WO2014136199A1 - 空気調和システム - Google Patents

空気調和システム Download PDF

Info

Publication number
WO2014136199A1
WO2014136199A1 PCT/JP2013/055925 JP2013055925W WO2014136199A1 WO 2014136199 A1 WO2014136199 A1 WO 2014136199A1 JP 2013055925 W JP2013055925 W JP 2013055925W WO 2014136199 A1 WO2014136199 A1 WO 2014136199A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant system
evaporation temperature
temperature
limit value
air
Prior art date
Application number
PCT/JP2013/055925
Other languages
English (en)
French (fr)
Inventor
守 濱田
畝崎 史武
直道 田村
一暢 西宮
秀元 荒井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/766,531 priority Critical patent/US10006649B2/en
Priority to PCT/JP2013/055925 priority patent/WO2014136199A1/ja
Priority to JP2015504037A priority patent/JP6072221B2/ja
Priority to CN201380074180.1A priority patent/CN105026846B/zh
Priority to EP13877050.8A priority patent/EP2966374B1/en
Priority to CN201420094878.1U priority patent/CN204063345U/zh
Publication of WO2014136199A1 publication Critical patent/WO2014136199A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0035Indoor units, e.g. fan coil units characterised by introduction of outside air to the room
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • F24F2110/22Humidity of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • F25B2400/061Several compression cycles arranged in parallel the capacity of the first system being different from the second
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioning system provided with a ventilation device.
  • An air conditioning system equipped with a conventional ventilation device is composed of a refrigerant system including a compressor, a four-way valve, an outdoor heat exchanger, expansion means, and an indoor heat exchanger, and the refrigerant system is filled with the refrigerant.
  • the refrigerant compressed by the compressor becomes a high-temperature and high-pressure gas refrigerant and is sent to the outdoor heat exchanger.
  • the refrigerant flowing into the outdoor heat exchanger is liquefied by releasing heat into the air.
  • the liquefied refrigerant is depressurized by the expansion means to become a gas-liquid two-phase state, and is gasified by absorbing heat from the ambient air in the indoor heat exchanger. On the other hand, since air is deprived of heat, the indoor space can be cooled. The gasified refrigerant returns to the compressor.
  • the ventilator performs an operation of replacing indoor air with fresh outdoor air, and during cooling, if the enthalpy of air introduced from the outdoor air is high, it becomes a cooling load (outdoor air load).
  • Other loads include a load generated indoors (indoor load) and a heat load entering from the wall of the building (heat through load).
  • the outdoor air load and the indoor load include a latent heat load in addition to the sensible heat load
  • the indoor heat exchanger temperature refrigerant evaporation temperature
  • the operation efficiency energy efficiency
  • the evaporation temperature is increased, the amount of power consumption can be reduced, so that the operation efficiency is improved.
  • the amount of latent heat treatment is insufficient, the indoor air humidity is increased, and the comfort is lowered.
  • the upper limit of the evaporation temperature determined according to the indoor air humidity is set, and the evaporation temperature within the range below the upper limit of the set evaporation temperature is set based on the evaporation temperature, the indoor air temperature and humidity, and the set temperature without causing a shortage of latent heat treatment.
  • There is an air conditioning system that controls see, for example, Patent Document 1).
  • the present invention was made in order to solve the above-described problems, taking into consideration the outdoor air load, avoiding a decrease in comfort due to insufficient amount of latent heat treatment (insufficient dehumidification) and a decrease in energy saving due to excessive latent heat treatment, It aims at providing the air conditioning system which implement
  • An air conditioning system includes a first refrigerant system including a first outdoor unit and an indoor unit through which a first refrigerant circulates, a second outdoor unit and a ventilator through which a second refrigerant circulates.
  • a second refrigerant system configured, the first refrigerant system includes a first compressor, a first outdoor heat exchanger, a first expansion valve, an indoor heat exchanger, and the second refrigerant system includes: A second compressor, a second outdoor heat exchanger, a second expansion valve, and a cooler; the first outdoor unit includes the first compressor and the first outdoor heat exchanger;
  • the two outdoor units include the second compressor and the second outdoor heat exchanger, and the indoor unit includes the first expansion valve and the indoor heat exchanger, and adjusts the temperature of indoor air.
  • the ventilation device includes the second expansion valve and the cooler, and exchanges indoor air and outdoor air.
  • the first outdoor unit and the indoor unit, and the second outdoor unit and the ventilator are connected by a refrigerant pipe to detect the temperature and humidity of the outdoor air. And determining an evaporation temperature control range of the first refrigerant system according to an outdoor air temperature, and determining an evaporation temperature of the first refrigerant system within the evaporation temperature control range of the first refrigerant system.
  • the control is performed so as to achieve a target evaporation temperature, the evaporation temperature control range of the second refrigerant system is determined according to outdoor air humidity, and the evaporation temperature of the second refrigerant system is set to the evaporation temperature control range of the second refrigerant system. It controls so that it may become the target evaporation temperature determined in the inside.
  • the air conditioning system of the present invention by controlling the evaporation temperature according to the outdoor air load determined by the temperature and humidity of the outdoor air, the evaporation temperature can be increased while reliably processing the sensible heat load and the latent heat load. Therefore, it is possible to improve energy saving while maintaining comfort.
  • FIG. 1 is a refrigerant system diagram 1 of an air conditioning system according to an embodiment of the present invention. It is a ventilator schematic diagram of an air harmony system concerning an embodiment of the invention. It is the refrigerant
  • FIG. 1 is a Tei- ⁇ T diagram of an air conditioning system according to an embodiment of the present invention.
  • FIG. 1 is a Tev- ⁇ X diagram of an air conditioning system according to an embodiment of the present invention. It is a figure showing the evaporation temperature control range of the air conditioning system which concerns on embodiment of this invention.
  • 1 is an air diagram 1 of an air conditioning system according to an embodiment of the present invention.
  • FIG. 2 is a Tei- ⁇ T diagram of the air conditioning system according to the embodiment of the present invention.
  • FIG. 2 is a Tev- ⁇ X diagram of the air conditioning system according to the embodiment of the present invention. It is a control flow of the air conditioning system which concerns on embodiment of this invention. It is the figure which showed the effect by the evaporation temperature rise of the air conditioning system which concerns on embodiment of this invention.
  • FIG. 1 is a schematic diagram of an air conditioning system according to an embodiment of the present invention
  • FIG. 2 is a refrigerant system diagram 1 of the air conditioning system according to an embodiment of the present invention.
  • the configuration of the air conditioning system 100 will be described.
  • the air conditioning system 100 is installed in a building, a condominium, or the like, and can supply a cooling load or a heating load by using a refrigerant system that circulates the refrigerant.
  • the air conditioning system 100 includes two refrigerant systems, an indoor unit system 11 (first refrigerant system) and a ventilator system 21 (second refrigerant system), which are connected to a centralized controller 102 via a transmission line 103.
  • the centralized controller 102 is provided with target temperature / humidity setting means 44.
  • the centralized controller 102 controls the air conditioning system 100.
  • the indoor unit system 11 for example, three indoor units 1 are connected to the indoor unit system outdoor unit 2 and the refrigerant pipe 104, respectively.
  • the ventilator system 21 for example, one ventilator 3 is connected to the ventilator system outdoor unit 4 and the refrigerant pipe. 105 is connected.
  • the indoor unit 1, the indoor unit system outdoor unit 2, the ventilator 3, and the ventilator system outdoor unit 4 are each connected to the centralized controller 102 via a transmission line 103.
  • the number of indoor units 1 is three and the number of ventilation devices 3 is one, but other numbers may be used.
  • the indoor unit system 11 includes a compressor 12, a four-way valve 13, an outdoor heat exchanger 14 provided with an outdoor heat exchanger blower 17, an expansion valve 15, and an indoor heat provided with an indoor heat exchanger blower 18. And an exchanger 16.
  • the expansion valve 15 and the indoor heat exchanger 16 constitute the indoor unit 1
  • the compressor 12, the four-way valve 13 and the outdoor heat exchanger 14 constitute the indoor unit system outdoor unit 2. Yes.
  • the ventilator system 21 includes a compressor 22, a four-way valve 23, an outdoor heat exchanger 24 provided with an outdoor heat exchanger blower 27, an expansion valve 25, and a cooler 26.
  • the expansion valve 25 and the cooler 26 constitute the ventilator 3, and the compressor 22, the four-way valve 23, and the outdoor heat exchanger 24 constitute the ventilator system outdoor unit 4.
