JP2012196119A - 電流形電力変換装置 - Google Patents

電流形電力変換装置 Download PDF

Info

Publication number
JP2012196119A
JP2012196119A JP2011284783A JP2011284783A JP2012196119A JP 2012196119 A JP2012196119 A JP 2012196119A JP 2011284783 A JP2011284783 A JP 2011284783A JP 2011284783 A JP2011284783 A JP 2011284783A JP 2012196119 A JP2012196119 A JP 2012196119A
Authority
JP
Japan
Prior art keywords
circuit
phase
output
current
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011284783A
Other languages
English (en)
Other versions
JP5459304B2 (ja
Inventor
Katsutoshi Yamanaka
克利 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2011284783A priority Critical patent/JP5459304B2/ja
Priority to EP12156777.0A priority patent/EP2493075A3/en
Priority to US13/406,427 priority patent/US8947897B2/en
Publication of JP2012196119A publication Critical patent/JP2012196119A/ja
Application granted granted Critical
Publication of JP5459304B2 publication Critical patent/JP5459304B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • H03K7/08Duration or width modulation ; Duty cycle modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】比較的幅の短いパルスの発生に起因して、出力電流の歪が生じるのを抑制することが可能な電流形電力変換装置を提供する。
【解決手段】実施形態の電流形電力変換装置100は、複数のスイッチング素子18〜23と、相電流指令Iu、Iv、Iwと、線間電流指令Iuw、Ivu、Iwvとを出力する電流指令発生器31と、相電流指令Iu、Iv、Iwの極性を判定する極性判定器32と、線間電流指令Iuw、Ivu、Iwvと搬送波信号との比較によりPWMパルス信号Suw、Svu、Swvを発生する比較器33と、PWMパルス信号Suw、Svu、Swvと相電流指令Iu、Iv、Iwの極性とに基づいて、複数のスイッチング素子18〜23のスイッチ駆動信号Sup、Sun、Svp、Svn、Swp、Swnを生成するロジック回路34とを備える。
【選択図】図1

