WO2014133137A1 - 半導体基板洗浄システムおよび半導体基板の洗浄方法 - Google Patents

半導体基板洗浄システムおよび半導体基板の洗浄方法 Download PDF

Info

Publication number
WO2014133137A1
WO2014133137A1 PCT/JP2014/055082 JP2014055082W WO2014133137A1 WO 2014133137 A1 WO2014133137 A1 WO 2014133137A1 JP 2014055082 W JP2014055082 W JP 2014055082W WO 2014133137 A1 WO2014133137 A1 WO 2014133137A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
cleaning
semiconductor substrate
wafer
nipt
Prior art date
Application number
PCT/JP2014/055082
Other languages
English (en)
French (fr)
Inventor
小川 祐一
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to KR1020157021803A priority Critical patent/KR102150291B1/ko
Priority to CN201480011208.1A priority patent/CN105009258B/zh
Priority to US14/771,890 priority patent/US20160013047A1/en
Priority to JP2015503050A priority patent/JP5861854B2/ja
Priority to TW103107060A priority patent/TWI658507B/zh
Publication of WO2014133137A1 publication Critical patent/WO2014133137A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3947Liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/08Acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/10Salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/22Electronic devices, e.g. PCBs or semiconductors

Definitions

  • the present invention relates to a semiconductor substrate cleaning method and cleaning system for cleaning and removing platinum or a platinum alloy from a semiconductor substrate having a layer containing silicon as a constituent element.
  • Patent Document 7 proposes a cleaning liquid to which a small amount of hydrofluoric acid is added as a cleaning liquid, for example, one that removes Pt with hydrochloric acid-perhydrofluoric acid. It has been proposed to remove Pt using a cleaning solution such as hydrochloric acid / hydrogen peroxide chelate.
  • various cleaning agents have also been proposed for removing Pt from a substrate (Si-based substrate) having a Si-based semiconductor (Si compound semiconductor such as Si semiconductor or SiC).
  • Patent Documents 9 and 10 in order to flatten the SiC substrate, Pt removal is performed with aqua regia or metal and TOC are removed with SPM.
  • Patent Document 11 proposes an electrolytic solution + hydrochloric acid as a cleaning agent for selectively removing NiPt as a silicidation residue on a TiN exposed substrate.
  • this cleaning agent is used. 1) When removing Pt from the Si-based insulating film, the Si-based insulating film may be excessively etched. 2) When removing Pt from the Si-based substrate, it takes a long time for cleaning to completely remove it. 3) When removing the Pt alloy from the silicidation residue of the Si substrate, it takes a long time for cleaning to completely remove it, and if Al is exposed, Al may be excessively etched.
  • the present invention has been made against the background of the above circumstances, and when cleaning a semiconductor substrate having a layer containing Si as a constituent component, platinum and / or a platinum alloy is effectively cleaned without damaging the substrate or the like.
  • Another object of the present invention is to provide a semiconductor cleaning method and a cleaning system that can be removed in this manner.
  • the first present invention is a semiconductor substrate cleaning method for removing platinum and / or a platinum alloy from a semiconductor substrate having a layer containing Si as a constituent element.
  • a first cleaning step of cleaning the semiconductor substrate by bringing a first solution containing nitric acid and / or hydrogen peroxide as a main solute into contact therewith;
  • a second cleaning step of cleaning the semiconductor substrate that has undergone the first cleaning step by contacting a second solution that includes a sulfuric acid solution containing an oxidant and a halide and has a temperature of 25 to 100 ° C. It is characterized by.
  • the method for cleaning a semiconductor substrate according to a second aspect of the present invention is the method for cleaning a semiconductor substrate according to the first aspect of the present invention, wherein the semiconductor substrate is composed of a semiconductor substrate having an insulating film composed of a Si compound and a compound semiconductor of Si or Si. It is either a semiconductor substrate or a semiconductor substrate having a silicide film.
  • the method for cleaning a semiconductor substrate of the third aspect of the present invention is characterized in that, in the first or second aspect of the present invention, the semiconductor substrate is formed with a silicide film containing platinum.
  • a method for cleaning a semiconductor substrate according to a fourth aspect of the present invention is characterized in that, in any of the first to third aspects of the present invention, Al is present on the semiconductor substrate.
  • a fifth aspect of the present invention there is provided the method for cleaning a semiconductor substrate according to any one of the first to fourth aspects, wherein the semiconductor substrate is exposed with SiO 2 and platinum and / or a platinum alloy. To do.
  • the method for cleaning a semiconductor substrate according to a sixth aspect of the present invention is characterized in that, in any of the first to fifth aspects of the present invention, the semiconductor substrate is a SiC substrate from which platinum and / or a platinum alloy is exposed.
  • the method for cleaning a semiconductor substrate according to a seventh aspect of the present invention is characterized in that, in any of the first to sixth aspects of the present invention, the semiconductor substrate is a SiGe substrate from which platinum and / or a platinum alloy is exposed.
  • the method for cleaning a semiconductor substrate according to any one of the first to seventh aspects, wherein the halide includes at least one selected from the group consisting of chloride, bromide and iodide. It is characterized by that.
  • the method for cleaning a semiconductor substrate according to any one of the first to eighth aspects, wherein the first solution contains nitric acid and / or hydrogen peroxide in a mass ratio of 80 to the entire solute. % Or more.
  • the method for cleaning a semiconductor substrate according to any one of the first to ninth aspects of the invention, wherein the first solution contains nitric acid, and the nitric acid concentration thereof is 1 to 60 mass%. It is characterized by that.
  • the method for cleaning a semiconductor substrate according to any one of the first to tenth aspects of the present invention, wherein the first solution contains hydrogen peroxide, and the concentration of hydrogen peroxide is 1 to It is characterized by containing 35 mass%.
  • the semiconductor substrate cleaning method according to a twelfth aspect of the present invention is characterized in that, in the eleventh aspect of the present invention, the concentration of hydrogen peroxide is 2 to 35 mass%.
  • the semiconductor substrate cleaning method of the thirteenth aspect of the present invention is characterized in that, in any of the first to twelfth aspects of the present invention, the temperature of the first solution in the first cleaning step is 25 to 100 ° C. To do.
  • the fourteenth aspect of the present invention is the method for cleaning a semiconductor substrate according to any one of the first to thirteenth aspects of the present invention, wherein the sulfuric acid concentration in the second solution is 40 to 80% by mass.
  • the semiconductor substrate cleaning method according to any one of the first to fourteenth aspects, wherein the concentration of the oxidizing agent in the second solution is 0.001 to 2 mol / L. To do.
  • the semiconductor substrate cleaning method of the sixteenth aspect of the present invention is characterized in that, in any of the first to fifteenth aspects of the present invention, the oxidizing agent is persulfuric acid.
  • the sulfuric acid solution containing the oxidizing agent in the second solution is a sulfuric acid electrolyte, sulfuric acid and hydrogen peroxide. It is 1 or more types chosen from the group which consists of a mixed solution of these, and the mixed solution of a sulfuric acid and ozone, It is characterized by the above-mentioned.
  • a method for cleaning a semiconductor substrate according to any one of the first to seventeenth aspects, wherein the first cleaning step is performed before the second cleaning step from the semiconductor substrate that has passed through the first cleaning step. It has the 1st solution discharge process which excludes a solution, It is characterized by the above-mentioned.
  • a semiconductor substrate cleaning system is a cleaning unit that performs cleaning to remove platinum and / or a platinum alloy from a semiconductor substrate having a layer containing Si as a constituent element.
  • a first solution storage section for storing a first solution containing nitric acid and / or hydrogen peroxide as a main solute;
  • a second solution containing portion for containing a second solution containing a sulfuric acid solution containing an oxidizing agent and a halide;
  • a first solution supply line having one end connected to the first solution storage unit and the other end connected to the cleaning unit, and supplying the first solution from the first solution storage unit to the cleaning unit;
  • a second solution supply line having one end connected to the second solution storage unit and the other end connected to the cleaning unit, and supplying the second solution from the second solution storage unit to the cleaning unit;
  • a first liquid temperature adjusting unit that is interposed in the first solution supply line and adjusts the liquid temperature of the first solution supplied to the cleaning unit through the first solution supply line to a predetermined temperature;
  • the semiconductor substrate cleaning system is the semiconductor substrate cleaning system according to the nineteenth aspect of the present invention, wherein a first cleaning step of cleaning the semiconductor substrate using the first solution in the cleaning section, and after the first cleaning step And a cleaning control unit for controlling supply of the first solution and the second solution for performing a second cleaning step of cleaning the semiconductor substrate using the second solution in the cleaning unit.
  • the present invention is described in detail below.
  • the first solution used in the present invention contains nitric acid and / or hydrogen peroxide as a main solute, and either one or a mixture of both may be used. In the case of mixing, the mixing ratio of the two is not particularly limited as the present invention.
  • the nitric acid concentration is preferably 1 to 60% by mass.
  • the hydrogen peroxide concentration is preferably 1 to 35% by mass. More preferably, the nitric acid concentration is 2 to 30% by mass and the hydrogen peroxide concentration is 2 to 30% by mass. The reason will be described below.
  • Nitric acid concentration 1-60 mass%
  • platinum such as silicidation residual metals, and platinum alloys (eg, NiPt).
  • concentration of nitric acid is less than 1% by mass, the action is not sufficient.
  • concentration of nitric acid exceeds 60% by mass, the metal (eg, Al) or silicide exposed on the substrate surface, Si-based insulating film, Si-based substrate is used. This is not preferable because the etching rate becomes too large.
  • the nitric acid concentration in the case of containing nitric acid is preferably 1 to 60% by mass. For the same reason, it is more desirable to set the lower limit to 2% by mass and the upper limit to 30% by mass.
  • Hydrogen peroxide concentration 1 to 35% by mass
  • platinum such as silicidation residue metal, platinum alloy (for example, NiPt) is oxidized.
  • the hydrogen peroxide concentration is less than 1% by mass, the action is not sufficient.
  • the hydrogen peroxide concentration exceeds 35% by mass, the metal (eg, Al), silicide, or Si-based insulating film exposed on the substrate surface is exposed. This is not preferable because the etching rate of the Si-based substrate or the like becomes too large.
  • the hydrogen peroxide concentration is preferably 1 to 35% by mass.
  • the lower limit be 2% by mass, and it is more desirable that the lower limit be 5% by mass and the upper limit be 32% by mass. Further, for the same reason, it is more desirable that the lower limit is 10% by mass and the upper limit is 30% by mass.
  • the first solution contains nitric acid and / or hydrogen peroxide as the main solute, and preferably contains one or both of them in a mass ratio of 80% or more, more preferably 90% or more. .
  • Nitric acid and / or hydrogen peroxide is preferably contained in a total concentration of 1% by mass or more. Further, when the first solution contains other solutes in addition to the solute, it can contain sulfuric acid, phosphoric acid, hydrochloric acid, hydrofluoric acid, etc., and the total concentration is less than 20% by mass with respect to the total solute, preferably Is preferably less than 10%.
  • the solvent for the first solution is preferably exemplified by water.
  • the temperature of the first solution is preferably 25 to 100 ° C. during the first cleaning step. Below 25 ° C, the cleaning ability is insufficient. In addition, if it is 40 degreeC or more, the washing
  • the first cleaning step using the first solution is performed by bringing the first solution into contact with the semiconductor substrate.
  • the contact is performed by dipping the semiconductor substrate in the first solution, spraying the first solution on the semiconductor substrate, or dropping. It can be done by flowing down.
  • the contact time at the time of contact is not particularly limited in the present invention, and can be, for example, 10 to 300 seconds. When the contact time is less than 10 seconds, the oxidation of platinum or a platinum alloy (for example, NiPt) such as silicidation residual metal is insufficient, and when the contact time exceeds 300 seconds, the metal (for example, Al) or silicide exposed on the substrate surface is insufficient. It is not preferable because the etching rate of Si-based insulating film, Si-based substrate, etc. becomes too high. For the same reason, it is desirable that the lower limit of the contact time is 20 seconds and the upper limit of the contact time is 200 seconds.
  • the second solution contains persulfuric acid and halide, and the total concentration of halide is preferably 0.001 to 2 mol / L.
  • the halide any one or more of the group consisting of chloride, bromide and iodide can be shown.
  • water can be preferably used as a solvent of the second solution.
  • Halide concentration 0.001 mol / L to 2 mol / L
  • the effect of dissolving Pt can be obtained by using a halide.
  • the total concentration of halides is less than 0.001 mol / L, the removal rate of platinum and platinum alloys (for example, NiPt) such as silicidation residual metals is poor, and the total concentration of halides exceeds 2 mol / L.
  • the silicide, Si-based insulating film, Si-based substrate and the like are easily damaged. Therefore, the total concentration of halide is preferably 0.001 mol / L to 2 mol / L in the second solution.
  • the total concentration of halides is preferably set to a lower limit of 0.005 mol / L and an upper limit of 1 mol / L.
  • Examples of the sulfuric acid solution having an oxidizing agent in the second solution include those containing persulfuric acid as the oxidizing agent, and one kind of sulfuric acid electrolyte, a mixed solution of sulfuric acid and hydrogen peroxide, a mixed solution of sulfuric acid and ozone, and the like.
  • the thing which selects the above is mentioned.
  • the persulfuric acid mentioned here is exemplified by peroxodisulfuric acid and peroxomonosulfuric acid, and either one or a mixture of both may be used.
  • persulfuric acid and hydrogen peroxide generated due to the self-decomposition of persulfuric acid occupy almost the whole amount.
  • Other oxidizing agents include ozone and hydrogen peroxide.
  • Oxidant concentration 0.001 to 2 mol / L
  • an oxidizing agent such as persulfuric acid
  • an action of dissolving platinum such as silicidation residue metal, platinum alloy (for example, NiPt) can be obtained.
  • the oxidant concentration in the second solution is preferably 0.001 to 2 mol / L.