  • FIG. 3 is a schematic diagram of a ventilation device of the air conditioning system according to the embodiment of the present invention.
  • the ventilation device 3 includes the expansion valve 25 and the cooler 26 described above, an air supply fan 28, an exhaust air fan 29, a total heat exchanger 30 that performs total heat exchange between indoor air and outdoor air,
  • the outdoor air temperature / humidity detection means 31 detects the temperature and humidity of the outdoor air
  • the indoor air temperature / humidity detection means 32 detects the temperature and humidity of the indoor air.
  • the outdoor air temperature / humidity detection means 31 is provided at a position where the temperature and humidity of the outdoor air can be detected
  • the indoor air temperature / humidity detection means 32 is provided at a position where the temperature and humidity of the indoor air can be detected.
  • FIG. 4 is a refrigerant system diagram 2 of the air-conditioning system according to the embodiment of the present invention.
  • the compressors 12 and 22 are respectively provided with a compressor frequency adjusting means 41, and evaporating temperature detecting means 42 is provided on the suction side of the compressors 12 and 22, respectively.
  • Each indoor unit 1 is provided with suction temperature / humidity detection means 43 at a position where the suction temperature / humidity can be detected.
  • FIG. 5 is a Tei- ⁇ T diagram of the air conditioning system according to the embodiment of the present invention
  • FIG. 6 is a Tev- ⁇ X diagram of the air conditioning system according to the embodiment of the present invention.
  • Tei is the target evaporation temperature in the indoor unit system 11
  • ⁇ T is the difference between the indoor air temperature Ta (° C.) and the target temperature Ta_tgt (° C.)
  • Tev is the target evaporation temperature in the ventilator system 21
  • ⁇ X Represents the difference between the indoor air absolute humidity Xa (kg / kg ′) and the target absolute humidity Xa_tgt (kg / kg ′).
  • the indoor unit system 11 includes an indoor air temperature Ta (° C.) detected by the suction temperature / humidity detection means 43 shown in FIG. 4 and a target temperature (set temperature in the room) set by the target temperature / humidity setting means 44 shown in FIG.
  • the compressor frequency adjusting means 41 compresses the indoor unit system outdoor unit 2 so that the refrigerant evaporating temperature detected by the evaporating temperature detecting means 42 provided on the suction side of the compressor 12 becomes the target evaporating temperature Tei.
  • the frequency of the machine 12 is controlled to adjust the indoor air temperature Ta (° C.).
  • the ventilator system 21 has the indoor air absolute humidity Xa (kg / kg ′) detected by the indoor air temperature / humidity detecting means 32 shown in FIG. 3 and the target temperature / humidity setting means 44 shown in FIG. Based on the difference ⁇ X (kg / kg ′) from the absolute humidity (set humidity in the room) Xa_tgt (kg / kg ′), based on the Tev ⁇ X diagram shown in FIG. 6, the maximum evaporation temperature Tev_max (° C.) and the minimum evaporation temperature A target evaporation temperature Tev (° C.) that is a value (a value within the evaporation temperature control range) between Tev_min (° C.) is determined.
  • the compressor frequency adjusting means 41 compresses the ventilator system outdoor unit 4 so that the refrigerant evaporation temperature detected by the evaporation temperature detecting means 42 provided on the suction side of the compressor 22 becomes the target evaporation temperature Tev.
  • the frequency of the machine 22 is controlled to adjust the indoor air absolute humidity Xa (kg / kg ′).
  • the evaporation temperature control range is a temperature range in which the evaporation temperature is controlled. Tei_max (° C.) and Tev_max (° C.) are upper limit values, and Tei_min (° C.) and Tev_min (° C.) are lower limit values. is there. That is, the evaporation temperature is controlled so as not to exceed the evaporation temperature control range.
  • the temperature can be controlled by the indoor unit system 11 and the humidity can be controlled independently by the ventilator system 21, so that the controllability is increased and the temperature and humidity are controlled. It becomes easy to set both to the target value.
  • FIG. 7 is a diagram illustrating an evaporation temperature control range of the air-conditioning system according to the embodiment of the present invention.
  • the maximum evaporation temperatures Tei_max (° C.) and Tev_max (° C.) as the upper limit values of the evaporation temperature control range and the minimum evaporation temperatures Tei_min (° C.) and Tev_min (° C.) as the lower limit values are as shown in FIG. Accordingly, two patterns of Hi level and Lo level are provided. Further, the evaporation temperature levels of the indoor unit system 11 and the ventilator system 21 are determined by the temperature and humidity conditions of the outdoor air.
  • the Lo level is set when the load is large, and the Hi level is set when the load is small.
  • the Hi level Tei_max (° C.), Tev_max (° C.), Tei_min (° C.), and Tev_min (° C.) values are both greater than the Lo level value. . Therefore, the cooling ability (cooling ability and dehumidifying ability) can be increased at the Lo level than at the Hi level.
  • the cooling capacity can be increased to avoid insufficient cooling and dehumidification, and when the load is small, the cooling capacity can be decreased to perform the energy saving operation.
  • the value detected by the outdoor air temperature / humidity detection means 31 shown in FIG. 3 is used for the temperature and humidity of the outdoor air.
  • FIG. 8 is an air diagram 1 of the air conditioning system according to the embodiment of the present invention.
  • the temperature / humidity value detected by the outdoor air temperature / humidity detection means 31 is divided into four zones (zones I to IV) with the threshold value T0 of the dry bulb temperature and the threshold value X0 of the absolute humidity as shown in FIG. It is done.
  • zone I outdoor air is at low temperature and low humidity, so low sensible heat load conditions and low latent heat load conditions
  • zone II outdoor air is at low temperature and high humidity, low sensible heat Since the outdoor air is at high temperature and low humidity when in the load condition and high latent heat load condition, zone III, the outdoor air is at high temperature and high humidity when in the high sensible heat load condition and low latent heat load condition, zone IV Therefore, the high sensible heat load condition and the high latent heat load condition are obtained.
  • the threshold value T0 and the threshold value X0 will be described later.
  • the target evaporation temperature Tei (° C.) is determined as having an inversely proportional relationship with ⁇ T.
  • the target evaporation temperature Tei (° C.) is determined as having an inversely proportional relationship.
  • Tev_max Tev_hi_max (° C.)
  • Tev_min Tev_hi_min (° C.).
  • the target evaporation temperature Tev (° C.) is determined to be inversely proportional to ⁇ X.
  • Tev_max Tev_lo_max (° C.)
  • Tev_min Tev_lo_min (° C.)
  • Tev_min Tev_lo_min (° C.)
  • FIG. 9 is an air diagram 2 of the air conditioning system according to the embodiment of the present invention. From the above, the evaporation temperature levels of the indoor unit system 11 and the ventilator system 21 are determined as shown in FIG. 9 according to the temperature and humidity conditions of the outdoor air.
  • the dry bulb temperature threshold value T0 (° C.) and the absolute humidity threshold value X0 (kg / kg ′), which are the threshold values of each zone, are determined as follows.
  • the threshold value T0 (° C.) is the maximum value of the outdoor air temperature that can handle the sensible heat load when the target evaporation temperature Tei (° C.) of the indoor unit system 11 is set to the Hi level Tei_hi_min (° C.). That is, if it is below the threshold value T0 (° C.), the target temperature can be reached even within the Hi level evaporation temperature range.
  • the sensible heat load needs to consider not only the outdoor air temperature and humidity conditions but also the internal heat generation of the human body, outdoor air equipment, lighting, etc., but the internal heat generation of these human bodies, outdoor air equipment, lighting, etc. Since it is assumed to some extent for each property such as a condominium and a condominium, and its fluctuation is small, T0 can be calculated using a value assumed for each property.
  • the threshold value X0 (kg / kg ′) is the maximum value of the outdoor outdoor absolute humidity that can handle the latent heat load when the target evaporation temperature Tev (° C.) of the ventilator system 21 is set to Tev_hi_min (° C.) of the Hi level. . That is, if the threshold value is X0 (kg / kg ') or less, the target humidity can be reached even in the Hi level evaporation temperature range.
  • the latent heat load needs to consider not only the outdoor air temperature and humidity conditions but also the internal heat generation of the human body, outdoor air equipment, lighting, etc., but the internal heat generation of these human bodies, outdoor air equipment, lighting, etc. Since it is assumed to some extent for each property such as a condominium, and its fluctuation is small, X0 can be calculated using a value assumed for each property.