Description

開示の実施形態は、電流形電力変換装置に関する。
従来、電流指令に基づいてスイッチング素子の駆動信号を生成する電流形電力変換装置が知られている。たとえば、特許文献1に記載の電流形電力変換装置は、3つの異なる相間(UW相、VU相、WV相)にそれぞれ対応する電流指令(以下、線間電流指令と記載する)と、搬送波信号(たとえば、三角波信号)とを比較して生成された3つの異なる相間のPWMパルス信号のうち一つのPWMパルス信号と他の一つのPWMパルス信号の否定信号との論理積を用いてスイッチング素子の駆動信号を生成する。
スイッチング素子を介して直流電源の電力を出力する電流形電力変換装置においては、搬送波信号が3つの線間電流指令の全てよりも大きい状態または小さい状態で、スイッチング素子を全てオフにすると、直流電源の電流が遮断される。直流電源は大きなインダクタンスを備えていることから、直流電源の電流を遮断した場合には、過電圧の発生を招くことになる。
そこで、特許文献1に記載の電流形電力変換装置においては、搬送波信号が3つの線間電流指令の全てよりも大きい状態または小さい状態の場合に、大きさがゼロの電流ベクトルを出力し、直流電源の電流通路を確保している。具体的には、特許文献1に記載の電流形電力変換装置には、搬送波信号が3つの線間電流指令の全てよりも大きい状態または小さい状態を監視する回路と、このような状態になった場合に、大きさがゼロの電流ベクトルを出力するために所定の相(たとえばU相)の正負の両極側のスイッチング素子を駆動するための駆動信号を生成するDフリップフロップ回路とが設けられている。
特開平9−182458号公報
しかしながら、上記特許文献1に記載の電流形電力変換装置では、線間電流指令と搬送波信号とを比較して生成されるPWMパルス信号と、搬送波信号が上昇中であるか下降中であるかを示す信号と、がDフリップフロップ回路を伝達することで伝達遅延(propagation delay)が発生する。そのため、Dフリップフロップ回路以降の論理回路で、本来は発生しない比較的幅の短い伝達遅延時間差tをパルス幅とするパルス(グリッジ)が発生し、これに起因して、出力電流の歪が生じるという問題点がある。
実施形態の一態様は、上記に鑑みてなされたものであって、伝搬遅延時間差に起因して出力電流の歪が生じるのを抑制することが可能な電流形電力変換装置を提供することを目的とする。
実施形態の一態様に係る電流形電力変換装置は、複数のスイッチング素子と、相電流指令と、線間電流指令とを出力する電流指令発生部と、相電流指令の極性を判定する極性判定部と、線間電流指令と搬送波信号との比較によりPWMパルス信号を発生させるPWMパルス信号発生部と、PWMパルス信号と相電流指令の極性とに基づいて、複数のスイッチング素子の駆動信号を生成する駆動信号生成部とを備える。
実施形態の一態様の電流形電力変換装置によれば、伝搬遅延時間差に起因して出力電流の歪が生じるのを抑制することができる。
図1は、第1実施形態による電流形電力変換装置のブロック図である。 図2は、第1実施形態による電流形電力変換装置の極性判定器の回路図である。 図3は、第1実施形態による電流形電力変換装置の比較器の回路図である。 図4は、第1実施形態による電流形電力変換装置のロジック回路のブロック図である。 図5は、第1実施形態による電流形電力変換装置の正極側のスイッチング素子のスイッチ駆動信号を生成するロジック回路部の回路図である。 図6は、第1実施形態による電流形電力変換装置の負極側のスイッチング素子のスイッチ駆動信号を生成するロジック回路部の回路図である。 図7は、第1実施形態による電流形電力変換装置の相電流指令と線間電流指令との関係を示す図である。 図8は、第1実施形態による電流形電力変換装置の空間ベクトル図である。 図9は、第1実施形態による電流形電力変換装置のスイッチ駆動信号を示す図である。 図10は、図9に示すスイッチ駆動信号の拡大図である。 図11は、比較例のスイッチ駆動信号を示す図である。 図12は、第2実施形態による電流形電力変換装置のブロック図である。 図13は、第2実施形態による電流形電力変換装置の比較器の回路図である。 図14は、第2実施形態による電流形電力変換装置のロジック回路のブロック図である。 図15は、第2実施形態による電流形電力変換装置の正極側のスイッチング素子のスイッチ駆動信号を生成するロジック回路部の回路図である。 図16は、第2実施形態による電流形電力変換装置の負極側のスイッチング素子のスイッチ駆動信号を生成するロジック回路部の回路図である。 図17は、第2実施形態による電流形電力変換装置のスイッチ駆動信号を示す図である。 図18は、図17に示すスイッチ駆動信号の拡大図である。 図19は、第3実施形態による電流形電力変換装置のゼロベクトル固定回路のブロック図である。 図20は、ゼロベクトルの相を固定しない場合のスイッチ駆動信号を示す図である。 図21は、ゼロベクトルの相を固定した場合のスイッチ駆動信号を示す図である。 図22は、第1実施形態による電流形電力変換装置にゼロベクトル固定回路を適用した場合のスイッチ駆動信号を示す図である。 図23は、第2実施形態による電流形電力変換装置にゼロベクトル固定回路を適用した場合のスイッチ駆動信号を示す図である。
以下、添付図面を参照して、本願の開示する電流形電力変換装置のいくつかの実施形態を詳細に説明する。なお、以下に示す各実施形態によりこの発明が限定されるものではない。
(第1実施形態)
第1実施形態による電流形電力変換装置では、大きさがゼロの電流ベクトルを出力する状態をPWMパルス信号に基づいて監視する回路と、Dフリップフロップ回路を備えることなく、PWMパルス信号と相電流極性信号に基づいてスイッチ駆動信号を生成する。かかる電流形電力変換装置では、Dフリップフロップ回路などを備えないため、論理回路での伝搬遅延時間差に起因して生じる幅の短いパルス(グリッジ)の発生を抑制でき、これにより、グリッジの発生に起因する出力電流の歪を抑制できる。なお、大きさがゼロの電流ベクトルは、ゼロ電流ベクトルやゼロベクトルと呼ばれ、以下においては、大きさがゼロの電流ベクトルを、ゼロ電流ベクトル又はゼロベクトルと記載する。
以下、図面を参照して、第1実施形態による電流形電力変換装置100の構成について具体的に説明する。
図1に示すように、第1実施形態による電流形電力変換装置100は、電流形インバータ回路10と、電流形インバータ回路10のスイッチング素子18〜23を駆動する信号を生成するスイッチ駆動信号発生部30とを備えている。かかる電流形電力変換装置100は、スイッチ駆動信号発生部30による電流形インバータ回路10の駆動によって、3相(U相、V相、W相)の交流電力を出力する。
電流形インバータ回路10は、直流電流源11と、6つの整流素子12〜17と、6つのスイッチング素子18〜23と、スイッチング素子18〜23を駆動する6つの駆動回路24〜29とを備えている。スイッチング素子18〜23は、IGBT(絶縁ゲートバイポーラトランジスタ)やMOSFET(電界効果トランジスタ)など、駆動信号によってオンオフされるスイッチング素子である。なお、整流素子12〜17およびIGBTからなるスイッチング素子18〜23の代わりに、逆阻止形IGBTを用いることも可能である。
直流電流源11の正極は、整流素子12、14および16のアノード側(入力側)に接続されている。整流素子12、14および16のカソード側(出力側)は、それぞれ、スイッチング素子18、20および22の一方端子に接続されている。スイッチング素子18、20および22の他方端子は、それぞれ、U相端子、V相端子およびW相端子に接続されている。また、スイッチング素子18、20および22の他方端子は、それぞれ、整流素子13、15および17のアノード側(入力側)に接続されている。整流素子13、15および17のカソード側(出力側)は、それぞれ、スイッチング素子19、21および23の一方端子に接続されている。スイッチング素子19、21および23の他方端子は、直流電流源11の負極に接続されている。また、駆動回路24〜29は、それぞれ、スイッチング素子18〜23に接続されている。
スイッチ駆動信号発生部30は、電流指令発生器31と、極性判定器32と、比較器33と、ロジック回路34と、6つのオフディレイ回路35〜40とを備えている。ここで、オフディレイ回路とは、スイッチング素子の動作遅れなどに起因して、直流電流源11の出力が開放状態とならないようにするために、スイッチング素子のターンオフを遅らせるものである。なお、電流指令発生器31は、「電流指令発生部」の一例である。また、極性判定器32は、「極性判定部」の一例である。また、比較器33は、「PWMパルス信号発生部」の一例である。また、ロジック回路34は、「駆動信号生成部」の一例である。
電流指令発生器31は、極性判定器32と、比較器33とに接続されている。比較器33には、搬送波信号(キャリア)が入力されるように構成されている。極性判定器32および比較器33は、ロジック回路34に接続されている。ロジック回路34は、6つのオフディレイ回路35〜40に接続されている。6つのオフディレイ回路35〜40は、それぞれ、電流形インバータ回路10の駆動回路24〜29に接続されている。
次に、スイッチ駆動信号発生部30の各構成要素について詳細に説明する。
第1実施形態では、電流指令発生器31は、電流形インバータ回路10の出力が正弦波の場合、相電流指令Iu、Iv、Iw(図7参照)と、線間電流指令Iuw、Ivu、Iwv(図7参照)とを並行して出力するように構成されている。相電流指令Iu、Iv、Iwと、線間電流指令Iuw、Ivu、Iwvとの関係は、下記の式(1)〜式(3)によって表わされる。
Figure 2012196119
極性判定器32は、図2に示すように、3つの比較器41〜43を備えている。比較器41(比較器42、比較器43)は、相電流指令Iu(Iv、Iw)が入力され、相電流指令Iu(Iv、Iw)とゼロ電位とを比較し、相電流指令Iu(Iv、Iw)が正の場合はHigh、負の場合はLowの相電流極性信号Iud(Ivd、Iwd)を出力するように構成されている。
比較器33は、図3に示すように、3つの比較器44〜46を備えている。比較器44(比較器45、比較器46)は、線間電流指令Iuw(Ivu、Iwv)が入力され、線間電流指令Iuw(Ivu、Iwv)と、搬送波信号(キャリア)とを比較して、線間電流指令が搬送波以上でHigh、線間電流指令が搬送波未満でLowのPWMパルス信号Suw(Svu、Swv)を出力するように構成されている。なお、ここでは、線間電流指令Iuw,Ivu,Iwvと比較する搬送波信号を三角波信号とするがこれに限定されるものではない。
ロジック回路34は、図4に示すように、6つのロジック回路部51〜56を備えている。ここで、第1実施形態では、ロジック回路34(ロジック回路部51〜56)は、互いに異なる出力相間(U相−W相間、V相−U相間、W相−V相間)の3つのPWMパルス信号Suw、Svu、Swvのうちの2つのPWMパルス信号と、3相(U相、V相、W相)の相電流極性信号Iud、Ivd、Iwdのうちの2つの相電流極性信号との論理積演算に基づいて、スイッチ駆動信号Sup、Sun、Svp、Svn、Swp、Swnをそれぞれ出力するように構成されている。ここで、スイッチ駆動信号SupおよびSunは、それぞれ、U相の正側のスイッチング素子18およびU相の負側のスイッチング素子19を駆動するスイッチ駆動信号である。また、スイッチ駆動信号SvpおよびSvnは、それぞれ、V相の正側のスイッチング素子20およびV相の負側のスイッチング素子21を駆動するスイッチ駆動信号である。また、スイッチ駆動信号SwpおよびSwnは、それぞれ、W相の正側のスイッチング素子22およびW相の負側のスイッチング素子23を駆動するスイッチ駆動信号である。
