WO2014132862A1 - 活性炭シートの製造方法および活性炭シートへの電解液の含浸性を向上させる方法 - Google Patents

活性炭シートの製造方法および活性炭シートへの電解液の含浸性を向上させる方法 Download PDF

Info

Publication number
WO2014132862A1
WO2014132862A1 PCT/JP2014/053928 JP2014053928W WO2014132862A1 WO 2014132862 A1 WO2014132862 A1 WO 2014132862A1 JP 2014053928 W JP2014053928 W JP 2014053928W WO 2014132862 A1 WO2014132862 A1 WO 2014132862A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
sheet
carbon sheet
light irradiation
producing
Prior art date
Application number
PCT/JP2014/053928
Other languages
English (en)
French (fr)
Inventor
晶雅 仁田尾
Original Assignee
日本バルカー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本バルカー工業株式会社 filed Critical 日本バルカー工業株式会社
Priority to JP2015502884A priority Critical patent/JP6270811B2/ja
Priority to KR1020157021625A priority patent/KR102145646B1/ko
Priority to EP14756522.0A priority patent/EP2963664B1/en
Priority to CN201480009708.1A priority patent/CN105074856B/zh
Priority to US14/769,830 priority patent/US9859064B2/en
Publication of WO2014132862A1 publication Critical patent/WO2014132862A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a method for producing an activated carbon sheet such as an electrode for an electric double layer capacitor and a method for improving the impregnation property of an electrolytic solution into the activated carbon sheet such as an electrode for an electric double layer capacitor.
  • An electric double layer capacitor (hereinafter also referred to as “EDLC”) is a capacitor based on the accumulation of physical charges based on the electric double layer, and has a high output rapid charge / discharge compared with a secondary battery of chemical reaction. It has many advantages such as being possible and non-polluting, and is expected to be used in various applications from small ones for electronic devices to large ones such as car batteries.
  • An electrode film for EDLC is usually composed of a powdered electrode such as activated carbon, a conductive material, and a binder such as a fluororesin (Japanese Patent Laid-Open No. 2004-2105 (Patent Document 1)).
  • Patent Document 2 discloses a tetrafluoroethylene resin (polytetrafluoroethylene, hereinafter referred to as “PTFE”) on the surface of a sheet electrode in order to improve the impregnation property of the electrolyte into the sheet electrode. It is also described that the dense smooth layer containing a large amount of the material is destroyed to provide scratches on the surface of the sheet-like electrode.
  • PTFE tetrafluoroethylene resin
  • the sheet-like electrode is destroyed, and the sheet-like electrode falls off and changes in form (thickness, density, etc.). Stability can be compromised.
  • Patent Document 3 discloses a technique for EDLC in a hydrogen atmosphere or the like. By irradiating activated carbon, which is an electrode material, with electromagnetic waves, the functional group containing oxygen present on the surface of the activated carbon is liberated, and the EDLC with high capacity and stable performance is produced using the electrode material for EDLC thus produced. It is described that can be manufactured.
  • Patent Document 4 discloses a powder electrode in order to solve various problems caused by a binder such as PVDF adhering to the surface of activated carbon in the production of an electrode body.
  • the electrode functional material formed by kneading the material, binder, and solvent is applied to the surface of the metal foil, dried, and then laser-irradiated to maintain the binder function of each particle in a layered manner on the active material surface.
  • a technique for removing the adhering binder is described. Examples of this laser include an excimer laser.
  • Patent Documents 3 and 4 are intended to improve the impregnation property of the electrolytic solution into the electrode film for EDLC.
  • JP 2004-2105 A Japanese Examined Patent Publication No. 4-47449 JP 2008-205275 A JP 2002-237434 A
  • the present invention has been made in view of the problems in the prior art as described above, and provides a method for producing an activated carbon sheet having high electrolyte impregnation property and high mechanical strength. It aims at providing the method of improving the impregnation property of the electrolyte solution to an activated carbon sheet, maintaining mechanical strength high.
  • the present invention relates to the following [1] to [6], for example.
  • the accumulated irradiation amount on the sheet surface is 50 to 1000 mJ / cm on at least one surface of the activated carbon sheet containing activated carbon, a carbon conductive material, and a fibrous fluororesin binder, and the fluororesin is PTFE and / or modified PTFE.
  • an activated carbon sheet According to the method for producing an activated carbon sheet according to the present invention, it is possible to produce an activated carbon sheet having high electrolytic solution impregnation property and high mechanical strength.
  • the impregnation property of the electrolytic solution into the activated carbon sheet can be enhanced while maintaining the mechanical strength of the activated carbon sheet high.
  • the method for producing an activated carbon sheet according to the present invention includes a sheet preparation step and a subsequent light irradiation step.
  • a sheet containing activated carbon, a carbon conductive material, and a fibrous fluororesin binder is prepared.
  • Such a sheet can be produced, for example, by undergoing a sheet forming step of forming a mixture containing activated carbon, a carbon conductive material, and a fluororesin binder into a sheet shape while making the fluororesin into a fiber. .
  • the activated carbon the carbon conductive material, and the fluororesin binder, those conventionally used in electric double layer capacitor electrodes can be used.