  • the lower limit of the oxidant concentration in the second solution is more preferably 0.005 mol / L
  • the upper limit of the oxidant concentration in the second solution is more preferably 0.5 mol / L.
  • Sulfuric acid concentration 40-80% by mass
  • platinum such as silicide residue metal, platinum alloy (for example, NiPt)
  • the sulfuric acid concentration in the second solution is less than 40% by mass, the detergency is insufficient.
  • the sulfuric acid concentration exceeds 80% by mass the etching rate of Al or the like increases.
  • the sulfuric acid concentration in the second solution is preferably 40 to 80% by mass.
  • the lower limit of the sulfuric acid concentration in the second solution is more desirably 50% by mass
  • the upper limit of the sulfuric acid concentration in the second solution is more desirably 75% by mass.
  • the temperature of the second solution is 25 to 100 ° C. in the second cleaning step. Below 25 ° C, the cleaning ability is insufficient. In addition, if it is 40 degreeC or more, the washing
  • the second solution is brought into contact with the semiconductor substrate.
  • the contact is performed by dipping the semiconductor substrate into the second solution, spraying the second solution onto the semiconductor substrate, or dropping. It can be done by flowing down.
  • the contact time at the time of contact is not particularly limited in the present invention, and can be, for example, 10 to 300 seconds. If it is less than 10 seconds, cleaning is insufficient, and if it exceeds 300 seconds, the silicide, the Si-based insulating film, the Si-based substrate and the like are damaged. For the same reason, it is desirable that the lower limit of the contact time is 15 seconds and the upper limit of the contact time is 200 seconds. Moreover, you may change the contact method of a solution by a 1st washing
  • a first solution discharging step for removing the first solution from the semiconductor substrate cleaned in the first cleaning step may be provided between the first cleaning step and the second cleaning step.
  • the first solution discharge step for example, cleaning using a rinse liquid such as ultrapure water can be performed.
  • the cleaning may be either batch type or single wafer type, but the single wafer type is more preferable in terms of contact efficiency.
  • the semiconductor substrate to be cleaned in the present invention has a layer containing Si as a constituent element, and is a semiconductor substrate subjected to silicidation treatment, an insulating film made of a Si compound, Si-based or A Si-based substrate coated with a Si-based semiconductor film can be targeted.
  • the semiconductor substrate that has been subjected to silicidation is more preferably a semiconductor substrate in which Al is partially exposed on the semiconductor substrate.
  • the insulating film made of a Si compound include SiO 2 and SiN.
  • Examples of the Si-based semiconductor constituting the Si-based substrate include Si single element semiconductors and Si compound semiconductors such as SiC, SiGe, and SiGePt (germanide).
  • the semiconductor substrate having a layer containing Si as a constituent component is not limited thereto.
  • cleaning that effectively and completely removes platinum and platinum alloys (for example, NiPt) such as silicidation residual metal while suppressing damage of damage to silicide, Si-based insulating film, Si-based substrate and the like. It can be performed. In particular, even when Al is exposed on the wafer surface, it is possible to perform cleaning while suppressing Al damage to a predetermined level or less.
  • platinum and platinum alloys for example, NiPt
  • a semiconductor substrate cleaning system 1 includes a single wafer cleaning machine 2 corresponding to a cleaning unit of the present invention, a nitric acid solution storage tank 3 that stores a nitric acid solution, and a hydrogen peroxide solution storage tank 4 that stores a hydrogen peroxide solution. And a sulfuric acid solution storage tank 5 for storing a sulfuric acid solution containing persulfuric acid, and a halide solution storage tank 6 for storing a halide solution containing any one or more of chloride, bromide, and iodide.
  • the nitric acid solution and the hydrogen peroxide solution correspond to the first solution in the present embodiment
  • the nitric acid solution storage tank 3 and the hydrogen peroxide solution storage tank 4 correspond to the first solution storage section in the present embodiment.
  • the sulfuric acid solution and the halide solution correspond to the second solution in the present embodiment
  • the sulfuric acid solution storage tank 5 and the halide solution storage tank 6 correspond to the second solution storage unit in the present embodiment.
  • a nitric acid solution supply line 10 is connected to the nitric acid solution storage tank 3 via a liquid feed pump 11, and a hydrogen peroxide solution supply line 12 is connected to the hydrogen peroxide solution storage tank 4 via a liquid feed pump 13. Is connected.
  • the nitric acid solution supply line 10 and the hydrogen peroxide solution supply line 12 join downstream to form a first solution common liquid feed line 14, and the first solution common liquid feed line 14 is connected via a heater 15.
  • the delivery nozzle 16 is connected to the downstream end side.
  • the heater 15 heats in a transient manner while passing a solution, and a near infrared heater or the like can be preferably used.
  • the nitric acid solution supply line 10, the hydrogen peroxide solution supply line 12, and the first solution common liquid supply line 14 constitute a first solution supply line in the present embodiment, and the heater 15 is a first liquid in the present embodiment.
  • the delivery nozzle 16 corresponds to a first solution delivery unit.
  • a sulfuric acid solution supply line 20 is connected to the sulfuric acid solution storage tank 5 via a liquid feed pump 21, and a halide solution supply line 22 is connected to the halide solution storage tank 6 via a liquid feed pump 23. Is connected.
  • the sulfuric acid solution supply line 20 and the halide solution supply line 22 merge downstream to form a second solution common liquid feed line 24, and the second solution common liquid feed line 24 is connected via a heater 25.
  • a delivery nozzle 26 is connected to the downstream end side.
  • the heater 25 is one-time heating while passing a solution, and a near infrared heater or the like can be preferably used.
  • the sulfuric acid solution supply line 20, the halide solution supply line 22, and the second solution common liquid supply line 24 constitute a second solution supply line in the present embodiment, and the heater 25 adjusts the second liquid temperature in the present embodiment.
  • the delivery nozzle 26 corresponds to a second solution delivery unit.
  • the single wafer cleaning machine 2 includes a semiconductor substrate support 7, and the semiconductor substrate support 7 can be driven to rotate by a driving device (not shown).
  • the single wafer cleaning machine 2 corresponds to a cleaning unit, and a cleaning solution is sent from the delivery nozzles 16 and 26 to the semiconductor substrate 100 supported by the semiconductor substrate support 7.
  • the delivery nozzles 16 and 26 are configured to spray, drop, or flow the cleaning solution onto the semiconductor substrate 100. Note that the solution may be sprayed onto the semiconductor substrate 100 by applying pressure when dropping or flowing.
  • the semiconductor substrate cleaning system 1 includes a cleaning control unit 30 that controls the entire semiconductor substrate cleaning system 1.
  • the cleaning control unit 30 stores a CPU, a program for operating the CPU, operation parameters, and the like, and a storage unit used as a work area.
  • the cleaning control unit 30 controls operations of the liquid feeding pumps 11, 13, 21, 23, the heaters 15, 25, and the single wafer cleaning machine 2. In addition, these devices may be manually operated for operation setting, adjustment, and on / off.
  • a semiconductor substrate cleaning method using the semiconductor substrate cleaning system will be described below.
  • a semiconductor substrate in which Al is partially exposed and silicidized, a semiconductor substrate having a Si-based insulating film, a Si-based substrate, and the like are supported on a substrate support.
  • a silicidized semiconductor substrate is formed by forming a metal film on a silicon substrate on which Al is present and annealing the silicon substrate to form a silicide layer containing a noble metal such as platinum on the silicon substrate.
  • the metal film may contain a noble metal such as platinum.
  • the present invention is not limited to the method for manufacturing a semiconductor substrate.
  • a suitable target example in this embodiment is an Al film thickness of 60 nm or less (preferably 30 nm or less), a silicide layer thickness of 60 nm or less (preferably 25 nm or less), and a gate width of 45 nm or less (preferably 30 nm).
  • the semiconductor substrate which is the subject of the present invention is not limited to this.
  • the nitric acid solution storage tank 3 contains a nitric acid solution whose concentration is adjusted so that the nitric acid concentration becomes 1 to 60% by mass when mixed with hydrogen peroxide to be described later.
  • the concentration of the hydrogen peroxide solution storage tank 4 is adjusted so that the hydrogen peroxide concentration becomes 1 to 35% by mass when mixed with the nitric acid.
  • the sulfuric acid solution storage tank 5 is a persulfuric acid-containing sulfuric acid whose concentration is adjusted so that the sulfuric acid concentration becomes 40 to 80% by mass when mixed with a solution containing a halide such as chloride, bromide or iodide described later. Contains the solution.
  • the halide solution storage tank 6 stores a halide solution whose concentration is adjusted so that the total concentration of halides becomes 0.001 to 2 mol / L when mixed with the sulfuric acid solution.
  • the semiconductor support base 7 When cleaning the semiconductor substrate 100, the semiconductor support base 7 is rotationally driven to rotate and support the semiconductor substrate 100, and first, the nitric acid solution in the nitric acid solution storage tank 3 is first passed through the nitric acid solution supply line 10 by the liquid feed pump 11.
  • the hydrogen peroxide solution in the hydrogen peroxide solution storage tank 4 is fed at a predetermined flow rate through the hydrogen peroxide solution supply line 12 by the liquid feed pump 13, and the two solutions are fed to the first solution.
  • the mixture is mixed in the common liquid feeding line 14 and fed while preparing the first solution, and heated by the heater 15 in a transient manner. The heating temperature is adjusted so that the liquid temperature becomes 25 to 100 ° C. when the heated first solution contacts the semiconductor substrate 100.
  • the mixing ratio of the nitric acid solution and hydrogen peroxide can be set by adjusting the amount of liquid fed by the liquid feed pump 11 and the liquid feed pump 13, and the temperature of the first solution should be adjusted by the heating temperature of the heater 15 or the like.
  • the adjustment can be performed by control by the cleaning control unit 30 or by manual operation.
  • the first solution prepared by mixing a nitric acid solution and hydrogen peroxide has a nitric acid concentration of 1 to 30% by mass, a hydrogen peroxide concentration of 1 to 35% by mass, a total concentration of 1% by mass or more, and a liquid temperature of 35 to 35%.
  • the semiconductor substrate 100 is sent out from the delivery nozzle 16 and comes into contact with the semiconductor substrate 100 to clean the semiconductor substrate 100.
  • the nitric acid concentration is preferably 2 to 30% by mass and the hydrogen peroxide concentration is 2 to 30% by mass.
  • the nitric acid solution and the hydrogen peroxide solution are mixed in a mixed state so that they contact the semiconductor substrate within 10 minutes (preferably within 5 minutes) from the time when the liquid temperature is 25 ° C. or higher. It is desirable to define the length of the liquid line 14.
  • the time during which the mixed solution is in contact with the semiconductor substrate 100 is not limited to a specific range in the present invention, but in this embodiment, it is preferably in the range of 10 to 300 seconds. The above processing corresponds to the first cleaning step in the present embodiment.
  • the 1st solution storage part is divided into the nitric acid solution storage tank 3 and the hydrogen peroxide solution storage tank 4, you may accommodate in 1 tank as a 1st solution.
  • the sulfuric acid solution in the sulfuric acid solution storage tank 5 is supplied at a predetermined flow rate through the sulfuric acid solution supply line 20 by the liquid supply pump 21, and the halogen containing the chloride, bromide, or iodide solution is stored.
  • the solution in the chloride solution storage tank 6 is fed at a predetermined flow rate through the halide solution supply line 22 by the feed pump 23, and the two solutions are mixed in the second solution common feed line 24 to prepare a second solution.
  • the solution is fed and heated by the heater 25 in a transient manner.
  • the heating temperature is adjusted so that the liquid temperature becomes 25 to 100 ° C. when the heated second solution is brought into contact with the semiconductor substrate 100.
  • the mixing ratio of the sulfuric acid solution and the halide solution can be set by adjusting the liquid feeding amount of the liquid feeding pump 21 and the liquid feeding pump 23, and the temperature of the second solution should be adjusted by the heating temperature of the heater 25 or the like.
  • the adjustment can be performed by control by the cleaning control unit 30 or by manual operation.
  • the second solution prepared by mixing the sulfuric acid solution and a solution containing any one of chloride, bromide, and iodide has a sulfuric acid concentration of 40 to 80% by mass and an oxidant concentration of 0.001 to 2 mol / L.
  • the semiconductor substrate 100 is sent out from the delivery nozzle 26 to come into contact with the semiconductor substrate 100 and the semiconductor substrate 100 is cleaned.
  • the sulfuric acid solution and the solution containing any of chloride, bromide, and iodide are in contact with the semiconductor substrate 100 within a mixed state within 10 minutes (preferably within 5 minutes) from the time when the liquid temperature is 25 ° C. or higher.
  • the liquid feeding speed and the length of the second solution common liquid feeding line 24 it is desirable to determine the liquid feeding speed and the length of the second solution common liquid feeding line 24.
  • cleaning is performed under such conditions that the Al etching rate is 180 ⁇ / min or less, preferably 150 ⁇ / min or less within the range of the above conditions, and the cleaning time is within about 120 seconds, preferably within 80 seconds. It is desirable to perform cleaning under such conditions.
  • the above process corresponds to a second cleaning step.
  • NiPt Ni dissolves and Pt is also oxidized and becomes easy to etch.
  • Pt reacts with a halogen-based oxidant. It is estimated that it dissolves. Note that it is estimated that both Pt and Pt alloys can be cleaned by the same mechanism as long as the Pt element is exposed on the substrate surface.
  • aqua regia a solution that can remove platinum and platinum alloys (for example, NiPt) while suppressing etching of Al, but aqua regia has a high content of Cl, which causes damage to silicide, Si-based insulating films, and Si-based substrates. Due to the concentration, the silicide, the Si-based insulating film, and the Si-based substrate are damaged.
  • the second solution of the present embodiment can reduce the Cl concentration and also shorten the contact time between the solution and the wafer, so that damage to the silicide, the Si-based insulating film, and the Si-based substrate can be suppressed.
