WO2015173896A1 - 空気調和システム - Google Patents

空気調和システム Download PDF

Info

Publication number
WO2015173896A1
WO2015173896A1 PCT/JP2014/062756 JP2014062756W WO2015173896A1 WO 2015173896 A1 WO2015173896 A1 WO 2015173896A1 JP 2014062756 W JP2014062756 W JP 2014062756W WO 2015173896 A1 WO2015173896 A1 WO 2015173896A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
refrigerant
temperature
frequency
control means
Prior art date
Application number
PCT/JP2014/062756
Other languages
English (en)
French (fr)
Inventor
守 濱田
正樹 豊島
勇人 堀江
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/307,154 priority Critical patent/US10317120B2/en
Priority to GB1619700.6A priority patent/GB2540906B/en
Priority to JP2016519024A priority patent/JP6239100B2/ja
Priority to PCT/JP2014/062756 priority patent/WO2015173896A1/ja
Publication of WO2015173896A1 publication Critical patent/WO2015173896A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioning system provided with a ventilation device.
  • an air conditioning system including an air conditioner having a refrigerant circuit (refrigeration cycle) and a ventilator.
  • the refrigerant circuit of the air conditioner is configured so that the refrigerant circulates by sequentially connecting a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger with piping.
  • the high-temperature and high-pressure gas refrigerant compressed by the compressor is sent to the outdoor heat exchanger, and the refrigerant is liquefied by exchanging heat with the indoor air using the outdoor heat exchanger.
  • the liquefied refrigerant is decompressed by the decompression device, becomes a gas-liquid two-phase state, and flows into the indoor heat exchanger.
  • the refrigerant that has flowed into the indoor heat exchanger exchanges heat with room air and absorbs heat from the room air to gasify it. On the other hand, since indoor air is deprived of heat, indoor space is cooled. The gasified refrigerant returns to the compressor.
  • the ventilator performs an operation of replacing indoor air with fresh outdoor air. Specifically, the outdoor air is supplied to the room while the indoor air is discharged to the outside. For this reason, in an air conditioning system including this type of ventilation device, outdoor air becomes a cooling load (outside air load) when the outdoor air enthalpy introduced from the outside is high during cooling. Therefore, after adjusting the temperature of outdoor air with a ventilator, it is supplied indoors.
  • Patent Document 1 in an air conditioning system including an air conditioner and an outside air processing device (ventilation device), a first target air conditioning capability that the air conditioner should exhibit and a second target that the outside air processor should exhibit.
  • the power consumption of the air conditioner and the outside air processor is minimized under the condition that the sum of the first target air conditioning capacity and the second target air conditioning capacity is equal to the air conditioning capacity required for the entire air conditioning system. decide.
  • This invention was made in order to solve the said subject, and it aims at obtaining the air conditioning system which can improve energy saving property in the air conditioning system provided with the ventilator.
  • An air conditioning system includes a first refrigerant circuit in which a first compressor, a first outdoor heat exchanger, a first expansion valve, and an indoor heat exchanger are connected by piping to circulate refrigerant, and an indoor room
  • An indoor unit that passes air through the indoor heat exchanger and then supplies the indoor unit, and a first frequency control that controls an operating frequency of the first compressor so that a temperature of the indoor air becomes a target indoor temperature Means, a second compressor, a second outdoor heat exchanger, a second expansion valve, and a ventilation heat exchanger connected by piping, a second refrigerant circuit through which refrigerant circulates, and outdoor air introduced from the outside,
  • a ventilation device for supplying blown air into the room after passing through the heat exchanger for ventilation, and a second for controlling an operation frequency of the second compressor so that a temperature of the blown air becomes a target blown temperature.
  • a frequency control means and a set value of the target blowing temperature;
  • a setting value control means for changing, based on the
  • energy saving can be improved in an air conditioning system including a ventilator.
  • FIG. 1 is a schematic diagram showing a configuration of an air-conditioning system according to Embodiment 1 of the present invention.
  • the air conditioning system 100 includes one or more indoor units 1, an outdoor unit 2 of an indoor unit system, one or more ventilators 3, and an outdoor unit 4 of a ventilator system.
  • the centralized controller 102 is provided.
  • One or a plurality of indoor units 1 and the outdoor unit 2 of the indoor unit system are connected by a refrigerant pipe 104.
  • the indoor unit 1 is arranged in the room 200, and the outdoor unit 2 of the indoor unit system is arranged outside.
  • One or a plurality of ventilation devices 3 and the outdoor unit 4 of the ventilation device system are connected by a refrigerant pipe 105.
  • the ventilator 3 is arranged in the room 200, and the outdoor unit 4 of the ventilator system is arranged outside.
  • the centralized controller 102 is connected to each of the indoor unit 1, the outdoor unit 2 of the indoor unit system, the ventilator 3, and the outdoor unit 4 of the ventilator system via a transmission line 103.
  • FIG. 2 is a schematic diagram of a refrigerant system of the air-conditioning system according to Embodiment 1 of the present invention.
  • the air conditioning system 100 includes two refrigerant systems, a first refrigerant system 11 that is an indoor unit system and a second refrigerant system 21 that is a ventilator system.
  • the first refrigerant system 11 includes a compressor 12, a four-way valve 13, an outdoor heat exchanger 14, an expansion valve 15, an indoor heat exchanger 16, a blower 17 for the outdoor heat exchanger 14, and a blower for the indoor heat exchanger 16. 18 is provided.
  • the compressor 12, the four-way valve 13, the outdoor heat exchanger 14, the expansion valve 15, and the indoor heat exchanger 16 are sequentially connected by a pipe to form a refrigerant circuit in which the refrigerant circulates.
  • the compressor 12, the four-way valve 13, the outdoor heat exchanger 14, and the blower 17 are installed in the outdoor unit 2.
  • the expansion valve 15, the indoor heat exchanger 16, and the blower 18 are installed in the indoor unit 1.
  • the second refrigerant system 21 includes a compressor 22, a four-way valve 23, an outdoor heat exchanger 24, an expansion valve 25, a cooler 26, and a blower 27 for the outdoor heat exchanger 24.
  • the compressor 22, the four-way valve 23, the outdoor heat exchanger 24, the expansion valve 25, and the cooler 26 are sequentially connected by a pipe to constitute a refrigerant circuit in which the refrigerant circulates.
  • the compressor 22, the four-way valve 23, the outdoor heat exchanger 24, and the blower 27 are installed in the outdoor unit 4.
  • the expansion valve 25 and the cooler 26 are installed in the ventilation device 3.
  • FIG. 3 is a schematic diagram illustrating the configuration of the ventilation device of the air-conditioning system according to Embodiment 1 of the present invention.
  • the ventilation device 3 includes a cooler 26, an air supply fan 28, and an exhaust fan 29 in the main body casing. Further, an air supply passage A and an exhaust passage B are formed independently of each other in the main body casing.
  • the air supply ventilation path A is a ventilation path that takes in the outdoor air OA by the supply air blower 28 and passes it through the cooler 26 and supplies it to the room 200 as the blown air SA.
  • the exhaust ventilation path B is a ventilation path that takes in the room air RA by the exhaust fan 29 and exhausts it outside the room as the exhaust air EA.
  • the ventilator 3 further includes blown air temperature detection means 30 for detecting the temperature of the blown air SA. In addition, it is good also as a ventilation apparatus carrying the total heat exchanger which performs the total heat exchange with the outdoor air OA and indoor air RA.
  • FIG. 4 is a schematic diagram of the refrigerant system in the first embodiment of the present invention.
  • the first refrigerant system 11 includes compressor frequency control means 41 and suction temperature / humidity detection means 43.
  • the suction temperature / humidity detection means 43 is provided in each of the plurality of indoor units 1.
  • the suction temperature / humidity detection means 43 detects the temperature / humidity of the intake air (room air) of the indoor unit 1.
  • the compressor frequency control means 41 varies the operating capacity of the compressor 22 by controlling the rotational speed (operating frequency) of the drive motor of the compressor 12.
  • the compressor frequency control means 41 acquires information on the target indoor temperature, which is a set value of the temperature of the indoor air RA, from the centralized controller 102.
  • the compressor frequency control means 41 controls the operating frequency of the compressor 12 so that the temperature of the indoor air RA detected by the suction temperature / humidity detection means 43 becomes the target indoor temperature. Further, the compressor frequency control means 41 transmits information on the current operating frequency Fi of the compressor 12 to the centralized controller 102.
  • the second refrigerant system 21 includes compressor frequency control means 51.
  • the compressor frequency control means 51 varies the operating capacity of the compressor 22 by controlling the rotational speed (operating frequency) of the drive motor of the compressor 22. Further, the compressor frequency control means 51 acquires information on the target blowing temperature that is a set value of the temperature of the blowing air SA from the centralized controller 102.
  • the compressor frequency control means 51 controls the operating frequency of the compressor 22 so that the temperature of the blown air SA detected by the blown air temperature detecting means 30 becomes the target blown temperature. Further, the compressor frequency control means 51 transmits information on the current operating frequency Fv of the compressor 22 to the centralized controller 102.
  • the centralized controller 102 changes the set value of the target outlet temperature and transmits information on the target outlet temperature to the compressor frequency control means 51. Details will be described later.
  • the blowing air temperature detection means 30 and the suction temperature / humidity detection means 43 are comprised by the sensor apparatus.
  • the compressor frequency control means 41, the compressor frequency control means 51, and the centralized controller 102 can be realized by hardware such as a circuit device that realizes these functions, or are executed on an arithmetic device such as a microcomputer or a CPU. It can also be realized as software.
  • the compressor frequency control means 41 and the compressor frequency control means 51 may be provided in the centralized controller 102. Further, the function of the centralized controller 102 may be provided in the compressor frequency control means 41 or the compressor frequency control means 51.
  • the centralized controller 102 corresponds to “set value control means” in the present invention.
  • the cooler 26 corresponds to a “ventilation heat exchanger” in the present invention.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 12 passes through the four-way valve 13 and flows to the outdoor heat exchanger 14 to exchange heat with outdoor air to be condensed and liquefied.
  • the condensed and liquefied refrigerant is decompressed by the expansion valve 15 to become a low-pressure gas-liquid two-phase refrigerant, flows into the indoor heat exchanger 16 and exchanges heat with air to be gasified.
  • the gasified refrigerant passes through the four-way valve 13 and is sucked into the compressor 12. Thereby, the indoor air sent with the air blower 18 for the indoor heat exchanger 16 is cooled and blown out into the room 200, and the room 200 is cooled.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 22 flows through the four-way valve 23 to the outdoor heat exchanger 24, and the outdoor air OA and heat that pass through the air supply passage A Change to condensate.
  • the condensed and liquefied refrigerant is depressurized by the expansion valve 25 to become a low-pressure gas-liquid two-phase refrigerant, flows to the cooler 26, and exchanges heat with the outdoor air OA to be gasified.