  • Examples of the activated carbon include YP50F (manufactured by Kuraray Chemical Co., Ltd.), Maxsorb (manufactured by Kansai Thermal Chemical Co., Ltd.), and the like as commercial products.
  • the specific surface area of the activated carbon may be, for example, 1,000 to 2,500 m 2 / g.
  • the carbon conductive material includes carbon black.
  • Examples of the carbon black include acetylene black, channel black, furnace black, ketjen black, and the like. These may be used alone or in combination of two or more.
  • Commercially available products include Connexex CF (Continental Carbon, Conductive Furnace Black), Ketjen Black ECP600JD (Lion Corporation), Ketjen Black EC (Ketjen Black International, Conductive Furnace Black), Vulcan C (manufactured by Cabot Corporation, conductive furnace black), BLACKBLPEARLS 2000 (manufactured by Cabot Corp., conductive furnace black), Denka acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., acetylene black) and the like can be suitably used.
  • polytetrafluoroethylene PTFE
  • modified PTFE examples include modified PTFE obtained by copolymerizing tetrafluoroethylene and a small amount (for example, 0.5 mol% or less) of other monomers.
  • the binder may be granular, for example.
  • the binder When the binder is mixed with other components or rolled together with other components, it is easily fiberized by applying a shearing force.
  • the ratio of the activated carbon is, for example, 98 parts by weight or less, preferably 55 to 90 parts by weight, more preferably 60 to 80 parts by weight.
  • the proportion of the carbon conductive material is, for example, 1 part by weight or more, preferably 5 to 30 parts by weight, and the proportion of the fluororesin binder is 1 part by weight or more from the viewpoint of the strength of the activated carbon sheet (electrode film etc.). From the viewpoint of improving the impregnation property of the electrolyte and the like and improving the electrostatic capacity of the battery, it is preferably 2 to 30 parts by weight, more preferably 5 to 15 parts by weight.
  • the mixture can be prepared by mixing the activated carbon, the carbon conductive material, and the binder by a conventionally known method.
  • a molding aid may be further added to these components.
  • the molding aid examples include monohydric alcohols such as water, methanol and ethanol, and polyhydric alcohols such as ethylene glycol, propylene glycol and glycerin, and monohydric alcohols are preferred from the viewpoint of moldability.
  • the amount of the molding aid is preferably 80 parts by weight or more, more preferably 100 to 600 parts by weight with respect to 100 parts by weight of the total of the activated carbon, the carbon conductive material and the fluororesin binder. This molding aid is preferably removed by heating or the like when the mixture (kneaded material) is molded into a sheet or after.
  • the method for rolling the mixture (kneaded material) is not particularly limited.
  • the kneaded material is preformed into a rod shape or a plate shape by a method such as extrusion or rolling, and this is further rolled with a rolling roll.
  • molding in a sheet form by the method of doing etc. is mentioned.
  • the rolling roll temperature is preferably 20 to 100 ° C., more preferably 40 to 80 ° C.
  • the heating temperature is, for example, 100 to 200 ° C.
  • the heating time is, for example, 5 minutes to 5 hours.
  • the thickness of the sheet may be appropriately set according to the use of the activated carbon sheet. For example, if the use is an electrode film for EDLC, the thickness may be about 0.05 to 1 mm.
  • Light irradiation step light irradiation is performed on at least one surface of the sheet prepared in the sheet preparation step so that the integrated irradiation amount on the sheet surface is 50 to 1000 mJ / cm 2 .
  • Light irradiation may be performed on both sides of the sheet.
  • the integrated irradiation amount on the sheet surface is preferably 100 from the viewpoint of increasing the impregnating property of the electrolytic solution into the sheet while suppressing a decrease in the mechanical strength of the sheet when the ratio of the amount of the fluororesin binder contained in the sheet is constant. ⁇ 500 mJ / cm 2 .
  • Irradiation light UV light Irradiation light wavelength: 10 to 300 nm, more preferably 100 to 250 nm, still more preferably 150 to 200 nm; Atmosphere for light irradiation: inert gas (eg, rare gas such as helium gas or argon gas, nitrogen gas) atmosphere, atmosphere containing oxygen gas (O 2 ) and / or ozone gas, more preferably oxygen gas (O 2 ) An inert gas atmosphere containing 20% by volume or less (preferably 0.01 to 10% by volume).
  • inert gas eg, rare gas such as helium gas or argon gas, nitrogen gas
  • O 2 oxygen gas
  • O 2 oxygen gas
  • An inert gas atmosphere containing 20% by volume or less (preferably 0.01 to 10% by volume).
  • Examples of the light source for the light irradiation include an excimer lamp, a low-pressure mercury lamp, a YAG laser, and an excimer laser, and an excimer lamp and a low-pressure mercury lamp are preferable from the viewpoint of irradiating light over a wide area of the sheet.
  • the excimer lamp is more preferable because it can be processed at low temperature, the cost is low, and the maintenance is excellent.
  • the integrated irradiation amount on the sheet surface is smaller than the above range, the impregnation property of the electrolytic solution (particularly water and) into the activated carbon sheet tends not to be improved. Tends to decrease.
  • an activated carbon sheet having PTFE (or modified PTFE) as a fluororesin binder fiberization of the fluororesin binder proceeds in the production process in the form of a sheet-like rolled product containing the raw material mixture, particularly in the vicinity of the surface thereof.