  • the threshold value X0 (kg / kg ′) is almost the same as the maximum value of the outdoor air absolute humidity that can handle the latent heat load if the target humidity is the same for a certain evaporation temperature even if the outdoor air temperature changes. Absent. Therefore, X0 (kg / kg ') can be determined as shown in FIGS. This is because when the evaporation temperature is the same and the outdoor air temperature decreases, the total heat (sensible heat + latent heat) processing amount of the cooler 26 of the ventilator 3 decreases, but the SHF (sensible heat ratio) decreases. This is because only the amount of sensible heat treatment is reduced and the amount of latent heat treatment is not reduced.
  • FIG. 10 is an air diagram 3 of the air conditioning system according to the embodiment of the present invention.
  • the threshold values T0 (° C.) and X0 (kg / kg ′) may be changed as shown in FIG. 10 according to the set values of the target temperature and humidity setting means 44 shown in FIG. If the target temperature and the target absolute humidity change even under the same outdoor air temperature and humidity conditions, the sensible heat load and the latent heat load also change. Therefore, since the sensible heat load increases as the target temperature decreases, in that case, T0 (° C.) is decreased to increase the cooling capacity. Further, since the latent heat load increases as the target absolute humidity decreases, in that case, X0 (kg / kg ′) is decreased to increase the dehumidifying capacity. By doing in this way, even when the target temperature and the target absolute humidity change and the load increases, it is possible to avoid the occurrence of insufficient cooling and insufficient dehumidification.
  • the indoor air temperature Ta (° C.) detected by the suction temperature / humidity detecting means 43 shown in FIG. 4 and the indoor air absolute humidity Xa (kg / kg) detected by the indoor air temperature / humidity detecting means 32 shown in FIG.
  • the evaporating temperature level of the indoor unit system 11 and the ventilator system 21 may be switched from the Hi level to the Lo level.
  • FIG. 11 is a Tei- ⁇ T diagram 2 of the air conditioning system according to the embodiment of the present invention.
  • the indoor air temperature Ta detected by the suction temperature / humidity detecting means 43 and the target temperature Ta_tgt (° C.) set by the target temperature / humidity setting means 44. Is greater than a predetermined temperature T2 (° C.) (T1 ⁇ T2), it is determined that the cooling capacity is insufficient and the sensible heat load cannot be processed, and the level of Hi is increased to increase the cooling capacity. Move to Lo level.
  • the difference ⁇ T between the indoor air temperature Ta (° C.) and the target temperature Ta_tgt (° C.) is a predetermined temperature T 3 (° C.) ( If it is smaller than ⁇ 0), it is determined that the cooling capacity is sufficient and the evaporation temperature can be further increased, and the Lo level is shifted to the Hi level to lower the cooling capacity.
  • the compressor 12 is thermo-off during the Lo level operation, the Lo level may be shifted to the Hi level.
  • FIG. 12 is a Tev- ⁇ X diagram of the air conditioning system according to the embodiment of the present invention. Further, while the ventilator system 21 is operating at the Hi level, the indoor air absolute humidity Xa (kg / kg ′) detected by the indoor air temperature / humidity detecting means 32 and the target temperature / humidity setting means 44 as shown in FIG.
  • the dehumidifying capacity is It is determined that the latent heat load cannot be processed due to the shortage, and the Hi level is shifted to the Lo level in order to increase the dehumidifying capacity.
  • the ventilator system 21 is operating at the Lo level, as shown in FIG. 12, the indoor air absolute humidity Xa (kg / kg ′) and the target absolute humidity (indoor set humidity) Xa_tgt (kg / kg ′) Difference ⁇ X is smaller than a predetermined absolute humidity X3 (kg / kg ′) ( ⁇ 0), it is determined that the dehumidifying capacity is sufficient and the evaporation temperature can be further increased, and the Lo level is set to decrease the dehumidifying capacity. To Hi level. In addition, when the compressor 22 is thermo-off during the Lo level operation, the Lo level may be shifted to the Hi level.
  • the value detected by the indoor air temperature / humidity detecting means 32 shown in FIG. 3 may be used, or the value of the indoor air absolute humidity Xa (kg / kg ′).
  • the value detected by the suction temperature / humidity detection means 43 shown in FIG. 4 may be used.
  • FIG. 13 is a control flow of the air conditioning system according to the embodiment of the present invention.
  • operation of the air conditioning system 100 mentioned above is demonstrated along the control flow shown in FIG.
  • the outdoor air temperature and humidity detection means 31 detects the temperature and humidity of the outdoor air (S10).
  • the zone determination is performed according to the detected temperature and humidity value of the outdoor air (S20), and the evaporation temperature control range is set according to the evaporation temperature level (Hi level or Lo level) of the indoor unit system 11 and the ventilator system 21. Each is determined (S30).
  • the difference ⁇ T (° C.) is calculated as the indoor air absolute humidity Xa (kg / kg ′) and the target absolute humidity Xa_tgt (kg / kg ′).
  • ⁇ X (kg / kg ′) S40
  • S140 If the conditions are not satisfied in S81 or S91, it is determined whether or not the operation is finished (S140). If the condition is not satisfied in S71, it is determined whether the current evaporation temperature level of the indoor unit system 11 is Hi level (S101). If the condition is satisfied, the evaporation temperature level of the indoor unit system 11 is set. The system shifts to the Lo level (S111). Thereafter, it is determined whether or not the operation is finished (S140).
  • the condition is not satisfied in S101, it is determined whether the current evaporation temperature level of the ventilator system 21 is the Hi level (S121). If the condition is satisfied, the evaporation temperature level of the ventilator system 21 is set. Transition to the Lo level (S131). Thereafter, it is determined whether or not the operation is finished (S140). Moreover, when not satisfy
  • S140 If the condition is not satisfied in S82 or S92, it is determined whether or not the operation is completed (S140). If the condition is not satisfied in S72, it is determined whether the current evaporation temperature level of the ventilator system 21 is Hi level (S102). If the condition is satisfied, the evaporation temperature level of the ventilator system 21 is set. The process moves to the Lo level (S112). Thereafter, it is determined whether or not the operation is finished (S140).
  • the condition is not satisfied in S102, it is determined whether the current evaporation temperature level of the indoor unit system 11 is Hi level (S122). If the condition is satisfied, the evaporation temperature level of the indoor unit system 11 is set. The system shifts to the Lo level (S132). Thereafter, it is determined whether or not the operation is finished (S140). Moreover, when not satisfy
  • FIG. 14 is a diagram showing the effect of the increase in the evaporation temperature of the air conditioning system according to the embodiment of the present invention.
  • the load is determined according to the temperature and humidity of the outdoor air detected by the outdoor air temperature and humidity detection means 31, if it is determined that the load is small, the operation should be performed at a higher evaporation temperature even at the start of operation. It is possible to save energy when cooling down at the start of operation (when pulling down).
  • the indoor air temperature / humidity detection means 32 From the temperature and humidity of the outdoor air detected by the outdoor air temperature / humidity detection means 31, assuming an sensible heat load and a latent heat load, and determining an optimum evaporation temperature by feedforward control, the indoor air temperature / humidity detection means 32 Because the optimal evaporating temperature is corrected by feedback control using the temperature and humidity of the indoor air detected in step 3, the time to find the optimal evaporating temperature is short, it is possible to follow load fluctuations, and energy saving is improved. it can.
  • the indoor unit system 11 set Tei_max (° C.) and Tei_min (° C.), and the ventilator system 21 set Tev_max (° C.) and Tev_min (° C.) at the Hi level and the Lo level according to the evaporation temperature level, respectively.
  • a certain fixed value may be set such that the Hi level is constant at 14 (° C.) and the Lo level is constant at 0 (° C.).
  • switching between Hi and Lo was performed depending on the difference between the room temperature and humidity and the outdoor temperature and humidity.
  • the energy saving control command is forcibly changed to the Hi level by the energy saving control command from the centralized controller 102.
  • the Hi / Lo level may be changed by an external command, such as changing to Lo level upon release.
  • the maximum evaporation temperatures Tei_max (° C.) and Tev_max (° C.) that are upper limit values of the evaporation temperature control range and the minimum evaporation temperatures Tei_min (° C.) and Tev_min (° C.) that are lower limit values are 2 Although it had a pattern, it may have two or more patterns. Further, the outdoor air temperature / humidity detection means 31, the indoor air temperature / humidity detection means 32, and the suction temperature / humidity detection means 43 may detect the temperature and the humidity with a single one or with separate ones. Also good.
  • absolute humidity is used for humidity control, but similar control may be performed using relative humidity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 室外空気温度に応じて第一冷媒系統の蒸発温度制御範囲を決定し、第一冷媒系統の蒸発温度を第一冷媒系統の蒸発温度制御範囲内で決定した目標蒸発温度となるように制御し、室外空気湿度に応じて第二冷媒系統の蒸発温度制御範囲を決定し、第二冷媒系統の蒸発温度を第二冷媒系統の蒸発温度制御範囲内で決定した目標蒸発温度となるように制御するものである。