ここで、U相の正側のスイッチング素子18を駆動するスイッチ駆動信号Supは、U相と関係するPWMパルス信号SuwおよびSvuと、U相と関係しない相電流極性信号IvdおよびIwdとを用いて、ロジック回路部51により生成される。なお、スイッチ駆動信号Svp、Swp、Sun、Svn、Swnについてもスイッチ駆動信号Supと同様に、スイッチ駆動信号の相と関係する2つのPWMパルス信号と、スイッチ駆動信号の相と関係しない2つの相電流極性信号とを用いて、ロジック回路部52〜56により生成される。
ここで、ロジック回路部51〜53の内部ロジックは、下記の式(4)で表わされる。また、ロジック回路部54〜56の内部ロジックは、下記の式(5)で表わされる。すなわち、下記の式(4)は、図5に示されるロジック回路部51(52、53)と1対1で対応している。また、下記の式(5)は、図6に示されるロジック回路部54(55、56)と1対1で対応している。なお、下記の式(4)および式(5)において、信号(たとえばA1)に「バー」が付された信号は、信号A1の反転信号を意味する。
Figure 2012196119
上記の式(4)において、X1、Y1は各相の正側スイッチング素子を駆動する駆動用ロジック回路部51〜53に入力されるスイッチ駆動信号であり、A1、B1は各相の正側スイッチング素子を駆動する駆動用ロジック回路部51〜53に入力される相電流極性信号である。また、上記の式(5)において、X2、Y2は各相の負側スイッチング素子を駆動する駆動用ロジック回路部54〜56に入力されるスイッチ駆動信号であり、A2、B2は各相の負側スイッチング素子を駆動する駆動用ロジック回路部54〜56に入力される相電流極性信号である。また、上記の式(4)において、O1はロジック回路部51〜53から出力される正側のスイッチ駆動信号(Sup、Svp、Swp)であり、上記の式(5)において、O2はロジック回路部54〜56から出力される負側のスイッチ駆動信号(Sun、Svn、Swn)である。
ここで、図4と上記式(4)を参照してロジック回路部51の処理を説明する。式(4)右辺第1項は、相電流極性信号A1(Ivd)がLowで、かつ相電流極性信号B1(Iwd)がHighならば、スイッチ駆動信号O1(Sup)はX1(Suw)とする。右辺第2項は、相電流極性信号A1(Ivd)がHighで、かつ相電流極性信号B1(Iwd)がLowならば、スイッチ駆動信号O1(Sup)はY1(Svu)の反転信号とする。右辺第3項は、相電流極性信号A1(Ivd)がLowで、かつ相電流極性信号B1(Iwd)がLowならば、スイッチ駆動信号O1(Sup)はX1(Suw)と反転したY1(Svu)のAND信号とする。その他のロジック回路部52、53も上記と同様である。ロジック回路部54〜56についても上記式(5)を用いて同様に処理できる。
このように、第1実施形態に係る電流形電力変換装置100では、相電流極性信号の極性の組み合わせに応じてスイッチ駆動信号を決定できるようにしたので、ゼロベクトルを出力する状態を監視する回路と、Dフリップフロップ回路を備えることなく、スイッチ駆動信号と電流ベクトルの順番を決定できる。
ロジック回路部51〜53は、図5に示すように、3つのNOT回路60〜62と、7つのAND回路63〜69と、1つのOR回路70とを備えている。ロジック回路部51〜53に入力される信号X1は、AND回路63とAND回路67とに入力されるように構成されている。信号Y1は、NOT回路60に入力されるように構成されている。信号A1は、AND回路64と、NOT回路61とに入力されるように構成されている。信号B1は、NOT回路62とAND回路66とに入力されるように構成されている。
NOT回路60の出力側は、AND回路63とAND回路68との入力側に接続されている。NOT回路61の出力側は、AND回路65とAND回路66との入力側に接続されている。NOT回路62の出力側は、AND回路64とAND回路65との入力側に接続されている。
AND回路63の出力側は、AND回路69の入力側に接続されている。AND回路64の出力側は、AND回路68の入力側に接続されている。AND回路65の出力側は、AND回路69の入力側に接続されている。AND回路66の出力側は、AND回路67の入力側に接続されている。AND回路67〜69の出力側は、OR回路70の入力側に接続されている。
ロジック回路部54〜56は、図6に示すように、3つのNOT回路71〜73と、7つのAND回路74〜80と、1つのOR回路81とを備えている。ロジック回路部54〜56に入力される信号X2は、AND回路74とAND回路78とに入力される。信号Y2は、NOT回路71に入力される。信号A2は、NOT回路72とAND回路76とAND回路77とに入力される。信号B2は、AND回路75とAND回路76とNOT回路73とに入力される。
NOT回路71の出力側は、AND回路74とAND回路79との入力側に接続されている。NOT回路72の出力側は、AND回路75の入力側に接続されている。NOT回路73の出力側は、AND回路77の入力側に接続されている。
AND回路74の出力側は、AND回路80の入力側に接続されている。AND回路75の出力側は、AND回路79の入力側に接続されている。AND回路76の出力側は、AND回路80の入力側に接続されている。AND回路77の出力側は、AND回路78の入力側に接続されている。AND回路78〜80の出力側は、OR回路81の入力側に接続されている。
そして、図4に示すように、6つのロジック回路部51〜56は、それぞれ、スイッチ駆動信号Sup、Svp、Swp、Sun、Svn、Swnを出力するように構成されている。また、スイッチ駆動信号Sup、Sun、Svp、Svn、Swp、Swnは、それぞれ、オフディレイ回路35〜40に入力される。オフディレイ回路35〜40はスイッチ駆動信号Sup、Sun、Svp、Svn、Swp、Swnを駆動回路24〜29へ出力するように構成されている。オフディレイ回路35〜40を通過前のスイッチ駆動信号(Sup、など)には*をつけ、通過後のそれには(Sup、など)*を付けずに区別している。
図7は相電流指令と線間電流指令との関係を一周期分示し、この一周期を電気角60度毎に領域A〜Fの6つの領域に分けて示している。領域Aは相電流指令Iuが正側ピーク値を包含する領域、領域Bは相電流指令Iwが負側ピーク値を包含する領域、領域Cは相電流指令Ivが正側ピーク値を包含する領域である。また、領域Dは相電流指令Iuが負側ピーク値を包含する領域、領域Eは相電流指令Iwが正側ピーク値を包含する領域、領域Fは相電流指令Ivが負側ピーク値を包含する領域である。図7における電流形インバータ回路10の出力ベクトルは図8に示す空間ベクトル図によって記述される。図7中の領域A〜Fは、図8中の領域A〜Fに対応する。また、図7中のIaおよびIbは、それぞれ図8におけるベクトルIaおよびベクトルIbの大きさとして表される。電流形インバータ回路10は、図8における6つの有効ベクトルIuw、Ivw、Ivu、Iwu、Iwv、Iuvと、大きさがゼロの3つのゼロベクトルIuu、Ivv、Iwwとの9つのベクトルを出力することが可能である。図7に示すt1時点における電流の出力状態は、図8のA領域と隣接するゼロベクトル(Iuu、Ivv、Iww)と、2つの有効ベクトル(Iuw、Ivw、Ivu、Iwu、Iwv、Iuvのうちの2つ、この場合はIuwとIuv)とにより生成され、この出力状態は図8における電流指令ベクトルIout_rで表現される。この電流指令ベクトルIout_rで表現される電流を出力するために、ゼロベクトルと二つの有効ベクトル(ゼロベクトル以外のベクトル)を出力する時間が調整される。このようにして電流形インバータ回路10の出力電流が変調される。
また、図8に示すベクトルIaは、電流指令ベクトルIout_rのIuwベクトル方向成分を表わし、ベクトルIbは、電流指令ベクトルIout_rのIuvベクトル方向成分を表わす。なお、図7における線間電流指令Iuw、Ivu、Iwvのピーク値は、直流電流源11(図1参照)の電流値に等しくなる。図8における有効ベクトルIuw、Ivw、Ivu、Iwu、Iwv、Iuvの大きさを直流電流源11の電流値と等しいとすると図8に示すベクトルIaおよびIbの大きさは、図7に示すスカラ量IaおよびIbと一致する。
電流形電力変換装置100において、電流指令ベクトルIout_rを出力するために、PWM手法が用いられる。たとえば、PWMの制御周期をT、直流電流源11の電流値をTL、有効ベクトルIuwを出力する時間をTa、有効ベクトルIuvを出力する時間をTbとしたとき、Ta、Tbは、
Ta:T=Ia:IL , Tb:T=Ib:IL
で決定される。そして、制御周期Tにおいて、有効ベクトルIuwを時間Ta、有効ベクトルIuv、を時間Tbだけ出力し、制御周期Tの残りの時間セロベクトルを出力することにより、電流指令ベクトルIout_rの状態が出力される。
ここで、前式(式(4)、(5))により、第1実施形態ではPWM搬送波一周期(=1/搬送波信号の周波数)の間に出力される電流ベクトルの順番は、各領域において下記のように表わされる。
Figure 2012196119
なお、図8に示されている各領域における電流ベクトルの順番は、PWM搬送波一周期の半周期毎(たとえば領域Aでは、Iww→Iuw→Iuv→Ivv、および、Ivv→Iuv→Iuw→Iww)に示されている。また図10には領域Aにおける電流ベクトルの順番を記載している。ここで、第1実施形態では、搬送波信号の大きさが、全ての線間電流指令よりも大きい場合(搬送波信号が最大の点近傍)、または、全ての線間電流指令よりも小さい場合(搬送波信号が最小の点近傍)の電流ベクトルであるゼロベクトルの相が、スイッチ駆動信号Sup、Sun、Svp、Svn、Swp、Swnの幅が短くなるのを抑制するように選択して出力されるように構成されている。たとえば領域Aでは、Iww(搬送波信号が最大の点近傍)、Ivv(搬送波信号が最小の点近傍)、Iww(搬送波信号が最大の点近傍)の順に選択して出力されるように構成されている。すなわち、ゼロベクトルの相が、搬送波信号が最大の点と、搬送波信号が最大の点に隣接する搬送波信号が最小の点とで異なるように構成されている。領域B〜領域Fも同様に、ゼロベクトルの相が、搬送波信号が最大の点と、搬送波信号が最小の点とで異なるように構成されている。
図9は、搬送波信号(キャリア)および線間電流指令Iuw、Ivu、Iwvと、スイッチ駆動信号Sup、Sun、Svp、Svn、Swp、Swnとの例を示している。また、図10は、図8の領域A(図9の領域Aの一部分)におけるスイッチ駆動信号Sup、Sun、Svp、Svn、Swp、Swnを拡大表示している。図10では、スイッチ駆動信号Sup、Sun、Svp、Svn、Swp、Swnのオンオフ(High、Low)に基づいて生成されて負荷側に出力される3相の電流Iuo、Ivo、Iwoも示されている。なお、図9および図10では、オフディレイ回路35〜40によるスイッチ駆動信号のターンオフの遅れは、省略されている。
図10に示すように、出力される電流ベクトルの相は、期間T1〜期間T7において、Iww、Iuw、Iuv、Ivv、Iuv、IuwおよびIwwの順に変化している。すなわち、ゼロベクトルの相が、Iww、Ivv、Iwwの順に変化し、期間T1、期間T7と、期間T4とでゼロベクトルの相が異なる。
ここで、図11に示す比較例を参照して、ゼロベクトルの相が変化しない場合のスイッチ駆動信号について説明する。なお、図10に示す例では、期間T1〜期間T7において2つの異なるゼロベクトル(Iww、Ivv)が使用されている一方、図11に示す比較例では、期間T1〜期間T7において1つのゼロベクトル(Ivv)を使用する。