  • the proportion of the fluororesin binder fibers on the surface of the activated carbon sheet is relatively high, and the water repellency on the surface of the activated carbon sheet is increased.
  • the electrode film (in the activated carbon sheet) It is thought that the infiltration of the electrolyte was hindered.
  • the PTFE (including modified PTFE) molecules only near the surface of the activated carbon sheet are cleaved by the light irradiation (that is, the PTFE skin layer is destroyed, or the PTFE fiber is partially broken). If oxygen gas and / or ozone gas is contained in the atmosphere during the light irradiation, active oxygen is generated from the oxygen gas and / or ozone gas, and this active oxygen causes the activated carbon sheet surface.
  • Oxygen-containing hydrophilic functional groups for example, hydroxyl groups
  • Oxygen-containing hydrophilic functional groups for example, hydroxyl groups
  • an activated carbon sheet that is excellent in balance between the impregnation property and the mechanical strength of an electrolytic solution (for example, an electrolytic solution for EDLC).
  • an electrolytic solution for example, an electrolytic solution for EDLC
  • an electrode sheet for EDLC is manufactured as an activated carbon sheet by the manufacturing method according to the present invention, the electrolyte solution can be absorbed quickly when the electrode sheet is incorporated into a battery, so that the time required for assembling work in battery production is shortened. it can.
  • the activated carbon sheet can be manufactured, for example, through the above-described sheet forming process. Moreover, the detail of the conditions of light irradiation is the same as the conditions of light irradiation in the manufacturing method of the activated carbon sheet mentioned above.
  • the relative tensile strength defined by the following formula is preferable. Is 90% or more, more preferably 95% or more, and the relative impregnation time defined by the following formula is 1.0M TEA-BF4 / PC solution, the ionic liquid “IL-IM1” (more details It is described in the column of Examples.) Or water, it can be 90% or less, more preferably 60% or less.
  • ⁇ Relative tensile strength (%) (Tensile strength of sheet after light irradiation) / (Tensile strength of sheet before light irradiation)
  • the value of the tensile strength is obtained when an activated carbon sheet is cut into a strip shape having a width of 10 mm and a length of 60 mm to prepare a test piece, and measured by a tensile tester (manufactured by Instron) or by an equivalent method. Is the value of the tensile strength.
  • ⁇ Relative impregnation time (%) (Impregnation time of electrolyte into sheet after light irradiation) / (Impregnation time of electrolyte into sheet before light irradiation)
  • the impregnation time is determined by dropping 9 ⁇ L of electrolytic solution at a time onto the surface of the activated carbon sheet (or the surface on the light-irradiated side in the case of a light-irradiated sheet). Is the time until the gloss of the sheet disappears (that is, until the electrolyte solution disappears from the sheet surface).
  • Relative impregnation time (%) (Impregnation time of sheet after light irradiation of Example or Comparative Example) / (Impregnation time of sheet before light irradiation of Example or Comparative Example)
  • an organic electrolytic solution (trade name “1.0M TEA-BF4 / PC”, manufactured by Toyo Gosei Co., Ltd.) (hereinafter referred to as “PC”)
  • an ionic liquid trade name “ IL-IM1 ”(manufactured by Guangei Chemical Industry Co., Ltd.) (hereinafter referred to as“ EMI-BF4 ”) and three types of water were used.
  • Relative tensile strength (%) (Tensile strength after light irradiation of the sheet of Example or Comparative Example) / (Tensile strength before light irradiation of the sheet of Example or Comparative Example) (Powder removal)
  • Powder hardly adheres to fingers
  • Powder adheres as the fingers become black
  • Example 1 An A4 size sheet was cut from the sheet obtained in Production Example 1, and one surface thereof was irradiated with light by an excimer lamp. The details of the light irradiation conditions were as follows.
  • Example 2 A sheet was obtained in the same manner as in Production Example 1 except that the amount of PTFE was changed to 15 parts by weight and the amount of activated carbon was changed to 70 parts by weight. The same operation as in Example 1 was performed except that this sheet was used instead of the sheet obtained in Production Example 1. Table 1 shows the evaluation results of the sheet after light irradiation.
  • Example 3 A sheet was obtained by performing the same operation as in Production Example 1 except that the amount of PTFE was changed to 30 parts by weight and the amount of activated carbon was changed to 55 parts by weight. The same operation as in Example 1 was performed except that this sheet was used instead of the sheet obtained in Production Example 1. Table 1 shows the evaluation results of the sheet after light irradiation.
  • Example 4 The same operation as in Example 1 was performed except that the integrated dose was changed to 50 mJ / cm 2 .
  • Table 1 shows the evaluation results of the sheet after light irradiation.
  • Example 5 The same operation as in Example 1 was performed except that the integrated dose was changed to 1000 mJ / cm 2 .
  • Table 1 shows the evaluation results of the sheet after light irradiation.
  • Example 1 The same operation as in Example 1 was performed except that the integrated dose was changed to 1200 mJ / cm 2 .
  • Table 1 shows the evaluation results of the sheet after light irradiation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