Description

空気調和システム
 本発明は、換気装置を備えた空気調和システムに関するものである。
 従来の換気装置を備えた空気調和システムは、圧縮機、四方弁、室外熱交換器、膨張手段、室内熱交換器からなる冷媒系統で構成され、その冷媒系統内に冷媒が充填されている。冷房時は、圧縮機で圧縮された冷媒は、高温高圧のガス冷媒となり、室外熱交換器に送り込まれる。その室外熱交換器に流れ込んだ冷媒は、空気に熱を放出することで液化する。
 そして、液化した冷媒は、膨張手段で減圧されて気液二相状態となり、室内熱交換器にて周囲空気から熱を吸収することでガス化する。一方で、空気は熱を奪われるため、室内空間を冷房することが可能となる。ガス化した冷媒は圧縮機に戻る。
 また、換気装置は、室内の空気を室外の新鮮空気と入れ替える運転を行っており、冷房時、室外空気から導入される空気のエンタルピーが高い場合は、冷房負荷(室外空気負荷)となる。その他の負荷としては、室内で発生する負荷(室内負荷)、建物壁面から侵入する熱の負荷(熱貫流負荷)がある。
 そのため、空調機器としては、室外空気負荷、室内負荷、熱貫流負荷を処理する必要がある。室外空気負荷、室内負荷の中には、顕熱負荷に加えて潜熱負荷も含まれているため、従来の空気調和システムでは室内熱交換器温度(冷媒蒸発温度)を低温一定にして、潜熱負荷を処理していた。
 しかしながら、蒸発温度を低温一定で運転して潜熱負荷を処理する運転では、負荷にかかわらず消費電力量の多い低温で運転するため、運転効率(エネルギー効率)が低下してしまうという課題があった。一方、蒸発温度を高めると消費電力量を少なくできるため、運転効率は向上するが、潜熱処理量が不足して室内空気湿度が上昇し、快適性が低下するという課題があった。
 そこで、室内空気湿度に応じて決まる蒸発温度上限値を設定し、設定した蒸発温度上限値以下の範囲で蒸発温度と室内空気温湿度、設定温度に基づき、潜熱処理不足を発生させずに蒸発温度を制御する空気調和システムがある(例えば、特許文献1参照)。
WO2003/029728号(例えば、3頁~4頁参照)
 しかしながら、特許文献1に示す空気調和システムの制御では、室外空気負荷を考慮していないため、室外空気が高湿の場合は潜熱処理量不足による湿度上昇によって、快適性が低下してしまうという課題があった。また、室外空気が低湿の場合は必要以上に潜熱処理量が増え、消費電力量が増えてしまう(省エネ性が低下してしまう)という課題があった。
 本発明は、以上のような課題を解決するためになされたもので、室外空気負荷を考慮し、潜熱処理量不足(除湿不足)による快適性低下や過剰潜熱処理による省エネ性低下を回避し、快適性を維持(温度及び湿度の維持)しつつ省エネ性を高めることを実現する空気調和システムを提供することを目的としている。
 本発明に係る空気調和システムは、第一の冷媒が循環する第一室外機と室内機とで構成される第一冷媒系統と、第二の冷媒が循環する第二室外機と換気装置とで構成される第二冷媒系統を有し、前記第一冷媒系統は、第一圧縮機、第一室外熱交換器、第一膨張弁、室内熱交換器を有し、前記第二冷媒系統は、第二圧縮機、第二室外熱交換器、第二膨脹弁、冷却器を有し、前記第一室外機は、前記第一圧縮機、前記第一室外熱交換器、を有し、前記第二室外機は、前記第二圧縮機、前記第二室外熱交換器、を有し、前記室内機は、前記第一膨張弁、前記室内熱交換器、を有し、室内空気を温度調整しながら循環させるように構成され、前記換気装置は、前記第二膨脹弁、前記冷却器、を有し、室内空気と室外空気を入れ替えると共に入れ替えられる空気の間で温度調整を行うように構成され、前記第一室外機と前記室内機、前記第二室外機と前記換気装置はそれぞれ冷媒配管で接続されており、室外空気の温湿度を検出する手段を有し、室外空気温度に応じて前記第一冷媒系統の蒸発温度制御範囲を決定し、前記第一冷媒系統の蒸発温度を前記第一冷媒系統の前記蒸発温度制御範囲内で決定した目標蒸発温度となるように制御し、室外空気湿度に応じて前記第二冷媒系統の蒸発温度制御範囲を決定し、前記第二冷媒系統の蒸発温度を前記第二冷媒系統の前記蒸発温度制御範囲内で決定した目標蒸発温度となるように制御するものである。
 本発明に係る空気調和システムによれば、室外空気の温湿度によって決まる室外空気負荷に応じて蒸発温度を制御することで、顕熱負荷及び潜熱負荷を確実に処理しながら蒸発温度を高くすることができるため、快適性を維持しつつ省エネ性を高めることができる。
本発明の実施の形態に係る空気調和システム概略図である。 本発明の実施の形態に係る空気調和システムの冷媒系統図1である。 本発明の実施の形態に係る空気調和システムの換気装置概略図である。 本発明の実施の形態に係る空気調和システムの冷媒系統図2である。 本発明の実施の形態に係る空気調和システムのTei-ΔT図1である。 本発明の実施の形態に係る空気調和システムのTev-ΔX図1である。 本発明の実施の形態に係る空気調和システムの蒸発温度制御範囲を表す図である。 本発明の実施の形態に係る空気調和システムの空気線図1である。 本発明の実施の形態に係る空気調和システムの空気線図2である。 本発明の実施の形態に係る空気調和システムの空気線図3である。 本発明の実施の形態に係る空気調和システムのTei-ΔT図2である。 本発明の実施の形態に係る空気調和システムのTev-ΔX図2である。 本発明の実施の形態に係る空気調和システムの制御フローである。 本発明の実施の形態に係る空気調和システムの蒸発温度上昇による効果を示した図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
実施の形態.
 図1は、本発明の実施の形態に係る空気調和システム概略図、図2は、本発明の実施の形態に係る空気調和システムの冷媒系統図1である。
 まず、空気調和システム100の構成について説明する。
 この空気調和システム100は、ビルやマンション等に設置され、冷媒を循環させる冷媒系統を利用することで冷房負荷や暖房負荷を供給できるものである。空気調和システム100は、室内機系統11(第一冷媒系統)と、換気装置系統21(第二冷媒系統)との2系統の冷媒系統から構成され、それらは伝送線103で集中コントローラ102に接続されている。また、集中コントローラ102には目標温湿度設定手段44が設けられている。なお、集中コントローラ102は、空気調和システム100を制御するものである。
 室内機系統11は、例えば3つの室内機1が室内機系統室外機2と冷媒配管104でそれぞれ接続され、換気装置系統21は、例えば1つの換気装置3が換気装置系統室外機4と冷媒配管105で接続されている。
 また、室内機1、室内機系統室外機2、換気装置3、及び換気装置系統室外機4は、それぞれ伝送線103で集中コントローラ102に接続されている。
 なお、本実施の形態では室内機1の数を3つ、換気装置3の数を1つとしたが、それぞれ他の数でもよい。
 室内機系統11は、圧縮機12と、四方弁13と、室外熱交換器用送風機17が設けられた室外熱交換器14と、膨張弁15と、室内熱交換器用送風機18が設けられた室内熱交換器16と、を備えている。
 なお、膨張弁15と、室内熱交換器16と、は室内機1を構成し、圧縮機12と、四方弁13と、室外熱交換器14と、は室内機系統室外機2を構成している。
 換気装置系統21は、圧縮機22と、四方弁23と、室外熱交換器用送風機27が設けられた室外熱交換器24と、膨張弁25と、冷却器26と、を備えている。
 なお、膨張弁25と、冷却器26と、は換気装置3を構成し、圧縮機22と、四方弁23と、室外熱交換器24と、は換気装置系統室外機4を構成している。
 図3は、本発明の実施の形態に係る空気調和システムの換気装置概略図である。
 換気装置3は、上述した膨張弁25と、冷却器26の他、給気用送風機28と、排気用送風機29と、室内空気と室外空気との全熱交換を行う全熱交換器30と、室外空気の温度と湿度を検出する室外空気温湿度検出手段31と、室内空気の温度と湿度を検出する室内空気温湿度検出手段32と、を有している。
 なお、室外空気温湿度検出手段31は室外空気の温度と湿度を検出できる位置、室内空気温湿度検出手段32は室内空気の温度と湿度を検出できる位置にそれぞれ設けられている。
 図4は、本発明の実施の形態に係る空気調和システムの冷媒系統図2である。
 圧縮機12、22には圧縮機周波数調整手段41がそれぞれ設けられ、圧縮機12、22の吸入側には蒸発温度検出手段42がそれぞれ設けられている。また、各室内機1には吸込温湿度を検出できる位置に吸込温湿度検出手段43が設けられている。
 図5は、本発明の実施の形態に係る空気調和システムのTei-ΔT図1、図6は、本発明の実施の形態に係る空気調和システムのTev-ΔX図1である。
 なお、Teiは室内機系統11での目標蒸発温度を、ΔTは室内空気温度Ta(℃)と目標温度Ta_tgt(℃)との差を、Tevは換気装置系統21での目標蒸発温度を、ΔXは室内空気絶対湿度Xa(kg/kg’)と目標絶対湿度Xa_tgt(kg/kg’)との差を、それぞれ表している。
 次に、空気調和システム100の動作について説明する。
 なお、本実施の形態では、全ての室内機1が冷房運転を行っているものとする。
 室内機系統11は、図4に示す吸込温湿度検出手段43で検出された室内空気温度Ta(℃)と、図1に示す目標温湿度設定手段44で設定した目標温度(室内の設定温度)Ta_tgtとの差ΔT(℃)から、図5に示すTei-ΔT図に基づいて、最大蒸発温度Tei_max(℃)と最小蒸発温度Tei_min(℃)との間の値(蒸発温度制御範囲内の値)である目標蒸発温度Tei(℃)を決定する。そして、圧縮機12の吸入側に設けられた蒸発温度検出手段42で検出される冷媒の蒸発温度が目標蒸発温度Teiとなるように、圧縮機周波数調整手段41で室内機系統室外機2の圧縮機12の周波数を制御し、室内空気温度Ta(℃)を調整する。