図11に示すように、PWM搬送波一周期中に一種類のゼロ電流ベクトルを用いる場合、出力される電流ベクトルの相は、期間T1〜期間T7において、Ivv、Iuw、Iuv、Ivv、Iuv、IuwおよびIvvの順に変化している。すなわち、期間T1、期間T7、および、期間T4の電流ベクトルであるゼロベクトルの相は、全て一種類のゼロ電流ベクトルIvvである。このため、たとえばスイッチ駆動信号SvnおよびSwnは、図11に示すとおり、期間T2の前後においてオンオフが切り替わるため、スイッチ駆動信号Svnのオフしている幅おおよびSwnのオンしている幅(図11の点線の円で囲まれた部分)は、期間T2分の幅のみとなる。その結果、図11の点線の円で囲まれた部分の信号の幅は、比較的短くなる。すなわち、図11に示す比較例では、IuwとIwvとが略同じ値となり、Iaが小さい場合では幅の短いスイッチ駆動信号のパルスが発生し易くなる。一方、図10に示す例では、スイッチ駆動信号SvnおよびSwnは、期間T1から期間T2まででは変わらないので、スイッチ駆動信号SvnおよびSwnの幅(図10の点線の円で囲まれた部分)は、期間T1および期間T2の合計の期間分の幅を有する。これにより、図10の点線の円で囲まれた部分の信号の幅は、短くならない。すなわち、図10に示す例では、幅の短いパルスが発生しにくくなる。このように電流位相に応じてPWM搬送波一周期中に二種類のゼロ電流ベクトルを用いて電流ベクトルを適切な順番にすることでゼロ電流近傍の出力において幅の短いパルスの発生を防止できる。
第1実施形態の電流形電力変換装置100では、上記のように、PWMパルス信号Suw、Svu、Swvと相電流指令Iu、Iv、Iwの極性に基づいて、スイッチング素子18〜23の駆動信号を生成するロジック回路34を備える。ロジック回路34が、PWMパルス信号Suw、Svu、Swvと相電流指令Iu、Iv、Iwの極性との論理積演算を行い、PWM搬送波1周期において大きさがゼロでないベクトルとゼロベクトルの双方を生成するスイッチ駆動信号Sup、Sun、Svp、Svn、Swp、Swnを生成するので、ゼロベクトルが出力される状態を監視するための回路や、スイッチング素子18〜23をオン状態にする信号を生成するためのDフリップフロップ回路を設ける必要がない。これにより、信号がこれらの回路を経由する間に遅延することに起因して比較的幅の短いパルス(グリッジ)が発生するのを抑制することができる。その結果、伝搬遅延時間差によるグリッジの発生に起因して、出力電流が歪むのを抑制することができる。
また、第1実施形態では、上記のように、PWMパルス信号Suw、Svu、Swvと相電流指令Iu、Iv、Iwの極性との論理積演算に基づいてスイッチング素子18〜23の駆動信号を出力する際に、ゼロベクトルの相を、スイッチング素子18〜23の駆動信号の幅が短くなるのを抑制するように選択して出力するようにロジック回路34を構成する。これにより、容易に、スイッチング素子18〜23の駆動信号の幅が短くなるのを抑制することができる。
また、第1実施形態では、相電流指令の極性に基づいて、PWM搬送波1周期において大きさがゼロでないベクトルとゼロベクトルの双方を生成するスイッチ駆動信号Sup、Sun、Svp、Svn、Swp、Swnを生成する。これにより、ゼロ電流近傍の出力において幅の短いパルスの発生を防止できる。
なお、上述の例では、ロジック回路34は、PWMパルス信号Suw、Svu、Swvと相電流指令Iu、Iv、Iwの極性との論理積演算を行うものとして説明したが、スイッチ駆動信号を生成する駆動信号生成部は、ロジック回路34に限定されるものではない。たとえば、相電流指令Iu、Iv、Iwの極性に基づいてPWMパルス信号に基づく信号をスイッチ駆動信号として選択して出力する駆動信号生成部を、論理回路によることなく構成してもよい。
なお、上述の例では、ロジック回路34は、3つのPWMパルス信号Suw、Svu、Swvのうちの互いに異なる2つのPWMパルス信号と、相電流指令Iu、Iv、Iwのうちの2つの相電流指令の極性との論理積演算に基づいて、スイッチング素子18〜23の駆動信号を生成するように構成される。これにより、互いに異なる2つのPWMパルス信号と、相電流指令Iu、Iv、Iwの極性とによって、搬送波信号の大きさを監視する回路やDフリップフロップ回路を設けることなく、容易に、スイッチング素子18〜23の駆動信号をロジック回路34により生成することができる。
なお、上述の実施形態では、ロジック回路34は、2つのPWMパルス信号と、2つの相電流指令の極性との論理積演算に基づいて、スイッチング素子18〜23の駆動信号を生成する例を示したが、ロジック回路34の構成はこれに限定されるものではない。たとえば、3つの相電流指令の極性に基づいて、2つのPWMパルス信号に基づく複数の信号から一つの信号をスイッチ駆動信号として選択して出力するロジック回路を用いることができる。また、たとえば、3つの相電流指令の極性に基づいて、3つのPWMパルス信号に基づく複数の信号から一つの信号をスイッチ駆動信号として選択して出力するロジック回路を用いることもできる。
(第2実施形態)
この第2実施形態では、オフセットが付加された線間電流指令に基づいて生成したPWMパルス信号と相電流極性信号との論理積演算に基づいてスイッチ駆動信号を出力するようにロジック回路が構成されている。なお、第2実施形態は、論理回路の遅延に起因して発生するグリッジの抑制に加えて、変調率(電流指令ベクトルIout_rの値)が小さい場合に発生する幅の短いパルスを抑制するものである。
電流指令ベクトルIout_rが小さくなり、ベクトルIaおよびIbの大きさが略ゼロに近くなる場合、図10に示す上記第1実施形態では、期間T2および期間T3(期間T5および期間T6)のスイッチ駆動信号Supの幅も略ゼロに近くなり、幅の短いパルスとなる。スイッチング素子のターンオン、ターンオフ時間や、スイッチ駆動信号の伝送時間に依存して、スイッチング素子が出力できる時間幅の下限値が決まる。そのため、スイッチ駆動信号が幅の短いパルスである場合、低電流指令時、スイッチング素子がオンしない場合がある。
そこで、第2実施形態の電流形電力変換装置ではゼロ電流ベクトルを出力する期間を更に増やした図18のようなパルスへ切替えるようにした。かかるパルスは、低電流、低電圧出力時はゼロ電流ベクトルを出力する期間が増えるように電流指令にオフセットを付加することによって生成される。これにより、第2実施形態の電流形電力変換装置では、図18に示すように、期間T13および期間T17においてゼロベクトルIuuが出力される。そのため、電流指令ベクトルIout_rが小さくなっても、ゼロベクトルIuuが出力される時間の分、期間T12〜期間T14(期間T16〜期間T18)のスイッチ駆動信号Supの幅が大きくなる(幅の短いパルスの発生が抑制される)。ゼロベクトルIuuが出力される時間は、上記下限値に所定の余裕を持たせた設定時間とすればよい。オフセット電圧はその時間を出せるように設定する。
以下、図12〜図16を参照して、第2実施形態の電流形電力変換装置101について具体的に説明する。なお、上述した第1実施形態の構成要素に対応する構成要素には同一の符号を付し、第1実施形態と重複する説明については適宜、省略する。
図12に示すように、第2実施形態による電流形電力変換装置101のスイッチ信号発生部90は、電流指令発生器91と、極性判定器32と、比較器92と、ロジック回路93と、6つのオフディレイ回路35〜40とを備えている。なお、電流指令発生器91は、「電流指令発生部」の一例である。また、ロジック回路93は、「駆動信号生成部」の一例である。また、比較器92は、「PWMパルス信号発生部」の一例である。
次に、スイッチ信号発生部90の各構成要素について詳細に説明する。
図12に示すように、第2実施形態では、電流指令発生器91は、相電流指令Iu、Iv、Iwと、線間電流指令Iuw*+、Iwv*+、Ivu*+、Iuw*−、Iwv*−、Ivu*−とを並行して出力するように構成されている。線間電流指令Iuw*+、Iwv*+、Ivu*+、Iuw*−、Iwv*−、Ivu*−は、上記第1実施形態の線間電流指令Iuw、Ivu、Iwv(図7参照)にオフセットΔIoffsetを加減して生成される。3つの線間電流指令Iuw、Ivu、Iwvの中で、一番大きい値を持つ線間電流指令をImax、一番小さい値を持つ線間電流指令をImin、中間の値を持つ線間電流指令をImidとすると、これらを補正した線間電流指令をImax*+、Imax*−、Imid*+、Imid*−、Imin*+、Imin*−は、下記の式(6)〜式(9)によって表わされる。
Figure 2012196119
Imax*+、Imax*−、Imid*+、Imid*−、Imin*+、Imin*−は、それぞれ、位相に応じて、線間電流指令Iuw*+、Iwv*+、Ivu*+、Iuw*−、Iwv*―、Ivu*−のいずれかに対応される。
比較器92は、図13に示すように、第1比較部110a、第2比較部110bおよび第3比較部110cを備えている。また、第1比較部110aは、2つの比較器111aおよび112aと、1つのNOT回路113aと、2つのAND回路114aおよび115aと、1つのOR回路116aとを備えている。第1比較部110aの比較器111aには、線間電流指令Iuw*+が入力されるとともに、搬送波信号(キャリア)が入力されるように構成されている。比較器112aには、線間電流指令Iuw*―が入力されるとともに、搬送波信号が入力されるように構成されている。また、比較器111aは、AND回路114aと、AND回路115aと、OR回路116aとに接続されている。また、比較器112aは、AND回路114aと、NOT回路113aと、OR回路116aとに接続されている。また、NOT回路113aは、AND回路115aに接続されている。また、AND回路114a、AND回路115a、および、OR回路116aは、それぞれ、PWMパルス信号Suwp、SuwmおよびSuwnを出力するように構成されている。
また、第2比較部110b(比較器111bおよび112b、NOT回路113b、AND回路114bおよび115b、OR回路116b)の構成は、上記第1比較部110aと同様である。そして、AND回路114b、AND回路115b、および、OR回路116bは、それぞれ、PWMパルス信号Svup、SvumおよびSvunを出力するように構成されている。また、第3比較部110c(比較器111cおよび112c、NOT回路113c、AND回路114cおよび115c、OR回路116c)の構成も、上記第1比較部110aと同様である。そして、AND回路114c、AND回路115c、および、OR回路116cは、それぞれ、PWMパルス信号Swvp、SwvmおよびSwvnを出力するように構成されている。
ロジック回路93は、図14に示すように、6つのロジック回路部121〜126を備えている。ここで、第2実施形態では、ロジック回路93(ロジック回路部121〜126)は、9つのPWMパルス信号Suwp、Suwm、Suwn、Svup、Svum、Svun、Swvp、Swvm、Swvnのうちの3つのPWMパルス信号と、3相の相電流極性信号Iud、Ivd、Iwdとの論理積演算に基づいて、スイッチ駆動信号Sup、Sun、Svp、Svn、Swp、Swnを出力するように構成されている。ここで、上記第1実施形態と同様に、スイッチ駆動信号SupおよびSunは、それぞれ、U相の正側のスイッチング素子18およびU相の負側のスイッチング素子19を駆動するスイッチ駆動信号である。また、スイッチ駆動信号SvpおよびSvnは、それぞれ、V相の正側のスイッチング素子20およびV相の負側のスイッチング素子21を駆動するスイッチ駆動信号である。また、スイッチ駆動信号SwpおよびSwnは、それぞれ、W相の正側のスイッチング素子22およびW相の負側のスイッチング素子23を駆動するスイッチ駆動信号である。