[課題]電解液の含浸性が高く、機械強度も高い活性炭シートを製造する方法を提供すること。 [解決手段]活性炭と、炭素導電材と、繊維状フッ素樹脂バインダーとを含み、該フッ素樹脂がポリテトラフルオロエチレンおよび/または変性ポリテトラフルオロエチレンであるシートを準備するシート準備工程、および前記シートの少なくとも一方の面に、シート表面における積算照射量が50~1000mJ/cm2となるように光照射を行う光照射工程を含む活性炭シートの製造方法。

Description

活性炭シートの製造方法および活性炭シートへの電解液の含浸性を向上させる方法
 本発明は、電気二重層キャパシタ用電極等の活性炭シートの製造方法、および電気二重層キャパシタ用電極等の活性炭シートへの電解液の含浸性を向上させる方法に関する。
 電気二重層キャパシタ(以下「EDLC」ともいう。)は、電気二重層に基づく物理的な電荷の蓄積によるコンデンサであって、化学的反応の二次電池と比べて高出力な急速充電・放電が可能で無公害性であるなど、多くの利点を有しており、電子機器用などの小型のものから車のバッテリーなどの大型のものまで、多種の用途への利用が期待されている。EDLC用の電極膜は、通常、活性炭等の粉末状電極、導電材、およびフッ素樹脂等のバインダーなどから構成されている(特開2004-2105号公報(特許文献1)等)。
 EDLCの性能は、この電極膜への電解液の含浸量に影響される。特公平4-47449号公報(特許文献2)には、シート状電極に対する電解液の含浸性を高めるために、シート状電極表面の特に四フッ化エチレン樹脂(ポリテトラフルオロエチレン、以下「PTFE」ともいう。)を多く含む緻密な平滑層を破壊して、シート状電極表面に傷を設けることが記載されている。
 しかしながら、この技術を用いた場合には、シート状電極の破壊を招き、シート状電極の粉落ち、形態(厚さ・密度等)変化が生じ、シート状電極やこれを用いたEDLCの電気的安定性が損なわれる可能性がある。
 一方、EDLC用の電極膜に電磁波を照射してその特性を改善させる技術が知られており、たとえば特開2008-205275号公報(特許文献3)には、水素雰囲気等の中で、EDLC用電極材料である活性炭に電磁波を照射することによって、活性炭の表面に存在する酸素を含む官能基を遊離させ、このようにして製造されたEDLC用電極材料を用い、高容量で性能が安定したEDLCを製造できることが記載されている。
 また、特開2002-237434号公報(特許文献4)には、電極体を製造するにあたって活性炭表面にPVDFなどのバインダーが層状に付着することにより引き起こされる諸問題を解決するために、粉末状電極材料、バインダー、および溶媒を混練してなる電極機能材を金属箔表面に塗布し、乾燥した後、レーザー照射を行うことによって、各粒子のバインダー機能を保持しながらも、活物質表面に層状に付着したバインダーを除去するという技術が記載されている。このレーザーとしてはエキシマレーザーなどが挙げられている。
 ただし、特許文献3、4に開示された技術は、いずれもEDLC用電極膜への電解液の含浸性の改善を意図したものではない。
特開2004-2105号公報 特公平4-47449号公報 特開2008-205275号公報 特開2002-237434号公報
 本発明は、上述したような従来技術における課題に鑑みてなされたものであって、電解液の含浸性が高く、機械強度も高い活性炭シートを製造する方法を提供すること、および、活性炭シートの機械強度を高く維持しつつ、活性炭シートへの電解液の含浸性を高める方法を提供することを目的としている。
 本発明は、たとえば以下の[1]~[6]に関する。
 [1]
 活性炭と、炭素導電材と、繊維状フッ素樹脂バインダーとを含み、該フッ素樹脂がポリテトラフルオロエチレンおよび/または変性ポリテトラフルオロエチレンであるシートを準備するシート準備工程、および
 前記シートの少なくとも一方の面に、シート表面における積算照射量が50~1000mJ/cm2となるように光照射を行う光照射工程
を含む活性炭シートの製造方法。
 [2]
 前記光照射が、酸素および/またはオゾンの存在下でのエキシマランプによる紫外光照射である前記[1]に記載の活性炭シートの製造方法。
 [3]
 前記活性炭シートがEDLC用電極である、前記[1]または[2]に記載の活性炭シートの製造方法。
 [4]
 活性炭と、炭素導電材と、繊維状フッ素樹脂バインダーとを含み、該フッ素樹脂がPTFEおよび/または変性PTFEである活性炭シートの少なくとも一方の面に、シート表面における積算照射量が50~1000mJ/cm2となるように光照射を行う、活性炭シートへの電解液の含浸性を向上させる方法。
 [5]
 前記光照射が、酸素および/またはオゾンの存在下でのエキシマランプによる紫外光照射である前記[4]に記載の活性炭シートへの電解液の含浸性を向上させる方法。
 [6]
 前記活性炭シートがEDLC用電極である、前記[4]または[5]に記載の活性炭シートへの電解液の含浸性を向上させる方法。
 本発明に係る活性炭シートの製造方法によれば、電解液の含浸性が高く、機械強度も高い活性炭シートを製造することができる。
 また、本発明に係る活性炭シートへの電解液の含浸性を向上させる方法によれば、活性炭シートの機械強度を高く維持しつつ、活性炭シートへの電解液の含浸性を高めることができる。
 以下、本発明をより詳細に説明する。
          [活性炭シートの製造方法]
 本発明に係る活性炭シートの製造方法は、シート準備工程およびその後の光照射工程を含んでいる。
 <シート準備工程>
 前記シート準備工程では、活性炭と、炭素導電材と、繊維状フッ素樹脂バインダーとを含むシートを準備する。このようなシートは、たとえば、活性炭と、炭素導電材と、フッ素樹脂バインダーとを含む混合物を、前記フッ素樹脂を繊維化させつつシート状に成形するシート形成工程を経ることにより製造することができる。
 前記活性炭、前記炭素導電材および前記フッ素樹脂バインダーとしては、電気二重層キャパシタ用電極において従来使用されているものを使用することができる。
 前記活性炭としては、市販品であれば、YP50F(クラレケミカル社製)、Maxsorb(関西熱化学社製)などが挙げられる。前記活性炭の比表面積は、たとえば1,000~2,500m2/gであってもよい。