  • Pt can be effectively removed without damaging SiO 2 when removing Pt on the Si substrate, and SiNiPt or Al is damaged when removing NiPt on the Si substrate. This can effectively remove NiPt. Further, when removing Pt from the SiC substrate, Pt can be effectively removed without damaging the SiC, and when removing Pt from the SiGe substrate, Pt can be effectively removed without damaging the SiGe. Can be removed.
  • the first cleaning process and the second cleaning process have been described, but a rinsing process using ultrapure water or the like may be performed between these processes.
  • a rinsing process using ultrapure water or the like may be performed between these processes.
  • Examples of the present invention and comparative examples are shown below.
  • the semiconductor substrate cleaning system schematically shown in FIG. 1 was used.
  • a mixed solution composed of a solution containing nitric acid and / or hydrogen peroxide is used as the first solution, and is brought into contact with the semiconductor.
  • a mixed solution composed of a solution containing a plurality of halides was used as the second solution, and was brought into contact with the semiconductor substrate.
  • the mixed solution was immediately supplied (within 10 minutes) after being heated and mixed, and then supplied to the cleaning in contact with the solid wafer described below.
  • the NiPt removal rate of 95% or more was evaluated as good and less than 95% was evaluated as defective as optimal evaluation.
  • an etching rate of Al exceeding 180 ⁇ / min was evaluated as bad as damaging Al, and an evaluation rate of 180 ⁇ / min or less was good.
  • the presence or absence of silicide damage was evaluated as having no damage if the surface roughness Ra was less than 1.7 ⁇ m, and evaluated as having damage if Ra was 1.7 ⁇ m or more. Test contents and evaluation results are shown in Tables 1 and 2.
  • the processed solution was subjected to component analysis using ICP-MS (inductively coupled plasma mass spectrometer, hereinafter simply referred to as ICP-MS), and the removal rate of NiPt on the wafer from the concentration of Ni, Pt, and Al in the solution, The etching rate of Al was confirmed, and the wafer surface was observed with an AFM (Atomic Force Microscope, hereinafter simply referred to as AFM) to confirm the presence or absence of silicide damage.
  • AFM Automatic Force Microscope
  • the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the Al etching rate was 140 ⁇ / min, there was no NiPt silicide damage, and the NiPt removal rate was 50%, which was insufficient.
  • NiPt wafer and (2) Al wafer were cleaned at 200 ml / min for cleaning at 50 ° C. for 50 seconds, respectively.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 70%
  • the Al etching rate was 60 ⁇ / min, and there was no NiPt silicide damage.
  • the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 90 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 90 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L
  • the above-mentioned (1) NiPt wafer and (2) Al wafer were cleaned at 200 ml / min for cleaning at 50 ° C. for 50 seconds, respectively.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 50%
  • the Al etching rate was 250
  • the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L
  • the above (1) NiPt wafer and the above (2) Al wafer were cleaned at 20 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 10%
  • the Al etching rate was 50 ⁇ /
  • the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L
  • the above-mentioned (1) NiPt wafer and (2) Al wafer were cleaned at a temperature of 120 ° C. for 50 seconds.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 100%
  • the Al etching rate was 1000 ⁇ / min, and there
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L
  • NiPt wafer and (2) Al wafer were cleaned at 50 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 40%
  • the Al etching rate was 120 ⁇ / min, and there was no NiPt silicide damage.
  • NiPt wafer and (2) Al wafer were cleaned at 50 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 50%
  • the Al etching rate was 110 ⁇ / min, and there was no NiPt silicide damage.
  • Example 1 using the first solution (nitric acid concentration 2 wt%, hydrogen peroxide concentration 29 wt%), (1) a solid wafer having a NiPt layer of 10 nm stacked on a silicon wafer, and (2) a silicon wafer Washing was performed at 50 ° C. for 30 seconds, with a solid wafer having an Al layer laminated thereon having a thickness of 500 nm, brought into contact with the solid wafer at 200 ml / min. Next, the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L
  • NiPt wafer and (2) Al wafer were cleaned at 50 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 100%
  • the Al etching rate was 90 ⁇ / min, and there was no NiPt silicide damage.
  • Example 2 1 using the first solution (nitric acid concentration 2 wt%, hydrogen peroxide concentration 29 wt%), (1) a solid wafer having a NiPt layer of 10 nm stacked on a silicon wafer, and (2) a silicon wafer Washing was performed at 50 ° C. for 30 seconds, with a solid wafer having an Al layer laminated thereon having a thickness of 500 nm, brought into contact with the solid wafer at 200 ml / min. Next, the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, NaCl concentration 0.1 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, NaCl concentration 0.1 mol / L
  • NiPt wafer and (2) Al wafer were cleaned at 200 ml / min for cleaning at 50 ° C. for 50 seconds, respectively.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 100%
  • the Al etching rate was 90 ⁇ / min, and there was no NiPt silicide damage.
  • Example 3 1 using the first solution (nitric acid concentration 2 wt%, hydrogen peroxide concentration 29 wt%), (1) a solid wafer having a NiPt layer of 10 nm stacked on a silicon wafer, and (2) a silicon wafer Washing was performed at 50 ° C. for 30 seconds, with a solid wafer having an Al layer laminated thereon having a thickness of 500 nm, brought into contact with the solid wafer at 200 ml / min. Next, the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, HBr concentration 0.1 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, HBr concentration 0.1 mol / L
  • NiPt wafer and (2) Al wafer were cleaned at 50 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 100%
  • the Al etching rate was 90 ⁇ / min, and there was no NiPt silicide damage.
  • Example 4 1 using the first solution (nitric acid concentration 2 wt%, hydrogen peroxide concentration 29 wt%), (1) a solid wafer having a NiPt layer of 10 nm stacked on a silicon wafer, and (2) a silicon wafer Washing was performed at 50 ° C. for 30 seconds, with a solid wafer having an Al layer laminated thereon having a thickness of 500 nm, brought into contact with the solid wafer at 200 ml / min. Next, the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, HI concentration 0.1 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, HI concentration 0.1 mol / L
  • NiPt wafer and (2) Al wafer were cleaned at 200 ml / min for cleaning at 50 ° C. for 50 seconds, respectively.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 100%
  • the Al etching rate was 90 ⁇ / min, and there was no NiPt silicide damage.
  • Example 5 1 using the first solution (nitric acid concentration 2 wt%, hydrogen peroxide concentration 29 wt%), (1) a solid wafer having a NiPt layer of 10 nm stacked on a silicon wafer, and (2) a silicon wafer Washing was performed at 50 ° C. for 30 seconds, with a solid wafer having an Al layer laminated thereon having a thickness of 500 nm, brought into contact with the solid wafer at 200 ml / min.
  • NiPt wafer and (2) Al wafer were cleaned at 50 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 95%
  • the Al etching rate was 80 ⁇ / min, and there was no NiPt silicide damage.
  • Example 6 1 using the first solution (nitric acid concentration 2 wt%, hydrogen peroxide concentration 29 wt%), (1) a solid wafer having a NiPt layer of 10 nm stacked on a silicon wafer, and (2) a silicon wafer Washing was performed at 50 ° C. for 30 seconds, with a solid wafer having an Al layer laminated thereon having a thickness of 500 nm, brought into contact with the solid wafer at 200 ml / min.
  • NiPt wafer and (2) Al wafer were cleaned at 50 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 100%
  • the Al etching rate was 160 ⁇ / min, and there was no NiPt silicide damage.
  • Example 7 1 using the first solution (nitric acid concentration 0 wt%, hydrogen peroxide concentration 15 wt%) in the single wafer cleaning machine of FIG. Washing was performed at 50 ° C. for 30 seconds, with a solid wafer having an Al layer laminated thereon having a thickness of 500 nm, brought into contact with the solid wafer at 200 ml / min. Next, the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L
  • NiPt wafer and (2) Al wafer were cleaned at 50 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 97%
  • the Al etching rate was 80 ⁇ / min
  • Example 8 1 using the first solution (nitric acid concentration 15 wt%, hydrogen peroxide concentration 0 wt%) in the single wafer cleaning machine of FIG.
  • the cleaning was performed at 50 ° C. for 30 seconds with a solid wafer having an Al layer laminated thereon having a thickness of 500 nm and brought into contact with the solid wafer at 200 ml / min.
  • the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L
  • NiPt wafer and (2) Al wafer were cleaned at 50 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 95%
  • the Al etching rate was 120 ⁇ / min, and there was no NiPt silicide damage.
  • Example 9 1 using the first solution (nitric acid concentration 7 wt%, hydrogen peroxide concentration 6 wt%), (1) a solid wafer in which a NiPt layer is laminated to 10 nm on a silicon wafer, and (2) a silicon wafer. Washing was performed at 50 ° C. for 30 seconds, with a solid wafer having an Al layer laminated thereon having a thickness of 500 nm, brought into contact with the solid wafer at 200 ml / min. Next, the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L
  • NiPt wafer and (2) Al wafer were cleaned at 50 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 96%
  • the Al etching rate was 100 ⁇ / min
  • Example 10 1 using the first solution (nitric acid concentration 30 wt%, hydrogen peroxide concentration 15 wt%) in the single wafer cleaning machine of FIG.
  • the cleaning was performed at 50 ° C. for 30 seconds with a solid wafer having an Al layer laminated thereon having a thickness of 500 nm and brought into contact with the solid wafer at 200 ml / min.
  • the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L
  • NiPt wafer and (2) Al wafer were cleaned at 50 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 100%
  • the Al etching rate was 140 ⁇ / min, and there was no NiPt silicide damage.
  • Example 11 1 using the first solution (nitric acid concentration 2 wt%, hydrogen peroxide concentration 29 wt%), (1) a solid wafer having a NiPt layer of 10 nm stacked on a silicon wafer, and (2) a silicon wafer Washing was performed at 50 ° C. for 30 seconds, with a solid wafer having an Al layer laminated thereon having a thickness of 500 nm, brought into contact with the solid wafer at 200 ml / min.
  • the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L
  • the above-mentioned (1) NiPt wafer and (2) Al wafer were cleaned at 200 ml / min for cleaning at 35 ° C. for 50 seconds, respectively.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 95%
  • the Al etching rate was
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L
  • NiPt wafer and the above (2) Al wafer were washed at 90 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 100%
  • the Al etching rate was 160 ⁇ / min, and there was no NiPt silicide damage.
  • Example 13 1 using the first solution (nitric acid concentration 2 wt%, hydrogen peroxide concentration 29 wt%), (1) a solid wafer in which a NiPt layer is laminated to 10 nm on a silicon wafer, and (2) a silicon wafer Cleaning was performed at 20 ° C. for 30 seconds, with a solid wafer having an Al layer laminated thereon having a thickness of 500 nm, in contact with the solid wafer at 200 ml / min.
  • NiPt wafer and (2) Al wafer were cleaned at 50 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 80%
  • the Al etching rate was 60 ⁇ / min, and there was no NiPt silicide damage.
  • Example 14 1 using the first solution (nitric acid concentration 2 wt%, hydrogen peroxide concentration 29 wt%), (1) a solid wafer having a NiPt layer of 10 nm stacked on a silicon wafer, and (2) a silicon wafer Washing was performed at 30 ° C. for 30 seconds with a solid wafer having an Al layer of 500 nm stacked thereon, which was brought into contact with the solid wafer at 200 ml / min. Next, the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L
  • NiPt wafer and (2) Al wafer were cleaned at 50 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 95%
  • the Al etching rate was 80 ⁇ / min
  • Example 15 1 using the first solution (nitric acid concentration 2 wt%, hydrogen peroxide concentration 29 wt%), (1) a solid wafer having a NiPt layer of 10 nm stacked on a silicon wafer, and (2) a silicon wafer Washing was performed at 50 ° C. for 30 seconds, with a solid wafer having an Al layer laminated thereon having a thickness of 500 nm, brought into contact with the solid wafer at 200 ml / min.
  • NiPt wafer and (2) Al wafer were cleaned at 50 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 100%
  • the Al etching rate was 90 ⁇ / min, and there was no NiPt silicide damage.
  • Example 16 1 using the first solution (nitric acid concentration 2 wt%, hydrogen peroxide concentration 29 wt%), (1) a solid wafer having a NiPt layer of 10 nm stacked on a silicon wafer, and (2) a silicon wafer Cleaning was performed at 90 ° C. for 30 seconds, with a solid wafer having an Al layer laminated thereon having a thickness of 500 nm, brought into contact with the solid wafer at 200 ml / min. Next, the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L
  • NiPt wafer and (2) Al wafer were cleaned at 50 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 100%
  • the Al etching rate was 170 ⁇ / min, and there was no NiPt silicide damage.
  • Example 17 1 using the first solution (nitric acid concentration 2 wt%, hydrogen peroxide concentration 29 wt%), (1) a solid wafer in which a NiPt layer is laminated to 10 nm on a silicon wafer, and (2) a silicon wafer Washing was performed at 100 ° C. for 30 seconds with a solid wafer having an Al layer of 500 nm stacked thereon, which was brought into contact with the solid wafer at 200 ml / min. Next, the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L
  • NiPt wafer and (2) Al wafer were cleaned at 50 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 100%
  • the Al etching rate was 180 ⁇ / min, and there was no NiPt silicide damage.
  • Example 18 1 using the first solution (nitric acid concentration 2 wt%, hydrogen peroxide concentration 29 wt%), (1) a solid wafer having a NiPt layer of 10 nm stacked on a silicon wafer, and (2) a silicon wafer Washing was performed at 50 ° C. for 30 seconds, with a solid wafer having an Al layer laminated thereon having a thickness of 500 nm, brought into contact with the solid wafer at 200 ml / min.
  • the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 65 wt%, oxidizing agent concentration 1.8 mol / L, hydrochloric acid concentration 0.1 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 1.8 mol / L, hydrochloric acid concentration 0.1 mol / L
  • the above-mentioned (1) NiPt wafer and (2) Al wafer were cleaned at 200 ml / min for cleaning at 50 ° C. for 50 seconds, respectively.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 100%
  • the Al etching rate was 120
  • Example 19 1 using the first solution (nitric acid concentration 2 wt%, hydrogen peroxide concentration 29 wt%), (1) a solid wafer having a NiPt layer of 10 nm stacked on a silicon wafer, and (2) a silicon wafer Washing was performed at 50 ° C. for 30 seconds, with a solid wafer having an Al layer laminated thereon having a thickness of 500 nm, brought into contact with the solid wafer at 200 ml / min.
  • the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.002 mol / L, hydrochloric acid concentration 0.1 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.002 mol / L, hydrochloric acid concentration 0.1 mol / L
  • the above-mentioned (1) NiPt wafer and (2) Al wafer were cleaned at 200 ml / min for cleaning at 50 ° C. for 50 seconds, respectively.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 95%