また、U相の正側のスイッチング素子18を駆動するスイッチ駆動信号Supは、U相と関係するPWMパルス信号SuwpおよびSvunと、U相と関係しない中間の大きさを持つ線間電流指令に対応するPWMパルス信号Swvmと、3つの全ての相電流極性信号Ivd、IwdおよびIudとを用いて、ロジック回路部121により生成される。なお、スイッチ駆動信号Sun、Svp、Svn、Swp、Swnについても同様に、スイッチ駆動信号の相と関係する2つのPWMパルス信号と、スイッチ駆動信号の相と関係しない中間の大きさを持つ線間電流指令に対応するPWMパルス信号と、3つの全ての相電流極性信号とを用いて、ロジック回路部122〜126により生成される。
ロジック回路部121〜123の内部ロジックは、下記の式(10)で表わされ、図15に示されるロジック回路で実現される。また、ロジック回路部124〜126の内部ロジックは、下記の式(11)で表わされ、図16に示されるロジック回路で実現される。
ここでX3、Y3、Z3は各相の正側スイッチング素子を駆動する駆動用ロジック回路部121〜123に入力されるスイッチ駆動信号である。A3、B3、C3は各相の正側スイッチング素子を駆動する駆動用ロジック回路部121〜123に入力される相電流極性信号である。また、X4、Y4、Z4は各相の負側スイッチング素子を駆動する駆動用ロジック回路部124〜126に入力されるスイッチ駆動信号である。A4、B4、C4は各相の負側スイッチング素子を駆動する駆動用ロジック回路部124〜126に入力される相電流極性信号である。O3はロジック回路部121〜123から出力される正側のスイッチ駆動信号(Sup、Svp、Swp)である。O4はロジック回路部124〜126から出力される負側のスイッチ駆動信号(Sun、Svn、Swn)である。
式(10)、(11)の処理内容は第1実施形態の式(4)、(5)と同様にして処理される。たとえば、図14と式(10)を参照してロジック回路部121の処理を説明する。式(10)右辺第1項は、相電流極性信号A3(Ivd)がLowで、かつ相電流極性信号B3(Iwd)がHighならば、スイッチ駆動信号O3(Sup)はX3(Suwp)とする。右辺第2項は、相電流極性信号A3(Ivd)がHighで、かつ相電流極性信号B3(Iwd)がLowならば、スイッチ駆動信号O3(Sup)はY3(Svun)の反転信号とする。右辺第3項は、相電流極性信号A3(Ivd)がLowで、かつ相電流極性信号B3(Iwd)がLowならば、スイッチ駆動信号O3(Sup)はX3(Suwp)と反転したY3(Svun)のAND信号とする。さらに右辺第4項は、相電流極性信号A3(Ivd)がHighで、かつ相電流極性信号B3(Iwd)がHighで、かつ相電流極性信号C3(Iud)がLowならば、スイッチ駆動信号O3(Sup)はZ3(Suwm)とする。
Figure 2012196119
ロジック回路部121〜123は、図15に示すように、4つのNOT回路131〜134と、10個のAND回路135〜144と、1つのOR回路145とを備えている。ロジック回路部121〜123に入力される信号X3は、AND回路135とAND回路141とに入力される。信号Y3は、NOT回路131に入力される。信号Z3は、AND回路140に入力される。信号A3は、AND回路136とNOT回路132とAND回路139とに入力される。信号B3は、NOT回路133とAND回路138とAND回路139とに入力される。信号C3は、NOT回路134に入力される。
NOT回路131の出力側は、AND回路135とAND回路142との入力側に接続されている。NOT回路132の出力側は、AND回路137とAND回路138との入力側に接続されている。NOT回路133の出力側は、AND回路136とAND回路137との入力側に接続されている。NOT回路134の出力側は、AND回路140の入力側に接続されている。
AND回路135の出力側は、AND回路143の入力側に接続されている。AND回路136の出力側は、AND回路142の入力側に接続されている。AND回路137の出力側は、AND回路143の入力側に接続されている。AND回路138の出力側は、AND回路141の入力側に接続されている。AND回路139の出力側は、AND回路144の入力側に接続されている。AND回路140の出力側は、AND回路144の入力側に接続されている。AND回路141〜144の出力側は、OR回路145の入力側に接続されている。
ロジック回路部124〜126は、図16に示すように、3つのNOT回路151〜153と、10個のAND回路154〜163と、1つのOR回路164とを備えている。ロジック回路部124〜126に入力される信号X4は、AND回路154とAND回路160とに入力される。信号Y4は、NOT回路151に入力される。信号Z4は、AND回路159に入力される。信号A4は、AND回路155とAND回路158とNOT回路152に入力される。信号B4は、AND回路155とAND回路156とNOT回路153とに入力される。信号C4は、AND回路159に入力される。
NOT回路151の出力側は、AND回路154とAND回路161との入力側に接続されている。NOT回路152の出力側は、AND回路156とAND回路157との入力側に接続されている。NOT回路153の出力側は、AND回路157とAND回路158との入力側に接続されている。
AND回路154の出力側は、AND回路162の入力側に接続されている。AND回路155の出力側は、AND回路161の入力側に接続されている。AND回路156の出力側は、AND回路162の入力側に接続されている。AND回路157の出力側は、AND回路160の入力側に接続されている。AND回路158の出力側は、AND回路163の入力側に接続されている。AND回路159の出力側は、AND回路163の入力側に接続されている。AND回路160〜163の出力側は、OR回路164の入力側に接続されている。
そして、図14に示すように、6つのロジック回路部121〜126は、それぞれ、スイッチ駆動信号Sup、Svp、Swp、Sun、Svn、Swnを出力するように構成されている。また、スイッチ駆動信号Sup、Sun、Svp、Svn、Swp、Swnは、それぞれ、オフディレイ回路35〜40に入力され、オフディレイ回路35〜40からスイッチ駆動信号Sup、Sun、Svp、Svn、Swp、Swnとして出力される。
ここで、電流形電力変換装置101が空間ベクトル図の領域A〜F(図8参照)において出力する電流ベクトルの順番は、下記のように表わされる。領域A〜Fは各々3種類のゼロ電流ベクトル(Iuu、Ivv、Iww)を用いている。
Figure 2012196119
なお、第2実施形態の電流形電力変換装置101では、搬送波信号が最大の点近傍、または、搬送波信号が最小の点近傍のみにゼロベクトルが出力される上記第1実施形態の電流形電力変換装置100と異なり、搬送波信号が最大の点と搬送波信号が最小の点との間においても、ゼロベクトルが出力されるように構成されている。第2実施形態の電流形電力変換装置101は、たとえば領域Aでは、Iww(搬送波信号が最大の点近傍)、Iuu(搬送波信号が最大の点と最小の点との間)、Ivv(搬送波信号が最小の点近傍)、Iuu(搬送波信号が最大の点と最小の点との間)、Iww(搬送波信号が最大の点近傍)の順にゼロベクトルを選択して出力されるように構成されている。なお、第2実施形態のその他の構成は、上記第1実施形態と同様である。
図17は、搬送波信号(キャリア)および線間電流指令Iuw*+、Iwv*+、Ivu*+、Iuw*−、Iwv*−、Ivu*−と、搬送波信号と線間電流指令Iuw*+、Iwv*+、Ivu*+、Iuw*−、Iwv*−、Ivu*−との比較に基づいて生成されたスイッチ駆動信号Sup、Sun、Svp、Svn、Swp、Swnを示している。また、図18は、図8の領域A(図17の領域Aの一部分)におけるスイッチ駆動信号Sup、Sun、Svp、Svn、Swp、Swnを拡大表示している。
図18に示すように、出力される電流ベクトルの相は、期間T11〜期間T19において、Iww、Iuw、Iuu、Iuv、Ivv、Iuv、Iuu、IuwおよびIwwの順に変化している。ここで、電流指令ベクトルIout_rが小さくなり、ベクトルIaおよびIbの大きさが略ゼロに近くなる場合、図10に示す上記第1実施形態の例では、期間T2および期間T3(期間T5および期間T6)のスイッチ駆動信号Supの幅も略ゼロに近くなる。このため、スイッチング遅れ時間などの特性によって駆動信号Supによるパルスが実際には出力されない。一方、図18に示す第2実施形態では、期間T13および期間T17においてゼロベクトルIuuが出力されるので、電流指令ベクトルIout_rが小さくなっても、ゼロベクトルIuuが出力される時間の分、期間T12〜期間T14および期間T16〜期間T18のスイッチ駆動信号Supの幅が大きくなる(幅の短いパルスの発生が抑制される)。なお、ゼロベクトルIuuが出力される時間は、上記式(6)〜式(9)のオフセットΔIoffsetによって調整される。
第2実施形態では、上記のように、電流指令発生器91を、複数の線間電流指令Iuw、Iwv、Ivuにおける互いの大きさの関係に応じてオフセットが付加された線間電流指令Iuw*+、Iwv*+、Ivu*+、Iuw*−、Iwv*−、Ivu*−を出力するように構成する。また、比較器92を、6つの線間電流指令Iuw*+、Iwv*+、Ivu*+、Iuw*−、Iwv*−、Ivu*−と搬送波信号との比較により9つのPWMパルス信号Suwp、Suwm、Suwn、Svup、Svum、Svun、Swvp、Swvm、Swvnを発生するように構成する。そして、3つのPWMパルス信号と、相電流指令の極性との論理積演算に基づいて、スイッチ駆動信号Sup、Sun、Svp、Svn、Swp、Swnを生成するようにロジック回路93を構成する。これにより、搬送波信号が最大の点近傍と、搬送波信号が最小の点近傍とに加えて、搬送波信号が最大の点と搬送波信号が最小の点との間においても、ゼロベクトルを出力することができる。その結果、電流指令ベクトルIout_rが小さくなった場合でも、搬送波信号が最大の点と搬送波信号が最小の点との間において出力されるゼロベクトルの時間分、スイッチ駆動信号の幅が大きくなる。これにより、変調率(電流指令ベクトルIout_rの値)が小さい場合でもパルスの幅を広げることができる。
(第3実施形態)
この第3実施形態の電流形電力変換装置では、ゼロベクトルが出力される場合において、ゼロベクトルの相を固定するゼロベクトル固定回路170を設けている。なお、第3実施形態の電流形電力変換装置は、変調率(電流指令ベクトルIout_rの値)が大きい場合に発生する幅の短いパルスを抑制するものである。第3実施形態は第1実施形態または第2実施形態に適用できる。したがって、第3実施形態を第1実施形態に適用した場合は、論理回路の信号処理の遅延に起因して発生するグリッジの抑制(第1実施形態による効果)に加えて、変調率(電流指令ベクトルIout_rの値)が大きい場合に発生する幅の短いパルスを抑制できる。また第3実施形態を第2実施形態に適用した場合は、論理回路の信号処理の遅延に起因して発生するグリッジの抑制(第1実施形態による効果)と変調率が小さい場合に発生する幅の短いパルスの抑制(第2実施形態による効果)に加えて変調率が大きい場合に発生する幅の短いパルスを抑制できる。
