WO2018220803A1 - 空気調和システム - Google Patents

空気調和システム Download PDF

Info

Publication number
WO2018220803A1
WO2018220803A1 PCT/JP2017/020497 JP2017020497W WO2018220803A1 WO 2018220803 A1 WO2018220803 A1 WO 2018220803A1 JP 2017020497 W JP2017020497 W JP 2017020497W WO 2018220803 A1 WO2018220803 A1 WO 2018220803A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
target
humidity
air
information
Prior art date
Application number
PCT/JP2017/020497
Other languages
English (en)
French (fr)
Inventor
侑哉 森下
裕之 森本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/020497 priority Critical patent/WO2018220803A1/ja
Priority to JP2019521883A priority patent/JP6808033B2/ja
Priority to DE112017007594.7T priority patent/DE112017007594T5/de
Priority to CN201780091203.8A priority patent/CN110662925B/zh
Priority to US16/605,074 priority patent/US11536474B2/en
Publication of WO2018220803A1 publication Critical patent/WO2018220803A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/32Refrigerant piping for connecting the separate outdoor units to indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0008Control or safety arrangements for air-humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • F24F2110/22Humidity of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/12Position of occupants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioning system including an air conditioning device and a ventilation device.
  • the ventilator performs a ventilation operation that replaces the air in the air-conditioned space with the outside air, and if the enthalpy of air introduced from outside is high during cooling, The load increases.
  • heat loads other than the cooling load include an indoor load generated indoors and a housing load entering from a building wall surface or the like.
  • the evaporating temperature of the indoor heat exchanger of the air conditioning apparatus is made constant at a low temperature, and the latent heat load among the above heat loads is processed.
  • the operation efficiency is lowered.
  • the operation efficiency is increased, but there is a problem that the amount of latent heat treatment is insufficient, the indoor humidity is increased, and the comfort is lowered.
  • Patent Documents 1 and 2 calculate a temperature difference between the indoor target temperature and the indoor temperature, and a humidity difference between the indoor target absolute humidity and the indoor absolute humidity.
  • the target evaporation temperature is set using the difference between each and an arbitrary threshold value.
  • the room temperature and the room absolute humidity are obtained from any temperature and humidity detection means. That is, even when at least one of the air conditioner and the ventilator is installed in a place where the air conditioning load is large and the air conditioning priority is low, the detection value of the temperature and humidity detection means provided in the device in such a place May be used.
  • a place where the air conditioning load is large and the air conditioning priority is low for example, a place where there is a lot of outside air or the like and there is not always an environment such as an entrance hall or an elevator hall is assumed.
  • the detection value of the temperature / humidity detection means placed in such a place is used, a relatively large temperature difference or humidity difference is calculated, and the detection value of the temperature / humidity detection means placed in another place is used Rather, the target evaporation temperature is set lower. That is, in the conventional air conditioning system, even when the target evaporation temperature can be raised without impairing comfort, the change of the evaporation temperature is prevented by setting the target evaporation temperature low. Therefore, there is a problem that the driving efficiency cannot be increased and the energy saving performance cannot be increased.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioning system that saves energy without impairing comfort.
  • An air conditioning system includes an outdoor unit, one or a plurality of indoor units, and one or a plurality of ventilators connected by a refrigerant pipe, a refrigerant system in which refrigerant circulates, and a refrigerant system
  • a refrigerant system having a compressor, an outdoor heat exchanger, a first expansion valve, an indoor heat exchanger, a second expansion valve, and a ventilator cooler, and the outdoor unit is a compressor
  • the outdoor heat exchanger the indoor unit has an indoor heat exchanger
  • the ventilator has a ventilator cooler
  • each of the indoor unit and the ventilator has an air conditioning target space.
  • Temperature / humidity detection means for detecting the temperature and humidity of air is provided, and the control device identifies and identifies at least one indoor unit and ventilator that satisfy a specific standard based on the arrangement in the air-conditioning target space. Temperature / humidity test installed in at least one of the indoor units and ventilators The target temperature adjusting unit for adjusting the target evaporation temperature based on the detected value of the means, and the refrigerant system so that the evaporation temperature of each of the indoor unit and the ventilator becomes the target evaporation temperature adjusted in the target temperature adjusting unit. And an air-conditioning control unit to control.
  • the target evaporating temperature is adjusted based on the detection value of the temperature / humidity detecting means provided in at least one of the indoor unit and the ventilating device that satisfy the specific standard, so the air conditioning priority is low. Since the temperature / humidity detection means provided in the place is not used, energy saving can be achieved without impairing comfort.
  • Embodiment 1 of this invention It is the schematic of the air conditioning system which concerns on Embodiment 1 of this invention. It is a refrigerant circuit figure which shows the flow of the refrigerant
  • FIG. 16 is a refrigerant circuit diagram including a control system of the air conditioning system of FIG. 15. It is the schematic which shows the other example of the air conditioning system which concerns on Embodiment 5 of this invention. It is the graph which illustrated the target temperature derivation information for calculating
  • FIG. 21 is an air diagram showing the evaporation temperature level for each of the four zones shown in FIG. 20. It is a flowchart which shows operation
  • FIG. 1 is a schematic diagram of an air-conditioning system according to Embodiment 1 of the present invention.
  • the air conditioning system 100 is applied to a building multi-air conditioner or the like, and includes one or a plurality of indoor units 1, one or a plurality of ventilators 3, and an outdoor unit 2.
  • the air conditioning system 100 also includes a centralized controller 20 that controls and manages the indoor unit 1, the outdoor unit 2, and the ventilation device 3 in an integrated manner.
  • the centralized controller 20 corresponds to the “control device” of the present invention.
  • one or a plurality of indoor units 1 are collectively referred to as “indoor unit 1”, and one or a plurality of ventilators 3 are collectively referred to as “ventilator 3”.
  • FIG. 1 the case where the air conditioning system 100 has the three indoor units 1 and the one ventilation apparatus 3 is illustrated.
  • the indoor unit 1 is configured to circulate the air in the air conditioning target space S while adjusting the temperature.
  • the air in the air-conditioning target space S is also referred to as room air.
  • the ventilator 3 is configured to replace room air and outside air, and cool and dehumidify the outside air introduced into the air-conditioning target space S with a ventilator heat exchanger 18 described later.
  • the indoor unit 1 and the ventilation device 3 are connected to the outdoor unit 2 and the refrigerant pipe 102, respectively.
  • the indoor unit 1, the outdoor unit 2, and the ventilation device 3 are connected via a centralized controller 20 and a transmission line 103, respectively. But the centralized controller 20 may communicate with the indoor unit 1, the outdoor unit 2, and the ventilation apparatus 3 by radio
  • FIG. 2 is a refrigerant circuit diagram showing a refrigerant flow during cooling of the air conditioning system of FIG.
  • the indoor unit 1 includes a first expansion valve 14a, an indoor heat exchanger 15, and an indoor blower 17.
  • the outdoor unit 2 includes a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, and an outdoor blower 16.
  • the ventilator 3 has a second expansion valve 14b and a ventilator heat exchanger 18.
  • the air conditioning system 100 includes a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, a first expansion valve 14 a, an indoor heat exchanger 15, a second expansion valve 14 b, and a ventilator heat exchanger 18, by a refrigerant pipe 102.
  • a refrigerant circuit 200 is formed as a refrigerant system that is connected and in which the refrigerant circulates. In FIG. 2, one indoor unit 1 is omitted to avoid complication.
  • FIG. 3 is a schematic configuration diagram of the ventilation device of the air conditioning system of FIG.
  • the ventilator 3 includes an air supply fan 19a, an exhaust air fan 19b, a total heat exchanger 30 that performs total heat exchange between room air (RA) and outside air (OA).
  • the ventilator 3 includes an OA temperature / humidity detection unit 31 that detects the temperature and absolute humidity of the outside air (OA), and an RA temperature / humidity detection unit 32 that detects the temperature and absolute humidity of the room air (RA).
  • OA OA temperature / humidity detection unit
  • RA temperature / humidity detection unit 32 that detects the temperature and absolute humidity of the room air (RA).
  • FIG. 4 is a refrigerant circuit diagram including a control system of the air conditioning system of FIG.
  • the outdoor unit 2 further includes a control device 50 that controls the refrigerant circuit 200 in cooperation with the centralized controller 20.
  • the outdoor unit 2 is provided with an evaporation temperature detecting means 42 provided on the suction side of the compressor 11.
  • the evaporating temperature detecting means 42 is a temperature sensor that includes, for example, a thermistor and detects an evaporating temperature in the refrigerant circuit 200.
  • Each indoor unit 1 is provided with suction temperature / humidity detection means 43 in the vicinity of an air suction port for sucking air in the air-conditioning target space S.
  • the suction temperature / humidity detection means 43 is a temperature / humidity sensor that detects a suction temperature that is the temperature of room air and a suction humidity that is the absolute humidity of the room air.
  • the air conditioning system 100 uses the temperature of the room air detected by the RA temperature / humidity detection means 32 or the suction temperature detected by the suction temperature / humidity detection means 43 as the room temperature Ta used for setting the evaporation temperature level. Can be applied. Further, the air conditioning system 100 uses the absolute humidity of the room air detected by the RA temperature / humidity detection means 32 or the suction humidity detected by the suction temperature / humidity detection means 43 for setting the evaporation temperature level. Can be applied as Here, the RA temperature / humidity detection means 32 and the suction temperature / humidity detection means 43 correspond to the “temperature / humidity detection means” of the present invention, and may hereinafter be collectively referred to as “temperature / humidity sensors”.
  • FIG. 5 is a block diagram showing a functional configuration of the centralized controller shown in FIG.
  • the centralized controller 20 manages the overall control of the air conditioning system 100 in an integrated manner, and can give various instructions to the outdoor unit 2 and the ventilation device 3.
  • the centralized controller 20 transmits specific reference information corresponding to a specific reference based on the arrangement in the air conditioning target space S to the control device 50.
  • the specific standard based on the arrangement in the air-conditioning target space S is also referred to as “specific standard”.
  • the centralized controller 20 includes an input display unit 21, a control unit 22, and a storage unit 23.
  • the input display unit 21 is a touch panel configured by stacking an input unit 21a and a display unit 21b.
  • the input unit 21 a receives an input operation by a user and outputs a signal corresponding to the received input operation to the control unit 22.
  • the display unit 21b includes, for example, a liquid crystal display (LCD) and is controlled by the control unit 22 to display characters or images.
  • LCD liquid crystal display
  • the input unit 21a receives an operation for setting the indoor target temperature Ta_tgt and the indoor target absolute humidity Xa_tgt of the indoor unit 1 and the ventilation device 3, respectively.
  • the indoor target temperature Ta_tgt is a set value for the temperature of room air
  • the indoor target absolute humidity Xa_tgt is a set value for the absolute humidity of room air.
  • the input unit 21 a receives an operation for setting the air conditioning priority order of the indoor unit 1 and the ventilation device 3.
  • the air conditioning priority order is determined based on the arrangement in the air conditioning target space S, and corresponds to the magnitude of the influence on comfort.
  • a place with a low air conditioning priority is a place that does not satisfy a specific standard, that is, a place that has a relatively small influence on comfort.
  • a place with high air conditioning priority is a place that satisfies a specific standard and has a relatively large influence on comfort.
  • the operation of setting the air conditioning priorities of the indoor unit 1 and the ventilation device 3 includes an operation of selecting at least one of the indoor unit 1 and the ventilation device 3.
  • the indoor unit 1 and the ventilator 3 may be collectively referred to as “air conditioner”.
  • the input unit 21a may receive an operation of selecting an indoor unit 1 and a ventilation device 3 that have a relatively low air conditioning priority.
  • the user can select an air conditioner that is considered to have no problem even if the room temperature Ta is separated from the indoor target temperature Ta_tgt via the input unit 21a.
  • the input unit 21a may receive an operation for selecting an air conditioning priority higher than the indoor unit 1 and the ventilation device 3. In this case, the user can select an air conditioner that is considered to have a relatively large impact on comfort through the input unit 21a.
  • the control unit 22 includes a display processing unit 22a and a data processing unit 22b.
  • the display processing unit 22a displays characters and images on the display unit 21b or changes the display content of the display unit 21b in accordance with a user input operation.
  • the data processing unit 22b acquires target temperature / humidity information that is information on the indoor target temperature Ta_tgt and the indoor target absolute humidity Xa_tgt via the input unit 21a, and causes the storage unit 23 to store the acquired target temperature / humidity information. is there. Then, the data processing unit 22b transmits the target temperature / humidity information to the control device 50. That is, the data processing unit 22b functions as target temperature / humidity setting means for setting the indoor target temperature Ta_tgt and the indoor target absolute humidity Xa_tgt in cooperation with the input unit 21a.
  • the data processing part 22b acquires the information of the setting content regarding the air-conditioning priority of an air-conditioning apparatus via the input part 21a, and transmits the acquired information to the control apparatus 50 of the indoor unit 1 as specific reference information. is there.
  • the data processing unit 22b transmits the address of the selected air conditioning device to the control device 50 as specific reference information.
  • the specific reference information includes an address of an air conditioner that is excluded during the adjustment process of the target evaporation temperature Te, and the data processing unit 22b transmits the specific reference information to the control device 50. Request exemption of selected air conditioning equipment.
  • the “address” of the air conditioner corresponds to “identification information” of the air conditioner in the present invention.
  • the control unit 22 can be realized by hardware such as a circuit device that realizes each of the above functions.
  • the control unit 22 can be executed on an arithmetic device such as a microcomputer, a DSP (Digital Signal Processor), or a CPU (Central Processing Unit). It can also be realized as executed software.
  • the storage unit 23 stores various data such as information on the indoor target temperature Ta_tgt and the indoor target absolute humidity Xa_tgt.
  • the storage unit 23 may store an operation program for the control unit 22.
  • the storage unit 23 can be configured by a RAM (Random Access Memory) and ROM (Read Only Memory), a PROM (Programmable ROM) such as a flash memory, an HDD (Hard Disk Drive), or the like.
  • FIG. 6 is a block diagram showing a functional configuration of the control device of FIG.
  • FIG. 7 is a graph illustrating target temperature derivation information for determining the target evaporation temperatures of the indoor heat exchanger and the ventilator cooler of FIG.
  • FIG. 8 is a table showing the target evaporating temperature setting ranges of the indoor heat exchanger and the ventilator cooler of FIG.
  • the configuration of the control device 50 of the outdoor unit 2 will be specifically described with reference to FIGS.
  • the control device 50 includes a control unit 51 and a storage unit 55.
  • the storage unit 55 stores various types of data such as monitoring target device information, which is information on addresses of air conditioning devices to be monitored, and level setting information indicating the evaporation temperature level.
  • the monitoring target device information includes the addresses of the indoor unit 1 and the ventilation device 3 in the initial state.
  • the storage unit 55 stores addresses of three indoor units 1 and addresses of one ventilator 3 as monitoring target device information.
  • the storage unit 55 may store an operation program for the control unit 51.
  • the storage unit 55 stores target temperature derivation information as exemplified in FIG.
  • the vertical axis represents the evaporation temperature of the indoor heat exchanger 15 or the ventilator heat exchanger 18, and the horizontal axis represents the temperature difference ⁇ T that is a value obtained by subtracting the indoor target temperature Ta_tgt from the indoor temperature Ta.
  • the temperature difference ⁇ Tn exemplifies a value obtained by subtracting the indoor target temperature Ta_tgt from the current indoor temperature Ta. That is, in the target temperature derivation information, as shown in FIG.
  • Te_max indicates the maximum evaporation temperature that is the maximum value of the target evaporation temperature Te
  • Te_min indicates the minimum evaporation temperature that is the minimum value of the target evaporation temperature Te.
  • the target temperature derivation information is such that the target evaporating temperature Te decreases as the temperature difference ⁇ T increases between the temperature difference ⁇ T and the target evaporating temperature Te in the range where the temperature difference ⁇ T is “0 ⁇ T ⁇ T1”.
  • T1 is a predetermined temperature threshold value.
  • the target temperature derivation information is such that when the temperature difference ⁇ T is 0 or less, the target evaporation temperature Te is set to the maximum evaporation temperature ET_max, and when the temperature difference ⁇ T is T1 or more, the target evaporation temperature Te is set to the minimum evaporation temperature ET_min. It has become so.
  • the maximum evaporation temperature ET_max corresponds to the maximum evaporation temperature Te_max in FIG. 7
  • the minimum evaporation temperature ET_min corresponds to the minimum evaporation temperature Te_min in FIG.
  • the maximum evaporation temperature Te_max and the minimum evaporation temperature Te_min are set in association with each of the indoor heat exchanger 15 and the ventilator heat exchanger 18. Furthermore, as the maximum evaporation temperature Te_max and the minimum evaporation temperature Te_min, values of a plurality of patterns are set for each evaporation temperature level. In the first embodiment, as shown in FIG.
  • two patterns are set as the evaporation temperature level: a Hi level with a relatively high evaporation temperature and a Lo level with a relatively low evaporation temperature. That is, for the maximum evaporation temperature Te_max and the minimum evaporation temperature Te_min, a Hi level value and a Lo level value smaller than the Hi level value are set, respectively.
  • the storage unit 55 stores the first target temperature derivation information corresponding to the Hi level of the indoor heat exchanger 15 and the Lo level of the indoor heat exchanger 15 as the target temperature derivation information.
  • the second target temperature derivation information, the third target temperature derivation information corresponding to the Hi level of the ventilator heat exchanger 18, and the fourth target temperature derivation information corresponding to the Lo level of the ventilator heat exchanger 18 are stored.
  • the first target temperature derivation information and the third target temperature derivation information correspond to the “high target temperature derivation information” of the present invention
  • the second target temperature derivation information and the fourth target temperature derivation information are the “low target temperature derivation information” of the present invention. This corresponds to “temperature derivation information”.
  • the maximum evaporation temperature is set to ETi_hi_max, and the minimum evaporation temperature is set to ETi_hi_min.
  • the maximum evaporation temperature is set to ETi_lo_max, and the minimum evaporation temperature is set to ETi_lo_min.
  • the maximum evaporation temperature is set to ETv_hi_max, and the minimum evaporation temperature is set to ETv_hi_min.
  • the maximum evaporation temperature is set to ETv_lo_max, and the minimum evaporation temperature is set to ETv_lo_min.
  • the target evaporation temperature Te of the indoor heat exchanger 15 is set to a temperature within the range from the maximum evaporation temperature ETi_hi_max to the minimum evaporation temperature ETi_hi_min according to the temperature difference ⁇ T.
  • the target evaporation temperature Te of the ventilator heat exchanger 18 is set to a temperature within the range from the maximum evaporation temperature ETv_hi_max to the minimum evaporation temperature ETv_hi_min according to the temperature difference ⁇ T.
  • the target evaporation temperature Te of the indoor heat exchanger 15 is set to a temperature within the range from the maximum evaporation temperature ETi_lo_max to the minimum evaporation temperature ETi_lo_min according to the temperature difference ⁇ T.
  • the target evaporation temperature Te of the ventilator heat exchanger 18 is set to a temperature within the range from the maximum evaporation temperature ETv_lo_max to the minimum evaporation temperature ETv_lo_min according to the temperature difference ⁇ T.
  • ETi_hi_max in the first target temperature derivation information and the maximum evaporation temperature ETv_hi_max in the third target temperature derivation information may be a common value or different values.
  • the minimum evaporation temperature ETi_hi_min in the first target temperature derivation information and the minimum evaporation temperature ETv_hi_min in the third target temperature derivation information may be a common value or different values.
  • the maximum evaporation temperature ETi_lo_max in the second target temperature derivation information and the maximum evaporation temperature ETv_lo_max in the fourth target temperature derivation information may be a common value or different values.
  • the minimum evaporation temperature in the second target temperature derivation information may be a common value or a different value from the minimum evaporation temperature ETv_lo_min in the fourth target temperature derivation information.
  • control unit 51 includes an acquisition processing unit 52, a target temperature adjustment unit 53, and an air conditioning control unit 54.
  • the acquisition processing unit 52 stores the indoor target temperature Ta_tgt and the indoor target absolute humidity Xa_tgt transmitted from the data processing unit 22b in the storage unit 55.
  • the acquisition processing unit 52 stores the specific reference information transmitted from the data processing unit 22b in the storage unit 55, and updates the monitoring target device information. For example, when the address of the air conditioner excluded during the adjustment process of the target evaporation temperature Te is transmitted as the specific reference information from the data processing unit 22b, the acquisition processing unit 52 stores the address in the storage unit 55. It is supposed to let you. At this time, the acquisition processing unit 52 updates the monitoring target device information by excluding the address as the specific reference information from the monitoring target device information. Further, when the address of the air conditioner applied to the adjustment process of the target evaporation temperature Te is transmitted as the specific reference information from the data processing unit 22b, the acquisition processing unit 52 rewrites the monitoring target device information using the address. To update.
  • the air conditioner whose address is included in the monitored device information updated by the acquisition processing unit 52 corresponds to the air conditioner that satisfies the specific standard.
  • the target temperature adjustment unit 53 identifies at least one of the indoor unit 1 and the ventilator 3 that satisfy the specific criteria, and a temperature / humidity sensor provided in at least one of the identified indoor unit 1 and the ventilator 3 The target evaporation temperature Te is adjusted based on the detected value.
  • the target temperature adjustment unit 53 includes a difference calculation unit 53a, a level determination unit 53b, and a target temperature determination unit 53c.
  • the difference calculation unit 53a obtains the temperature difference ⁇ T by subtracting the indoor target temperature Ta_tgt from the indoor temperature Ta.
  • the difference calculation unit 53a obtains the humidity difference ⁇ X by subtracting the indoor target absolute humidity Xa_tgt from the indoor absolute humidity Xa. Then, the difference calculation unit 53a outputs the obtained temperature difference ⁇ T and humidity difference ⁇ X to the level determination unit 53b. Further, the difference calculation unit 53a outputs the obtained temperature difference ⁇ T to the target temperature determination unit 53c.
  • the difference calculation unit 53a acquires the detection value from each of the RA temperature / humidity detection means 32 and the suction temperature / humidity detection means 43.
  • the difference calculation unit 53a refers to the monitored device information, a temperature / humidity sensor that acquires the indoor temperature Ta, and a temperature / humidity sensor that acquires the indoor absolute humidity Xa, Is to identify. That is, the difference calculation unit 53a does not use the detected value of the temperature / humidity sensor of the air conditioning device having the address excluded from the monitoring target device information by the acquisition processing unit 52.
  • the difference calculation unit 53a calculates the suction temperature detected by the suction temperature / humidity detection means 43 of the indoor unit 1 unless the addresses of all the indoor units 1 are excluded from the monitored device information. It is used as the room temperature Ta.