  • Example 20 1 using the first solution (nitric acid concentration 2 wt%, hydrogen peroxide concentration 29 wt%), (1) a solid wafer having a NiPt layer of 10 nm stacked on a silicon wafer, and (2) a silicon wafer Washing was performed at 50 ° C. for 30 seconds, with a solid wafer having an Al layer laminated thereon having a thickness of 500 nm, brought into contact with the solid wafer at 200 ml / min.
  • the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.002 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.002 mol / L
  • the above-mentioned (1) NiPt wafer and (2) Al wafer were cleaned at 200 ml / min for cleaning at 50 ° C. for 50 seconds, respectively.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 95%
  • Example 21 1 using the first solution (nitric acid concentration 2 wt%, hydrogen peroxide concentration 29 wt%), (1) a solid wafer having a NiPt layer of 10 nm stacked on a silicon wafer, and (2) a silicon wafer Washing was performed at 50 ° C. for 30 seconds, with a solid wafer having an Al layer laminated thereon having a thickness of 500 nm, brought into contact with the solid wafer at 200 ml / min. Next, the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 1.5 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 1.5 mol / L
  • NiPt wafer and (2) Al wafer were cleaned at 200 ml / min for cleaning at 50 ° C. for 50 seconds, respectively.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 100%
  • the Al etching rate was 150 ⁇ / min, and there was no NiPt silicide damage.
  • Example 22 1 using the first solution (nitric acid concentration 2 wt%, hydrogen peroxide concentration 29 wt%), (1) a solid wafer having a NiPt layer of 10 nm stacked on a silicon wafer, and (2) a silicon wafer Washing was performed at 50 ° C. for 30 seconds, with a solid wafer having an Al layer laminated thereon having a thickness of 500 nm, brought into contact with the solid wafer at 200 ml / min.
  • NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 100%
  • the Al etching rate was 140 ⁇ / min
  • Example 23 1 using the first solution (nitric acid concentration 2 wt%, hydrogen peroxide concentration 29 wt%), (1) a solid wafer having a NiPt layer of 10 nm stacked on a silicon wafer, and (2) a silicon wafer Washing was performed at 50 ° C. for 30 seconds, with a solid wafer having an Al layer laminated thereon having a thickness of 500 nm, brought into contact with the solid wafer at 200 ml / min.
  • the wafer is rinsed with pure water to remove the first solution, and then, as a second solution, a mixed solution in which hydrochloric acid is added to a solution obtained by blowing ozone gas into a sulfuric acid solution (sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.002 mol)
  • a mixed solution in which hydrochloric acid is added to a solution obtained by blowing ozone gas into a sulfuric acid solution sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.002 mol
  • NiPt wafer and (2) Al wafer were contacted at 200 ml / min for cleaning at 50 ° C. for 50 seconds, respectively. .
  • NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 95%
  • the Al etching rate was 80 ⁇ / min
  • Example 24 In the single wafer cleaning machine of FIG. 1, using a first solution (no nitric acid, hydrogen peroxide concentration 30 wt%), (1) a solid wafer having a NiPt layer of 10 nm stacked on a silicon wafer and (2) a silicon wafer The cleaning was performed at 50 ° C. for 30 seconds with a solid wafer having an Al layer of 500 nm stacked thereon, which was brought into contact with the solid wafer at 200 ml / min.
  • a first solution no nitric acid, hydrogen peroxide concentration 30 wt%
  • NiPt wafer and (2) Al wafer were cleaned at 50 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 95%
  • the Al etching rate was 80 ⁇ / min, and there was no NiPt silicide damage.
  • Example 25 1 using the first solution (nitric acid concentration 40 wt%, no hydrogen peroxide), (1) a solid wafer having a NiPt layer of 10 nm deposited on a silicon wafer and (2) a silicon wafer. Cleaning was performed at 50 ° C. for 30 seconds, with a solid wafer having an Al layer of 500 nm stacked thereon, which was brought into contact with the solid wafer at 200 ml / min. Next, the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L
  • NiPt wafer and (2) Al wafer were cleaned at 50 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 95%
  • the Al etching rate was 160 ⁇ / min
  • Example 26 1 using a first solution (nitric acid concentration 2 wt%, hydrogen peroxide 29 wt%), (1) a solid wafer in which a NiPt layer is deposited to 10 nm on a silicon wafer, and (2) a silicon wafer In addition, cleaning was performed at 50 ° C. for 7 seconds in contact with a solid wafer having an Al layer of 500 nm stacked thereon at 200 ml / min. Next, the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L
  • NiPt wafer and (2) Al wafer were cleaned at 50 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 80%
  • the Al etching rate was 85 ⁇ / min
  • Example 27 1 using the first solution (nitric acid concentration 2 wt%, hydrogen peroxide 29 wt%), (1) a solid wafer having a NiPt layer of 10 nm stacked on a silicon wafer, and (2) a silicon wafer In addition, cleaning was performed at 50 ° C. for 10 seconds with a solid wafer having an Al layer of 500 nm stacked thereon in contact with the solid wafer at 200 ml / min. Next, the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L
  • NiPt wafer and (2) Al wafer were cleaned at 50 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 95%
  • the Al etching rate was 90 ⁇ / min
  • Example 28 1 using the first solution (nitric acid concentration 2 wt%, hydrogen peroxide 29 wt%), (1) a solid wafer having a NiPt layer of 10 nm stacked on a silicon wafer, and (2) a silicon wafer In addition, cleaning was performed at 50 ° C. for 30 seconds with a solid wafer having an Al layer of 500 nm stacked thereon in contact with a solid wafer at 200 ml / min. Next, the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L
  • NiPt wafer and (2) Al wafer were cleaned at 50 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 100%
  • the Al etching rate was 90 ⁇ / min, and there was no NiPt silicide damage.
  • Example 29 1 using a first solution (nitric acid concentration 2 wt%, hydrogen peroxide 29 wt%), (1) a solid wafer in which a NiPt layer is deposited to 10 nm on a silicon wafer, and (2) a silicon wafer In addition, cleaning was performed at 50 ° C. for 80 seconds with a solid wafer having an Al layer of 500 nm stacked thereon in contact with the solid wafer at 200 ml / min. Next, the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L
  • NiPt wafer and (2) Al wafer were cleaned at 50 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 100%
  • the Al etching rate was 170 ⁇ / min, and there was no NiPt silicide damage.
  • Example 30 1 using the first solution (nitric acid concentration 2 wt%, hydrogen peroxide 29 wt%), (1) a solid wafer having a NiPt layer of 10 nm stacked on a silicon wafer, and (2) a silicon wafer In addition, cleaning was performed at 50 ° C. for 100 seconds with a solid wafer having an Al layer of 500 nm stacked thereon in contact with the solid wafer at 200 ml / min. Next, the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L
  • NiPt wafer and (2) Al wafer were cleaned at 50 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 100%
  • the Al etching rate was 180 ⁇ / min, and there was no NiPt silicide damage.
  • Example 1 the contents of Example 1 are also shown in Table 2.
  • NiPt wafer and (2) Al wafer were cleaned at 50 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 100%
  • the Al etching rate was 190 ⁇ / min, and there was NiPt silicide damage.
  • Example 31 In the single wafer cleaning machine of FIG. 1, using the first solution (nitric acid concentration 2.0 wt%, hydrogen peroxide 29 wt%, sulfuric acid 15 wt%), (1) (2) Cleaning was performed at 50 ° C. for 30 seconds with a solid wafer having an Al layer of 500 nm stacked on a silicon wafer at 200 ml / min. Next, the wafer is rinsed with pure water to remove the first solution, and then using electrolytic sulfuric acid (sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L) as the second solution.
  • electrolytic sulfuric acid sulfuric acid concentration 65 wt%, oxidizing agent concentration 0.04 mol / L, hydrochloric acid concentration 0.1 mol / L
  • NiPt wafer and (2) Al wafer were cleaned at 50 ° C. for 50 seconds, respectively, at 200 ml / min.
  • Component analysis of the processed solution using ICP-MS was performed, the NiPt removal rate of the wafer and the Al etching rate were confirmed from the concentrations of Ni, Pt, and Al in the solution, and the wafer surface was observed by AFM to silicide The presence or absence of damage was confirmed and shown in Table 1.
  • the NiPt removal rate was 100%
  • the Al etching rate was 160 ⁇ / min, and there was no NiPt silicide damage.
  • Example 12 The test was performed under the same conditions as in Example 1 except that the first solution (nitric acid concentration 62 wt%, hydrogen peroxide concentration 0 wt%) was changed. As a result, the NiPt removal rate was 100%, the Al etching rate was 190 ⁇ / min, and there was NiPt silicide damage.
  • Example 13 The test was performed under the same conditions as in Example 1 except that the first solution (nitric acid concentration 0 wt%, hydrogen peroxide concentration 0.1 wt%) was changed. As a result, the NiPt removal rate was 25%, the Al etching rate was 140 ⁇ / min, and there was no NiPt silicide damage.
  • Example 1 The test was performed under the same conditions as in Example 1 except that the first solution (nitric acid concentration 0 wt%, hydrogen peroxide concentration 1 wt%) was changed. As a result, the NiPt removal rate was 40%, the Al etching rate was 120 ⁇ / min, and there was no NiPt silicide damage.
  • Example 2 The test was performed under the same conditions as in Example 1 except that the first solution (nitric acid concentration 0.1 wt%, hydrogen peroxide concentration 0 wt%) was changed. As a result, the NiPt removal rate was 50%, the Al etching rate was 110 ⁇ / min, and there was no NiPt silicide damage.
  • Example 32 The test was performed under the same conditions as in Example 1 except that the first solution (nitric acid concentration 1 wt%, hydrogen peroxide concentration 0 wt%) was changed. As a result, the NiPt removal rate was 95%, the Al etching rate was 115 ⁇ / min, and there was no NiPt silicide damage.
  • Example 33 The test was performed under the same conditions as in Example 1 except that the first solution (nitric acid concentration 60 wt%, hydrogen peroxide concentration 0 wt%) was changed. As a result, the NiPt removal rate was 100%, the Al etching rate was 160 ⁇ / min, and there was no NiPt silicide damage.
  • Example 34 The test was performed under the same conditions as in Example 1 except that the first solution (nitric acid concentration 0 wt%, hydrogen peroxide concentration 2 wt%) was changed. As a result, the NiPt removal rate was 95%, the Al etching rate was 115 ⁇ / min, and there was no NiPt silicide damage.
  • Example 35 The test was performed under the same conditions as in Example 1 except that the first solution (nitric acid concentration 0 wt%, hydrogen peroxide concentration 35 wt%) was changed. As a result, the NiPt removal rate was 95%, the Al etching rate was 80 ⁇ / min, and there was no NiPt silicide damage.
  • Example 14 The test was performed under the same conditions as in Example 1 except that the temperature of the first solution was changed to 20 ° C. As a result, the NiPt removal rate was 85%, the Al etching rate was 60 ⁇ / min, and there was no NiPt silicide damage.
  • Example 15 The test was performed under the same conditions as in Example 1 except that the temperature of the first solution was changed to 120 ° C. As a result, the NiPt removal rate was 100%, the Al etching rate was 300 ⁇ / min, and there was NiPt silicide damage.
  • Example 36 The test was performed under the same conditions as in Example 1 except that the temperature of the first solution was changed to 25 ° C. As a result, the NiPt removal rate was 95%, the Al etching rate was 70 L / min, and there was no NiPt silicide damage.
  • Example 16 The test was performed under the same conditions as in Example 1 except that the oxidant concentration of the second solution was 4 mol / L. As a result, the NiPt removal rate was 100%, the Al etching rate was 200 ⁇ / min, and there was NiPt silicide damage.
  • Example 37 The test was performed under the same conditions as in Example 1 except that the oxidant concentration of the second solution was changed to 0.001 mol / L. As a result, the NiPt removal rate was 95%, the Al etching rate was 70 L / min, and there was no NiPt silicide damage.
  • Example 38 The test was performed under the same conditions as in Example 1 except that the oxidant concentration of the second solution was changed to 2 mol / L. As a result, the NiPt removal rate was 100%, the Al etching rate was 170 ⁇ / min, and there was no NiPt silicide damage.
  • Example 17 The test was performed under the same conditions as in Example 1 except that the halogen concentration of the second solution was changed to 2.00 mol / L. As a result, the NiPt removal rate was 100%, the Al etching rate was 200 ⁇ / min, and there was NiPt silicide damage.
  • Example 39 The test was performed under the same conditions as in Example 1 except that the halogen concentration of the second solution was changed to 0.001 mol / L. As a result, the NiPt removal rate was 95%, the Al etching rate was 70 L / min, and there was no NiPt silicide damage.
  • Example 40 The test was performed under the same conditions as in Example 1 except that the temperature of the second solution was 25 ° C. As a result, the NiPt removal rate was 95%, the Al etching rate was 55 ⁇ / min, and there was no NiPt silicide damage.
  • Example 41 The test was performed under the same conditions as in Example 1 except that the temperature of the second solution was 100 ° C. As a result, the NiPt removal rate was 100%, the Al etching rate was 180 ⁇ / min, and there was no NiPt silicide damage.
  • Example A For each of (1) a solid wafer in which a Pt layer is laminated to 5 nm on a silicon substrate, and (2) a solid wafer in which a SiO 2 layer is laminated to 5 nm on a silicon substrate, the first solution and Washing was performed by contacting the second solution at 200 ml / min. The second solution was supplied to the washer within 10 minutes after being heated and mixed. After the treatment, the component was analyzed using ICP-MS (hereinafter, simply referred to as ICP-MS), and the removal rate of Pt on the substrate was confirmed from the concentration of Pt in the solution. . Regarding SiO 2 damage, the presence or absence of damage was confirmed by observing the substrate surface with an ellipsometer.
  • ICP-MS ICP-MS
  • the etching rate of SiO 2 was less than 1 nm / min, it was evaluated as no damage, and when it was 1 nm / min or more, it was evaluated as damage.
  • 95% or more of Pt can be removed without damaging SiO 2 and without requiring a long time for cleaning. This will be described in detail below.
  • test examples in Table 1 were extracted and shown in Table 12 below, with and without the first cleaning. The effect is enhanced by performing the first cleaning in contact with nitric acid and / or hydrogen peroxide.
  • Table 14 shows that a good cleaning effect is obtained by using a sulfuric acid solution containing a sulfuric acid-based oxidizing agent and a halogen acid (salt).
  • Examples and Comparative Examples were evaluated based on the difference in temperature of the second solution.
  • Table 18 shows test conditions and evaluation results. As is clear from Table 18, when the temperature of the second solution is 25 to 100 ° C., a good cleaning effect is obtained, and 50 ° C. or higher is more preferable.
  • the object to be cleaned is not limited to the one evaluated in the above embodiment.
  • Pt can be effectively removed without damaging SiO2 when removing Pt on the Si substrate, and SiNiPt can be removed when removing NiPt on the Si substrate.
  • NiPt that does not damage Al and Al can be effectively removed, and when removing Pt from the SiC substrate, Pt can be effectively removed without damaging SiC, and when removing Pt from the SiGe substrate
  • Pt can be effectively removed without damaging SiGe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Detergent Compositions (AREA)