 前記炭素導電材としては、カーボンブラックが挙げられる。
 前記カーボンブラックとしては、アセチレンブラック、チャネルブラック、ファーネスブラック、ケッチェンブラックなどが挙げられ、これらは1種単独で用いてもよく、2種以上を併用してもよい。市販品であれば、コンチネックスCF(コンチネンタルカーボン社製、コンダクティブファーネスブラック)、ケッチェンブラックECP600JD(ライオン(株)製)、ケッチェンブラックEC(ケッチェンブラックインターナショナル社製、コンダクティブファーネスブラック)、バルカンC(キャボット社製、コンダクティブファーネスブラック)、BLACK PEARLS 2000(キャボット社製、コンダクティブファーネスブラック)、デンカアセチレンブラック(電気化学工業(株)製、アセチレンブラック)などを好適に用いることができる。
 前記バインダーとしては、容易に繊維化され、バインダーとしての能力が高いことからポリテトラフルオロエチレン(PTFE)または変性PTFEが用いられる。変性PTFEとしては、テトラフルオロエチレンおよび少量(たとえば0.5モル%以下)の他の単量体を共重合させて得られる変性PTFEが挙げられる。
 前記バインダーは、たとえば粒状であってもよい。
 前記バインダーは、他の成分と混合される際に、あるいは他の成分と共に圧延される際に、せん断力が加えられることによって容易に繊維化される。
 前記活性炭、前記炭素導電材および前記バインダーの合計量を100重量部とすると、前記活性炭の割合はたとえば98重量部以下、好ましくは55~90重量部、さらに好ましくは60~80重量部であり、前記炭素導電材の割合は、たとえば1重量部以上、好ましくは5~30重量部であり、前記フッ素樹脂バインダーの割合は、活性炭シート(電極膜等)の強度の観点からは1重量部以上であり、電解液等の含浸性の向上および電池の静電容量向上の観点から、好ましくは2~30重量部、さらに好ましくは5~15重量部である。
 前記混合物は、前記活性炭、前記炭素導電材および前記バインダーを従来公知の方法で混合することにより調製できる。
 また前記各成分を混合する際には、これらの成分にさらに成形助剤を配合してもよい。
 前記成形助剤としては、水、メタノール、エタノール等の一価アルコール、エチレングリコール、プロピレングリコール、グリセリン等の多価アルコールなどが挙げられ、成型性の観点から一価アルコールが好ましい。
 また、前記成形助剤の量は、前記活性炭、前記炭素導電材および前記フッ素樹脂バインダーの合計100重量部に対して、好ましくは80重量部以上、より好ましくは100~600重量部である。この成形助剤は、好ましくは、これらの混合物(混練物)をシート状に成形する際またはその後に、加熱等により除去される。
 前記混合物(混練物)を圧延するための方法は特に限定されないが、その例としては、混練物を押出あるいは圧延などの方法によりロッド状あるいは板状に予備成形し、これをさらに圧延ロールで圧延するなどの方法でシート状に成形する方法などが挙げられる。成形に圧延ロールを使用する場合には、圧延ロール温度は、好ましくは20~100℃、より好ましくは40~80℃である。
 混合物(混練物)を圧延する工程の後に加熱により前記成形助剤を除去する場合、加熱温度は、たとえば100~200℃、加熱時間は、たとえば5分間~5時間である。
 シートの厚さは、活性炭シートの用途に応じて適宜設定すれば良く、たとえば用途がEDLC用電極膜であれば、その厚さは0.05~1mm程度であってもよい。
 <光照射工程>
 前記光照射工程では、シート準備工程で準備されたシートの少なくとも一方の面に、シート表面における積算照射量が50~1000mJ/cm2となるように光照射を行う。シートの両面に光照射を行ってもよい。
 シート表面における積算照射量は、シートに含まれるフッ素樹脂バインダー量の割合が一定の場合にシートの機械強度の低下を抑えつつシートへの電解液の含浸性を高めるという観点からは、好ましくは100~500mJ/cm2である。
 光照射のその他の好ましい条件は以下のとおりである。
  照射光:紫外光
  照射光の波長:10~300nm、より好ましくは100~250nm、さらに好ましくは150~200nm;
 光照射の際の雰囲気:不活性ガス(例:ヘリウムガス、アルゴンガス等の希ガス、窒素ガス)雰囲気、酸素ガス(O2)および/またはオゾンガスを含有する雰囲気、より好ましくは酸素ガス(O2)を20体積%以下(好ましくは0.01~10体積%)含有する不活性ガス雰囲気。
 また、前記光照射の光源としては、エキシマランプ、低圧水銀ランプ、YAGレーザー、エキシマレーザーなどが挙げられ、シートの広範囲に光照射する観点からエキシマランプおよび低圧水銀ランプが好ましく、高効率、瞬時点灯、低温処理が可能であること、コストが低いこと、メンテナンス性に優れることからエキシマランプがさらに好ましい。
 上述したシート表面における積算照射量が前記範囲よりも小さいと活性炭シートへの電解液(特に、水および)の含浸性を高められない傾向があり、前記範囲よりも大きいと活性炭シートの機械的強度が低下する傾向がある。
 PTFE(あるいは変性PTFE)をフッ素樹脂バインダーとして有する活性炭シートにおいては、その製造過程で、原料混合物を含有するシート状の圧延物、特にその表面付近において、フッ素樹脂バインダーの繊維化が進行する。その結果、活性炭シート表面のフッ素樹脂バインダー繊維の存在割合が比較的高くなり、活性炭シート表面の撥水性が高くなり、これにより、従来のEDLC用電極膜においては、電極膜(活性炭シート内)への電解液の浸入が妨げられていたと考えられる。
 一方、本発明の活性炭シートにおいては、前記光照射により、活性炭シートの表面付近のみのPTFE(変性PTFEも含む。)分子が開裂し(つまり、PTFEスキン層が破壊され、ないしPTFE繊維が部分的に切断され)、また前記光照射の際の雰囲気に酸素ガスおよび/またはオゾンガスが含まれる場合であれば、前記酸素ガスおよび/またはオゾンガスから活性酸素が発生し、この活性酸素により活性炭シート表面に酸素を含有する親水性官能基(たとえば水酸基)が付与され、これにより活性炭シートの含浸性が改善され、かつ、活性炭シート内部のPTFE分子は開裂されないため、活性炭シートの機械強度は保持されるものと推定される。