  • the indoor unit 1 from which the difference calculation unit 53a acquires the indoor temperature Ta is set in advance according to the installation environment and the like.
  • the difference calculation unit 53a uses the indoor air temperature detected by the RA temperature / humidity detection means 32 as the indoor temperature Ta. It has become.
  • the difference calculating part 53a uses the absolute humidity of the indoor air detected in RA temperature / humidity detection means 32 as the indoor absolute humidity Xa, unless the address of all the ventilation apparatuses 3 is excluded from monitoring object apparatus information. It is like that.
  • the ventilator 3 from which the difference calculation unit 53a acquires the indoor absolute humidity Xa is set in advance according to the installation environment and the like.
  • the difference calculation unit 53a sets the suction humidity detected by the suction temperature and humidity detection means 43 of the indoor unit 1 as the indoor absolute humidity Xa. It comes to use.
  • the level determination unit 53b determines whether or not the temperature / humidity condition that the temperature difference ⁇ T is equal to or lower than the temperature threshold T1 and the humidity difference ⁇ X is equal to or lower than a preset humidity threshold X1 is satisfied.
  • the temperature difference ⁇ T is equal to or less than the temperature threshold T1
  • the humidity difference ⁇ X is greater than the humidity threshold X1
  • the humidity difference ⁇ X is equal to or less than the humidity threshold X1.
  • the case where the difference ⁇ T is larger than the temperature threshold T1 and the case where the temperature difference ⁇ T is larger than the temperature threshold T1 and the humidity difference ⁇ X is larger than the humidity threshold X1 are included.
  • the level determination unit 53b updates the level setting information in the storage unit 55 based on the determination result as to whether the temperature / humidity condition is satisfied. That is, the level determination unit 53b changes the level setting information to the Lo level when the temperature difference ⁇ T and the humidity difference ⁇ X do not satisfy the temperature / humidity condition when the level setting information is set to the Hi level. is there.
  • the target temperature determination unit 53c changes the level setting information to the Hi level when the temperature difference ⁇ T and the humidity difference ⁇ X satisfy the temperature / humidity condition when the level setting information is set to the Lo level. Is. That is, when the air conditioning system 100 does not satisfy the temperature and humidity conditions when operating at the Hi level, the air conditioning system 100 shifts to the operation at the Lo level, and when the temperature and humidity conditions are satisfied during the operation at the Lo level, Transition to driving.
  • the target temperature determination unit 53c is configured to target evaporation temperatures Te of the indoor heat exchanger 15 and the ventilator heat exchanger 18, respectively. Is to determine. In other words, the target temperature determination unit 53c illuminates the target temperature derivation information corresponding to the evaporation temperature level of the level setting information with the temperature difference ⁇ T, so that the target evaporation of each of the indoor heat exchanger 15 and the ventilator heat exchanger 18 is performed. The temperature Te is determined. Then, the target temperature determining unit 53c outputs the determined target evaporation temperature Te to the air conditioning control unit 54.
  • the air conditioning control unit 54 controls the refrigerant circuit 200 so that the evaporation temperatures of the indoor unit 1 and the ventilation device 3 become the target evaporation temperature Te adjusted by the target temperature adjusting unit 53.
  • the air conditioning control unit 54 controls the air conditioning system so that the evaporating temperatures of all the indoor heat exchangers 15 and the ventilator heat exchangers 18 become the target evaporating temperature Te determined by the target temperature determining unit 53c. It controls 100 various actuators.
  • the air conditioning control unit 54 can adjust the operating frequency of the compressor 11.
  • the air conditioning control unit 54 can adjust the rotational speed of the outdoor blower 16.
  • the air conditioning control unit 54 can adjust the opening degrees of the first expansion valve 14a and the second expansion valve 14b.
  • the air conditioning control unit 54 can adjust the rotational speed of the indoor blower 17.
  • the control unit 51 can be realized by hardware such as a circuit device that realizes each of the above functions.
  • the control unit 51 can be executed on a calculation device such as a microcomputer, a DSP (Digital Signal Processor), or a CPU (Central Processing Unit). It can also be realized as executed software.
  • the storage unit 55 can be configured by a RAM (Random Access Memory) and ROM (Read Only Memory), a PROM (Programmable ROM) such as a flash memory, an HDD (Hard Disk Drive), or the like.
  • FIG. 9 is a flowchart showing the operation of the air conditioning system of FIG. With reference to FIG. 9, the air conditioning method including the adjustment process of the target evaporation temperature Te by the air conditioning system 100 will be described. Here, the operation when the central controller 20 selects an air conditioner to be excluded in the adjustment process of the target evaporation temperature Te is illustrated.
  • the data processing unit 22b determines the address of the selected air conditioner as a control device. 50. Then, the acquisition processing unit 52 recognizes that there is a request to exclude at least one air conditioner from the centralized controller 20 (step S101 / YES), and stores the address of the excluded air conditioner in the storage unit 55. At that time, the acquisition processing unit 52 excludes the address stored in the storage unit 55 from the monitoring target device information (step S102).
  • the difference calculation unit 53a specifies an air conditioning device that acquires the room temperature Ta and the room absolute humidity Xa based on the monitoring target device information updated by the acquisition processing unit 52.
  • the difference calculation unit 53a acquires the room temperature Ta and the room absolute humidity Xa from the temperature / humidity sensor provided in the specified air conditioner.
  • the difference calculation unit 53a subtracts the indoor target temperature Ta_tgt from the acquired indoor temperature Ta to obtain the temperature difference ⁇ T.
  • the difference calculation unit 53a subtracts the indoor target absolute humidity Xa_tgt from the acquired indoor absolute humidity Xa to obtain the humidity difference ⁇ X (step S103).
  • the difference calculation unit 53a obtains the room temperature Ta and the room absolute humidity Xa based on the current monitoring target equipment information.
  • the device is specified, and the temperature difference ⁇ T and the humidity difference ⁇ X are obtained in the same manner as described above (step S103).
  • the air conditioner whose address is included in the monitored device information corresponds to an air conditioner that satisfies a specific standard.
  • the level determination unit 53b determines whether or not the temperature / humidity condition that the temperature difference ⁇ T is equal to or lower than the temperature threshold T1 and the humidity difference ⁇ X is equal to or lower than the humidity threshold X1 is satisfied (step S104).
  • the level determination unit 53b sets the level setting information to the Hi level (step S105).
  • the level determination unit 53b sets the level setting information to the Lo level (step S106).
  • the target temperature determination unit 53c illuminates the target temperature derivation information corresponding to the evaporation temperature level of the level setting information with the temperature difference ⁇ T obtained by the difference calculation unit 53a, and performs heat exchange between the indoor heat exchanger 15 and the ventilation device.
  • Each target evaporation temperature Te of the vessel 18 is determined (step S107).
  • the air-conditioning control part 54 of the air conditioning system 100 so that each evaporation temperature of the indoor heat exchanger 15 and the ventilator heat exchanger 18 becomes the target evaporation temperature Te determined in the target temperature determination part 53c.
  • Air conditioning control for various actuators is executed (step S108).
  • the centralized controller 20 and the control device 50 repeatedly execute the above steps S101 to S108.
  • the difference calculation unit 53a may obtain the temperature difference ⁇ T and the humidity difference ⁇ X after a certain waiting time has elapsed.
  • the series of steps S104 to S108 described above corresponds to a process for adjusting the target evaporation temperature Te.
  • the target evaporation temperature Te is adjusted based on the detection value of the temperature / humidity sensor provided in the temperature / humidity sensor of the air conditioner that satisfies the specific standard. Therefore, energy saving can be achieved without impairing comfort.
  • the control apparatus 50 acquires the specific reference information corresponding to a specific reference from the centralized controller 20, and specifies the air conditioning equipment which satisfy
  • the centralized controller 20 accepts an operation for selecting an air conditioner having a relatively low air conditioning priority, and transmits the address of the selected air conditioner to the control device 50 as specific reference information.
  • the control apparatus 50 specifies the air conditioning equipment which satisfy
  • the control apparatus 50 acquires the temperature and humidity of indoor air from the temperature / humidity sensor provided in the air-conditioning equipment which satisfy
  • DELTA temperature difference
  • a human sensor that detects a human body by infrared rays, ultrasonic waves, or visible light is provided in the air conditioning target space S, and the control unit 22 of the centralized controller 20 is configured to acquire detection information by the human sensor. May be.
  • the control unit 22 may determine over time whether or not there is a person in each air-conditioning area of each air-conditioning device based on information detected by the human sensor.
  • the air conditioning area of the air conditioner is an area around each of the plurality of air conditioners.
  • the control unit 22 extracts a region where no person exists for a predetermined time or more based on the detection information from the human sensor, and sends the address of the air conditioner corresponding to the extracted region to the control device 50 as specific reference information. You may make it transmit.
  • the specific criterion information indicates an address of an air conditioner that does not satisfy the specific criterion. In this way, if the air conditioner that does not satisfy the specific standard is automatically specified, it is possible to save the user from performing the selection operation.
  • the control apparatus 50 may acquire the detection information by a human sensitive sensor, and may make it determine with time whether the person exists in each air-conditioning area
  • the control device 50 that controls the refrigerant circuit 200 as the refrigerant system is provided in the outdoor unit 2
  • the present invention is not limited to this. That is, the control device 50 may be provided outside the outdoor unit 2, for example, may be provided in the indoor unit 1 or the ventilation device 3.
  • the control device 50 operates the first expansion valve 14a and the indoor blower 17 in cooperation with the indoor control device. It is good to control.
  • the control device 50 controls the second expansion valve 14b in cooperation with the ventilation control device. Good.
  • the air conditioning system 100 may include a remote controller that is disposed in the air-conditioning target space S for operation of the air-conditioning equipment and is connected to the ventilation device by wire or wirelessly. And a remote controller may receive operation which sets the air-conditioning priority of an air-conditioning apparatus by a user, and you may make it transmit the specific reference information regarding the air-conditioning priority of an air-conditioning apparatus to the control apparatus 50.
  • the remote controller corresponds to the “control device” of the present invention.
  • Embodiment 2 The air conditioning system according to the second embodiment has a target evaporating temperature Te when all the air conditioners in the own system satisfy a comfort condition that is a temperature difference and a humidity difference that satisfy the minimum comfort. The adjustment process is performed. Since other system configurations are the same as those of the first embodiment described above, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the air conditioning system 100 is a process for increasing the evaporation temperature when all the air conditioners in the own system do not satisfy the comfort condition even if there are air conditioners that do not satisfy the specific standard. It is configured not to perform.
  • the comfort condition is a condition that the temperature difference ⁇ T is less than the comfortable temperature threshold T2 and the humidity difference ⁇ X is less than the comfortable humidity threshold X2.
  • the comfortable temperature threshold value T2 and the comfortable humidity threshold value X2 are standards for temperature and humidity that the indoor unit 1 and the ventilator 3 should keep at least.
  • the comfortable temperature threshold T2 is set larger than the temperature threshold T1
  • the comfortable humidity threshold X2 is set larger than the humidity threshold X1.
  • the difference calculation unit 53a acquires the room temperature Ta and the room absolute humidity Xa from the temperature and humidity sensors of all the air conditioners in the own system. Moreover, the difference calculation part 53a calculates
  • the comfortable temperature threshold value T2 and the comfortable humidity threshold value X2 may be set in advance or may be changed from the centralized controller 20. Further, when a human sensor is provided in the air conditioning target space S, the control unit 22 of the centralized controller 20 analyzes the population density of the air conditioning target space S based on the detection information by the human sensor. Also good. And the control part 22 may change the comfortable temperature threshold value T2 and the comfortable humidity threshold value X2 automatically according to the increase / decrease in the population density of the air-conditioning object space S.
  • FIG. 10 is a flowchart showing the operation of the air-conditioning system according to Embodiment 2 of the present invention. With reference to FIG. 10, the air conditioning method by the air conditioning system 100 of this Embodiment 2 is demonstrated. The same steps as those in the first embodiment are denoted by the same reference numerals as those in FIG.
  • the air conditioning system 100 executes the processing of steps S101 and S102 in the same manner as in FIG.
  • the difference calculation unit 53a acquires the room temperature Ta and the room absolute humidity Xa from the temperature and humidity sensors of all the air conditioning devices of the own system. And the difference calculating part 53a calculates
  • the difference calculation unit 53a determines that the temperature difference ⁇ T and the humidity difference ⁇ X corresponding to each of all the air conditioning devices of the own system are such that the temperature difference ⁇ T is less than the comfortable temperature threshold T2 and the humidity difference ⁇ X is the comfortable humidity threshold X2. It is determined whether or not the comfort condition of being less than is satisfied (step S202). When the temperature difference ⁇ T and the humidity difference ⁇ X corresponding to each of all the air conditioning devices in the own system satisfy the comfort condition (step S202 / YES), the difference calculation unit 53a proceeds to the process of step S104. Then, the air conditioning system 100 executes a series of processes in steps S104 to S108 in the same manner as in FIG.
  • Step S202 / NO if at least one of the air conditioning devices in the own system does not satisfy the comfort condition (step S202 / NO), the difference calculation unit 53a waits until a preset waiting time elapses ( Step S203 / NO), when the waiting time has elapsed, the process returns to Step S202.
  • the control device 50 adjusts the target evaporation temperature Te if all the air conditioners in its own system do not satisfy the comfort condition even when the specific reference information is transmitted from the centralized controller 20. Do not do. Therefore, it is possible to avoid a situation that impairs comfort such as uncooling during cooling.
  • the air conditioning system 100 has a target evaporation temperature Te based on the detection value by the temperature / humidity sensor of the air conditioner that satisfies the specific standard if all the air conditioners of the own system satisfy the comfort condition. Adjust. Therefore, it is possible to avoid a lack of cooling or a lack of dehumidification, and to ensure a minimum comfort. And since evaporation temperature can be raised in the appropriate scene, energy saving can be achieved. Other effects and alternative configurations are the same as in the first embodiment.
  • FIG. 11 is a schematic diagram of an air-conditioning system according to Embodiment 3 of the present invention.
  • the air conditioning system 110 of the third embodiment has a first air conditioning system 100A and a second air conditioning system 100B.
  • the first air conditioning system 100A and the second air conditioning system 100B are configured to be able to communicate with each other. Since the system configuration of each of the first air conditioning system 100A and the second air conditioning system 100B is the same as that of the air conditioning system 100 of the first or second embodiment described above, the same reference numerals are used for equivalent components. The description is omitted.
  • the centralized controllers 20A and 20B are configured in the same manner as the centralized controller 20 of the first or second embodiment, but are distinguished by adding a suffix for convenience of explanation.
  • the control devices 50A and 50B are configured in the same manner as the control device 50 according to the first or second embodiment, but are distinguished by adding a suffix for convenience of explanation.
  • the first air conditioning system 100A and the second air conditioning system 100B are configured in the same manner, the following description focuses on the configuration and operation of the first air conditioning system 100A.
  • its own refrigerant circuit 200 is a refrigerant circuit of its own system
  • the refrigerant circuit 200 of the second air conditioning system 100B is a refrigerant circuit of another system.
  • the centralized controller 20A is configured to accept an operation for selecting an air conditioning device of another system. Therefore, when the user installs all the ventilators 3 in his / her system in a place where the air conditioning priority is low and the other system ventilators 3 are installed in a place where the air conditioning priority is high, Via the input unit 21a, it is possible to perform the selection operation of excluding the ventilator 3 of the own system and adding the ventilator 3 of another system.
  • the data processing unit 22b uses, as the specific reference information, the address of the ventilator 3 of the own system selected for exclusion and the address of the ventilator 3 of the other system selected for addition as the control device 50A. Send to.
  • the acquisition processing unit 52 of the control device 50A excludes the address of the ventilator 3 of the own system from the monitored device information, and adds the ventilator 3 of another system to the monitored device information.
  • the difference calculating part 53a uses the absolute humidity of the indoor air detected in the RA temperature / humidity detection means 32 of the ventilation apparatus 3 of another system based on the monitoring object apparatus information as the indoor absolute humidity Xa.
  • the other-system ventilator 3 corresponds to “another ventilator” of the present invention.
  • the selection operation of excluding the indoor unit 1 of the own system and adding the indoor unit 1 of another system can be performed via the input unit 21a.
  • the data processing unit 22b transmits, as the specific reference information, the address of the indoor unit 1 selected for exclusion and the address of the indoor unit 1 selected for addition to the control device 50A.
  • the acquisition processing unit 52 of the control device 50A excludes the address of the indoor unit 1 of the own system from the monitored device information based on the specific reference information, and adds the address of the indoor unit 1 of the other system to the monitored device information.
  • the difference calculating part 53a uses the suction temperature detected in the suction temperature humidity detection means 43 of the indoor unit 1 of another system
  • Other configurations are the same as those in the first and second embodiments.
  • FIG. 12 is a flowchart showing the operation of the air conditioning system of FIG. With reference to FIG. 12, the air conditioning method by the air conditioning system 110 of this Embodiment 3 is demonstrated. The same steps as those in the first embodiment are denoted by the same reference numerals as those in FIG. Here, a case will be described in which all the ventilators 3 of the own system are installed in a place where the air conditioning priority is low, and the ventilators 3 of other systems are installed in a place where the air conditioning priority is high.
  • the user performs a selection operation of excluding all the ventilators 3 of the own system and adding the ventilators 3 of other systems via the input unit 21a of the centralized controller 20A. Then, the data processing unit 22b transmits the address of the ventilator 3 of the own system and the address of the ventilator 3 of the other system selected for addition to the control device 50A.
  • the acquisition processing unit 52 of the control device 50A recognizes that there is a request to exclude the ventilator 3 of the own system and add the ventilator 3 of another system (step S301 / YES). Each address of the ventilation device 3 of the system is stored in the storage unit 55. At that time, the acquisition processing unit 52 excludes the address of the ventilator 3 of its own system from the monitored device information, and adds the address of the ventilator 3 of another system to the monitored device information (step S302).
  • the difference calculation unit 53a specifies an air conditioning device that acquires the room temperature Ta and the room absolute humidity Xa based on the monitoring target device information updated by the acquisition processing unit 52. And the difference calculating part 53a acquires indoor absolute humidity Xa from the temperature / humidity sensor of the ventilator 3 of the other system added to the monitoring object apparatus information by communication with the control apparatus 50B or the centralized controller 20B. Moreover, the difference calculating part 53a acquires the room temperature Ta from the temperature / humidity sensor of the indoor unit 1 of its own system. Then, the difference calculation unit 53a subtracts the indoor target temperature Ta_tgt from the acquired indoor temperature Ta to obtain the temperature difference ⁇ T. Further, the difference calculation unit 53a subtracts the indoor target absolute humidity Xa_tgt from the acquired indoor absolute humidity Xa to obtain the humidity difference ⁇ X (step S303).
  • the difference calculation unit 53a is the current monitoring target.
  • an air conditioner that acquires the room temperature Ta and the room absolute humidity Xa is specified, and a temperature difference ⁇ T and a humidity difference ⁇ X are obtained (step S303).
  • the air conditioner whose address is included in the monitored device information corresponds to an air conditioner that satisfies a specific standard.
  • the first air conditioning system 100A executes a series of processes in steps S104 to S108 as in the case of FIG.
  • the first air conditioning system 100A may perform a series of processes in steps S201 to S203 shown in FIG. 11 of the second embodiment in addition to the series of processes in steps S301 to S303 and steps S104 to S108. Good.
  • the central controller 20A or 20B excludes the air conditioning equipment having a low air conditioning priority in its own system and the air conditioning equipment having a high air conditioning priority in the other system. Selection operations to be added can be accepted. Then, the central controller 20A or 20B transmits the addresses of the exclusion air conditioner and the additional air conditioner to the control device 50A or 50B. Therefore, the control device 50A or 50B can acquire the room temperature Ta or the room absolute humidity Xa not only from the air conditioning equipment of its own system but also from the temperature and humidity sensor of the air conditioning equipment of another system.
  • the temperature difference ⁇ T and the humidity difference ⁇ X can be obtained by using the indoor temperature Ta and the indoor absolute humidity Xa with higher accuracy and the target evaporation temperature Te can be adjusted, the number of scenes where the evaporation temperature is increased is increased. Energy saving.
  • Other effects and alternative configurations are the same as in the first and second embodiments.
  • the conditioning system 100A or the second air conditioning system 100B may not include the ventilation device 3.
  • the data processing unit 22b determines the address of the ventilator 3 of the other system as a control device. Send to 50A or 50B. Then, the acquisition processing unit 52 of the control device 50A or 50B adds the address of the ventilation device 3 of another system to the monitoring target device information.
  • FIG. FIG. 13 is a schematic diagram of an air-conditioning system according to Embodiment 4 of the present invention.
  • the air conditioning system 100 ⁇ / b> C according to the fourth embodiment includes a communication device 60.
  • An air conditioning system 1000 is provided in the air conditioning target space S.
  • the air conditioning system 1000 is different from, for example, the air conditioning system 100C, and the air conditioning system 100C and the air conditioning system 1000 cannot communicate with each other.
  • the air conditioning system 1000 is a general air conditioning system that includes an indoor unit 1001, an outdoor unit 1002, and a ventilation device 1003. It is assumed that the ventilator 1003 is installed in a place with high air conditioning priority.
  • the communication device 60 can perform wired or wireless communication with the centralized controller 20 and the control device 50.
  • the communication device 60 is assumed to be provided in the vicinity of the ventilation device 1003 and in a place with a high air conditioning priority.
  • a remote controller for operating an air conditioner is assumed.
  • the communication device 60 includes a humidity sensor 61 that detects the absolute humidity of the air in the air-conditioning target space S.
  • the centralized controller 20 acquires the address of the communication device 60 and stores it in the storage unit 23.
  • the control device 50 can acquire the detection value of the humidity sensor 61.
  • the control apparatus 50 can use the detected value of the humidity sensor 61 as indoor absolute humidity Xa suitably.
  • a target temperature and a target absolute humidity are set in the communication device 60.
  • the control device 50 may acquire the target temperature and the target absolute humidity directly from the communication device 60 or may acquire the target temperature and target absolute humidity via the centralized controller 20.