Abstract

 Siを構成成分とする層を有する半導体基板上から白金及び/又は白金合金を除去する半導体基板の洗浄方法であって、Alやシリサイド膜、Si系絶縁膜、Si系基板などを損傷することなく効果的に洗浄を行うことを可能にする。 Siを構成成分とする層を有する半導体基板上から白金及び/又は白金合金を除去する半導体基板の洗浄方法であって、前記半導体基板に、硝酸及び/又は過酸化水素を主とする溶質として含む第1溶液を接触させて洗浄する第1洗浄工程と、第1洗浄工程を経た前記半導体基板に、酸化剤を含む硫酸溶液とハロゲン化物とを含み、温度が25~100℃である第2溶液を接触させて洗浄する第2洗浄工程と、を有する。

Description

半導体基板洗浄システムおよび半導体基板の洗浄方法
 この発明は、シリコンを構成元素とする層を有する半導体基板から白金または白金合金を洗浄して除去する半導体基板の洗浄方法および洗浄システムに関するものである。
 近年、トランジスタ形成プロセスではソースとドレインの抵抗を低減するために、NiやCo等の材料を用い、NiSiやCoSi等のシリサイド化が行われる。また、接合リーク電流の低減のため、NiやCoにPtやPdを5~10%混入した合金が用いられている。中でも、NiPtを用いた場合は耐熱性の向上と接合リーク電流の抑制効果が期待される(特許文献1、2参照)。
 シリサイド化工程では、合金をSi基板上に製膜後、熱酸化処理を施すことで合金とSiが反応してシリサイドが形成されるが、残留する未反応の合金は除去する必要がある。例えばNiPtシリサイド形成後に未反応のNiPtを除去するため、SPM(硫酸と過酸化水素の混合液)を用いる方法が知られている(特許文献3、4参照)。NiPtを溶解しつつAlのエッチングを抑える洗浄方法として、王水を用いる方法が知られている(特許文献5参照)。また、硫酸系酸化剤で処理した後に塩酸系酸化剤で処理する方法が提案されている(特許文献6参照)。
 さらにSi系絶縁膜(SiN、SiOなど)からのPt除去においても各種洗浄剤や提案されている。例えば、特許文献7では、洗浄液として微量のフッ酸を添加した洗浄液、例えば塩酸過水フッ酸でPtを除去するものが提案されており、特許文献8では、微量のフッ酸およびキレート剤を添加した洗浄液、例えば塩酸過水フッ酸キレートを用いてPtを除去するものが提案されている。
 さらにSi系半導体(Si半導体、SiCなどのSi化合物半導体)を有する基板(Si系基板)からのPt除去においても各種洗浄剤が提案されている。例えば、特許文献9、10では、SiC基板を平坦化するため、王水でPt除去を行ったり、SPMで金属やTOCを除去したりしている。
特開2008-258487号公報 特開2008-160116号公報 特開2002-124487号公報 特開2008-118088号公報 特表2009-535846号公報 特開2010-157684号公報 特開2000-100765号公報 特開2000-223461号公報 特開2009-117782号公報 特開2012-064972号公報 特開2013-229543号公報
 しかし、従来の方法では、いずれもシリサイドやSi系絶縁膜、Si系基板を傷めたり、PtやPt合金を完全除去できない、あるいはPtやPt合金を完全除去できても洗浄に長時間を要するという問題がある。
 例えば、SPMを用いる方法では、過酸化水素の配合比率を高くすればNiPtを溶解することができるが、その際に傷めてはいけない基板を傷めたり、エッチングしてはいけないAlなどを溶解してしまう。
 また、王水を用いる方法では、塩酸濃度が高く、基板を傷めたり、エッチングしてはいけないAlを溶解してしまう。
 さらに、硫酸系酸化剤で処理した後に塩酸系酸化剤で処理する方法でも、王水同様塩酸濃度が濃く、基板を傷めてしまう。
 そこで、特許文献11には、TiN露出基板のシリサイド化残渣のNiPtを選択除去する洗浄剤として電解溶液+塩酸が提案されている。しかし、この洗浄剤を用いても以下の問題が残っている。
1)Si系絶縁膜のPt除去に際し、Si系絶縁膜が過度にエッチングされてしまう場合がある。
2)Si系基板のPt除去に際し、完全除去するには洗浄に長時間を要する。
3)Si基板のシリサイド化残渣のPt合金の除去に際し、完全除去するには洗浄に長時間を要する上、Alが露出している場合はAlが過度にエッチングされてしまう場合がある。
 本発明は、上記事情を背景としてなされたものであり、Siを構成成分とする層を有する半導体基板を洗浄する際に、基板などを損傷することなく白金及び/又は白金合金を効果的に洗浄して除去することができる半導体の洗浄方法および洗浄システムを提供することを目的の一つとする。
 すなわち、本発明の半導体基板の洗浄方法のうち、第1の本発明は、Siを構成元素とする層を有する半導体基板上から白金及び/又は白金合金を除去する半導体基板の洗浄方法であって、
 前記半導体基板に、硝酸及び/又は過酸化水素を主とする溶質として含む第1溶液を接触させて洗浄する第1洗浄工程と、
 第1洗浄工程を経た前記半導体基板に、酸化剤を含む硫酸溶液とハロゲン化物とを含み、温度が25~100℃である第2溶液を接触させて洗浄する第2洗浄工程と、を有することを特徴とする。
 第2の本発明の半導体基板の洗浄方法は、前記第1の本発明において、前記半導体基板が、Siの化合物で構成される絶縁膜を有する半導体基板、SiまたはSiの化合物半導体で構成される半導体基板またはシリサイド膜を有する半導体基板のいずれかであることを特徴とする。
 第3の本発明の半導体基板の洗浄方法は、前記第1または第2の本発明において、前記半導体基板が、白金を含むシリサイド膜が形成されていることを特徴とする。
 第4の本発明の半導体基板の洗浄方法は、前記第1~第3の本発明のいずれかにおいて、前記半導体基板上にAlが存在することを特徴とする。
 第5の本発明の半導体基板の洗浄方法は、前記第1~第4の本発明のいずれかにおいて、前記半導体基板が、SiOと白金及び/又は白金合金が露出していることを特徴とする。
 第6の本発明の半導体基板の洗浄方法は、前記第1~第5の本発明のいずれかにおいて、前記半導体基板が白金及び/又は白金合金が露出したSiC基板であることを特徴とする。
 第7の本発明の半導体基板の洗浄方法は、前記第1~第6の本発明のいずれかにおいて、前記半導体基板が白金及び/又は白金合金が露出したSiGe基板であることを特徴とする。
 第8の本発明の半導体基板の洗浄方法は、前記第1~第7の本発明のいずれかにおいて、前記ハロゲン化物が、塩化物、臭化物およびヨウ化物からなる群のいずれか1種以上を含むことを特徴とする。
 第9の本発明の半導体基板の洗浄方法は、前記第1~第8の本発明のいずれかにおいて、前記第1溶液は、溶質全体に対し、硝酸及び/又は過酸化水素を質量比で80%以上含むことを特徴とする。
 第10の本発明の半導体基板の洗浄方法は、前記第1~第9の本発明のいずれかにおいて、前記第1溶液は、硝酸が含まれており、その硝酸濃度を1~60質量%含むことを特徴とする。
  第11の本発明の半導体基板の洗浄方法は、前記第1~第10の本発明のいずれかにおいて、前記第1溶液は、過酸化水素が含まれており、その過酸化水素濃度を1~35質量%含むことを特徴とする。
 第12の本発明の半導体基板の洗浄方法は、前記第11の本発明において、前記過酸化水素の濃度が2~35質量%であることを特徴とする。
 第13の本発明の半導体基板の洗浄方法は、前記第1~第12の本発明のいずれかにおいて、前記第1洗浄工程における前記第1溶液の温度が25~100℃であることを特徴とする。
 第14の本発明の半導体基板の洗浄方法は、前記第1~第13の本発明のいずれかにおいて、前記第2溶液中の硫酸濃度が40~80質量%であることを特徴とする。
 第15の本発明の半導体基板の洗浄方法は、前記第1~第14の本発明のいずれかにおいて、前記第2溶液の酸化剤の濃度が0.001~2mol/Lであることを特徴とする。
 第16の本発明の半導体基板の洗浄方法は、前記第1~第15の本発明のいずれかにおいて、前記酸化剤が過硫酸であることを特徴とする。
 第17の本発明の半導体基板の洗浄方法は、前記第1~第16の本発明のいずれかにおいて、前記第2溶液の前記酸化剤を含む硫酸溶液が、硫酸電解液、硫酸と過酸化水素の混合溶液、硫酸とオゾンの混合溶液からなる群から選ばれた1種以上であることを特徴とする。
 第18の本発明の半導体基板の洗浄方法は、前記第1~第17の本発明のいずれかにおいて、前記第2洗浄工程の前に、前記第1洗浄工程を経た前記半導体基板から、第1溶液を排除する第1溶液排出工程を有することを特徴とする。
 第19の本発明の半導体基板洗浄システムは、Siを構成元素とする層を有する半導体基板上から白金及び/又は白金合金を除去する洗浄を行う洗浄部と、
 硝酸及び/又は過酸化水素を主とする溶質として含む第1溶液を収容する第1溶液収容部と、
 酸化剤を含む硫酸溶液とハロゲン化物とを含む第2溶液を収容する第2溶液収容部と、
 一端が前記第1溶液収容部に、他端が前記洗浄部に接続され、前記第1溶液を前記第1溶液収容部から前記洗浄部に供給する第1溶液供給ラインと、
 一端が前記第2溶液収容部に、他端が前記洗浄部に接続され、前記第2溶液を前記第2溶液収容部から前記洗浄部に供給する第2溶液供給ラインと、
 前記第1溶液供給ラインに介設され、前記第1溶液供給ラインを通じて前記洗浄部に供給される前記第1溶液の液温を所定温度に調整する第1液温調整部と、
 前記第l溶液供給ラインの前記洗浄部側の先端部に接続され、前記洗浄部において前記第1溶液を送出して前記半導体基板に接触させる第1溶液送出部と、
 前記第2溶液供給ラインの前記洗浄部側の先端部に接続され、前記洗浄部において前記第2溶液を送出して前記半導体基板に接触させる第2溶液送出部と、
を備えることを特徴とする。
 第20の本発明の半導体基板洗浄システムは、前記第19の本発明において、前記洗浄部で前記第1溶液を用いて前記半導体基板の洗浄を行う第1洗浄工程と、前記第1洗浄工程後に、前記洗浄部で前記第2溶液を用いて前記半導体基板の洗浄を行う第2洗浄工程とを行うための前記第1溶液および前記第2溶液の供給を制御する洗浄制御部をさらに備えることを特徴とする。
 以下に、本発明について詳細に説明する。
 本発明で用いる第1溶液は、硝酸及び/又は過酸化水素を主とする溶質として含むものであり、いずれか一方、または両方が混合したものでもよい。混合する場合、両者の混合比は、本発明としては特に限定されるものではない。
 なお、第1溶液に硝酸を含む場合、硝酸濃度が1~60質量%であるのが望ましい。第1溶液に過酸化水素を含む場合、過酸化水素濃度が1~35質量%であるのが望ましい。硝酸濃度2~30質量%かつ過酸化水素濃度が2~30質量%であるのが一層望ましい。
 以下に、その理由を説明する。
硝酸濃度:1~60質量%
 硝酸の使用により、シリサイド化残渣金属などの白金、白金合金(例えばNiPt)が酸化される。ただし、1質量%未満の硝酸濃度ではその作用が十分ではなく、一方、60質量%を超える硝酸濃度では基板表面に露出している金属(例えばAl)やシリサイド、Si系絶縁膜、Si系基板などのエッチングレートが大きくなりすぎるため好ましくない。
 このため、硝酸を含む場合の硝酸濃度は1~60質量%が望ましい。また、同様の理由で、下限を2質量%、上限を30質量%とするのが一層望ましい。
過酸化水素濃度:1~35質量%
 過酸化水素の使用により、シリサイド化残渣金属などの白金、白金合金(例えばNiPt)が酸化される。ただし、1質量%未満の過酸化水素濃度ではその作用が十分ではなく、一方、35質量%を超える過酸化水素濃度では基板表面に露出している金属(例えばAl)やシリサイド、Si系絶縁膜、Si系基板などのエッチングレートが大きくなりすぎるため好ましくない。
 このため、過酸化水素を含む場合の過酸化水素濃度は1~35質量%が望ましい。また、同様の理由で、下限を2質量%とするのが望ましく、さらに下限を5質量%、上限を32質量%とするのが一層望ましい。さらに、同様の理由で、下限を10質量%、上限を30質量%とするのが一層望ましい。
 第1溶液は、硝酸及び/又は過酸化水素を主とする溶質として含み、これらの一方または両方を全溶質に対し質量比で80%以上含むのが望ましく、さらに90%以上含むのが一層望ましい。硝酸及び/又は過酸化水素は、濃度総和で1質量%以上含むのが望ましい。また第1溶液において、上記溶質以外に他の溶質を含む場合、硫酸、リン酸、塩酸、フッ酸などを含むことができ、その濃度の合計が全溶質に対し質量比で20%未満、好ましくは10%未満であるのが望ましい。
 第1溶液の溶媒としては好適には水が例示される。
 また、第1溶液は、第1洗浄工程に際しての温度を25~100℃とするのが望ましい。25℃未満では、洗浄能力が不足である。なお、40℃以上であれば洗浄能力はほぼ十分であり、40℃以上が一層望ましい。また、液温が100℃を超えるとAlなどのエッチングが助長されるので、上限を100℃とするのが望ましいが、エネルギー効率やエッチングレートの点から80℃以下の温度であることが一層望ましい。
 なお、液温を調整する場合、半導体基板に混合した溶液を接触させる際に上記温度を有するものとする。
 第1溶液を用いた第1洗浄工程では、半導体基板に対し第1溶液を接触させて行うが、接触は、第1溶液への半導体基板の浸漬や半導体基板への第1溶液の吹き付け、滴下、流下などによって行うことができる。接触に際しての接触時間は本発明としては特に限定されるものではないが、例えば10~300秒を示すことができる。10秒未満の接触時間では、シリサイド化残渣金属などの白金、白金合金(例えばNiPt)の酸化が不足であり、300秒を超える接触時間では基板表面に露出している金属(例えばAl)やシリサイド、Si系絶縁膜、Si系基板などのエッチングレートが大きくなりすぎるため好ましくない。なお、同様の理由で接触時間の下限を20秒、接触時間の上限を200秒とするのが望ましい。
 第2溶液は、過硫酸とハロゲン化物とを含むものであり、ハロゲン化物の濃度総和が0.001~2mol/Lであるのが望ましい。ハロゲン化物としては、塩化物、臭化物およびヨウ化物からなる群のいずれか1種以上を示すことができる。
 第2溶液の溶媒としては、好適には水を挙げることができる。以下に、ハロゲン化物の濃度総和の理由を説明する。
ハロゲン化物濃度:0.001mol/L~2mol/L
 ハロゲン化物の使用によってPtを溶解する作用が得られる。ただし、ハロゲン化物の濃度総和が0.001mol/L未満であると、シリサイド化残渣金属などの白金、白金合金(例えばNiPtなど)の除去率が悪く、ハロゲン化物の濃度総和が2mol/Lを超えると、シリサイドや、Si系絶縁膜、Si系基板などにダメージが与えやすくなる。このため、ハロゲン化物の濃度総和は第2溶液において、0.001mol/L~2mol/Lが望ましい。なお、同様の理由で、ハロゲン化物の濃度総和は、下限を0.005mol/Lとするのが望ましく、上限を1mol/Lとするのが望ましい。
 また、第2溶液における酸化剤を有する硫酸溶液には、酸化剤として過硫酸を含むものが例示され、硫酸電解液、硫酸と過酸化水素の混合溶液、硫酸とオゾンの混合溶液などから1種以上を選択するものが挙げられる。なお、ここでいう過硫酸としては、ペルオキソ二硫酸とペルオキソ一硫酸が例示され、いずれか一方、または両方が混合されたものでもよい。このとき溶液中の酸化剤としては過硫酸と過硫酸の自己分解に伴って発生する過酸化水素がほぼ全量を占める。他に酸化剤としてはオゾン、過酸化水素が挙げられる。
酸化剤濃度:0.001~2mol/L
 過硫酸などの酸化剤の使用によって、シリサイド化残渣金属などの白金、白金合金(例えばNiPt)の溶解の作用が得られる。ただし、第2溶液における全酸化剤の濃度の総和が、0.001mol/L未満であると洗浄力が不足し、一方、2mol/Lを超過すると、Alなどのエッチングレートが高く、またシリサイドや、Si系絶縁膜、Si系基板などのダメージも生じやすくなる。このため、第2溶液における酸化剤濃度は0.001~2mol/Lが望ましい。また、同様の理由で、第2溶液における酸化剤濃度の下限は0.005mol/Lが一層望ましく、第2溶液における酸化剤濃度の上限は0.5mol/Lが一層望ましい。
硫酸濃度:40~80質量%
 硫酸の使用によってシリサイド残渣金属などの白金、白金合金(例えばNiPt)の溶解の作用が得られる。ただし、第2溶液における硫酸濃度が40質量%未満であると洗浄力が不足し、一方、硫酸濃度が80質量%を超過すると、Alなどのエッチングレートが高くなる。このため、第2溶液における硫酸濃度は40~80質量%が望ましい。また、同様の理由で、第2溶液における硫酸濃度の下限は50質量%が一層望ましく、第2溶液における硫酸濃度の上限は75質量%が一層望ましい。
 第2溶液工程では、硫酸系の酸化剤、ハロゲン化物以外に他の溶質を含むことも可能である。
 また、第2溶液は、第2洗浄工程に際しての温度を25~100℃とするのが望ましい。25℃未満では、洗浄能力が不足である。なお、40℃以上であれば洗浄能力はほぼ十分であり、40℃以上が一層望ましい。また、液温が100℃を超えるとシリサイド、Si系絶縁膜、Si系基板などを傷めてしまうため、上限を100℃とするのが望ましいが、エネルギー効率やエッチングレートの点から80℃以下の温度であることが一層望ましい。
 なお、液温を調整する場合、半導体基板に混合した溶液を接触させる際に上記温度を有するものとする。
 第2溶液を用いた第2洗浄工程では、半導体基板に対し第2溶液を接触させて行うが、接触は、第2溶液への半導体基板の浸漬や半導体基板への第2溶液の吹き付け、滴下、流下などによって行うことができる。接触に際しての接触時間は本発明としては特に限定されるものではないが、例えば10~300秒を示すことができる。10秒未満では、洗浄が不十分であり、300秒を超えるとシリサイド、Si系絶縁膜、Si系基板などを傷めてしまう。なお、同様の理由で接触時間の下限を15秒、接触時間の上限を200秒とするのが望ましい。
 また、第1洗浄工程と第2洗浄工程とで溶液の接触方法を変えるものであってもよい。
 また、第1洗浄工程と第2洗浄工程の間では、第1洗浄工程で洗浄された半導体基板上から第1溶液を排除する第1溶液排出工程を設けてもよい。第1溶液排出工程では、例えば超純水などのリンス液を用いた洗浄を行うことができる。
 また、洗浄はバッチ式でも枚葉式でも構わないが、接触効率の点で枚葉式の方がより好ましい。
 本発明で洗浄の対象となる半導体基板は、Siを構成元素とする層を有するものであり、シリサイド化処理がされた半導体基板、Siの化合物で構成される絶縁膜、SiをベースとするまたはSi系半導体膜が被覆されているSi系基板を対象とすることができる。シリサイド化処理がされた半導体基板は、特に半導体基板上にAlが一部露出した半導体基板がより好適である。Siの化合物で構成される絶縁膜としては、SiOやSiNなどが挙げられる。Si系基板を構成するSi系半導体としては、Siの単元素半導体や、SiC、SiGe、SiGePt(ゲルマニド)などのSi化合物半導体が挙げられる。ただしSiを構成成分とする層を有する半導体基板がこれらに限定されるものではない。
 本発明によれば、シリサイドやSi系絶縁膜、Si系基板などのダメージの損傷を抑制しつつ、シリサイド化の残渣金属などの白金、白金合金(例えばNiPt)を効果的かつ完全に除去する洗浄を行うことができる。特にウエハ表面にAlが露出している場合もAlのダメージを所定以下に抑えつつ洗浄を行うことができる。
本発明の一実施形態の半導体基板洗浄システムを示す図である。
(実施形態1)
 以下に、本発明の一実施形態の半導体基板洗浄システム1を図1に基づいて説明する。
 半導体基板洗浄システム1は、本発明の洗浄部に相当する枚葉式洗浄機2と、硝酸溶液を貯留する硝酸溶液貯留槽3と、過酸化水素溶液を貯留する過酸化水素溶液貯留槽4と、過硫酸を含む硫酸溶液を貯留する硫酸溶液貯留槽5と、塩化物、臭化物、ヨウ化物のいずれか1種以上を含むハロゲン化物溶液を貯留するハロゲン化物溶液貯留槽6とを備えている。
 なお、硝酸溶液と過酸化水素溶液とは、本実施形態では第1溶液に相当し、硝酸溶液貯留槽3と過酸化水素溶液貯留槽4とは、本実施形態では第1溶液収容部に相当する。
 また、硫酸溶液とハロゲン化物溶液とは、本実施形態では第2溶液に相当し、硫酸溶液貯留槽5とハロゲン化物溶液貯留槽6とは、本実施形態では第2溶液収容部に相当する。
 硝酸溶液貯留槽3には、送液ポンプ11を介して硝酸溶液供給ライン10が接続されており、過酸化水素溶液貯留槽4には、送液ポンプ13を介して過酸化水素溶液供給ライン12が接続されている。硝酸溶液供給ライン10と過酸化水素溶液供給ライン12とは下流側で合流して第1溶液共通送液ライン14を構成しており、第1溶液共通送液ライン14には、ヒーター15を介して下流端側に送出ノズル16が接続されている。ヒーター15は、溶液を通液しつつ一過式で加熱するものであり、好適には近赤外ヒーターなどを用いることができる。
 上記硝酸溶液供給ライン10、過酸化水素溶液供給ライン12、第1溶液共通送液ライン14は、本実施形態では第1溶液供給ラインを構成し、ヒーター15は、本実施形態では、第1液温調整部に相当し、送出ノズル16は本実施形態では第1溶液送出部に相当する。
 また、硫酸溶液貯留槽5には、送液ポンプ21を介して硫酸溶液供給ライン20が接続されており、ハロゲン化物溶液貯留槽6には、送液ポンプ23を介してハロゲン化物溶液供給ライン22が接続されている。硫酸溶液供給ライン20とハロゲン化物溶液供給ライン22とは下流側で合流して第2溶液共通送液ライン24を構成しており、第2溶液共通送液ライン24には、ヒーター25を介して下流端側に送出ノズル26が接続されている。ヒーター25は、溶液を通液しつつ一過式で加熱するものであり、好適には近赤外ヒーターなどを用いることができる。