 前記光照射工程を経ることにより、活性炭シートの機械的強度を維持しつつ、活性炭シートへの電解液の含浸性を向上させることができる。
 したがって、本発明の製造方法によれば、電解液(たとえば、EDLC用の電解液)の含浸性および機械強度が共にバランス良く優れる活性炭シートを製造することができる。
 また、本発明に係る製造方法によって、活性炭シートとしてEDLC用の電極シートを製造すれば、該電極シートを電池に組み込む際に電解液を素早く吸収できるため、電池製造において組み込み作業に要する時間を短縮できる。
    [活性炭シートへの電解液の含浸性を向上させる方法]
 本発明に係る活性炭シートへの電解液の含浸性を向上させる方法においては、活性炭と、炭素導電材と、PTFEおよび変性PTFEから選ばれるフッ素樹脂バインダーとを含む活性炭シートの少なくとも一方の面に光照射を行う。
 前記活性炭シートは、たとえば、上述したシート形成工程を経ることにより製造することができる。また、光照射の条件の詳細は、上述した活性炭シートの製造方法における光照射の条件と同様である。
 本発明に係る方法によれば、活性炭シートの機械強度を高く維持しつつ、活性炭シートへの電解液の含浸性を高めることができ、具体的には下記式で定義される相対引張強度を好ましくは90%以上、さらに好ましくは95%以上としつつ、下記式で定義される相対含浸時間を、下記電解液が1.0M TEA-BF4/PC溶液、イオン液体「IL-IM1」(以上、詳細は実施例の欄に記載する。)または水のいずれかである場合に、90%以下、さらに好ましくは60%以下とすることができる。
 ・相対引張強度(%)
 =(光照射後のシートの引張強度)/(光照射前のシートの引張強度)
 前記引張強度の値は、活性炭シートを、幅10mm、長さ60mmの短冊状に切断して試験片を作製し、引張試験機(インストロン社製)により測定、あるいは同等の方法により測定した場合の引張強度の値である。
 ・相対含浸時間(%)
 =(光照射後のシートへの電解液の含浸時間)/(光照射前のシートへの電解液の含浸時間)
 前記含浸時間は、活性炭シートの表面(光照射後のシートであれば、光照射された側の表面)に、9μLの電解液を一度に滴下してから、電解液がシートに染み込み、シート表面の光沢がなくなるまで(すなわち、シート表面から電解液が消失するまで)の時間である。
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
 <測定方法>
 (含浸性)
 製造例、実施例または比較例で製造された各シートに、スポイトで9μLの電解液を一度に滴下してから、電解液がシートに染み込み、シート表面の光沢がなくなるまで(すなわち、シート表面から電解液が消失するまで)の時間(以下「含浸時間」ともいう。)を計測し、下記式で定義される相対含浸時間を求めた。
  相対含浸時間(%)
 =(実施例または比較例の光照射後のシートの含浸時間)/(実施例または比較例の光照射前のシートの含浸時間)
 なお、電解液としては、有機系電解液(商品名「1.0M TEA-BF4/PC」、東洋合成工業(株)製)(以下「PC」と記載する。)、イオン性液体(商品名「IL-IM1」、広栄化学工業(株)製)(以下「EMI-BF4」と記載する。)および水の3種類を用いた。
 (機械的強度)
 製造例、実施例または比較例で製造された各シートを、幅10mm、長さ60mmの短冊状に切断して試験片を作製し、引張試験機(インストロン製)により各試験片の引張強度を測定し、下記式で定義される相対引張強度を求めた。
  相対引張強度(%)
 =(実施例または比較例のシートの光照射後の引張強度)/(実施例または比較例のシートの光照射前の引張強度)
 (粉落ち性)
 実施例または比較例で製造された各シートを指で触れ、下記の基準に基づいて評価を行った。
  ○:粉体が指にほとんど付着しない
  ×:粉体で指が黒くなるほど付着する
 [製造例1]
 80重量部の活性炭(平均粒径:25μm、ヤシ殻活性炭)と、15重量部の導電性カーボンブラック(ケッチェンブラックインターナショナル社製、ケッチェンブラックEC)と、5重量部のPTFE(ダイキン工業(株)製 ポリフロンD-1E)とを混合し、これらの合計量100重量部に対して150重量部の成形助剤(エタノール)をさらに添加して20℃で混練した。得られた混練物を、ロール表面温度が40℃のロールプレスを用いて厚さが0.5mmとなるように圧延してシートを得て、さらにこのシートを150℃で1時間加熱して乾燥させた。
 [実施例1]
 製造例1で得られたシートからA4サイズのシートを切り取り、その一方の面にエキシマランプにより光照射した。光照射の条件の詳細は以下のとおりであった。
 光源(エキシマランプ(株式会社エム・ディ・エキシマ社製MEIRH-N-1-330))からシートまでの距離:2mm
 照射光:紫外光(波長:155~195nm(極大170nm))
 シート移動速度:1m/分
 雰囲気:窒素ガス50L/分および大気3L/分の混合気流
 シート表面における積算照射量:130mJ/cm2
 光照射後のシートの評価結果を表1に示す。
 [実施例2]
 PTFEの量を15重量部、活性炭の量を70重量部に変更したこと以外は製造例1と同様の操作を行いシートを得た。このシートを製造例1で得られたシートに替えて用いたこと以外は実施例1と同様の操作を行った。光照射後のシートの評価結果を表1に示す。
 [実施例3]
 PTFEの量を30重量部、活性炭の量を55重量部に変更したこと以外は製造例1と同様の操作を行いシートを得た。このシートを製造例1で得られたシートに替えて用いたこと以外は実施例1と同様の操作を行った。光照射後のシートの評価結果を表1に示す。
 [実施例4]
 積算照射量を50mJ/cm2に変更したこと以外は実施例1と同様の操作を行った。光照射後のシートの評価結果を表1に示す。
 [実施例5]
 積算照射量を1000mJ/cm2に変更したこと以外は実施例1と同様の操作を行った。光照射後のシートの評価結果を表1に示す。
 [比較例1]
 積算照射量を1200mJ/cm2に変更したこと以外は実施例1と同様の操作を行った。光照射後のシートの評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001

