JP6370425B2 - 直膨コイルを使用した空気調和機 - Google Patents

直膨コイルを使用した空気調和機 Download PDF

Info

Publication number
JP6370425B2
JP6370425B2 JP2017039911A JP2017039911A JP6370425B2 JP 6370425 B2 JP6370425 B2 JP 6370425B2 JP 2017039911 A JP2017039911 A JP 2017039911A JP 2017039911 A JP2017039911 A JP 2017039911A JP 6370425 B2 JP6370425 B2 JP 6370425B2
Authority
JP
Japan
Prior art keywords
direct expansion
expansion coil
coil
air
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017039911A
Other languages
English (en)
Other versions
JP2017122573A (ja
Inventor
和美 坂本
和美 坂本
匡洋 長崎
匡洋 長崎
富生 毛利
富生 毛利
光一 川本
光一 川本
忠敬 才野
忠敬 才野
佐々木 義高
義高 佐々木
將人 塩見
將人 塩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Sinko Industries Ltd
Original Assignee
Kajima Corp
Sinko Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Sinko Industries Ltd filed Critical Kajima Corp
Priority to JP2017039911A priority Critical patent/JP6370425B2/ja
Publication of JP2017122573A publication Critical patent/JP2017122573A/ja
Application granted granted Critical
Publication of JP6370425B2 publication Critical patent/JP6370425B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、複数の直膨コイルを使用した空気調和機に関し、特に、直列2段の直膨コイル群をそれぞれ複数の並列する直膨コイルとするものであって、省エネを実現する直膨コイルを使用した空気調和機に関する。
従来、水コイルを使用する空気調和機の熱媒(冷媒)は冷水、温水、蒸気などであるが、直膨コイルの空気調和機における冷媒コイルの熱媒は水以外の冷媒である。
従来、クリーンルームでは厳格な空調管理が要求されているが、通常、設定温度・湿度の許容範囲は、温度では±3℃以内、湿度では10%以内の制御が求められている。
ところで、水コイルを使用する空気調和機の熱媒は冷水、温水、蒸気などであり、直膨コイルの空気調和機における冷媒コイルの熱媒は冷媒であるが、以下に述べるように、それぞれに利点や欠点がある。
クリーンルームでの水コイル使用の基本的な空調システムは、図1に示すようなものであるが、戸外からの空気OAは、冷水コイルaをバルブiで制御して熱交換され、目標の大凡の温度・湿度以下に冷房(暖房)され、再熱コイルbと加湿器cとで微調整して求められる給気SAを得ている。
この場合の空気の状態変化を、図2の空気線図を参照して図1のシステムを説明すると、外気OAが図2でのA点の状態であると、水コイルaは冷凍機hやチラーから冷水(温水、蒸気)が供給されていて、バルブiを制御することにより、コイル出口空気温度を設定した露点温度、実際は、露点温度の設定値は余裕をみて目標絶対湿度より低い露点温度まで(図2の目標絶対湿度線以下)温度をさげ、B点に移行する。
その後、ボイラeにより高温の温水或いは蒸気をバルブdにより制御して再加熱コイルbに供給し、露点温度から加湿可能温度まで再熱し、空気温度を図2のC点まで上昇させる。更に、ボイラeからの蒸気を加湿器cから噴霧して、最終目標の湿度にして図2のD点まで上昇させている。
しかしながら、図1に示すような、従来の水コイル使用の基本的な空調システムは、(1)冷却・再熱のための熱源機器を設置するための熱源機械室が必要であり、(2)バックアップを考えた場合もう1セットのシステム設置が必要であり、(3)分散している空気調和機の運転台数に関わらず大型の熱源機器が運転し、冷水の搬送動力が低減し難く、(4)熱源機器、冷水・再熱コイル・加湿のバルブ制御が異なる工事区分となり、施工後の管理項目が煩雑となるといった問題点があった。
また、直膨コイルは間接的な熱の受け渡しがないため、直膨コイルのシステムの冷暖房効率は水コイルを上回るはずであるが、直膨コイルは水以外の冷媒であることから、液体や気体といった異なった相にするための圧力・温度の制御が難しく、きめ細かい制御の管理が厄介であるといった問題点があった。
例えば、クリーンルームでの直膨コイル使用の基本的な空調システムは、図3に示すようなものであるが、図1の水コイルaの使用と異なるのは、水コイルaの変わりに、3台の直膨コイルg1,g2,g3を並列配置した構成で、下流に送風機(ファン)lを配置した構成である。直膨コイルで広範囲な空調制御が難しく、そこで、直膨コイルを3台並列にして、低負荷の場合は1台稼働にし、高負荷の場合には全台を稼働して、広範囲の空調制御を可能としている。
この場合の空気の状態変化を、図2の空気線図を参照して図3のシステムを説明すると、外気OAが図4でのA点の状態であると、ファンと圧縮器からなる室外機k1,k2,k3の全機運転し、直膨コイルg1,g2,g3のコイル出口空気温湿度を設定した露点温度以下、露点温度の設定値は余裕をみて目標絶対湿度より低い露点温度にさげ、B点に移行する。