 一方、換気装置系統21は、図3に示す室内空気温湿度検出手段32で検出された室内空気絶対湿度Xa(kg/kg’)と、図1に示す目標温湿度設定手段44で設定した目標絶対湿度(室内の設定湿度)Xa_tgt(kg/kg’)との差ΔX(kg/kg’)から、図6に示すTev-ΔX図に基づいて、最大蒸発温度Tev_max(℃)と最小蒸発温度Tev_min(℃)との間の値(蒸発温度制御範囲内の値)である目標蒸発温度Tev(℃)を決定する。そして、圧縮機22の吸入側に設けられた蒸発温度検出手段42で検出される冷媒の蒸発温度が目標蒸発温度Tevとなるように、圧縮機周波数調整手段41で換気装置系統室外機4の圧縮機22の周波数を制御し、室内空気絶対湿度Xa(kg/kg’)を調整する。
 なお、蒸発温度制御範囲とは、蒸発温度が制御される温度範囲のことであり、Tei_max(℃)、Tev_max(℃)はその上限値、Tei_min(℃)、Tev_min(℃)はその下限値である。つまり、蒸発温度は、この蒸発温度制御範囲を超えないように制御される。
 従来は、温度(顕熱)と湿度(潜熱)の制御を互いに独立して行えなかったため、温度と湿度の両方を目標値にすることが困難であった。
 しかしながら、空気調和システム100では、以上のように室内機系統11で温度の制御を、換気装置系統21で湿度の制御を、互いに独立して行うことができるため、制御性が高まり温度と湿度の両方を目標値にすることが容易となる。
 図7は、本発明の実施の形態に係る空気調和システムの蒸発温度制御範囲を表す図である。
 蒸発温度制御範囲の上限値である最大蒸発温度Tei_max(℃)、Tev_max(℃)と、下限値である最小蒸発温度Tei_min(℃)、Tev_min(℃)は、図7に示すように蒸発温度レベルに応じて、それぞれHiレベルとLoレベルの2パターンを持っておく。
 また、室内機系統11及び換気装置系統21の蒸発温度レベルは、室外空気の温湿度条件によって決まる。つまり、室外空気の温湿度に応じて室内機系統11及び換気装置系統21の負荷が決まるため、負荷が大きい場合はLoレベル、負荷が小さい場合はHiレベルにする。なお、室内機系統11及び換気装置系統21において、HiレベルのTei_max(℃)、Tev_max(℃)と、Tei_min(℃)、Tev_min(℃)の値は、ともにLoレベルの値より大きい値とする。そのため、HiレベルよりLoレベルの方が、冷房能力(冷却能力及び除湿能力)を上げることができる。このように決定することで、負荷が大きい場合は冷房能力を上げて冷却不足や除湿不足を回避しつつ、負荷が小さい場合は冷房能力を下げて省エネ運転を行うことができる。
 なお、室外空気の温湿度には、図3に示す室外空気温湿度検出手段31で検出された値を用いる。
 図8は、本発明の実施の形態に係る空気調和システムの空気線図1である。
 室外空気温湿度検出手段31で検出された温湿度の値は、図8に示すように乾球温度の閾値T0と絶対湿度の閾値X0を境界として、4つのゾーン(ゾーンI~IV)に分けられる。
 ゾーンIにある場合は、室外空気が低温及び低湿度であるので、低顕熱負荷条件及び低潜熱負荷条件、ゾーンIIにある場合は、室外空気が低温及び高湿度であるので、低顕熱負荷条件及び高潜熱負荷条件、ゾーンIIIにある場合は、室外空気が高温及び低湿度であるので、高顕熱負荷条件及び低潜熱負荷条件、ゾーンIVにある場合は、室外空気が高温及び高湿度であるので、高顕熱負荷条件及び高潜熱負荷条件、となる。
 なお、閾値T0と閾値X0については後述する。
 低顕熱負荷条件(ゾーンIとゾーンII)では、顕熱を制御する室内機系統11の顕熱負荷は小さいので、室内機系統11の蒸発温度を上げて冷却能力を下げることが可能となる(蒸発温度を上げても冷却不足は発生しないため)。そのため、図7に示す室内機系統11の蒸発温度レベルはHiレベルとすることができ、ΔT(=Ta-Ta_tgt)(℃)から、図5に示すTei-ΔT図に基づいて目標蒸発温度Tei(℃)が決定される。
 なお、ΔTが0のときTei_max=Tei_hi_max(℃)、ΔTが予め決められた温度T1のときTei_min=Tei_hi_min(℃)とし、0≦ΔT≦T1の間は、Tei_max(℃)とTei_min(℃)の間でΔTと反比例関係にあるとして目標蒸発温度Tei(℃)を決定する。
 一方、高顕熱負荷条件(ゾーンIIIとゾーンIV)では、顕熱を制御する室内機系統11の顕熱負荷は大きいので、室内機系統11の蒸発温度を下げて冷却能力を上げる必要がある。そのため、図7に示す室内機系統11の蒸発温度レベルはLoレベルとし、ΔT(=Ta-Ta_tgt)(℃)から、図5に示すTei-ΔT図に基づいて目標蒸発温度Tei(℃)が決定される。
 なお、ΔTが0のときTei_max=Tei_lo_max(℃)、ΔTがT1のときTei_min=Tei_lo_min(℃)とし、0≦ΔT≦T1の間は、Te_max(℃)とTe_min(℃)の間でΔTと反比例関係にあるとして目標蒸発温度Tei(℃)を決定する。
 また、低潜熱負荷条件(ゾーンIとゾーンIII)では、潜熱を制御する換気装置系統21の潜熱負荷は小さいので、換気装置系統21の蒸発温度を上げて除湿能力を下げることが可能となる(蒸発温度を上げても除湿不足は発生しないため)。そのため、図7に示す換気装置系統21の蒸発温度レベルはHiレベルとすることができ、ΔX(=Xa-Xa_tgt)(kg/kg’)から、図6に示すTev-ΔX図に基づいて目標蒸発温度Tev(℃)が決定される。
 なお、ΔXが0のときTev_max=Tev_hi_max(℃)、ΔXが予め決められた絶対湿度X1のときTev_min=Tev_hi_min(℃)とし、0≦ΔX≦X1の間は、Tev_max(℃)とTev_min(℃)の間でΔXと反比例関係にあるとして目標蒸発温度Tev(℃)を決定する。
 一方、高潜熱負荷条件(ゾーンIIとゾーンIV)では、潜熱を制御する換気装置系統21の潜熱負荷は大きいので、換気装置系統21の蒸発温度を下げて除湿能力を上げる必要がある。そのため、図7に示す換気装置系統21の蒸発温度レベルはLoレベルとし、ΔX(=Xa-Xa_tgt)(kg/kg’)から、図6に示すTev-ΔX図に基づいて目標蒸発温度Tev(℃)が決定される。
 なお、ΔXが0のときTev_max=Tev_lo_max(℃)、ΔXがX1のときTev_min=Tev_lo_min(℃)とし、0≦ΔX≦X1の間は、Tev_max(℃)とTev_min(℃)の間でΔXと反比例関係にあるとして目標蒸発温度Tev(℃)を決定する。
 図9は、本発明の実施の形態に係る空気調和システムの空気線図2である。
 以上より、室内機系統11及び換気装置系統21の蒸発温度レベルは、室外空気の温湿度条件によって、図9に示すように決定される。
 なお、各ゾーンの閾値である乾球温度の閾値T0(℃)と絶対湿度の閾値X0(kg/kg’)は、以下のようにして決定される。
 閾値T0(℃)は、室内機系統11の目標蒸発温度Tei(℃)をHiレベルのTei_hi_min(℃)とした時に、顕熱負荷を処理できる室外空気温度の最大値である。すなわち、閾値T0(℃)以下であれば、Hiレベルの蒸発温度範囲であっても目標温度に到達できる。
 実際、顕熱負荷は室外空気の温湿度条件だけでなく、人体、室外空気機器、照明などの内部発熱を考慮する必要があるが、それら人体、室外空気機器、照明などの内部発熱量はビルやマンションなどの物件毎にある程度想定され、その変動は少ないため、物件毎に想定される値を用いてT0を算出することができる。
 一方、閾値X0(kg/kg’)は、換気装置系統21の目標蒸発温度Tev(℃)をHiレベルのTev_hi_min(℃)とした時に、潜熱負荷を処理できる室外空気絶対湿度の最大値である。すなわち、閾値X0(kg/kg’)以下であれば、Hiレベルの蒸発温度範囲であっても目標湿度に到達できる。
 実際、潜熱負荷は室外空気の温湿度条件だけでなく、人体、室外空気機器、照明などの内部発熱を考慮する必要があるが、それら人体、室外空気機器、照明などの内部発熱量はビルやマンションなどの物件毎にある程度想定され、その変動は少ないため、物件毎に想定される値を用いてX0を算出することができる。
 なお、閾値X0(kg/kg’)は、室外空気温度が変わったとしても、ある蒸発温度に対して目標湿度が同じであれば、潜熱負荷を処理できる室外空気絶対湿度の最大値はほとんど変わらない。そのため、図8及び図9に示すようにX0(kg/kg’)を決定できる。これは、蒸発温度が同じで室外空気温度が低下した場合、換気装置3の冷却器26の全熱(顕熱+潜熱)処理量は低下するが、SHF(顕熱比)が低下するため、顕熱処理量のみ低下して潜熱処理量は低下しないためである。
 図10は、本発明の実施の形態に係る空気調和システムの空気線図3である。
 閾値T0(℃)及びX0(kg/kg’)は、図1に示す目標温湿度設定手段44の設定値によって、図10に示すように変化させてもよい。同じ室外空気の温湿度条件であっても目標温度及び目標絶対湿度が変化すると、顕熱負荷及び潜熱負荷も変化する。そこで、目標温度が低くなると顕熱負荷は大きくなるため、その場合はT0(℃)を低くして冷却能力を上げる。また、目標絶対湿度が低くなると潜熱負荷は大きくなるため、その場合はX0(kg/kg’)を低くして除湿能力を上げる。
 このようにすることで、目標温度及び目標絶対湿度が変化して負荷が大きくなった場合でも、冷却不足や除湿不足の発生を回避できる。
 また、このとき図4に示す吸込温湿度検出手段43で検出された室内空気温度Ta(℃)や、図3に示す室内空気温湿度検出手段32で検出された室内空気絶対湿度Xa(kg/kg’)の値を用いて、室内機系統11及び換気装置系統21の蒸発温度レベルを、HiレベルからLoレベルへの切り替え制御を行っても良い。
 図11は、本発明の実施の形態に係る空気調和システムのTei-ΔT図2である。