Claims (6)

  1.  活性炭と、炭素導電材と、繊維状フッ素樹脂バインダーとを含み、該フッ素樹脂がポリテトラフルオロエチレンおよび/または変性ポリテトラフルオロエチレンであるシートを準備するシート準備工程、および
     前記シートの少なくとも一方の面に、シート表面における積算照射量が50~1000mJ/cm2となるように光照射を行う光照射工程
    を含む活性炭シートの製造方法。
  2.  前記光照射が、酸素ガスおよび/またはオゾンガスの存在下でのエキシマランプによる紫外光照射である請求項1に記載の活性炭シートの製造方法。
  3.  前記活性炭シートが電気二重層キャパシタ用電極である、請求項1または2に記載の活性炭シートの製造方法。
  4.  活性炭と、炭素導電材と、繊維状フッ素樹脂バインダーとを含み、該フッ素樹脂がポリテトラフルオロエチレンおよび/または変性ポリテトラフルオロエチレンである活性炭シートの少なくとも一方の面に、シート表面における積算照射量が50~1000mJ/cm2となるように光照射を行う、活性炭シートへの電解液の含浸性を向上させる方法。
  5.  前記光照射が、酸素ガスおよび/またはオゾンガスの存在下でのエキシマランプによる紫外光照射である請求項4に記載の活性炭シートへの電解液の含浸性を向上させる方法。
  6.  前記活性炭シートが電気二重層キャパシタ用電極である、請求項4または5に記載の活性炭シートへの電解液の含浸性を向上させる方法。
PCT/JP2014/053928 2013-02-26 2014-02-19 活性炭シートの製造方法および活性炭シートへの電解液の含浸性を向上させる方法 WO2014132862A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015502884A JP6270811B2 (ja) 2013-02-26 2014-02-19 活性炭シートの製造方法および活性炭シートへの電解液の含浸性を向上させる方法
KR1020157021625A KR102145646B1 (ko) 2013-02-26 2014-02-19 활성탄 시트의 제조방법 및 활성탄 시트로의 전해액의 함침성을 향상시키는 방법
EP14756522.0A EP2963664B1 (en) 2013-02-26 2014-02-19 Method for producing activated carbon sheet and method for improving impregnation of activated carbon sheet with electrolyte solution
CN201480009708.1A CN105074856B (zh) 2013-02-26 2014-02-19 活性炭片材的制造方法及提高电解液对活性炭片材的含浸性的方法
US14/769,830 US9859064B2 (en) 2013-02-26 2014-02-19 Method for producing activated carbon sheet and method for improving impregnation of activated carbon sheet with electrolyte solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013035848 2013-02-26
JP2013-035848 2013-02-26

Publications (1)

Publication Number Publication Date
WO2014132862A1 true WO2014132862A1 (ja) 2014-09-04

Family

ID=51428133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053928 WO2014132862A1 (ja) 2013-02-26 2014-02-19 活性炭シートの製造方法および活性炭シートへの電解液の含浸性を向上させる方法

Country Status (7)

Country Link
US (1) US9859064B2 (ja)
EP (1) EP2963664B1 (ja)
JP (1) JP6270811B2 (ja)
KR (1) KR102145646B1 (ja)
CN (1) CN105074856B (ja)
TW (1) TWI626213B (ja)
WO (1) WO2014132862A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020226620A1 (en) * 2019-05-06 2020-11-12 Michael Kwabena Opoku Method of making nanomaterials from a renewable carbon source

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149114A (ja) * 1984-01-13 1985-08-06 松下電器産業株式会社 キヤパシタまたは電池用電極の製造法
JPH0447449B2 (ja) 1987-12-10 1992-08-04 Erunaa Kk
JPH09129516A (ja) * 1995-11-01 1997-05-16 Isuzu Motors Ltd 電気二重層コンデンサおよびその電極の製造方法
JP2002237434A (ja) 2001-02-08 2002-08-23 Sanshin:Kk 電極体の製造方法
JP2003508906A (ja) * 1999-08-30 2003-03-04 エナジィ・ストーリッジ・システムズ・プロプライエタリー・リミテッド 電荷蓄積装置
JP2004002105A (ja) 2002-05-31 2004-01-08 Kuraray Co Ltd 活性炭シート及びその製造方法、並びに分極性電極及び電気二重層キャパシタ
JP2008205275A (ja) 2007-02-21 2008-09-04 Mitsubishi Electric Corp 電気二重層キャパシタ用電極材料の製造方法、電気二重層キャパシタ用電極、電気二重層キャパシタ、及び電気二重層キャパシタ電極用活性炭
JP2013030694A (ja) * 2011-07-29 2013-02-07 Nichias Corp 電気二重層キャパシタ用導電性シート