  • the centralized controller 20 is adapted to accept an operation for selecting the communication device 60. Therefore, the user excludes the ventilator 3 of the own system and adds the communication device 60 via the input unit 21a when the ventilator 3 of the own system is all installed in a place with a low air conditioning priority. Selection operation can be performed.
  • the data processing unit 22b transmits the address of the ventilation device 3 of the own system and the address of the communication device 60 to the control device 50 as the specific reference information. Therefore, the acquisition processing unit 52 of the control device 50 excludes the address of the ventilation device 3 of the own system from the monitored device information based on the specific reference information, and adds the address of the communication device 60 to the monitored device information. .
  • the difference calculating part 53a uses the absolute humidity of the indoor air detected in the humidity sensor 61 of the communication apparatus 60 with reference to monitoring object apparatus information as the indoor absolute humidity Xa. Other configurations are the same as those in the first and second embodiments.
  • FIG. 14 is a flowchart showing the operation of the air conditioning system of FIG. With reference to FIG. 14, the air conditioning method by the air conditioning system 100C of this Embodiment 4 is demonstrated. The same steps as those in the first embodiment are denoted by the same reference numerals as those in FIG.
  • the user performs a selection operation of excluding all ventilation devices 3 of the own system and adding the communication device 60 via the input unit 21a of the centralized controller 20A. Then, the data processing unit 22b transmits the address of the ventilation device 3 and the address of the communication device 60 to the control device 50.
  • the acquisition processing unit 52 of the control device 50 recognizes that there has been a request to add the communication device 60 by excluding the ventilation device 3 of the own system (step S401 / YES), and the address and the communication device of the ventilation device 3 of the own system 60 addresses are stored in the storage unit 55. At that time, the acquisition processing unit 52 excludes the address of the ventilation device 3 of the own system from the monitoring target device information, and adds the address of the communication device 60 to the monitoring target device information (step S402).
  • the difference calculation unit 53a specifies an air conditioning device that acquires the room temperature Ta and the room absolute humidity Xa based on the monitoring target device information updated by the acquisition processing unit 52. Then, the difference calculation unit 53a acquires the indoor absolute humidity Xa from the humidity sensor 61 of the communication device 60. Moreover, the difference calculating part 53a acquires the room temperature Ta from the temperature / humidity sensor of the indoor unit 1 of its own system. Then, the difference calculation unit 53a subtracts the indoor target temperature Ta_tgt from the acquired indoor temperature Ta to obtain the temperature difference ⁇ T. Further, the difference calculation unit 53a subtracts the indoor target absolute humidity Xa_tgt from the acquired indoor absolute humidity Xa to obtain the humidity difference ⁇ X (step S403).
  • the difference calculation unit 53a displays the current monitoring target device information. Originally, the room temperature Ta and the room absolute humidity Xa are acquired, and the temperature difference ⁇ T and the humidity difference ⁇ X are obtained (step S403).
  • the air conditioner whose address is included in the monitored device information corresponds to an air conditioner that satisfies the specific criteria.
  • the air conditioning system 100C executes a series of processes in steps S104 to S108 in the same manner as in FIG.
  • the air conditioning system 100C may perform a series of processes in steps 201 to S203 shown in FIG. 11 of the second embodiment in addition to the series of processes in steps S401 to S403 and steps S104 to S108.
  • the communication device 60 having the humidity sensor 61 is installed in a place where the air conditioning priority is high, and the control device 50 removes the indoor air from the humidity sensor 61. Absolute humidity can be obtained. Then, the centralized controller 20 accepts a selection operation for adding the communication device 60 excluding the ventilation device 3 of the own system having a low air conditioning priority, and controls the addresses of the ventilation device 3 and the communication device 60 of the own system. To device 50. Therefore, the control device 50 can acquire the indoor absolute humidity Xa from the humidity sensor 61 of the communication device 60.
  • FIG. FIG. 15 is a schematic diagram illustrating an example of an air-conditioning system according to Embodiment 5 of the present invention.
  • FIG. 16 is a refrigerant circuit diagram including a control system of the air conditioning system of FIG.
  • FIG. 17 is a schematic diagram illustrating another example of the air-conditioning system according to Embodiment 5 of the present invention.
  • the air conditioning systems 100D and 100E of the fifth embodiment are characterized in that they have two refrigerant systems as shown in FIGS. About the component equivalent to the air conditioning system 100 of Embodiment 1 and 2 mentioned above, description is abbreviate
  • the air conditioning system 100D has a refrigerant circuit 200A that is one refrigerant system including the outdoor unit 2 and one or a plurality of indoor units 1.
  • the air conditioning system 100D includes a refrigerant circuit 200B that is the other refrigerant system including the outdoor unit 4 and one or a plurality of ventilators 3.
  • 15 and 16 exemplify a case where the refrigerant circuit 200A includes three indoor units 1.
  • 15 and 16 exemplify the case where the refrigerant circuit 200B includes one ventilation device 3.
  • first refrigerant system one refrigerant system corresponding to the refrigerant circuit 200A
  • second refrigerant system the other refrigerant system corresponding to the refrigerant circuit 200B
  • the outdoor unit 2 and the indoor unit 1 are connected by a refrigerant pipe 102a.
  • the outdoor unit 4 and the ventilation device 3 are connected by a refrigerant pipe 102b.
  • the indoor unit 1, the outdoor unit 2, the ventilation device 3, and the outdoor unit 4 are connected by a centralized controller 20 and a transmission line 103, respectively. But the centralized controller 20 may communicate with the indoor unit 1, the outdoor unit 2, the ventilation apparatus 3, and the outdoor unit 4 by radio
  • the refrigerant circuit 200A includes a compressor 11A, a four-way valve 12A, an outdoor heat exchanger 13A, a first expansion valve 14a, and an indoor heat exchanger 15.
  • the refrigerant circuit 200B includes a compressor 11B, a four-way valve 12B, an outdoor heat exchanger 13B, a second expansion valve 14b, and a ventilator heat exchanger 18.
  • the outdoor unit 2 has an outdoor fan 16A attached to the outdoor heat exchanger 13A.
  • the outdoor unit 2 includes a control device 50A that controls the refrigerant circuit 200A and the outdoor blower 16A.
  • the outdoor unit 4 has an outdoor fan 16B attached to the outdoor heat exchanger 13B.
  • the outdoor unit 4 includes a control device 50B that controls the refrigerant circuit 200B and the outdoor blower 16B.
  • the control device 50A and the control device 50B are configured similarly to the control device 50 of the first to fourth embodiments.
  • the control device 50A and the control device 50B can control the air conditioning system 100D in cooperation with each other.
  • the air conditioning system 100E is configured in the same manner as the air conditioning system 100D, but is different from the air conditioning system 100D in that the refrigerant circuit 200B includes one or a plurality of indoor units 1.
  • FIG. 17 illustrates a case where the refrigerant circuit 200 ⁇ / b> B includes one ventilation device 3 and one indoor unit 1. Since the refrigerant circuit diagram of the air conditioning system 100E is the same as that of FIG. 16, the illustration thereof is omitted.
  • the centralized controller 20 can adjust the target evaporation temperature Te in cooperation with the control device 50A and the control device 50B.
  • the control apparatus 50B is the RA temperature / humidity of the ventilator 3. Only the detection value of the detection means 32 is used to adjust the target evaporation temperature Te.
  • the control device 50B performs the adjustment process of the target evaporation temperature Te using only the detection value of the RA temperature / humidity detection means 32 of the ventilation device 3.
  • FIG. 18 is a graph illustrating target temperature derivation information for determining the target evaporation temperatures of the indoor heat exchanger and the ventilator cooler in FIG.
  • the storage unit 55 of the control device 50B stores target temperature derivation information as exemplified in FIG.
  • the vertical axis represents the evaporation temperature of the indoor heat exchanger 15 or the ventilator heat exchanger 18, and the horizontal axis represents the humidity difference ⁇ X.
  • the humidity difference ⁇ Xn exemplifies a value obtained by subtracting the indoor target absolute humidity Xa_tgt from the current indoor absolute humidity Xa. That is, in the target temperature derivation information, as shown in FIG.
  • the humidity difference ⁇ X and the target evaporation temperature Te are associated with each other, and the target evaporation temperature Te is obtained by comparing the humidity difference ⁇ Xn with the target temperature derivation information.
  • Te_max indicates the maximum evaporation temperature that is the maximum value of the target evaporation temperature Te
  • Te_min indicates the minimum evaporation temperature that is the minimum value of the target evaporation temperature Te.
  • FIG. 18 shows a humidity threshold X3 set higher than the humidity threshold X1 and a humidity threshold X4 set lower than 0.
  • the target temperature derivation information is such that the target evaporation temperature Te decreases as the humidity difference ⁇ X increases between the humidity difference ⁇ X and the target evaporation temperature Te in the range where the humidity difference ⁇ X is “0 ⁇ X ⁇ X1”. There is a relationship.
  • the target temperature derivation information is such that when the humidity difference ⁇ X is 0 or less, the target evaporation temperature Te is set to the maximum evaporation temperature ET_max, and when the humidity difference ⁇ X is X1 or more, the target evaporation temperature Te is set to the minimum evaporation temperature ET_min. It has become so.
  • the maximum evaporation temperature Te_max and the minimum evaporation temperature Te_min are set to a plurality of pattern values for each evaporation temperature level. Also in the fifth embodiment, as the evaporation temperature level, two patterns of a Hi level with a relatively high evaporation temperature and a Lo level with a relatively low evaporation temperature are set.
  • the control device 50B may shift from the Hi level to the Lo level in order to increase the dehumidifying capacity.
  • the humidity difference ⁇ X becomes smaller than the humidity threshold value X4 while the refrigerant circuit 200B is operating at the Lo level, it can be determined that there is a margin in the dehumidifying capacity and the evaporation temperature can be further increased. Therefore, the control device 50B may shift from the Lo level to the Hi level in order to reduce the dehumidifying capacity.
  • FIG. 19 is a flowchart showing the operation of the air conditioning system of FIG. With reference to FIG. 19, the processing content by the centralized controller 20 and the control apparatus 50B of the air conditioning system 100E is demonstrated. The same steps as those in the first embodiment are denoted by the same reference numerals as those in FIG. Here, the case where all the indoor units 1 of the refrigerant circuit 200B are installed in a place with a low air conditioning priority will be described.
  • the data processing unit 22b performs the indoor unit selected for exclusion. 1 address is transmitted to the control device 50B. Then, the acquisition processing unit 52 of the control device 50B recognizes that there is a request to exclude the indoor unit 1 of the second refrigerant system (step S501 / YES), and stores the address of the indoor unit 1 selected for exclusion as a storage unit 55 is stored. At that time, the acquisition processing unit 52 updates the monitoring target device information by excluding the address of the indoor unit 1 selected for exclusion from the monitoring target device information (step S502).
  • the difference calculation unit 53a acquires the indoor absolute humidity Xa from the temperature / humidity sensor of the ventilation device 3 of the second refrigerant system based on the monitoring target device information updated by the acquisition processing unit 52. Then, the difference calculation unit 53a subtracts the indoor target absolute humidity Xa_tgt from the acquired indoor absolute humidity Xa to obtain the humidity difference ⁇ X (step S503).
  • the level determination unit 53b determines whether or not a humidity condition that the humidity difference ⁇ X is equal to or less than the humidity threshold value X1 is satisfied (step S504).
  • the level determination unit 53b sets the level setting information to the Hi level (step S105).
  • the level determination unit 53b sets the level setting information to the Lo level (step S106).
  • the air conditioning system 100E performs the process of step S107 and step S108 similarly to the case of FIG.
  • step S501 / NO If the user does not perform a selection operation to exclude all the indoor units 1 in the second refrigerant system (step S501 / NO), the difference calculation unit 53a An air conditioner that acquires the temperature Ta and the indoor absolute humidity Xa is specified, and a temperature difference ⁇ T and a humidity difference ⁇ X are obtained (step S103 in FIG. 9). Then, the air conditioning system 100E executes the processing of steps S104 to S108 in FIG. 9 as in the first embodiment.
  • an air conditioner whose address is included in the monitored device information corresponds to an air conditioner that satisfies a specific standard.
  • the air conditioning system 100E may perform a series of processes in steps 201 to S203 shown in FIG. 11 of the second embodiment in addition to the above series of processes. In the case of the air conditioning system 100D, the processes in steps S501 and S502 can be omitted.
  • the air conditioning system when the air conditioning priority of all the indoor units 1 in any refrigerant circuit is low, or all the air conditioning devices in any refrigerant circuit are the ventilator 3.
  • the target evaporation temperature Te is determined only by the humidity difference ⁇ X in the ventilation device 3 of the refrigerant circuit. Therefore, even when the temperature difference ⁇ T is not known, energy saving can be achieved.
  • the air conditioning systems of Embodiments 1 to 4 described above may also perform the process of step S504 and the process associated therewith instead of the process of step S104 and the process associated therewith.
  • FIG. 20 is an air diagram showing zoning in the air conditioning system according to the modification of Embodiment 5 of the present invention.
  • FIG. 21 is an air line diagram showing the evaporation temperature level for each of the four zones shown in FIG.
  • the air conditioning system according to the present modification includes four zones divided by the dry bulb temperature and the absolute humidity, so that the respective evaporating temperature levels of the first refrigerant system and the second refrigerant system. Can be switched.
  • the temperature and humidity values detected by the OA temperature / humidity detection means 31 are divided into four zones I to IV with the threshold value T0 of the dry bulb temperature and the threshold value X0 of the absolute humidity as boundaries. Divided.
  • zone I the outside air has a low temperature and a low humidity, and therefore, a low sensible heat load condition and a low latent heat load condition are satisfied.
  • zone II the outside air has a low temperature and a high humidity, so the low sensible heat load condition and the high latent heat load condition are met.
  • zone III the outside air has a high temperature and a low humidity, so that a high sensible heat load condition and a low latent heat load condition are obtained.
  • zone IV the outside air is at a high temperature and high humidity, so that it becomes a high sensible heat load condition and a high latent heat load condition.
  • the evaporation temperature level of the first refrigerant system can be set to the Hi level.
  • the sensible heat load of the first refrigerant system that controls sensible heat is large, so it is necessary to lower the evaporation temperature of the first refrigerant system and increase the cooling capacity. Therefore, as shown in FIG. 21, the evaporation temperature level of the first refrigerant system needs to be set to Lo level.
  • the latent heat load of the second refrigerant system for controlling the latent heat is small under the low latent heat load conditions of the zones I and III, it is possible to increase the evaporation temperature of the second refrigerant system and decrease the dehumidifying capacity.
  • the evaporation temperature level of the second refrigerant system can be set to the Hi level.
  • the latent heat load of the second refrigerant system that controls latent heat is large, so it is necessary to lower the evaporation temperature of the second refrigerant system and increase the dehumidification capability. Therefore, as shown in FIG. 21, the evaporation temperature level of the second refrigerant system needs to be set to Lo level.
  • the threshold value T0 of the dry bulb temperature and the threshold value X0 of the absolute humidity which are the threshold values of each zone, are determined as follows.
  • the threshold value T0 is the maximum value of the outside air temperature at which the sensible heat load can be processed when the target evaporation temperature Te of the first refrigerant system is set to Hi level Tei_hi_min. That is, if it is below threshold value T0, even if it is the evaporation temperature range of Hi level, it can reach target temperature.
  • the sensible heat load needs to consider not only the temperature and humidity conditions of the outside air but also the internal heat generation of the human body and lighting. However, the internal heat generation amount such as the human body and lighting is assumed to some extent for each property such as a building or a condominium, and its fluctuation is small. Therefore, T0 can be calculated using a value assumed for each property.
  • the threshold value X0 is the maximum value of the absolute outside humidity that can handle the latent heat load when the target evaporation temperature Te of the second refrigerant system is set to the high level Tev_hi_min. In other words, if the threshold value is X0 or less, the target humidity can be reached even in the Hi level evaporation temperature range.
  • the latent heat load needs to consider not only the temperature and humidity conditions of the outside air but also internal heat generation such as the human body and lighting. However, the amount of internal heat generation such as a human body and lighting is assumed to some extent for each property such as a building or a condominium, and the fluctuation thereof is small. Therefore, X0 can be calculated using a value assumed for each property.
  • FIG. 22 is a flowchart showing the operation of the air conditioning system according to the modification of the fifth embodiment of the present invention.
  • an additional adjustment process of the evaporation temperature level based on the four zones of the present modification will be described with reference to FIG.
  • the same steps as those in FIG. 19 are denoted by the same reference numerals and description thereof is omitted.
  • the air conditioning system 100E executes a series of processes in steps S501 to S504 in the same manner as in FIG. Then, when the humidity difference ⁇ X satisfies the humidity condition (step S504 / YES), the level determination unit 53b of the control device 50B sets the evaporation temperature levels of both the first refrigerant system and the second refrigerant system to the Hi level. (Step S105).
  • the level determination unit 53b acquires the temperature / humidity of the outside air from the OA temperature / humidity detection means 31, and is in any of the four zones.
  • the zone determination which is the determination of is performed.
  • the case where the humidity difference ⁇ X does not satisfy the humidity condition is a case where at least one of the condition that the temperature difference ⁇ T is greater than the temperature threshold T1 and the condition that the humidity difference ⁇ X is greater than the humidity threshold X1 is satisfied. That is.
  • level judgment part 53b sets the evaporation temperature level of both the 1st refrigerant system and the 2nd refrigerant system to Lo level. If it is not the zone IV (step S601 / NO) and the zone is the zone I (step S602 / zone I), the level determination unit 53b proceeds to the process of step S105 (step S105). In the case of zone II (step S602 / zone II), level determination unit 53b sets the evaporation temperature level of the first refrigerant system to the Hi level and sets the evaporation temperature level of the second refrigerant system to the Lo level ( Step S603).
  • level determination unit 53b sets the evaporation temperature level of the first refrigerant system to Lo level, and sets the evaporation temperature level of the second refrigerant system to Hi level ( Step S604).
  • the air conditioning system 100E performs the processing of step S107 and step S108 in the same manner as in the case of FIG.
  • the air conditioning system 100E of the present modification may perform a series of processes in steps 201 to S203 shown in FIG. 11 of the second embodiment in addition to the above series of processes.
  • the target temperature adjustment unit 53 acquires the detection value from the OA temperature / humidity detection means 31 when the temperature / humidity condition is not satisfied. Then, the target temperature adjustment unit 53 determines the target evaporation temperature Te using the high target temperature derivation information for each of the first refrigerant system and the second refrigerant system when the outside air is low temperature and low humidity. The target temperature adjusting unit 53 determines the target evaporation temperature Te using the high target temperature derivation information for the first refrigerant system and the low target for the second refrigerant system when the outside air is low temperature and high humidity. The target evaporation temperature Te is determined using the temperature derivation information.
  • the target temperature adjustment unit 53 determines the target evaporation temperature Te using the low target temperature derivation information for the first refrigerant system and the high target for the second refrigerant system when the outside air is high temperature and low humidity.
  • the target evaporation temperature Te is determined using the temperature derivation information.
  • the target temperature adjustment unit 53 determines the target evaporation temperature Te using the low target temperature derivation information for each of the first refrigerant system and the second refrigerant system when the outside air is at a high temperature and high humidity. That is, according to the air conditioning system in the present modification, the number of patterns capable of lowering the evaporation temperature increases, so that further energy saving can be realized more flexibly.
  • the air conditioning systems 100D and 100E may include, for example, one control device that has both the function of the control device 50A and the function of the control device 50B inside or outside the outdoor unit 2 or the outdoor unit 4.
  • each embodiment mentioned above is a suitable example in an air harmony system, and the technical scope of the present invention is not limited to these modes.
  • the relationship between the sizes of the constituent members may be different from the actual one.
  • the subscripts may be omitted.
  • FIG. 1 illustrates the case where the air conditioning system 100 includes three indoor units 1 and one ventilator 3, but is not limited thereto.
  • the air conditioning system 100 may have one, two, or four or more indoor units 1.
  • the air conditioning system 100 may have two or more ventilation devices 3.
  • the same applies to the air conditioning systems in the second to fifth embodiments. 2 and 16 exemplify the case where the first expansion valve 14a is provided in the indoor unit 1 and the second expansion valve 14b is provided in the ventilation device 3, the present invention is not limited thereto, and the first expansion valve 14a is provided. At least one of the valve 14 a and the second expansion valve 14 b may be provided in the outdoor unit 2 or the outdoor unit 4.
  • the central controllers 20, 20A, and 20B have exemplified the case where the input display unit 21 including a touch panel is provided.
  • the present invention is not limited thereto, and the input display unit 21 includes a physical button or the like.
  • the input unit 21a and the display unit 21b made of, for example, a liquid crystal display may be separated from each other.
  • FIG. 7 illustrates the case where the target temperature derivation information is a graph
  • the present invention is not limited to this, and the target temperature derivation information is associated with the temperature difference ⁇ T and the target evaporation temperature Te, as in the graph shown in FIG. Table information may also be used.
  • FIG. 18 illustrates the case where the target temperature derivation information is a graph.
  • the present invention is not limited to this, and the target temperature derivation information is associated with the humidity difference ⁇ X and the target evaporation temperature Te as in the graph shown in FIG. Table information may also be used.
  • the evaporation temperature level is divided into two stages, that is, the Hi level and the Lo level.
  • the present invention is not limited to this, and the evaporation temperature level may be set in three stages or more. Good.
  • the case where the humidity detected by the temperature / humidity sensor or the like is illustrated as an absolute humidity.
  • the present invention is not limited thereto, and the temperature / humidity sensor or the like may detect relative humidity.
  • the temperature / humidity sensor or the like is preferably one that detects absolute humidity.
  • each air-conditioning apparatus illustrated the case where each had the "temperature-humidity sensor" which detects the temperature and absolute humidity of the air of the air-conditioning object space S, it is not limited to this. Absent.
  • Each air conditioner may have a temperature sensor that detects the temperature of the air in the air-conditioning target space S and a humidity sensor that detects the absolute humidity of the air in the air-conditioning target space S.
  • the present invention is not limited to this. It is not a thing. For example, it may be determined whether the temperature / humidity condition or the humidity condition is satisfied with respect to the detected values of the temperature / humidity sensors of all the air conditioners satisfying the specific standard, and the process of switching the evaporation temperature level may be performed. Also, based on the average of the detected values of the temperature and humidity sensors of all air conditioners that meet the specified criteria, it is determined whether the temperature and humidity conditions or the humidity conditions are satisfied, and the evaporation temperature level is switched. You may do it.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