 例えば、室内機系統11がHiレベルで運転中、図11に示すように吸込温湿度検出手段43で検出された室内空気温度Taと、目標温湿度設定手段44で設定した目標温度Ta_tgt(℃)との差ΔTが予め決められた温度T2(℃)(T1<T2)よりも大きい場合は、冷却能力が足りず顕熱負荷を処理できていないと判断し、冷却能力を上げるためHiレベルからLoレベルに移行する。
 逆に、室内機系統11がLoレベルで運転中、図11に示すように室内空気温度Ta(℃)と、目標温度Ta_tgt(℃)との差ΔTが予め決められた温度T3(℃)(<0)よりも小さい場合は、冷却能力に余裕があり蒸発温度を更に上げられると判断し、冷却能力を下げるためLoレベルからHiレベルに移行する。なお、Loレベル運転中に圧縮機12がサーモオフした場合に、LoレベルからHiレベルに移行するとしてもよい。
 図12は、本発明の実施の形態に係る空気調和システムのTev-ΔX図2である。
 また、換気装置系統21がHiレベルで運転中、図12に示すように室内空気温湿度検出手段32で検出された室内空気絶対湿度Xa(kg/kg’)と、目標温湿度設定手段44で設定した目標絶対湿度(室内の設定湿度)Xa_tgt(kg/kg’)との差ΔXが予め決められた絶対湿度X2(kg/kg’)(X1<X2)よりも大きい場合は、除湿能力が足りず潜熱負荷を処理できていないと判断し、除湿能力を上げるためHiレベルからLoレベルに移行する。
 逆に、換気装置系統21がLoレベルで運転中、図12に示すように室内空気絶対湿度Xa(kg/kg’)と、目標絶対湿度(室内の設定湿度)Xa_tgt(kg/kg’)との差ΔXが予め決められた絶対湿度X3(kg/kg’)(<0)よりも小さい場合は、除湿能力に余裕があり蒸発温度を更に上げられると判断し、除湿能力を下げるためLoレベルからHiレベルに移行する。なお、Loレベル運転中に圧縮機22がサーモオフした場合に、LoレベルからHiレベルに移行するとしてもよい。
 以上のように、室内空気の温湿度条件に応じてフィードバック制御することで、冷却不足や除湿不足の発生を回避できる。
 なお、室内空気温度Ta(℃)の値について、図3に示す室内空気温湿度検出手段32で検出された値を用いてもよいし、室内空気絶対湿度Xa(kg/kg’)の値について、図4に示す吸込温湿度検出手段43で検出された値を用いてもよい。
 図13は、本発明の実施の形態に係る空気調和システムの制御フローである。
 次に、上述した空気調和システム100の動作について、図13に示す制御フローに沿って説明する。
 空気調和システム100の運転開始後、室外空気温湿度検出手段31で室外空気の温湿度を検出する(S10)。
 その検出した室外空気の温湿度の値に応じてゾーン判定を行い(S20)、室内機系統11及び換気装置系統21の蒸発温度レベル(HiレベルあるいはLoレベル)に応じて、蒸発温度制御範囲をそれぞれ決定する(S30)。
 次に、室内空気温度Ta(℃)と目標温度Ta_tgt(℃)とから、それらの差ΔT(℃)を、室内空気絶対湿度Xa(kg/kg’)と目標絶対湿度Xa_tgt(kg/kg’)とから、それらの差ΔX(kg/kg’)を、それぞれ算出する(S40)。
 そして、ΔT(℃)がT3(℃)以上かつT2(℃)以下かどうかを判定し(S51)、その条件を満たす場合は、図5に示すTei-ΔT図に基づいて目標蒸発温度Tei(℃)を決定する(S61)。その後、運転終了かどうかを判定し(S140)、終了しない場合はS20に戻り、同じフローで制御を行う。
 また、同時にΔX(kg/kg’)がX3(kg/kg’)以上かつX2(kg/kg’)以下かどうかを判定し(S52)、その条件を満たす場合は、図6に示すTev-ΔX図に基づいて目標蒸発温度Tev(℃)を決定する(S62)。その後、運転終了かどうかを判定し(S140)、終了しない場合はS20に戻り、同じフローで制御を行う。
 S51で条件を満たさなかった場合は、ΔT(℃)がT3(℃)より小さいかどうかを判定し(S71)、その条件を満たす場合は、現在の室内機系統11の蒸発温度レベルがLoレベルかどうかを判定し(S81)、その条件を満たす場合は、室内機系統11の蒸発温度レベルをHiレベルに移行する(S91)。その後、運転終了かどうかを判定し(S140)、終了しない場合はS20に戻り、同じフローで制御を行う。
 また、S52で条件を満たさなかった場合は、ΔX(kg/kg’)がX3(kg/kg’)より小さいかどうかを判定し(S72)、その条件を満たす場合は、現在の換気装置系統21の蒸発温度レベルがLoレベルかどうかを判定し(S82)、その条件を満たす場合は、換気装置系統21の蒸発温度レベルをHiレベルに移行する(S92)。
 その後、運転終了かどうかを判定し(S140)、終了しない場合はS20に戻り、同じフローで制御を行う。
 S81またはS91で条件を満たさなかった場合は、運転終了かどうかを判定し(S140)、終了しない場合はS20に戻り、同じフローで制御を行う。また、S71で条件を満たさなかった場合は、現在の室内機系統11の蒸発温度レベルがHiレベルかどうかを判定し(S101)、その条件を満たす場合は、室内機系統11の蒸発温度レベルをLoレベルに移行する(S111)。その後、運転終了かどうかを判定し(S140)、終了しない場合はS20に戻り、同じフローで制御を行う。
 また、S101で条件を満たさなかった場合は、現在の換気装置系統21の蒸発温度レベルがHiレベルかどうかを判定し(S121)、その条件を満たす場合は、換気装置系統21の蒸発温度レベルをLoレベルに移行する(S131)。その後、運転終了かどうかを判定し(S140)、終了しない場合はS20に戻り、同じフローで制御を行う。
 また、S121で条件を満たさなかった場合は、運転終了かどうかを判定し(S140)、終了しない場合はS20に戻り、同じフローで制御を行う。
 S82またはS92で条件を満たさなかった場合は、運転終了かどうかを判定し(S140)、終了しない場合はS20に戻り、同じフローで制御を行う。また、S72で条件を満たさなかった場合は、現在の換気装置系統21の蒸発温度レベルがHiレベルかどうかを判定し(S102)、その条件を満たす場合は、換気装置系統21の蒸発温度レベルをLoレベルに移行する(S112)。その後、運転終了かどうかを判定し(S140)、終了しない場合はS20に戻り、同じフローで制御を行う。
 また、S102で条件を満たさなかった場合は、現在の室内機系統11の蒸発温度レベルがHiレベルかどうかを判定し(S122)、その条件を満たす場合は、室内機系統11の蒸発温度レベルをLoレベルに移行する(S132)。その後、運転終了かどうかを判定し(S140)、終了しない場合はS20に戻り、同じフローで制御を行う。
 また、S121で条件を満たさなかった場合は、運転終了かどうかを判定し(S140)、終了しない場合はS20に戻り、同じフローで制御を行う。
 図14は、本発明の実施の形態に係る空気調和システムの蒸発温度上昇による効果を示した図である。
 上述の制御を行うことにより、室外空気の温湿度によって決まる負荷に応じて最適な蒸発温度とすることが可能となる。つまり、顕熱負荷及び潜熱負荷を確実に処理しながら、負荷が小さくなったら蒸発温度を高くすることで過剰処理を抑制でき、図14に示すように圧縮機12、22の入力が低減されるため、快適性を維持しつつ省エネ性を高めることができる。
 また、室外空気温湿度検出手段31で検出した室外空気の温湿度に応じて負荷を判定しているため、負荷が小さいと判定された場合は、運転開始時も蒸発温度を高めで運転することが可能となり、運転開始の冷やし込み時(プルダウン時)の省エネ効果も得られる。
 また、室外空気温湿度検出手段31で検出した室外空気の温湿度から、顕熱負荷及び潜熱負荷を想定し、フィードフォワード制御で最適となる蒸発温度を決定した後、室内空気温湿度検出手段32で検出した室内空気の温湿度を用いたフィードバック制御で最適な蒸発温度を修正するため、蒸発温度の最適値を見つけるまでの時間が短く、負荷変動にも追従可能となり、省エネ性を高めることができる。
 今回、蒸発温度レベルに応じたHiレベルとLoレベルで、室内機系統11はTei_max(℃)及びTei_min(℃)、換気装置系統21はTev_max(℃)及びTev_min(℃)をそれぞれ設定したが、例えば、Hiレベルは14(℃)で一定、Loレベルは0(℃)で一定というように、ある固定値を設定してもよい。
 また、今回室内温湿度と設定温湿度との差、室外温湿度でHi、Loの切り替えを行ったが、たとえば、集中コントローラ102からの省エネ制御指令で強制的にHiレベルに変更、省エネ制御指令解除でLoレベルに変更といったように、外部指令でHi/Loレベルの変更をしてもよい。
 なお、本実施の形態では、蒸発温度制御範囲の上限値である最大蒸発温度Tei_max(℃)、Tev_max(℃)と、下限値である最小蒸発温度Tei_min(℃)、Tev_min(℃)は、2パターン持っていたが、2パターン以上持ってもよい。
 また、室外空気温湿度検出手段31、室内空気温湿度検出手段32、及び吸込温湿度検出手段43は、温度と湿度をそれぞれ1つのもので検出してもよいし、別個のもので検出してもよい。
 また、本実施の形態では、湿度の制御に絶対湿度を用いたが、相対湿度を用いて同様の制御を行ってもよい。
 1 室内機、2 室内機系統室外機、3 換気装置、4 換気装置系統室外機、11 室内機系統、12 圧縮機、13 四方弁、14 室外熱交換器、15 膨張弁、16 室内熱交換器、17 室外熱交換器用送風機、18 室内熱交換器用送風機、21 換気装置系統、22 圧縮機、23 四方弁、24 室外熱交換器、25 膨脹弁、26 冷却器、27 室外熱交換器用送風機、28 給気用送風機、29 排気用送風機、30 全熱交換器、31 室外空気温湿度検出手段、32 室内空気温湿度検出手段、41 圧縮機周波数調整手段、42 蒸発温度検出手段、43 吸込温湿度検出手段、44 目標温湿度設定手段、100 空気調和システム、102 集中コントローラ、103 伝送線、104 冷媒配管、105 冷媒配管。