 硫酸溶液供給ライン20、ハロゲン化物溶液供給ライン22、第2溶液共通送液ライン24は、本実施形態では第2溶液供給ラインを構成し、ヒーター25は、本実施形態では、第2液温調整部に相当し、送出ノズル26は本実施形態では第2溶液送出部に相当する。
 枚葉式洗浄機2は半導体基板支持台7を備えており、半導体基板支持台7は、図示しない駆動装置によって回転駆動が可能になっている。枚葉式洗浄機2は、本実施形態では洗浄部に相当し、半導体基板支持台7に支持された半導体基板100に、送出ノズル16、26から洗浄用の溶液が送出される。送出ノズル16、26は、洗浄用の溶液を半導体基板100に噴霧、滴下、または流下するように構成されている。なお、滴下、流下では圧力を与えて半導体基板100に溶液を吹き付けるものであってもよい。
 また、半導体基板洗浄システム1には、半導体基板洗浄システム1全体を制御する洗浄制御部30を備えている。洗浄制御部30は、CPUとこれを動作させるプログラムや動作パラメータなどを格納し、また作業領域として使用される記憶部などにより構成される。
 洗浄制御部30は、送液ポンプ11、13、21、23、ヒーター15、25、枚葉式洗浄機2の動作を制御する。また、これら機器は、手動により動作の設定や調整、オンオフを操作するものであってもよい。
 次に、半導体基板洗浄システムを使用した半導体基板洗浄方法を以下に説明する。
 まず、Alが一部露出し、またシリサイド化処理がされた半導体基板や、Si系絶縁膜有する半導体基板、Si系基板などを基板支持台に支持する。シリサイド化処理された半導体基板は、例えば、Alが存在するシリコン基板上に金属膜を形成し、前記シリコン基板に対してアニール処理を行ってシリコン基板上に白金などの貴金属を含むシリサイド層を形成したものを用いることができる。金属膜は、白金などの貴金属を含むものであってもよい。
 但し、本発明としては半導体基板の製造方法がこれに限定されるものではない。
 なお、本実施形態で好適な対象例は、Alの膜厚が60nm以下(好ましくは30nm以下)、シリサイド層の厚さが60nm以下(好ましくは25nm以下)、ゲート幅が45nm以下(好ましくは30nm以下)のケースである。ただし、本発明で対象となる半導体基板がこれに限定されるものではない。
 また硝酸溶液貯留槽3には、後述する過酸化水素と混合した際に、硝酸濃度が1~60質量%となるように濃度調整した硝酸溶液を収容する。また、過酸化水素溶液貯留槽4には、前述の硝酸と混合した際に過酸化水素濃度が1~35質量%となるように濃度調整する。
 硫酸溶液貯留槽5には、後述する塩化物、臭化物、ヨウ化物などのハロゲン化物を含む溶液と混合した際に、硫酸濃度が40~80質量%となるように濃度調整した過硫酸含有の硫酸溶液を収容する。また、ハロゲン化物溶液貯留槽6には、前記した硫酸溶液と混合した際に、ハロゲン化物の濃度総和が0.001~2mol/Lになるように濃度調整したハロゲン化物溶液を収容する。
 半導体基板100の洗浄に際しては、半導体支持台7を回転駆動して半導体基板100を回転支持するとともに、まず、硝酸溶液貯留槽3内の硝酸溶液を送液ポンプ11によって硝酸溶液供給ライン10を通じて所定の流量で送液し、また過酸化水素溶液貯留槽4内の過酸化水素溶液を送液ポンプ13によって過酸化水素溶液供給ライン12を通じて所定の流量で送液し、この2液を第1溶液共通送液ライン14で混合して第1溶液を調製しつつ送液して、ヒーター15で一過式に加熱する。加熱温度は、加熱後の第1溶液が半導体基板100に接触する時に液温が25~100℃になるように調整する。
 上記硝酸溶液と過酸化水素の混合比は、送液ポンプ11と送液ポンプ13の送液量の調整により設定することができ、第1溶液の温度はヒーター15の加熱温度などにより調整することができ、洗浄制御部30による制御または手動操作により前記調整を行うことができる。
 硝酸溶液と過酸化水素の混合で調整された第1溶液は、硝酸濃度が1~30質量%、過酸化水素濃度が1~35質量%かつ濃度総和が1質量%以上、液温が35~100℃の状態で、送出ノズル16から送出されて半導体基板100に接触し、半導体基板100の洗浄が行われる。好適には硝酸濃度2~30質量%、かつ過酸化水素濃度2~30質量%である。
 なお、硝酸溶液と過酸化水素溶液とは、混合状態で液温25℃以上の時点から10分以内(好ましくは5分以内)に半導体基板に接触するように送液速度および第1溶液共通送液ライン14の長さを定めるのが望ましい。
 また、上記混合溶液が半導体基板100に接触している時間は、本発明としては特定の範囲に限定されないが、この実施形態では、10~300秒の範囲とするのが望ましい。
 上記処理は、本実施形態では第1洗浄工程に相当する。
 なお、本実施形態では第1溶液収容部を硝酸溶液貯留槽3と過酸化水素溶液貯留槽4に分けているが、第1溶液として1槽に収容しても構わない。
 次に、硫酸溶液貯留槽5内の硫酸溶液を送液ポンプ21によって硫酸溶液供給ライン20を通じて所定の流量で送液し、また塩化物、臭化物、ヨウ化物のいずれかを含む溶液を貯留するハロゲン化物溶液貯留槽6内の溶液を送液ポンプ23によってハロゲン化物溶液供給ライン22を通じて所定の流量で送液し、この2液を第2溶液共通送液ライン24で混合して第2溶液を調製しつつ送液して、ヒーター25で一過式に加熱する。加熱温度は、加熱後の第2溶液が半導体基板100に接触させる時に液温が25~100℃になるように調整する。
 上記硫酸溶液とハロゲン化物溶液の混合比は、送液ポンプ21と送液ポンプ23の送液量の調整により設定することができ、第2溶液の温度はヒーター25の加熱温度などにより調整することができ、洗浄制御部30による制御または手動操作により前記調整を行うことができる。
 上記硫酸溶液と塩化物、臭化物、ヨウ化物のいずれかを含む溶液の混合で調整された第2溶液は、硫酸濃度が40~80質量%、酸化剤濃度が0.001~2mol/L、液温が25~100℃の状態で、送出ノズル26から送出されて半導体基板100に接触し、半導体基板100の洗浄が行われる。なお、上記硫酸溶液と塩化物、臭化物、ヨウ化物のいずれかを含む溶液とは、混合状態で液温25℃以上の時点から10分以内(好ましくは5分以内)に半導体基板100に接触するように送液速度および第2溶液共通送液ライン24の長さを定めるのが望ましい。
 この際に、上記条件の範囲内でAlのエッチングレートが180Å/min以下、好ましくは150Å/min以下になるような条件で洗浄し、また洗浄時間が120秒以内程度、好ましくは80秒以内になるような条件で洗浄をするのが望ましい。
 上記処理は、本実施形態では第2洗浄工程に相当する。
 上記洗浄における作用の詳細を以下に説明する。
〈Alエッチング抑制〉
 第1溶液を用いることにより、Alの表面に被膜ができ、第1溶液および第2溶液による洗浄の際にエッチングを抑制することができるものと推定される。
〈Pt、Pt合金剥離〉
 本発明の第1溶液を用いることにより、例えばNiPtでは、Niが溶解し、Ptも酸化されてエッチングしやすくなり、次に第2溶液を用いることにより、Ptがハロゲン系の酸化剤と反応して溶解するものと推定される。
 なお、Pt、Pt合金のいずれについても、基板表面にPt元素が露出していれば、同じメカニズムで洗浄できるものと推定される。
〈シリサイド、Si系絶縁膜、Si系基板などのダメージの抑制〉
 また、Alのエッチングを抑えながら白金や白金合金(例えばNiPt)を剥離できる溶液として王水があるが、王水はシリサイドや、Si系絶縁膜、Si系基板を傷める原因とされるClが高濃度であるためシリサイド、Si系絶縁膜、Si系基板を傷めてしまう。しかし本実施形態の第2溶液はCl濃度を低くすることができ、また液とウエハの接触時間も短くできるため、シリサイドやSi系絶縁膜、Si系基板のダメージを抑制できる。
 本実施形態では、例えば、Si基板上のPtを除去する際にSiOにダメージを与えることなくPtを効果的に除去でき、Si基板上のNiPtを除去する際にSiNiPtやAlにダメージを与えることなNiPtを効果的に除去できる。さらに、SiC基板上からPtを除去する際に、SiCにダメージを与えることなくPtを効果的に除去でき、SiGe基板からPtを除去する際に、SiGeにダメージを与えることなくPtを効果的に除去することができる。
〈処理時間の短縮〉
 本実施形態は、2段での処理になるが、処理時間が短く、従来法より時間を短縮できる。
 なお、上記実施形態では、第1洗浄工程と第2洗浄工程について説明したが、これら工程間に超純水などを用いたリンス工程を実施することもできる。リンス工程の実施により第1溶液を確実に除去して第2溶液による洗浄効果を確実に得ることができる。
 以下に、本発明の実施例および比較例を示す。なお、実施例および比較例では、図1に概略を示す半導体基板洗浄システムを用いた。
[実施例]
 硝酸もしくは過酸化水素もしくはその両方を含む溶液からなる混合液を第1溶液とし、前記半導体に接触させ、その後、過硫酸を有する硫酸溶液と塩化物、臭化物、ヨウ化物のうちいずれか一つもしくは複数のハロゲン化物を含む溶液からなる混合液を第2溶液とし、前記半導体基板に接触させた。
 各洗浄では、混合液は、加熱および混合がされた後、直ちに(10分以内に)、下記するベタウエハに対し接触する洗浄に供給した。
 以下では、最適な評価として、NiPt除去率が95%以上を良、95%未満を不良と評価した。最適な評価として、Alのエッチングレートは、180Å/minを超えるものは、Alを損傷するものとして評価は不良、180Å/min以下は評価は良とした。
 また、シリサイドダメージの有無は、表面粗さRaが1.7μm未満であればダメージなしと評価し、Raが1.7μm以上であればダメージありと評価した。試験内容および評価結果は表1、2に示した。
(比較例1)
 図1の枚葉式洗浄機で、第1溶液を使用せず、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L)と塩酸0.1mol/Lとの混合溶液を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して、200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MS(誘導結合プラズマ質量分析装置、以下単にICP-MSと表記する)を用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFM(原子力顕微鏡:Atomic Force Microscope、以下単にAFMと表記する)で観察してシリサイドダメージの有無を確認し、表1に結果を示した。
 結果、NiPt除去率は20%、Alエッチングレートは80Å/min、NiPtシリサイドダメージなしであった。
(比較例2)
 図1の枚葉式洗浄機で、第1溶液を使用せず、第2溶液として王水(塩酸濃度3mol/L)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は60%、Alエッチングレートは450Å/min、NiPtシリサイドダメージありであった。
(比較例3)
 図1の枚葉式洗浄機で、第1溶液を使用せず、第2溶液として、酸化剤濃度が2.14mol/L、硫酸濃度が65wt%であるSPM溶液(HSO:H=2:1)と塩酸0.1mol/Lとの混合溶液を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、Alエッチングレートは250Å/min、NiPtシリサイドダメージあり、NiPt除去率は100%であった。
(比較例4)
 図1の枚葉式洗浄機で、第1溶液を使用せず、第2溶液として、酸化剤濃度が0.9mol/L、硫酸濃度が80%であるSPM溶液(HSO:H=4:1)と塩酸0.1mol/Lの混合溶液を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、Alエッチングレートは140Å/min、NiPtシリサイドダメージなし、NiPt除去率は50%であり不十分であった。
(参考例5)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素濃度29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度30%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は70%、Alエッチングレートは60Å/min、NiPtシリサイドダメージなしであった。
(参考例6)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素濃度29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度90wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は50%、Alエッチングレートは250Å/min、NiPtシリサイドダメージなしであった。
(比較例7)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素濃度29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ20℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は10%、Alエッチングレートは50Å/min、NiPtシリサイドダメージなしであった。
(比較例8)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素濃度29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ120℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は100%、Alエッチングレートは1000Å/min、NiPtシリサイドダメージありであった。
(参考例9)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度0.1wt%、過酸化水素濃度0wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は40%、Alエッチングレートは120Å/min、NiPtシリサイドダメージなしであった。
(参考例10)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度0wt%、過酸化水素濃度1wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は50%、Alエッチングレートは110Å/min、NiPtシリサイドダメージなしであった。
(実施例1)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素濃度29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は100%、Alエッチングレートは90Å/min、NiPtシリサイドダメージなしであった。
(実施例2)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素濃度29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、NaCl濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は100%、Alエッチングレートは90Å/min、NiPtシリサイドダメージなしであった。
(実施例3)
図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素濃度29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、HBr濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は100%、Alエッチングレートは90Å/min、NiPtシリサイドダメージなしであった。
(実施例4)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素濃度29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、HI濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は100%、Alエッチングレートは90Å/min、NiPtシリサイドダメージなしであった。
(実施例5)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素濃度29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度40wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は95%、Alエッチングレートは80Å/min、NiPtシリサイドダメージなしであった。
(実施例6)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素濃度29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度80wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は100%、Alエッチングレートは160Å/min、NiPtシリサイドダメージなしであった。
(実施例7)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度0wt%、過酸化水素濃度15wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は97%、Alエッチングレートは80Å/min、NiPtシリサイドダメージなしであった。
(実施例8)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度15wt%、過酸化水素濃度0wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は95%、Alエッチングレートは120Å/min、NiPtシリサイドダメージなしであった。
(実施例9)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度7wt%、過酸化水素濃度6wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は96%、Alエッチングレートは100Å/min、NiPtシリサイドダメージなしであった。
(実施例10)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度30wt%、過酸化水素濃度15wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は100%、Alエッチングレートは140Å/min、NiPtシリサイドダメージなしであった。
(実施例11)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素濃度29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ35℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は95%、Alエッチングレートは70Å/min、NiPtシリサイドダメージなしであった。
(実施例12)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素濃度29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ90℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は100%、Alエッチングレートは160Å/min、NiPtシリサイドダメージなしであった。
(実施例13)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素濃度29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ20℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は80%、Alエッチングレートは60Å/min、NiPtシリサイドダメージなしであった。
(実施例14)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素濃度29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ30℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は95%、Alエッチングレートは80Å/min、NiPtシリサイドダメージなしであった。
(実施例15)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素濃度29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は100%、Alエッチングレートは90Å/min、NiPtシリサイドダメージなしであった。
(実施例16)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素濃度29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ90℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は100%、Alエッチングレートは170Å/min、NiPtシリサイドダメージなしであった。
(実施例17)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素濃度29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ100℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は100%、Alエッチングレートは180Å/min、NiPtシリサイドダメージなしであった。
(実施例18)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素濃度29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度1.8mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は100%、Alエッチングレートは120Å/min、NiPtシリサイドダメージなしであった。
(実施例19)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素濃度29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.002mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は95%、Alエッチングレートは80Å/min、NiPtシリサイドダメージなしであった。
(実施例20)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素濃度29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.002mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は95%、Alエッチングレートは80Å/min、NiPtシリサイドダメージなしであった。
(実施例21)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素濃度29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度1.5mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は100%、Alエッチングレートは150Å/min、NiPtシリサイドダメージなしであった。
(実施例22)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素濃度29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液としてSPM溶液(HSO:H=4:1)と塩酸の混合溶液(硫酸濃度80wt%、酸化剤濃度0.9mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は100%、Alエッチングレートは140Å/min、NiPtシリサイドダメージなしであった。
(実施例23)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素濃度29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として、硫酸溶液にオゾンガスを吹き込んだ溶液に塩酸を添加した混合溶液(硫酸濃度65wt%、酸化剤濃度0.002mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は95%、Alエッチングレートは80Å/min、NiPtシリサイドダメージなしであった。
(実施例24)
 図1の枚葉式洗浄機で、第1溶液(硝酸なし、過酸化水素濃度30wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は95%、Alエッチングレートは80Å/min、NiPtシリサイドダメージなしであった。
(実施例25)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度40wt%、過酸化水素なし)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は95%、Alエッチングレートは160Å/min、NiPtシリサイドダメージなしであった。
(実施例26)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、7秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は80%、Alエッチングレートは85Å/min、NiPtシリサイドダメージなしであった。
(実施例27)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、10秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は95%、Alエッチングレートは90Å/min、NiPtシリサイドダメージなしであった。
(実施例28)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は100%、Alエッチングレートは90Å/min、NiPtシリサイドダメージなしであった。
(実施例29)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、80秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は100%、Alエッチングレートは170Å/min、NiPtシリサイドダメージなしであった。
(実施例30)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2wt%、過酸化水素29wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、100秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は100%、Alエッチングレートは180Å/min、NiPtシリサイドダメージなしであった。
 次に、第1溶液に、硝酸と過酸化水素以外の溶質を追加して同様の評価を行った。試験条件及び評価結果は表2に示した。なお、参考のため、実施例1の内容を合わせて表2に示した。
(比較例11)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2.0wt%、過酸化水素29wt%、硫酸30wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は100%、Alエッチングレートは190Å/min、NiPtシリサイドダメージありであった。
(実施例31)
 図1の枚葉式洗浄機で、第1溶液(硝酸濃度2.0wt%、過酸化水素29wt%、硫酸15wt%)を用いて、(1)シリコンウエハ上にNiPt層が10nm積層したベタウエハおよび(2)シリコンウエハ上にAl層が500nm積層したベタウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、30秒間実施した。次いでウエハを純水でリンスして第1溶液を排除し、その後、第2溶液として電解硫酸(硫酸濃度65wt%、酸化剤濃度0.04mol/L、塩酸濃度0.1mol/L)を用いて、前述の(1)NiPtウエハ、および前述の(2)Alウエハに対して200ml/minで接触させる洗浄をそれぞれ50℃、50秒間実施した。処理後の溶液をICP-MSを用いて成分分析し、溶液中のNi、Pt、Alの濃度からウエハのNiPtの除去率、Alのエッチングレートを確認し、ウエハ表面をAFMで観察してシリサイドダメージの有無を確認し、表1に示した。
 結果、NiPt除去率は100%、Alエッチングレートは160Å/min、NiPtシリサイドダメージなしであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 次に、各試験例について、試験項目毎にまとめて以下の各表に示した。
 第1洗浄の有無において、表1における試験例の一部を抽出して下記表3に示した。
 硝酸および/または過酸化水素に接触させる第1洗浄を行うことにより、効果は高まっている。なお、表中のAlのE/Rは、Alのエッチングレートを示している(以下、同じ)。
Figure JPOXMLDOC01-appb-T000003
 次に、硝酸濃度と過酸化水素の濃度の違いに基づいて、表1における試験例の一部を抽出して下記表4に示した。また、下記の追加試験を行い、その結果を同じく、表4に示した。
(比較例12)
 第1溶液(硝酸濃度62wt%、過酸化水素濃度0wt%)を変える以外は実施例1と同じ条件で試験を行った。
 結果、NiPt除去率は100%、Alエッチングレートは190Å/min、NiPtシリサイドダメージありであった。
(比較例13)
 第1溶液(硝酸濃度0wt%、過酸化水素濃度0.1wt%)を変える以外は実施例1と同じ条件で試験を行った。
 結果、NiPt除去率は25%、Alエッチングレートは140Å/min、NiPtシリサイドダメージなしであった。
(参考例1)
 第1溶液(硝酸濃度0wt%、過酸化水素濃度1wt%)を変える以外は実施例1と同じ条件で試験を行った。
 結果、NiPt除去率は40%、Alエッチングレートは120Å/min、NiPtシリサイドダメージなしであった。
(参考例2)
 第1溶液(硝酸濃度0.1wt%、過酸化水素濃度0wt%)を変える以外は実施例1と同じ条件で試験を行った。
 結果、NiPt除去率は50%、Alエッチングレートは110Å/min、NiPtシリサイドダメージなしであった。
(実施例32)
 第1溶液(硝酸濃度1wt%、過酸化水素濃度0wt%)を変える以外は実施例1と同じ条件で試験を行った。
 結果、NiPt除去率は95%、Alエッチングレートは115Å/min、NiPtシリサイドダメージなしであった。
(実施例33)
 第1溶液(硝酸濃度60wt%、過酸化水素濃度0wt%)を変える以外は実施例1と同じ条件で試験を行った。
 結果、NiPt除去率は100%、Alエッチングレートは160Å/min、NiPtシリサイドダメージなしであった。
(実施例34)
 第1溶液(硝酸濃度0wt%、過酸化水素濃度2wt%)を変える以外は実施例1と同じ条件で試験を行った。
 結果、NiPt除去率は95%、Alエッチングレートは115Å/min、NiPtシリサイドダメージなしであった。
(実施例35)
 第1溶液(硝酸濃度0wt%、過酸化水素濃度35wt%)を変える以外は実施例1と同じ条件で試験を行った。
 結果、NiPt除去率は95%、Alエッチングレートは80Å/min、NiPtシリサイドダメージなしであった。
 表4に見られるように、硝酸の濃度を1~60質量%、過酸化水素の濃度を2~35質量%とすることにより良好な洗浄効果が得られた。
Figure JPOXMLDOC01-appb-T000004
 次に、第1洗浄工程における処理時間の違いに基づいて、表1における試験例の一部を抽出して表5に示した。第1洗浄工程の処理時間を10~100秒とすることにより、洗浄効果が高まっており、処理時間を30秒以上とするのが一層望ましいことが分かる。
Figure JPOXMLDOC01-appb-T000005
 次に、第1洗浄工程における第1溶液の温度の違いに基づいて、表1における試験例の一部を抽出して表6に示した。また、下記の追加試験を行い、その結果を同じく表6に示した。
(比較例14)
 第1溶液の温度を20℃に変える以外は実施例1と同じ条件で試験を行った。
 結果、NiPt除去率は85%、Alエッチングレートは60Å/min、NiPtシリサイドダメージなしであった。
(比較例15)
 第1溶液の温度を120℃に変える以外は実施例1と同じ条件で試験を行った。
 結果、NiPt除去率は100%、Alエッチングレートは300Å/min、NiPtシリサイドダメージありであった。
(実施例36)
 第1溶液の温度を25℃に変える以外は実施例1と同じ条件で試験を行った。
 結果、NiPt除去率は95%、Alエッチングレートは70Å/min、NiPtシリサイドダメージなしであった。
 表6の結果より、第1溶液の温度を25~100℃とすることにより、洗浄効果が高まっており、その温度を50℃以上とするのが一層望ましいことが分かる。
Figure JPOXMLDOC01-appb-T000006
 次に、第2洗浄工程における第2溶液の種別に基づいて、表1における試験例の一部を抽出して下記表7に示した。硫酸系の酸化剤を含む硫酸溶液とハロゲン酸(塩)を用いることで良好な洗浄効果が得られている。
Figure JPOXMLDOC01-appb-T000007
 次に、第2洗浄工程における酸化剤の濃度の違いに基づいて、表1における試験例の一部を抽出して表8に示した。また、下記の追加試験を行い、その結果を同じく表8に示した。
(比較例16)
 第2溶液の酸化剤濃度を4mol/Lとする以外は実施例1と同じ条件で試験を行った。
 結果、NiPt除去率は100%、Alエッチングレートは200Å/min、NiPtシリサイドダメージありであった。
(実施例37)
 第2溶液の酸化剤濃度を0.001mol/Lに変える以外は実施例1と同じ条件で試験を行った。
 結果、NiPt除去率は95%、Alエッチングレートは70Å/min、NiPtシリサイドダメージなしであった。
(実施例38)
 第2溶液の酸化剤濃度を2mol/Lに変える以外は実施例1と同じ条件で試験を行った。
 結果、NiPt除去率は100%、Alエッチングレートは170Å/min、NiPtシリサイドダメージなしであった。
 表8から明らかなように、第2溶液の酸化剤濃度を0.001mol/L~2mol/Lとすることにより良好な洗浄効果が得られており、0.04mol/L以上がより好適である。
Figure JPOXMLDOC01-appb-T000008
 次に、第2溶液におけるハロゲン濃度の違い基づいて、表1における試験例の一部を抽出して表9に示した。また、下記の追加試験を行い、その結果を同じく、表9に示した。
(比較例17)
 第2溶液のハロゲン濃度を2.00mol/Lに変えた以外は実施例1と同じ条件で試験を行った。
 結果、NiPt除去率は100%、Alエッチングレートは200Å/min、NiPtシリサイドダメージありであった。
(実施例39)
 第2溶液のハロゲン濃度を0.001mol/Lに変えた以外は実施例1と同じ条件で試験を行った。
 結果、NiPt除去率は95%、Alエッチングレートは70Å/min、NiPtシリサイドダメージなしであった。
 表9から明らかなように、ハロゲン濃度を0.001~1.5mol/Lとすることにより良好な洗浄効果が得られており、ハロゲン濃度を0.1mol/L以上とすることがより好適である。
Figure JPOXMLDOC01-appb-T000009
 次に、第2溶液における硫酸濃度の違いに基づいて、表1における試験例の一部を抽出して下記表10に示した。
 表から明らかなように、硫酸濃度を40~80wt%とすることにより良好な洗浄効果が得られており、硫酸濃度を65wt%以上とすることがより好適である。
Figure JPOXMLDOC01-appb-T000010
 次に、第2溶液の温度の違いに基づいて、表1における試験例の一部を抽出して下記表11に示した。また、下記の追加試験を行い、その結果を表11に示した。 
(実施例40)
 第2溶液の温度を25℃とした以外は実施例1と同じ条件で試験を行った。
 結果、NiPt除去率は95%、Alエッチングレートは55Å/min、NiPtシリサイドダメージなしであった。
(実施例41)
 第2溶液の温度を100℃とした以外は実施例1と同じ条件で試験を行った。
 結果、NiPt除去率は100%、Alエッチングレートは180Å/min、NiPtシリサイドダメージなしであった。
 表11から明らかなように、第2溶液の温度を25~100℃とすることで、良好な洗浄効果が得られており、50℃以上がより好適である。
Figure JPOXMLDOC01-appb-T000011
[実施例A]
 (1)シリコン基板上にPt層が5nm積層したベタウエハ、および(2)シリコン基板上にSiO層が5nm積層したベタウエハのそれぞれに対して、枚葉式洗浄機を用いて、第1溶液および第2溶液を200ml/minで接触させる洗浄を行った。
 第2溶液は、加熱および混合がされた後、10分以内に洗浄機に供給されるようにした。
 処理後の洗浄排液をICP-MS(誘導結合プラズマ質量分析装置、以下単にICP-MSと表記する)を用いて成分分析し、溶液中のPtの濃度から基板のPtの除去率を確認した。
 SiOダメージについては、基板表面をエリプソメーターで観察してダメージの有無を確認した。SiOのエッチングレートが1nm/min未満であればダメージなしと評価し、1nm/min以上であればダメージありと評価した。
 本実施例によれば、SiOを傷めず、かつ洗浄に長時間を要することなくPtを95%以上除去することができる。以下に詳細に説明する。
 第1洗浄の有無において、表1における試験例の一部を抽出して下記表12に示した。
 硝酸および/または過酸化水素に接触させる第1洗浄を行うことにより、効果は高まっている。
Figure JPOXMLDOC01-appb-T000012
 次に、硝酸濃度と過酸化水素の濃度の違いにより実施例と比較例の評価を行った。試験条件および評価結果を表13に示す。
 表13に見られるように、硝酸の濃度を1~60質量%、過酸化水素の濃度を2~35質量%とすることにより良好な洗浄結果が得られていることが分かる。
Figure JPOXMLDOC01-appb-T000013
 次に、第2洗浄工程における第2溶液の種別に基づいて実施例の評価を行った。試験条件および評価結果を表14に示す。
 表14から硫酸系の酸化剤を含む硫酸溶液とハロゲン酸(塩)を用いることで良好な洗浄効果が得られていることが分かる。
Figure JPOXMLDOC01-appb-T000014
 次に、第2洗浄工程における酸化剤の濃度の違いに基づいて実施例と比較例の評価を行った。試験条件および評価結果を表15に示す。
 酸化剤濃度を0.001mol/L~2mol/Lとすることにより良好な洗浄効果が得られており、0.04mol/L以上がより好適であることが分かる
Figure JPOXMLDOC01-appb-T000015
 次に、第2溶液におけるハロゲン濃度の違い基づいて実施例と比較例の評価を行った。試験条件および評価結果を表16に示す。
 表16から明らかなように、ハロゲン濃度を0.001~1.5mol/Lとすることにより良好な洗浄効果が得られており、ハロゲン濃度を0.1mol/L以上とすることがより好適である。
Figure JPOXMLDOC01-appb-T000016
 次に、第2溶液における硫酸濃度の違いに基づいて実施例と比較例の評価を行った。試験条件および評価結果を表17に示す。
 表17から明らかなように、硫酸濃度を40~80wt%とすることにより良好な洗浄効果が得られており、硫酸濃度を65wt%以上とすることがより好適である。
Figure JPOXMLDOC01-appb-T000017
 次に、第2溶液の温度の違いに基づいて実施例と比較例の評価を行った。試験条件および評価結果を表18に示す。
 表18から明らかなように、第2溶液の温度を25~100℃とすることで、良好な洗浄効果が得られており、50℃以上がより好適である。
Figure JPOXMLDOC01-appb-T000018
 なお、洗浄対象は、上記実施例で評価したものに限定されない。例えば、上記各実施例と同様の条件に基づいて、Si基板上のPtを除去する際にSiO2にダメージを与えることなくPtを効果的に除去でき、Si基板上のNiPtを除去する際にSiNiPtやAlにダメージを与えることなNiPtを効果的に除去でき、SiC基板上からPtを除去する際に、SiCにダメージを与えることなくPtを効果的に除去でき、SiGe基板からPtを除去する際に、SiGeにダメージを与えることなくPtを効果的に除去することができる。
 1  半導体基板洗浄システム
 2  枚葉式洗浄機
 3  硝酸溶液貯留槽
 4  過酸化水素溶液貯留槽
 5  硫酸溶液貯留槽
 6  ハロゲン化物溶液貯留槽
10  硝酸溶液供給ライン
11  送液ポンプ
12  過酸化水素溶液供給ライン
13  送液ポンプ
14  第1溶液共通送液ライン
15  ヒーター
16  送出ノズル
20  硫酸溶液供給ライン
21  送液ポンプ
22  ハロゲン化物溶液供給ライン
23  送液ポンプ