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447449A (ja) 1990-06-13 1992-02-17 Hitachi Ltd 文書作成装置
JPH1197310A (ja) 1997-09-22 1999-04-09 Isuzu Advanced Engineering Center Ltd 電気二重層コンデンサ用電極の製造方法
JP4266420B2 (ja) * 1998-12-10 2009-05-20 クレハエラストマー株式会社 カーボンシートおよびその製法
US7160615B2 (en) * 2002-11-29 2007-01-09 Honda Motor Co., Ltd. Granules for formation of an electrode of an electric double layer capacitor, manufacturing method thereof, electrode sheet, polarized electrode, and electric double layer capacitor using a polarized electrode
CN100364021C (zh) * 2003-11-11 2008-01-23 石油大学(北京) 双电层电容器及其制备方法
US7245478B2 (en) * 2004-08-16 2007-07-17 Maxwell Technologies, Inc. Enhanced breakdown voltage electrode
JP2007258611A (ja) * 2006-03-24 2007-10-04 Asahi Glass Co Ltd 電気二重層キャパシタ用電極の製造方法及び該電極を用いた電気二重層キャパシタの製造方法
US8906548B2 (en) 2009-10-07 2014-12-09 Miltec Corporation Actinic and electron beam radiation curable electrode binders and electrodes incorporating same
US20150062779A1 (en) * 2013-08-30 2015-03-05 Corning Incorporated Edlc electrode and manufacturing process thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149114A (ja) * 1984-01-13 1985-08-06 松下電器産業株式会社 キヤパシタまたは電池用電極の製造法
JPH0447449B2 (ja) 1987-12-10 1992-08-04 Erunaa Kk
JPH09129516A (ja) * 1995-11-01 1997-05-16 Isuzu Motors Ltd 電気二重層コンデンサおよびその電極の製造方法
JP2003508906A (ja) * 1999-08-30 2003-03-04 エナジィ・ストーリッジ・システムズ・プロプライエタリー・リミテッド 電荷蓄積装置
JP2002237434A (ja) 2001-02-08 2002-08-23 Sanshin:Kk 電極体の製造方法
JP2004002105A (ja) 2002-05-31 2004-01-08 Kuraray Co Ltd 活性炭シート及びその製造方法、並びに分極性電極及び電気二重層キャパシタ
JP2008205275A (ja) 2007-02-21 2008-09-04 Mitsubishi Electric Corp 電気二重層キャパシタ用電極材料の製造方法、電気二重層キャパシタ用電極、電気二重層キャパシタ、及び電気二重層キャパシタ電極用活性炭
JP2013030694A (ja) * 2011-07-29 2013-02-07 Nichias Corp 電気二重層キャパシタ用導電性シート

Also Published As

Publication number Publication date
JPWO2014132862A1 (ja) 2017-02-02
US9859064B2 (en) 2018-01-02
EP2963664A4 (en) 2016-11-23
TW201442955A (zh) 2014-11-16
EP2963664B1 (en) 2018-04-11
KR20150125929A (ko) 2015-11-10
CN105074856A (zh) 2015-11-18
KR102145646B1 (ko) 2020-08-18
TWI626213B (zh) 2018-06-11
CN105074856B (zh) 2018-06-26
US20160005550A1 (en) 2016-01-07
JP6270811B2 (ja) 2018-01-31
EP2963664A1 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
To et al. Ultrahigh surface area three-dimensional porous graphitic carbon from conjugated polymeric molecular framework
JP5969126B2 (ja) キャパシタ用電極材及びその製造方法、並びに電気二重層キャパシタ
EP3297075A1 (en) Carbon material, carbon material-active material composite, electrode material for lithium-ion secondary battery, and lithium-ion secondary battery
EP2202829A1 (en) Nonaqueous electrolyte battery
JP2006261599A (ja) 電気二重層キャパシタの製造方法
JPWO2017111132A1 (ja) 全固体二次電池、全固体二次電池用粒子、全固体二次電池用固体電解質組成物および全固体二次電池用電極シートならびにこれらの製造方法
WO2018062285A1 (ja) 炭素材料、キャパシタ用電極シート及びキャパシタ
Devi et al. Surface modification of reduced graphene oxide‐polyaniline nanotubes nanocomposites for improved supercapacitor electrodes
JP6270811B2 (ja) 活性炭シートの製造方法および活性炭シートへの電解液の含浸性を向上させる方法
JP2023549248A (ja) 有機溶媒を使用しない湿式プロセスでの自立型電極膜の製造方法
JP5975953B2 (ja) 電気二重層キャパシタ用電極膜の製造方法
KR101956993B1 (ko) 고성능 다공성 활성탄 및 그의 제조방법
JP2017092303A (ja) 高電位キャパシタの電極用活性炭、その製造方法、及びその活性炭を備えた電気二重層キャパシタ
JP2007266248A (ja) 電気二重層キャパシタ用炭素材料、電気二重層キャパシタ用電極、及び電気二重層キャパシタ
KR102031398B1 (ko) 전기 이중층 커패시터용 전극막 및 그 제조방법
Adu et al. Flexible robust binder-free carbon nanotube membranes for solid state and microcapacitor application
JP2001084999A (ja) シート状炭素電極の作製法及び潤滑剤
JP2014232807A (ja) 電気二重層キャパシタ用電極シート
JP2010073793A (ja) 電気二重層キャパシタ用電極および電気二重層キャパシタ
KR102188709B1 (ko) 탄소 구조체 및 그 제조 방법
JP2006295153A (ja) 電気二重層キャパシタ用電極および電気二重層キャパシタ
JP2014131013A (ja) 電気二重層キャパシタ用電極およびその製造方法
JP2008252023A (ja) 電気二重層キャパシタ電極及びその製造方法
JP2017103322A (ja) 電極シート及び電気二重層キャパシタ
JP2009065081A (ja) 電気二重層キャパシタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480009708.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756522

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015502884

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157021625

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14769830

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014756522

Country of ref document: EP