  • the gasified refrigerant passes through the four-way valve 23 and is sucked into the compressor 22. Thereby, the outdoor air OA passing through the air supply ventilation path A is cooled by the air supply blower 28, and the cooled air is supplied to the room 200 as the blown air SA.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 12 passes through the four-way valve 13 and flows to the indoor heat exchanger 16 to exchange heat with room air to be condensed and liquefied.
  • the condensed and liquefied refrigerant is decompressed by the expansion valve 15 to become a low-pressure gas-liquid two-phase refrigerant, flows to the outdoor heat exchanger 14 and exchanges heat with air to be gasified.
  • the gasified refrigerant passes through the four-way valve 13 and is sucked into the compressor 12. Thereby, the indoor air sent with the air blower 18 for the indoor heat exchanger 16 is warmed and blown out into the room 200 to heat the room 200.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 22 flows through the four-way valve 23 to the cooler 26, and exchanges heat with the outdoor air OA that passes through the supply air ventilation path A.
  • the condensed and liquefied refrigerant is decompressed by the expansion valve 25 to become a low-pressure gas-liquid two-phase refrigerant, flows to the outdoor heat exchanger 24, and exchanges heat with air to be gasified.
  • the gasified refrigerant passes through the four-way valve 23 and is sucked into the compressor 22. Thereby, the outdoor air OA passing through the air supply ventilation path A is warmed by the air supply blower 28, and the warmed air is supplied to the room 200 as the blown air SA.
  • the air conditioning system 100 may perform at least one of the heating operation and the cooling operation, and the four-way valves 13 and 23 may be omitted.
  • the compressor frequency control means 41 controls the frequency of the compressor 12 so that the temperature of the indoor air RA detected by the suction temperature / humidity detection means 43 matches the target indoor temperature. Specifically, if the indoor air RA is lower than the target indoor temperature, the operation frequency of the compressor 12 is decreased or the operation is stopped, and if the indoor air RA is equal to or higher than the target indoor temperature, the operation of the compressor 12 is performed. The control is to increase the frequency.
  • the compressor frequency control means 51 controls the frequency of the compressor 22 so that the temperature of the blown air SA detected by the blown air temperature detection means 30 matches the target blown temperature.
  • the operation frequency of the compressor 22 is lowered or stopped, and if the blown air SA is equal to or higher than the target blown temperature, the compressor 12 is run.
  • the control is to increase the frequency.
  • the compressor frequency control means 41 controls the frequency of the compressor 12 so that the temperature of the indoor air RA detected by the suction temperature / humidity detection means 43 matches the target indoor temperature. Specifically, if the indoor air RA is lower than the target indoor temperature, the operating frequency of the compressor 12 is increased, and if the indoor air RA is equal to or higher than the target indoor temperature, the operating frequency of the compressor 12 is decreased, or The control is to stop the operation.
  • the compressor frequency control means 51 controls the frequency of the compressor 22 so that the temperature of the blown air SA detected by the blown air temperature detection means 30 matches the target blown temperature.
  • the operating frequency of the compressor 22 is increased, and if the blowing air SA is equal to or higher than the target blowing temperature, the operating frequency of the compressor 12 is decreased, or The control is to stop the operation.
  • the first refrigerant system 11 that is an indoor unit system and the second refrigerant system 21 that is a ventilator system each perform an operation of adjusting the driving ability.
  • FIG. 5 is a diagram showing the relationship between the frequency of a general compressor and the total adiabatic efficiency.
  • (a) shows the relationship of the compressor 12 and is hereinafter referred to as “indoor unit side”.
  • (b) shows the relationship of the compressor 22 and is hereinafter referred to as “ventilator side”. The same applies to FIGS. 6 to 8 described later.
  • the power when the compressors 12 and 22 are performing adiabatic compression is called theoretical adiabatic compression power, and the actual compressor power is larger than the theoretical adiabatic compression power.
  • the ratio between the theoretical adiabatic compression efficiency and the actual compressor power is called the total adiabatic efficiency and is defined as the following formula (1).
  • the adiabatic efficiency ⁇ c and the mechanical efficiency ⁇ m are expressed as Equation (2) and Equation (3), respectively.
  • the total adiabatic efficiency has a characteristic that changes depending on the frequency of the compressors 12 and 22.
  • the maximum efficiency is obtained at Fi0 (Hz) and Fv0 (Hz).
  • the adiabatic efficiency decreases, and the power consumed by the compressor 12 with respect to the heat exchange amount (hereinafter referred to as capacity) of the entire air conditioning system increases. It is desirable to operate in the vicinity of the highly efficient frequencies Fi0 and Fv0 in order to exhibit the capability efficiently with low power consumption.
  • the ratio of the capacity of the compressors 12 and 22 to the power consumption is called COP. The higher the COP, the more efficient the operation.
  • FIGS. 6-8 is a figure explaining the control operation of the target blowing temperature of the air conditioning system in Embodiment 1 of this invention.
  • the target blowing temperature of the second refrigerant system 21 is increased.
  • the operation of the compressor 22 of the second refrigerant system 21 is stopped, the amount of heat exchange to be processed by the first refrigerant system 11 is increased, and the operating frequency of the compressor 12 is increased.
  • the operating frequency Fi of the compressor 12 approaches the frequency Fi0, and the operating efficiency can be improved.
  • the target blowing temperature of the second refrigerant system 21 is increased.
  • the heat exchange amount which should be processed with the 2nd refrigerant system 21 decreases, and the operating frequency of compressor 22 falls.
  • strain 11 increases, and the operating frequency of the compressor 12 rises.
  • the operation frequency Fi of the compressor 12 approaches the frequency Fi0
  • the target blowing temperature of the second refrigerant system 21 is lowered.
  • the heat exchange amount which should be processed with the 2nd refrigerant system 21 increases, and the operating frequency of compressor 22 rises.
  • strain 11 reduces, and the operating frequency of the compressor 12 falls.
  • the operation frequency Fi of the compressor 12 approaches the frequency Fi0
  • the load (temperature load) of the indoor 200 and the outdoor air OA is large, the operating frequency Fi of the compressor 12 is higher than the frequency Fi0, and the operating frequency Fv of the compressor 22 is higher than the frequency Fv0. In such a case, since it is necessary to process the temperature load in both the first refrigerant system 11 and the second refrigerant system 21, the target blowing temperature is not changed and the current set value is maintained.
  • the centralized controller 102 (Details of target blowout temperature control)
  • information on the frequency Fi0 that maximizes the operating efficiency of the compressor 12 and information on the frequency Fv0 that maximizes the operating efficiency of the compressor 22 are preset (stored). ing.
  • the centralized controller 102 determines the magnitude relationship between the current operating frequency Fi of the compressor 12 and the frequency Fi0 at which the operating efficiency of the compressor 12 is maximized, the current operating frequency Fv of the compressor 22, and the operation of the compressor 22.
  • the target blowing temperature is changed based on the magnitude relationship with the frequency Fv0 where the efficiency is maximum.
  • the centralized controller 102 transmits information on the target blowing temperature to the compressor frequency control means 51. Details of such an operation will be described with reference to FIG.
  • FIG. 9 is a flowchart showing the operation of the air-conditioning system according to Embodiment 1 of the present invention.
  • the centralized controller 102 acquires information on the current operating frequency Fi of the compressor 12 of the first refrigerant system 11 from the compressor frequency control means 41 (S-1).
  • the centralized controller 102 acquires information on the current operating frequency Fv of the compressor 22 of the second refrigerant system 21 from the compressor frequency control means 51 (S-2).
  • the centralized controller 102 determines whether or not the current operating frequency Fi of the compressor 12 is lower than the frequency Fi0 at which the operating efficiency of the compressor 12 is maximized (S-3).
  • the centralized controller 102 increases and changes the set value of the target outlet temperature.
  • Information on the set value of the target blowing temperature is transmitted to the compressor frequency control means 51 (S-4).
  • the compressor frequency control means 51 controls the operating frequency of the compressor 22 based on the changed set value of the target outlet temperature.
  • the centralized controller 102 determines that the current operating frequency of the compressor 22 is It is determined whether Fv is lower than a frequency Fv0 at which the operating efficiency of the compressor 22 is maximized (S-5).
  • the centralized controller 102 decreases and changes the set value of the target outlet temperature.
  • Information on the set value of the target blowing temperature is transmitted to the compressor frequency control means 51 (S-6).
  • the compressor frequency control means 51 controls the operating frequency of the compressor 22 based on the changed set value of the target outlet temperature.
  • the change amount of the target blowing temperature is set to a preset temperature (for example, 5 ° C.). Even when the amount of variation is set to a fixed value as described above, the present process is repeatedly performed, so that it finally converges in the vicinity of the frequency at which the efficiency is maximized.
  • the amount of change in the target blowing temperature may be increased as the difference between the current operating frequency Fi of the compressor 12 and the frequency Fi0 at which the efficiency is maximum is larger. Further, the amount of change in the target blowing temperature may be increased as the difference between the current operating frequency Fv of the compressor 22 and the frequency Fv0 at which the efficiency is maximum is larger. In this way, by increasing the amount of change as the frequency difference increases, the control speed that converges in the vicinity of the frequency where the efficiency is maximum can be increased. Further, by reducing the amount of change as the frequency difference is smaller, the operating frequency of the compressors 12 and 22 can be accurately approximated to the frequency at which the operating efficiency is maximized.
  • the first refrigerant system 11 in the air conditioning system 100 including the first refrigerant system 11 that is an indoor unit system and the second refrigerant system 21 that is a ventilator system, the first refrigerant system 11 By adjusting the capacity balance of the second refrigerant system 21, it is possible to reduce the total power consumption of the air conditioning system 100 as a whole. Further, the target blowing temperature is changed based on the magnitude relationship between the current operating frequency Fi and the frequency Fi0 of the compressor 12 and the magnitude relationship between the current operating frequency Fv and the frequency Fv0 of the compressor 22. For this reason, energy-saving property can be improved by simple determination processing without performing calculation processing such as estimation of the air conditioning load.
  • the target indoor temperature of the first refrigerant system 11 that is the indoor unit system is not changed, and the target blowing temperature of the second refrigerant system 21 that is the ventilator system is changed to perform an operation that improves the operation efficiency.
  • a decrease in comfort can be suppressed by keeping the target indoor temperature constant.