室外機と、1台又は複数台の室内機と、1台又は複数台の換気装置とが冷媒配管で接続され、冷媒が循環する冷媒系統と、冷媒系統を制御する制御装置と、を備える空気調和システム。制御装置は、特定基準を満たす室内機及び換気装置のうちの少なくとも1台に設けられた温湿度検出手段の検出値をもとに目標蒸発温度を調整する目標温度調整部と、室内機及び換気装置のそれぞれの蒸発温度が、目標温度調整部において調整された目標蒸発温度となるように冷媒系統を制御する空調制御部と、を有する。

Description

空気調和システム
 本発明は、空気調和装置と換気装置とを備える空気調和システムに関する。
 空気調和装置と換気装置とを備える空気調和システムでは、換気装置が空調対象空間の空気を外気と入れ替える換気運転を行っており、冷房時、外部から導入される空気のエンタルピーが高い場合は、冷房負荷が大きくなる。また、空気調和システムにおいて、冷房負荷以外の熱負荷としては、室内で発生する室内負荷と、建物壁面等から侵入する躯体負荷とがある。
 従来の空気調和システムでは、空気調和装置の室内熱交換器の蒸発温度を低温で一定にして、上記のような熱負荷のうちの潜熱負荷を処理している。しかしながら、蒸発温度を低温で一定にして潜熱負荷を処理する運転では、運転効率が低下するという課題がある。一方、蒸発温度を上げると、運転効率は高まるが、潜熱処理量が不足して室内湿度が上昇し、快適性が低下するという課題がある。
 そこで、蒸発温度の設定方法を改善するため、従来から、潜熱と顕熱とを別々に処理することができる潜顕分離空気調和システムが提案されている(例えば特許文献1及び2参照)。特許文献1及び2の空気調和システムは、室内目標温度と室内温度との間の温度差と、室内目標絶対湿度と室内絶対湿度との間の湿度差とを算出し、温度差及び湿度差の各々と任意の閾値との差を用いて目標蒸発温度を設定するようになっている。
特許第5996107号公報 特許第6072221号公報
 しかしながら、特許文献1及び2のような従来の空気調和システムでは、任意の温湿度検出手段から室内温度と室内絶対湿度とを取得するようになっている。つまり、空気調和装置及び換気装置のうちの少なくとも1台が、空調負荷が大きく且つ空調優先順位が低い場所に据え付けられている場合でも、こうした場所の装置に設けられた温湿度検出手段の検出値を用いることがある。
 ここで、空調負荷が大きく且つ空調優先順位が低い場所としては、例えばエントランスホール又はエレベータホールのように、外気などの混入が多く、常時人がいる環境ではない場所等が想定される。こうした場所に配置された温湿度検出手段の検出値を用いると、相対的に大きな温度差又は湿度差を算出することとなり、他の場所に配置された温湿度検出手段の検出値を用いた場合よりも、目標蒸発温度が低く設定されることになる。すなわち、従来の空気調和システムでは、快適性を損なわずに、目標蒸発温度を上げることができる状況下でも、目標蒸発温度が低く設定されることにより、蒸発温度の変化が妨げられる。そのため、運転効率を高めることができず、省エネルギー性能を高めることができないという課題がある。
 本発明は、上記の課題を解決するためになされたものであり、快適性を損なわずに省エネルギー化を図る空気調和システムを提供することを目的とする。
 本発明に係る空気調和システムは、室外機と、1台又は複数台の室内機と、1台又は複数台の換気装置とが冷媒配管で接続され、冷媒が循環する冷媒系統と、冷媒系統を制御する制御装置と、を備え、冷媒系統は、圧縮機、室外熱交換器、第1膨張弁、室内熱交換器、第2膨張弁、換気装置冷却器を有し、室外機は、圧縮機と、室外熱交換器と、を有し、室内機は、室内熱交換器を有し、換気装置は、換気装置冷却器を有し、室内機及び換気装置には、それぞれ、空調対象空間の空気の温度及び湿度を検出する温湿度検出手段が設けられており、制御装置は、空調対象空間での配置に基づく特定基準を満たす室内機及び換気装置のうちの少なくとも1台を特定し、特定した室内機及び換気装置のうちの少なくとも1台に設けられた温湿度検出手段の検出値をもとに目標蒸発温度を調整する目標温度調整部と、室内機及び換気装置のそれぞれの蒸発温度が、目標温度調整部において調整された目標蒸発温度となるように冷媒系統を制御する空調制御部と、を有するものである。
 本発明によれば、特定基準を満たす室内機及び換気装置のうちの少なくとも1台に設けられた温湿度検出手段の検出値をもとに目標蒸発温度を調整することから、空調優先順位の低い場所に設けられた温湿度検出手段を用いないため、快適性を損なわずに省エネルギー化を図ることができる。
本発明の実施の形態1に係る空気調和システムの概略図である。 図1の空気調和システムの冷房時における冷媒の流れを示す冷媒回路図である。 図1の空気調和システムの換気装置の概略構成図である。 図1の空気調和システムの制御系統を含めた冷媒回路図である。 図1の集中コントローラの機能的構成を示すブロック図である。 図4の制御装置の機能的構成を示すブロック図である。 図2の室内熱交換器及び換気装置冷却器のそれぞれの目標蒸発温度を求めるための目標温度導出情報を例示したグラフである。 図2の室内熱交換器及び換気装置冷却器のそれぞれの目標蒸発温度の設定範囲を示した表である。 図1の空気調和システムの動作を示すフローチャートである。 本発明の実施の形態2に係る空気調和システムの動作を示すフローチャートである。 本発明の実施の形態3に係る空気調和システムの概略図である。 図11の空気調和システムの動作を示すフローチャートである。 本発明の実施の形態4に係る空気調和システムの概略図である。 図13の空気調和システムの動作を示すフローチャートである。 本発明の実施の形態5に係る空気調和システムの一例を示す概略図である。 図15の空気調和システムの制御系統を含めた冷媒回路図である。 本発明の実施の形態5に係る空気調和システムの他の例を示す概略図である。 図16の室内熱交換器及び換気装置冷却器のそれぞれの目標蒸発温度を求めるための目標温度導出情報を例示したグラフである。 図17の空気調和システムの動作を示すフローチャートである。 本発明の実施の形態5の変形例に係る空気調和システムでのゾーン分けを示した空気線図である。 図20に示す4つのゾーンごとの蒸発温度レベルを示した空気線図である。 本発明の実施の形態5の変形例に係る空気調和システムの動作を示すフローチャートである。
実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和システムの概略図である。空気調和システム100は、ビル用マルチエアコンなどに適用され、1台又は複数台の室内機1と、1台又は複数台の換気装置3と、室外機2と、を有している。また、空気調和システム100は、室内機1と室外機2と換気装置3とを統括的に制御し管理する集中コントローラ20を有している。集中コントローラ20は、本発明の「コントロール機器」に相当する。以降では、1台又は複数台の室内機1を「室内機1」と総称し、1台又は複数台の換気装置3を「換気装置3」と総称する。なお、図1では、空気調和システム100が、3台の室内機1と、1台の換気装置3と、を有する場合を例示している。
 室内機1は、空調対象空間Sの空気を温度調整しながら循環させるように構成されている。以降では、空調対象空間Sの空気を室内空気ともいう。換気装置3は、室内空気と外気とを入れ替えると共に、空調対象空間Sに導入される外気を、後述する換気装置熱交換器18で冷却し除湿するように構成されている。室内機1と換気装置3とは、それぞれ、室外機2と冷媒配管102を介して接続されている。室内機1と室外機2と換気装置3とは、それぞれ、集中コントローラ20と伝送線103を介して接続されている。もっとも、集中コントローラ20は、室内機1、室外機2、及び換気装置3と、無線によって通信するものであってもよい。
 図2は、図1の空気調和システムの冷房時における冷媒の流れを示す冷媒回路図である。室内機1は、第1膨張弁14aと、室内熱交換器15と、室内送風機17とを有している。室外機2は、圧縮機11と、四方弁12と、室外熱交換器13と、室外送風機16と、を有している。換気装置3は、第2膨張弁14bと、換気装置熱交換器18と、を有している。空気調和システム100は、圧縮機11、四方弁12、室外熱交換器13、第1膨張弁14a、室内熱交換器15、第2膨張弁14b、及び換気装置熱交換器18が冷媒配管102によって接続され、冷媒が循環する冷媒系統としての冷媒回路200が形成されている。なお、図2では、煩雑化を避けるため、1台の室内機1を省略している。
 図3は、図1の空気調和システムの換気装置の概略構成図である。図3に示すように、換気装置3は、給気用送風機19aと、排気用送風機19bと、室内空気(RA)と外気(OA)との間で全熱交換を行う全熱交換器30と、をさらに有している。また、換気装置3には、外気(OA)の温度と絶対湿度とを検出するOA温湿度検出手段31と、室内空気(RA)の温度と絶対湿度とを検出するRA温湿度検出手段32と、が設けられている。全熱交換後の外気(OA)は、室内に供給空気(SA)として供給され、全熱交換後の室内空気(RA)は、室外に排出空気(EA)として排気される。
 図4は、図1の空気調和システムの制御系統を含めた冷媒回路図である。図4に示すよ
うに、室外機2は、集中コントローラ20と連携して、冷媒回路200を制御する制御装置50をさらに有している。また、室外機2には、圧縮機11の吸入側に設けられた蒸発温度検出手段42が設けられている。蒸発温度検出手段42は、例えばサーミスタからなり、冷媒回路200における蒸発温度を検出する温度センサである。各室内機1には、それぞれ、空調対象空間Sの空気を吸い込む空気吸込口の近傍に、吸込温湿度検出手段43が設けられている。吸込温湿度検出手段43は、室内空気の温度である吸込温度と、室内空気の絶対湿度である吸込湿度と、を検出する温湿度センサである。
 ここで、空気調和システム100は、RA温湿度検出手段32において検出された室内空気の温度、もしくは吸込温湿度検出手段43において検出された吸込温度を、蒸発温度レベルの設定に用いる室内温度Taとして適用することができる。また、空気調和システム100は、RA温湿度検出手段32において検出された室内空気の絶対湿度、もしくは吸込温湿度検出手段43において検出された吸込湿度を、蒸発温度レベルの設定に用いる室内絶対湿度Xaとして適用することができる。ここで、RA温湿度検出手段32及び吸込温湿度検出手段43は、本発明の「温湿度検出手段」に相当し、以降では「温湿度センサ」と総称することがある。
 図5は、図1の集中コントローラの機能的構成を示すブロック図である。集中コントローラ20は、空気調和システム100の制御全体を統括して管理するものであり、室外機2及び換気装置3に種々の指示を行うことができる。集中コントローラ20は、空調対象空間Sでの配置に基づく特定基準に対応する特定基準情報を制御装置50に送信するものである。以降では、空調対象空間Sでの配置に基づく特定基準を「特定基準」ともいう。
 図5に示すように、集中コントローラ20は、入力表示部21と、制御部22と、記憶部23と、を有している。本実施の形態1において、入力表示部21は、入力部21aと表示部21bとが積層されて構成されたタッチパネルである。入力部21aは、ユーザによる入力操作を受け付け、受け付けた入力操作に応じた信号を制御部22へ出力するものである。表示部21bは、例えば液晶ディスプレイ(LCD:liquid crystal display)からなり、制御部22により制御されて、文字又は画像などを表示するものである。
 より具体的に、入力部21aは、室内機1及び換気装置3のそれぞれの室内目標温度Ta_tgt及び室内目標絶対湿度Xa_tgtを設定する操作を受け付けるものである。室内目標温度Ta_tgtとは、室内空気の温度の設定値であり、室内目標絶対湿度Xa_tgtとは、室内空気の絶対湿度の設定値である。また、入力部21aは、室内機1及び換気装置3のそれぞれの空調優先順位を設定する操作を受け付けるものである。本実施の形態1において、空調優先順位は、空調対象空間Sでの配置に基づいて定まり、快適性への影響の大きさに対応する。すなわち、空調優先順位の低い場所とは、特定基準を満たさない場所であり、つまり、快適性に対する影響が相対的に小さい場所のことである。一方、空調優先順位の高い場所とは、特定基準を満たす場所であり、快適性に対する影響が比較的大きい場所のことである。
 ここで、室内機1及び換気装置3のそれぞれの空調優先順位を設定する操作には、室内機1及び換気装置3のうちの少なくとも1台を選定する操作も含まれる。以降では、室内機1及び換気装置3を「空調機器」と総称することがある。例えば、入力部21aは、室内機1及び換気装置3の中から、空調優先順位が相対的に低いものを選定する操作を受け付けるものであってもよい。この場合、使用者は、入力部21aを介して、室内温度Taが室内目標温度Ta_tgtから離れても問題ないと考える空調機器を選定することができる。また、入力部21aは、室内機1及び換気装置3の中から、相対的に空調優先順位が高いものを選定する操作を受け付けるものであってもよい。この場合、使用者は、入力部21aを介して、快適性への影響が比較的大きいと考える空調機器を選定することができる。
 制御部22は、表示処理部22aと、データ処理部22bと、を有している。表示処理部22aは、ユーザの入力操作などに応じて、表示部21bに文字及び画像などを表示させたり、表示部21bの表示内容を変更したりするものである。
 データ処理部22bは、入力部21aを介して、室内目標温度Ta_tgt及び室内目標絶対湿度Xa_tgtの情報である目標温湿度情報を取得し、取得した目標温湿度情報を記憶部23に記憶させるものである。そして、データ処理部22bは、目標温湿度情報を制御装置50へ送信するものである。つまり、データ処理部22bは、入力部21aとの連携により、室内目標温度Ta_tgt及び室内目標絶対湿度Xa_tgtを設定する目標温湿度設定手段として機能する。
 また、データ処理部22bは、入力部21aを介して、空調機器の空調優先順位に関する設定内容の情報を取得し、取得した情報を特定基準情報として室内機1の制御装置50へ送信するものである。データ処理部22bは、例えば、入力部21aにおいて、複数の空調機器の中から空調優先順位の低いものが選定された場合、選定された空調機器のアドレスを、特定基準情報として制御装置50へ送信するようになっている。この場合、特定基準情報は、目標蒸発温度Teの調整処理の際に除外される空調機器のアドレスを含んでおり、データ処理部22bは、制御装置50に対して特定基準情報を送信することにより、選定された空調機器の除外を要求する。ここで、空調機器の「アドレス」は、本発明における空調機器の「識別情報」に相当する。
 制御部22は、上記の各機能を実現する回路デバイスなどのハードウェアで実現することもできるし、例えば、マイコン、DSP(Digital Signal Processor)、又はCPU(Central Processing Unit)等の演算装置上で実行されるソフトウェアとして実現することもできる。
 記憶部23には、室内目標温度Ta_tgt及び室内目標絶対湿度Xa_tgtの情報などの種々のデータが記憶される。記憶部23には、制御部22の動作プログラムが記憶されていてもよい。記憶部23は、RAM(Random Access Memory)及びROM(Read Only Memory)、フラッシュメモリ等のPROM(Programmable ROM)、又はHDD(Hard Disk Drive)等により構成することができる。
 図6は、図4の制御装置の機能的構成を示すブロック図である。図7は、図2の室内熱交換器及び換気装置冷却器のそれぞれの目標蒸発温度を求めるための目標温度導出情報を例示したグラフである。図8は、図2の室内熱交換器及び換気装置冷却器のそれぞれの目標蒸発温度の設定範囲を示した表である。図6~図8をもとに、室外機2の制御装置50の構成について具体的に説明する。
 図6に示すように、制御装置50は、制御部51と、記憶部55と、を有している。記憶部55には、監視対象となる空調機器のアドレスの情報である監視対象機器情報、及び蒸発温度レベルを示すレベル設定情報などの各種データが記憶されている。監視対象機器情報は、初期状態において、室内機1及び換気装置3のそれぞれのアドレスを含んでいる。図1の構成の場合、初期状態において、記憶部55には、監視対象機器情報として、3台の室内機1のアドレスと、1台の換気装置3のアドレスとが記憶されている。記憶部55には、制御部51の動作プログラムが記憶されていてもよい。
 また、記憶部55には、図7に例示するような目標温度導出情報が格納されている。図7では、縦軸に、室内熱交換器15又は換気装置熱交換器18の蒸発温度を示し、横軸に、室内温度Taから室内目標温度Ta_tgtを減算した値である温度差ΔTを示している。温度差ΔTnは、現在の室内温度Taから室内目標温度Ta_tgtを減算した値を例示したものである。すなわち、目標温度導出情報では、図7に示すように、温度差ΔTと目標蒸発温度Teとが関連づけられており、温度差ΔTnを目標温度導出情報に照らすことで、目標蒸発温度Teを求めることができる。Te_maxは、目標蒸発温度Teの最大値である最大蒸発温度を示し、Te_minは、目標蒸発温度Teの最小値である最小蒸発温度を示している。
 目標温度導出情報は、温度差ΔTが「0<ΔT<T1」の範囲において、温度差ΔTと目標蒸発温度Teとの間に、温度差ΔTが増加すると目標蒸発温度Teが減少するような比例関係がある。ここで、T1は、予め決められた温度閾値である。また、目標温度導出情報は、温度差ΔTが0以下とき、目標蒸発温度Teが最大蒸発温度ET_maxに設定され、温度差ΔTがT1以上のとき、目標蒸発温度Teが最小蒸発温度ET_minに設定されるようになっている。
 図8において、最大蒸発温度ET_maxは、図7の最大蒸発温度Te_maxに対応しており、最小蒸発温度ET_minは、図7の最小蒸発温度Te_minに対応している。最大蒸発温度Te_maxと最小蒸発温度Te_minとは、室内熱交換器15と換気装置熱交換器18とのそれぞれに対応づけて設定されている。さらに、最大蒸発温度Te_max及び最小蒸発温度Te_minとしては、蒸発温度レベルごとに、複数のパターンの値が設定されている。本実施の形態1では、図8に示すように、蒸発温度レベルとして、蒸発温度が相対的に高いHiレベルと、蒸発温度が相対的に低いLoレベルとの2つのパターンが設定されている。つまり、最大蒸発温度Te_max及び最小蒸発温度Te_minは、それぞれ、Hiレベルの値と、Hiレベルの値よりも小さいLoレベルの値とが設定されている。
 すなわち、本実施の形態1において、記憶部55には、目標温度導出情報として、室内熱交換器15のHiレベルに応じた第1目標温度導出情報と、室内熱交換器15のLoレベルに応じた第2目標温度導出情報と、換気装置熱交換器18のHiレベルに応じた第3目標温度導出情報と、換気装置熱交換器18のLoレベルに応じた第4目標温度導出情報とが格納されている。第1目標温度導出情報及び第3目標温度導出情報は、本発明の「高目標温度導出情報」に相当し、第2目標温度導出情報及び第4目標温度導出情報は、本発明の「低目標温度導出情報」に相当する。