Claims (20)

  1.  Siを構成元素とする層を有する半導体基板上から白金及び/又は白金合金を除去する半導体基板の洗浄方法であって、
     前記半導体基板に、硝酸及び/又は過酸化水素を主とする溶質として含む第1溶液を接触させて洗浄する第1洗浄工程と、
     第1洗浄工程を経た前記半導体基板に、酸化剤を含む硫酸溶液とハロゲン化物とを含み、温度が25~100℃である第2溶液を接触させて洗浄する第2洗浄工程と、を有することを特徴とする半導体基板の洗浄方法。
  2.  前記半導体基板が、Siの化合物で構成される絶縁膜を有する半導体基板、SiまたはSiの化合物半導体で構成される半導体基板またはシリサイド膜を有する半導体基板のいずれかであることを特徴とする請求項1に記載の半導体基板の洗浄方法。
  3.  前記半導体基板が、白金を含むシリサイド膜が形成されていることを特徴とする請求項1または2に記載の半導体基板の洗浄方法。
  4.  前記半導体基板上にAlが存在することを特徴とする請求項1~3のいずれかに記載の半導体基板の洗浄方法。
  5.  前記半導体基板が、SiOと白金及び/又は白金合金が露出していることを特徴とする請求項1~4のいずれかに記載の半導体基板の洗浄方法。
  6.  前記半導体基板が白金及び/又は白金合金が露出したSiC基板であることを特徴とする請求項1~5のいずれかに記載の半導体基板の洗浄方法。
  7.  前記半導体基板が白金及び/又は白金合金が露出したSiGe基板であることを特徴とする請求項1~6のいずれかに記載の半導体基板の洗浄方法。
  8.  前記ハロゲン化物が、塩化物、臭化物およびヨウ化物からなる群のいずれか1種以上を含むことを特徴とする請求項1~7のいずれかに記載の半導体基板の洗浄方法。
  9.  前記第1溶液は、溶質全体に対し、硝酸及び/又は過酸化水素を質量比で80%以上含むことを特徴とする請求項1~8のいずれかに記載の半導体基板の洗浄方法。
  10.  前記第1溶液は、硝酸が含まれており、その硝酸濃度を1~60質量%含むことを特徴とする請求項1~9のいずれか1項に記載の半導体基板の洗浄方法。
  11.  前記第1溶液は、過酸化水素が含まれており、その過酸化水素濃度を1~35質量%含むことを特徴とする請求項1~10のいずれか1項に記載の半導体基板の洗浄方法。
  12.  前記過酸化水素の濃度が2~35質量%であることを特徴とする請求項11に記載の半導体基板の洗浄方法。
  13.  前記第1洗浄工程における前記第1溶液の温度が25~100℃であることを特徴とする請求項1~12のいずれか1項に記載の半導体基板の洗浄方法。
  14.  前記第2溶液中の硫酸濃度が40~80質量%であることを特徴とする請求項1~13のいずれかに1項に記載の半導体基板の洗浄方法。
  15.  前記第2溶液の酸化剤の濃度が0.001~2mol/Lであることを特徴とする請求項1~14のいずれか1項に記載の半導体基板の洗浄方法。
  16.  前記酸化剤が過硫酸であることを特徴とする請求項1~15のいずれか1項に記載の半導体基板の洗浄方法。
  17.  前記第2溶液の前記酸化剤を含む硫酸溶液が、硫酸電解液、硫酸と過酸化水素の混合溶液、硫酸とオゾンの混合溶液からなる群から選ばれた1種以上であることを特徴とする請求項1~16のいずれか1項に記載の半導体基板の洗浄方法。
  18.  前記第2洗浄工程の前に、前記第1洗浄工程を経た前記半導体基板から、第1溶液を排除する第1溶液排出工程を有することを特徴とする請求項1~17のいずれかに記載の半導体基板の洗浄方法。
  19.  Siを構成元素とする層を有する半導体基板上から白金及び/又は白金合金を除去する洗浄を行う洗浄部と、
     硝酸及び/又は過酸化水素を主とする溶質として含む第1溶液を収容する第1溶液収容部と、
     酸化剤を含む硫酸溶液とハロゲン化物とを含む第2溶液を収容する第2溶液収容部と、
     一端が前記第1溶液収容部に、他端が前記洗浄部に接続され、前記第1溶液を前記第1溶液収容部から前記洗浄部に供給する第1溶液供給ラインと、
     一端が前記第2溶液収容部に、他端が前記洗浄部に接続され、前記第2溶液を前記第2溶液収容部から前記洗浄部に供給する第2溶液供給ラインと、
     前記第1溶液供給ラインに介設され、前記第1溶液供給ラインを通じて前記洗浄部に供給される前記第1溶液の液温を所定温度に調整する第1液温調整部と、
     前記第l溶液供給ラインの前記洗浄部側の先端部に接続され、前記洗浄部において前記第1溶液を送出して前記半導体基板に接触させる第1溶液送出部と、
     前記第2溶液供給ラインの前記洗浄部側の先端部に接続され、前記洗浄部において前記第2溶液を送出して前記半導体基板に接触させる第2溶液送出部と、
    を備えることを特徴とする半導体基板洗浄システム。
  20.  前記洗浄部で前記第1溶液を用いて前記半導体基板の洗浄を行う第1洗浄工程と、前記第1洗浄工程後に、前記洗浄部で前記第2溶液を用いて前記半導体基板の洗浄を行う第2洗浄工程とを行うための前記第1溶液および前記第2溶液の供給を制御する洗浄制御部をさらに備えることを特徴とする請求項19記載の半導体基板洗浄システム。
PCT/JP2014/055082 2013-03-01 2014-02-28 半導体基板洗浄システムおよび半導体基板の洗浄方法 WO2014133137A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157021803A KR102150291B1 (ko) 2013-03-01 2014-02-28 반도체 기판 세정 시스템 및 반도체 기판의 세정 방법
CN201480011208.1A CN105009258B (zh) 2013-03-01 2014-02-28 半导体基板清洗系统及半导体基板的清洗方法
US14/771,890 US20160013047A1 (en) 2013-03-01 2014-02-28 Semiconductor substrate cleaning system and method for cleaning semiconductor substrate
JP2015503050A JP5861854B2 (ja) 2013-03-01 2014-02-28 半導体基板洗浄システムおよび半導体基板の洗浄方法
TW103107060A TWI658507B (zh) 2013-03-01 2014-03-03 半導體基板洗淨系統及半導體基板的洗淨方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-041179 2013-03-01
JP2013041179 2013-03-01

Publications (1)

Publication Number Publication Date
WO2014133137A1 true WO2014133137A1 (ja) 2014-09-04

Family

ID=51428395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055082 WO2014133137A1 (ja) 2013-03-01 2014-02-28 半導体基板洗浄システムおよび半導体基板の洗浄方法

Country Status (6)

Country Link
US (1) US20160013047A1 (ja)
JP (1) JP5861854B2 (ja)
KR (1) KR102150291B1 (ja)
CN (1) CN105009258B (ja)
TW (2) TWI517235B (ja)
WO (1) WO2014133137A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017005142A (ja) * 2015-06-11 2017-01-05 インターユニバーシティ マイクロエレクトロニクス センター Ge又はSiGeまたはゲルマニドの洗浄方法
WO2018104992A1 (ja) * 2016-12-05 2018-06-14 インターユニバーシティ マイクロエレクトロニクス センター Ge、SiGeまたはゲルマニドの洗浄方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116646279A (zh) 2017-01-05 2023-08-25 株式会社斯库林集团 基板清洗装置及基板清洗方法
JP6951229B2 (ja) * 2017-01-05 2021-10-20 株式会社Screenホールディングス 基板洗浄装置および基板洗浄方法
CN111715605B (zh) * 2019-03-22 2022-02-08 潍坊华光光电子有限公司 一种光学镀膜夹具的清洗装置及清洗方法
FR3101360A1 (fr) * 2019-09-27 2021-04-02 Technic France Composition chimique pour retirer des residus en alliage nickel-platine d’un substrat, et procede de retrait de tels residus
JP2023141070A (ja) * 2022-03-23 2023-10-05 株式会社Screenホールディングス 学習装置、情報処理装置、基板処理装置、基板処理システム、学習方法および処理条件決定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535846A (ja) * 2006-05-01 2009-10-01 インターナショナル・ビジネス・マシーンズ・コーポレーション 自己整合型金属シリサイド・コンタクトを形成するための方法
JP2010157684A (ja) * 2008-12-03 2010-07-15 Panasonic Corp 半導体装置の製造方法
JP2011009452A (ja) * 2009-06-25 2011-01-13 Renesas Electronics Corp 半導体装置の洗浄方法
JP2011166064A (ja) * 2010-02-15 2011-08-25 Panasonic Corp 半導体装置の製造方法及びそれを用いた半導体装置の製造装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3189892B2 (ja) 1998-09-17 2001-07-16 日本電気株式会社 半導体基板の洗浄方法及び洗浄液
JP3177973B2 (ja) 1999-01-28 2001-06-18 日本電気株式会社 半導体装置の製造方法
TW463309B (en) 2000-08-10 2001-11-11 Chartered Semiconductor Mfg A titanium-cap/nickel (platinum) salicide process
US7371333B2 (en) * 2005-06-07 2008-05-13 Micron Technology, Inc. Methods of etching nickel silicide and cobalt silicide and methods of forming conductive lines
US20070020925A1 (en) * 2005-07-22 2007-01-25 Chao-Ching Hsieh Method of forming a nickel platinum silicide
JP5309454B2 (ja) 2006-10-11 2013-10-09 富士通セミコンダクター株式会社 半導体装置の製造方法
KR100786707B1 (ko) 2006-12-21 2007-12-18 삼성전자주식회사 불휘발성 메모리 장치 및 이의 제조 방법
JP5197986B2 (ja) 2007-04-06 2013-05-15 ルネサスエレクトロニクス株式会社 半導体装置の製造装置
US7884028B2 (en) * 2007-04-10 2011-02-08 United Microelectronics Corp. Method of removing material layer and remnant metal
JP4887266B2 (ja) 2007-10-15 2012-02-29 株式会社荏原製作所 平坦化方法
JP6132082B2 (ja) 2012-03-30 2017-05-24 栗田工業株式会社 半導体基板の洗浄方法および洗浄システム
WO2013170130A1 (en) * 2012-05-11 2013-11-14 Advanced Technology Materials, Inc. Formulations for wet etching nipt during silicide fabrication
US8518765B1 (en) * 2012-06-05 2013-08-27 Intermolecular, Inc. Aqua regia and hydrogen peroxide HCl combination to remove Ni and NiPt residues
US20140248770A1 (en) * 2013-03-01 2014-09-04 Globalfoundries Inc. Microwave-assisted heating of strong acid solution to remove nickel platinum/platinum residues

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535846A (ja) * 2006-05-01 2009-10-01 インターナショナル・ビジネス・マシーンズ・コーポレーション 自己整合型金属シリサイド・コンタクトを形成するための方法
JP2010157684A (ja) * 2008-12-03 2010-07-15 Panasonic Corp 半導体装置の製造方法
JP2011009452A (ja) * 2009-06-25 2011-01-13 Renesas Electronics Corp 半導体装置の洗浄方法
JP2011166064A (ja) * 2010-02-15 2011-08-25 Panasonic Corp 半導体装置の製造方法及びそれを用いた半導体装置の製造装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017005142A (ja) * 2015-06-11 2017-01-05 インターユニバーシティ マイクロエレクトロニクス センター Ge又はSiGeまたはゲルマニドの洗浄方法
WO2018104992A1 (ja) * 2016-12-05 2018-06-14 インターユニバーシティ マイクロエレクトロニクス センター Ge、SiGeまたはゲルマニドの洗浄方法
CN110249411A (zh) * 2016-12-05 2019-09-17 校际微电子中心 Ge、SiGe或锗化物的洗涤方法

Also Published As

Publication number Publication date
US20160013047A1 (en) 2016-01-14
TWI517235B (zh) 2016-01-11
KR102150291B1 (ko) 2020-09-01
JP5861854B2 (ja) 2016-02-16
KR20150124948A (ko) 2015-11-06
TW201436023A (zh) 2014-09-16
TWI658507B (zh) 2019-05-01
TW201436010A (zh) 2014-09-16
CN105009258A (zh) 2015-10-28
JPWO2014133137A1 (ja) 2017-02-02
CN105009258B (zh) 2017-04-12

Similar Documents

Publication Publication Date Title
WO2014133137A1 (ja) 半導体基板洗浄システムおよび半導体基板の洗浄方法
EP2733724B1 (en) Method for cleaning metal gate semiconductor
US9399753B2 (en) Aqua regia and hydrogen peroxide HCL combination to remove Ni and NiPt residues
US20060266737A1 (en) Process for removal of metals and alloys from a substrate
JP5880860B2 (ja) 半導体基板の洗浄方法および洗浄システム
US8859431B2 (en) Process to remove Ni and Pt residues for NiPtSi application using chlorine gas
US20160099158A1 (en) Method for removing metal oxide
US8697573B2 (en) Process to remove Ni and Pt residues for NiPtSi applications using aqua regia with microwave assisted heating
JP5992150B2 (ja) 半導体基板製品の製造方法、これに用いられる薄膜除去液およびキット
TW201447042A (zh) 蝕刻液
JP6132082B2 (ja) 半導体基板の洗浄方法および洗浄システム
TW200304586A (en) Composite for stripping photoresist and the manufacturing method of semiconductor device using the same
US8513117B2 (en) Process to remove Ni and Pt residues for NiPtSi applications
TW200817849A (en) System using ozonated acetic anhydride to remove photoresist materials
JP2023519493A (ja) 化学物質を用いた基板処理方法
WO2023239495A1 (en) Methods for non-isothermal wet atomic layer etching

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756546

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015503050

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157021803

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14771890

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14756546

Country of ref document: EP

Kind code of ref document: A1