  • the target balance temperature of the ventilation device 3 is changed to determine the capacity balance (heat treatment distribution) between the first refrigerant system 11 and the second refrigerant system 21, but the second refrigerant system
  • the operating frequency of the 21 compressors 22 may be directly controlled. That is, when the current operation frequency Fi of the compressor 12 is smaller than the frequency Fi0 and the current operation frequency Fv of the compressor 22 is smaller than the frequency Fv0, the operation frequency Fv of the compressor 22 is increased. Further, when the current operating frequency Fi of the compressor 12 is smaller than the frequency Fi0 and the current operating frequency Fv of the compressor 22 is larger than the frequency Fv0, the operating frequency Fv of the compressor 22 is increased.
  • the operating frequency Fv of the compressor 22 is decreased.
  • FIG. 10 is a diagram showing a first modification example of the control operation of the target blowing temperature of the air-conditioning system according to Embodiment 1 of the present invention.
  • a first frequency range (Fi1 ⁇ Fi0 ⁇ Fi2), which is a frequency range including the frequency Fi0, is set in advance, and the current operating frequency Fi of the compressor 12 is set to the first frequency range. If not, the target blowing temperature may be changed. That is, the frequency range to which the operation for changing the target blowing temperature is applied is set to Fi1 ( ⁇ Fi0) or less and Fi2 (> Fi0) or more. Further, as shown in FIG.
  • a second frequency range (Fv1 ⁇ Fv0 ⁇ Fv2), which is a frequency range including the frequency Fv0, is set in advance, and the current operating frequency Fv of the compressor 22 is the second frequency range. If it is not within the frequency range, the target blowing temperature may be changed. In other words, the frequency range to which the target blowing temperature changing operation is applied is set to Fv1 ( ⁇ Fv0) or less and Fv2 (> Fv0) or more.
  • Modification 2 After changing the target air temperature, the target air temperature may be changed again after waiting for a preset time.
  • FIG. 9 the difference from FIG. 9 will be mainly described with reference to FIG.
  • FIG. 11 is a flowchart showing a second modification example of the operation of the air-conditioning system according to Embodiment 1 of the present invention.
  • the timer is started.
  • the target blowing temperature is increased in S-6
  • the timer is started.
  • the centralized controller 102 determines whether or not the timer is equal to or longer than a preset time T1 (S-7).
  • S-7 preset time
  • FIG. 12 is a schematic diagram showing a third modification of the air-conditioning system according to Embodiment 1 of the present invention.
  • strain 21 which make the same indoor 200 air-conditioning object may be sufficient.
  • the centralized controller 102 calculates the average operating frequency of each compressor 12 of the plurality of first refrigerant systems 11 as the current operating frequency Fi of the compressor 12.
  • the average value of the operating frequencies of the compressors 22 of the plurality of second refrigerant systems 21 is set as the current operating frequency Fv of the compressor 22.
  • FIG. The air conditioning system according to Embodiment 2 changes the set value of the target outlet temperature based on the evaporation temperature of the first refrigerant system 11 and the evaporation temperature of the second refrigerant system 21.
  • the configuration of the air conditioning system and the configuration of the refrigerant system in the second embodiment are the same as those in the first embodiment (FIGS. 1 and 2), and the same components are denoted by the same reference numerals. Hereinafter, the difference from the first embodiment will be mainly described.
  • FIG. 13 is a schematic diagram of a refrigerant system according to Embodiment 2 of the present invention.
  • the first refrigerant system 11 further includes evaporation temperature detection means 42 in addition to the configuration of the first embodiment.
  • the evaporating temperature detecting means 42 detects the temperature of the refrigerant sucked into the compressor 12.
  • the compressor frequency control unit 41 transmits information on the detection value of the evaporation temperature detection unit 42 to the centralized controller 102.
  • the second refrigerant system 21 further includes evaporation temperature detecting means 52 in addition to the configuration of the first embodiment.
  • the evaporating temperature detecting means 52 detects the temperature of the refrigerant sucked into the compressor 22.
  • the compressor frequency control means 51 transmits information on the detection value of the evaporation temperature detection means 52 to the centralized controller 102.
  • the centralized controller 102 changes the set value of the target blowing temperature based on the detected values of the evaporation temperature detecting means 42 and the evaporation temperature detecting means 52, and transmits the target blowing temperature information to the compressor frequency control means 51. Details will be described later.
  • the evaporation temperature detecting means 42 and the evaporation temperature detecting means 52 are constituted by a sensor device.
  • FIG. 14 is a diagram showing the relationship between the evaporation temperature and efficiency in a general refrigerant circuit.
  • the efficiency has a characteristic that varies depending on the evaporation temperature, and the lower the evaporation temperature, the lower the efficiency. That is, as the evaporation temperature of the first refrigerant system 11 is lower, the power consumed by the compressor 12 with respect to the heat exchange amount (capacity) of the first refrigerant system 11 increases, and the efficiency of the first refrigerant system 11 decreases.
  • the power consumed by the compressor 22 with respect to the heat exchange amount (capacity) of the second refrigerant system 21 increases, and the efficiency of the second refrigerant system 21 decreases.
  • the total efficiency of the air conditioning system 100 as a whole is the power consumed by the compressors 12 and 22 with respect to the heat exchange amount (capacity) of the air conditioning system 100 as a whole.
  • the efficiency with the larger heat exchange amount has a greater influence on the efficiency of the entire air conditioning system 100. That is, in the first refrigerant system 11 and the second refrigerant system 21, the evaporation temperature of the larger heat exchange amount is increased, and the evaporation temperature of the smaller heat exchange amount is decreased, thereby reducing the load in the room 200.
  • the efficiency of the entire air conditioning system 100 can be improved while processing.
  • Outline of target blowout temperature control 15 and 16 are diagrams for explaining the control operation of the target blowing temperature of the air-conditioning system according to Embodiment 2 of the present invention.
  • the efficiency of the first refrigerant system 11 is more efficient than the efficiency of the second refrigerant system 21.
  • the impact is great.
  • the efficiency of the first refrigerant system 11 is the second refrigerant system.
  • the efficiency of the air conditioning system 100 as a whole may be reduced.
  • the efficiency of the first refrigerant system 11 is improved, and the efficiency of the air conditioning system 100 as a whole can be improved.
  • the capacity balance between the first refrigerant system 11 and the second refrigerant system 21 it is possible to reduce the total power consumption of the air conditioning system 100 as a whole.
  • the target blowing temperature is not changed and the current set value is maintained.
  • the heat exchange amount of the indoor heat exchanger 16 (The heat exchange amount of the indoor heat exchanger 16 ⁇ the heat exchange amount of the cooler 26)
  • the efficiency of the second refrigerant system 21 is more efficient than the efficiency of the first refrigerant system 11 than the efficiency of the entire air conditioning system 100. The impact is great.
  • the efficiency of the second refrigerant system 21 is the first refrigerant system. The efficiency of the air conditioning system 100 as a whole may be reduced.
  • the efficiency of the second refrigerant system 21 is improved, and the efficiency of the air conditioning system 100 as a whole can be improved.
  • the efficiency of the air conditioning system 100 as a whole can be improved.
  • the target blowing temperature is not changed and the current set value is maintained.
  • the change amount of the target blowing temperature is set to a preset temperature (for example, 5 ° C.). Even when the amount of variation is set to a fixed value in this way, the above-described changing operation is repeatedly performed, so that it finally converges in the vicinity of the frequency at which the efficiency is maximum.
  • the amount of change in the target blowing temperature may be increased as the difference between the evaporation temperature ETi of the first refrigerant system 11 and the evaporation temperature ETo of the second refrigerant system 21 is larger.
  • the amount of change as the difference in evaporation temperature increases, it is possible to increase the control speed that converges to the evaporation temperature at which efficiency is improved.
  • the first refrigerant system 11 By adjusting the capacity balance of the second refrigerant system 21, it is possible to reduce the total power consumption of the air conditioning system 100 as a whole. Further, the target blowing temperature is changed based on the magnitude relationship between the evaporation temperature ETi of the first refrigerant system 11 and the evaporation temperature ET of the second refrigerant system 21. For this reason, energy-saving property can be improved by simple determination processing without performing calculation processing such as estimation of the air conditioning load.
  • the target indoor temperature of the first refrigerant system 11 that is the indoor unit system is not changed, and the target blowing temperature of the second refrigerant system 21 that is the ventilator system is changed to perform an operation that improves the operation efficiency.
  • a decrease in comfort can be suppressed by keeping the target indoor temperature constant.
  • Modification 1 When the temperature difference between the evaporation temperature ETi of the first refrigerant system 11 and the evaporation temperature ET of the second refrigerant system 21 is equal to or greater than a preset temperature difference, the target blowing temperature may be changed.
  • the target blowing temperature is changed. Therefore, the operation of frequently changing the target blowing temperature is suppressed to achieve a stable operation, and the operation efficiency can be improved.
  • Modification 2 After changing the target blowing temperature based on the magnitude relationship between the evaporation temperature ETi of the first refrigerant system 11 and the evaporation temperature ET of the second refrigerant system 21, the target blowing temperature is again waited for the elapse of a preset time.
  • the changing operation may be performed. After the set value of the target outlet temperature is changed by such an operation, after the operation state of the first refrigerant system 11 and the second refrigerant system 21 is stabilized, the evaporation temperature ETi of the first refrigerant system 11 and the second temperature again. An operation for determining the magnitude relationship with the evaporation temperature ET of the refrigerant system 21 is performed. Therefore, the evaporation temperature ETi of the first refrigerant system 11 and the evaporation temperature ET of the second refrigerant system 21 can be accurately brought close to the evaporation temperature that has a relationship of improving efficiency.
  • FIG. 17 is a schematic diagram showing Modification 3 of the air-conditioning system according to Embodiment 2 of the present invention.
  • strain 21 which make the same indoor 200 air-conditioning object may be sufficient.
  • the centralized controller 102 sets the average value of the evaporation temperatures of the plurality of first refrigerant systems 11 as the evaporation temperature ETi of the first refrigerant system 11.
  • the average value of the evaporation temperatures of the plurality of second refrigerant systems 21 is defined as the evaporation temperature ETo of the second refrigerant system 21.
  • ETo the evaporation temperature of the second refrigerant system 21.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 本発明に係る空気調和システムは、第1圧縮機の運転周波数と、第1圧縮機の運転効率が最大となる第1周波数との大小関係と、第2圧縮機の運転周波数と、第2圧縮機の運転効率が最大となる第2周波数との大小関係と、に基づき、目標吹出温度を変更するものである。