Claims (9)

  1.  第一の冷媒が循環する第一室外機と室内機とで構成される第一冷媒系統と、第二の冷媒が循環する第二室外機と換気装置とで構成される第二冷媒系統を有し、
     前記第一冷媒系統は、第一圧縮機、第一室外熱交換器、第一膨張弁、室内熱交換器を有し、
     前記第二冷媒系統は、第二圧縮機、第二室外熱交換器、第二膨脹弁、冷却器を有し、
     前記第一室外機は、前記第一圧縮機、前記第一室外熱交換器、を有し、
     前記第二室外機は、前記第二圧縮機、前記第二室外熱交換器、を有し、
     前記室内機は、前記第一膨張弁、前記室内熱交換器、を有し、室内空気を温度調整しながら循環させるように構成され、
     前記換気装置は、前記第二膨脹弁、前記冷却器、を有し、室内空気と室外空気を入れ替えると共に入れ替えられる空気の間で温度調整を行うように構成され、
     前記第一室外機と前記室内機、前記第二室外機と前記換気装置はそれぞれ冷媒配管で接続されており、
     室外空気の温湿度を検出する手段を有し、
     室外空気温度に応じて前記第一冷媒系統の蒸発温度制御範囲を決定し、
     前記第一冷媒系統の蒸発温度を前記第一冷媒系統の前記蒸発温度制御範囲内で決定した目標蒸発温度となるように制御し、
     室外空気湿度に応じて前記第二冷媒系統の蒸発温度制御範囲を決定し、
     前記第二冷媒系統の蒸発温度を前記第二冷媒系統の前記蒸発温度制御範囲内で決定した目標蒸発温度となるように制御する
     ことを特徴とする空気調和システム。
  2.  前記第一冷媒系統の圧縮機の周波数によって前記第一冷媒系統の蒸発温度を制御し、
     前記第二冷媒系統の圧縮機の周波数によって前記第二冷媒系統の蒸発温度を制御する
     ことを特徴とする請求項1に記載の空気調和システム。
  3.  前記第一冷媒系統の前記蒸発温度制御範囲の上限値及び下限値は、室外空気温度が予め決められた閾値T0よりも高い場合の方が、前記閾値T0よりも低い場合に比べて高い値に決定され、
     前記第二冷媒系統の前記蒸発温度制御範囲の上限値及び下限値は、室外空気湿度が予め決められた閾値X0よりも高い場合の方が、前記閾値X0よりも低い場合に比べて高い値に決定される
     ことを特徴とする請求項1または2に記載の空気調和システム。
  4.  前記閾値T0を室内の設定温度である目標温度の値に応じて変化させ、
     前記閾値X0を室内の設定湿度である目標湿度の値に応じて変化させる
     ことを特徴とする請求項3に記載の空気調和システム。
  5.  前記第一冷媒系統の前記目標蒸発温度は、
     室内空気温度と、設定された温度との差ΔTに応じて決定され、
     前記第二冷媒系統の前記目標蒸発温度は、
     室内空気湿度と、設定された湿度との差ΔXに応じて決定される
     ことを特徴とする請求項1~4のいずれか一項に記載の空気調和システム。
  6.  前記ΔTは、
     ΔT=0のとき、前記第一冷媒系統の前記蒸発温度制御範囲の上限値となり、
     ΔT=0より大きな予め決められた値T1のとき、前記第一冷媒系統の前記蒸発温度制御範囲の下限値となり、
     前記ΔXは、
     ΔX=0のとき、前記第二冷媒系統の前記蒸発温度制御範囲の上限値となり、
     ΔX=0より大きな予め決められた値X1のとき、前記第二冷媒系統の前記蒸発温度制御範囲の下限値となる
     ことを特徴とする請求項5に記載の空気調和システム。
  7.  前記第一冷媒系統の前記目標蒸発温度は前記ΔTと反比例関係にあり、
     前記第二冷媒系統の前記目標蒸発温度は前記ΔXと反比例関係にある
     ことを特徴とする請求項5または6に記載の空気調和システム。
  8.  前記第一冷媒系統の前記蒸発温度制御範囲の上限値及び下限値が高い値に決定された場合において、前記ΔTがT1より大きな予め決められた値T2よりも大きい場合は、前記第一冷媒系統の前記蒸発温度制御範囲の上限値及び下限値を前記高い値よりも低い値に変更し、
     前記第二冷媒系統の前記蒸発温度制御範囲の上限値及び下限値が高い値に決定された場合において、前記ΔXがX1より大きな予め決められた値X2よりも大きい場合は、前記第二冷媒系統の前記蒸発温度制御範囲の上限値及び下限値を前記高い値よりも低い値に変更する
     ことを特徴とする請求項5~7のいずれか一項に記載の空気調和システム。
  9.  前記第一冷媒系統の前記蒸発温度制御範囲の上限値及び下限値が低い値に決定された場合において、前記ΔTが0より小さな予め決められた値T3よりも小さい場合は、前記第一冷媒系統の前記蒸発温度制御範囲の上限値及び下限値を前記低い値よりも高い値に変更し、
     前記第二冷媒系統の前記蒸発温度制御範囲の上限値及び下限値が低い値に決定された場合において、前記ΔXが0より小さな予め決められた値X3よりも小さい場合は、前記第二冷媒系統の前記蒸発温度制御範囲の上限値及び下限値を前記低い値よりも高い値に変更する
     ことを特徴とする請求項5~8のいずれか一項に記載の空気調和システム。
PCT/JP2013/055925 2013-03-05 2013-03-05 空気調和システム WO2014136199A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/766,531 US10006649B2 (en) 2013-03-05 2013-03-05 Air-conditioning system
PCT/JP2013/055925 WO2014136199A1 (ja) 2013-03-05 2013-03-05 空気調和システム
JP2015504037A JP6072221B2 (ja) 2013-03-05 2013-03-05 空気調和システム
CN201380074180.1A CN105026846B (zh) 2013-03-05 2013-03-05 空调系统
EP13877050.8A EP2966374B1 (en) 2013-03-05 2013-03-05 Air-conditioning system
CN201420094878.1U CN204063345U (zh) 2013-03-05 2014-03-04 空气调节系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/055925 WO2014136199A1 (ja) 2013-03-05 2013-03-05 空気調和システム

Publications (1)

Publication Number Publication Date
WO2014136199A1 true WO2014136199A1 (ja) 2014-09-12

Family

ID=51490765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055925 WO2014136199A1 (ja) 2013-03-05 2013-03-05 空気調和システム

Country Status (5)