第3実施形態の電流形電力変換装置において、ゼロベクトル固定回路が駆動する場合と駆動しない場合とを、線間電流指令の大きさに応じて切り替え可能に構成してもよい。電流指令ベクトルIout_rの値が小さい場合には、ゼロベクトルの相が固定されることにより、有効ベクトル(ゼロベクトル以外のベクトル)の幅が小さくなる場合がある。そこで、電流指令ベクトルIout_rの値が小さい場合には、ゼロベクトル固定回路を駆動しないように後述のイネーブル信号を制御する。これにより、有効ベクトルの幅が小さくなるのを抑制することができる。
以下、図19を参照して、第3実施形態の電流形電力変換装置102について具体的に説明する。
図19に示すように、第3実施形態による電流形電力変換装置102では、上記図1に示す第1実施形態のロジック回路34(または図12に示す第2実施形態のロジック回路93)とオフディレイ回路35〜40との間に、ゼロベクトル固定回路170が設けられている。なお、ゼロベクトル固定回路170は、「ゼロベクトル固定部」の一例である。ゼロベクトル固定回路170は、3つのAND回路171〜173と、4つのディレイ回路174〜177と、1つのOR回路178と、1つのNAND回路179と、6つのDラッチ回路180〜185とを備えている。変調率が小さい場合にゼロベクトル固定回路170を適用すると、ゼロベクトル固定回路170によって有効ベクトルのパルス幅が短くなる場合がある。これが問題となる場合は、ゼロベクトル固定回路170は変調率が大きい場合に使用し、小さい場合は使用しないよう、ゼロベクトル固定回路170の動作・不動作を切り替えるイネーブル信号を、電流指令発生器が出力し、NAND回路179で切り替えることで、この問題を解決できるようにする。このイネーブル信号は、たとえば電流指令ベクトルIout_rに対して閾値Ilowを設け、比較回路で電流指令ベクトルIout_rの値が閾値Ilow以下のときオンする信号を出力することで作り出すことができる。尚、電流指令ベクトルIout_rの値は演算回路で図7のIa、Ibの値およびcos120°の値を使用し余弦定理により求めることができる。
スイッチ駆動信号Sup、Svp、Swp、Sun、Svn、Swnは、それぞれ、Dラッチ回路180、181、182、183、184、185に入力される。また、スイッチ駆動信号Sup、Sunは、AND回路171に入力される。また、スイッチ駆動信号Svp、Svnは、AND回路172に入力される。また、スイッチ駆動信号Swp、Swnは、AND回路173に入力される。
AND回路171は、OR回路178の入力側とディレイ回路174の入力側とに接続されている。AND回路172は、OR回路178の入力側とディレイ回路175の入力側とに接続されている。AND回路173は、OR回路178の入力側とディレイ回路176の入力側とに接続されている。ディレイ回路174〜176の出力側は、OR回路178の入力側に接続されている。OR回路178の出力側は、ディレイ回路177の入力側に接続されている。また、ディレイ回路177の出力側は、NAND回路179の入力側に接続されている。また、NAND回路179には、イネーブル信号が入力される。NAND回路179の出力側は、Dラッチ回路180〜185のCPに接続されている。また、Dラッチ回路180〜185の出力側は、それぞれ、オフディレイ回路35〜40に接続されている。なお、第3実施形態のその他の構成は、上記第1または第2実施形態と同様である。
次に、図19〜図23を参照して、第3実施形態によるゼロベクトル固定回路170の動作について説明する。
まず、上記第1実施形態のロジック回路34(または上記第2実施形態のロジック回路93)により、スイッチ駆動信号Sup、Svp、Swp、Sun、Svn、Swnが生成される。そして、スイッチ駆動信号Sup、Svp、Swp、Sun、Svn、Swnは、ゼロベクトル固定回路170に入力される。このとき、イネーブル信号がHレベルの場合には、スイッチ駆動信号Sup、Svp、Swp、Sun、Svn、Swnは、それぞれ、Dラッチ回路180、181、182、183、184、185によってラッチされるとともに、オフディレイ回路35〜40に出力される。なお、Dラッチ回路180〜185は、たとえばロジックICの74HC75が用いられており、CPに入力される信号がHレベルの場合には、Dに入力される信号がそのままQに出力され、CPに入力される信号がLレベルの場合には、Qの信号は、ラッチされて変動しなくなる。
そして、AND回路171〜173によって、ゼロベクトルの状態(スイッチ駆動信号Sup、Svp、Swp、Sun、Svn、Swnの各々がHレベルかLレベルか)が判断される。図20は、ゼロベクトル固定回路170を用いない場合のスイッチ駆動信号の動作を示している。図20に示す例では、搬送波信号の大きさが、全ての線間電流指令Iuw、Ivu、Iwvよりも小さい期間(期間T24および期間T25)内に、線間電流指令IwvおよびIuwの大小関係が逆転して、期間T24におけるゼロベクトルIuuが、期間T25においてIvvに変化している場合がある。このゼロベクトルの変化により、IuuとIvvの出力される時間が短くなり、幅の短いパルスが出力される可能性があることがわかる。これに対し、ゼロベクトル固定回路170を用いると、AND回路171〜173とディレイ回路174〜177と、OR回路178とによって、ゼロベクトルを出力した期間の次の期間で再びゼロベクトルを出力することになったと判断されてゼロベクトルの状態が続く場合は、Lレベルの信号がDラッチ回路180〜185のCPに入力される。これにより、ゼロベクトルの状態が2期間にわたって連続し、その状態が期間が変わったときに切替わるような場合であっても、図21に示すように、期間T24におけるゼロベクトルIuuが、期間T25においても出力される。つまり、搬送波信号の大きさが、全ての線間電流指令Iuw、Ivu、Iwvよりも小さい期間内におけるゼロベクトルの相が変化せず固定される。
また、図20に示すように、ゼロベクトルがIuu(期間T24)からIvv(期間T25)に切り替わる場合では、出力されるスイッチ駆動信号Sup、Svp、Swp、Sun、Svn、Swnは、オフディレイ回路35〜40によってオフディレイが加えられる。そのため、このオフディレイの期間内は、Sup、Svp、Sun、Svnがオンとなって整流回路になり、U相、V相、W相の電圧状態に依存した本来必要でない有効ベクトルが出力されてしまう場合がある。また、電流指令ベクトルIout_rの値が大きくなる場合では、ゼロベクトルの出力時間が短くなるため、ゼロベクトルが連続して切り替わると、スイッチ駆動信号Sup、Svp、Sun、Svnの幅が小さくなってしまう。このため、スイッチング素子18〜23のオンオフの特性や、スイッチ駆動信号Sup、Svp、Sun、Svnの遅延によってゼロベクトルが出力されない場合がある。一方、ゼロベクトル固定回路170により、ゼロベクトルの相が固定されることにより上記本来必要でない有効ベクトルの出力が抑制される。このように、電流指令ベクトルIout_rの値が大きくなる場合に発生する幅の短いパルスに起因して、本来必要であるゼロベクトルが出力されないことが抑制される。
また、図21に示すように、ゼロベクトル固定回路170が駆動されるとき、信号がディレイ回路174〜176のうちの1つと、ディレイ回路177との2つのディレイ回路を通過させ、スイッチ駆動信号SunおよびSvnにディレイ回路2つ分の信号の遅延を設ける。この遅延はグリッジの発生を抑制するために必要となるが、ディレイ回路の遅延時間をPWMパルス信号の1クロック分と略等しくすることにより、ディレイ回路2つ分の信号の遅延の影響を無視できるようになる。なぜならPWM搬送波一周期の1クロック時間(ディレイ回路2つ分の信号の遅延時間)はPWM搬送波一周期のPWMパルス信号に比較すると無視できるほど小さいためである。
また、図22は、上記第1実施形態の電流形電力変換装置100にゼロベクトル固定回路170が設けられた場合のスイッチ駆動信号Sup、Svp、Swp、Sun、Svn、Swnを示す。たとえば、図9に示す第1実施形態の比較的短い幅を有するスイッチ駆動信号SupのパルスP1は、ゼロベクトル固定回路170によりゼロベクトルがパルスP1の直前のゼロベクトルに固定されることにより、図22に示すように生成されなくなっている(図22の点線の円の部分参照)。
また、図23は、上記第2実施形態の電流形電力変換装置101にゼロベクトル固定回路170が設けられた場合のスイッチ駆動信号Sup、Svp、Swp、Sun、Svn、Swnを示す。たとえば、図17に示す第2実施形態の比較的短い幅を有するスイッチ駆動信号SupのパルスP2の幅は、ゼロベクトル固定回路170によりゼロベクトルが固定されることにより、図23に示すパルスP3のように大きくなっている(図23の点線の円の部分参照)。
第3実施形態では、上記のように、ゼロベクトルの相を、ゼロベクトルが出力される期間内において固定するためのゼロベクトル固定回路170を設ける。これにより、ゼロベクトルが連続して切り替わることに起因して発生する本来必要でないゼロベクトルの出力や、本来必要である場合にゼロベクトルが出力されないことを抑制することができるので、出力電流の歪を抑制することができる。
さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の特許請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。
たとえば、上記第1〜第3実施形態では、線間電流指令として正弦波を用いる例を示したが、線間電流指令はこれに限られない。たとえば、線間電流指令に高調波である3倍調波を重畳してもよい。これにより、線間電流指令のピークが小さくなる(平坦な形状になる)ので、線間電流指令の飽和(線間電流指令が搬送波信号よりも大きくなること)を抑制することができる。
また、上記第1〜第3実施形態では、3相の交流が出力される電流形電力変換装置に本上述の構成要素を適用する例を示したが、電流形電力変換装置はこれに限られない。たとえば、3相以外の相数の交流が出力される電流形電力変換装置に上述の構成要素を適用してもよい。
また、上記第1〜第3実施形態では、直流電流源から直流が供給される電流形電力変換装置に上述の構成要素を適用する例を示したが、電流形電力変換装置はこれに限られない。たとえば、交流電流源から電流が供給される電流形電力変換装置に上述の構成要素を適用してもよい。
また、上記第1実施形態では、PWM搬送波一周期中に2種類のゼロベクトルが出現する(たとえば、領域AにおいてIww、Ivv、Iwwの順に2種類のゼロベクトルが出現する)例を示したが、電流形電力変換装置はこれに限られない。たとえば、線間電流指令にオフセット量を重畳して、1相の線間電流指令を飽和させることにより、この相のスイッチング素子のオンオフを停止(Ivvの出現を停止)させてもよい。なお、この場合でも、PWM搬送波一周期中にIww、Iww、Iwwの順に同じゼロベクトルが出現する場合と異なり、PWM搬送波一周期中にIwwの出力→ゼロベクトルの出力なし→Iww出力の順に出力の状態が変化することにより、幅の短いパルスの発生は抑制される。
10 電流形インバータ回路
11 直流電流源
12〜17 ダイオード(整流素子)
18〜23 IGBT(スイッチング素子)
24〜29 駆動回路
30 スイッチ駆動信号発生部
31、91 電流指令発生器(電流指令発生部)
32 極性判定器(極性判定部)
33、92 比較器(PWMパルス信号発生部)
34、93 ロジック回路(駆動信号生成部)
35〜40 オフディレイ回路
51〜56、121〜126 ロジック回路部
100、101、102 電流形電力変換装置
170 ゼロベクトル固定回路(ゼロベクトル固定部)
174〜177 ディレイ回路
180〜185 Dラッチ回路

Claims (9)

  1. 複数のスイッチング素子と、
    相電流指令と、線間電流指令とを出力する電流指令発生部と、
    前記相電流指令の極性を判定する極性判定部と、
    前記線間電流指令と搬送波信号との比較によりPWMパルス信号を発生するPWMパルス信号発生部と、
    前記PWMパルス信号と前記相電流指令の極性とに基づいて、前記複数のスイッチング素子をそれぞれ駆動する駆動信号を生成する駆動信号生成部とを備える、電流形電力変換装置。
  2. 前記駆動信号生成部は、
    前記PWMパルス信号と前記相電流指令の極性との論理積演算に基づいて、前記複数のスイッチング素子をそれぞれ駆動する駆動信号を生成する、請求項1に記載の電流形電力変換装置。
  3. 前記駆動信号生成部は、
    前記相電流指令の極性に基づき、前記搬送波信号の大きさが全ての前記線間電流指令よりも大きい場合に出力するゼロベクトルの相と、前記搬送波信号の大きさが全ての前記線間電流指令よりも小さい場合に出力するゼロベクトルの相とを異なるように選択する、請求項2に記載の電流形電力変換装置。
  4. 前記スイッチング素子は、3相の各出力相に対応して設けられ、
    前記電流指令発生部は、
    各前記出力相にそれぞれ対応する複数の前記相電流指令と、相異なる各出力相間にそれぞれ対応する複数の前記線間電流指令とを出力し、
    前記PWMパルス信号発生部は、
    各前記線間電流指令と搬送波信号との比較により、それぞれ異なる出力相間に対応する複数のPWMパルス信号を発生し、
    前記駆動信号生成部は、
    2つ以上の前記PWMパルス信号と、2つ以上の前記相電流指令の極性との論理積演算に基づいて、各出力相に対応する駆動信号をそれぞれ生成する、請求項2または3に記載の電流形電力変換装置。
  5. 前記駆動信号生成部は、
    互いに一つの相が共通する異なる相間に対する2つのPWM信号と、前記一つの相を除く2つの相に対応する相電流指令の極性との論理積演算に基づいて、前記一つの相に対応する前記駆動信号を生成する、請求項4に記載の電流形電力変換装置。
  6. 前記電流指令発生部は、
    前記線間電流指令として、前記複数の線間電流指令における互いの大きさの関係に応じてオフセットが付加された線間電流指令を前記相間毎に複数出力し、
    前記PWMパルス信号発生部は、
    前記オフセットが付加された線間電流指令と前記搬送波信号との比較により、各前記出力相間にそれぞれ対応する前記複数のPWMパルス信号を発生し、
    前記駆動信号生成部は、
    各前記出力相間にそれぞれ対応する3つの前記PWMパルス信号と、各前記出力相にそれぞれ対応する前記複数の相電流指令の極性との論理積演算に基づいて、各出力相に対応する駆動信号をそれぞれ生成する、請求項4に記載の電流形電力変換装置。
  7. 前記駆動信号生成部の出力側に設けられ、ゼロベクトルを出力する期間の次の期間で再びゼロベクトルを出力することになる場合に、前記次の期間でもその前の期間と同じゼロベクトルを出力し続けるゼロベクトル固定部を備える、請求項1乃至6のいずれか一項に記載の電流形電力変換装置。
  8. 前記ゼロベクトル固定部を駆動する場合と駆動しない場合とを前記線間電流指令の大きさに応じて切替る、請求項7に記載の電流形電力変換装置。
  9. 前記線間電流指令が所定値より大きいときに前記ゼロベクトル固定部を駆動する、請求項7に記載の電流形電力変換装置。
JP2011284783A 2011-02-28 2011-12-27 電流形電力変換装置 Expired - Fee Related JP5459304B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011284783A JP5459304B2 (ja) 2011-02-28 2011-12-27 電流形電力変換装置
EP12156777.0A EP2493075A3 (en) 2011-02-28 2012-02-24 Current-source power converting apparatus
US13/406,427 US8947897B2 (en) 2011-02-28 2012-02-27 Current-source power converting apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011042764 2011-02-28
JP2011042764 2011-02-28
JP2011284783A JP5459304B2 (ja) 2011-02-28 2011-12-27 電流形電力変換装置