Description

空気調和システム
 本発明は、換気装置を備えた空気調和システムに関するものである。
 従来より、冷媒回路(冷凍サイクル)を有する空気調和装置と換気装置とを備えた空気調和システムがある。
 空気調和装置の冷媒回路は、圧縮機、四方弁、室外熱交換器、膨張弁、および室内熱交換器が順次配管で接続されて冷媒が循環するように構成されている。
 冷房運転時は、圧縮機で圧縮された高温高圧のガス冷媒を室外熱交換器に送り込み、室外熱交換器で室内空気と熱交換することにより冷媒を液化する。液化した冷媒は、減圧装置で減圧されて気液二相状態となり、室内熱交換器に流入する。室内熱交換器に流入した冷媒は室内空気と熱交換し、室内空気から熱を吸収してガス化する。一方で、室内空気は熱を奪われるため室内空間が冷房される。ガス化した冷媒は圧縮機に戻る。
 また、換気装置は、室内の空気を室外の新鮮空気と入れ換える運転を行っている。具体的には、室外の空気を室内に供給する一方、室内の空気を室外に排出している。
 このため、この種の換気装置を備えた空気調和システムでは、冷房時、室外から導入される室外空気のエンタルピーが高い場合は、室外空気が冷房負荷(外気負荷)となる。そのため、換気装置によって室外空気の温度を調節したあと室内へ供給している。
 特許文献1に記載の技術では、空調機と外気処理装置(換気装置)とを備えた空調システムにおいて、空調機が発揮すべき第1目標空調能力と、外気処理機が発揮すべき第2目標空調能力とを、第1目標空調能力と第2目標空調能力の和が空調システム全体に要求される空調能力と等しくなるという条件下において空調機及び外気処理機の消費電力が最小となるように決定する。
特開2010-121912号公報(要約)
 しかしながら、特許文献1に記載の技術では、目標とする空調能力を決定するためには、空調負荷を逐次推算する必要がある。このため、推算精度の低下によって省エネルギー性が低下するという課題がある。また、空調負荷の推算を逐次実施するのは演算装置の演算処理負荷が大きいため、外気温度、外気湿度、および内部負荷の時間変化に追従することが困難であるという課題がある。
 本発明は、上記課題を解決するためになされたもので、換気装置を備えた空気調和システムにおいて、省エネルギー性を向上することができる空気調和システムを得ることを目的とする。
 本発明に係る空気調和システムは、第1圧縮機、第1室外熱交換器、第1膨張弁、および室内熱交換器を配管で接続し、冷媒が循環する第1冷媒回路と、室内の室内空気を前記室内熱交換器に通過させたあと、前記室内へ供給する室内機と、前記室内空気の温度が目標室内温度となるように前記第1圧縮機の運転周波数を制御する第1周波数制御手段と、第2圧縮機、第2室外熱交換器、第2膨張弁、および換気用熱交換器を配管で接続し、冷媒が循環する第2冷媒回路と、室外から室外空気を導入し、前記換気用熱交換器を通過させたあと、前記室内へ吹出空気を供給する換気装置と、前記吹出空気の温度が目標吹出温度となるように前記第2圧縮機の運転周波数を制御する第2周波数制御手段と、前記目標吹出温度の設定値を、前記第1圧縮機の周波数および前記第2圧縮機の周波数に基づいて変更する設定値制御手段と、を備えたものである。
 本発明によれば、換気装置を備えた空気調和システムにおいて、省エネルギー性を向上することができる。
本発明の実施の形態1における空気調和システムの構成を示す概略図である。 本発明の実施の形態1における空気調和システムの冷媒系統の概略図である。 本発明の実施の形態1における空気調和システムの換気装置の構成を示す概略図である。 本発明の実施の形態1における冷媒系統の概略図である。 一般的な圧縮機の周波数と全断熱効率との関係を示す図である。 本発明の実施の形態1における空気調和システムの目標吹出温度の制御動作を説明する図である。 本発明の実施の形態1における空気調和システムの目標吹出温度の制御動作を説明する図である。 本発明の実施の形態1における空気調和システムの目標吹出温度の制御動作を説明する図である。 本発明の実施の形態1における空気調和システムの動作を示すフローチャートである。 本発明の実施の形態1における空気調和システムの目標吹出温度の制御動作の変形例1を示す図である。 本発明の実施の形態1における空気調和システムの動作の変形例2を示すフローチャートである。 本発明の実施の形態1における空気調和システムの変形例3を示す概略図である。 本発明の実施の形態2における冷媒系統の概略図である。 一般的な冷媒回路における蒸発温度と効率との関係を示す図である。 本発明の実施の形態2における空気調和システムの目標吹出温度の制御動作を説明する図である。 本発明の実施の形態2における空気調和システムの目標吹出温度の制御動作を説明する図である。 本発明の実施の形態2における空気調和システムの変形例3を示す概略図である。
実施の形態1.
 図1は、本発明の実施の形態1における空気調和システムの構成を示す概略図である。
 図1に示すように、空気調和システム100は、1個または複数の室内機1と、室内機系統の室外機2と、1個または複数の換気装置3と、換気装置系統の室外機4と、集中コントローラ102とを備えている。
 1個または複数の室内機1と、室内機系統の室外機2は、冷媒配管104で接続されている。室内機1は室内200に配置され、室内機系統の室外機2は室外に配置されている。
 1個または複数の換気装置3と、換気装置系統の室外機4は、冷媒配管105で接続されている。換気装置3は室内200に配置され、換気装置系統の室外機4は室外に配置されている。
 集中コントローラ102は、室内機1、室内機系統の室外機2、換気装置3、および換気装置系統の室外機4のそれぞれと、伝送線103で接続されている。
 図2は本発明の実施の形態1における空気調和システムの冷媒系統の概略図である。
 図2に示すように、空気調和システム100は、室内機系統である第1冷媒系統11と、換気装置系統である第2冷媒系統21との2つの冷媒系統を備えている。
 第1冷媒系統11は、圧縮機12、四方弁13、室外熱交換器14、膨張弁15、室内熱交換器16、室外熱交換器14用の送風機17、および室内熱交換器16用の送風機18を備える。
 圧縮機12、四方弁13、室外熱交換器14、膨張弁15、および室内熱交換器16は、順次配管で接続され、冷媒が循環する冷媒回路を構成する。
 圧縮機12、四方弁13、室外熱交換器14、および送風機17は、室外機2に設置されている。
 膨張弁15、室内熱交換器16、および送風機18は、室内機1に設置されている。
 第2冷媒系統21は、圧縮機22、四方弁23、室外熱交換器24、膨張弁25、冷却器26、および室外熱交換器24用の送風機27を備える。
 圧縮機22、四方弁23、室外熱交換器24、膨張弁25、および冷却器26は、順次配管で接続され、冷媒が循環する冷媒回路を構成する。
 圧縮機22、四方弁23、室外熱交換器24、および送風機27は、室外機4に設置されている。
 膨張弁25、および冷却器26は、換気装置3に設置されている。
 図3は、本発明の実施の形態1における空気調和システムの換気装置の構成を示す概略図である。
 図3に示すように、換気装置3は、本体ケーシング内に、冷却器26と、給気用送風機28と、排気用送風機29とを備えている。また、本体ケーシング内には、給気通風路Aと排気通風路Bとが互いに独立して形成されている。
 給気通風路Aは、給気用送風機28により室外空気OAを取り入れて冷却器26に通過させ、吹出空気SAとして室内200に供給する通風路である。
 排気通風路Bは、排気用送風機29により室内空気RAを取り入れて、排気EAとして室外に排気する通風路である。
 換気装置3は更に、吹出空気SAの温度を検出する吹出空気温度検出手段30を備えている。
 なお、室外空気OAと室内空気RAとの全熱交換を行う全熱交換器を搭載した換気装置としても良い。
 図4は本発明の実施の形態1における冷媒系統の概略図である。
 図1においては図示省略していたが、第1冷媒系統11および第2冷媒系統21には、図4に示すように各種検出装置および制御装置が設けられている。
 第1冷媒系統11は、圧縮機周波数制御手段41と、吸込温湿度検出手段43とを備えている。
 吸込温湿度検出手段43は、複数の室内機1のそれぞれに設けられている。吸込温湿度検出手段43は、室内機1の吸込空気(室内空気)の温湿度を検出する。
 圧縮機周波数制御手段41は、圧縮機12の駆動モータの回転数(運転周波数)を制御することで、圧縮機22の運転容量を可変する。
 また、圧縮機周波数制御手段41は、集中コントローラ102から室内空気RAの温度の設定値である目標室内温度の情報を取得する。そして、圧縮機周波数制御手段41は、吸込温湿度検出手段43が検出した室内空気RAの温度が目標室内温度となるように圧縮機12の運転周波数を制御する。
 さらに、圧縮機周波数制御手段41は、圧縮機12の現在の運転周波数Fiの情報を集中コントローラ102へ送信する。
 第2冷媒系統21は、圧縮機周波数制御手段51を備えている。
 圧縮機周波数制御手段51は、圧縮機22の駆動モータの回転数(運転周波数)を制御することで、圧縮機22の運転容量を可変する。
 また、圧縮機周波数制御手段51は、集中コントローラ102から吹出空気SAの温度の設定値である目標吹出温度の情報を取得する。そして、圧縮機周波数制御手段51は、吹出空気温度検出手段30が検出した吹出空気SAの温度が目標吹出温度となるように圧縮機22の運転周波数を制御する。
 さらに、圧縮機周波数制御手段51は、圧縮機22の現在の運転周波数Fvの情報を集中コントローラ102へ送信する。
 集中コントローラ102は、目標吹出温度の設定値を変更し、目標吹出温度の情報を圧縮機周波数制御手段51へ送信する。詳細は後述する。
 なお、吹出空気温度検出手段30、および吸込温湿度検出手段43は、センサー装置によって構成されている。
 圧縮機周波数制御手段41、圧縮機周波数制御手段51、集中コントローラ102は、これらの機能を実現する回路デバイスなどのハードウェアで実現することもできるし、マイコンやCPUなどの演算装置上で実行されるソフトウェアとして実現することもできる。
 なお、圧縮機周波数制御手段41、および圧縮機周波数制御手段51を、集中コントローラ102に設けても良い。また、集中コントローラ102の機能を圧縮機周波数制御手段41または圧縮機周波数制御手段51に設けても良い。
 なお、集中コントローラ102は、本発明における「設定値制御手段」に相当する。
 また、冷却器26は、本発明における「換気用熱交換器」に相当する。
 次に、冷房運転時と暖房運転時の冷媒回路の動作を説明する。
 まず、冷房運転時の動作を説明する。
 第1冷媒系統11において、圧縮機12から吐出された高温高圧のガス冷媒は、四方弁13を通過して室外熱交換器14へと流れて室外空気と熱交換して凝縮液化する。凝縮液化した冷媒は、膨張弁15で減圧され低圧の気液二相冷媒となり、室内熱交換器16へと流れて空気と熱交換してガス化する。ガス化した冷媒は、四方弁13を通過して圧縮機12に吸入される。
 これにより、室内熱交換器16用の送風機18で送られる室内空気は冷やされて室内200に吹出され、室内200を冷房する。
 第2冷媒系統21において、圧縮機22から吐出された高温高圧のガス冷媒は、四方弁23を通過して室外熱交換器24へと流れ、給気通風路Aを通過する室外空気OAと熱交換して凝縮液化する。凝縮液化した冷媒は、膨張弁25で減圧され低圧の気液二相冷媒となり、冷却器26へと流れて室外空気OAと熱交換してガス化する。ガス化した冷媒は、四方弁23を通過して圧縮機22に吸入される。
 これにより、給気通風路Aを通過する室外空気OAは給気用送風機28で冷やされて、冷やされた空気は吹出空気SAとして室内200へ供給される。
 次に、暖房運転時の動作を説明する。
 第1冷媒系統11において、圧縮機12から吐出された高温高圧のガス冷媒は、四方弁13を通過して室内熱交換器16へと流れて室内空気と熱交換して凝縮液化する。凝縮液化した冷媒は膨張弁15で減圧され低圧の気液二相冷媒となり、室外熱交換器14へと流れて空気と熱交換してガス化する。ガス化した冷媒は四方弁13を通過して圧縮機12に吸入される。
 これにより、室内熱交換器16用の送風機18で送られる室内空気は暖められて室内200に吹出され、室内200を暖房する。
 第2冷媒系統21において、圧縮機22から吐出された高温高圧のガス冷媒は、四方弁23を通過して冷却器26へと流れ、給気通風路Aを通過する室外空気OAと熱交換して凝縮液化する。凝縮液化した冷媒は膨張弁25で減圧され低圧の気液二相冷媒となり、室外熱交換器24へと流れて空気と熱交換してガス化する。ガス化した冷媒は四方弁23を通過して圧縮機22に吸入される。
 これにより、給気通風路Aを通過する室外空気OAは給気用送風機28で暖められて、暖められた空気は吹出空気SAとして室内200へ供給される。
 なお、空気調和システム100は、少なくとも暖房運転又は冷房運転のいずれかの運転を実施するもので良く、四方弁13、23は省略可能である。
(冷媒回路の能力調整動作)
 次に冷房時、暖房時の能力調整動作について説明する。
 まず、冷房運転時の能力調整動作を説明する。
 第1冷媒系統11において、圧縮機周波数制御手段41は、吸込温湿度検出手段43が検出した室内空気RAの温度が、目標室内温度に一致するように圧縮機12の周波数を制御する。具体的には、室内空気RAが目標室内温度よりも低ければ、圧縮機12の運転周波数を低下させ、または運転を停止させ、室内空気RAが目標室内温度以上であれば、圧縮機12の運転周波数を上昇させる制御となる。
 第2冷媒系統21において、圧縮機周波数制御手段51は、吹出空気温度検出手段30が検出した吹出空気SAの温度が、目標吹出温度に一致するように圧縮機22の周波数を制御する。具体的には、吹出空気SAが目標吹出温度よりも低ければ、圧縮機22の運転周波数を低下させ、または運転を停止させ、吹出空気SAが目標吹出温度以上であれば、圧縮機12の運転周波数を上昇させる制御となる。
 次に、暖房運転時の能力調整動作を説明する。
 第1冷媒系統11において、圧縮機周波数制御手段41は、吸込温湿度検出手段43が検出した室内空気RAの温度が、目標室内温度に一致するように圧縮機12の周波数を制御する。具体的には、室内空気RAが目標室内温度よりも低ければ、圧縮機12の運転周波数を上昇させ、室内空気RAが目標室内温度以上であれば、圧縮機12の運転周波数を低下させ、または運転を停止させる制御となる。
 第2冷媒系統21において、圧縮機周波数制御手段51は、吹出空気温度検出手段30が検出した吹出空気SAの温度が、目標吹出温度に一致するように圧縮機22の周波数を制御する。具体的には、吹出空気SAが目標吹出温度よりも低ければ、圧縮機22の運転周波数を上昇させ、吹出空気SAが目標吹出温度以上であれば、圧縮機12の運転周波数を低下させ、または運転を停止させる制御となる。
 このように、空気調和システム100では、室内機系統である第1冷媒系統11と、換気装置系統である第2冷媒系統21とが、それぞれ運転能力を調整する動作を行う。
(圧縮機の周波数と全断熱効率との関係)
 図5は、一般的な圧縮機の周波数と全断熱効率との関係を示す図である。
 なお、図5において、(a)は圧縮機12の関係を示しており以下「室内機側」と称する。また、(b)は圧縮機22の関係を示しており以下「換気装置側」と称する。後述する図6から図8においても同様である。
 圧縮機12、22が断熱圧縮をしているときの動力を理論断熱圧縮動力と言い、実際の圧縮機動力は理論断熱圧縮動力より大きくなる。理論断熱圧縮効率と実際の圧縮機動力との比を全断熱効率と呼び、以下の式(1)のように定義される。断熱効率ηcと機械効率ηmはそれぞれ式(2)と式(3)のように表される。
[数1]
 全断熱効率=ηc×ηm …(1)
[数2]
 断熱効率ηc=理論断熱圧縮動力/(実際の圧縮機動力-機械的摩擦損失動力)
   …(2)
[数3]
 機械効率ηm=(実際の圧縮機動力-機械的摩擦損失動力)/実際の圧縮機動力
   …(3)
 図5のように、全断熱効率は圧縮機12、22の周波数によって変化する特性があり、Fi0(Hz)、Fv0(Hz)でそれぞれ効率最大値をとり、周波数Fi0、Fv0から上下すると、全断熱効率(以下、効率)が低くなり、空気調和システム全体の熱交換量(以下、能力)に対する圧縮機12の消費される電力が増加する。
 少ない消費電力で効率よく能力を発揮するには、効率の高い周波数Fi0、Fv0付近で運転することが望ましい。圧縮機12、22の消費電力に対する能力の比率をCOPと呼び、COPが高いほど効率のよい運転と言える。
(目標吹出温度の制御の概要)
 図6から図8は、本発明の実施の形態1における空気調和システムの目標吹出温度の制御動作を説明する図である。
(Fi<Fi0、かつ、Fv<Fv0の場合)
 図6に示すように、室内200の負荷(温度負荷)が小さいと、第1冷媒系統11の圧縮機12の運転周波数Fiが、圧縮機12の効率が最大となる周波数Fi0よりも低くなりすぎて効率の悪い運転となる場合がある。また、室外空気OAの負荷(温度負荷)が小さいと、第2冷媒系統21の圧縮機22の運転周波数Fvが、圧縮機22の効率が最大となる周波数Fv0よりも低くなりすぎて効率の悪い運転となる場合がある。
 このような場合、第2冷媒系統21の目標吹出温度を増加させる。これにより、第2冷媒系統21の圧縮機22の運転が停止し、第1冷媒系統11で処理すべき熱交換量が増え、圧縮機12の運転周波数が上昇する。
 その結果、圧縮機12の運転周波数Fiが、周波数Fi0に近づいて運転効率の向上を図ることができる。
 このように、第1冷媒系統11と第2冷媒系統21の両方を運転するよりも、第1冷媒系統11に運転を集約した方が、空気調和システム100全体としてのトータル消費電力の低減を実現できる。
(Fi<Fi0、かつ、Fv>Fv0の場合)
 図7に示すように、室内200の負荷(温度負荷)が小さいと、第1冷媒系統11の圧縮機12の運転周波数Fiが、圧縮機12の効率が最大となる周波数Fi0よりも低くなりすぎて効率の悪い運転となる場合がある。また、室外空気OAの負荷(温度負荷)が大きいと、第2冷媒系統21の圧縮機22の運転周波数Fvが、圧縮機12の効率が最大となる周波数Fv0よりも高くなりすぎて効率の悪い運転となる場合がある。
 このような場合、第2冷媒系統21の目標吹出温度を増加させる。これにより、第2冷媒系統21で処理すべき熱交換量が減り、圧縮機22の運転周波数が低下する。また、第1冷媒系統11で処理すべき熱交換量が増え、圧縮機12の運転周波数が上昇する。
 その結果、圧縮機12の運転周波数Fiが周波数Fi0に近づき、圧縮機22の運転周波数Fvが周波数Fv0近づいて、運転効率の向上を図ることができる。
 このように、第1冷媒系統11と第2冷媒系統21の能力バランスを調整することで、空気調和システム100全体としてのトータル消費電力の低減を実現できる。
(Fi>Fi0、かつ、Fv<Fv0の場合)
 図8に示すように、室内200の負荷(温度負荷)が大きいと、第1冷媒系統11の圧縮機12の運転周波数Fiが、圧縮機12の効率が最大となる周波数Fi0よりも高くなりすぎて効率の悪い運転となる場合がある。また、室外空気OAの負荷(温度負荷)が小さいと、第2冷媒系統21の圧縮機22の運転周波数Fvが、圧縮機12の効率が最大となる周波数Fv0よりも低くなりすぎて効率の悪い運転となる場合がある。
 このような場合、第2冷媒系統21の目標吹出温度を低下させる。これにより、第2冷媒系統21で処理すべき熱交換量が増え、圧縮機22の運転周波数が上昇する。また、第1冷媒系統11で処理すべき熱交換量が減り、圧縮機12の運転周波数が低下する。
 その結果、圧縮機12の運転周波数Fiが周波数Fi0に近づき、圧縮機22の運転周波数Fvが周波数Fv0近づいて、運転効率の向上を図ることができる。
 このように、第1冷媒系統11と第2冷媒系統21の能力バランスを調整することで、空気調和システム100全体としてのトータル消費電力の低減を実現できる。
(Fi>Fi0、かつ、Fv>Fv0の場合)
 室内200および室外空気OAの負荷(温度負荷)が共に大きく、圧縮機12の運転周波数Fiが周波数Fi0よりも高く、圧縮機22の運転周波数Fvが周波数Fv0よりも高い場合がある。
 このような場合、第1冷媒系統11と第2冷媒系統21との両方で温度負荷を処理する必要があるため、目標吹出温度の変更は実施せず、現在の設定値を維持する。
 ところで、上述した目標吹出温度の変更動作に代えて、第1冷媒系統11の目標室内温度を変更することでも、圧縮機12の運転周波数および圧縮機22の運転周波数が、それぞれ効率の高い周波数に近づけることもできる。
 しかし、目標室内温度の変更は、室内200の快適性に直接影響する。このため、本実施の形態1においては、目標吹出温度を変更することで、運転効率の向上を図る運転を行いつつ、目標室内温度を一定に保つことで快適性の低下を抑制している。
(目標吹出温度の制御の詳細)
 集中コントローラ102(設定値制御手段)は、圧縮機12の運転効率が最大となる周波数Fi0の情報と、圧縮機22の運転効率が最大となる周波数Fv0の情報とが、予め設定(記憶)されている。
 集中コントローラ102は、圧縮機12の現在の運転周波数Fiと、圧縮機12の運転効率が最大となる周波数Fi0との大小関係と、圧縮機22の現在の運転周波数Fvと、圧縮機22の運転効率が最大となる周波数Fv0との大小関係と、に基づき、目標吹出温度を変更する。そして、集中コントローラ102は、目標吹出温度の情報を圧縮機周波数制御手段51へ送信する。
 このような動作の詳細を図9に基づき説明する。
 図9は、本発明の実施の形態1における空気調和システムの動作を示すフローチャートである。
 集中コントローラ102は、圧縮機周波数制御手段41から、第1冷媒系統11の圧縮機12の現在の運転周波数Fiの情報を取得する(S-1)。
 集中コントローラ102は、圧縮機周波数制御手段51から、第2冷媒系統21の圧縮機22の現在の運転周波数Fvの情報を取得する(S-2)。
 集中コントローラ102は、圧縮機12の現在の運転周波数Fiが、圧縮機12の運転効率が最大となる周波数Fi0より低いか否かを判断する(S-3)。
 圧縮機12の現在の運転周波数Fiが、圧縮機12の運転効率が最大となる周波数Fi0より低い場合(S-3;yes)、集中コントローラ102は、目標吹出温度の設定値を増加させ、変更した目標吹出温度の設定値の情報を圧縮機周波数制御手段51へ送信する(S-4)。これにより、圧縮機周波数制御手段51は、変更された目標吹出温度の設定値に基づき、圧縮機22の運転周波数を制御する。
 一方、圧縮機12の現在の運転周波数Fiが、圧縮機12の運転効率が最大となる周波数Fi0より低くない場合(S-3;no)、集中コントローラ102は、圧縮機22の現在の運転周波数Fvが、圧縮機22の運転効率が最大となる周波数Fv0より低いか否かを判断する(S-5)。
 圧縮機22の現在の運転周波数Fvが、圧縮機22の運転効率が最大となる周波数Fv0より低い場合(S-5;yes)、集中コントローラ102は、目標吹出温度の設定値を低下させ、変更した目標吹出温度の設定値の情報を圧縮機周波数制御手段51へ送信する(S-6)。これにより、圧縮機周波数制御手段51は、変更された目標吹出温度の設定値に基づき、圧縮機22の運転周波数を制御する。
 ここで、目標吹出温度の変化量は、予め設定した温度(例えば5℃など)に設定する。このように変動量を固定値とした場合であっても、本処理が繰り返し実施されることで、最終的には効率が最大となる周波数の近傍に収束することとなる。
 なお、圧縮機12の現在の運転周波数Fiと効率が最大となる周波数Fi0との差が大きいほど、目標吹出温度の変化量を大きくするようにしても良い。また、圧縮機22の現在の運転周波数Fvと効率が最大となる周波数Fv0との差が大きいほど、目標吹出温度の変化量を大きくするようにしても良い。
 このように、周波数の差が大きいほど変化量を大きくすることで、効率が最大となる周波数の近傍に収束する制御速度を速くすることができる。
 また、周波数の差が小さいほど変化量を小さくすることで、圧縮機12、22の運転周波数を、運転効率が最大となる周波数に精度良く近づけることができる。
(効果)
 以上のように本実施の形態1においては、室内機系統である第1冷媒系統11と、換気装置系統である第2冷媒系統21とを備えた空気調和システム100において、第1冷媒系統11と第2冷媒系統21の能力バランスを調整することで、空気調和システム100全体としてのトータル消費電力の低減を実現できる。
 また、圧縮機12の現在の運転周波数Fiと周波数Fi0との大小関係と、圧縮機22の現在の運転周波数Fvと周波数Fv0との大小関係と、に基づき、目標吹出温度を変更する。このため、空調負荷の推算等の演算処理を行うことなく簡易な判定処理によって、省エネルギー性を向上することができる。
 また、室内機系統である第1冷媒系統11の目標室内温度は変更せず、換気装置系統である第2冷媒系統21の目標吹出温度を変更することで、運転効率の向上を図る運転を行いつつ、目標室内温度を一定に保つことで快適性の低下を抑制することができる。
 なお、本実施の形態1においては、換気装置3の目標吹出温度を変更することで、第1冷媒系統11と第2冷媒系統21の能力バランス(熱処理配分)を決定したが、第2冷媒系統21の圧縮機22の運転周波数を直接制御しても良い。
 すなわち、圧縮機12の現在の運転周波数Fiが周波数Fi0よりも小さく、かつ、圧縮機22の現在の運転周波数Fvが周波数Fv0よりも小さい場合、圧縮機22の運転周波数Fvを増加させる。
 また、圧縮機12の現在の運転周波数Fiが周波数Fi0よりも小さく、かつ、圧縮機22の現在の運転周波数Fvが周波数Fv0よりも大きい場合、圧縮機22の運転周波数Fvを増加させる。
 また、圧縮機12の現在の運転周波数Fiが周波数Fi0よりも大きく、かつ、圧縮機22の現在の運転周波数Fvが周波数Fv0よりも大きい場合、圧縮機22の運転周波数Fvを減少させる。
 このような動作によっても、上述した効果を奏することができる。
(変形例1)
 図10は、本発明の実施の形態1における空気調和システムの目標吹出温度の制御動作の変形例1を示す図である。
 図10(a)に示すように、周波数Fi0を含む周波数の範囲である第1周波数範囲(Fi1<Fi0<Fi2)を予め設定し、圧縮機12の現在の運転周波数Fiが、第1周波数範囲内でない場合、目標吹出温度の変更を実施するようにしても良い。つまり、目標吹出温度の変更動作を適用する周波数範囲を、Fi1(<Fi0)以下、Fi2(>Fi0)以上とする。
 また、図10(b)に示すように、周波数Fv0を含む周波数の範囲である第2周波数範囲(Fv1<Fv0<Fv2)を予め設定し、圧縮機22の現在の運転周波数Fvが、第2周波数範囲内でない場合、目標吹出温度の変更を実施するようにしても良い。つまり、目標吹出温度の変更動作を適用する周波数範囲を、Fv1(<Fv0)以下、Fv2(>Fv0)以上とする。
 このような動作により、圧縮機12、22の運転周波数が、効率が高い運転周波数帯にある場合には目標吹出温度の変更が実施されないので、目標吹出温度の変更が頻繁に実施される動作を抑制して安定した動作とすると共に、運転効率の向上を図ることができる。
(変形例2)
 目標吹出温度を変更したあと、予め設定した時間の経過を待ってから、再度、目標吹出温度の変更動作を実施するようにしても良い。
 以下、図11を用いて図9との相違点を中心に説明する。
 図11は、本発明の実施の形態1における空気調和システムの動作の変形例2を示すフローチャートである。
 図11に示すように、S-4で目標吹出温度を増加させたとき、タイマーをスタートさせる。また、S-6で目標吹出温度を増加させたとき、タイマーをスタートさせる。
 集中コントローラ102は、タイマーが、予め設定した時間T1以上であるか否かを判断する(S-7)。そして、タイマーが、予め設定した時間T1以上である場合には、S-1以降の動作を再度実施する。
 このような動作により、目標吹出温度の設定値を変更した後、第1冷媒系統11および第2冷媒系統21の運転状態が安定した後、再度、圧縮機12、22の運転効率の判定を行う動作が実施される。よって、圧縮機12、22の運転周波数を、効率が最大となる周波数へ精度良く近づけることができる。
(変形例3)
 上記の説明では、室内機系統である第1冷媒系統11と、換気装置系統である第2冷媒系統21とがそれぞれ1つの場合を説明したが、第1冷媒系統11と第2冷媒系統21の数はそれぞれ任意の数でよい。
 図12は、本発明の実施の形態1における空気調和システムの変形例3を示す概略図である。
 図12に示すように、同一の室内200を空調対象とする、3つの第1冷媒系統11と2つの第2冷媒系統21とを備えた構成であっても良い。
 このように、複数の冷媒系統を備えた場合においては、集中コントローラ102は、複数の第1冷媒系統11のそれぞれの圧縮機12の運転周波数の平均値を、圧縮機12の現在の運転周波数Fiとする。また、複数の第2冷媒系統21のそれぞれの圧縮機22の運転周波数の平均値を、圧縮機22の現在の運転周波数Fvとする。
 例えば図12の例では、3つの第1冷媒系統11の圧縮機12の運転周波数をそれぞれ、fi_1~fi_3とすると、圧縮機12の現在の運転周波数は、Fi=(fi_1+fi_2+fi_3)/3、となる。
 また、2つの第2冷媒系統21の圧縮機22の運転周波数をそれぞれ、fv_1、fv_2とすると、圧縮機22の現在の運転周波数は、Fv=(fv_1+fv_2)/2、となる。
 このような構成においても、上述した動作を行うことで、第1冷媒系統11と第2冷媒系統21の能力バランスを調整することができ、空気調和システム100全体としてのトータル消費電力の低減を実現できる。
実施の形態2.
 本実施の形態2における空気調和システムは、目標吹出温度の設定値を、第1冷媒系統11の蒸発温度および第2冷媒系統21の蒸発温度に基づいて変更する。
 なお、本実施の形態2における空気調和システムの構成および冷媒系統の構成は、実施の形態1の構成(図1、図2)と同様であり、同一の構成には同一の符号を付する。
 以下、実施の形態1との相違点を中心に説明する。
 図13は本発明の実施の形態2における冷媒系統の概略図である。
 図13に示すように、第1冷媒系統11は、上記実施の形態1の構成に加え、蒸発温度検出手段42を更に備えている。
 蒸発温度検出手段42は、圧縮機12に吸入される冷媒の温度を検出する。
 圧縮機周波数制御手段41は、蒸発温度検出手段42の検出値の情報を、集中コントローラ102へ送信する。
 第2冷媒系統21は、上記実施の形態1の構成に加え、蒸発温度検出手段52を更に備えている。
 蒸発温度検出手段52は、圧縮機22に吸入される冷媒の温度を検出する。
 圧縮機周波数制御手段51は、蒸発温度検出手段52の検出値の情報を、集中コントローラ102へ送信する。
 集中コントローラ102は、蒸発温度検出手段42および蒸発温度検出手段52の検出値に基づき、目標吹出温度の設定値を変更し、目標吹出温度の情報を圧縮機周波数制御手段51へ送信する。詳細は後述する。
 なお、蒸発温度検出手段42、および蒸発温度検出手段52は、センサー装置によって構成されている。
(蒸発温度と効率との関係)
 図14は、一般的な冷媒回路における蒸発温度と効率との関係を示す図である。
 図14に示すように、効率は蒸発温度によって変化する特性があり、蒸発温度が低いほど効率が低くなる。
 つまり、第1冷媒系統11の蒸発温度が低いほど、第1冷媒系統11の熱交換量(能力)に対する圧縮機12で消費される電力が増加し、第1冷媒系統11の効率が低下する。
 また、第2冷媒系統21の蒸発温度が低いほど、第2冷媒系統21の熱交換量(能力)に対する圧縮機22で消費される電力が増加し、第2冷媒系統21の効率が低下する。
 空気調和システム100全体としてのトータルの効率は、空気調和システム100全体の熱交換量(能力)に対する圧縮機12、22で消費される電力である。このため、第1冷媒系統11および第2冷媒系統21のうち、熱交換量が大きい方の効率が、空気調和システム100全体の効率に与える影響が大きくなる。
 すなわち、第1冷媒系統11および第2冷媒系統21のうち、熱交換量の大きい方の蒸発温度を上昇させ、熱交換量の小さい方の蒸発温度を低下させることで、室内200内の負荷を処理しつつ、空気調和システム100全体の効率の向上を実現できる。
(目標吹出温度の制御の概要)
 図15、図16は、本発明の実施の形態2における空気調和システムの目標吹出温度の制御動作を説明する図である。
(室内熱交換器16の熱交換量>冷却器26の熱交換量)
 室内熱交換器16の熱交換量が冷却器26の熱交換量よりも大きい場合、第1冷媒系統11の効率の方が第2冷媒系統21の効率よりも、空気調和システム100全体の効率に与える影響が大きい。
 このような構成において、図15に示すように、第1冷媒系統11の蒸発温度ETiが、第2冷媒系統21の蒸発温度EToよりも小さいと、第1冷媒系統11の効率が第2冷媒系統21の効率よりも小さくなり、空気調和システム100全体の効率が悪い運転となる場合がある。
 このため、室内熱交換器16の熱交換量が冷却器26の熱交換量よりも大きい構成において、第1冷媒系統11の蒸発温度ETiが第2冷媒系統21の蒸発温度EToよりも小さい場合、第2冷媒系統21の目標吹出温度を減少させる。
 これにより、第2冷媒系統21で処理すべき負荷が増え、第2冷媒系統21の蒸発温度EToが低下する。また、第1冷媒系統11で処理すべき負荷が減り、第1冷媒系統11の蒸発温度ETiが上昇する。
 その結果、第1冷媒系統11の効率が向上し、空気調和システム100全体としての効率の向上を図ることができる。
 このように、第1冷媒系統11と第2冷媒系統21の能力バランスを調整することで、空気調和システム100全体としてのトータル消費電力の低減を実現できる。
 なお、第1冷媒系統11の蒸発温度ETiが、第2冷媒系統21の蒸発温度ETo以上の場合には、目標吹出温度の変更は実施せず、現在の設定値を維持する。
(室内熱交換器16の熱交換量<冷却器26の熱交換量)
 冷却器26の熱交換量が室内熱交換器16の熱交換量よりも大きい場合、第2冷媒系統21の効率の方が第1冷媒系統11の効率よりも、空気調和システム100全体の効率に与える影響が大きい。
 このような構成において、図16に示すように、第2冷媒系統21の蒸発温度EToが、第1冷媒系統11の蒸発温度ETiよりも小さいと、第2冷媒系統21の効率が第1冷媒系統11の効率よりも小さくなり、空気調和システム100全体の効率が悪い運転となる場合がある。
 このため、冷却器26の熱交換量が室内熱交換器16の熱交換量よりも大きい構成において、第2冷媒系統21の蒸発温度EToが第1冷媒系統11の蒸発温度ETiよりも小さい場合、第2冷媒系統21の目標吹出温度を増加させる。
 これにより、第2冷媒系統21で処理すべき負荷が減り、第2冷媒系統21の蒸発温度EToが増加する。また、第1冷媒系統11で処理すべき負荷が増え、第1冷媒系統11の蒸発温度ETiが低下する。
 その結果、第2冷媒系統21の効率が向上し、空気調和システム100全体としての効率の向上を図ることができる。
 このように、第1冷媒系統11と第2冷媒系統21の能力バランスを調整することで、空気調和システム100全体としてのトータル消費電力の低減を実現できる。
 なお、第2冷媒系統21の蒸発温度EToが、第1冷媒系統11の蒸発温度ETi以上の場合には、目標吹出温度の変更は実施せず、現在の設定値を維持する。
 ここで、目標吹出温度の変化量は、予め設定した温度(例えば5℃など)に設定する。このように変動量を固定値とした場合であっても、上述した変更動作が繰り返し実施されることで、最終的には効率が最大となる周波数の近傍に収束することとなる。
 なお、第1冷媒系統11の蒸発温度ETiと第2冷媒系統21の蒸発温度EToとの差が大きいほど、目標吹出温度の変化量を大きくするようにしても良い。
 このように、蒸発温度の差が大きいほど変化量を大きくすることで、効率が向上する蒸発温度に収束する制御速度を速くすることができる。
(効果)
 以上のように本実施の形態2においては、室内機系統である第1冷媒系統11と、換気装置系統である第2冷媒系統21とを備えた空気調和システム100において、第1冷媒系統11と第2冷媒系統21の能力バランスを調整することで、空気調和システム100全体としてのトータル消費電力の低減を実現できる。
 また、第1冷媒系統11の蒸発温度ETiと第2冷媒系統21の蒸発温度ETとの大小関係に基づき、目標吹出温度を変更する。このため、空調負荷の推算等の演算処理を行うことなく簡易な判定処理によって、省エネルギー性を向上することができる。
 また、室内機系統である第1冷媒系統11の目標室内温度は変更せず、換気装置系統である第2冷媒系統21の目標吹出温度を変更することで、運転効率の向上を図る運転を行いつつ、目標室内温度を一定に保つことで快適性の低下を抑制することができる。
(変形例1)
 第1冷媒系統11の蒸発温度ETiと第2冷媒系統21の蒸発温度ETとの温度差が、予め設定された温度差以上の場合、目標吹出温度の変更を実施するようにしても良い。
 このような動作により、第1冷媒系統11の蒸発温度ETiと第2冷媒系統21の蒸発温度ETとの温度差が、予め設定された温度差未満の場合には、目標吹出温度の変更が実施されないので、目標吹出温度の変更が頻繁に実施される動作を抑制して安定した動作とすると共に、運転効率の向上を図ることができる。
(変形例2)
 第1冷媒系統11の蒸発温度ETiと第2冷媒系統21の蒸発温度ETとの大小関係に基づき、目標吹出温度を変更したあと、予め設定した時間の経過を待ってから、再度、目標吹出温度の変更動作を実施するようにしても良い。
 このような動作により、目標吹出温度の設定値を変更した後、第1冷媒系統11および第2冷媒系統21の運転状態が安定した後、再度、第1冷媒系統11の蒸発温度ETiと第2冷媒系統21の蒸発温度ETとの大小関係の判定を行う動作が実施される。よって、第1冷媒系統11の蒸発温度ETiと第2冷媒系統21の蒸発温度ETを、効率が向上する関係となる蒸発温度へ精度良く近づけることができる。
(変形例3)
 上記の説明では、室内機系統である第1冷媒系統11と、換気装置系統である第2冷媒系統21とがそれぞれ1つの場合を説明したが、第1冷媒系統11と第2冷媒系統21の数はそれぞれ任意の数でよい。
 図17は、本発明の実施の形態2における空気調和システムの変形例3を示す概略図である。
 図17に示すように、同一の室内200を空調対象とする、3つの第1冷媒系統11と2つの第2冷媒系統21とを備えた構成であっても良い。
 このように、複数の冷媒系統を備えた場合においては、集中コントローラ102は、複数の第1冷媒系統11のそれぞれの蒸発温度の平均値を、第1冷媒系統11の蒸発温度ETiとする。また、複数の第2冷媒系統21のそれぞれの蒸発温度の平均値を、第2冷媒系統21の蒸発温度EToとする。
 例えば図17の例では、3つの第1冷媒系統11の蒸発温度をそれぞれ、ETi_1~ETi_3とすると、第1冷媒系統11の現在の蒸発温度は、ETi=(ETi_1+ETi_2+ETi_3)/3、となる。
 また、2つの第2冷媒系統21の蒸発温度をそれぞれ、ETo_1、ETo_2とすると、第2冷媒系統21の現在の蒸発温度は、ETo=(ETo_1+ETo_2)/2、となる。
 このような構成においても、上述した動作を行うことで、第1冷媒系統11と第2冷媒系統21の能力バランスを調整することができ、空気調和システム100全体としてのトータル消費電力の低減を実現できる。
 1 室内機、2 室内機系統の室外機、3 換気装置、4 換気装置系統の室外機、11 第1冷媒系統、12 圧縮機、13 四方弁、14 室外熱交換器、15 膨張弁、16 室内熱交換器、17 送風機、18 送風機、21 第2冷媒系統、22 圧縮機、23 四方弁、24 室外熱交換器、25 膨張弁、26 冷却器、27 送風機、28 給気用送風機、29 排気用送風機、30 吹出空気温度検出手段、41 圧縮機周波数制御手段、42 蒸発温度検出手段、43 吸込温湿度検出手段、51 圧縮機周波数制御手段、52 蒸発温度検出手段、100 空気調和システム、102 集中コントローラ、103 伝送線、104 冷媒配管、105 冷媒配管、200 室内。

Claims (23)

  1.  第1圧縮機、第1室外熱交換器、第1膨張弁、および室内熱交換器を配管で接続し、冷媒が循環する第1冷媒回路と、
     室内の室内空気を前記室内熱交換器に通過させたあと、前記室内へ供給する室内機と、
     前記室内空気の温度が目標室内温度となるように前記第1圧縮機の運転周波数を制御する第1周波数制御手段と、
     第2圧縮機、第2室外熱交換器、第2膨張弁、および換気用熱交換器を配管で接続し、冷媒が循環する第2冷媒回路と、
     室外から室外空気を導入し、前記換気用熱交換器を通過させたあと、前記室内へ吹出空気を供給する換気装置と、
     前記吹出空気の温度が目標吹出温度となるように前記第2圧縮機の運転周波数を制御する第2周波数制御手段と、
     前記目標吹出温度の設定値を、前記第1圧縮機の周波数および前記第2圧縮機の周波数に基づいて変更する設定値制御手段と、を備えた
     空気調和システム。
  2.  前記設定値制御手段は、
     前記第1圧縮機の運転周波数と、前記第1圧縮機の運転効率が最大となる第1周波数との大小関係と、
     前記第2圧縮機の運転周波数と、前記第2圧縮機の運転効率が最大となる第2周波数との大小関係と、に基づき、
     前記目標吹出温度を変更する
     請求項1に記載の空気調和システム。
  3.  前記設定値制御手段は、
     前記第1圧縮機の運転周波数が、前記第1周波数よりも小さく、かつ、
     前記第2圧縮機の運転周波数が、前記第2周波数よりも小さい場合、
     前記目標吹出温度を増加させる
     請求項1または2に記載の空気調和システム。
  4.  前記設定値制御手段は、
     前記第1圧縮機の運転周波数が、前記第1周波数よりも小さく、かつ、
     前記第2圧縮機の運転周波数が、前記第2周波数よりも大きい場合、
     前記目標吹出温度を増加させる
     請求項1~3の何れか一項に記載の空気調和システム。
  5.  前記設定値制御手段は、
     前記第1圧縮機の運転周波数が、前記第1周波数よりも大きく、かつ、
     前記第2圧縮機の運転周波数が、前記第2周波数よりも小さい場合、
     前記目標吹出温度を減少させる
     請求項1~4の何れか一項に記載の空気調和システム。
  6.  前記設定値制御手段は、
     前記第1圧縮機の運転周波数と、前記第1周波数との差が大きいほど、前記目標吹出温度の変化量を大きくする
     請求項1~5の何れか一項に記載の空気調和システム。
  7.  前記設定値制御手段は、
     前記第2圧縮機の運転周波数と、前記第2周波数との差が大きいほど、前記目標吹出温度の変化量を大きくする
     請求項1~6の何れか一項に記載の空気調和システム。
  8.  前記設定値制御手段は、
     前記第1周波数を含む周波数の範囲である第1周波数範囲が予め設定され、
     前記第1圧縮機の運転周波数が、前記第1周波数範囲内でない場合、
     前記目標吹出温度の変更を実施する
     請求項1~7の何れか一項に記載の空気調和システム。
  9.  前記設定値制御手段は、
     前記第2周波数を含む周波数の範囲である第2周波数範囲が予め設定され、
     前記第2圧縮機の運転周波数が、前記第2周波数範囲内でない場合、
     前記目標吹出温度の変更を実施する
     請求項1~8の何れか一項に記載の空気調和システム。
  10.  前記設定値制御手段は、
     前記目標吹出温度を変更したあと、予め設定した時間を経過したとき、
     前記第1圧縮機の運転周波数と、前記第1周波数との大小関係と、
     前記第2圧縮機の運転周波数と、前記第2周波数との大小関係と、に基づき、
     前記目標吹出温度を、再度変更する
     請求項1~9の何れか一項に記載の空気調和システム。
  11.  前記第1冷媒回路と前記室内機とから構成される第1冷媒系統を複数備え、
     前記設定値制御手段は、
     複数の前記第1冷媒系統のそれぞれの前記第1圧縮機の運転周波数の平均値を、
     前記第1圧縮機の運転周波数とする
     請求項1~10の何れか一項に記載の空気調和システム。
  12.  前記第2冷媒回路と前記換気装置とから構成される第2冷媒系統を複数備え、
     前記設定値制御手段は、
     複数の前記第2冷媒系統のそれぞれの前記第2圧縮機の運転周波数の平均値を、
     前記第2圧縮機の運転周波数とする
     請求項1~11の何れか一項に記載の空気調和システム。
  13.  前記第1冷媒回路と前記室内機とから構成される第1冷媒系統と、
     前記第2冷媒回路と前記換気装置とから構成される第2冷媒系統と、をそれぞれ複数備え、
     前記設定値制御手段は、
     複数の前記第1冷媒系統のそれぞれの前記第1圧縮機の運転周波数の平均値を、前記第1圧縮機の運転周波数とし、
     複数の前記第2冷媒系統のそれぞれの前記第2圧縮機の運転周波数の平均値を、前記第2圧縮機の運転周波数とする
     請求項1~10の何れか一項に記載の空気調和システム。
  14.  第1圧縮機、第1室外熱交換器、第1膨張弁、および室内熱交換器を配管で接続し、冷媒が循環する第1冷媒回路と、
     室内の室内空気を前記室内熱交換器に通過させたあと、前記室内へ供給する室内機と、
     前記室内空気の温度が目標室内温度となるように前記第1冷媒回路の蒸発温度を制御する第1蒸発温度制御手段と、
     第2圧縮機、第2室外熱交換器、第2膨張弁、および換気用熱交換器を配管で接続し、冷媒が循環する第2冷媒回路と、
     室外から室外空気を導入し、前記換気用熱交換器を通過させたあと、前記室内へ吹出空気を供給する換気装置と、
     前記吹出空気の温度が目標吹出温度となるように前記第2冷媒回路の蒸発温度を制御する第2蒸発温度制御手段と、
     前記目標吹出温度の設定値を、前記第1冷媒回路の蒸発温度および前記第2冷媒回路の蒸発温度に基づいて変更する設定値制御手段と、
     を備えた
     空気調和システム。
  15.  前記設定値制御手段は、
     前記第1冷媒回路の蒸発温度と前記第2冷媒回路の蒸発温度との大小関係と、に基づき、
     前記目標吹出温度を変更する
     請求項14に記載の空気調和システム。
  16.  前記室内熱交換器は、前記換気用熱交換器よりも熱交換量が大きく、
     前記設定値制御手段は、
     前記室内熱交換器および前記換気用熱交換器が蒸発器として機能する場合において、
     前記第1冷媒回路の蒸発温度が前記第2冷媒回路の蒸発温度よりも小さい場合、
     前記目標吹出温度を減少させる
     請求項14または15に記載の空気調和システム。
  17.  前記換気用熱交換器は、前記室内熱交換器よりも熱交換量が大きく、
     前記設定値制御手段は、
     前記室内熱交換器および前記換気用熱交換器が蒸発器として機能する場合において、
     前記第2冷媒回路の蒸発温度が前記第1冷媒回路の蒸発温度よりも小さい場合、
     前記目標吹出温度を増加させる
     請求項14または15に記載の空気調和システム。
  18.  前記設定値制御手段は、
     前記第1冷媒回路の蒸発温度と前記第2冷媒回路の蒸発温度との差が大きいほど、前記目標吹出温度の変化量を大きくする
     請求項14~17の何れか一項に記載の空気調和システム。
  19.  前記設定値制御手段は、
     前記第1冷媒回路の蒸発温度と前記第2冷媒回路の蒸発温度との差が、予め設定された温度差以上の場合、
     前記目標吹出温度の変更を実施する
     請求項14~18の何れか一項に記載の空気調和システム。
  20.  前記設定値制御手段は、
     前記目標吹出温度を変更したあと、予め設定した時間を経過したとき、
     前記第1冷媒回路の蒸発温度と前記第2冷媒回路の蒸発温度との大小関係に基づき、
     前記目標吹出温度を、再度変更する
     請求項14~19の何れか一項に記載の空気調和システム。
  21.  前記第1冷媒回路と前記室内機とから構成される第1冷媒系統を複数備え、
     前記設定値制御手段は、
     複数の前記第1冷媒系統のそれぞれの前記第1冷媒回路の蒸発温度の平均値を、
     前記第1冷媒回路の蒸発温度とする
     請求項14~20の何れか一項に記載の空気調和システム。
  22.  前記第2冷媒回路と前記換気装置とから構成される第2冷媒系統を複数備え、
     前記設定値制御手段は、
     複数の前記第2冷媒系統のそれぞれの前記第2冷媒回路の蒸発温度の平均値を、
     前記第2冷媒回路の蒸発温度とする
     請求項14~21の何れか一項に記載の空気調和システム。
  23.  前記第1冷媒回路と前記室内機とから構成される第1冷媒系統と、
     前記第2冷媒回路と前記換気装置とから構成される第2冷媒系統と、をそれぞれ複数備え、
     前記設定値制御手段は、
     複数の前記第1冷媒系統のそれぞれの前記第1冷媒回路の蒸発温度の平均値を、前記第1冷媒回路の蒸発温度とし、
     複数の前記第2冷媒系統のそれぞれの前記第2冷媒回路の蒸発温度の平均値を、前記第2冷媒回路の蒸発温度とする
     請求項14~20の何れか一項に記載の空気調和システム。
PCT/JP2014/062756 2014-05-13 2014-05-13 空気調和システム WO2015173896A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/307,154 US10317120B2 (en) 2014-05-13 2014-05-13 Air conditioning system with indoor and ventilation circuits
GB1619700.6A GB2540906B (en) 2014-05-13 2014-05-13 Air conditioning system
JP2016519024A JP6239100B2 (ja) 2014-05-13 2014-05-13 空気調和システム
PCT/JP2014/062756 WO2015173896A1 (ja) 2014-05-13 2014-05-13 空気調和システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/062756 WO2015173896A1 (ja) 2014-05-13 2014-05-13 空気調和システム

Publications (1)

Publication Number Publication Date
WO2015173896A1 true WO2015173896A1 (ja) 2015-11-19

Family

ID=54479468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062756 WO2015173896A1 (ja) 2014-05-13 2014-05-13 空気調和システム

Country Status (4)

Country Link
US (1) US10317120B2 (ja)
JP (1) JP6239100B2 (ja)
GB (1) GB2540906B (ja)
WO (1) WO2015173896A1 (ja)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4100763A (en) * 1976-06-21 1978-07-18 International Telephone & Telegraph Corporation Multi-source heat pump HVAC system
JPH07285326A (ja) * 1994-04-20 1995-10-31 Nissan Motor Co Ltd 車両用ヒートポンプ式冷暖房装置
JPH08178400A (ja) * 1994-12-28 1996-07-12 Matsushita Electric Ind Co Ltd 空気調和機の制御装置
JP2002022245A (ja) * 2000-07-13 2002-01-23 Daikin Ind Ltd 空調システム
JP2002054834A (ja) * 2000-08-08 2002-02-20 Mitsubishi Electric Corp 冷凍サイクル装置
JP2003139436A (ja) * 2001-10-31 2003-05-14 Mitsubishi Electric Corp 空気調和機
JP2003214686A (ja) * 2002-01-25 2003-07-30 Toshiba Kyaria Kk 空気調和機
JP2005225438A (ja) * 2004-02-16 2005-08-25 Sanden Corp 空調装置
JP2008057938A (ja) * 2006-09-04 2008-03-13 Sanki Eng Co Ltd 外気調整空調機
US20100211224A1 (en) * 2008-12-19 2010-08-19 EnaGea LLC Heating and cooling control methods and systems
JP2010249485A (ja) * 2009-03-24 2010-11-04 Mitsubishi Electric Corp 空気調和装置及び空気調和システム
EP2253897A1 (en) * 2009-05-15 2010-11-24 Rhoss S.p.A. Method and system for controlling a plurality of refrigerating machines
JP2010266199A (ja) * 2003-11-05 2010-11-25 Yamatake Corp 空調システムの空調制御装置および空調制御方法
JP2012007884A (ja) * 2011-09-05 2012-01-12 Hitachi Appliances Inc 空気調和機
JP2012077968A (ja) * 2010-09-30 2012-04-19 Sanken Setsubi Kogyo Co Ltd 空調方法及び空調システム
WO2013049268A1 (en) * 2011-09-30 2013-04-04 Siemens Industry, Inc. Method and system for improving energy efficiency in an hvac system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085032A (ja) * 2008-09-30 2010-04-15 Daikin Ind Ltd 空気調和装置
JP5487600B2 (ja) 2008-11-21 2014-05-07 ダイキン工業株式会社 空調システム
US8955346B2 (en) * 2010-11-04 2015-02-17 International Business Machines Corporation Coolant-buffered, vapor-compression refrigeration apparatus and method with controlled coolant heat load
US9822989B2 (en) 2011-12-12 2017-11-21 Vigilent Corporation Controlling air temperatures of HVAC units

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4100763A (en) * 1976-06-21 1978-07-18 International Telephone & Telegraph Corporation Multi-source heat pump HVAC system
JPH07285326A (ja) * 1994-04-20 1995-10-31 Nissan Motor Co Ltd 車両用ヒートポンプ式冷暖房装置
JPH08178400A (ja) * 1994-12-28 1996-07-12 Matsushita Electric Ind Co Ltd 空気調和機の制御装置
JP2002022245A (ja) * 2000-07-13 2002-01-23 Daikin Ind Ltd 空調システム
JP2002054834A (ja) * 2000-08-08 2002-02-20 Mitsubishi Electric Corp 冷凍サイクル装置
JP2003139436A (ja) * 2001-10-31 2003-05-14 Mitsubishi Electric Corp 空気調和機
JP2003214686A (ja) * 2002-01-25 2003-07-30 Toshiba Kyaria Kk 空気調和機
JP2010266199A (ja) * 2003-11-05 2010-11-25 Yamatake Corp 空調システムの空調制御装置および空調制御方法
JP2005225438A (ja) * 2004-02-16 2005-08-25 Sanden Corp 空調装置
JP2008057938A (ja) * 2006-09-04 2008-03-13 Sanki Eng Co Ltd 外気調整空調機
US20100211224A1 (en) * 2008-12-19 2010-08-19 EnaGea LLC Heating and cooling control methods and systems
JP2010249485A (ja) * 2009-03-24 2010-11-04 Mitsubishi Electric Corp 空気調和装置及び空気調和システム
EP2253897A1 (en) * 2009-05-15 2010-11-24 Rhoss S.p.A. Method and system for controlling a plurality of refrigerating machines
JP2012077968A (ja) * 2010-09-30 2012-04-19 Sanken Setsubi Kogyo Co Ltd 空調方法及び空調システム
JP2012007884A (ja) * 2011-09-05 2012-01-12 Hitachi Appliances Inc 空気調和機
WO2013049268A1 (en) * 2011-09-30 2013-04-04 Siemens Industry, Inc. Method and system for improving energy efficiency in an hvac system

Also Published As

Publication number Publication date
GB201619700D0 (en) 2017-01-04
US10317120B2 (en) 2019-06-11
US20170045279A1 (en) 2017-02-16
JPWO2015173896A1 (ja) 2017-04-20
GB2540906A (en) 2017-02-01
GB2540906B (en) 2020-03-04
JP6239100B2 (ja) 2017-11-29

Similar Documents

Publication Publication Date Title
JP5996107B2 (ja) 空気調和システム
JP6017068B2 (ja) 空気調和装置
WO2017212562A1 (ja) 空気調和システム
JP2013204899A (ja) 空気調和システム
JP2005156017A (ja) 空気調和機
WO2017081820A1 (ja) 空気調和システムおよび空気調和システムの制御方法
JP6250148B2 (ja) 空気調和システム
JP2013178046A (ja) 空気調和装置
JP2016138666A (ja) 空気調和機
JP2010121912A (ja) 空調システム
WO2018164253A1 (ja) 空気調和装置
JP5369577B2 (ja) 空調システム
JP6105933B2 (ja) 直膨コイルを使用した空気調和機
JP6538975B2 (ja) 空気調和システム
JP2010151421A (ja) 空調システム
JP2010065977A (ja) 空調システム
US20200064033A1 (en) System for control of superheat setpoint for hvac system
JP4074422B2 (ja) 空調機とその制御方法
JP6239100B2 (ja) 空気調和システム
JP7438342B2 (ja) 空気調和装置
JP6370425B2 (ja) 直膨コイルを使用した空気調和機
JP6938950B2 (ja) 空気調和システム
JP6745895B2 (ja) 空調システム
JP2019168220A (ja) 空気調和システムの制御装置および制御方法ならびに空気調和システム
JP6490095B2 (ja) 空気調和システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016519024

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15307154

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 201619700

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20140513

WWE Wipo information: entry into national phase

Ref document number: 1619700.6

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 14891970

Country of ref document: EP

Kind code of ref document: A1