Country Link
US (1) US10006649B2 (ja)
EP (1) EP2966374B1 (ja)
JP (1) JP6072221B2 (ja)
CN (2) CN105026846B (ja)
WO (1) WO2014136199A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170038342A (ko) * 2015-09-30 2017-04-07 엘지전자 주식회사 공기조화기 및 그 제어방법
WO2018182022A1 (ja) * 2017-03-31 2018-10-04 ダイキン工業株式会社 空調システム
WO2018212243A1 (ja) * 2017-05-19 2018-11-22 ダイキン工業株式会社 空調システム
CN113266873A (zh) * 2021-06-21 2021-08-17 珠海格力电器股份有限公司 新风空调系统及其控制方法
US11262092B2 (en) * 2016-06-08 2022-03-01 Mitsubishi Electric Corporation Air conditioning system including a ventilator that supplies humidified outdoor air
CN114608128A (zh) * 2022-02-07 2022-06-10 青岛海尔空调器有限总公司 用于空调芯片温度控制的方法、装置和空调、存储介质

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9874360B2 (en) * 2013-05-14 2018-01-23 Mitsubishi Electric Corporation Air-conditioning system
JP6135705B2 (ja) * 2015-04-06 2017-05-31 ダイキン工業株式会社 利用側空調装置
DE102015211960A1 (de) * 2015-06-26 2016-12-29 BSH Hausgeräte GmbH Kältegerät mit Luftfeuchteüberwachung
CN106949592B (zh) * 2015-11-11 2020-04-24 威马通风设备无限责任公司 外部风量分配系统
WO2018220803A1 (ja) * 2017-06-01 2018-12-06 三菱電機株式会社 空気調和システム
CN113834175B (zh) * 2020-06-23 2022-10-28 青岛海尔空调电子有限公司 用于多联机空调机组的压缩机频率控制方法
EP4248145A1 (en) * 2020-11-19 2023-09-27 FT Energy Controls, LLC Terminal unit and method for improved indoor cooling
CN115540245A (zh) * 2021-06-30 2022-12-30 美的集团股份有限公司 空调制冷控制方法、空调器及计算机可读存储介质
CN114517969A (zh) * 2022-04-02 2022-05-20 珠海市金品创业共享平台科技有限公司 空调恒温的控制系统、方法、相关设备及空调器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4759195A (en) * 1987-01-28 1988-07-26 Biancardi Robert P Energy saving self-powered industrial dehumidifier
JPH10259944A (ja) * 1997-03-19 1998-09-29 Hitachi Ltd 空気調和システム
WO2003029728A1 (en) 2001-09-28 2003-04-10 Daikin Industries, Ltd. Air conditioner
EP1462729A2 (en) * 2003-03-25 2004-09-29 Ebac Limited Dehumidifiers
JP2010071587A (ja) * 2008-09-19 2010-04-02 East Japan Railway Co 空調システム
JP2011064407A (ja) * 2009-09-17 2011-03-31 Mitsubishi Electric Corp 空気調和装置
JP2012127649A (ja) * 2012-03-29 2012-07-05 Mitsubishi Electric Corp 空気調和装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5950442A (en) * 1996-05-24 1999-09-14 Ebara Corporation Air conditioning system
JP4032634B2 (ja) * 2000-11-13 2008-01-16 ダイキン工業株式会社 空気調和装置
US6711907B2 (en) * 2001-02-28 2004-03-30 Munters Corporation Desiccant refrigerant dehumidifier systems
US6755035B1 (en) * 2003-02-20 2004-06-29 Supermarket Environment Services Company HVAC system and method for conditioning air
JP2005049059A (ja) * 2003-07-31 2005-02-24 Daikin Ind Ltd 空気調和システム
JP3709482B2 (ja) * 2004-03-31 2005-10-26 ダイキン工業株式会社 空気調和システム
JP3945520B2 (ja) 2005-05-24 2007-07-18 ダイキン工業株式会社 空調システム
JPWO2009011362A1 (ja) 2007-07-19 2010-09-24 マックス株式会社 除加湿換気システム
JP4497234B2 (ja) * 2008-07-29 2010-07-07 ダイキン工業株式会社 空気調和装置
JP2010065977A (ja) * 2008-09-12 2010-03-25 Daikin Ind Ltd 空調システム
ES2732240T3 (es) * 2009-04-03 2019-11-21 Carrier Corp Sistemas y procedimientos que implican el control de un sistema de calentamiento y de enfriamiento
EP2495502B1 (en) * 2009-10-27 2019-06-12 Mitsubishi Electric Corporation Air conditioning device
JP5425112B2 (ja) 2011-01-06 2014-02-26 三菱電機株式会社 空気調和装置及び空気調和システム
JP2012193904A (ja) * 2011-03-17 2012-10-11 Sanyo Electric Co Ltd 空気調和装置
CN202066156U (zh) 2011-05-06 2011-12-07 姜鉴明 双温自适应调控空调机组
CN202613685U (zh) * 2012-06-26 2012-12-19 重庆大学 一种温湿度选择性控制的温湿度独立控制空调

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4759195A (en) * 1987-01-28 1988-07-26 Biancardi Robert P Energy saving self-powered industrial dehumidifier
JPH10259944A (ja) * 1997-03-19 1998-09-29 Hitachi Ltd 空気調和システム
WO2003029728A1 (en) 2001-09-28 2003-04-10 Daikin Industries, Ltd. Air conditioner
EP1462729A2 (en) * 2003-03-25 2004-09-29 Ebac Limited Dehumidifiers
JP2010071587A (ja) * 2008-09-19 2010-04-02 East Japan Railway Co 空調システム
JP2011064407A (ja) * 2009-09-17 2011-03-31 Mitsubishi Electric Corp 空気調和装置
JP2012127649A (ja) * 2012-03-29 2012-07-05 Mitsubishi Electric Corp 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2966374A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170038342A (ko) * 2015-09-30 2017-04-07 엘지전자 주식회사 공기조화기 및 그 제어방법
KR102346627B1 (ko) * 2015-09-30 2022-01-05 엘지전자 주식회사 공기조화기 및 그 제어방법
US11262092B2 (en) * 2016-06-08 2022-03-01 Mitsubishi Electric Corporation Air conditioning system including a ventilator that supplies humidified outdoor air
WO2018182022A1 (ja) * 2017-03-31 2018-10-04 ダイキン工業株式会社 空調システム
JP2018173264A (ja) * 2017-03-31 2018-11-08 ダイキン工業株式会社 空調システム
CN110462301A (zh) * 2017-03-31 2019-11-15 大金工业株式会社 空调系统
CN110462301B (zh) * 2017-03-31 2020-10-20 大金工业株式会社 空调系统
US10989429B2 (en) 2017-03-31 2021-04-27 Daikin Industries, Ltd. Air conditioning system
WO2018212243A1 (ja) * 2017-05-19 2018-11-22 ダイキン工業株式会社 空調システム
JP2018194256A (ja) * 2017-05-19 2018-12-06 ダイキン工業株式会社 空調システム
CN113266873A (zh) * 2021-06-21 2021-08-17 珠海格力电器股份有限公司 新风空调系统及其控制方法
CN114608128A (zh) * 2022-02-07 2022-06-10 青岛海尔空调器有限总公司 用于空调芯片温度控制的方法、装置和空调、存储介质

Also Published As

Publication number Publication date
JPWO2014136199A1 (ja) 2017-02-09
CN105026846A (zh) 2015-11-04
EP2966374A4 (en) 2016-11-02
CN105026846B (zh) 2018-03-06
US20150362200A1 (en) 2015-12-17
EP2966374B1 (en) 2020-08-12
US10006649B2 (en) 2018-06-26
JP6072221B2 (ja) 2017-02-01
EP2966374A1 (en) 2016-01-13
CN204063345U (zh) 2014-12-31

Similar Documents

Publication Publication Date Title
JP6072221B2 (ja) 空気調和システム
JP5996107B2 (ja) 空気調和システム
WO2013172327A1 (ja) 空気調和装置
JP5984964B2 (ja) 空気調和システム
WO2017081820A1 (ja) 空気調和システムおよび空気調和システムの制御方法
WO2012023446A1 (ja) 外気処理空調機およびそれを用いたマルチ空調システム
CN102213470A (zh) 一种辐射及新风混合空调系统
JP2014020687A (ja) 空調装置
WO2015173895A1 (ja) 空気調和システム
JP6221198B2 (ja) 外調機の制御装置
JP6105933B2 (ja) 直膨コイルを使用した空気調和機
JP5424706B2 (ja) 冷凍サイクル装置
JP7374633B2 (ja) 空気調和機及び空気調和システム
JP6024726B2 (ja) 外調機の制御装置
JP6213781B2 (ja) 外調機の制御方法
KR100712857B1 (ko) 혼합형 유니터리 공기조화장치의 냉매량 조절방법
KR100712928B1 (ko) 혼합형 유니터리 공기조화장치의 압축기 선택 운전방법
JP6370425B2 (ja) 直膨コイルを使用した空気調和機
KR101271588B1 (ko) 공기열 멀티 항온항습기
JP6134511B2 (ja) 直膨コイルを使用した空気調和機
JP6938950B2 (ja) 空気調和システム
JP6490095B2 (ja) 空気調和システム
WO2020208751A1 (ja) 空気調和装置
JPH0926186A (ja) 冷媒循環式空調システム
WO2015173896A1 (ja) 空気調和システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380074180.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877050

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013877050

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14766531

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015504037

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE