unit 13 extends the ON time of the switch element 31P on the high potential side in FIG. 2 by the dead time. Specifically, when the U-phase command signal Uin falls (time t4), the dead time compensation circuit unit 13 delays the falling of the control signal UP on the high potential side until time t5 (accordingly, the low potential The negation period of the control signal UN on the side is also extended). That is, from time t4 to time t5 when the dead time compensation control is performed, the logical values of the control signals UN and UP in the immediately preceding normal control (from time t2 to t4) are maintained. The maintenance time for maintaining this logical value is equal to the dead time Td. After the dead time compensation control ends (time t5), the process shifts to dead time addition control (from time t5 to t6). The control in the other time zones is the same as when dead time compensation is not performed, and therefore description thereof will not be repeated.
  • FIG. 5 is a timing chart showing the operation of the U-phase control unit of FIG. 3 when the U-phase load current is negative.
  • FIG. 5 shows a comparison between an operation when dead time compensation is not performed and an operation when dead time compensation is performed.
  • the waveform during the dead time period (from time t1 to t2, from time t4 to t5, and from time t7 to t8) is different from the waveform in the case of FIG.
  • the load current IU since the load current IU is negative, the high-potential side diode 34P of FIG. 2 conducts during the dead time period.
  • the U-phase output voltage is equal to Ed / 2. Therefore, when compared with the U-phase command signal Uin, the time during which the U-phase output voltage is at a high level is increased by the dead time and the time at which the U-phase output voltage is at a low level is decreased by the dead time. Occurs.
  • the dead time compensation circuit unit 13 extends the on time of the switch element 31N on the low potential side in FIG. 2 by the dead time. Specifically, when the U-phase command signal Uin rises (time t1, t7), the dead time compensation circuit unit 13 delays the fall of the control signal UN on the low potential side until time t2, t8 (to this). Accordingly, the negation period of the control signal UP on the high potential side is also extended). That is, the logical values of the control signals UN and UP in the previous normal control (before time t1 and from time t5 to t7) are maintained from time t1 to time t2 and from time t7 to t8 when dead time compensation control is performed.
  • the maintenance time for maintaining this logical value is equal to the dead time Td.
  • the process shifts to dead time addition control (from time t2 to t3, from time t8 to time t9).
  • the control in other time zones is the same as when no dead time compensation is performed.
  • FIG. 6 is a block diagram illustrating a configuration of a logic circuit unit in the power module according to the second embodiment.
  • control units 15U, 15V, and 15W are configured as state machines. That is, each control unit has four internal states, depending on the polarity of the corresponding command signal (Uin, Vin, Win), the common enable signal EN, and the corresponding load current (IU, IV, IW). A transition is made between the internal states, and a control signal is output to the corresponding switch element pair (31, 32, 33) according to the internal state. Each control unit performs the normal control, dead time compensation control, dead time addition control, and all-off control described in the first embodiment in the four internal states.
  • FIG. 7 is a diagram showing, in a tabular form, the output operation of each control unit according to the direction of the corresponding command signal and load current in the power module according to the second embodiment.
  • each control unit When the rising edge ( ⁇ ) of the corresponding command signal and the corresponding load current are negative, each control unit extends the ON state of the switch element on the low potential side (N side) (at the same time the high potential side (P side)) The dead state compensation control is also performed. After dead time compensation control, the process shifts to dead time addition control.
  • each control unit Dead time compensation control is performed to extend the ON state of the switch element on the potential side (P side) (at the same time, the OFF state of the switch element on the low potential side (N side) is also extended). After dead time compensation control, the process shifts to dead time addition control.
  • each control unit performs dead time addition control.
  • Each control unit performs normal control to turn on one of the corresponding high-potential side and low-potential side switch elements and turn off the other after the dead time addition control according to the logical value of the corresponding command signal.
  • the direction (polarity) of the corresponding load current does not affect the output of each control unit (represented by “*” in FIG. 7).
  • Each control unit does not depend on the logical value of the corresponding command signal and the polarity of the corresponding load current (indicated by “*” in FIG. 7). All-off control is performed to turn off all switch elements.
  • FIG. 8 is a state transition diagram showing the operation of each control unit in the power module according to the second embodiment.
  • “&” represents an AND operation
  • represents an OR operation.
  • each control unit has four internal states ST1, ST2, ST3, SA.
  • the internal states ST1, ST2, and ST3 are collectively referred to as an internal state SB.
  • EN negated
  • each control unit transitions to the internal state SA and performs all-off control to turn off all the switch elements.
  • EN asserted
  • each control unit transits the internal states ST1, ST2, and ST3 for each cycle of the corresponding command signal (more precisely, for each half cycle, There are cases where the transition is made in the order of the states ST1, ST3, ST1, and cases where the transition is made in the order of the internal states ST1, ST2, ST3, ST1).
  • each control unit performs dead time addition control to turn off the corresponding high-potential side and low-potential side switch elements.
  • Td dead time
  • each control unit performs normal control to turn on one of the high-potential side and low-potential side switch elements and turn off the other according to the logical value of the corresponding command signal.
  • each control unit shifts from the internal state ST1 to the internal state ST2 when the following first condition or second condition is satisfied, and both of the first and second conditions are satisfied. If not satisfied, the internal state ST1 is shifted to the internal state ST3.
  • the first condition is when the switch element on the high potential side is on and the corresponding load current is positive in the immediately preceding normal control (internal state ST1). In other words, the first condition is when the corresponding command signal has a falling edge ( ⁇ ) and the corresponding load current is positive.
  • the second condition is a case where the low-potential-side switch element is on and the corresponding load current is negative in the immediately preceding normal control. In other words, the second condition is when the corresponding command signal has a rising edge ( ⁇ ) and the corresponding load current is negative.
  • the internal state ST3 when the maintenance time for maintaining the state of the switch element in the immediately preceding normal control has elapsed, the internal state ST3 is entered.
  • the maintenance time is set equal to the period of the dead time Td. Even if the maintenance time is set slightly shorter than the dead time Td, the effects of the invention can be obtained.
  • FIG. 9 is a diagram showing the relationship between the load current and the dead time compensation amount in the power module according to the second embodiment.
  • the horizontal axis represents the load current
  • the vertical axis represents the dead time compensation amount.
  • the dead time compensation amount means the length of the period during which dead time compensation control is performed (the aforementioned maintenance time or extension time).
  • the on-state extension time of the high-potential side switch element is expressed as positive
  • the on-state extension time of the low-potential side switch element is expressed as negative.
  • the on-time extension time is equal to the dead time Td.
  • the number of input signals is reduced and the output voltage distortion due to the addition of dead time to the control signal is compensated. Can do.
  • the logic circuit unit 10B is configured by a state machine, the area of the logic circuit unit can be reduced as compared with the case of the first embodiment.
  • FIG. 10 is a diagram for explaining problems of the power module according to the second embodiment.
  • FIG. 10 schematically shows an example of an output current waveform (load current waveform) from the power converter when the control signal is a PWM (Pulse Width Modulation) signal.
  • PWM Pulse Width Modulation
  • FIG. 10 in the case of PWM control, since each switch element repeats on and off at the carrier frequency, a fine vibration waveform is superimposed on the current waveform.
  • both are modes in which the actual output voltage can be changed at the same time as the change of the command signal Uin, so that dead time compensation becomes unnecessary. In this case, if unnecessary dead time compensation is performed, there arises a problem that the output current waveform is distorted.
  • each control unit performs dead time when the absolute value of the corresponding load current is less than a predetermined threshold (referred to as “dead zone”). Compensation control is not performed.
  • dead zone a predetermined threshold
  • FIG. 11 is a diagram showing, in a tabular form, the output operation of each control unit according to the corresponding command signal and the direction of the load current in the power module according to the third embodiment.
  • a difference from the table shown in FIG. 7 is that a dead zone is provided.
  • each control unit when the absolute value of the corresponding load current is less than the threshold value (dead zone), each control unit performs dead time compensation control regardless of the change direction of the logical value of the corresponding command signal and the polarity of the load current. The dead time addition control is performed without executing.
  • the other points in FIG. 11 are the same as those in FIG. 7, and thus description thereof will not be repeated.
  • FIG. 12 is a state transition diagram showing the operation of each control unit in the power module according to the third embodiment.
  • the state transition diagram of FIG. 12 differs from the state transition diagram of FIG. 8 in terms of conditions for shifting from the internal state ST1 to the internal state ST2 or ST3.
  • each control unit shifts from the internal state ST1 to the internal state ST2 when the following first condition or second condition is satisfied, and satisfies both the first and second conditions. If not, the internal state ST1 is shifted to the internal state ST3.
  • the first condition is when the switch element on the high potential side is on (the falling edge ( ⁇ ) of the corresponding command signal) in the previous normal control and the corresponding load current is positive and above a predetermined threshold value. is there.
  • the second condition is a case where the low-potential-side switch element is on (the rising edge ( ⁇ ) of the corresponding command signal) in the immediately preceding normal control and the corresponding load current is negative and equal to or greater than the threshold value.
  • the other points in FIG. 12 are the same as those in FIG.
  • FIG. 13 is a diagram showing the relationship between the load current and the dead time compensation amount in the power module according to the third embodiment.
  • the dead time compensation amount becomes 0 (dead time compensation control is not performed). Thereby, distortion of the output voltage of the power converter can be further reduced.
  • FIG. 14 is a diagram showing, in a tabular form, the output operation of each control unit according to the direction of the corresponding command signal and load current in the power module according to the fourth embodiment. A difference from the table shown in FIG. 7 is that a dead zone is provided.
  • the dead time compensation control immediately before The maintenance time (extended time) for maintaining the normal control state is shortened.
  • the maintenance time is set to be proportional to the absolute value of the corresponding load current.
  • the maintenance time in the dead time compensation control is set equal to the period of the dead time Td.
  • the normal time just before the dead time compensation control is set.
  • the maintenance time (extended time) for maintaining the control state is shortened.
  • the maintenance time is set to be proportional to the absolute value of the corresponding load current.
  • the maintenance time in the dead time compensation control is set equal to the period of the dead time Td. Is done.
  • the other cases of FIG. 11 are the same as those shown in FIG.
  • FIG. 15 is a state transition diagram showing the operation of each control unit in the power module according to the fourth embodiment.
  • the conditions for transitioning from the internal state ST2 to the internal state ST3 are different from the state transition diagram of FIG.
  • the transition from the internal state ST2 to the internal state ST3 occurs when a maintenance time (extended time) Te set equal to the dead time Td has elapsed.
  • the absolute value of the corresponding load current is less than the threshold value
  • the transition from the internal state ST2 to the internal state ST3 occurs when the maintenance time Te set to be less than the dead time Td has elapsed.
  • the maintenance time Te is set to be proportional to the absolute value of the corresponding load current.
  • the other points of FIG. 15 are the same as those of FIG. 8, and thus description thereof will not be repeated.
  • FIG. 16 is a diagram showing the relationship between the load current and the dead time compensation amount in the power module according to the fourth embodiment.
  • the dead time compensation amount changes in proportion to the load current. As a result, distortion of the output voltage of the power converter can be further reduced.
  • FIG. 17 is a block diagram showing the configuration of the logic circuit section in the power module according to the fifth embodiment.
  • Each input enabler (41U, 41V, 41W) receives a corresponding command signal (Uin, Vin, Win: generically referred to as Gi) and an all-off signal ALLOFF (enable signal ENi), and the logical value of the corresponding command signal Gi is The timing at which the all-off signal ALLOFF is negated (the enable signal ENi is asserted) is delayed until the switching timing.
  • noise filters 42U, 42V, and 42W may be provided in front of the input enablers 41U, 41V, and 41W, respectively.
  • Each control unit (15U, 15V, 15W) may have any of the configurations described in the first to fourth embodiments, and a corresponding command signal G and an enable signal delayed by a corresponding input enabler (41U, 41V, 41W).
  • a corresponding command signal G and an enable signal delayed by a corresponding input enabler 41U, 41V, 41W.
  • EN and the polarity Idir [1: 0] of the corresponding load current control signals on the high potential side and the low potential side that are output to the corresponding switch element pair are generated.
  • each control unit (15U, 15V, 15W) further includes a corresponding load current direction Idir [1: 0], a timing signal TS to be used as a clock, and a set value of a dead time. Td [5: 0] is input.
  • the timing signal TS is also input to each input enabler (41U, 41V, 41W).
  • a logic circuit unit (40U, 40V, 40W) is configured by the noise filter, the input enabler, and the control unit for each of the U phase, the V phase, and the W phase.
  • FIG. 18 is a timing diagram showing the operation of the input enabler of FIG. 17 (when the rise of the command signal is slower than the rise of the enable signal). In FIG. 18, the case where the input enabler is not provided and the case where it is provided are shown in comparison.
  • the input enable signal ENi is asserted at time t1, and the logical value of the corresponding input command signal Gi is switched at time t2 after time t1.
  • the control signal on the low potential side is asserted between time t1 and time t2, and therefore an unintended inappropriate control signal is supplied to the corresponding switch element pair. It will be.
  • the timing at which the output enable signal ENo is asserted is delayed until time t2 when the logical value of the corresponding command signal is switched.
  • the input enable signal ENi is asserted in advance in a state where the logical values of the command signals Uin, Vin, and Win are all “0”, and then the command signals Uin, Vin, and Win are set to a desired logic at an arbitrary timing. The usage of switching to a value is also possible.
  • FIG. 19 is a timing chart showing the operation of the input enabler of FIG. 17 (when the corresponding command signal rises earlier than the rise of the enable signal).
  • the logical value of the corresponding command signal is switched at time t1, and enable signal ENi is asserted at time t2 after time t1.
  • enable signal ENi is asserted at time t2 after time t1.
  • the on-time decreases from the desired pulse width between time t1 and time t2 (command missing).
  • the timing at which the output enable signal ENo is asserted is delayed until time t3 when the logical value of the corresponding command signal is switched, so that the above-described disadvantage does not occur.
  • FIG. 20 is a circuit diagram showing an example of the configuration of the input enabler of FIG. Referring to FIG. 20, input enabler 41 includes D latch circuits 51 and 52, a selector 53, AND gates 54 and 55, and an exclusive OR gate (XOR gate) 56.
  • input enabler 41 includes D latch circuits 51 and 52, a selector 53, AND gates 54 and 55, and an exclusive OR gate (XOR gate) 56.
  • XOR gate exclusive OR gate
  • the enable signal ENi is input to the selector 53 and the AND gate 54.
  • the corresponding command signal Gi is input to the D latch circuit 51 and the XOR gate 56.
  • the XOR gate 56 outputs an exclusive OR of the corresponding command signal Gi and the output of the D latch circuit 51 to the AND gate 54.
  • the AND gate 54 outputs an AND operation result of the enable signal ENi and the output of the XOR gate 56 to the selector 53.
  • the selector 53 selects the enable signal ENi when the output of the D latch circuit 52 is “1”, and selects the output of the AND gate 54 when the output of the D latch circuit 52 is “0”.
  • the selector 53 outputs the selection result to the D latch circuit 52.
  • the output of the D latch circuit 52 is output to the subsequent control unit as the enable signal ENo and also output to the AND gate 55.
  • the AND gate 55 outputs an AND operation result of the output of the latch circuit 51 and the output of the latch circuit 52 as a command signal Go to the subsequent control unit.
  • the output enable signal ENo and the command signal Go are both “0”.
  • the input enable signal ENi becomes “1”
  • the input command signal Gi becomes “1”
  • the internal state of the D latch circuit 52 becomes “1”.
  • the output enable signal ENo becomes “1”.
  • the input command signal Gi is output as the command signal Go to the subsequent control unit.
  • Control signals UP, UN, VP, VN, WP, and WN can be directly input from the outside of the power module 2.
  • the input interface can handle both the conventional 2 ⁇ N input (Legacy compatible) and the N + 1 input with the number of input signals reduced.
  • the mode in which the switch element control signals UP, UN, VP, VN, WP, and WN are directly input from the outside is referred to as a first operation mode, and the command signal as described in the first to fifth embodiments.
  • a mode in which Uin, Vin, Win and an enable signal EN are input is referred to as a second operation mode.
  • FIG. 21 is a block diagram showing the configuration of the power module according to the sixth embodiment.
  • the configuration of the logic circuit unit 10 may be any of the logic circuit units 10A, 10B, and 10C described in FIG. 3, FIG. 6, FIG.
  • the configuration of the drive circuit unit 21 is the same as that described in FIG. 1, and the configuration of the power conversion unit 30 is the same as that described in FIG.
  • the insulating circuit unit 20 and the current detection unit 22 may be provided in the power module 2 as illustrated in FIG. 1.
  • the selection circuit unit 60 includes a control signal directly input from the UPin terminal, the UNin terminal, the VPin terminal, the VNin terminal, the WPin terminal, and the WNin terminal according to the logic level (H or L) of the mode signal INPUTSEL, and the logic circuit unit One of the control signals output from 10 is selected.
  • the selected control signals UP, UN, VP, VN, WP, WN are input to the power conversion unit 30 via the drive circuit unit 21.
  • FIG. 22 is a block diagram showing a configuration of a power module according to the seventh embodiment.
  • the power module 3 in FIG. 22 is different from the power module 2 in FIG. 21 in that an EN terminal to which the all-off signal ALLOFF is input is not provided.
  • FIG. 23 is a block diagram showing a configuration of a power module according to the eighth embodiment.
  • the power module 4 in FIG. 23 differs from the power module 2 in FIG. 21 in that it further includes an all-off circuit 62.
  • the all-off circuit 62 receives an all-off signal ALLOFF signal (enable signal EN) input from the outside.
  • ALLOFF signal enable signal EN
  • WP and WN By negating all WP and WN, all switch elements constituting the power conversion unit 30 are turned off.
  • FIG. 24 is a diagram for explaining an example of how to use the power module of FIG.
  • FIG. 24A shows an example of a conventional power module 67 in which control signals UP, UN, VP, VN, WP, and WN for a three-phase power converter are all input from the outside.
  • FIG. 24B shows an example in which the power module 4 of the eighth embodiment is used in the first operation mode.
  • control signals UP, UN, VP, VN, WP, and WN output from user controller 65 are applied to control signal terminals provided in power module 67 via cutoff circuit 66. Each is entered.
  • the power module 67 is provided with an error signal output terminal 63, and the output error signal is input to the cutoff circuit 66 through the OR gate 64 together with other control signals such as an abnormal stop signal.
  • the cutoff circuit 66 negates all the control signals UP, UN, VP, VN, WP, and WN input to the power module 67 when the output of the OR gate 64 is asserted.
  • the output of OR gate 64 is input to the input terminal (EN terminal) of all-off signal ALLOFF provided in power module 4. Can do.
  • the all-off circuit 62 of FIG. 23 provided in the power module 4 negates all the control signals UP, UN, VP, VN, WP, WN. For this reason, it is not necessary to provide the cutoff circuit 66 outside the power module, and the system configuration can be simplified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

 パワーモジュール(1)は、N個のスイッチ素子対(31,32,33)を含む電力変換部(30)と、制御回路(10)とを備える。制御回路(10)は、N個のスイッチ素子対(31,32,33)にそれぞれ対応するN個の指令信号(Uin,Vin,Win)および共通のイネーブル信号(EN)を受ける。制御回路(10)は、イネーブル信号(EN)がネゲートされているとき、電力変換部(30)を構成する全スイッチ素子をオフする全オフ制御を行い、イネーブル信号(EN)がアサートされているとき、各スイッチ素子対に対して、対応の指令信号の1周期ごとに通常制御、デッドタイム付加制御、およびデッドタイム補償制御を行うように構成されている。

Description

パワーモジュール
 この発明は、パワーモジュールに関し、たとえば、直流-交流変換機能または交流-直流変換機能を備えたパワーモジュールに好適に用いられるものである。
 インバータおよびコンバータに用いられるパワーモジュール(IPM:Intelligent Power Module)では、小型化のために入力信号数を削減することが望ましい。
 特開2001-327171号公報(特許文献1)に記載された三相PWM(Pulse Width Modulation)インバータでは、U相、V相、およびW相用の3個のPWM信号と、全てのパワー素子をオフするためのオフ信号とが入力される。内部の信号発生回路は、3個のPWM信号に基づいて、3個の位相反転されたPWM反転信号を生成する。これらのPWM信号およびPWM反転信号によって全6個のパワー素子のスイッチングが制御される。この文献のインバータでは、さらに、入力されたPWM信号とオン期間と、該PWM信号に対応するPWM反転信号のオン期間とが重畳しないようにデッドタイムを生成するための回路が設けられている。
特開2001-327171号公報 特開平10-304675号公報
 PWM信号にデッドタイムを設けた場合には、本来制御しようとしていた出力電流波形からずれが生じることになる。このデッドタイムに起因した出力電圧波形の歪みを補償するためのデッドタイム補償技術は従来から知られている(たとえば、特開平10-304675号公報(特許文献2)参照)。しかしながら、上記の特開2001-327171号公報(特許文献1)には、このデッドタイム補償機能をパワーモジュールに具体的にどのように組み込むかについて開示されていない。
 この発明の主たる目的は、入力信号数を削減するとともに、デッドタイムの付加に伴う出力電圧歪みを補償することが可能なパワーモジュールを提供することである。
 一実施の形態に従うパワーモジュールは、電力変換部と制御回路とを備える。電力変換部は、直列接続された第1および第2のスイッチ素子によって各々が構成されるN個のスイッチ素子対および各第1および第2のスイッチ素子とそれぞれ逆並列に接続される複数のダイオードを含む。制御回路は、N個のスイッチ素子対にそれぞれ対応するN個の指令信号および共通のイネーブル信号を受ける。制御回路は、イネーブル信号がネゲートされているとき、各第1および第2のスイッチ素子を全てオフする全オフ制御を行い、イネーブル信号がアサートされているとき、各スイッチ素子対に対して、対応の指令信号の1周期ごとに通常制御、デッドタイム付加制御、およびデッドタイム補償制御を行うように構成されている。制御回路は、デッドタイム付加制御では、所定のデッドタイムの間、第1および第2のスイッチ素子をオフする。制御回路は、デッドタイム付加制御の後、対応の指令信号の論理値に応じて第1および第2のスイッチ素子の一方をオンし、他方をオフする通常制御を行う。制御回路は、対応の指令信号の論理値が切替わったとき、論理値の変化の方向ならびに第1および第2のスイッチ素子の接続ノードから出力される負荷電流の極性に応じて、通常制御からデッドタイム付加制御に移行するか、または直前の通常制御の状態を維持するデッドタイム補償制御に移行する。制御回路は、デッドタイム補償制御の後、デッドタイム付加制御を実行する。
 上記の実施の形態のパワーモジュールによれば、入力信号数を削減するとともにデッドタイムの付加に起因した出力電圧歪みを補償することができる。
実施の形態1によるパワーモジュールの構成を示すブロック図である。 図1の電力変換部の詳細な構成を示す回路図である。 図1のロジック回路部の詳細な構成の一例を示すブロック図である。 U相負荷電流が正の場合において図3のU相制御部の動作を示すタイミング図である。 U相負荷電流が負の場合において図3のU相制御部の動作を示すタイミング図である。 実施の形態2によるパワーモジュールにおいて、ロジック回路部の構成を示すブロック図である。 実施の形態2によるパワーモジュールにおいて、対応する指令信号および負荷電流の方向に応じた各制御部の出力操作を表形式で示す図である。 実施の形態2によるパワーモジュールにおいて、各制御部の動作を示す状態遷移図である。 実施の形態2によるパワーモジュールにおいて、負荷電流とデッドタイム補償量との関係を示す図である。 実施の形態2のパワーモジュールの問題点について説明するための図である。 実施の形態3によるパワーモジュールにおいて、対応する指令信号および負荷電流の方向に応じた各制御部の出力操作を表形式で示す図である。 実施の形態3によるパワーモジュールにおいて、各制御部の動作を示す状態遷移図である。 実施の形態3によるパワーモジュールにおいて、負荷電流とデッドタイム補償量との関係を示す図である。 実施の形態4によるパワーモジュールにおいて、対応する指令信号および負荷電流の方向に応じた各制御部の出力操作を表形式で示す図である。 実施の形態4によるパワーモジュールにおいて、各制御部の動作を示す状態遷移図である。 実施の形態4によるパワーモジュールにおいて、負荷電流とデッドタイム補償量との関係を示す図である。 実施の形態5によるパワーモジュールにおいて、ロジック回路部の構成を示すブロック図である。 図17のインプットイネーブラーの動作を示すタイミング図である(イネーブル信号の立ち上がりよりも指令信号の立ち上がりが遅い場合)。 図17のインプットイネーブラーの動作を示すタイミング図である(イネーブル信号の立ち上がりよりも指令信号の立ち上がりが早い場合)。 図17のインプットイネーブラーの構成の一例を示す回路図である。 実施の形態6によるパワーモジュールの構成を示すブロック図である。 実施の形態7によるパワーモジュールの構成を示すブロック図である。 実施の形態8によるパワーモジュールの構成を示すブロック図である。 図23のパワーモジュールの使用方法の一例について説明するための図である。
 以下、各実施の形態について図面を参照して詳しく説明する。なお、同一または相当する部分には同一の参照符号を付して、その説明を繰返さない。
 <実施の形態1>
 [パワーモジュールの全体構成]
 図1は、実施の形態1によるパワーモジュールの構成を示すブロック図である。図1では、パワーモジュールの例として三相インバータの場合が示されている。
 図1を参照して、パワーモジュール1は、電力変換部30と、ロジック回路部10(制御回路部とも称する)と、絶縁回路部20と、駆動回路部21と、電流検出部22とを含む。
 さらに、パワーモジュール1は、U相指令信号Uin、V相指令信号Vin、およびW相指令信号Winが外部からそれぞれ入力される端子(Uin端子、Vin端子、およびWin端子とも称する)と、全オフ信号ALLOFF(イネーブル信号ENとも称する)が外部から入力される端子(EN端子とも称する)とを含む。パワーモジュール1は、さらに、高電位側の電源端子HVと、低電位側の電源端子LVと、U相負荷電流IU、V相負荷電流IV、およびW相負荷電流IWをそれぞれ出力するための出力端子Uout,Vout,Woutとを含む。
 図2は、図1の電力変換部の詳細な構成を示す回路図である。電力変換部30は、電源端子HV,LVから入力された直流電圧を三相の交流電圧に変換する。
 図2を参照して、電力変換部30は、互いに並列接続されたN個(N=3)のスイッチ素子対31,32,33と、各スイッチ素子対を構成するスイッチ素子に逆並列に個別に接続された複数のダイオードとを含む。ここで、逆並列とは、ダイオードが対応のスイッチ素子と並列かつ逆バイアス方向になるように、すなわち、ダイオードのカソードが高電位側に接続され、ダイオードのアノードが低電位側に接続されることを意味する。
 具体的に、スイッチ素子対31は、電源端子HV,LV間に直列接続された第1のスイッチ素子(高電位側スイッチ素子または上アーム側スイッチ素子とも称する)31Pと、第2のスイッチ素子(低電位側スイッチ素子または下アーム側スイッチ素子とも称する)31Nとを含む。スイッチ素子31P,31Nの接続ノードNUからU相の負荷電流IUが出力される。スイッチ素子31P,31Nの制御電極には、制御信号UP,UNがそれぞれ入力される。スイッチ素子31P,31Nは、制御信号UP,UNの論理値に応じてオンまたはオフに切替わる。さらに、スイッチ素子31P,31Nとそれぞれ逆並列にダイオード34P,34Nが接続されている。対応のスイッチ素子がオフのときダイオードに還流電流が流れる。
 同様に、スイッチ素子対32は、電源端子HV,LV間に直列接続されたスイッチ素子32P,32Nを含む。スイッチ素子32P,32Nの接続ノードNVからV相の負荷電流IVが出力される。スイッチ素子32P,32Nの制御電極には、V相の制御信号VP,VNがそれぞれ入力される。スイッチ素子32P,32Nには、それぞれ逆並列にダイオード35P,35Nが接続されている。
 同様に、スイッチ素子対33は、電源端子HV,LV間に直列接続されたスイッチ素子33P,33Nを含む。スイッチ素子33P,33Nの接続ノードNWからW相の負荷電流IWが出力される。スイッチ素子33P,33Nの制御電極には、W相の制御信号WP,WNがそれぞれ入力される。スイッチ素子33P,33Nには、それぞれ逆並列にダイオード36P,36Nが接続されている。
 各スイッチ素子は、対応の制御信号がアサート(assert)されているときにオンし、ネゲート(negate)されているときにオフするものとする。図2において、各スイッチ素子としてNPN型のバイポーラトランジスタの例が示されているが、これに代えて、パワーMOS(Metal Oxide Semiconductor)トランジスタまたはIGBT(Insulated Gate Bipolar Transistor)などであってもよい。
 上記の負荷電流の極性に関して、この明細書では、電力変換部30から流出する電流方向を正とし、電力変換部30に流入する電流方向を負とする。
 再び図1を参照して、ロジック回路部10は、各相の指令信号Uin,Vin,Win、イネーブル信号EN、および負荷電流IU,IV,IWの極性の情報に基づいて、各スイッチ素子のスイッチングを制御する制御信号UP,UN,VP,VN,WP,WNを生成する。ロジック回路部10の詳細な構成および動作は、図3~図5を参照して後述する。
 ロジック回路部10から出力された制御信号UP,UN,VP,VN,WP,WNは、入出力分離のための絶縁回路部20を通過した後、駆動回路部21によって増幅される。増幅後の制御信号UP,UN,VP,VN,WP,WNは、スイッチ素子31P,31N,32P,32N,33P,33Nの制御電極にそれぞれ入力される。
 電流検出部22は、各負荷電流の極性を含む情報を検出するために設けられ、U相負荷電流IUを検出する検出器22U、V相負荷電流IVを検出する検出器22V、およびW相負荷電流IWを検出する検出器22Wを含む。キルヒホッフの電流則によって3相の負荷電流の合計は0になるので、3相のうちいずれか2相に検出器を設け、検出した2相の負荷電流から残りの1相の負荷電流を算出するようにしてもよい。
 なお、電流検出部22をパワーモジュール1の外部に設け、パワーモジュール1は、外部に設けられた電流検出部22から3相の負荷電流IU,IV,IW(もしくは、そのうちのいずれか2相の負荷電流)に関する情報を取得するようにしてもよい。
 [ロジック回路部の構成]
 図3は、図1のロジック回路部10の詳細な構成の一例を示すブロック図である。図3を参照して、ロジック回路部10Aは、信号振分け回路部11と、全オフ回路部12と、デッドタイム(Td)補償回路部13と、デッドタイム(Td)付加回路部14とを含む。