その後は、水コイルの空調機と同様に、ボイラeにより高温の温水或いは蒸気をバルブfにより制御して再加熱コイルbに供給し、露点温度から加湿可能温度まで再熱し、空気温度を図2のC点まで上昇させる。更に、ボイラeからの蒸気を加湿器cから噴霧して、最終目標の湿度にして図2のD点まで上昇させている。
しかしながら、図3に示すような、直膨コイル使用の基本的な空調システムは、(1)直膨コイルが並列設置の為、除湿能力を考慮すると負荷による室外機の停止が困難となり、台数制御運転やメンテナンス時・故障時の対応が出来ない。例えば、図4の空気線図で説明すると、直膨コイルg2,g3が停止してバイパス状態であって、直膨コイルg1だけが稼働してる場合は、直膨コイルg1の出口空気温湿度はB点にはなるが、直膨コイルg2,g3がバイパス状態であるので、これらを混合した空気は、Bmix点となり設定した露点温度以下にはならない。したがって、常時全数運転する必要がある。
また、(2)直膨コイル出口温度を目標露点温度以下にするため、常時すべての室外機が運転が必要となり、低負荷時はコイル出口空気温湿度は目標値よりもかなり低くなる。そのため、B→Cの再熱能力及びC→Dの加湿能力が大きくなる為、結果として、省エネルギー運転とならない。
このため、直膨コイルは空気の温度・湿度管理の要求が厳格ではない家庭用の空気調和機等の室内機1個に対し室外機も1個ずつ使っている小型のエアコンを部屋ごとに設置する方法がむしろ好まれる傾向にあり、直膨コイルだけの空調設備は大きな工場等では採用され難い傾向にあり、特許文献1、2に開示されているように、直膨コイルと水コイルとの併用によって大きな工場等でも採用できる空気調和システムが提案されている。
そこで、発明者らは、特許文献3として、直膨コイルだけを使用した空気調和機であって、水コイルのための冷水をつくる熱源機が不要で省スペース化とし、ローテーション運転を可能として耐久性を向上させ、また、故障時のバックアップ運転が容易に対応でき、かつ、従来の冷水コイルや並列配置と同様に、広範囲での温度・湿度をきめ細かく制御が可能で、再熱コイル・加湿器を設置し恒温恒湿条件を満足できる空気調和機を提供している。
特開2006−292300号公報 特開2008−75978号公報 特開2013−64519号公報
本発明は、直膨コイルだけを用いた空気調和機において、圧縮器に還流する冷媒の蒸発圧力を検知して、その蒸発圧力の値によって圧縮器の圧縮圧力を制御する空気調和機を提供しようとするものである。
更に、水コイルのための冷水をつくる熱源機が不要で省スペース化とし、ローテーション運転を可能として耐久性を向上させ、また、故障時のバックアップ運転が容易に対応でき、従来の冷水コイルや並列配置と同様に、広範囲での温度・湿度のきめ細かい制御が可能となり、高効率運転を実現し、恒温恒湿条件を満足できる空気調和機を提供しようとするものである。
上記課題を解決するために、請求項1の発明は、外気を導入して冷媒により冷却あるいは加熱する2群の直膨コイルを直列に配置し、上流の第1直膨コイル群はさらに複数並列に配列し、下流の第2直膨コイル群もさらに複数並列に配列した空気調和機において、前記第2直膨コイル群は独立して制御可能とし、圧縮器に還流する冷媒の蒸発圧力を検知して、その検知した蒸発圧力の値によって、直膨コイルでの冷却温度を制御するとともに、室温の検知による制御系を併設して、これらの制御系の信号を選択回路で比較して直膨コイルは常に非凍結域以上で冷媒を循環するように直膨コイルでの冷却温度を制御したことを特徴とする直膨コイルを使用した空気調和機である。
請求項2の発明は、外気を導入して冷媒により冷却あるいは加熱する2群の直膨コイル群を直列に配置し、上流の第1直膨コイル群はさらに複数並列に配列し、下流の第2直膨コイル群もさらに複数並列に配列した空気調和機において、前記第2直膨コイル群は独立して制御可能とし、圧縮器に還流する冷媒の蒸発圧力を検知して、その検知した蒸発圧力の値によって直膨コイルでの冷却温度を制御するとともに、前記第2直膨コイル群の下流の露点温度による制御系を併設して、
これらの制御系の信号を選択回路で比較して直膨コイルは常に非凍結域以上で冷媒を循環するように直膨コイルでの冷却温度を制御したことを特徴とする直膨コイルを使用した空気調和機。
請求項3の発明は、外気を導入して冷媒により冷却あるいは加熱する2群の直膨コイル群を直列に配置し、上流の第1直膨コイル群はさらに複数並列に配列し、下流の第2直膨コイル群もさらに複数並列に配列した空気調和機において、前記第2直膨コイル群は独立して制御可能とし、圧縮器に還流する冷媒の蒸発圧力を検知して、その検知した蒸発圧力の値によって直膨コイルでの冷却温度を制御するとともに、前記空気調和機は前記第2直膨コイル群の下流に再熱コイルを有し、再熱コイルの下流の乾球温度による制御系を併設して、これらの制御系の信号を選択回路で比較して直膨コイルは常に非凍結域以上で冷媒を循環するように直膨コイルでの冷却温度を制御したことを特徴とする直膨コイルを使用した空気調和機である。
請求項4の発明は、請求項1乃至3に記載の直膨コイルを使用した空気調和機において、前記第2直膨コイル群は3台又は4台の直膨コイルを並列に配置したことを特徴とする。
請求項5の発明は、請求項1乃至3に記載の直膨コイルを使用した空気調和機において、給気を兼ねた送風機を前記第1直膨コイル群と前記第2直膨コイル群の間に配置したことを特徴とする。
本発明の直膨コイルを使用した空気調和機によれば、(1)圧縮器に還流する冷媒の蒸発圧力を検知して、その検知した蒸発圧力の値によって圧縮器の圧縮圧力を制御したので、直膨コイルにおいてもきめ細かな制御が可能となり、直膨コイルは間接的な熱の受け渡しがないため、直膨コイルのシステムの冷暖房効率は水コイルを上回り省エネ運転が可能となる。(2)圧縮器の稼働にあたり、蒸発圧力の値によって圧縮器の圧縮圧力を制御する制御系の他に、室温、或いは、給気温度を検知して制御する制御系を併設して、これらの制御系の信号を選択回路で比較して圧縮圧力を制御し、かつ、直膨コイル35は常に非凍結域以上で冷媒を循環するようにして直膨コイルでの冷却温度を制御したので、凍結事故を回避することができる。(3)凍結回避以外に、直膨コイル31の蒸発圧力(蒸発温度)を制限する値を変更することで蒸発温度を常に一定以上に高く保つことで(図7の実線の冷凍サイクルを参照)高効率運転が可能となる。また、(4)コイル蒸発温度を制御できるので、非結露運転の要望がある空調の場合には、蒸発圧力(蒸発温度)を空気露点温度以上に保つ、すなわち、冷却する直膨コイル31の非結露運転も可能となる。
更に、(5)多段(2段)並列の直膨コイル群を更に配置したので、細かな段数制御により直膨コイル出口温度を設定した露点温度に制御可能となる。特に、実施例では第2直膨コイル群3を4段並列としたので、給気に近い位置で正確な温度・湿度の制御が出来る。更に、細かな段数制御により、従来システムよりも省 エネルギー成績係数が良く、直膨コイル出口空気温度の誤差が±3℃程度のため、再熱や加湿の使用エネルギーが少ない。なお、この装置では再熱コイルやヒートポンプ(冷媒)にも対応可能である。
また、(6)直膨コイルを使用した空気調和機は、従来の水コイル使用の空調機とは異なり、冷水による冷却が必要でなくなるため冷水をつくるための熱源機が不要となって、室外機設置スペースだけとなり、水コイルのための冷熱源の機械室が不要になる。
また、(7)並列配置の直膨コイル群と並列配置の直膨コイル群を2段の直列設置の組み合わせにすることにより、ローテーション運転が可能で、ローテーション運転により直膨コイル群や室外機の長寿命化が可能となり、また、一部の直膨コイルや室外機が故障時のバックアップ運転が容易に対応できる。(8)しかも、複数の並列配置した直膨コイル群を2段に直列に配置して給気露点温度制御を行うので、上流の直膨コイル群で大まかな冷房制御を行った後、下流の直膨コイル群で温度・湿度をきめ細かく制御が可能で、かつ、広範囲の温度・湿度管理が可能であり、更に、風下に従来の水コイルの場合同様に再熱コイル・加湿器を設置し正確に恒温恒湿条件を満足する制御が可能となる。
更に、(9)給気を兼ねた送風機7を第1直膨コイル群2と第2直膨コイル群3との間に配置したので、第1直膨コイル群2の一部が運転停止しても、吸気した空気を攪拌し冷却を均一にして、下流の複数の第2直膨コイル群3に同じ状態の空調空気を均等に送風することができ、第2直膨コイル群3の複数の直膨コイルにほぼ同じような負荷がかかるので、運転に偏りがなく使用期間も長くでき、故障も少ない。
従来における水コイル使用の空調システムの構成概略図、 図1、図3の従来の空気状態変化を説明する空気線図、 従来の直膨コイルを3台並列した空調システムの構成概略図、 図3の空気調和機での問題点を説明する空気線図、 本発明の実施例の直膨コイル群を使用し、直膨コイルの下流に再熱コイルと加湿器を配置した空気調和機の概略図、 実施例の再熱コイルの空気線図、 実施例の冷凍サイクルのモリエル線図、 実施例で外気OAの状態の変化に対応した空調制御安定性(運転状況)の測定結果のグラフの図、 実施例で外気OAの状態と各直膨コイルの稼働状態を説明する空気線図、 実施例で外気OAの状態の変化に対応した運転状況の測定結果のグラフの図、 実施例でローテーション及びバックアップ運転の組み合わせ例を説明する説明図である。
本発明の直膨コイルを使用した空気調和機の好適な実施例を図面に沿って説明する。
[実施例1]
図5は、実施例の直膨コイルを使用したクリーンルーム用の空気調和機1の全体系統図で、外気OA(図5で右側から)を導入し、まず、上流側に冷媒により冷却する第1直膨コイル群2を配置し、下流に第2直膨コイル群3を配置し、更に、その下流に再熱コイル4、及び第1加湿器51と第2加湿器52を配置している。なお、本実施例の空気調和機1はクリーンルームに用いるが、通常、室内には加熱機器等が存在して室内温度を上昇させるので、冷却機能を使用した場合で説明する。なお、本発明で「外気」とは、戸外の空気のみを意味するものではなく、空調を対象の空気調和機の外から取り入れる空気のことである。
前記第1直膨コイル群2は、3台の直膨コイルである直膨コイル21と直膨コイル22と直膨コイル23とを空気流に対して並列3段に配置したもので、この2台の直膨コイルにはそれぞれ膨張(制御)弁211(221,231)を介して圧縮器241と凝縮器243及びファン242等からなる室外機23に接続され、それぞれ独立して制御される。
前記第1直膨コイル群2の下流には前記第2直膨コイル群3が配置されるが、この直膨コイル群3は3台の直膨コイルである直膨コイル31乃至33が空気流に対して並列3段に配置され、それぞれ独立して運転・制御される。
これらの第1直膨コイル群2と第2直膨コイル群3の間には、空気OAを給気SAとして送風する送風機(ファン)7が配置され、この給気を兼ねた送風機7は第1直膨コイル群2の一部が運転停止しても、吸気した空気を攪拌し冷却を均一にして、下流の複数の第2直膨コイル群3に同じ状態の空調空気を均等に送風するものである。したがって、第2直膨コイル群3の直膨コイル31,32,33にほぼ同じような負荷がかかるので、運転に偏りがなく使用期間も長くでき、故障も少ない。なお、従来の送風機(ファン)7’の位置は、図5の点線で示すように、最下流に配置するのが普通で、これでは、第2直膨コイル群3の直膨コイル31,32,33には偏った空調空気が送られるいとう不都合があった。
第2直膨コイル群3の4台の直膨コイル31乃至33は独立して運転・制御され、第2直膨コイル群3の下流には 空調状態を微調整して目標の温度・湿度にするために、再熱コイル4及び第1加湿器51と第2加湿器52が配備される。
ここで、第2直膨コイル群3における複数の直膨コイルのうち、直膨コイル31を例として冷房サイクルを説明する。
直膨コイル31で冷房を終えた冷媒は、圧縮器35、室外機371を構成する凝縮器37、室外機(ファン)371に接続され、圧縮器35で圧縮され温度上昇した冷媒は凝縮器37で排熱し、凝縮器37で排熱された冷媒は、膨張弁38(382,383)によって冷却され直膨コイル31に循環させ、送風機7からの攪拌された空気を冷房する。他の直膨コイル32、33も同様の構成であり、それぞれ独立して制御される。
また、圧縮器35の制御は、通常、室温センサ313で検知された温度値が設定温度になるように圧縮器の運転制御回路392によって制御するが、一方、圧力センサ311や温度センサ312は、圧縮器35の稼働により直膨コイル31の冷媒過熱度が一定の温度になるように、また、コイル冷凍域Y1以下にならいように制御をするためのものであり、特に、圧力センサ311は冷媒の直膨コイル31からの蒸発圧力を直接検出するもので、この値を中央制御装置39に入力し、中央制御装置39から選択回路391に、検出した直膨コイル31からの蒸発圧力値が、一定に制限するか、又は、コイル冷凍域Y1以下にならないように優先的に選択し、圧縮器の運転制御回路392に入力して圧縮器35の駆動を制御するようにしている。
すなわち、圧縮器35の圧縮器の運転制御回路392による駆動運転周波数指令を得るにあたり、室内からの露点温度センサを兼ねる室温センサ313の値(或いは図6の給気温度mの値)から演算制御回路393を介しての制御系の冷却圧力要求信号Aと、直膨コイル31からのコイル蒸発圧力(蒸発温度)を検知する圧力センサ311の値から中央制御装置39内の演算制御回路で冷媒が冷凍域以上での冷却圧力要求信号Bと、を選択回路391で比較し、冷媒が冷凍域以下にならない範囲でより冷却可能な冷却圧力要求信号Cを選択することで、圧縮器35の冷媒圧力をなるべく高く維持することで高効率運転で稼働するように、前記選択回路391で選択された選択信号Cを圧縮器35の運転制御回路392に入力して、必ず直膨コイル31は非凍結域以上で冷媒を循環するように維持し、直膨コイル35の凍結事故を回避することができる。
以上の凍結回避以外に、直膨コイル31の蒸発圧力(蒸発温度)を制限する値を変更することで蒸発温度を常に一定以上に高く保つことで(図7の実線の冷凍サイクルを参照)高効率運転を可能としている。
また、コイル蒸発温度を制御できるので、非結露運転の要望がある空調の場合には、蒸発圧力(蒸発温度)を空気露点温度以上に保つ、すなわち、冷却する直膨コイル31の非結露運転も可能となる。
第2直膨コイル群3の下流には再熱コイル4や第1加湿器51及び第2加湿器52を配置するが、ボイラ6の水を加熱して温水或いは蒸気を作り、バルブ41を介して再熱コイル4に供給し加熱し、最終的に空調状態を微調整して目標の温度にする。
更に、ボイラ6の水を加熱した蒸気によって上流の第1加湿器51と制御弁(バルブ)511によって大まかな加湿を行い、下流の第2加湿器52と制御弁(バルブ)521とで最終的な目標湿度に供給空気SAを加湿する。
ここで、実施例での第2直膨コイル群3での冷房サイクルで再熱としての空気線図を図6で説明する。
図6の空気線図で、外気OAはj点から第1直膨コイル群2でk点まで冷やされ、更に、第2直膨コイル群3でl点まで冷やされ、次に、再熱コイル4で室温にm点まで加熱される。なお、第1、第2加湿器51,52は冬季に稼働するので、第2直膨コイル群3等が稼働する冷房時には稼働しない。この空気線図で必要エネルギーは、A1である。
次に、実施例の冷凍サイクルを図7に沿って説明するが、従来、直膨コイル31からの蒸発圧力設定等は当初設定した以後はそのままの設定で稼働していた。これは前述したように直膨コイルは水以外の冷媒であることから、液体や気体といった異なった相にするための圧力・温度の制御が難しく、冷媒状態のみを目標に制御したためにコイル冷房能力が成り行きとなり空気状態の精密制御が出来ないうえ、風量等の空気負荷の急変時は図7のモリエル線図に示す凍結域Y1以下に下がる欠点があり、また、圧縮器35の溶媒への作動も飽和蒸気線を余裕を持って越え、冷媒が完全気体となってから圧縮器35に移送するように設定していた。
すなわち、従来の冷凍サイクルはV’→X→Y’→Z’→V’で、冷媒は圧縮器35で圧縮工程(V’)から、凝縮工程(X)で凝縮器37と室外機(ファン)371とで冷媒は排熱され、膨張工程(Y’)で圧力を減じて冷却され、この冷却された冷媒で直膨コイル31での冷媒工程(Z’)で空気を冷却し、温度が上昇した冷媒は圧縮器35に還流する。
これに対して、実施例の冷凍サイクルは実線で示すV→X→Y→Z→Vで、圧縮器35での圧縮負荷は、従来の点線の冷凍サイクルよりもY2だけ短縮し、それだけ圧縮負荷が軽減され、高効率運転を可能となるが、冷媒は圧縮器35で圧縮工程(V)から、凝縮工程(X)で凝縮器37、膨張工程(Y)で圧力を減じ、この冷却された冷媒で直膨コイル31での冷媒工程(Z)で空気を冷却し、冷媒は圧縮器35に還流する。
実施例では、直膨コイル31からの蒸発圧力を直接検出して、この圧力センサ311で検知した蒸発圧力によって、圧縮器35の駆動を制御して、必要に応じて実線の冷凍サイクルの冷房工程(Z)に任意に変化することができるので、コイルの冷凍域Y1にならない範囲Y2で空気状態を目標に任意に変化することができ、かつ、従来では圧縮器35での圧縮開始点U’で設定されるが、実施例では圧縮開始点Uと任意変更できるので、不必要に飽和蒸気線を越える必要もなく、最小限の飽和蒸気線の超過値で効率よく冷凍サイクルを実行することが出来る。
このように、本実施例では直膨コイル31を組み込んだ冷凍サイクルにおいて、圧縮器35の能力の範囲内で直膨コイル31の蒸発圧力によって直膨コイル31の冷房を可変にできる。
ここで、本実施例における上記構成での実験結果を説明する。
運転実験例
設計風量:4000m3/h (外気取入量:20%)
給気目標:露点4.9℃DP及び3℃DP
コイル組み合わせ:直列・・・2列
段数・・・(風上側)室外機3台・3段
(風下側)室外機3台・3段
一般に、直膨コイルは、高温源と低温源の温度差が小さいほど理論上の効率は良くなるものであり、定格運転が効率がよい。
また、上述したように、本実施例の6台の直膨コイル21,22,23,31,32,33は、それぞれ温度制御が可能であり、小さな部屋であれば直膨コイル1台で十分であるが、大量の空気を空調するクリーンルームでは複数の直膨コイル群にすることで対処可能である。
これを本実施例の直膨コイル21,22,23,31,32,33について説明すると、図6に示す空気線図のk点の空気エンタルピ状態を目標にコイル21,22,23は比例制御、及び、段数制御される。運転冷凍機の最適効率を維持できないところまで外気OAがj点よりも下がりかつ冷凍機2台運転でk点のエンタルピまで空気状態を下げられる場合コイル21,22,23のうち一台を停止させて、運転冷凍機の効率を最高点近くに維持する。上記により冷凍機を一台停止することが可能となる。
同様に、さらに外気OAが下がった場合は一台運転に移行する。これにより冷凍機二台を停止させることが可能となる。外気OAがk点のエンタルピ以下に下がった場合には3台とも停止する。
一方直膨コイル31,32,33については、1点の露点温度またはm点の乾球温度を目標に冷凍機蒸発圧力を変化させて精密制御されるが、この際、蒸発圧力を検知し、非凍結域に運転を制限することによりコイル凍結を避けて精密制御が可能となる。
凍結制限がかからない状態での運転では図8に示すように目標露点4.9℃DPに対して±0.5℃DPの高精度運転を実現している。凍結制限を加えた状態でも従来方式では不可能な低露点である目標露点3℃DPに対して±0.7℃DPの高精度制御を、凍結を回避して実現している。いずれも再加湿は実施せず省エネ運転を実現している。
直膨コイル31,32,33についても、直膨コイル21,22,23と同様に外気工ンタルピの低下により能力に余裕ができ、かつ冷凍機運転が最高効率点より下がった段階で順次停止してゆく。
このように、外気条件の低下に応じて冷凍機を停止してゆくことにより、冷凍機の高効率運転を維持し、計画的なローテンション運転を実施して冷凍機の長寿命化、運転状態での容易なメンテナンスを実現する。
冷凍機故障時のバックアップ運転についても休止冷凍機をただちに起動させることにより容易に実現する。
上述したローテーション運転を上流に2台の直膨コイル21,22、下流に4台の直膨コイル31,32,33,34を配置した別の実施例21,22,31,32,33,34ついて説明すると、図9の空気線図で、外気OAが高温高湿のA領域の状態では、目標温度・湿度にするためには高負荷となり、全直膨コイルを稼働させることになるが、次に、外気OAが高温高湿のA領域よりも多少湿度が低いB領域の状態では、負荷が多少下がるので、6台のうちどれか1台を休ませることができ、本実施例では直膨コイル34をダンパ等で停止させることができる。なお、直膨コイル33,34を停止させるとは、当然のことながら空調空気の通過は停止することになる。
更に、外気OAがB領域よりも更に湿度が低いC領域の状態では、負荷が更に下がるので、6台のうちどれか2台を休ませることができ、本実施例では直膨コイル33,34をダンパ等で停止させることができる。
同様に、外気OAがC領域よりも更に湿度と温度が低いD領域の状態では、負荷が更に下がるので、6台のうちどれか3台を休ませることができ、本実施例では直膨コイル32,33,34を停止させることができる。
同様に、外気OAがD領域よりも更に湿度と温度が低いE領域の状態では、負荷も小さくなるので、6台のうちどれか4台を休ませることができ、本実施例では第2直膨コイル群3の直膨コイル31乃至34を停止させ、第1直膨コイル群2だけを稼働して、省エネを実現している。
この時の実際の実施例における運転状態の測定結果をグラフにした図10に沿って説明すると、図10は、空気調和機1での入口空気条件(エンタルピを減少)を変化させた場合の出口での温度・湿度を測定したグラフである。
先ず、湿度について説明すると、図10の上側(細線)は湿度の変化に関するグラフであり、空気調和機1への入口湿度:Vが90〜80%程度であって外気(入口)OAの状態がAからE領域に変化しても、直膨コイル群2,3をこれに対応した運転状態に切り換え、AからE領域に対応して直膨コイルの稼働台数を徐々に減らしていっても、出口湿度:Wは50〜60%を維持していることが判る。
次に、温度について説明すると、図10の下側は温度の変化に関するグラフであるが、空気調和機1の入口温度:Yが33℃から18℃程度まで下がり、外気(入口)OAの状態がAからE領域に変化し、直膨コイルの稼働状態に伴って切り換え、直膨コイルの稼働台数を徐々に減らしていっても、途中、領域切換えで新たに直膨コイルの運転を停止する際に多少温度が上昇するが、それでも出口温度:Zは10.3〜12.6℃の範囲を維持している。
このように、高温高湿のA領域以外では直膨コイルの1部を停止することができ、ローテンションを組めば効率的に直膨コイルや室外機等を休ませることができ、更に、計画的にローテーション運転を行って直膨コイルや室外機等の長寿命化を実現できる。
また、この実施例によれば、故障時のバックアップ運転が容易に対応できるが、これをローテーションの実例と併せて、図11に沿って説明する。
図11において、高温・高湿のA領域においては6台の全直膨コイルを稼働させるが、負荷が減少したC領域においては、各直膨コイル21,22,23,31,32,33,34は独立して制御可能であるので2台の直膨コイル及びこれらに付随する室外機等を休ませることができる。この場合、各直膨コイル21,22,23,31,32,33,34は独立して制御可能であるので、能力が同じ場合には2台の選択は任意であり、例えば、C領域運転1のように直膨コイル31,32を休ませることができ、また、C領域運転2のように直膨コイル33,34及びこれらに付随する室外機等を休ませることができ、次のC領域運転1と2を交互に稼働させるようにしてもよい。
また、故障時について説明すると、通常運転では、図11の中段の両端に示されるように、E領域で直膨コイル21と22を稼働して直膨コイル31乃至34の4台を停止しているが、図11の下段の両端(a)(f)に示すように、直膨コイル21と22が故障或いは保守で停止せざるを得ない場合は、直膨コイル31乃至34の4台を稼働させれば、通常通りの冷房能力を確保できる。
同様に、図11のC領域運転1のように直膨コイル31,32を休ませている場合、図11の下段の(b)に示すように、直膨コイル33と34が故障或いは保守で停止せざるを得ない場合は、直膨コイル31、32、及び、直膨コイル21,22の4台を稼働させれば、通常通りの冷房能力を確保でき、また、図11の下段の(c)に示すように、直膨コイル21と22が故障或いは保守で停止せざるを得ない場合は、直膨コイル31乃至34の4台を稼働させれば、通常通りの冷房能力を確保できる。
更に、図11のC領域運転2のように直膨コイル33,34を休ませている場合、図11の下段の(d)に示すように、直膨コイル31と32が故障或いは保守で停止せざるを得ない場合は、直膨コイル33、34、及び、直膨コイル21,22の4台を稼働させれば、通常通りの冷房能力を確保でき、また、図11の下段の(e)に示すように、直膨コイル21と22が故障或いは保守で停止せざるを得ない場合は、直膨コイル31乃至34の4台を稼働させれば、通常通りの冷房能力を確保できる。
このように、ローテーション運転で各直膨コイル群での効率を向上させるともに、前述したように各直膨コイル自体を細かく制御して効率のよい稼働が可能になるので、全体としてより効率的な運転が可能となる。
以上詳述したように、各実施例によれば、
(1)圧縮器に還流する冷媒の蒸発圧力を検知して、その検知した蒸発圧力の値によって圧縮器の圧縮圧力を制御したので、直膨コイルにおいてもきめ細かな制御が可能となり、直膨コイルは間接的な熱の受け渡しがないため、直膨コイルのシステムの冷暖房効率は水コイルを上回り省エネ運転が可能となる。
(2)圧縮器の稼働にあたり、蒸発圧力の値によって圧縮器の圧縮圧力を制御する制御系の他に、室温の検知よる制御系を併設して、これらの制御系の信号を選択回路391で選択して圧縮圧力を制御し、かつ、直膨コイルは常に非凍結域以上で冷媒が循環するようにして直膨コイルでの冷却温度を制御したので、凍結事故を回避することができる。
(3)凍結回避以外に、直膨コイル31の蒸発圧力(蒸発温度)を制限する値を変更することで蒸発温度を常に一定以上に高く保つことで(図7の実線の冷凍サイクルを参照)高効率運転を可能となる。
(4)コイル蒸発温度を制御できるので、非結露運転の要望がある空調の場合には、蒸発圧力(蒸発温度)を空気露点温度以上に保つ、すなわち、冷却する直膨コイル31の非結露運転も可能となる。
(4)多段(2段)並列の直膨コイル群を更に配置したので、冷凍機一台では対応が不可能な大風量、大負荷においても、細かな段数制御により直膨コイル出口温度を設定した露点温度に制御可能となる。特に、実施例では第2直膨コイル群3を4段並列としたので、給気に近い位置で正確な温度・湿度の制御が出来る。
(5)直列に直膨コイル群2、3を配置したことにより、各段での空気条件に応じて、冷凍機が最適の蒸発圧力運転を行うことにより、従来システムよりエネルギー成績係数が良く、直膨コイル出口空気温度の誤差が±0.6℃程度のため、再熱や加湿の使用エネルギーが少ない。なお、この装置では再熱コイルやヒートポンプ(冷媒)にも対応可能である。
(6)実施例の直膨コイルを使用した空気調和機は、従来の水コイル使用の空調機とは異なり、冷水による冷却が必要でなくなるため冷水をつくるための熱源機が不要となって、室外機設置スペースだけとなり、水コイルのための冷熱源の機械室が不要になる。
(7)並列配置の直膨コイル群と並列配置の直膨コイル群を2段の直列設置の組み合わせにすることにより、ローテーション運転が可能で、ローテーション運転により直膨コイル群や室外機の長寿命化が可能となり、また、一部の直膨コイルや室外機が故障時のバックアップ運転が容易に対応できる。
(8)しかも、複数の並列配置した直膨コイル群を2段に直列に配置して給気露点温度制御を行うので、上流の直膨コイル群で大まかな冷房制御を行った後、下流の直膨コイル群で温度・湿度をきめ細かく制御が可能で、かつ、広範囲の温度・湿度管理が可能であり、更に、風下に従来の水コイルの場合同様に再熱コイル・加湿器を設置し正確に恒温恒湿条件を満足する制御が可能となる。
(9)給気を兼ねた送風機7を第1直膨コイル群2と第2直膨コイル群3との間に配置したので、第1直膨コイル群2の一部が運転停止しても、吸気した空気を攪拌し冷却を均一にして、下流の複数の第2直膨コイル群3に同じ状態の空調空気を均等に送風することができ、第2直膨コイル群3の複数の直膨コイル31,32,33にほぼ同じような負荷がかかるので、運転に偏りがなく使用期間も長くでき、故障も少ない。
なお、本発明の特徴を損なうものでなければ、上記の各実施例に限定されるものでないことは勿論である。
a・・冷水コイル、b・・再熱コイル、c・・加湿器、d・・バルブ、
e・・ボイラ、f・・バルブ、g1,g2,g3・・直膨コイル、
h・・冷凍機、i・・バルブ、k1,k2,k3・・室外機、
l・・送風機(ファン)、
1・・空気調和機、
2・・第1の直膨コイル群、21,22,23・・直膨コイル、
211,221,231・・膨張(制御)弁、
23・・室外機、241・・圧縮器、242・・ファン、243・・凝縮器、
3・・第2の直膨コイル群、31,32,33,34・・直膨コイル、
311・・圧力センサ、312・・温度センサ、313・・室温センサ
35・・圧縮器、36・・三方弁、
37・・凝縮器、371・・室外機(ファン)、
38,382,383・・膨張弁、
39・・中央制御装置、391・・選択回路、392・・運転制御回路、
393・・演算制御回路、
4・・再熱コイル、41・・制御弁(バルブ)、
51・・第1加湿器、511・・制御弁(バルブ)、
52・・第2加湿器、521・・制御弁(バルブ)、
6・・ボイラ、
7,7’・・送風機(ファン)

Claims (5)

  1. 外気を導入して冷媒により冷却あるいは加熱する2群の直膨コイルを直列に配置し、上流の第1直膨コイル群はさらに複数並列に配列し、下流の第2直膨コイル群もさらに複数並列に配列した空気調和機において、
    前記第2直膨コイル群は独立して制御可能とし、圧縮器に還流する冷媒の蒸発圧力を検知して、その検知した蒸発圧力の値によって、直膨コイルでの冷却温度を制御するとともに、
    室温の検知による制御系を併設して、
    これらの制御系の信号を選択回路で比較して直膨コイルは常に非凍結域以上で冷媒を循環するように直膨コイルでの冷却温度を制御したことを特徴とする直膨コイルを使用した空気調和機。
  2. 外気を導入して冷媒により冷却あるいは加熱する2群の直膨コイル群を直列に配置し、上流の第1直膨コイル群はさらに複数並列に配列し、下流の第2直膨コイル群もさらに複数並列に配列した空気調和機において、
    前記第2直膨コイル群は独立して制御可能とし、圧縮器に還流する冷媒の蒸発圧力を検知して、その検知した蒸発圧力の値によって直膨コイルでの冷却温度を制御するとともに、
    前記第2直膨コイル群の下流の露点温度による制御系を併設して、
    これらの制御系の信号を選択回路で比較して直膨コイルは常に非凍結域以上で冷媒を循環するように直膨コイルでの冷却温度を制御したことを特徴とする直膨コイルを使用した空気調和機。
  3. 外気を導入して冷媒により冷却あるいは加熱する2群の直膨コイル群を直列に配置し、上流の第1直膨コイル群はさらに複数並列に配列し、下流の第2直膨コイル群もさらに複数並列に配列した空気調和機において、
    前記第2直膨コイル群は独立して制御可能とし、圧縮器に還流する冷媒の蒸発圧力を検知して、その検知した蒸発圧力の値によって直膨コイルでの冷却温度を制御するとともに、
    前記空気調和機は前記第2直膨コイル群の下流に再熱コイルを有し、
    再熱コイルの下流の乾球温度による制御系を併設して、
    これらの制御系の信号を選択回路で比較して直膨コイルは常に非凍結域以上で冷媒を循環するように直膨コイルでの冷却温度を制御したことを特徴とする直膨コイルを使用した空気調和機。
  4. 第2直膨コイル群は3台又は4台の直膨コイルを並列に配置したことを特徴する請求項1乃至3に記載の直膨コイルを使用した空気調和機。
  5. 給気を兼ねた送風機を前記第1直膨コイル群と前記2直膨コイル群の間に配置したことを特徴する請求項1乃至4に記載の直膨コイルを使用した空気調和機。
JP2017039911A 2017-03-02 2017-03-02 直膨コイルを使用した空気調和機 Active JP6370425B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017039911A JP6370425B2 (ja) 2017-03-02 2017-03-02 直膨コイルを使用した空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017039911A JP6370425B2 (ja) 2017-03-02 2017-03-02 直膨コイルを使用した空気調和機

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012287144A Division JP6105933B2 (ja) 2012-12-28 2012-12-28 直膨コイルを使用した空気調和機

Publications (2)

Publication Number Publication Date
JP2017122573A JP2017122573A (ja) 2017-07-13
JP6370425B2 true JP6370425B2 (ja) 2018-08-08

Family

ID=59306166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017039911A Active JP6370425B2 (ja) 2017-03-02 2017-03-02 直膨コイルを使用した空気調和機

Country Status (1)

Country Link
JP (1) JP6370425B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7416604B2 (ja) * 2019-11-13 2024-01-17 三菱電機ビルソリューションズ株式会社 空気調和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4271678A (en) * 1977-03-21 1981-06-09 Liebert Corporation Liquid refrigeration system for an enclosure temperature controlled outdoor cooling or pre-conditioning
JPS6470634A (en) * 1987-09-11 1989-03-16 Fuji Electric Co Ltd Constant temperature control device for air conditioning
JPH02107344A (ja) * 1988-10-17 1990-04-19 Satake Kagaku Kikai Kogyo Kk 恒温恒湿装置
JPH0723788B2 (ja) * 1990-02-22 1995-03-15 高砂熱学工業株式会社 クリーンルーム構築システム
JPH1026366A (ja) * 1996-07-11 1998-01-27 Kumagai Gumi Co Ltd 空調システム
JP2010159928A (ja) * 2009-01-08 2010-07-22 Tokyo Electric Power Co Inc:The 空気調和機
JP5424706B2 (ja) * 2009-05-13 2014-02-26 三菱電機株式会社 冷凍サイクル装置
JP5971907B2 (ja) * 2011-09-15 2016-08-17 鹿島建設株式会社 直膨コイルを使用した空気調和機
JP6105933B2 (ja) * 2012-12-28 2017-03-29 鹿島建設株式会社 直膨コイルを使用した空気調和機

Also Published As

Publication number Publication date
JP2017122573A (ja) 2017-07-13

Similar Documents

Publication Publication Date Title
CN100436954C (zh) 空调器的强力除湿运行方法
EP1536186B1 (en) Air conditioner
JP5971907B2 (ja) 直膨コイルを使用した空気調和機
US20220205661A1 (en) Machine learning apparatus, air conditioning system, and machine learning method
WO2014136199A1 (ja) 空気調和システム
WO2017081820A1 (ja) 空気調和システムおよび空気調和システムの制御方法
US20050257539A1 (en) Air conditioner and method for controlling operation thereof
JP6250148B2 (ja) 空気調和システム
JP6105933B2 (ja) 直膨コイルを使用した空気調和機
KR100619733B1 (ko) 유니터리 공기조화기의 운전제어방법
JP6370425B2 (ja) 直膨コイルを使用した空気調和機
KR100712857B1 (ko) 혼합형 유니터리 공기조화장치의 냉매량 조절방법
JP6134511B2 (ja) 直膨コイルを使用した空気調和機
KR102087737B1 (ko) 항온항습 공조설비
JP4074422B2 (ja) 空調機とその制御方法
US10914487B2 (en) Low load mode of HVAC system
JP3760259B2 (ja) 空気調和機
KR20170138703A (ko) 에어컨 시스템 및 그 제어방법
JPH1183128A (ja) 異能力マルチエアコンシステム
KR100723946B1 (ko) 멀티형 에어컨의 제습 운전 제어방법
KR100556809B1 (ko) 빌딩용 멀티 공조기의 운전제어방법
KR20100045173A (ko) 에어컨의 응축용량 제어 방법
JP7462830B2 (ja) 空気調和装置
CN212457128U (zh) 空气调节系统及空调器
JP7466786B2 (ja) 空気調和装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180710

R150 Certificate of patent or registration of utility model

Ref document number: 6370425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250