 第1目標温度導出情報では、最大蒸発温度がETi_hi_maxに設定され、最小蒸発温度がETi_hi_minに設定されている。第2目標温度導出情報では、最大蒸発温度がETi_lo_maxに設定され、最小蒸発温度がETi_lo_minに設定されている。第3目標温度導出情報では、最大蒸発温度がETv_hi_maxに設定され、最小蒸発温度がETv_hi_minに設定されている。第4目標温度導出情報では、最大蒸発温度がETv_lo_maxに設定され、最小蒸発温度がETv_lo_minに設定されている。
 したがって、Hiレベルに設定された場合、室内熱交換器15の目標蒸発温度Teは、温度差ΔTに応じて、最大蒸発温度ETi_hi_maxから最小蒸発温度ETi_hi_minまでの範囲内の温度に設定される。同様に、換気装置熱交換器18の目標蒸発温度Teは、温度差ΔTに応じて、最大蒸発温度ETv_hi_maxから最小蒸発温度ETv_hi_minまでの範囲内の温度に設定される。Loレベルに設定された場合、室内熱交換器15の目標蒸発温度Teは、温度差ΔTに応じて、最大蒸発温度ETi_lo_maxから最小蒸発温度ETi_lo_minまでの範囲内の温度に設定される。同様に、換気装置熱交換器18の目標蒸発温度Teは、温度差ΔTに応じて、最大蒸発温度ETv_lo_maxから最小蒸発温度ETv_lo_minまでの範囲内の温度に設定される。
 ここで、Hiレベルについて、第1目標温度導出情報におけるETi_hi_maxと、第3目標温度導出情報における最大蒸発温度ETv_hi_maxとは、共通の値であってもよいし、異なる値であってもよい。また、第1目標温度導出情報における最小蒸発温度ETi_hi_minと、第3目標温度導出情報における最小蒸発温度ETv_hi_minとは、共通の値であってもよいし、異なる値であってもよい。同様に、Loレベルについて、第2目標温度導出情報における最大蒸発温度ETi_lo_maxと、第4目標温度導出情報における最大蒸発温度ETv_lo_maxとは、共通の値であってもよいし、異なる値であってもよい。また、第2目標温度導出情報における最小蒸発温度がETi_lo_minと、第4目標温度導出情報における最小蒸発温度ETv_lo_minとは、共通の値であってもよいし、異なる値であってもよい。
 図6に示すように、制御部51は、取得処理部52と、目標温度調整部53と、空調制御部54と、を有している。取得処理部52は、データ処理部22bから送信される室内目標温度Ta_tgt及び室内目標絶対湿度Xa_tgtを記憶部55に記憶させるものである。
 さらに、取得処理部52は、データ処理部22bから送信された特定基準情報を記憶部55に記憶させ、監視対象機器情報を更新するようになっている。例えば、取得処理部52は、データ処理部22bから、特定基準情報として、目標蒸発温度Teの調整処理の際に除外される空調機器のアドレスが送信された場合、当該アドレスを記憶部55に記憶させるようになっている。その際、取得処理部52は、監視対象機器情報から特定基準情報としてのアドレスを除外することにより、監視対象機器情報を更新するようになっている。また、取得処理部52は、データ処理部22bから、特定基準情報として、目標蒸発温度Teの調整処理に適用される空調機器のアドレスが送信された場合、当該アドレスによって監視対象機器情報を書き替えて更新するようになっている。これらの処理により、使用者が快適性への影響が比較的小さいと考える空調機器のアドレスが監視対象機器情報から除外される。ここで、本実施の形態1では、取得処理部52による更新後の監視対象機器情報にアドレスが含まれる空調機器が、特定基準を満たす空調機器に相当する。
 目標温度調整部53は、特定基準を満たす室内機1及び換気装置3のうちの少なくとも1台を特定し、特定した室内機1及び換気装置3のうちの少なくとも1台に設けられた温湿度センサの検出値をもとに目標蒸発温度Teを調整するものである。目標温度調整部53は、差分演算部53aと、レベル判定部53bと、目標温度決定部53cと、を有している。
 差分演算部53aは、室内温度Taから室内目標温度Ta_tgtを減算することにより、温度差ΔTを求めるものである。また、差分演算部53aは、室内絶対湿度Xaから室内目標絶対湿度Xa_tgtを減算することにより、湿度差ΔXを求めるものである。そして、差分演算部53aは、求めた温度差ΔT及び湿度差ΔXをレベル判定部53bへ出力するようになっている。また、差分演算部53aは、求めた温度差ΔTを目標温度決定部53cへ出力するようになっている。
 差分演算部53aは、RA温湿度検出手段32及び吸込温湿度検出手段43のそれぞれから検出値を取得するようになっている。差分演算部53aは、温度差ΔT及び湿度差ΔXを求める際、監視対象機器情報を参照して、室内温度Taを取得する温湿度センサと、及び室内絶対湿度Xaを取得する温湿度センサと、を特定するようになっている。すなわち、差分演算部53aは、取得処理部52により監視対象機器情報から除外されたアドレスをもつ空調機器の温湿度センサの検出値を用いないようになっている。
 本実施の形態1において、差分演算部53aは、監視対象機器情報から全ての室内機1のアドレスが除外されていなければ、室内機1の吸込温湿度検出手段43において検出された吸込温度を、室内温度Taとして用いるようになっている。空気調和システム100が複数台の室内機1を有する場合、差分演算部53aが室内温度Taを取得する室内機1は、設置環境等に応じて予め設定されている。一方、差分演算部53aは、監視対象機器情報から全ての室内機1のアドレスが除外されていれば、RA温湿度検出手段32において検出された室内空気の温度を、室内温度Taとして用いるようになっている。
 また、差分演算部53aは、監視対象機器情報から全ての換気装置3のアドレスが除外されていなければ、RA温湿度検出手段32において検出された室内空気の絶対湿度を、室内絶対湿度Xaとして用いるようになっている。空気調和システム100が複数台の換気装置3を有する場合、差分演算部53aが室内絶対湿度Xaを取得する換気装置3は、設置環境等に応じて予め設定されている。一方、差分演算部53aは、監視対象機器情報から全ての換気装置3のアドレスが除外されていれば、室内機1の吸込温湿度検出手段43において検出された吸込湿度を、室内絶対湿度Xaとして用いるようになっている。
 レベル判定部53bは、温度差ΔTが温度閾値T1以下であり、かつ湿度差ΔXが予め設定された湿度閾値X1以下である、という温湿度条件を満たすか否かを判定するものである。ここで、温湿度条件を満たさない場合には、温度差ΔTが温度閾値T1以下であるが、湿度差ΔXが湿度閾値X1より大きい場合と、湿度差ΔXが湿度閾値X1以下であるが、温度差ΔTが温度閾値T1より大きい場合と、温度差ΔTが温度閾値T1より大きく、かつ湿度差ΔXが湿度閾値X1より大きい場合と、が含まれる。
 また、レベル判定部53bは、温湿度条件を満たすか否かの判定結果をもとに、記憶部55内のレベル設定情報を更新するものである。すなわち、レベル判定部53bは、レベル設定情報がHiレベルに設定されているときに、温度差ΔT及び湿度差ΔXが温湿度条件を満たさなくなると、レベル設定情報をLoレベルに設定変更するものである。また、目標温度決定部53cは、レベル設定情報がLoレベルに設定されているときに、温度差ΔT及び湿度差ΔXが温湿度条件を満たすようになると、レベル設定情報をHiレベルに設定変更するものである。つまり、空気調和システム100は、Hiレベルでの運転時に温湿度条件を満たさなくなると、Loレベルでの運転に移行し、Loレベルでの運転時に温湿度条件を満たすようになると、Hiレベルでの運転に移行するようになっている。
 目標温度決定部53cは、記憶部55内のレベル設定情報及び目標温度導出情報と、温度差ΔTとをもとに、室内熱交換器15及び換気装置熱交換器18のそれぞれの目標蒸発温度Teを決定するものである。すなわち、目標温度決定部53cは、レベル設定情報の蒸発温度レベルに対応する目標温度導出情報に、温度差ΔTを照らすことで、室内熱交換器15及び換気装置熱交換器18のそれぞれの目標蒸発温度Teを決定するものである。そして、目標温度決定部53cは、決定した目標蒸発温度Teを空調制御部54へ出力するものである。
 空調制御部54は、室内機1及び換気装置3のそれぞれの蒸発温度が、目標温度調整部53において調整された目標蒸発温度Teとなるように、冷媒回路200を制御するものである。すなわち、空調制御部54は、全ての室内熱交換器15及び換気装置熱交換器18のそれぞれの蒸発温度が、目標温度決定部53cにおいて決定された目標蒸発温度Teとなるように、空気調和システム100の各種のアクチュエータを制御するものである。例えば、空調制御部54は、圧縮機11の運転周波数を調整することができる。また、空調制御部54は、室外送風機16の回転数を調整することができる。さらに、空調制御部54は、第1膨張弁14a及び第2膨張弁14bの開度を調整することができる。加えて、空調制御部54は、室内送風機17の回転数を調整することができる。
 制御部51は、上記の各機能を実現する回路デバイスなどのハードウェアで実現することもできるし、例えば、マイコン、DSP(Digital Signal Processor)、又はCPU(Central Processing Unit)等の演算装置上で実行されるソフトウェアとして実現することもできる。記憶部55は、RAM(Random Access Memory)及びROM(Read Only Memory)、フラッシュメモリ等のPROM(Programmable ROM)、又はHDD(Hard Disk Drive)等により構成することができる。
 図9は、図1の空気調和システムの動作を示すフローチャートである。図9を参照して、空気調和システム100による目標蒸発温度Teの調整処理を含む空気調和方法について説明する。ここでは、集中コントローラ20において、目標蒸発温度Teの調整処理の際に除外する空調機器が選定される場合の動作を例示する。
 まず、使用者が、集中コントローラ20の入力部21aを介して、快適性への影響が比較的小さいと考える空調機器を選定すると、データ処理部22bは、選定された空調機器のアドレスを制御装置50へ送信する。すると、取得処理部52は、集中コントローラ20から少なくとも1台の空調機器を除外する要求があったと認識し(ステップS101/YES)、除外する空調機器のアドレスを記憶部55に記憶させる。その際、取得処理部52は、記憶部55に記憶させたアドレスを、監視対象機器情報から除外する(ステップS102)。
 次いで、差分演算部53aは、取得処理部52によって更新された監視対象機器情報をもとに、室内温度Ta及び室内絶対湿度Xaを取得する空調機器を特定する。次に、差分演算部53aは、特定した空調機器に設けられた温湿度センサから、室内温度Ta及び室内絶対湿度Xaを取得する。そして、差分演算部53aは、取得した室内温度Taから室内目標温度Ta_tgtを減算して温度差ΔTを求める。また、差分演算部53aは、取得した室内絶対湿度Xaから室内目標絶対湿度Xa_tgtを減算して湿度差ΔXを求める(ステップS103)。
 一方、使用者が空調機器の選定操作を行わなければ(ステップS101/NO)、差分演算部53aは、現状の監視対象機器情報をもとに、室内温度Ta及び室内絶対湿度Xaを取得する空調機器を特定し、上記同様に、温度差ΔTと湿度差ΔXとを求める(ステップS103)。ここで、ステップS103に移行するタイミングにおいて、監視対象機器情報にアドレスが含まれている空調機器は、特定基準を満たす空調機器に相当する。
 次いで、レベル判定部53bは、温度差ΔTが温度閾値T1以下であり、かつ湿度差ΔXが湿度閾値X1以下である、という温湿度条件を満たすか否かを判定する(ステップS104)。レベル判定部53bは、温度差ΔT及び湿度差ΔXが温湿度条件を満たす場合に(ステップS104/YES)、レベル設定情報をHiレベルに設定する(ステップS105)。一方、レベル判定部53bは、温度差ΔT及び湿度差ΔXが温湿度条件を満たさない場合に(ステップS104/NO)、レベル設定情報をLoレベルに設定する(ステップS106)。
 続いて、目標温度決定部53cは、レベル設定情報の蒸発温度レベルに対応する目標温度導出情報に、差分演算部53aが求めた温度差ΔTを照らして、室内熱交換器15及び換気装置熱交換器18のそれぞれの目標蒸発温度Teを決定する(ステップS107)。そして、空調制御部54は、室内熱交換器15及び換気装置熱交換器18のそれぞれの蒸発温度が、目標温度決定部53cにおいて決定された目標蒸発温度Teとなるように、空気調和システム100の各種のアクチュエータに対する空調制御を実行する(ステップS108)。
 集中コントローラ20及び制御装置50は、上記のステップS101~S108の各工程を繰り返し実行する。例えば、使用者が空調機器の選定操作を行わない場合(ステップS101/NO)、差分演算部53aは、一定の待機時間が経過してから温度差ΔT及び湿度差ΔXを求めるようにしてもよい。なお、上記のステップS104~S108の一連の工程は、目標蒸発温度Teの調整処理に相当する。
 以上のように、空気調和システム100によれば、特定基準を満たす空調機器の温湿度センサに設けられた温湿度センサの検出値をもとに目標蒸発温度Teを調整することから、空調優先順位の低い場所に設けられた温湿度センサを用いないため、快適性を損なわずに省エネルギー化を図ることができる。また、制御装置50は、特定基準に対応する特定基準情報を集中コントローラ20から取得し、取得した特定基準情報をもとに、特定基準を満たす空調機器を特定する。そのため、制御装置50は、集中コントローラ20との連携により、柔軟に目標蒸発温度Teを調整することができる。
 さらに、集中コントローラ20は、空調優先順位が相対的に低い空調機器を選定する操作を受け付けて、選定された空調機器のアドレスを特定基準情報として制御装置50に送信する。そして、制御装置50は、特定基準情報を除外した後の監視対象機器情報を用いて特定基準を満たす空調機器を特定する。そのため、使用者の嗜好に応じた目標蒸発温度Teの調整を実現することができる。
 また、制御装置50は、特定基準を満たす空調機器に設けられた温湿度センサから、室内空気の温度及び湿度を取得し、取得した温度と目標温度との間の温度差ΔTと、取得した湿度と目標湿度との間の湿度差ΔXとを求める。また、制御装置50は、温度差ΔTが温度閾値T1以下であり、かつ湿度差ΔXが湿度閾値X1以下である場合に、高目標温度導出情報を用いて目標蒸発温度Teを決定する。そのため、蒸発温度を高くする場面を増やすことができ、省エネルギー化を図ることができる。
(代替構成)
 ところで、本実施の形態1では、制御装置50が、集中コントローラ20から送信される特定基準情報を用いて監視対象機器情報を更新する場合を例示したが、これに限定されるものではない。例えば、記憶部55に、特定基準を満たさない空調機器のアドレスが除外された監視対象機器情報が予め格納しておくようにし、制御装置50は、この監視対象機器情報を用いて目標蒸発温度Teの調整処理を行うようにしてもよい。
 また、空調対象空間Sに、赤外線、超音波、又は可視光により人体を検知する人感センサを設けておき、集中コントローラ20の制御部22が、人感センサによる検知情報を取得するように構成してもよい。この場合、制御部22は、人感センサによる検知情報をもとに、各空調機器のそれぞれの空調領域に人が存在するか否かを経時的に判定するようにするとよい。ここで、空調機器の空調領域とは、複数の空調機器の各々の周辺の領域である。例えば、制御部22は、人感センサによる検知情報をもとに、一定時間以上人が存在しない領域を抽出し、抽出した領域に対応する空調機器のアドレスを、特定基準情報として制御装置50に送信するようにしてもよい。この場合、特定基準情報は、特定基準を満たさない空調機器のアドレスを示すことになる。このように、特定基準を満たさない空調機器を自動的に特定するようにすれば、使用者が選定操作を行う手間を省くことができる。もっとも、制御装置50が、人感センサによる検知情報を取得して、各空調機器のそれぞれの空調領域に人が存在するか否かを経時的に判定するようにしてもよい。すなわち、制御装置50は、例えば、人感センサによる検知情報をもとに、一定時間以上人が存在しない領域を抽出し、抽出した領域に対応する空調機器のアドレスを特定基準情報として用いるようにしてもよい。
 さらに、本実施の形態1では、冷媒系統としての冷媒回路200を制御する制御装置50が、室外機2に設けられている場合を例示しているが、これに限定されるものではない。すなわち、制御装置50は、室外機2の外部に設けられていてもよく、例えば、室内機1又は換気装置3に設けられていてもよい。ここで、室内機1内の各種アクチュエータを制御する室内制御装置が室内機1に設けられている場合、制御装置50は、室内制御装置と連携して、第1膨張弁14a及び室内送風機17を制御するようにするとよい。同様に、換気装置3内の各種アクチュエータを制御する換気制御装置が換気装置3に設けられている場合、制御装置50は、換気制御装置と連携して、第2膨張弁14bを制御するようにするとよい。
 加えて、本実施の形態1では、集中コントローラ20が、使用者による空調機器の空調優先順位の設定を受け付けて特定基準情報を制御装置50へ送信する場合を例示したが、これに限定されるものではない。例えば、空気調和システム100は、空調機器の操作用として空調対象空間Sに配置され、換気装置と有線又は無線で接続されたリモートコントローラを有していてもよい。そして、リモートコントローラが、使用者による空調機器の空調優先順位を設定する操作を受け付けて、空調機器の空調優先順位に関する特定基準情報を制御装置50へ送信するようにしてもよい。この場合、リモートコントローラは、本発明の「コントロール機器」に相当する。上記のような各代替構成は、後述する各実施の形態の空気調和システムにも適用することができる。
実施の形態2.
 本実施の形態2における空気調和システムは、最低限の快適性を満足する温度差及び湿度差の条件である快適性条件を、自系統の全ての空調機器が満足する場合に、目標蒸発温度Teの調整処理を行うようになっている。他のシステム構成は、前述した実施の形態1と同様であるため、同等の構成部材については同一の符号を用いて説明は省略する。
 空調対象空間Sに、室内目標温度Ta_tgt又は室内目標絶対湿度Xa_tgtから大きく外れた空調機器が存在すると、それがたとえ快適性への影響が比較的小さい空調機器であったとしても、例えば冷房時、不冷に対する苦情がくることも想定される。前述した実施の形態1では、目標蒸発温度Teを調整する際に、空調優先順位の低い空調機器の周辺の温度及び湿度が考慮されないため、特に、空調優先順位の低い空調機器の空調領域の快適性が損なわれる可能性がある。
 そのため、本実施の形態2の空気調和システム100は、特定基準を満たさない空調機器が存在しても、自系統の全ての空調機器が快適性条件を満たさない場合には、蒸発温度を上げる処理を行わないように構成されている。ここで、快適性条件とは、温度差ΔTが快適温度閾値T2未満であり、かつ湿度差ΔXが快適湿度閾値X2未満である、という条件である。快適温度閾値T2及び快適湿度閾値X2は、室内機1及び換気装置3が最低限守るべき温度及び湿度の基準である。快適温度閾値T2は、温度閾値T1よりも大きく設定され、快適湿度閾値X2は、湿度閾値X1よりも大きく設定される。
 すなわち、本実施の形態2の差分演算部53aは、自系統の全ての空調機器のそれぞれの温湿度センサから、室内温度Taと室内絶対湿度Xaとを取得するようになっている。また、差分演算部53aは、自系統の全ての空調機器のそれぞれに対応する温度差ΔT及び湿度差ΔXを求めるようになっている。そして、差分演算部53aは、自系統の全ての空調機器のそれぞれに対応する温度差ΔT及び湿度差ΔXが快適性条件を満たす場合に限り、特定基準を満たす空調機器の温湿度センサの検出値を用いて温湿度条件を満たすか否かを判定するようになっている。他の構成は実施の形態1と同様である。
 ところで、快適温度閾値T2及び快適湿度閾値X2は、予め設定されていてもよいし、集中コントローラ20から変更できるようにしてもよい。また、空調対象空間Sに人感センサが設けられている場合、集中コントローラ20の制御部22が、人感センサによる検知情報をもとに、空調対象空間Sの人口密度を分析するようにしてもよい。そして、制御部22は、空調対象空間Sの人口密度の増減に応じて、快適温度閾値T2及び快適湿度閾値X2を自動で変更するようにしてもよい。
 図10は、本発明の実施の形態2に係る空気調和システムの動作を示すフローチャートである。図10を参照して、本実施の形態2の空気調和システム100による空気調和方法について説明する。前述した実施の形態1と同様の工程については、図9と同じ符号を付して説明は省略する。
 まず、空気調和システム100は、ステップS101及びS102の処理を、図9の場合と同様に実行する。次いで、差分演算部53aは、自系統の全ての空調機器のそれぞれの温湿度センサから、室内温度Taと室内絶対湿度Xaとを取得する。そして、差分演算部53aは、自系統の全ての空調機器のそれぞれに対応する温度差ΔT及び湿度差ΔXを求める(ステップS201)。
 次いで、差分演算部53aは、自系統の全ての空調機器のそれぞれに対応する温度差ΔT及び湿度差ΔXが、温度差ΔTが快適温度閾値T2未満であり、かつ湿度差ΔXが快適湿度閾値X2未満である、という快適性条件を満たすか否かを判定する(ステップS202)。差分演算部53aは、自系統の全ての空調機器のそれぞれに対応する温度差ΔT及び湿度差ΔXが快適性条件を満たす場合に(ステップS202/YES)、ステップS104の処理へ移行する。そして、空気調和システム100は、ステップS104~S108の一連の処理を、図9の場合と同様に実行する。
 一方、差分演算部53aは、自系統の空調機器の中に、快適性条件を満たさないものが1台でもあれば(ステップS202/NO)、予め設定された待ち時間が経過するまで待機し(ステップS203/NO)、待ち時間が経過したときに、ステップS202の処理へ戻る。
 以上のように、本実施の形態2の空気調和システム100は、集中コントローラ20において空調優先順位の低い空調機器が選定された場合でも、自系統の全ての空調機器が快適性条件を満たさなければ、蒸発温度を上げる処理を行わないようになっている。すなわち、本実施の形態2の制御装置50は、集中コントローラ20から特定基準情報が送信された場合でも、自系統の全ての空調機器が快適性条件を満たさなければ、目標蒸発温度Teの調整処理を行わないようになっている。そのため、冷房時の不冷のような快適性を損なう状況を回避することができる。
 また、本実施の形態2の空気調和システム100は、自系統の全ての空調機器が快適性条件を満たせば、特定基準を満たす空調機器の温湿度センサによる検出値をもとに目標蒸発温度Teを調整する。よって、冷却不足又は除湿不足等を回避し、最低限の快適性を確保することができる。そして、適切な場面で蒸発温度を上昇させることができるため、省エネルギー化を図ることができる。他の効果及び各代替構成については、実施の形態1と同様である。
実施の形態3.
 図11は、本発明の実施の形態3に係る空気調和システムの概略図である。図11に示すように、本実施の形態3の空気調和システム110は、第1空気調和システム100Aと、第2空気調和システム100Bと、を有している。第1空気調和システム100Aと第2空気調和システム100Bとは、互いに通信可能に構成されている。第1空気調和システム100A及び第2空気調和システム100Bの各々のシステム構成は、上述した実施の形態1又は2の空気調和システム100と同様であるため、同等の構成部材については同一の符号を用いて説明は省略する。なお、集中コントローラ20A及び20Bは、実施の形態1又は2の集中コントローラ20と同様に構成されているが、説明の便宜上、サフィックスを付して区別する。制御装置50A及び50Bは、実施の形態1又は2の制御装置50と同様に構成されているが、説明の便宜上、サフィックスを付して区別する。
 上記のとおり、第1空気調和システム100Aと第2空気調和システム100Bとは、同様に構成されているため、以下では、第1空気調和システム100Aの構成及び動作を中心に説明する。なお、第1空気調和システム100Aからみると、自身の冷媒回路200は、自系統の冷媒回路であり、第2空気調和システム100Bの冷媒回路200は、他系統の冷媒回路である。
 集中コントローラ20Aは、他系統の空調機器を選定する操作を受け付けるようになっている。よって、使用者は、自系統の全ての換気装置3が空調優先順位の低い場所に設置されており、かつ、他系統の換気装置3が空調優先順位の高い場所に設置されている場合に、入力部21aを介して、自系統の換気装置3を除外し、他系統の換気装置3を追加する選定操作を行うことができる。この場合、データ処理部22bは、特定基準情報として、除外用に選定された自系統の換気装置3のアドレスと、追加用に選定された他系統の換気装置3のアドレスとを、制御装置50Aへ送信する。制御装置50Aの取得処理部52は、特定基準情報をもとに、監視対象機器情報から自系統の換気装置3のアドレスを除外し、監視対象機器情報に他系統の換気装置3を追加する。そして、差分演算部53aは、監視対象機器情報に基づき、他系統の換気装置3のRA温湿度検出手段32において検出された室内空気の絶対湿度を、室内絶対湿度Xaとして用いる。なお、他系統の換気装置3は、本発明の「別の換気装置」に相当する。
 また、使用者は、自系統の全ての室内機1が空調優先順位の低い場所に設置されており、かつ、他系統の室内機1が空調優先順位の高い場所に設置されている場合に、入力部21aを介して、自系統の室内機1を除外し、他系統の室内機1を追加する選定操作を行うことができる。この場合、データ処理部22bは、特定基準情報として、除外用に選定された室内機1のアドレスと、追加用に選定された室内機1のアドレスとを、制御装置50Aへ送信する。制御装置50Aの取得処理部52は、特定基準情報をもとに、監視対象機器情報から自系統の室内機1のアドレスを除外し、監視対象機器情報に他系統の室内機1のアドレスを追加する。そして、差分演算部53aは、監視対象機器情報に基づき、他系統の室内機1の吸込温湿度検出手段43において検出された吸込温度を、室内温度Taとして用いる。他の構成は実施の形態1及び2と同様である。
 図12は、図11の空気調和システムの動作を示すフローチャートである。図12を参照して、本実施の形態3の空気調和システム110による空気調和方法について説明する。前述した実施の形態1と同様の工程については、図9と同じ符号を付して説明は省略する。ここでは、自系統の全ての換気装置3が空調優先順位の低い場所に設置されており、かつ、他系統の換気装置3が空調優先順位の高い場所に設置されている場合について説明する。
 使用者が、集中コントローラ20Aの入力部21aを介して、自系統の全ての換気装置3を除外し、他系統の換気装置3を追加する選定操作を行う。すると、データ処理部22bは、自系統の換気装置3のアドレスと、追加用に選定された他系統の換気装置3のアドレスとを、制御装置50Aへ送信する。制御装置50Aの取得処理部52は、自系統の換気装置3を除外し、他系統の換気装置3を追加する要求があったと認識し(ステップS301/YES)、自系統の換気装置3及び他系統の換気装置3のそれぞれのアドレスを、記憶部55に記憶させる。その際、取得処理部52は、自系統の換気装置3のアドレスを監視対象機器情報から除外し、他系統の換気装置3のアドレスを監視対象機器情報に追加する(ステップS302)。
 次いで、差分演算部53aは、取得処理部52によって更新された監視対象機器情報をもとに、室内温度Ta及び室内絶対湿度Xaを取得する空調機器を特定する。そして、差分演算部53aは、制御装置50B又は集中コントローラ20Bとの通信により、監視対象機器情報に追加された他系統の換気装置3の温湿度センサから室内絶対湿度Xaを取得する。また、差分演算部53aは、自系統の室内機1の温湿度センサから室内温度Taを取得する。そして、差分演算部53aは、取得した室内温度Taから室内目標温度Ta_tgtを減算して温度差ΔTを求める。また、差分演算部53aは、取得した室内絶対湿度Xaから室内目標絶対湿度Xa_tgtを減算して湿度差ΔXを求める(ステップS303)。
 一方、使用者が、自系統の全ての換気装置3を除外し、他系統の換気装置3を追加する選定操作を行わなければ(ステップS301/NO)、差分演算部53aは、現状の監視対象機器情報をもとに、室内温度Ta及び室内絶対湿度Xaを取得する空調機器を特定し、温度差ΔTと湿度差ΔXとを求める(ステップS303)。ここで、ステップS303に移行するタイミングにおいて、監視対象機器情報にアドレスが含まれている空調機器は、特定基準を満たす空調機器に相当する。
 そして、第1空気調和システム100Aは、ステップS104~S108の一連の処理を、図9の場合と同様に実行する。第1空気調和システム100Aは、上記のステップS301~S303及びステップS104~S108の一連の処理に加えて、実施の形態2の図11に示すステップS201~S203の一連の処理を行うようにしてもよい。
 以上のように、実施の形態3の空気調和システム110によれば、集中コントローラ20A又は20Bから、自系統で空調優先順位の低い空調機器を除外し、他系統で空調優先順位の高い空調機器を追加する選定操作を受け付けることができる。そして、集中コントローラ20A又は20Bは、除外用の空調機器及び追加用の空調機器のそれぞれのアドレスを制御装置50A又は50Bに送信する。そのため、制御装置50A又は50Bは、自系統の空調機器だけではなく、他系統の空調機器の温湿度センサから、室内温度Ta又は室内絶対湿度Xaを取得することができる。したがって、より精度のよい室内温度Ta及び室内絶対湿度Xaを利用して温度差ΔT及び湿度差ΔXを求め、目標蒸発温度Teの調整処理を行うことができるため、蒸発温度を上昇させる場面を増やすことができ、省エネルギー化を図ることができる。他の効果及び各代替構成については、実施の形態1及び2と同様である。
 ところで、上記の説明では、第1空気調和システム100A又は第2空気調和システム100Bの全ての換気装置3が、空調優先順位の低い場所に設定されている場合を例に挙げたが、第1空気調和システム100A又は第2空気調和システム100Bは、換気装置3を有していなくてもよい。この場合、例えば、使用者が集中コントローラ20Aの入力部21aを介して他系統の換気装置3を追加する選定操作を行うと、データ処理部22bが、他系統の換気装置3のアドレスを制御装置50A又は50Bに送信する。すると、制御装置50A又は50Bの取得処理部52は、他系統の換気装置3のアドレスを監視対象機器情報に追加する。
実施の形態4.
 図13は、本発明の実施の形態4に係る空気調和システムの概略図である。図11に示すように、本実施の形態4の空気調和システム100Cは、通信装置60を有している。また、空調対象空間Sには、空気調和システム1000が設けられている。空気調和システム1000は、例えば空気調和システム100Cとは製造元が異なるものであり、空気調和システム100Cと空気調和システム1000とは、互いに通信を行うことができない。
 空気調和システム100Cのシステム構成は、上述した実施の形態1及び2の空気調和システム100と同様であるため、同等の構成部材については同一の符号を用いて説明は省略する。なお、空気調和システム1000は、室内機1001、室外機1002、及び換気装置1003を有する一般的な空気調和システムである。換気装置1003は、空調優先順位の高い場所に設置されているものとする。
 通信装置60は、集中コントローラ20及び制御装置50との有線又は無線による通信を行うことができる。通信装置60は、換気装置1003の近傍であり、空調優先順位の高い場所に設けられているものとする。通信装置60としては、例えば、空調機器の操作用のリモートコントローラが想定される。通信装置60は、図13に示すように、空調対象空間Sの空気の絶対湿度を検出する湿度センサ61を有している。集中コントローラ20は、通信装置60のアドレスを取得して記憶部23に記憶させているものとする。制御装置50は、湿度センサ61の検出値を取得することができる。そして、制御装置50は、湿度センサ61の検出値を、適宜、室内絶対湿度Xaとして用いることができる。また、通信装置60には、目標温度及び目標絶対湿度が設定されている。制御装置50は、目標温度及び目標絶対湿度を、通信装置60から直接取得するようにしてもよいし、集中コントローラ20を介して取得するようにしてもよい。
 集中コントローラ20は、通信装置60を選定する操作を受け付けるようになっている。よって、使用者は、自系統の換気装置3が全て空調優先順位の低い場所に設置されている場合、入力部21aを介して、自系統の換気装置3を除外し、通信装置60を追加する選定操作を行うことができる。この場合、データ処理部22bは、特定基準情報として、自系統の換気装置3のアドレスと通信装置60のアドレスとを制御装置50へ送信する。よって、制御装置50の取得処理部52は、特定基準情報をもとに、監視対象機器情報から自系統の換気装置3のアドレスを除外し、監視対象機器情報に通信装置60のアドレスを追加する。そして、差分演算部53aは、監視対象機器情報を参照して、通信装置60の湿度センサ61において検出された室内空気の絶対湿度を室内絶対湿度Xaとして用いる。他の構成は実施の形態1及び2と同様である。
 図14は、図13の空気調和システムの動作を示すフローチャートである。図14を参照して、本実施の形態4の空気調和システム100Cによる空気調和方法について説明する。前述した実施の形態1と同様の工程については、図9と同じ符号を付して説明は省略する。
 使用者が、集中コントローラ20Aの入力部21aを介して、自系統の全ての換気装置3を除外し、通信装置60を追加する選定操作を行う。すると、データ処理部22bは、換気装置3のアドレスと通信装置60のアドレスとを制御装置50へ送信する。制御装置50の取得処理部52は、自系統の換気装置3を除外し、通信装置60を追加する要求があったと認識し(ステップS401/YES)、自系統の換気装置3のアドレスと通信装置60のアドレスとを記憶部55に記憶させる。その際、取得処理部52は、自系統の換気装置3のアドレスを監視対象機器情報から除外し、通信装置60のアドレスを監視対象機器情報に追加する(ステップS402)。
 次いで、差分演算部53aは、取得処理部52によって更新された監視対象機器情報をもとに、室内温度Ta及び室内絶対湿度Xaを取得する空調機器を特定する。そして、差分演算部53aは、通信装置60の湿度センサ61から室内絶対湿度Xaを取得する。また、差分演算部53aは、自系統の室内機1の温湿度センサから室内温度Taを取得する。そして、差分演算部53aは、取得した室内温度Taから室内目標温度Ta_tgtを減算して温度差ΔTを求める。また、差分演算部53aは、取得した室内絶対湿度Xaから室内目標絶対湿度Xa_tgtを減算して湿度差ΔXを求める(ステップS403)。
 一方、使用者が、自系統の全ての換気装置3を除外して通信装置60を追加する選定操作を行わなければ(ステップS401/NO)、差分演算部53aは、現状の監視対象機器情報をもとに、室内温度Ta及び室内絶対湿度Xaを取得して、温度差ΔTと湿度差ΔXとを求める(ステップS403)。ここで、ステップS403へ移行するタイミングで、監視対象機器情報にアドレスが含まれている空調機器は、特定基準を満たす空調機器に相当する。
 そして、空気調和システム100Cは、ステップS104~S108の一連の処理を、図9の場合と同様に実行する。空気調和システム100Cは、上記のステップS401~S403及びステップS104~S108の一連の処理に加えて、実施の形態2の図11に示すステップ201~S203の一連の処理を行うようにしてもよい。
 以上のように、実施の形態4の空気調和システム100Cでは、空調優先順位の高い場所に、湿度センサ61を有する通信装置60が設置されており、制御装置50は、湿度センサ61から室内空気の絶対湿度を取得することができる。そして、集中コントローラ20は、空調優先順位の低い自系統の換気装置3を除外して通信装置60を追加する選定操作を受け付けると共に、自系統の換気装置3及び通信装置60のそれぞれのアドレスを制御装置50に送信する。そのため、制御装置50は、通信装置60の湿度センサ61から室内絶対湿度Xaを取得することができる。したがって、より精度のよい室内絶対湿度Xaを用いて湿度差ΔXを求めた上で、目標蒸発温度Teの調整処理を行うことができるため、蒸発温度を上昇させる場面を増やすことができ、更なる省エネルギー化を図ることができる。他の効果及び各代替構成については、実施の形態1及び2と同様である。
実施の形態5.
 図15は、本発明の実施の形態5に係る空気調和システムの一例を示す概略図である。図16は、図15の空気調和システムの制御系統を含めた冷媒回路図である。図17は、本発明の実施の形態5に係る空気調和システムの他の例を示す概略図である。本実施の形態5の空気調和システム100D及び100Eは、図15~図17に示すように、2つの冷媒系統を有する点に特徴がある。上述した実施の形態1及び2の空気調和システム100と同等の構成部材については、同一の符号又は名称を用いて説明は省略する。
 空気調和システム100Dは、室外機2と、1台又は複数台の室内機1と、を備えた一方の冷媒系統である冷媒回路200Aを有している。また、空気調和システム100Dは、室外機4と、1台又は複数台の換気装置3と、を備えた他方の冷媒系統である冷媒回路200Bを有している。なお、図15及び図16では、冷媒回路200Aが、3台の室内機1を有する場合を例示している。図15及び図16では、冷媒回路200Bが、1台の換気装置3を有する場合を例示している。以降では、冷媒回路200Aに相当する一方の冷媒系統を「第1冷媒系統」といい、冷媒回路200Bに相当する他方の冷媒系統を「第2冷媒系統」という。
 室外機2と室内機1とは、冷媒配管102aによって接続されている。室外機4と換気装置3とは、冷媒配管102bによって接続されている。室内機1と室外機2と換気装置3と室外機4とは、それぞれ、集中コントローラ20と伝送線103で接続されている。もっとも、集中コントローラ20は、室内機1、室外機2、換気装置3、及び室外機4と、無線によって通信するものであってもよい。
 冷媒回路200Aは、圧縮機11A、四方弁12A、室外熱交換器13A、第1膨張弁14a、及び室内熱交換器15を有している。冷媒回路200Bは、圧縮機11B、四方弁12B、室外熱交換器13B、第2膨張弁14b、及び換気装置熱交換器18を有している。室外機2は、室外熱交換器13Aに付設された室外送風機16Aを有している。室外機2は、冷媒回路200A及び室外送風機16Aを制御する制御装置50Aを有している。室外機4は、室外熱交換器13Bに付設された室外送風機16Bを有している。室外機4は、冷媒回路200B及び室外送風機16Bを制御する制御装置50Bを有している。制御装置50A及び制御装置50Bは、それぞれ、実施の形態1~4の制御装置50と同様に構成されている。制御装置50Aと制御装置50Bとは、互いに連携して空気調和システム100Dを制御することができる。
 空気調和システム100Eは、空気調和システム100Dと同様に構成されているが、冷媒回路200Bが、1台又は複数台の室内機1を有している点で空気調和システム100Dとは相違する。図17では、冷媒回路200Bが、1台の換気装置3と1台の室内機1とを有する場合を例示している。空気調和システム100Eの冷媒回路図は、図16と同様であるため図示を省略する。
 集中コントローラ20は、制御装置50Aと制御装置50Bとのそれぞれと連携して、目標蒸発温度Teの調整処理を行うことができる。そして、本実施の形態5では、例えば、空気調和システム100Dのように、冷媒回路200Bに接続されている空調機器が全て換気装置3である場合、制御装置50Bは、換気装置3のRA温湿度検出手段32の検出値だけを用いて、目標蒸発温度Teの調整処理を行うようになっている。また、空気調和システム100Eのように、冷媒回路200Bに接続されている空調機器に室内機1が含まれる場合でも、使用者が冷媒回路200Bの全ての室内機1を除外する選定操作を行ったとき、制御装置50Bが、換気装置3のRA温湿度検出手段32の検出値だけを用いて、目標蒸発温度Teの調整処理を行うようになっている。
 図18は、図16の室内熱交換器及び換気装置冷却器のそれぞれの目標蒸発温度を求めるための目標温度導出情報を例示したグラフである。制御装置50Bの記憶部55には、図18に例示するような目標温度導出情報が格納されている。図18では、縦軸に室内熱交換器15又は換気装置熱交換器18の蒸発温度を示し、横軸に湿度差ΔXを示している。湿度差ΔXnは、現在の室内絶対湿度Xaから室内目標絶対湿度Xa_tgtを減算した値を例示したものである。すなわち、目標温度導出情報では、図18に示すように、湿度差ΔXと目標蒸発温度Teとが関連づけられており、湿度差ΔXnを目標温度導出情報に照らすことで、目標蒸発温度Teを求めることができる。Te_maxは、目標蒸発温度Teの最大値である最大蒸発温度を示し、Te_minは、目標蒸発温度Teの最小値である最小蒸発温度を示している。さらに、図18には、湿度閾値X1よりも高く設定された湿度閾値X3と、0よりも低く設定された湿度閾値X4と、を示している。
 目標温度導出情報は、湿度差ΔXが「0<ΔX<X1」の範囲において、湿度差ΔXと目標蒸発温度Teとの間に、湿度差ΔXが増加すると目標蒸発温度Teが減少するような比例関係がある。また、目標温度導出情報は、湿度差ΔXが0以下とき、目標蒸発温度Teが最大蒸発温度ET_maxに設定され、湿度差ΔXがX1以上のとき、目標蒸発温度Teが最小蒸発温度ET_minに設定されるようになっている。
 そして、図8の表と同様、最大蒸発温度Te_max及び最小蒸発温度Te_minは、蒸発温度レベルごとに、複数のパターンの値が設定されている。本実施の形態5においても、蒸発温度レベルとして、蒸発温度が相対的に高いHiレベルと、蒸発温度が相対的に低いLoレベルとの2つのパターンが設定されている。
 ここで、冷媒回路200BがHiレベルで運転中に、湿度差ΔXが湿度閾値X3よりも大きくなった場合は、除湿能力が足りず潜熱負荷を処理できていないと判断することができる。そのため、制御装置50Bは、除湿能力を上げるために、HiレベルからLoレベルへ移行するようにしてもよい。一方、冷媒回路200BがLoレベルで運転中に、湿度差ΔXが湿度閾値X4よりも小さくなった場合は、除湿能力に余裕があり蒸発温度を更に上げられると判断できる。そのため、制御装置50Bは、除湿能力を下げるために、LoレベルからHiレベルへ移行するようにしてもよい。
 図19は、図17の空気調和システムの動作を示すフローチャートである。図19を参照して、空気調和システム100Eの集中コントローラ20及び制御装置50Bによる処理内容を説明する。前述した実施の形態1と同様の工程については、図9と同じ符号を付して説明は省略する。ここでは、冷媒回路200Bの全ての室内機1が空調優先順位の低い場所に設置されている場合を説明する。
 まず、使用者が、集中コントローラ20の入力部21aを介して、第2冷媒系統の全ての室内機1を除外する選定操作を行うと、データ処理部22bは、除外用に選定された室内機1のアドレスを制御装置50Bに送信する。すると、制御装置50Bの取得処理部52は、第2冷媒系統の室内機1を除外する要求があったと認識し(ステップS501/YES)、除外用に選定された室内機1のアドレスを記憶部55に記憶させる。その際、取得処理部52は、除外用に選定された室内機1のアドレスを監視対象機器情報から除外することにより、監視対象機器情報を更新する(ステップS502)。
 次いで、差分演算部53aは、取得処理部52によって更新された監視対象機器情報をもとに、第2冷媒系統の換気装置3の温湿度センサから室内絶対湿度Xaを取得する。そして、差分演算部53aは、取得した室内絶対湿度Xaから室内目標絶対湿度Xa_tgtを減算して湿度差ΔXを求める(ステップS503)。
 次いで、レベル判定部53bは、湿度差ΔXが湿度閾値X1以下であるという湿度条件を満たすか否かを判定する(ステップS504)。レベル判定部53bは、湿度差ΔXが湿度条件を満たす場合(ステップS504/YES)、レベル設定情報をHiレベルに設定する(ステップS105)。一方、レベル判定部53bは、湿度差ΔXが湿度条件を満たさない場合(ステップS504/NO)、レベル設定情報をLoレベルに設定する(ステップS106)。そして、空気調和システム100Eは、ステップS107及びステップS108の処理を、図9の場合と同様に実行する。
 一方、使用者が、第2冷媒系統の全ての室内機1を除外する選定操作を行わなければ(ステップS501/NO)、差分演算部53aは、現状の監視対象機器情報をもとに、室内温度Ta及び室内絶対湿度Xaを取得する空調機器を特定して、温度差ΔTと湿度差ΔXとを求める(図9のステップS103)。そして、空気調和システム100Eは、図9のステップS104~S108の処理を実施の形態1と同様に実行する。ここで、ステップS503又はステップS103に移行するタイミングにおいて、監視対象機器情報にアドレスが含まれている空調機器は、特定基準を満たす空調機器に相当する。空気調和システム100Eは、上記一連の処理に加えて、実施の形態2の図11に示すステップ201~S203の一連の処理を行うようにしてもよい。なお、空気調和システム100Dの場合は、ステップS501及びS502の処理を省略することができる。
 以上のように、本実施の形態5における空気調和システムは、何れかの冷媒回路の全ての室内機1の空調優先順位が低い場合、又は何れかの冷媒回路の空調機器が全て換気装置3である場合、当該冷媒回路の換気装置3における湿度差ΔXのみで目標蒸発温度Teを決定する。そのため、温度差ΔTが分からない場合でも、省エネルギー化を図ることができる。他の効果及び各代替構成については、実施の形態1と同様である。もっとも、上述した実施の形態1~4の空気調和システムも、ステップS104の処理及びこれに付随する処理の代わりに、ステップS504の処理及びこれに付随する処理を行うようにしてもよい。
<変形例>
 図20は、本発明の実施の形態5の変形例に係る空気調和システムでのゾーン分けを示した空気線図である。図21は、図20に示す4つのゾーンごとの蒸発温度レベルを示した空気線図である。本変形例における空気調和システムは、図20及び図21に示すように、乾球温度と絶対湿度とによって分割された4つのゾーンにより、第1冷媒系統及び第2冷媒系統のそれぞれの蒸発温度レベルを切り替えることができる。
 OA温湿度検出手段31で検出された温度及び湿度の値は、図20に示すように、乾球温度の閾値T0と絶対湿度の閾値X0とを境界として、ゾーンI~IVの4つのゾーンに分けられる。ゾーンIにある場合は、外気が低温かつ低湿度であるので、低顕熱負荷条件及び低潜熱負荷条件となる。ゾーンIIにある場合は、外気が低温かつ高湿度であるので、低顕熱負荷条件及び高潜熱負荷条件となる。ゾーンIIIにある場合は、外気が高温かつ低湿度であるので、高顕熱負荷条件及び低潜熱負荷条件となる。ゾーンIVにある場合は、外気が高温かつ高湿度であるので、高顕熱負荷条件及び高潜熱負荷条件となる。
 ゾーンI及びゾーンIIの低顕熱負荷条件では、顕熱を制御する第1冷媒系統の顕熱負荷は小さいので、第1冷媒系統の蒸発温度を上げて、冷却能力を下げることが可能となる。そのため、図21に示すように、第1冷媒系統の蒸発温度レベルは、Hiレベルとすることができる。一方、ゾーンIIIとゾーンIVの高顕熱負荷条件では、顕熱を制御する第1冷媒系統の顕熱負荷は大きいので、第1冷媒系統の蒸発温度を下げて冷却能力を上げる必要がある。そのため、図21に示すように、第1冷媒系統の蒸発温度レベルはLoレベルとする必要がある。
 ゾーンIとゾーンIIIの低潜熱負荷条件では、潜熱を制御する第2冷媒系統の潜熱負荷は小さいので、第2冷媒系統の蒸発温度を上げて除湿能力を下げることが可能となるそのため、図21に示すように、第2冷媒系統の蒸発温度レベルは、Hiレベルとすることができる。一方、ゾーンIIとゾーンIVの高潜熱負荷条件では、潜熱を制御する第2冷媒系統の潜熱負荷は大きいので、第2冷媒系統の蒸発温度を下げて除湿能力を上げる必要がある。そのため、図21に示すように、第2冷媒系統の蒸発温度レベルはLoレベルとする必要がある。
 ここで、各ゾーンの閾値である乾球温度の閾値T0と絶対湿度の閾値X0とは、以下のようにして決定される。閾値T0は、第1冷媒系統の目標蒸発温度TeをHiレベルのTei_hi_minとした時に、顕熱負荷を処理できる外気温度の最大値である。すなわち、閾値T0以下であれば、Hiレベルの蒸発温度範囲であっても目標温度に到達できる。実際、顕熱負荷は、外気の温湿度条件だけでなく、人体及び照明などの内部発熱を考慮する必要がある。ただし、人体及び照明などの内部発熱量は、ビル又はマンションなどの物件毎にある程度想定され、その変動は少ないため、物件毎に想定される値を用いてT0を算出することができる。
 一方、閾値X0は、第2冷媒系統の目標蒸発温度TeをHiレベルのTev_hi_minとした時に、潜熱負荷を処理できる外気絶対湿度の最大値である。すなわち、閾値X0以下であれば、Hiレベルの蒸発温度範囲であっても目標湿度に到達できる。実際、潜熱負荷は外気の温湿度条件だけでなく、人体及び照明などの内部発熱を考慮する必要がある。ただし、人体及び照明などの内部発熱量は、ビル又はマンションなどの物件毎にある程度想定され、その変動は少ないため、物件毎に想定される値を用いてX0を算出することができる。
 図22は、本発明の実施の形態5の変形例に係る空気調和システムの動作を示すフローチャートである。空気調和システム100Eの構成を前提に、図22を参照して、本変形例の4つのゾーンに基づく蒸発温度レベルの付加的な調整処理について説明する。図19と同様の工程については同じ符号を付して説明は省略する。
 本変形例の空気調和システム100Eは、ステップS501~S504の一連の処理を、図22の場合を同様に実行する。そして、制御装置50Bのレベル判定部53bは、湿度差ΔXが湿度条件を満たす場合に(ステップS504/YES)、第1冷媒系統及び第2冷媒系統の双方の蒸発温度レベルをHiレベルに設定する(ステップS105)。
 一方、レベル判定部53bは、湿度差ΔXが湿度条件を満たさない場合に(ステップS504/NO)、OA温湿度検出手段31から外気の温湿度を取得して、4つのゾーンのどれであるかの判定であるゾーン判定を実行する。なお、湿度差ΔXが湿度条件を満たさない場合とは、温度差ΔTが温度閾値T1よりも大きいという条件、及び湿度差ΔXが湿度閾値X1よりも大きいという条件のうちの少なくとも一方を満たす場合のことである。
 すなわち、レベル判定部53bは、ゾーンIVである場合に(ステップS601/YES)、第1冷媒系統及び第2冷媒系統の双方の蒸発温度レベルをLoレベルに設定する。レベル判定部53bは、ゾーンIVではない場合において(ステップS601/NO)、ゾーンIである場合に(ステップS602/ゾーンI)、ステップS105の処理へ移行する(ステップS105)。レベル判定部53bは、ゾーンIIである場合に(ステップS602/ゾーンII)、第1冷媒系統の蒸発温度レベルをHiレベルに設定し、第2冷媒系統の蒸発温度レベルをLoレベルに設定する(ステップS603)。レベル判定部53bは、ゾーンIIIである場合に(ステップS602/ゾーンIII)、第1冷媒系統の蒸発温度レベルをLoレベルに設定し、第2冷媒系統の蒸発温度レベルをHiレベルに設定する(ステップS604)。
 そして、空気調和システム100Eは、ステップS107及びステップS108の処理を、図22の場合と同様に実行する。ここで、本変形例の空気調和システム100Eは、上記一連の処理に加えて、実施の形態2の図11に示すステップ201~S203の一連の処理を行うようにしてもよい。
 以上のように、本変形例における空気調和システムにおいて、目標温度調整部53は、温湿度条件を満たさない場合に、OA温湿度検出手段31から検出値を取得する。そして、目標温度調整部53は、外気が低温かつ低湿度のときに、第1冷媒系統及び第2冷媒系統のそれぞれに対して高目標温度導出情報を用いて目標蒸発温度Teを決定する。目標温度調整部53は、外気が低温かつ高湿度のときに、第1冷媒系統に対して高目標温度導出情報を用いて目標蒸発温度Teを決定すると共に、第2冷媒系統に対して低目標温度導出情報を用いて目標蒸発温度Teを決定する。目標温度調整部53は、外気が高温かつ低湿度のときに、第1冷媒系統に対して低目標温度導出情報を用いて目標蒸発温度Teを決定すると共に、第2冷媒系統に対して高目標温度導出情報を用いて目標蒸発温度Teを決定する。目標温度調整部53は、外気が高温かつ高湿度のときに、第1冷媒系統及び第2冷媒系統のそれぞれに対して低目標温度導出情報を用いて目標蒸発温度Teを決定する。すなわち、本変形例における空気調和システムによれば、蒸発温度を下げることが可能となるパターンが増えるため、さらなる省エネルギー化をより柔軟に実現することができる。
 本変形例では、制御装置50Aと制御装置50Bとが連携して、蒸発温度レベルの設定処理等を行う場合を例示したが、これに限定されるものではない。空気調和システム100D及び100Eは、例えば、室外機2又は室外機4の内部又は外部に、制御装置50Aの機能と制御装置50Bの機能とを併せもつ1つの制御装置を有していてもよい。
 上述した各実施の形態は、空気調和システムにおける好適な具体例であり、本発明の技術的範囲は、これらの態様に限定されるものではない。例えば、上記の説明で用いた各図では、各構成部材の大きさの関係が実際のものとは異なる場合がある。また、添字で区別等している複数の同種の機器等について、特に区別したり、特定したりする必要がない場合には、添字を省略して記載する場合もある。
 加えて、図1では、空気調和システム100が、3台の室内機1と、1台の換気装置3と、を有する場合を例示しているが、これに限定されるものではない。空気調和システム100は、1台、2台、又は4台以上の室内機1を有していてもよい。同様に、空気調和システム100は、2台以上の換気装置3を有していてもよい。実施の形態2~5における空気調和システムについても同様である。また、図2及び図16では、第1膨張弁14aが室内機1に設けられ、第2膨張弁14bが換気装置3に設けられている場合を例示したが、これに限らず、第1膨張弁14a及び第2膨張弁14bのうちの少なくとも1つは室外機2もしくは室外機4に設けられていてもよい。
 上記各実施の形態では、集中コントローラ20、20A、及び20Bが、タッチパネルからなる入力表示部21を有する場合を例示したが、これに限らず、入力表示部21は、物理ボタンなどを含んで構成された入力部21aと、例えば液晶ディスプレイからなる表示部21bとは、分離して配置されたものであってもよい。
 図7では、目標温度導出情報がグラフである場合を例示したが、これに限らず、目標温度導出情報は、図7に示すグラフと同様に、温度差ΔTと目標蒸発温度Teとが関連づけられたテーブル情報であってもよい。図18では、目標温度導出情報がグラフである場合を例示したが、これに限らず、目標温度導出情報は、図18に示すグラフと同様に、湿度差ΔXと目標蒸発温度Teとが関連づけられたテーブル情報であってもよい。
 上記各実施の形態では、蒸発温度レベルをHiレベルとLoレベルとの2段階に分ける場合を例示したが、これに限らず、蒸発温度レベルは、3段階以上に分けて設定するようにしてもよい。上記各実施の形態では、温湿度センサ等が検出する湿度が絶対湿度である場合を例示したが、これに限らず、温湿度センサ等は、相対湿度を検出するものであってもよい。ただし、相対湿度を用いて演算処理を行うと、温度の影響を受け、室内温度によって快適性が変化してしまうため、温湿度センサ等は、絶対湿度を検出するものである方が望ましい。ところで、上記各実施の形態では、各空調機器が、それぞれ、空調対象空間Sの空気の温度及び絶対湿度を検出する「温湿度センサ」を有する場合を例示したが、これに限定されるものではない。各空調機器は、それぞれ、空調対象空間Sの空気の温度を検出する温度センサと、空調対象空間Sの空気の絶対湿度を検出する湿度センサと、を有していてもよい。
 なお、上記各実施の形態では、原則として、代表機の温湿度センサによる検出値を用いて温湿度条件あるいは湿度条件を満たすか否かを判定するようになっているが、これに限定されるものではない。例えば、特定基準を満たす全ての空調機器の温湿度センサそれぞれの検出値について、温湿度条件あるいは湿度条件を満たすか否かを判定し、蒸発温度レベルの切替処理を行うようにしてもよい。また、特定基準を満たす全ての空調機器の温湿度センサそれぞれの検出値を平均した値をもとに、温湿度条件あるいは湿度条件を満たすか否かを判定し、蒸発温度レベルの切替処理を行うようにしてもよい。
 1、1001 室内機、2、1002 室外機、3、1003 換気装置、4 室外機、11、11A、11B 圧縮機、12、12A、12B 四方弁、13、13A、13B 室外熱交換器、14a 第1膨張弁、14b 第2膨張弁、15 室内熱交換器、16、16A、16B 室外送風機、17 室内送風機、18 換気装置熱交換器、19a 給気用送風機、19b 排気用送風機、20、20A、20B 集中コントローラ、21 入力表示部、21a 入力部、21b 表示部、22 制御部、22a 表示処理部、22b データ処理部、23 記憶部、30 全熱交換器、31 OA温湿度検出手段、32 RA温湿度検出手段、42 蒸発温度検出手段、43 吸込温湿度検出手段、50、50B、50C 制御装置、51 制御部、52 取得処理部、53 目標温度調整部、53a 差分演算部、53b レベル判定部、53c 目標温度決定部、54 空調制御部、55 記憶部、60 通信装置、61 湿度センサ、100、100C、100D、100E、110、1000 空気調和システム、100A 第1空気調和システム、100B 第2空気調和システム、102、102a、102b 冷媒配管、200、200A、200B 冷媒回路、T0 閾値、T1 温度閾値、T2 快適温度閾値、Ta 室内温度、Ta_tgt 室内目標温度、Te 目標蒸発温度、Te_max 最大蒸発温度、Te_min 最小蒸発温度、X0 閾値、X1 湿度閾値、X2 快適湿度閾値、X3、X4 湿度閾値、Xa 室内絶対湿度、Xa_tgt 室内目標絶対湿度、ΔT、ΔTn 温度差、ΔX、ΔXn 湿度差。

Claims (14)

  1.  室外機と、1台又は複数台の室内機と、1台又は複数台の換気装置とが冷媒配管で接続され、冷媒が循環する冷媒系統と、
     前記冷媒系統を制御する制御装置と、を備え、
     前記冷媒系統は、圧縮機、室外熱交換器、第1膨張弁、室内熱交換器、第2膨張弁、換気装置冷却器を有し、
     前記室外機は、圧縮機と、室外熱交換器と、を有し、
     前記室内機は、前記室内熱交換器を有し、
     前記換気装置は、前記換気装置冷却器を有し、
     前記室内機及び前記換気装置には、それぞれ、空調対象空間の空気の温度及び湿度を検出する温湿度検出手段が設けられており、
     前記制御装置は、
     前記空調対象空間での配置に基づく特定基準を満たす前記室内機及び前記換気装置のうちの少なくとも1台を特定し、特定した前記室内機及び前記換気装置のうちの少なくとも1台に設けられた前記温湿度検出手段の検出値をもとに目標蒸発温度を調整する目標温度調整部と、
     前記室内機及び前記換気装置のそれぞれの蒸発温度が、前記目標温度調整部において調整された前記目標蒸発温度となるように前記冷媒系統を制御する空調制御部と、を有する空気調和システム。
  2.  前記特定基準に対応する特定基準情報を前記制御装置に送信するコントロール機器をさらに備え、
     前記目標温度調整部は、
     前記コントロール機器から送信される前記特定基準情報をもとに、前記特定基準を満たす前記室内機及び前記換気装置のうちの少なくとも1台を特定するものである請求項1に記載の空気調和システム。
  3.  前記コントロール機器は、
     前記空調対象空間での配置に基づく空調優先順位が相対的に低い前記室内機及び前記換気装置のうちの少なくとも1台を選定する操作を受け付け、選定された前記室内機及び前記換気装置のうちの少なくとも1台の識別情報を、前記特定基準情報として前記制御装置に送信するものである請求項2に記載の空気調和システム。
  4.  前記コントロール機器は、
     前記空調対象空間に設けられた人感センサによる検知情報を取得し、取得した前記検知情報をもとに一定時間以上人が存在しない領域を抽出し、抽出した領域に対応する前記室内機及び前記換気装置のうちの少なくとも1台の識別情報を前記特定基準情報として前記制御装置に送信するものである請求項2に記載の空気調和システム。
  5.  前記制御装置は、
     前記室内機及び前記換気装置のそれぞれの識別情報を含む監視対象機器情報を記憶する記憶部と、
     前記監視対象機器情報から前記特定基準情報としての識別情報を除外して、前記監視対象機器情報を更新する取得処理部と、をさらに有し、
     前記目標温度調整部は、
     前記取得処理部による更新後の前記監視対象機器情報を用いて、前記特定基準を満たす前記室内機及び前記換気装置のうちの少なくとも1台を特定するものである請求項3又は4に記載の空気調和システム。
  6.  前記目標温度調整部は、
     前記特定基準を満たす前記室内機及び前記換気装置のうちの少なくとも1台に設けられた前記温湿度検出手段から前記空調対象空間の空気の温度及び湿度を取得し、取得した温度と目標温度との間の温度差と、取得した湿度と目標湿度との間の湿度差とを求め、求めた前記温度差及び前記湿度差のうちの少なくとも1つを用いて前記目標蒸発温度を調整するものである請求項5に記載の空気調和システム。
  7.  前記コントロール機器は、
     他の冷媒系統に設けられ、前記空調対象空間の湿度を検出する湿度センサを備えた別の換気装置との通信を行う機能を有すると共に、
     前記換気装置を除外して前記別の換気装置を追加する選定操作を受け付けたときに、当該換気装置及び当該別の換気装置のそれぞれの識別情報を前記特定基準情報として前記制御装置へ送信するものであり、
     前記取得処理部は、
     前記監視対象機器情報から前記換気装置の識別情報を除外すると共に、前記監視対象機器情報に前記別の換気装置の識別情報を追加して前記監視対象機器情報を更新するものであり、
     前記目標温度調整部は、
     前記特定基準を満たす前記室内機に設けられた前記温湿度検出手段から前記空調対象空間の空気の温度を取得し、取得した温度と目標温度との間の温度差を求めると共に、前記別の換気装置の前記温湿度検出手段から前記空調対象空間の空気の湿度を取得し、取得した湿度と目標湿度との間の湿度差を求め、求めた前記温度差及び前記湿度差のうちの少なくとも1つを用いて前記目標蒸発温度を調整するものである請求項5に記載の空気調和システム。
  8.  前記空調対象空間の湿度を検出する湿度センサを備えた通信装置をさらに有し、
     前記コントロール機器は、
     前記換気装置を除外して前記通信装置を追加する選定操作を受け付けたときに、当該換気装置及び当該通信装置のそれぞれの識別情報を前記特定基準情報として前記制御装置へ送信するものであり、
     前記取得処理部は、
     前記監視対象機器情報から前記換気装置の識別情報を除外すると共に、前記通信装置の識別情報を追加して前記監視対象機器情報を更新するものであり、
     前記目標温度調整部は、
     前記特定基準を満たす前記室内機に設けられた前記温湿度検出手段から前記空調対象空間の空気の温度を取得し、取得した温度と目標温度との間の温度差を求めると共に、前記通信装置の前記温湿度検出手段から前記空調対象空間の空気の湿度を取得し、取得した湿度と目標湿度との間の湿度差を求め、求めた前記温度差及び前記湿度差のうちの少なくとも1つを用いて前記目標蒸発温度を調整するものである請求項5に記載の空気調和システム。
  9.  前記コントロール機器は、
     全ての前記室内機を除外する選定操作を受け付けたとき、全ての前記室内機の識別情報を前記特定基準情報として前記制御装置へ送信するものであり、
     前記取得処理部は、
     前記監視対象機器情報から全ての前記室内機のそれぞれの識別情報を除外するものであり、
     前記目標温度調整部は、
     前記換気装置に設けられた前記温湿度検出手段から前記空調対象空間の空気の湿度を取得し、取得した湿度と目標温度との間の湿度差を求め、求めた前記湿度差を用いて前記目標蒸発温度を調整するものである請求項5に記載の空気調和システム。
  10.  前記記憶部は、
     前記温度差又は前記湿度差と前記目標蒸発温度とが関連づけられた目標温度導出情報を記憶し、
     前記目標温度導出情報には、
     蒸発温度が相対的に高く設定された高目標温度導出情報と、
     蒸発温度が前記高目標温度導出情報よりも低く設定された低目標温度導出情報と、があり、
     前記目標温度調整部は、
     前記温度差が温度閾値以下であり、かつ前記湿度差が湿度閾値以下である場合に、前記高目標温度導出情報を用いて前記目標蒸発温度を決定するものである請求項6~8の何れか一項に記載の空気調和システム。
  11.  前記記憶部は、
     前記湿度差と前記目標蒸発温度とが関連づけられた目標温度導出情報を記憶しており、
     前記目標温度導出情報には、
     蒸発温度が相対的に高く設定された高目標温度導出情報と、
     蒸発温度が前記高目標温度導出情報よりも低く設定された低目標温度導出情報と、があり、
     前記目標温度調整部は、
     前記湿度差が湿度閾値以下である場合に、前記高目標温度導出情報を用いて前記目標蒸発温度を決定するものである請求項9の何れか一項に記載の空気調和システム。
  12.  外気の温度及び湿度を検出する外気温湿度検出手段をさらに有し、
     前記冷媒系統は、
     2台の前記室外機を有すると共に、
     一方の前記室外機と1台又は複数台の前記室内機とが冷媒配管で接続され、冷媒が循環する第1冷媒系統と、
     他方の前記室外機と1台又は複数台の前記換気装置とが冷媒配管で接続され、冷媒が循環する第2冷媒系統と、を有し、
     前記目標温度調整部は、
     前記温度差が前記温度閾値よりも大きいという条件、及び前記湿度差が前記湿度閾値よりも大きいという条件のうちの少なくとも一方を満たす場合に、前記外気温湿度検出手段から検出値を取得し、
     外気が低温かつ低湿度のときに、前記第1冷媒系統及び前記第2冷媒系統のそれぞれに対して前記高目標温度導出情報を用いて前記目標蒸発温度を決定し、
     外気が低温かつ高湿度のときに、前記第1冷媒系統に対して前記高目標温度導出情報を用いて前記目標蒸発温度を決定すると共に、前記第2冷媒系統に対して前記低目標温度導出情報を用いて前記目標蒸発温度を決定し、
     外気が高温かつ低湿度のときに、前記第1冷媒系統に対して前記低目標温度導出情報を用いて前記目標蒸発温度を決定すると共に、前記第2冷媒系統に対して前記高目標温度導出情報を用いて前記目標蒸発温度を決定し、
     外気が高温かつ高湿度のときに、前記第1冷媒系統及び前記第2冷媒系統のそれぞれに対して前記低目標温度導出情報を用いて前記目標蒸発温度を決定するものである請求項10に記載の空気調和システム。
  13.  外気の温度及び湿度を検出する外気温湿度検出手段をさらに有し、
     前記冷媒系統は、
     2台の前記室外機を有すると共に、
     一方の前記室外機と1台又は複数台の前記室内機とが冷媒配管で接続され、冷媒が循環する第1冷媒系統と、
     他方の前記室外機と1台又は複数台の前記換気装置とが冷媒配管で接続され、冷媒が循環する第2冷媒系統と、を有し、
     前記目標温度調整部は、
     前記湿度差が前記湿度閾値よりも大きいという条件を満たす場合に、前記外気温湿度検出手段から検出値を取得し、
     外気が低温かつ低湿度のときに、前記第1冷媒系統及び前記第2冷媒系統のそれぞれに対して前記高目標温度導出情報を用いて前記目標蒸発温度を決定し、
     外気が低温かつ高湿度のときに、前記第1冷媒系統に対して前記高目標温度導出情報を用いて前記目標蒸発温度を決定すると共に、前記第2冷媒系統に対して前記低目標温度導出情報を用いて前記目標蒸発温度を決定し、
     外気が高温かつ低湿度のときに、前記第1冷媒系統に対して前記低目標温度導出情報を用いて前記目標蒸発温度を決定すると共に、前記第2冷媒系統に対して前記高目標温度導出情報を用いて前記目標蒸発温度を決定し、
     外気が高温かつ高湿度のときに、前記第1冷媒系統及び前記第2冷媒系統のそれぞれに対して前記低目標温度導出情報を用いて前記目標蒸発温度を決定するものである請求項11に記載の空気調和システム。
  14.  前記目標温度調整部は、
     前記温度差が前記温度閾値よりも大きく設定される快適温度閾値未満であり、かつ前記湿度差が前記湿度閾値よりも大きく設定される快適湿度閾値未満である場合に限り、前記目標蒸発温度の調整を実行するものである請求項6~8、10、及び12の何れか一項に記載の空気調和システム。
PCT/JP2017/020497 2017-06-01 2017-06-01 空気調和システム WO2018220803A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2017/020497 WO2018220803A1 (ja) 2017-06-01 2017-06-01 空気調和システム
JP2019521883A JP6808033B2 (ja) 2017-06-01 2017-06-01 空気調和システム
DE112017007594.7T DE112017007594T5 (de) 2017-06-01 2017-06-01 Klimatisierungssystem
CN201780091203.8A CN110662925B (zh) 2017-06-01 2017-06-01 空调系统
US16/605,074 US11536474B2 (en) 2017-06-01 2017-06-01 Air-conditioning system controlling evaporating temperatures of indoor units and ventilator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/020497 WO2018220803A1 (ja) 2017-06-01 2017-06-01 空気調和システム

Publications (1)

Publication Number Publication Date
WO2018220803A1 true WO2018220803A1 (ja) 2018-12-06

Family

ID=64455266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020497 WO2018220803A1 (ja) 2017-06-01 2017-06-01 空気調和システム

Country Status (5)

Country Link
US (1) US11536474B2 (ja)
JP (1) JP6808033B2 (ja)
CN (1) CN110662925B (ja)
DE (1) DE112017007594T5 (ja)
WO (1) WO2018220803A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094703A (ja) * 2018-12-10 2020-06-18 東日本旅客鉄道株式会社 空調配置方法及び空調配置システム
CN114279057A (zh) * 2021-12-29 2022-04-05 北京小米移动软件有限公司 空调及其控制方法、装置、存储介质
US11916828B2 (en) 2020-07-13 2024-02-27 Daikin Industries, Ltd. Communication system, communication method, and program
WO2024095444A1 (ja) * 2022-11-04 2024-05-10 三菱電機株式会社 空調システム

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11821645B2 (en) * 2018-10-24 2023-11-21 Lennox Industries Inc. Wireless remote indoor sensor for home automation
CN111442507B (zh) * 2020-04-07 2022-07-19 广东美的暖通设备有限公司 空调器及其控制方法和装置
JP7403669B2 (ja) * 2020-08-31 2023-12-22 三菱電機株式会社 換気報知装置および換気報知プログラム
JPWO2022102171A1 (ja) * 2020-11-11 2022-05-19
BR102020026026A2 (pt) * 2020-12-18 2022-06-28 Robert Bosch Limitada Método e sistema de gerenciamento de conforto térmico em ambientes com ar-condicionado
CN112797668A (zh) * 2020-12-31 2021-05-14 青岛海尔空调电子有限公司 水冷热泵机组及其控制方法
CN112762641B (zh) * 2020-12-31 2022-10-25 青岛海尔空调电子有限公司 回热器及具有其的制冷系统
EP4109051A3 (en) * 2021-06-22 2023-02-15 SMC Corporation Humidity measuring device
CN114110884B (zh) * 2021-11-24 2023-06-30 美的集团武汉制冷设备有限公司 新风机及其控制方法、计算机可读存储介质
CN113983587B (zh) * 2021-11-30 2023-01-31 海信(广东)空调有限公司 一种空调器及其除湿方法
CN114413443A (zh) * 2022-01-14 2022-04-29 珠海格力电器股份有限公司 一种自适应新风调节空调系统、空调器
US11815280B2 (en) * 2022-01-31 2023-11-14 Mitsubishi Electric Us, Inc. System and method for controlling the operation of a fan in an air conditioning system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332739A (ja) * 1994-06-10 1995-12-22 Hitachi Ltd 空気調和機
JP2000065410A (ja) * 1998-08-21 2000-03-03 Sanyo Electric Co Ltd 空気調和システム
JP2005036989A (ja) * 2003-07-15 2005-02-10 Mitsubishi Electric Corp 空気調和システム
JP2013142516A (ja) * 2012-01-12 2013-07-22 Mitsubishi Electric Corp 空気調和装置
JP2013204899A (ja) * 2012-03-28 2013-10-07 Mitsubishi Electric Corp 空気調和システム
JP2015068591A (ja) * 2013-09-30 2015-04-13 ダイキン工業株式会社 空調システム及びその制御方法
JP6072221B2 (ja) * 2013-03-05 2017-02-01 三菱電機株式会社 空気調和システム

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4396521B2 (ja) * 2002-10-30 2010-01-13 三菱電機株式会社 空気調和装置
JP4330348B2 (ja) * 2003-02-10 2009-09-16 トリニティ工業株式会社 空調装置付塗装設備とその制御システム
KR100792520B1 (ko) 2006-10-25 2008-01-10 삼성전자주식회사 시스템 에어컨의 운전제어방법
KR100810508B1 (ko) * 2007-01-05 2008-03-07 삼성전자주식회사 시스템 에어컨 및 그 제어방법
JP5312055B2 (ja) * 2009-01-07 2013-10-09 三菱電機株式会社 空気調和システム
JP5445493B2 (ja) 2011-03-16 2014-03-19 株式会社富士通ゼネラル 多室型空気調和装置
JP5636324B2 (ja) * 2011-03-31 2014-12-03 日立アプライアンス株式会社 空気調和機
WO2013136368A1 (ja) * 2012-03-15 2013-09-19 三菱電機株式会社 冷凍サイクル装置
EP2873928B8 (en) * 2012-10-18 2018-01-17 Daikin Industries, Ltd. Air conditioner
WO2014076756A1 (ja) * 2012-11-13 2014-05-22 三菱電機株式会社 空気調和システム及び中央管理装置
US9644877B2 (en) * 2012-11-22 2017-05-09 Mitsubishi Electric Corporation Air-conditioning apparatus and operation control method therefor
US10330335B2 (en) * 2013-02-07 2019-06-25 Honeywell International Inc. Method and system for detecting an operational mode of a building control component
JP5996107B2 (ja) 2013-05-14 2016-09-21 三菱電機株式会社 空気調和システム
JP5725114B2 (ja) * 2013-09-24 2015-05-27 ダイキン工業株式会社 空調システム
CN203615545U (zh) * 2013-11-15 2014-05-28 广东美的暖通设备有限公司 空调器
WO2015173910A1 (ja) 2014-05-14 2015-11-19 三菱電機株式会社 空気調和システム
JP2016003805A (ja) * 2014-06-16 2016-01-12 東芝キヤリア株式会社 空調システム
WO2016016918A1 (ja) * 2014-07-28 2016-02-04 日立アプライアンス株式会社 空気調和装置
JP2016138666A (ja) * 2015-01-26 2016-08-04 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機
JP6497195B2 (ja) * 2015-04-28 2019-04-10 ダイキン工業株式会社 空調装置
JPWO2017179386A1 (ja) * 2016-04-15 2019-02-28 パナソニックIpマネジメント株式会社 機器管理システム
JP6376189B2 (ja) * 2016-09-05 2018-08-22 ダイキン工業株式会社 室内ユニット

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332739A (ja) * 1994-06-10 1995-12-22 Hitachi Ltd 空気調和機
JP2000065410A (ja) * 1998-08-21 2000-03-03 Sanyo Electric Co Ltd 空気調和システム
JP2005036989A (ja) * 2003-07-15 2005-02-10 Mitsubishi Electric Corp 空気調和システム
JP2013142516A (ja) * 2012-01-12 2013-07-22 Mitsubishi Electric Corp 空気調和装置
JP2013204899A (ja) * 2012-03-28 2013-10-07 Mitsubishi Electric Corp 空気調和システム
JP6072221B2 (ja) * 2013-03-05 2017-02-01 三菱電機株式会社 空気調和システム
JP2015068591A (ja) * 2013-09-30 2015-04-13 ダイキン工業株式会社 空調システム及びその制御方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094703A (ja) * 2018-12-10 2020-06-18 東日本旅客鉄道株式会社 空調配置方法及び空調配置システム
JP7101605B2 (ja) 2018-12-10 2022-07-15 東日本旅客鉄道株式会社 空調配置方法及び空調配置システム
US11916828B2 (en) 2020-07-13 2024-02-27 Daikin Industries, Ltd. Communication system, communication method, and program
CN114279057A (zh) * 2021-12-29 2022-04-05 北京小米移动软件有限公司 空调及其控制方法、装置、存储介质
CN114279057B (zh) * 2021-12-29 2023-10-17 小米科技(武汉)有限公司 空调及其控制方法、装置、存储介质
WO2024095444A1 (ja) * 2022-11-04 2024-05-10 三菱電機株式会社 空調システム

Also Published As

Publication number Publication date
US11536474B2 (en) 2022-12-27
JPWO2018220803A1 (ja) 2019-12-12
US20200300489A1 (en) 2020-09-24
CN110662925B (zh) 2021-05-25
JP6808033B2 (ja) 2021-01-06
DE112017007594T5 (de) 2020-03-12
CN110662925A (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
WO2018220803A1 (ja) 空気調和システム
US10088211B2 (en) Air-conditioning apparatus
EP1932065B1 (en) Arrangement of microsystems for comfort control
JP5058325B2 (ja) 空気調和システムのコントローラおよび空気調和システム
JP6072221B2 (ja) 空気調和システム
US7957840B2 (en) Control apparatus and control method for multi-room air conditioner
WO2014041896A1 (ja) 空気調和システム
JP5695861B2 (ja) 外気処理空調機およびそれを用いたマルチ空調システム
JP6058036B2 (ja) 制御装置、制御システム、制御方法及びプログラム
JP2020034183A (ja) 空気調和機
JP2011208808A (ja) 空調制御装置、空調制御システム及び空調制御方法
EP3760939B1 (en) Air conditioner
JP6946738B2 (ja) 空調システム
JP2015021719A (ja) 空気調和機
JP2007040554A (ja) 空気調和機
JP6589935B2 (ja) 空調システム
JP6439890B2 (ja) 空調システム
JP6946739B2 (ja) 空調システム
JP2011179771A (ja) 空気調和システム
EP3208550B1 (en) Air conditioning apparatus
JP2018194257A (ja) 空調システム
JP6881021B2 (ja) 空調システム
JP2018194255A (ja) 空調システム
WO2016199280A1 (ja) 空気調和システム及び空気調和方法
JPWO2019186772A1 (ja) 空気調和機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019521883

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17912311

Country of ref document: EP

Kind code of ref document: A1