 信号振分け回路部11は、N個(N=3)の指令信号Uin,Vin,Winにそれぞれ同期した(すなわち、対応の指令信号と同位相の)N個(N=3)の高電位側スイッチ素子用の制御信号UP,VP,WPと、N個(N=3)の指令信号Uin,Vin,Winの位相をそれぞれ反転させた低電位側スイッチ素子用の制御信号UN,VN,WNとを生成する。なお、本実施の形態の場合とは逆に、制御信号UP,VP,VNを、指令信号Uin,Vin,Winを反転させた信号とし、制御信号UN,VN,WNを、指令信号Uin,Vin,Winに同期した信号としてもよい。
 全オフ回路部12は、全オフ信号がアサートされているとき(すなわち、イネーブル信号ENがネゲートされているとき)、指令信号Uin,Vin,Winの論理値によらず、信号振分け回路部11によって生成された全ての制御信号UP,UN,VP,VN,WP,WNをネゲートする。これによって、図1の電力変換部30を構成する全てのスイッチ素子31P,31N,32P,32N,33P,33Nはオフ状態になる。
 デッドタイム付加回路部14は、信号振分け回路部11によって生成された制御信号UP,UN,VP,VN,WP,WNの各々について、ネゲートからアサートへの切替わりを所定のデッドタイムTdだけ遅延させる。この結果、U相、V相、およびW相の各相について、論理値が切替わるときに高電位側のスイッチ素子と低電位側のスイッチ素子とが共にオフになるデッドタイム期間が生じる。これによって、信号遅延に起因して生じる短絡状態(高電位側および低電位側のスイッチ素子が共にオンする状態)を確実に防止することができる。
 なお、デッドタイムTdの設定値は、パワーモジュールの外部から与えてもよいし、パワーモジュール内部に設けられたレジスタから与えられるようにしてもよい。デッドタイムTdの値は、短絡状態を確実に防止するために、たとえば1μ秒に設定される。
 デッドタイムを設けることによって、各制御信号のアサート期間が指令信号のアサート期間に比べて短縮されるので、電力変換部30の出力電圧に歪みが生じる。この出力電圧の歪みを抑制するためにデッドタイム補償回路部13が設けられている。
 デッドタイム補償回路部13は、U相指令信号の論理値が切替わるとき、その変化の方向ならびにU相負荷電流IUの極性に応じて、信号振分け回路部11によって生成されたU相制御信号UP,UNの一方のアサート期間を延長し、他方のネゲート期間を延長する。この結果、各制御信号UP,UNの切替わりのタイミングが、U相指令信号の立上がりおよび立下りのいずれか一方で遅延する。
 具体的には、デッドタイム補償回路部13は、U相負荷電流IUが正の場合、高電位側のスイッチ素子31Pに供給されるU相制御信号UPのアサート期間を延長し、U相負荷電流IUが負の場合、低電位側のスイッチ素子31Nに供給されるU相制御信号UNのアサート期間を延長する。延長期間はデッドタイム期間に等しい。なお、延長期間をデッドタイム期間よりも少し短く設定しても概ねデッドタイム補償の効果は得られる。
 V相、W相の場合もU相の場合と同様である。すなわち、デッドタイム補償回路部13は、V相負荷電流IVが正の場合、高電位側のV相制御信号VPのアサート期間を延長し、V相負荷電流IVが負の場合、低電位側のV相制御信号VNのアサート期間を延長する。デッドタイム補償回路部13は、W相負荷電流IWが正の場合、高電位側のW相制御信号WPのアサート期間を延長し、W相負荷電流IWが負の場合、低電位側のW相制御信号WNのアサート期間を延長する。デッドタイム補償回路部13のより詳しい動作は、図4および図5を参照して後述する。
 図1のロジック回路部10から、全オフ回路部12、デッドタイム補償回路部13、およびデッドタイム付加回路部14を通過した後の制御信号UP,UN,VP,VN,WP,WNが出力される。図3ではデッドタイム補償回路部13がデッドタイム付加回路部14の前段に配置されているが、その順序を逆にしても構わない。図3では全オフ回路部12が信号振分け回路部11の後段に配置されているが、全オフ回路部12は、デッドタイム補償回路部13の後段に配置してもよいし、デッドタイム付加回路部14の後段に配置してもよい。
 なお、U相、V相、W相の各相の信号処理は互いに独立しているので、ロジック回路部10Aの構成を、U相制御部15U、V相制御部15V、およびW相制御部15Wを含む構成であるとみなすことができる。この場合、U相制御部15Uは、U相指令信号Uin、イネーブル信号EN、およびU相負荷電流IUの極性に関する情報に基づいて、U相制御信号UP,UNを生成する。V相制御部15Vは、V相指令信号Vin、イネーブル信号EN、およびV相負荷電流IVの極性に関する情報に基づいて、V相制御信号VP,VNを生成する。W相制御部15Wは、W相指令信号Win、イネーブル信号EN、およびW相負荷電流IWの極性に関する情報に基づいて、W相制御信号WP,WNを生成する。
 [ロジック回路部の動作]
 次に、図3のロジック回路部10Aの動作、特にデッドタイム補償回路部13およびデッドタイム付加回路部14の動作について図4、図5のタイミング図を参照して具体的に説明する。図4、図5では、U相の信号処理(図3のU相制御部15Uの動作)について説明しているが、V相およびW相の場合も同様である。
 (1) U相負荷電流IUが正の場合
 図4は、U相負荷電流が正の場合において図3のU相制御部の動作を示すタイミング図である。図4では、デッドタイム補償を行わない場合の動作と、デッドタイム補償を行う場合の動作とが対比して示されている。
 (1-1) デッドタイム補償を行わない場合
 時刻t1より以前では、指令信号UinがLレベルである。このとき、図2の高電位側のスイッチ素子31Pに供給する制御信号UPはLレベル(ネゲート)であり、低電位側のスイッチ素子31Nに供給する制御信号UNはHレベル(アサート)である。これによって、スイッチ素子31Pはオフ状態となり、スイッチ素子31Nはオン状態となる。
 時刻t1に指令信号UinがLレベルからHレベルに切替わると、制御信号UNは直ちにLレベル(ネゲート)に変化するが、制御信号UPは時刻t2になってからHレベル(アサート)に変化する。時刻t1からt2までのデッドタイムTdの間、スイッチ素子31P,31Nは共にオフ状態となるデッドタイム付加制御が行われる。
 時刻t2から時刻t4までは、Hレベルの指令信号Uinに応答して、制御信号UPはHレベル(アサート)を維持し、制御信号UNはLレベル(ネゲート)を維持する。これによって、高電位側のスイッチ素子31Pはオン状態となり、低電位側のスイッチ素子31Nはオフ状態となる通常制御が行われる。
 時刻t4に指令信号UinがHレベルからLレベルに切替わると、制御信号UPは直ちにLレベル(ネゲート)に変化するが、制御信号UNは時刻t5になってからHレベル(アサート)に変化する。時刻t4からt5までのデッドタイムTdの間、スイッチ素子31P,31Nは共にオフ状態となるデッドタイム付加制御が行われる。
 時刻t5から時刻t7までは、Lレベルの指令信号Uinに応答して、制御信号UPはLレベル(ネゲート)を維持し、制御信号UNはHレベル(アサート)を維持する。これによって、高電位側のスイッチ素子31Pはオフ状態になり、低電位側のスイッチ素子31Nはオン状態になる通常制御が行われる。
 時刻t7に指令信号Uinが再びLレベルからHレベルに切替わると、制御信号UNは直ちにLレベル(ネゲート)に変化するが、制御信号UPは時刻t8になってからHレベル(アサート)に変化する。時刻t7からt8までのデッドタイムTdの間、スイッチ素子31P,31Nは共にオフ状態となるデッドタイム付加制御が行われる。
 次に、図2の電力変換部30のU相出力端子Uoutの出力電圧(すなわち、スイッチ素子対31の接続ノードNUの電位)の変化について説明する。ここで、図2の高電位側の電源端子HVにEd/2の電位が印加され、低電位側の電源端子LVに-Ed/2の電位が印加されているとする。
 時刻t2からt4までおよび時刻t8以降は、図2の高電位側のスイッチ素子31Pがオンし、低電位側のスイッチ素子31Nがオフしているので、U相出力電圧はEd/2に等しい。時刻t1以前および時刻t5からt7は、図2の高電位側のスイッチ素子31Pがオフし、低電位側のスイッチ素子31Nがオンしているので、U相出力電圧は-Ed/2に等しい。
 一方、デッドタイム期間中(時刻t1からt2まで、時刻t4からt5まで、および時刻t7からt8まで)は、負荷電流IUが正であるので、図2の低電位側のダイオード34Nが導通する。この結果、U相出力電圧は-Ed/2に等しい。したがって、U相指令信号Uinと比較すると、指令信号Uinの1周期あたり、U相出力電圧がハイレベルになる時間がデッドタイム分減少し、ローレベルになる時間がデッドタイム分増加することになり、出力電圧に歪みが生じる。
 (1-2) デッドタイム補償を行う場合
 デッドタイム補償回路部13は、負荷電流IUが正の場合、図2の高電位側のスイッチ素子31Pのオン時間をデッドタイム分延長する。具体的には、デッドタイム補償回路部13は、U相指令信号Uinが立ち下がるとき(時刻t4)、高電位側の制御信号UPの立下りを時刻t5まで遅延させる(これに伴い、低電位側の制御信号UNのネゲート期間も延長する)。すなわち、デッドタイム補償制御が行われる時刻t4から時刻t5では、直前の通常制御(時刻t2からt4まで)における制御信号UN,UPの論理値が維持される。この論理値を維持する維持時間はデッドタイムTdに等しい。デッドタイム補償制御の終了後(時刻t5)、デッドタイム付加制御(時刻t5からt6まで)に移行する。その他の時間帯の制御は、デッドタイム補償を行なわない場合と同じであるので説明を繰り返さない。
 (2) U相負荷電流IUが負の場合
 図5は、U相負荷電流が負の場合において図3のU相制御部の動作を示すタイミング図である。図5では、デッドタイム補償を行わない場合の動作と、デッドタイム補償を行う場合の動作とが対比して示されている。
 (2-1) デッドタイム補償を行なわない場合
 デッドタイム補償を行わない場合の制御信号UP,UNの波形は、図4で説明した負荷電流IUが正の場合と同じであるので、説明を繰り返さない。
 一方、U相出力電圧については、デッドタイム期間中(時刻t1からt2まで、時刻t4からt5まで、および時刻t7からt8まで)の波形が、図4の場合の波形と異なる。図5の場合、負荷電流IUが負であるので、デッドタイム期間中には図2の高電位側のダイオード34Pが導通する。この結果、U相出力電圧はEd/2に等しい。したがって、U相指令信号Uinと比較すると、1周期あたり、U相出力電圧がハイレベルになる時間がデッドタイム分増加し、ローレベルになる時間がデッドタイム分減少することなり、出力電圧に歪みが生じる。
 (2-2) デッドタイム補償を行う場合
 デッドタイム補償回路部13は、負荷電流IUが負の場合、図2の低電位側のスイッチ素子31Nのオン時間をデッドタイム分延長する。具体的には、デッドタイム補償回路部13は、U相指令信号Uinが立ち上がるとき(時刻t1,t7)、低電位側の制御信号UNの立下りを時刻t2,t8までそれぞれ遅延させる(これに伴い、高電位側の制御信号UPのネゲート期間も延長する)。すなわち、デッドタイム補償制御が行われる時刻t1から時刻t2までおよび時刻t7からt8までは、直前の通常制御(時刻t1以前、時刻t5からt7まで)における制御信号UN,UPの論理値が維持される。この論理値を維持する維持時間はデッドタイムTdに等しい。デッドタイム補償制御の終了後(時刻t2,t8)、デッドタイム付加制御(時刻t2からt3まで、時刻t8から時刻t9まで)に移行する。その他の時間帯の制御は、デッドタイム補償を行なわない場合と同じである。
 [効果]
 以上のとおり実施の形態1のパワーモジュールによれば、入力信号数を削減するとともにデッドタイムの付加に起因した出力電圧歪みを補償することができる。
 <実施の形態2>
 図6は、実施の形態2によるパワーモジュールにおいて、ロジック回路部の構成を示すブロック図である。図6を参照して、ロジック回路部10Bは、図2のN個(N=3)のスイッチ素子対31,32,33にそれぞれ対応するN個(N=3)の制御部(U相制御部15U、V相制御部15V、およびW相制御部15W)を含む。
 実施の形態2では、これらの制御部15U,15V,15Wが状態機械として構成される。すなわち、各制御部は、4つの内部状態を有し、対応の指令信号(Uin,Vin,Win)、共通のイネーブル信号EN、および対応の負荷電流(IU,IV,IW)の極性に応じて内部状態間を遷移し、内部状態に応じて対応のスイッチ素子対(31,32,33)に制御信号を出力する。各制御部は、4つの内部状態において、それぞれ実施の形態1で説明した通常制御、デッドタイム補償制御、デッドタイム付加制御、および全オフ制御を行う。
 図7は、実施の形態2によるパワーモジュールにおいて、対応する指令信号および負荷電流の方向に応じた各制御部の出力操作を表形式で示す図である。
 (1) イネーブル信号がアサートされている(ON)場合
 対応の指令信号の立上がりエッジ(↑)(すなわち、対応の指令信号が低電位(N)から高電位(P)に変化し)かつ対応の負荷電流が正のとき、各制御部はデッドタイムTd付加制御を行う。
 対応の指令信号の立上がりエッジ(↑)かつ対応の負荷電流が負のとき、各制御部は、低電位側(N側)のスイッチ素子のオン状態を延長する(同時に高電位側(P側)のスイッチ素子のオフ状態も延長される)デッドタイム補償制御を行う。デッドタイム補償制御の後、デッドタイム付加制御に移行する。
 対応の指令信号の立下がりエッジ(↓)(すなわち、対応の指令信号が高電位(P)から低電位(N)に変化し)かつ対応の負荷電流が正のとき、各制御部は、高電位側(P側)のスイッチ素子のオン状態を延長する(同時に低電位側(N側)のスイッチ素子のオフ状態も延長される)デッドタイム補償制御を行う。デッドタイム補償制御の後、デッドタイム付加制御に移行する。
 対応の指令信号の立下がりエッジ(↓)かつ負荷電流が負のとき、各制御部はデッドタイム付加制御を行う。
 各制御部は、デッドタイム付加制御の後に、対応の指令信号の論理値に応じて、対応の高電位側および低電位側のスイッチ素子の一方をオンし、他方をオフする通常制御を行う。対応の負荷電流の方向(極性)は各制御部の出力に影響しない(図7において「*」で表す)。
 (2) イネーブル信号がネゲートされている(OFF)場合
 各制御部は、対応の指令信号の論理値および対応の負荷電流の極性とは無関係に(図7において「*」で表す)、対応のスイッチ素子を全てオフする全オフ制御を行う。
 図8は、実施の形態2によるパワーモジュールにおいて、各制御部の動作を示す状態遷移図である。図8において、「&」はAND演算を表し、「|」はOR演算を表す。
 図8を参照して、各制御部は、4つの内部状態ST1,ST2,ST3,SAを有する。なお、図8では内部状態ST1,ST2,ST3を総称して内部状態SBと記載している。各制御部は、イネーブル信号ENがネゲートされているとき(EN=0)、内部状態SAに遷移し、全てのスイッチ素子をオフする全オフ制御を行う。各制御部は、イネーブル信号ENがアサートされているとき(EN=1)、対応の指令信号の1周期ごとに内部状態ST1,ST2,ST3を遷移する(正確には、半周期ごとに、内部状態ST1,ST3,ST1の順に遷移する場合と、内部状態ST1,ST2,ST3,ST1の順に遷移する場合とがある)。
 内部状態ST3において、各制御部は、対応の高電位側および低電位側の両方のスイッチ素子をオフするデッドタイム付加制御を行う。所定のデッドタイムTdが経過すると、内部状態ST3から内部状態ST1に遷移する。
 内部状態ST1において、各制御部は、対応の指令信号の論理値に応じて高電位側および低電位側のスイッチ素子の一方をオンし、他方をオフする通常制御を行う。
 対応の指令信号の論理値が切替わったとき、その論理値の変化の方向ならびに対応の負荷電流の極性に応じて、通常制御を行う内部状態ST1からデッドタイム付加制御を行う内部状態ST3に遷移するか、または直前の通常制御の状態を維持するデッドタイム補償制御を行う内部状態ST2に遷移する。
 具体的には、各制御部は、以下の第1の条件または第2の条件が満たされている場合に、内部状態ST1から内部状態ST2に移行し、第1および第2の条件のいずれも満たされていない場合に、内部状態ST1から内部状態ST3に移行する。第1の条件は、直前の通常制御(内部状態ST1)において高電位側のスイッチ素子がオンであるとともに対応の負荷電流が正の場合である。言い換えると、第1の条件は、対応の指令信号の立下がりエッジ(↓)かつ対応の負荷電流が正の場合である。第2の条件は、直前の通常制御において低電位側のスイッチ素子がオンであるとともに対応の負荷電流が負である場合である。言い換えると、第2の条件は、対応の指令信号の立上がりエッジ(↑)かつ対応の負荷電流が負の場合である。
 内部状態ST2において、直前の通常制御におけるスイッチ素子の状態を維持する維持時間が経過すると、内部状態ST3に移行する。実施の形態2の場合、維持時間はデッドタイムTdの期間に等しく設定される。なお、上記維持時間はデッドタイムTdの期間よりも少し短く設定しても概ね発明の効果は得られる。
 図9は、実施の形態2によるパワーモジュールにおいて、負荷電流とデッドタイム補償量との関係を示す図である。図9において、横軸には負荷電流が示され、縦軸にはデッドタイム補償量が示される。ここで、デッドタイム補償量とは、デッドタイム補償制御が行われる期間の長さ(前述の維持時間または延長時間)を意味する。ただし、高電位側のスイッチ素子のオン状態の延長時間を正で表し、低電位側のスイッチ素子のオン状態の延長時間を負で表す。図9に示すように、高電位側および低電位側のいずれのスイッチ素子の場合も、オン時間の延長時間はデッドタイムTdの期間に等しい。
 以上のとおり、実施の形態2のパワーモジュールによれば、実施の形態1の場合と同様に、入力信号数を削減するとともに制御信号へのデッドタイムの付加に起因した出力電圧歪みを補償することができる。さらには、ロジック回路部10Bが状態機械によって構成されるので、実施の形態1の場合よりもロジック回路部の面積を削減することができる。
 <実施の形態3>
 図10は、実施の形態2のパワーモジュールの問題点について説明するための図である。図10では、制御信号がPWM(Pulse Width Modulation)信号の場合において、電力変換部からの出力電流波形(負荷電流波形)の一例が模式的に示される。図10に示すように、PWM制御の場合には、キャリア周波数で各スイッチ素子がオンおよびオフを繰り返すために、電流波形に細かな振動波形が重畳する。図10において、電流I1および電流I2のポイントでは、いずれも指令信号Uinの変化と同時に実際の出力電圧も即変化できるモードであるため、デッドタイム補償が不要となる。この場合、不要なデッドタイム補償を実施すると出力電流波形を歪ませてしまうという問題が生じる。
 実施の形態3のパワーモジュールは、上記の問題点を解決するために、各制御部は、対応の負荷電流の絶対値が所定の閾値未満の場合(「不感帯」と称する)には、デッドタイム補償制御を行わない。以下、図11~図13を参照して具体的に説明する。
 図11は、実施の形態3によるパワーモジュールにおいて、対応する指令信号および負荷電流の方向に応じた各制御部の出力操作を表形式で示す図である。図7に示す表と異なる点は、不感帯が設けられている点である。図11において、各制御部は、対応する負荷電流の絶対値が閾値未満の場合(不感帯)には、対応する指令信号の論理値の変化方向および負荷電流の極性によらず、デッドタイム補償制御を実行せずに、デッドタイム付加制御を行う。図11のその他の点は、図7の場合と同じであるので説明を繰り返さない。
 図12は、実施の形態3によるパワーモジュールにおいて、各制御部の動作を示す状態遷移図である。図12の状態遷移図は、図8の状態遷移図と比べて、内部状態ST1から内部状態ST2またはST3に移行するための条件が異なる。
 図12において、各制御部は、以下の第1の条件または第2の条件が満たされている場合に、内部状態ST1から内部状態ST2に移行し、第1および第2の条件のいずれも満たされていない場合に、内部状態ST1から内部状態ST3に移行する。第1の条件は、直前の通常制御において高電位側のスイッチ素子がオン(対応の指令信号の立下がりエッジ(↓))であるとともに、対応の負荷電流が正かつ所定の閾値以上の場合である。第2の条件は、直前の通常制御において低電位側のスイッチ素子がオン(対応の指令信号の立上がりエッジ(↑))であるともに、対応の負荷電流が負かつ閾値以上の場合である。図12のその他の点は、図8の場合と同じであるので説明を繰り返さない。
 図13は、実施の形態3によるパワーモジュールにおいて、負荷電流とデッドタイム補償量との関係を示す図である。図13を参照して、実施の形態3のパワーモジュールにおいて、負荷電流の絶対値が閾値x未満の場合には、デッドタイム補償量が0になる(デッドタイム補償制御が行われない)。これによって、電力変換部の出力電圧の歪みをより低減することができる。
 <実施の形態4>
 実施の形態4のパワーモジュールは、実施の形態3の場合と同様の問題を解決するために、デッドタイム補償制御が実行される期間(前述の維持時間または延長時間)を可変としたものである。以下、図14~図16を参照して具体的に説明する。
 図14は、実施の形態4によるパワーモジュールにおいて、対応する指令信号および負荷電流の方向に応じた各制御部の出力操作を表形式で示す図である。図7に示す表と異なる点は、不感帯が設けられている点である。
 具体的に、図14において、対応する指令信号の立上がりエッジ(↑)であるとともに、対応の負荷電流が負かつその絶対値が閾値未満(不感帯)の場合には、デッドタイム補償制御において直前の通常制御の状態を維持する維持時間(延長時間)が短縮される。維持時間は、対応の負荷電流の絶対値に比例するように設定される。対応する指令信号の立上がりエッジ(↑)であるとともに、対応の負荷電流が負かつその絶対値が閾値以上の場合には、デッドタイム補償制御における維持時間は、デッドタイムTdの期間に等しく設定される。
 さらに、図14において、対応する指令信号の立下がりエッジ(↓)であるとともに、対応の負荷電流が正かつその絶対値が閾値未満(不感帯)の場合には、デッドタイム補償制御において直前の通常制御の状態を維持する維持時間(延長時間)が短縮される。維持時間は、対応の負荷電流の絶対値に比例するように設定される。対応する指令信号の立下がりエッジ(↓)であるとともに、対応の負荷電流が正かつその絶対値が閾値以上の場合には、デッドタイム補償制御における維持時間は、デッドタイムTdの期間に等しく設定される。図11のその他の場合は、図7に示す場合と同様であるので説明を繰り返さない。
 図15は、実施の形態4によるパワーモジュールにおいて、各制御部の動作を示す状態遷移図である。図8の状態遷移図とは、内部状態ST2から内部状態ST3に移行するための条件が異なる。図15において、対応の負荷電流の絶対値が閾値以上の場合には、デッドタイムTdに等しく設定された維持時間(延長時間)Teが経過すると、内部状態ST2から内部状態ST3に移行する。対応の負荷電流の絶対値が閾値未満の場合には、デッドタイムTd未満に設定された維持時間Teが経過すると内部状態ST2から内部状態ST3に移行する。維持時間Teは、対応の負荷電流の絶対値に比例するように設定される。図15のその他の点は図8の場合と同じであるので、説明を繰り返さない。
 図16は、実施の形態4によるパワーモジュールにおいて、負荷電流とデッドタイム補償量との関係を示す図である。図16を参照して、実施の形態4のパワーモジュールにおいて、負荷電流の絶対値が閾値x未満の場合には、デッドタイム補償量が負荷電流に比例して変化する。この結果、電力変換部の出力電圧の歪みをより低減することができる。
 <実施の形態5>
 [ロジック回路部の構成]
 図17は、実施の形態5によるパワーモジュールにおいて、ロジック回路部の構成を示すブロック図である。
 図17を参照して、ロジック回路部10Cは、図2のN個(N=3)のスイッチ素子対31,32,33にそれぞれ対応するN個(N=3)の制御部15U,15V,15Wと、スイッチ素子対31,32,33にそれぞれ対応するN個(N=3)のインプットイネーブラー(Input Enabler)(遅延器とも称する)41U,41V,41Wとを含む。
 各インプットイネーブラー(41U,41V,41W)は、対応の指令信号(Uin,Vin,Win:Giと総称する)および全オフ信号ALLOFF(イネーブル信号ENi)を受け、対応の指令信号Giの論理値が切替わるタイミングまで全オフ信号ALLOFFがネゲート(イネーブル信号ENiがアサート)するタイミングを遅延させる。なお、インプットイネーブラー41U,41V,41Wの前段にそれぞれノイズフィルタ42U,42V,42Wを設けてもよい。
 各制御部(15U,15V,15W)は、実施の形態1~4で説明したいずれの構成でもよく、対応の指令信号G、対応のインプットイネーブラー(41U,41V,41W)よって遅延されたイネーブル信号EN、および対応の負荷電流の極性Idir[1:0]に応じて、対応のスイッチ素子対に出力する高電位側および低電位側の制御信号を生成する。
 図17に示すように、各制御部(15U,15V,15W)には、さらに、対応の負荷電流の方向Idir[1:0]、クロックとして用いるためのタイミング信号TS、およびデッドタイムの設定値Td[5:0]が入力される。各インプットイネーブラー(41U,41V,41W)にもタイミング信号TSが入力される。U相、V相、W相の各相ごとに、ノイズフィルタ、インプットイネーブラー、および制御部によってロジック回路部(40U,40V,40W)が構成される。
 [ロジック回路部の動作]
 以下、図17のロジック回路部10Cの動作について説明する。各相のロジック回路部(40U,40V,40W)の動作は同様であるので、以下では、特に相を特定せずに説明する。
 図18は、図17のインプットイネーブラーの動作を示すタイミング図である(イネーブル信号の立ち上がりよりも指令信号の立ち上がりが遅い場合)。図18では、インプットイネーブラーが設けられていない場合と設けられている場合とが対比して示されている。
 図18を参照して、時刻t1で入力イネーブル信号ENiがアサートされ、時刻t1より後の時刻t2で対応の入力指令信号Giの論理値が切替わる。インプットイネーブラーが設けられていない場合には、時刻t1から時刻t2の間では、低電位側の制御信号がアサートされることになるので、意図しない不適切な制御信号が対応のスイッチ素子対に供給されてしまう。
 一方、インプットイネーブラーが設けられている場合には、対応の指令信号の論理値が切替わる時刻t2まで、出力イネーブル信号ENoがアサートするタイミングが遅延する。この結果、イネーブル信号ENoがアサートするタイミングと対応の指令信号Goの論理値が切替わるタイミングとがそろった状態で対応の制御部に入力されるので、上記の不都合が生じない。さらには、指令信号Uin,Vin,Winの論理値がいずれも“0”の状態で予め入力イネーブル信号ENiをアサートしておき、その後、任意のタイミングで指令信号Uin,Vin,Winを所望の論理値に切り替えるという使用法も可能である。
 図19は、図17のインプットイネーブラーの動作を示すタイミング図である(イネーブル信号の立ち上がりよりも対応の指令信号の立ち上がりが早い場合)。
 図19を参照して、時刻t1で対応の指令信号の論理値が切替わり、時刻t1より後の時刻t2でイネーブル信号ENiがアサートされる。インプットイネーブラーが設けられていない場合には、時刻t1から時刻t2の間では、所望のパルス幅よりもオン時間が減少する(指令欠け)。一方、インプットイネーブラーが設けられている場合には、対応の指令信号の論理値が切替わる時刻t3まで出力イネーブル信号ENoがアサートするタイミングが遅延するので、上記の不都合が生じない。
 図20は、図17のインプットイネーブラーの構成の一例を示す回路図である。図20を参照して、インプットイネーブラー41は、Dラッチ回路51,52と、セレクタ53と、ANDゲート54,55と、排他的論理和ゲート(XORゲート)56とを含む。
 イネーブル信号ENiは、セレクタ53とANDゲート54に入力される。対応の指令信号Giは、Dラッチ回路51と、XORゲート56とに入力される。XORゲート56は、対応の指令信号GiとDラッチ回路51の出力との排他的論理和をANDゲート54に出力する。ANDゲート54は、イネーブル信号ENiとXORゲート56の出力とのAND演算結果をセレクタ53に出力する。セレクタ53は、Dラッチ回路52の出力が“1”の場合にイネーブル信号ENiを選択し、Dラッチ回路52の出力が“0”の場合にANDゲート54の出力を選択する。セレクタ53は、選択結果をDラッチ回路52に出力する。Dラッチ回路52の出力は、イネーブル信号ENoとして後段の制御部に出力されるとともに、ANDゲート55に出力される。ANDゲート55は、ラッチ回路51の出力とラッチ回路52の出力とのAND演算結果を、指令信号Goとして後段の制御部に出力する。
 上記構成のインプットイネーブラー41によれば、入力イネーブル信号ENiが“0”の間は、出力されるイネーブル信号ENoおよび指令信号Goがいずれも“0”である。入力イネーブル信号ENiが“1”になり、さらに、入力指令信号Giが“1”になると、Dラッチ回路52の内部状態が“1”になり、この結果、出力イネーブル信号ENoが“1”になる。これにより、入力指令信号Giが指令信号Goとして後段の制御部に出力される。
 <実施の形態6>
 実施の形態6のパワーモジュール2は、図2の電力変換部30を構成する2×N個(N=3)のスイッチ素子31P,31N,32P,32N,33P、32Nのオンおよびオフをそれぞれ制御する制御信号UP,UN,VP,VN,WP,WNを、パワーモジュール2の外部から直接入力することができる。すなわち、入力インターフェースとして、従来の2×N入力の場合(Legacy対応)と、入力信号数を削減したN+1入力の両方の場合とに対応可能である。以下の説明では、スイッチ素子の制御信号UP,UN,VP,VN,WP,WNを外部から直接入力するモードを第1の動作モードと称し、実施の形態1~5で説明したように指令信号Uin,Vin,Winとイネーブル信号ENとを入力するモードを第2の動作モードと称する。
 図21は、実施の形態6によるパワーモジュールの構成を示すブロック図である。図21を参照して、パワーモジュール2は、ロジック回路部10と、駆動回路部21と、電力変換部30と、選択回路部60とを含む。さらに、パワーモジュール2は、第1の動作モード時に制御信号UP,UN,VP,VN,WP,WNがそれぞれ入力される2×N個(N=3)の制御信号端子(UPin端子、UNin端子、VPin端子、VNin端子、WPin端子、WNin端子とも称する)と、全オフ信号ALLOFFを受ける端子(EN端子)と、動作モードを設定するためのモード信号INPUTSELを受けるモード信号端子とを含む。
 ロジック回路部10の構成は、図3、図6、図17などで説明したロジック回路部10A,10B,10Cのいずれも構成でもよい。駆動回路部21の構成は図1で説明したものと同様であり、電力変換部30の構成は図2で説明したものと同様である。図21では図示していないが、図1に示すように絶縁回路部20および電流検出部22がパワーモジュール2に設けられていてもよい。
 選択回路部60は、モード信号INPUTSELの論理レベル(HまたはL)に応じて、UPin端子、UNin端子、VPin端子、VNin端子、WPin端子、WNin端子から直接入力された制御信号と、ロジック回路部10から出力された制御信号とのうちの一方を選択する。選択された制御信号UP,UN,VP,VN,WP,WNが、駆動回路部21を介して電力変換部30に入力される。
 図21の場合、第2の動作モードでは、UPin端子、VPin端子、およびWPin端子から、指令信号Uin,Vin,Winがそれぞれ入力される。より一般的には、2×N個(N=3)の制御信号端子のうちいずれのN個の端子を、N個の指令信号Uin,Vin,Winが入力される端子として設定してもよい。
 <実施の形態7>
 図22は、実施の形態7によるパワーモジュールの構成を示すブロック図である。図22のパワーモジュール3は、全オフ信号ALLOFFが入力されるEN端子が設けられていない点で図21のパワーモジュール2と異なる。図22の場合には、全オフ信号ALLOFFは、WNin端子から入力される。より一般的には、2×N個(N=3)の制御信号端子のうちいずれのN+1個の端子を、N個の指令信号Uin,Vin,Winおよび全オフ信号ALLOFFが入力される端子として設定してもよい。
 図22のその他の点は図21と同じであるので、同一または相当する部分には同一の参照符号を付して説明を繰り返さない。
 <実施の形態8>
 図23は、実施の形態8によるパワーモジュールの構成を示すブロック図である。図23のパワーモジュール4は全オフ回路62をさらに含む点で図21のパワーモジュール2と異なる。
 全オフ回路62は、外部から入力された全オフ信号ALLOFF信号(イネーブル信号EN)を受ける。全オフ回路62は、第1の動作モード時にイネーブル信号ENがネゲートされているとき、2×N個(N=3)の制御信号端子から直接入力された制御信号UP,UN,VP,VN,WP,WNを全てネゲートすることによって電力変換部30を構成する全てのスイッチ素子をオフする。
 図24は、図23のパワーモジュールの使用方法の一例について説明するための図である。図24(A)では比較のために、三相電力変換部用の制御信号UP,UN,VP,VN,WP,WNが全て外部から入力される従来のパワーモジュール67の例について示している。図24(B)には、実施の形態8のパワーモジュール4を第1の動作モードで使用する場合の例について示している。
 図24(A)を参照して、ユーザコントローラ65から出力された制御信号UP,UN,VP,VN,WP,WNは、遮断回路66を介して、パワーモジュール67に設けられた制御信号端子にそれぞれ入力される。パワーモジュール67には、エラー信号の出力端子63が設けられており、出力されたエラー信号が異常停止信号など他の制御信号とともにORゲート64を介して遮断回路66に入力される。遮断回路66は、ORゲート64の出力がアサートされたとき、パワーモジュール67に入力する制御信号UP,UN,VP,VN,WP,WNを全てネゲートする。
 図24(B)を参照して、実施の形態8のパワーモジュール4の場合には、ORゲート64の出力を、パワーモジュール4に設けられた全オフ信号ALLOFFの入力端子(EN端子)に入力することできる。ORゲート64の出力がアサートされたときには、パワーモジュール4の内部に設けられた図23の全オフ回路62が全ての制御信号UP,UN,VP,VN,WP,WNをネゲートする。このため、パワーモジュールの外部に遮断回路66を設ける必要がなくなり、システム構成を簡略化することができる。
 <変形例>
 上記の各実施の形態では三相インバータを例に挙げて説明したが、単相インバータ(N=2)の場合や、交流を直流に変換するコンバータの場合にも上記の技術を適用することができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものでないと考えられるべきである。この発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,2,3,4 パワーモジュール、10 ロジック回路部、11 信号振分け回路部、12 全オフ回路部、13 デッドタイム補償回路部、14 デッドタイム付加回路部、15U,15V,15W 制御部、20 絶縁回路部、21 駆動回路部、22 電流検出部、30 電力変換部、31,32,33 スイッチ素子対、31P,31N,32P,32N,33P,33N スイッチ素子、34P,34N,35P,35N,36P,36N ダイオード、41,41U,41V,41W インプットイネーブラー、60 選択回路部、62 全オフ回路、HV,LV 電源端子、IU,IV,IW 負荷電流、SA,ST1,ST2,ST3 内部状態、UP,UN,VP,VN,WP,WN 制御信号、Uin,Vin,Win 指令信号、ALLOFF 全オフ信号、EN イネーブル信号、INPUTSEL モード信号。

Claims (13)

  1.  直列接続された第1および第2のスイッチ素子によって各々が構成されるN個のスイッチ素子対および各前記第1および第2のスイッチ素子とそれぞれ逆並列に接続される複数のダイオードを含む電力変換部と、
     前記N個のスイッチ素子対にそれぞれ対応するN個の指令信号および共通のイネーブル信号を受ける制御回路とを備え、
     前記制御回路は、
     前記イネーブル信号がネゲートされているとき、各前記第1および第2のスイッチ素子を全てオフする全オフ制御を行い、
     前記イネーブル信号がアサートされているとき、各前記スイッチ素子対に対して、対応の指令信号の1周期ごとに通常制御、デッドタイム付加制御、およびデッドタイム補償制御を行い、
     前記デッドタイム付加制御では、所定のデッドタイムの間、前記第1および第2のスイッチ素子をオフし、
     前記デッドタイム付加制御の後、対応の指令信号の論理値に応じて前記第1および第2のスイッチ素子の一方をオンし、他方をオフする前記通常制御を行い、
     対応の指令信号の論理値が切替わったとき、論理値の変化の方向ならびに前記第1および第2のスイッチ素子の接続ノードから出力される負荷電流の極性に応じて、前記通常制御から前記デッドタイム付加制御に移行するか、または直前の前記通常制御の状態を維持するデッドタイム補償制御に移行し、
     前記デッドタイム補償制御の後、前記デッドタイム付加制御を実行するように構成されている、パワーモジュール。
  2.  前記制御回路は、前記N個のスイッチ素子対にそれぞれ対応するN個の制御部を含み、
     各前記制御部は、内部状態として第1~第4の状態を有し、対応の指令信号、前記イネーブル信号、および対応のスイッチ素子対から出力される前記負荷電流の極性に応じて各前記内部状態間を遷移し、前記内部状態に応じて対応の前記第1および第2のスイッチ素子のオンおよびオフを制御し、
     各前記制御部は、前記第1~第4の状態において、前記通常制御、前記デッドタイム補償制御、前記デッドタイム付加制御、および前記全オフ制御をそれぞれ実行する、請求項1に記載のパワーモジュール。
  3.  前記制御回路は、
     前記N個の指令信号にそれぞれ同期したN個の第1の制御信号、および前記N個の指令信号の位相をそれぞれ反転させたN個の第2の制御信号を生成する信号振分け回路と、
     対応する指令信号の論理値が切替わるときの変化の方向および前記負荷電流の極性に基づいて、対応する指令信号の立上がりおよび立下がりの一方のタイミングで、各前記第1および第2の制御信号の論理値の切替わりを遅延させることによって前記デッドタイム補償制御を行うデッドタイム補償回路と、
     前記N個の第1および第2の制御信号の各々がネゲートからアサートに切替わるタイミングを前記デッドタイムの間遅延させることによって前記デッドタイム付加制御を行うデッドタイム付加回路と、
     前記イネーブル信号がネゲートされているとき、各前記第1および第2の制御信号を全てネゲートすることによって前記全オフ制御を行う全オフ回路とを含み、
     前記全オフ回路、前記デッドタイム補償回路および前記デッドタイム付加回路の通過後に、各前記第1の制御信号は対応する前記第1のスイッチ素子に供給され、各前記第2の制御信号は対応する前記第2のスイッチ素子に供給される、請求項1に記載のパワーモジュール。
  4.  対応の指令信号の論理値が切替わったとき、前記制御回路は、
     第1の条件または第2の条件が満たされている場合に、前記通常制御から前記デッドタイム補償制御に移行し、
     前記第1および第2の条件のいずれも満たされていない場合に、前記通常制御から前記デッドタイム付加制御に移行するように構成され、
     前記第1の条件は、直前の前記通常制御において前記第1および第2のスイッチ素子のうち高電位側のスイッチ素子がオンであるとともに前記負荷電流が正の場合であり、
     前記第2の条件は、直前の前記通常制御において低電位側のスイッチ素子がオンであるとともに前記負荷電流が負である場合である、請求項1に記載のパワーモジュール。
  5.  前記デッドタイム補償制御において直前の前記通常制御の状態を維持する維持期間は前記デッドタイムに等しい、請求項4に記載のパワーモジュール。
  6.  対応の前記負荷電流の絶対値が所定の閾値以上の場合には、前記デッドタイム補償制御において直前の前記通常制御の状態を維持する維持期間は前記デッドタイムに等しく、
     対応の前記負荷電流の絶対値が前記閾値より小さい場合には、前記維持期間は前記デッドタイムよりも短く、対応の前記負荷電流の絶対値に比例して変化する、請求項4に記載のパワーモジュール。
  7.  対応の指令信号の論理値が切替わったとき、前記制御回路は、
     第1の条件または第2の条件が満たされている場合に、前記通常制御から前記デッドタイム補償制御に移行し、
     前記第1および第2の条件のいずれも満たされていない場合に、前記通常制御から前記デッドタイム付加制御に移行するように構成され、
     前記第1の条件は、直前の前記通常制御において前記第1および第2のスイッチ素子のうち高電位側のスイッチ素子がオンであるともに、前記負荷電流が正かつ所定の閾値以上の場合であり、
     前記第2の条件は、直前の前記通常制御において低電位側のスイッチ素子がオンであるともに、前記負荷電流が負かつ前記閾値以上の場合であり、
     前記デッドタイム補償制御において直前の前記通常制御の状態を維持する維持期間は前記デッドタイムに等しい、請求項1に記載のパワーモジュール。
  8.  前記制御回路は、
     前記N個のスイッチ素子対にそれぞれ対応するN個の制御部と、
     前記N個のスイッチ素子対にそれぞれ対応するN個の遅延器とを含み、
     各前記遅延器は、対応の指令信号および前記イネーブル信号を受け、対応の指令信号の論理値が切替わるタイミングまで前記イネーブル信号のアサートするタイミングを遅延させ、
     各前記制御部は、対応の指令信号、対応の遅延器よって遅延された前記イネーブル信号、および対応の前記負荷電流の極性に応じて前記第1および第2のスイッチ素子のオンおよびオフを制御する、請求項1に記載のパワーモジュール。
  9.  各前記スイッチ素子対を構成する前記第1および第2のスイッチ素子は、前記スイッチ素子対ごとに個別の第1および第2の制御信号にそれぞれ応じてオンまたはオフに切替わり、
     前記パワーモジュールは、動作モードとして、
     前記電力変換部に入力されるN個の前記第1の制御信号およびN個の前記第2の制御信号を外部から直接受ける第1の動作モードと、
     前記N個の指令信号および前記イネーブル信号を外部から受け、前記制御回路によってN個の前記第1の制御信号およびN個の前記第2の制御信号を生成する第2の動作モードとを有し、
     前記パワーモジュールは、
     前記第1の動作モード時にN個の前記第1の制御信号およびN個の前記第2の制御信号を外部から受けるための2×N個の制御信号端子と、
     前記イネーブル信号を受けるためのイネーブル信号端子と、
     前記動作モードの設定するためのモード信号を受けるモード信号端子と、
     前記モード信号に応じて、前記2×N個の制御信号端子から入力された信号と、前記制御回路によって生成された2×N個の信号との一方を選択し、選択された信号を前記電力変換部に出力する選択回路とをさらに備え、
     前記第2の動作モード時に、前記N個の指令信号は、前記2×N個の制御信号端子のうちの所定のN個の端子を介して前記制御回路に入力される、請求項1に記載のパワーモジュール。
  10.  前記第1の動作モード時に前記イネーブル信号がネゲートされているとき、前記2×N個の制御信号端子から入力された信号を全てネゲートすることによって前記電力変換部を構成する全ての前記第1および第2のスイッチ素子をオフする全オフ回路をさらに備える、請求項9に記載のパワーモジュール。
  11.  各前記スイッチ素子対を構成する前記第1および第2のスイッチ素子は、前記スイッチ素子対ごとに個別の第1および第2の制御信号にそれぞれ応じてオンまたはオフに切替わり、
     前記パワーモジュールは、動作モードとして、
     前記電力変換部に入力されるN個の前記第1の制御信号およびN個の前記第2の制御信号を外部から直接受ける第1の動作モードと、
     前記N個の指令信号および前記イネーブル信号を外部から受け、前記制御回路によってN個の前記第1の制御信号およびN個の前記第2の制御信号を生成する第2の動作モードとを有し、
     前記パワーモジュールは、
     前記第1の動作モード時にN個の前記第1の制御信号およびN個の前記第2の制御信号を外部から受けるための2×N個の制御信号端子と、
     前記動作モードの設定するためのモード信号を受けるモード信号端子と、
     前記モード信号に応じて、前記2×N個の制御信号端子から入力された信号と、前記制御回路によって生成された2×N個の信号との一方を選択し、選択された信号を前記電力変換部に出力する選択回路とをさらに備え、
     前記第2の動作モード時に、前記N個の指令信号および前記イネーブル信号は、前記2×N個の制御信号端子のうちの所定のN+1個の端子を介して前記制御回路に入力される、請求項1に記載のパワーモジュール。
  12.  各前記スイッチ素子対を構成する前記第1および第2のスイッチ素子は、前記スイッチ素子対ごとに個別の第1および第2の制御信号にそれぞれ応じてオンまたはオフに切替わり、
     前記パワーモジュールは、前記N個の指令信号および前記イネーブル信号を外部から受けるためのN+1個の信号入力端子をさらに備え、
     前記制御回路は、前記N個の指令信号および前記イネーブル信号に基づいて、N個の前記第1の制御信号およびN個の前記第2の制御信号を生成する、請求項1に記載のパワーモジュール。
  13.  各前記負荷電流の極性を含む情報を取得するために、前記N個のスイッチ素子対から出力される前記負荷電流または任意の1個を除くN-1個のスイッチ素子対から出力される負荷電流を個別に検出するN個またはN-1個の電流検出器をさらに備える、請求項1~12のいずれか1項に記載のパワーモジュール。
PCT/JP2014/052264 2013-03-08 2014-01-31 パワーモジュール WO2014136510A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015504204A JP6072222B2 (ja) 2013-03-08 2014-01-31 パワーモジュール
CN201480012898.2A CN105191109B (zh) 2013-03-08 2014-01-31 功率模块
US14/773,507 US9748829B2 (en) 2013-03-08 2014-01-31 Power module
DE112014001204.1T DE112014001204T5 (de) 2013-03-08 2014-01-31 Leistungsmodul

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-046922 2013-03-08
JP2013046922 2013-03-08

Publications (1)

Publication Number Publication Date
WO2014136510A1 true WO2014136510A1 (ja) 2014-09-12

Family

ID=51491036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052264 WO2014136510A1 (ja) 2013-03-08 2014-01-31 パワーモジュール

Country Status (5)

Country Link
US (1) US9748829B2 (ja)
JP (1) JP6072222B2 (ja)
CN (1) CN105191109B (ja)
DE (1) DE112014001204T5 (ja)
WO (1) WO2014136510A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016937A (ja) * 2008-07-02 2010-01-21 Yaskawa Electric Corp 電力変換装置とデッドタイム補償方法
JP2011188624A (ja) * 2010-03-09 2011-09-22 Meidensha Corp Pwmインバータ装置のデッドタイム補償装置
JP2011193543A (ja) * 2010-03-11 2011-09-29 Fuji Electric Co Ltd 電圧形インバータのゲート電圧制御装置、ゲート電圧制御方法及びインテリジェントパワーモジュール

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3797396B2 (ja) 1997-04-22 2006-07-19 株式会社安川電機 インバータ装置
JP2001327171A (ja) 2000-05-11 2001-11-22 Fuji Electric Co Ltd パワー半導体モジュールおよび高耐圧ic
FI119493B (fi) * 2006-12-21 2008-11-28 Vacon Oyj Taajuusmuuttajan virran mittausjärjestely
EP2166635B1 (en) * 2008-09-23 2012-02-29 ABB Oy Current measurement in an inverter unit and a frequency converter
FR2953662B1 (fr) * 2009-12-03 2011-11-18 Schneider Toshiba Inverter Convertisseur de puissance a source de courant utilisant des transistors a effet de champ normalement fermes
KR101684706B1 (ko) 2010-05-06 2016-12-08 엘에스산전 주식회사 인버터의 출력 전류 왜곡 보상장치
JP5333422B2 (ja) * 2010-12-07 2013-11-06 株式会社デンソー 電力変換装置
JP5348153B2 (ja) * 2011-02-14 2013-11-20 株式会社デンソー 回転機の制御装置
EP2765693A4 (en) * 2011-10-07 2016-02-24 Toyota Motor Co Ltd DEVICE AND METHOD FOR CONTROLLING A VOLTAGE CONVERSION DEVICE
CN102882413A (zh) * 2012-06-11 2013-01-16 合肥工业大学 基于调制波修正的三电平逆变器死区补偿算法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016937A (ja) * 2008-07-02 2010-01-21 Yaskawa Electric Corp 電力変換装置とデッドタイム補償方法
JP2011188624A (ja) * 2010-03-09 2011-09-22 Meidensha Corp Pwmインバータ装置のデッドタイム補償装置
JP2011193543A (ja) * 2010-03-11 2011-09-29 Fuji Electric Co Ltd 電圧形インバータのゲート電圧制御装置、ゲート電圧制御方法及びインテリジェントパワーモジュール

Also Published As

Publication number Publication date
CN105191109B (zh) 2018-02-23
US20160020687A1 (en) 2016-01-21
CN105191109A (zh) 2015-12-23
DE112014001204T5 (de) 2015-12-24
US9748829B2 (en) 2017-08-29
JPWO2014136510A1 (ja) 2017-02-09
JP6072222B2 (ja) 2017-02-01

Similar Documents

Publication Publication Date Title
JP5157292B2 (ja) 3レベルインバータの制御方式
JP6355187B2 (ja) 電力変換装置
JP2016146717A (ja) スイッチング回路及び半導体装置
US9397582B2 (en) Power converter, and inverter device including the power converter
EP2919377A1 (en) Inverter device
JP2018007403A (ja) 電力変換装置
JP5459304B2 (ja) 電流形電力変換装置
US20140070869A1 (en) Semiconductor device and circuit for controlling potential of gate of insulated gate type switching device
JP2013153388A (ja) デッドタイム生成回路および負荷駆動装置
JP2011193543A (ja) 電圧形インバータのゲート電圧制御装置、ゲート電圧制御方法及びインテリジェントパワーモジュール
JP6072222B2 (ja) パワーモジュール
JP2005051959A (ja) 電力変換装置のノイズ低減方法および回路
JP2015080292A (ja) マトリクスコンバータ
JP2014147200A (ja) マルチレベル電力変換装置のゲート駆動信号生成装置
JP5455670B2 (ja) 3レベル電力変換装置
JP4491718B2 (ja) 3レベルコンバータ
JP2013158093A (ja) 3レベル電力変換装置
JP2015065798A (ja) マトリクスコンバータ
US11929689B2 (en) Power conversion device
JP2017017917A (ja) スイッチ回路、インバータおよび電源回路
JP2015023777A (ja) 高圧インバータの2段変化防止装置
US9124194B2 (en) Methods and systems for a full-bridge voltage converting device
JP5937373B2 (ja) 電力変換装置
JP7375370B2 (ja) インバータ回路
JP2009060708A (ja) ダブルコンバータ変換装置の制御方式

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480012898.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760913

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504204

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14773507

Country of ref document: US

Ref document number: 112014001204

Country of ref document: DE

Ref document number: 1120140012041

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14760913

Country of ref document: EP

Kind code of ref document: A1