Publications (2)

Publication Number Publication Date
JP2012196119A true JP2012196119A (ja) 2012-10-11
JP5459304B2 JP5459304B2 (ja) 2014-04-02

Family

ID=45656579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011284783A Expired - Fee Related JP5459304B2 (ja) 2011-02-28 2011-12-27 電流形電力変換装置

Country Status (3)

Country Link
US (1) US8947897B2 (ja)
EP (1) EP2493075A3 (ja)
JP (1) JP5459304B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2860861A2 (en) 2013-10-09 2015-04-15 Kabushiki Kaisha Yaskawa Denki Current source inverter device
CN104682761A (zh) * 2013-11-28 2015-06-03 株式会社安川电机 电流型电力转换装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2975843B1 (fr) * 2011-05-23 2013-05-17 Renault Sa Procede de commande des interrupteurs d'un redresseur de courant connecte a un chargeur embarque.
US10574136B2 (en) 2018-04-17 2020-02-25 Abb Schweiz Ag Methods and systems for controlling current source rectifiers
US10630165B2 (en) * 2017-09-08 2020-04-21 General Electric Company Systems and methods for synchronous power conversion
US11575329B1 (en) * 2021-09-01 2023-02-07 Wisconsin Alumni Research Foundation Balanced current-source inverter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182458A (ja) * 1995-12-22 1997-07-11 Toyo Electric Mfg Co Ltd 電流形変換器の制御装置
JP2008312367A (ja) * 2007-06-15 2008-12-25 Yanmar Co Ltd 三相電流形電力変換器のスイッチング制御構成

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02219498A (ja) * 1989-02-16 1990-09-03 Toyota Central Res & Dev Lab Inc インバータの電流制御装置
JP2685586B2 (ja) * 1989-06-30 1997-12-03 株式会社日立製作所 多重インバータ装置
JP3271478B2 (ja) * 1995-07-19 2002-04-02 松下電器産業株式会社 電流指令型pwmインバータ
US5917721A (en) * 1997-11-21 1999-06-29 Allen-Bradley Company, Llc Apparatus for reducing the effects of turn on delay errors in motor control
WO2001067589A1 (en) * 2000-03-09 2001-09-13 Ecoair Corp. Alternator system
KR100662434B1 (ko) * 2005-11-17 2007-01-02 엘지전자 주식회사 세탁기의 구동 장치 및 이를 구비한 세탁기
JP4379427B2 (ja) * 2006-04-03 2009-12-09 株式会社デンソー 多相回転電機の制御装置
TWI350051B (en) * 2008-01-04 2011-10-01 Richtek Technology Corp Circuit and method for generating a pwm control signal for a class-d amplifier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182458A (ja) * 1995-12-22 1997-07-11 Toyo Electric Mfg Co Ltd 電流形変換器の制御装置
JP2008312367A (ja) * 2007-06-15 2008-12-25 Yanmar Co Ltd 三相電流形電力変換器のスイッチング制御構成

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2860861A2 (en) 2013-10-09 2015-04-15 Kabushiki Kaisha Yaskawa Denki Current source inverter device
CN104682761A (zh) * 2013-11-28 2015-06-03 株式会社安川电机 电流型电力转换装置
JP2015106945A (ja) * 2013-11-28 2015-06-08 株式会社安川電機 電流形電力変換装置

Also Published As

Publication number Publication date
JP5459304B2 (ja) 2014-04-02
US8947897B2 (en) 2015-02-03
EP2493075A3 (en) 2013-05-15
EP2493075A2 (en) 2012-08-29
US20120218801A1 (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP5459304B2 (ja) 電流形電力変換装置
JP5450635B2 (ja) 電力変換装置
EP3210297B1 (en) Systems and methods for controlling multi-level diode-clamped inverters using space vector pulse width modulation (svpwm)
JP5549697B2 (ja) 電流形電力変換装置
JP5900470B2 (ja) 電流形電力変換装置
JP2004266884A (ja) スイッチング電源式電源装置およびそれを用いた核磁気共鳴イメージング装置
JP6208089B2 (ja) 3レベル三相インバータの駆動制御装置
JP2016042772A (ja) 3レベルインバータの制御方法及び制御装置
JP5842534B2 (ja) インバータ制御装置
JP5121755B2 (ja) 電力変換装置
US11277077B2 (en) Power conversion device suppressing waveform distortion in an output voltage
JP4873317B2 (ja) インバータ装置
JP5910333B2 (ja) 5レベル電力変換器
JP5695379B2 (ja) 電力変換装置
Somani et al. Circulating currents in open-end winding PWM ac drives
WO2022138608A1 (ja) 三相3レベルインバータの駆動制御装置および駆動制御方法
Baranwal et al. A modified four-step commutation to suppress common-mode voltage during commutations in open-end winding matrix converter drives
JP2016178760A (ja) 電力変換システムで使用するための多重化可能単一セル構造
WO2018179234A1 (ja) H型ブリッジ変換器およびパワーコンディショナ
JP2013169026A (ja) 中性点クランプ式インバータ
Zhu et al. Common-mode voltage reduction methods for medium-voltage current source inverter-fed drives
WO2017034028A1 (ja) インバータの制御方法及び制御装置、並びにインバータ装置
US9608545B1 (en) Switching interference suppression in motor driving circuits using space vector pulse width modulation (PWM)
JP2016174448A (ja) 電力変換装置
JP4600731B2 (ja) 交流交流直接変換装置の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees