WO2014129504A1 - 導電性ナノワイヤーネットワーク並びにこれを利用した導電性基板及び透明電極、並びにそれらの製造方法 - Google Patents
導電性ナノワイヤーネットワーク並びにこれを利用した導電性基板及び透明電極、並びにそれらの製造方法 Download PDFInfo
- Publication number
- WO2014129504A1 WO2014129504A1 PCT/JP2014/053931 JP2014053931W WO2014129504A1 WO 2014129504 A1 WO2014129504 A1 WO 2014129504A1 JP 2014053931 W JP2014053931 W JP 2014053931W WO 2014129504 A1 WO2014129504 A1 WO 2014129504A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- conductive
- electroconductive
- network
- transparent electrode
- Prior art date
Links
- 239000002070 nanowire Substances 0.000 title claims abstract description 84
- 239000000758 substrate Substances 0.000 title claims abstract description 72
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 239000002121 nanofiber Substances 0.000 claims abstract description 73
- 238000001523 electrospinning Methods 0.000 claims description 17
- 229910052782 aluminium Inorganic materials 0.000 claims description 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 12
- 239000011347 resin Substances 0.000 claims description 9
- 229920005989 resin Polymers 0.000 claims description 9
- 239000000835 fiber Substances 0.000 description 32
- -1 ITO Chemical class 0.000 description 30
- 239000000243 solution Substances 0.000 description 20
- 239000004020 conductor Substances 0.000 description 17
- 239000010408 film Substances 0.000 description 17
- 229920000139 polyethylene terephthalate Polymers 0.000 description 17
- 239000005020 polyethylene terephthalate Substances 0.000 description 17
- 238000002834 transmittance Methods 0.000 description 14
- 238000009987 spinning Methods 0.000 description 13
- 239000000126 substance Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 7
- 239000004793 Polystyrene Substances 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 7
- 229920000728 polyester Polymers 0.000 description 7
- 229920002223 polystyrene Polymers 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 239000004953 Aliphatic polyamide Substances 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 2
- 229920003231 aliphatic polyamide Polymers 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 229920005603 alternating copolymer Polymers 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 150000001925 cycloalkenes Chemical class 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 229920000578 graft copolymer Polymers 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001483 poly(ethyl methacrylate) polymer Polymers 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 229920000636 poly(norbornene) polymer Polymers 0.000 description 2
- 229920002627 poly(phosphazenes) Polymers 0.000 description 2
- 229920000548 poly(silane) polymer Polymers 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920000120 polyethyl acrylate Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 229920000193 polymethacrylate Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920000734 polysilsesquioxane polymer Polymers 0.000 description 2
- 229920001021 polysulfide Polymers 0.000 description 2
- 239000005077 polysulfide Substances 0.000 description 2
- 150000008117 polysulfides Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 229920005604 random copolymer Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229920005573 silicon-containing polymer Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 229910001935 vanadium oxide Inorganic materials 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical compound [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
- H05K1/092—Dispersed materials, e.g. conductive pastes or inks
- H05K1/097—Inks comprising nanoparticles and specially adapted for being sintered at low temperature
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0412—Digitisers structurally integrated in a display
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
- H01B1/023—Alloys based on aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022466—Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/13439—Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04102—Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04103—Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/05—Flexible printed circuits [FPCs]
Definitions
- the present invention relates to a conductive nanowire network using nanofibers. Moreover, this invention relates to the electroconductive board
- Transparent electrodes are indispensable elements for display devices such as flat-screen TVs, mobile phones, smartphones, tablets, etc., touch panels, solar cells, electroluminescence elements, electromagnetic shields, functional glasses, and the like.
- ITO indium tin oxide
- Patent Document 1 proposes a transparent conductor obtained by patterning a conductive layer containing a metal-based nanowire material and a method for manufacturing the same as a new transparent conductive material replacing ITO. Further, a transparent conductive film having a transparent conductive layer containing a fibrous conductive substance such as a carbon nanotube or a conductive polymer has been studied, and is described in, for example, Patent Document 2.
- Patent Documents 1 and 2 In order to eliminate the anisotropy of characteristics in the transparent conductive film represented by Patent Documents 1 and 2, anisotropy does not occur in the characteristics of the transparent conductive film by forming a regular conductive metal mesh pattern.
- a transparent conductive film having been made has been studied (Patent Document 3). However, since the conductive metal mesh pattern is regular, there is an essential problem that moire tends to occur.
- the present invention solves the above problems all at once, and provides a conductive nanowire network that can be suitably used for an electronic device, and a conductive substrate and transparent electrode using the conductive nanowire network at a low cost by a simple process.
- the purpose is to do.
- the present inventors applied continuous nanofibers that are substantially uninterrupted onto a substrate coated with a conductive layer in a random network form, and By removing the nanofibers after removing the conductive layer regions that are not covered with fibers, network-like conductors, that is, continuous conductive nanowires that are substantially uninterrupted are randomly networked. It is found that a transparent electrode having both transparency and conductivity can be obtained by obtaining a conductive nanowire network and controlling the structure (wire diameter and network density) of the network, thereby completing the present invention. It was.
- the present invention utilizes a random network of continuous nanofibers that are substantially uninterrupted, the resulting conductive nanowire network is isotropic, and a transparent electrode utilizing the conductive nanowire network Shows a stable physical property value and does not cause moire.
- the nanowire according to the present invention has more contacts between wires and a network with lower electrical resistance than a nanowire having a limited length (having a finite length). Therefore, the amount of nanowires (ie, network density) required to achieve equivalent conductivity can be reduced, and as a result, higher transparency can be achieved. Therefore, it is possible to provide a transparent electrode using a conductive nanowire network that can be suitably used for an electronic device.
- the transparent electrode of the present invention can use a substrate excellent in bending resistance, for example, a transparent conductive film for touch panel, a transparent electrode for electronic paper, a transparent electrode for flexible thin film solar cell, and a transparent for flexible display It can be suitably used for flexible electronic devices that require bending resistance such as electrodes.
- the conductive nanowire network of the present invention is a conductor in which continuous conductive nanowires that are substantially uninterrupted are randomly networked.
- the term “conductor” includes not only the conductive nanowire network itself but also a substrate or the like carrying the network.
- the form in which continuous nanowires that are substantially uninterrupted are networked at random is a specific figure or a combination of specific figures, for example, a triangle or a quadrangle It means that it does not include a network (mesh) having a certain regularity, such as a hexagonal n-gon, a circle, an ellipse, or a lattice pattern of a combination thereof.
- the conductive nanowire network of the present invention may be an irregular shape as a whole, and it does not exclude the presence of a regular-shaped network that happens locally as long as the desired effect is exhibited. Absent.
- the conductive nanowire network of the present invention after applying network-like nanofibers on a substrate coated with a conductive layer by an appropriate means, and removing the conductive layer region not covered with nanofibers, It can be obtained by removing the network-like nanofibers. Since the length of conventional fibrous conductive materials such as metal-based nanowires and carbon nanotubes is finite, in a transparent conductive film having a transparent conductive layer using them, the fibrous conductive material is constant during the manufacturing process.
- the conductive nanowire network of the present invention is a continuous random pattern that is easy to align in the direction and can cause anisotropy in the electrical and optical properties of the transparent conductive film.
- the nanofiber forming the conductive nanowire network of the present invention may be one continuous nanofiber or a plurality of independent nanofibers. In any event, it is important that each nanofiber has a length sufficient to produce a large number of contacts between the wires when randomly applied on the substrate.
- the conductive layer examples include metals such as iron, cobalt, nickel, copper, zinc, chromium, molybdenum, ruthenium, rhodium, palladium, silver, cadmium, osmium, iridium, platinum, gold, and aluminum, and alloys of these metals, Metal oxides such as ITO, indium gallium zinc oxide (IGZO), titanium, cobalt oxide, zinc oxide, vanadium oxide, indium oxide, aluminum oxide, nickel oxide, tin oxide, tantalum oxide, niobium oxide, vanadium oxide, zirconium oxide And metal compounds exemplified by metal nitrides such as titanium nitride, zirconium nitride, and aluminum nitride, but the conductive layer of the conductive nanowire network of the present invention is not limited thereto, and any conductivity To adapt to substances.
- metals such as iron, cobalt, nickel, copper, zinc, chromium, molybdenum,
- a transparent electrode using the conductive nanowire network of the present invention copper, silver, aluminum and indium tin oxide are preferable from the viewpoint of conductivity, and providing a flexible transparent electrode (transparent conductive film). Then, metals or alloys, such as aluminum and copper, are preferable, and aluminum is more preferable from a viewpoint of light weight and a low price.
- Examples of the substrate for the conductive layer include resin and glass, but there is no particular limitation as long as it is not impaired in the conductive layer removal step described later, and its material, shape, structure, thickness, etc. are among known ones. It can be selected appropriately.
- Examples of the resin include polyesters such as polyethylene terephthalate and polyethylene naphthalate, liquid crystalline aromatic polyesters, liquid crystalline wholly aromatic polyesters, polycarbonates, polyacrylic esters such as polymethyl acrylate and polyethyl acrylate, polymethyl methacrylate and polyethyl methacrylate.
- the copolymer may be any copolymer including a random copolymer, an alternating copolymer, a block copolymer, and a graft copolymer, and these are composed of two or more kinds of plural components. Also good. Furthermore, normal soda glass etc. can be used as glass. In addition, a composite substrate such as a substrate in which a resin and glass are combined and a substrate in which two or more kinds of resins are stacked may be used. The type of the substrate is not limited to the above-described example, and an optimal one can be selected from transparency, durability, cost, etc. according to the application, and the thickness of the substrate is considered in consideration of the function as a transparent electrode.
- the thickness of the substrate needs to consider the flexibility or flexibility of the substrate in addition to the transparency, and is preferably 1 ⁇ m or more and 500 ⁇ m or less, but is limited to this range because it depends on the application. It is not a thing.
- a method for manufacturing the substrate coated with the conductive layer that is, a method for coating the substrate with a conductive substance
- a physical manufacturing method such as sputtering, vacuum deposition, or ion plating
- a chemical method such as a spray method, a dip method, or a CVD method
- any method may be used as long as it can be uniformly coated suitable for the conductive material to be coated.
- the thickness of the conductive layer an optimum thickness can be set according to the use, and depending on the resistance value of the conductive layer to be coated, etc., a thickness of 1 nm to 500 nm is preferable.
- the nanofiber applied on the substrate coated with the conductive layer may be any kind of nanofiber as long as it can be applied in a continuous network without interruption.
- Nanofibers that can be used include polyesters such as polyethylene terephthalate and polyethylene naphthalate, liquid crystalline aromatic polyesters, liquid crystalline wholly aromatic polyesters, polycarbonates, polyacrylic esters such as polymethyl acrylate and polyethyl acrylate, polymethyl methacrylate, Polymethacrylates such as polyethyl methacrylate and polyhydroxyethyl methacrylate, polyacrylamide, polymethacrylamide, polyacrylonitrile, polyolefins such as polyethylene and polypropylene, cycloolefin resins, polyvinyl chloride, polystyrene, polylactic acid, aliphatic polyamide, wholly aromatic Polyamide, polyimide, polyetheretherketone, polynorbornene, polysulfone, polysulfide, poly Conductive polymers such as paraphenylene benzobisoxazole, polyacetylene, polypyrrole and polythiophene, polyurethane, epoxy resin, phenol
- the copolymer may be any copolymer including a random copolymer, an alternating copolymer, a block copolymer, and a graft copolymer, and these are composed of two or more kinds of plural components. Also good.
- supramolecular fibers obtained from supramolecular compounds that self-assemble by non-covalent interactions with low molecular weight compounds such as tricarboxamide can also be used as nanofibers.
- a method of applying nanofibers on a substrate coated with a conductive layer a method of directly depositing by a spinning method such as an electrospinning method, a conjugate melt spinning method, or a melt blowing method, or a method of spinning in advance by an appropriate method.
- a spinning method such as an electrospinning method, a conjugate melt spinning method, or a melt blowing method
- a method of spinning in advance by an appropriate method examples include a method of spreading nanofibers on a substrate, a method of attaching nanofibers knitted into a network in advance on a substrate, and a method of spin-coating a polymer or a supramolecular gel that forms a network on the substrate.
- the application method is not limited thereto, and any application method can be adopted as long as the substrate covered with the conductive layer is not damaged.
- Nanofiber diameter and density control methods by electrospinning include: solution properties such as spinning solution viscosity, electrical conductivity, surface tension, solvent boiling point, applied voltage, nozzle-substrate distance, solution supply speed, etc.
- solution properties such as spinning solution viscosity, electrical conductivity, surface tension, solvent boiling point, applied voltage, nozzle-substrate distance, solution supply speed, etc.
- the diameter of the nanofibers can be controlled.
- adjustment of the viscosity and electrical conductivity of the spinning solution is used as a general control method.
- the spinning solution viscosity can be controlled by adjusting the molecular weight and concentration of the solute molecules (polymer or sol / gel precursor) contained in the spinning solution and the temperature of the spinning solution.
- the electrical conductivity of can be controlled by adding an electrolyte to the spinning solution.
- the molecular weight and concentration of the solute molecules can be appropriately selected according to the use as long as a uniform spinning solution can be prepared.
- the electrolyte include organic solvents such as pyridine, acetic acid, and amine, and inorganic salts such as lithium salt, sodium salt, potassium salt, and carbonate. There is no limitation on these as long as a uniform spinning solution can be prepared.
- the density of the nanofibers can be easily achieved by controlling the electrospinning time.
- the density of the nanofibers increases with the electrospinning time, but the electrospinning time depends on the type and concentration of the electrospinning solution used, and also on the equipment, so it cannot be said unconditionally, but is not particularly limited, It can select suitably according to a use.
- the diameter of the nanofiber applied to the substrate coated with the conductive layer depends on the resistance value and the application of the conductive layer, but the average diameter is preferably 5000 nm or less, and there is a particular concern about the decrease in transparency due to light scattering. In some cases, 2000 nm or less is more preferable, and 1000 nm or less is particularly preferable.
- the applied nanofibers need to be in close contact with the conductive layer in order to function as a mask for the conductive layer. If this adhesion is insufficient, the resulting conductive nanowire network may have a defect such as disconnection, and the conductivity may be reduced.
- a method for improving the adhesion of the applied nanofibers to the conductive layer for example, it is effective to perform a heat treatment at a temperature higher than the glass transition temperature of the nanofibers.
- the heat treatment temperature and heat treatment time depend on the thermal properties and viscosity of the substrate and nanofibers, but are preferably, for example, at 200 ° C. for 1 minute or longer, and preferably 200 minutes or shorter from the viewpoint of preventing thermal denaturation.
- the method for removing the conductive layer region not covered with nanofibers depends on the characteristics of the conductive material forming the conductive layer, but for example, an acidic aqueous solution such as hydrochloric acid or nitric acid, or sodium hydroxide or potassium hydroxide.
- an acidic aqueous solution such as hydrochloric acid or nitric acid, or sodium hydroxide or potassium hydroxide.
- the wet method include soaking in an aqueous solution and dissolving the conductive substance in the aqueous solution by ionization or complex ionization.
- the immersion time, temperature, etc. can be appropriately selected according to the type and concentration of the aqueous solution used and the type and thickness of the conductive layer to be dissolved, and if necessary, a dry process using an organic gas or a halogen gas. It can be replaced by law.
- the conductive material covered with nanofibers is removed to remove impurities such as compounds ionized or complex ionized by conductive substances and solutes contained in aqueous solution. It is preferable to sufficiently wash the substrate including the conductive network with water or the like.
- a conductive nanowire network reflecting the random trajectory of the network-like nanofibers can be obtained.
- a method for removing the network-like nanofiber it is necessary to select an appropriate solvent in consideration of the solubility of the nanofiber used and the solubility of the substrate and the conductive layer. That is, a solvent that can dissolve the nanofibers and a solvent that does not dissolve the substrate and the conductive layer is appropriately selected to dissolve and remove the nanofibers.
- the transparent electrode using the conductive nanowire network of the present invention is obtained by optimizing the density of the conductive nanowire network according to the application, and includes a transparent electrode and a resin using a rigid substrate such as glass. This is a transparent electrode (transparent conductive film) using a flexible substrate.
- the light transmittance in the visible light region (about 400 nm to 700 nm) should have transparency of 50% or more, more preferably 70% or more. Is preferred.
- the surface electrical resistivity depends on the application, but is preferably 1000 ⁇ / ⁇ or less, more preferably 500 ⁇ / ⁇ or less.
- the transparent electrode using the conductive nanowire network of the present invention can be obtained in various combinations of the substrate, conductive layer, and nanofiber as described above, for example, individual conditions cannot be limited, As long as the function as the transparent electrode is not lost, the type and thickness of the substrate, the type and thickness of the conductive layer, the diameter of the nanofiber, the density of the network, and the like can be suitably used. Moreover, since the transparent electrode using the conductive nanowire network of the present invention has no regularity in the network, it does not substantially cause moire.
- ⁇ Average diameter> The diameter was measured at 50 random locations using a scanning electron microscope (JCM-5700 manufactured by JEOL), and the average value was calculated.
- ⁇ Transmissivity> The transmittance from 400 nm to 700 nm was measured using a visible ultraviolet spectrophotometer (V-570 manufactured by JASCO Corporation). The resin film used as the substrate was subtracted as the background, and the transmittance at 550 nm was defined as the transmittance of the conductive nanowire network.
- ⁇ Surface resistivity> A transparent conductive film was cut into a 5 cm square and used as a measurement sample. Select 10 locations at random, and use a 4-probe resistivity meter (Loresta EP MCP-T360, manufactured by Mitsubishi Chemical Corporation) to measure the surface resistivity by pressing the 4-probe probe and measuring the average of the 10 locations. The resistivity was used.
- a 4-probe resistivity meter Liesta EP MCP-T360, manufactured by Mitsubishi Chemical Corporation
- Example 1 An electrospinning method using a 25- ⁇ m thick polyethylene terephthalate coated with 100 nm-thick aluminum as a conductive layer as a substrate, using a 1 mL syringe, a distance between electrodes of 10 cm, a potential difference of 15 kV, and a liquid feeding speed of 3.33 ⁇ L / min. (DC high-voltage power supply: Matsusada Precision HAR-100P 0.3, syringe pump: Minato Concept MCIP-III), 5 nanofibers of polymethyl methacrylate (weight average molecular weight 91,500) (manufactured by Wako Pure Chemical Industries) For 2 seconds. The average fiber diameter of the obtained fiber was 600 nm.
- a DMF (N ′, N′-dimethylformamide) (manufactured by Wako Pure Chemical Industries) solution having a concentration of 25 wt% was used as the electrospinning solution of polymethyl methacrylate.
- the polyethylene terephthalate substrate including the aluminum conductive layer on which the nanofibers were deposited was heat-treated at 200 ° C. for 1 minute, so that the nanofibers were adhered to the aluminum conductive layer. As a result, the average fiber diameter increased to 1200 nm.
- the polyethylene terephthalate substrate including the aluminum conductive layer on which the nanofibers were deposited was immersed in a 1M aqueous potassium hydroxide solution at room temperature for 2 minutes to dissolve and remove the aluminum portion not covered with the nanofibers and washed with water. Finally, the nanofiber was dissolved and removed with acetone to obtain a continuous random conductive nanowire network (average width: 1150 nm) without interruption.
- the transmittance was 78% and the surface resistivity was 51 ⁇ / ⁇ .
- the obtained electroconductive nanowire network showed the flexibility which tracks the flexibility of a polyethylene terephthalate board
- Example 2 Polyethylene terephthalate having an aluminum conductive layer similar to that used in Example 1 was used as a substrate, and a 1 mL capacity syringe was used to produce polystyrene (by an electrode spinning method at an electrode distance of 15 cm, a potential difference of 4.5 kV, a liquid feed speed of 5 ⁇ L / min. Nanofibers having a weight average molecular weight of 23 million) were deposited on the substrate for 3 minutes. The average fiber diameter of the obtained fiber was 300 nm.
- a DMF / tetrahydrofuran (mass ratio of 1: 1) solution having a concentration of 0.20 wt% was used as a solution for electrospinning of polystyrene.
- the polyethylene terephthalate substrate including the aluminum conductive layer on which nanofibers were deposited was heat-treated at 200 ° C. for 30 minutes, so that the nanofibers were adhered to the aluminum conductive layer. As a result, the average fiber diameter increased to 600 nm.
- a polyethylene terephthalate substrate including an aluminum conductive layer on which nanofibers were deposited was immersed in a 1M aqueous sodium hydroxide solution at room temperature for 3 minutes to dissolve and remove the aluminum portion not covered with nanofibers, and washed with water. Finally, the nanofiber was dissolved and removed with chloroform to obtain a continuous random conductive nanowire network (average width: 600 nm) without interruption.
- the transmittance was 80% and the surface resistivity was 62 ⁇ / ⁇ .
- the obtained electroconductive nanowire network showed the flexibility which tracks the flexibility of a polyethylene terephthalate board
- Example 3 It carried out like Example 2 and obtained the continuous random electroconductive nanowire network without a discontinuity.
- the polystyrene concentration was 0.25 wt%.
- the average fiber diameter of the obtained fiber was 300 nm.
- the average fiber diameter and the average width of the nanowires after the heat treatment were 600 nm.
- the transmittance was 76%, and the surface resistivity was 45 ⁇ / ⁇ .
- the obtained electroconductive nanowire network showed the flexibility which tracks the flexibility of a polyethylene terephthalate board
- a photomicrograph of the resulting conductive nanowire network is shown in FIG. It can be seen that continuous nanofibers without breaks are randomly networked.
- Example 4 It carried out similarly to Example 3 and obtained the continuous random electroconductive nanowire network without a break. However, the deposition time of nanofibers by the electrospinning method was 1 minute. The average fiber diameter of the obtained fiber was 300 nm. The average fiber diameter and the average width of the nanowires after the heat treatment were 600 nm. As a result of evaluation as a transparent electrode, the transmittance was 93% and the surface resistivity was 125 ⁇ / ⁇ . Moreover, the obtained electroconductive nanowire network showed the flexibility which tracks the flexibility of a polyethylene terephthalate board
- Example 5 It carried out similarly to Example 3 and obtained the continuous random electroconductive nanowire network without a break. However, the deposition time of nanofibers by the electrospinning method was 5 minutes. The average fiber diameter of the obtained fiber was 300 nm. The average fiber diameter and the average width of the nanowires after the heat treatment were 600 nm. As a result of evaluation as a transparent electrode, the transmittance was 68% and the surface resistivity was 24 ⁇ / ⁇ . Moreover, the obtained electroconductive nanowire network showed the flexibility which tracks the flexibility of a polyethylene terephthalate board
- Example 6 It carried out like Example 2 and obtained the continuous random electroconductive nanowire network without a discontinuity.
- the polystyrene concentration was 0.98 wt%.
- the average fiber diameter of the obtained fiber was 750 nm.
- the average fiber diameter of the fiber after heat treatment and the width of the nanowire were 1500 nm.
- the transmittance was 35%, and the surface resistivity was 6 ⁇ / ⁇ .
- the obtained electroconductive nanowire network showed the flexibility which tracks the flexibility of a polyethylene terephthalate board
- Example 7 This was carried out in the same manner as in Example 6 to obtain a continuous random conductive nanowire network without interruption.
- the deposition time of nanofibers by the electrospinning method was 1 minute.
- the average fiber diameter of the obtained fiber was 750 nm.
- the average fiber diameter of the fibers after heat treatment and the average width of the nanowires were 1500 nm.
- the transmittance was 64% and the surface resistivity was 27 ⁇ / ⁇ .
- the obtained electroconductive nanowire network showed the flexibility which tracks the flexibility of a polyethylene terephthalate board
- Example 8 This was carried out in the same manner as in Example 6 to obtain a continuous random conductive nanowire network without interruption.
- the nanofiber deposition time by the electrospinning method was set to 0.5 minutes.
- the average fiber diameter of the obtained fiber was 750 nm.
- the average fiber diameter of the fibers after heat treatment and the average width of the nanowires were 1500 nm.
- the transmittance was 77% and the surface resistivity was 76 ⁇ / ⁇ .
- the obtained electroconductive nanowire network showed the flexibility which tracks the flexibility of a polyethylene terephthalate board
- Example 9 It carried out like Example 2 and obtained the continuous random electroconductive nanowire network without a discontinuity. However, the deposition time of nanofibers by electrospinning was set to 2 minutes. Further, a DMF / tetrahydrofuran (mass ratio of 1 to 3) solution having a concentration of 0.05 wt% was used as a solution for electrospinning of polystyrene. Furthermore, the heat treatment temperature was set to 160 ° C. The average fiber diameter of the obtained fiber was 170 nm. The average fiber diameter and the average width of the nanowires after the heat treatment were 300 nm. As a result of evaluation as a transparent electrode, the transmittance was 84% and the surface resistivity was 109 ⁇ / ⁇ . Moreover, the obtained electroconductive nanowire network showed the flexibility which tracks the flexibility of a polyethylene terephthalate board
- the present invention provides an uninterrupted continuous random conductive nanowire network, a conductive substrate using the conductive nanowire network, and a transparent electrode that are unprecedented in a simple process at a low cost. It can be suitably used for electronic devices such as display devices and touch panels. In particular, it is extremely useful for flexible electronic devices that require bending resistance.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Human Computer Interaction (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Dispersion Chemistry (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Non-Insulated Conductors (AREA)
- Nonwoven Fabrics (AREA)
- Nonlinear Science (AREA)
- Laminated Bodies (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
Description
(導電性ナノワイヤーネットワーク)
本発明の導電性ナノワイヤーネットワークは、実質的に途切れのない連続した導電性のナノワイヤーがランダムにネットワーク(網目)化した導電体である。本明細書において「導電体」という場合、導電性ナノワイヤーネットワーク自体のみならず、これを担持する基板等も包括している。本発明の導電性ナノワイヤーネットワークにおいて、実質的に途切れのない連続したナノワイヤーがランダムにネットワーク化している形態とは、特定の図形や、特定の図形の組み合わせから構成される、例えば三角形、四角形、六角形等のn角形、円、楕円等、又はそれらの組み合わせによる格子模様等、一定の規則性を示すネットワーク(網目)を含まないことを意味する。もっとも、本発明の導電性ナノワイヤーネットワークは、全体として不規則な形状であればよく、その所期の効果を奏する限りにおいて、局所的に偶然生じる規則的形状の網目の存在を除外するものではない。本発明の導電性ナノワイヤーネットワークは、一例として、導電層で被覆された基板上に適当な手段でネットワーク状のナノファイバーを適用し、ナノファイバーで被覆されていない導電層領域を除去した後、ネットワーク状ナノファイバーを除去することにより得ることができる。従来の金属系ナノワイヤーやカーボンナノチューブ等の繊維状導電性物質の長さは有限であるため、これらを用いた透明導電層を有する透明導電膜では、製造工程で繊維状導電性物質が一定の方向に配列し易く、透明導電膜の電気特性や光学特性に異方性が生じ得るという課題が残されているが、本発明の導電性ナノワイヤーネットワークは、実質的に途切れのない連続したランダムな網目状の導電体を構成するため、実質的に異方性がなく、かつ、網目に規則性がないため、実質的にモアレを生じない。またネットワーク(網目)の密度を容易に制御することができ、具体的用途に応じた良好な光透過率と導電性を両立することができる。本発明の導電性ナノワイヤーネットワークを形成するナノファイバーは、連続した1本のナノファイバーであってもよいし、独立した複数のナノファイバーであってもよい。いずれにしても、各ナノファイバーは、基板上にランダムに適用された際にワイヤー間に多数の接点が生じるに十分な長さを有することが重要である。
本発明の導電性ナノワイヤーネットワークを利用した透明電極は、前記導電性ナノワイヤーネットワークの密度などを用途に応じて最適化することによって得られ、ガラスなどの剛性基板を使用した透明電極及び樹脂などの柔軟性基板を使用した透明電極(透明導電膜)である。透明電極として好適に使用するためには、用途に依存するが、可視光領域(約400nm~700nm)の光透過率が50%以上、より好ましくは70%以上の透明性を有するものであることが好ましい。また表面電気抵抗率としては、用途に依存するが、1000Ω/□以下、より好ましくは500Ω/□以下であることが好ましい。本発明の導電性ナノワイヤーネットワークを利用した透明電極は、例えば前記で示したような基板、導電層、ナノファイバーを多種多様な組み合わせで得られるため、個々の条件を限定することはできないが、透明電極としての機能を失わない範囲で、基板の種類と厚み、導電層の種類と厚み、ナノファイバーの直径とネットワークの密度などを適宜設定することにより、好適に使用することができる。また、本発明の導電性ナノワイヤーネットワークを利用した透明電極は、網目に規則性がないため実質的にモアレを生じない。
直径を走査型電子顕微鏡(JEOL社製JCM-5700)を用いて、ランダムに50箇所測定し、平均値を算出した。
400nmから700nmの透過率を可視紫外分光光度計(日本分光社製V-570)を用いて測定した。基板として使用した樹脂フィルムをバックグラウンドとして差し引き、550nmにおける透過率を導電性ナノワイヤーネットワークの透過率とした。
透明導電膜を、5cm四方に切り出し測定用試料とした。ランダムに10箇所を選び、4探針法抵抗率計(三菱化学社製ロレスタEP MCP-T360型)を用いて、4探針プローブを押し当て表面抵抗率を測定し、10箇所の平均を表面抵抗率とした。
導電層として厚さ100nmのアルミニウムで被覆された厚さ25μmのポリエチレンテレフタレートを基板として用い、1mL容量のシリンジを用い、電極間距離10cm、電位差15kV、送液速度3.33μL/分で電界紡糸法(直流高圧電源:松定プレシジョンHAR-100P 0.3、シリンジポンプ:ミナトコンセプトMCIP-III)により、ポリメタクリル酸メチル(重量平均分子量9万1500)(和光純薬製)のナノファイバーを基板上に5秒間堆積させた。得られたファイバーの平均繊維径は600nmであった。ここで、ポリメタクリル酸メチルの電界紡糸用溶液として、濃度25wt%のDMF(N’,N’-ジメチルホルムアミド)(和光純薬製)溶液を使用した。次に、ナノファイバーが堆積したアルミニウム導電層を含むポリエチレンテレフタレート基板を200℃で1分熱処理を行い、ナノファイバーをアルミニウム導電層に密着させた。その結果、平均繊維径は1200nmに増大した。その後、ナノファイバーが堆積したアルミニウム導電層を含むポリエチレンテレフタレート基板を、常温で1M水酸化カリウム水溶液に2分間浸漬し、ナノファイバーで覆われていないアルミニウム部分を溶解除去し、水で洗浄した。最後に、ナノファイバーをアセトンで溶解除去し、途切れのない連続したランダムな導電性ナノワイヤーネットワーク(平均幅:1150nm)を得た。透明電極としての評価を行った結果、透過率は78%、表面抵抗率は51Ω/□であった。また、得られた導電性ナノワイヤーネットワークは、ポリエチレンテレフタレート基板の可撓性に追従するフレキシビリティを示した。さらに、得られた透明電極において知覚できるモアレは生じなかった。
実施例1と同様のアルミニウムを導電層とするポリエチレンテレフタレートを基板として用い、1mL容量のシリンジを用い、電極間距離15cm、電位差4.5kV、送液速度5μL/分で電界紡糸法により、ポリスチレン(重量平均分子量2300万)のナノファイバーを基板上に3分間堆積させた。得られたファイバーの平均繊維径は300nmであった。ここで、ポリスチレンの電界紡糸用溶液として、濃度0.20wt%のDMF/テトラヒドロフラン(質量比1対1)溶液を使用した。次に、ナノファイバーが堆積したアルミニウム導電層を含むポリエチレンテレフタレート基板を200℃で30分熱処理を行い、ナノファイバーをアルミニウム導電層に密着させた。その結果、平均繊維径は600nmに増大した。その後、ナノファイバーが堆積したアルミニウム導電層を含むポリエチレンテレフタレート基板を、常温で1M水酸化ナトリウム水溶液に3分間浸漬し、ナノファイバーで覆われていないアルミニウム部分を溶解除去し、水で洗浄した。最後に、ナノファイバーをクロロホルムで溶解除去し、途切れのない連続したランダムな導電性ナノワイヤーネットワーク(平均幅:600nm)を得た。透明電極としての評価を行った結果、透過率は80%、表面抵抗率は62Ω/□であった。また、得られた導電性ナノワイヤーネットワークは、ポリエチレンテレフタレート基板の可撓性に追従するフレキシビリティを示した。さらに、得られた透明電極において知覚できるモアレは生じなかった。
実施例2と同様に行い、途切れのない連続したランダムな導電性ナノワイヤーネットワークを得た。但し、ポリスチレンの濃度を0.25wt%とした。また、得られたファイバーの平均繊維径は300nmであった。熱処理後のファイバーの平均繊維径とナノワイヤーの平均幅は600nmであった。透明電極としての評価を行った結果、透過率は76%、表面抵抗率は45Ω/□であった。また、得られた導電性ナノワイヤーネットワークは、ポリエチレンテレフタレート基板の可撓性に追従するフレキシビリティを示した。さらに、得られた透明電極において知覚できるモアレは生じなかった。
得られた導電性ナノワイヤーネットワークの顕微鏡写真を図1に示す。途切れのない連続したナノファイバーがランダムにネットワーク(網目)化している形態が見て取れる。
実施例3と同様に行い、途切れのない連続したランダムな導電性ナノワイヤーネットワークを得た。但し、電界紡糸法によるナノファイバーの堆積時間を1分とした。得られたファイバーの平均繊維径は300nmであった。熱処理後のファイバーの平均繊維径とナノワイヤーの平均幅は600nmであった。透明電極としての評価を行った結果、透過率は93%、表面抵抗率は125Ω/□であった。また、得られた導電性ナノワイヤーネットワークは、ポリエチレンテレフタレート基板の可撓性に追従するフレキシビリティを示した。さらに、得られた透明電極において知覚できるモアレは生じなかった。
実施例3と同様に行い、途切れのない連続したランダムな導電性ナノワイヤーネットワークを得た。但し、電界紡糸法によるナノファイバーの堆積時間を5分とした。得られたファイバーの平均繊維径は300nmであった。熱処理後のファイバーの平均繊維径とナノワイヤーの平均幅は600nmであった。透明電極としての評価を行った結果、透過率は68%、表面抵抗率は24Ω/□であった。また、得られた導電性ナノワイヤーネットワークは、ポリエチレンテレフタレート基板の可撓性に追従するフレキシビリティを示した。さらに、得られた透明電極において知覚できるモアレは生じなかった。
実施例2と同様に行い、途切れのない連続したランダムな導電性ナノワイヤーネットワークを得た。但し、ポリスチレンの濃度を0.98wt%とした。また、得られたファイバーの平均繊維径は750nmであった。熱処理後のファイバーの平均繊維径とナノワイヤーの幅は1500nmであった。透明電極としての評価を行った結果、透過率は35%、表面抵抗率は6Ω/□であった。また、得られた導電性ナノワイヤーネットワークは、ポリエチレンテレフタレート基板の可撓性に追従するフレキシビリティを示した。さらに、得られた透明電極において知覚できるモアレは生じなかった。
実施例6と同様に行い、途切れのない連続したランダムな導電性ナノワイヤーネットワークを得た。但し、電界紡糸法によるナノファイバーの堆積時間を1分とした。得られたファイバーの平均繊維径は750nmであった。熱処理後のファイバーの平均繊維径とナノワイヤーの平均幅は1500nmであった。透明電極としての評価を行った結果、透過率は64%、表面抵抗率は27Ω/□であった。また、得られた導電性ナノワイヤーネットワークは、ポリエチレンテレフタレート基板の可撓性に追従するフレキシビリティを示した。さらに、得られた透明電極において知覚できるモアレは生じなかった。
実施例6と同様に行い、途切れのない連続したランダムな導電性ナノワイヤーネットワークを得た。但し、電界紡糸法によるナノファイバーの堆積時間を0.5分とした。得られたファイバーの平均繊維径は750nmであった。熱処理後のファイバーの平均繊維径とナノワイヤーの平均幅は1500nmであった。透明電極としての評価を行った結果、透過率は77%、表面抵抗率は76Ω/□であった。また、得られた導電性ナノワイヤーネットワークは、ポリエチレンテレフタレート基板の可撓性に追従するフレキシビリティを示した。さらに、得られた透明電極において知覚できるモアレは生じなかった。
実施例2と同様に行い、途切れのない連続したランダムな導電性ナノワイヤーネットワークを得た。但し、電界紡糸法によるナノファイバーの堆積時間を2分とした。またポリスチレンの電界紡糸用溶液として、濃度0.05wt%のDMF/テトラヒドロフラン(質量比1対3)溶液を使用した。さらに熱処理温度を160℃とした。得られたファイバーの平均繊維径は170nmであった。熱処理後のファイバーの平均繊維径とナノワイヤーの平均幅は300nmであった。透明電極としての評価を行った結果、透過率は84%、表面抵抗率は109Ω/□であった。また、得られた導電性ナノワイヤーネットワークは、ポリエチレンテレフタレート基板の可撓性に追従するフレキシビリティを示した。さらに、得られた透明電極において知覚できるモアレは生じなかった。
Claims (10)
- 実質的に途切れのない連続した導電性ナノワイヤーがランダムにネットワーク化していることを特徴とする導電性ナノワイヤーネットワーク。
- 該導電性ナノワイヤーがアルミニウムで構成されている、請求項1に記載の導電性ナノワイヤーネットワーク。
- 請求項1又は2に記載の導電性ナノワイヤーネットワークを基板上に担持してなる導電性基板。
- 該基板が透明である、請求項3に記載の導電性基板。
- 該基板が可撓性樹脂基板である、請求項3又は4に記載の導電性基板。
- 請求項4又は5に記載の導電性基板を含む透明電極。
- 導電層で被覆された基板上にナノファイバーをランダムなネットワーク状に適用し、該ナノファイバーで被覆されていない導電層領域を除去し、次いで該ナノファイバーを除去することを特徴とする、導電性ナノワイヤーネットワークの製造方法。
- 導電層で被覆された透明基板上にナノファイバーをランダムなネットワーク状に適用し、該ナノファイバーで被覆されていない導電層領域を除去し、次いで該ナノファイバーを除去することを特徴とする、導電性ナノワイヤーネットワークを担持した透明電極の製造方法。
- 導電層で被覆された基板上又は透明基板上にナノファイバーをランダムなネットワーク状に適用するに際して電界紡糸法を用いる、請求項7又は8に記載の方法。
- 導電層で被覆された基板上又は透明基板上にナノファイバーをランダムなネットワーク状に適用した後、該ナノファイバーで被覆されていない導電層領域を除去する前に、該基板に熱処理を施す、請求項7~9のいずれか1項に記載の方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157022437A KR102153428B1 (ko) | 2013-02-20 | 2014-02-19 | 도전성 나노와이어 네트워크 및 이것을 이용한 도전성 기판 및 투명전극, 그리고 그들의 제조 방법 |
CN201480009465.1A CN105283927B (zh) | 2013-02-20 | 2014-02-19 | 导电性纳米线网络及使用该网络的导电性基板和透明电极及其制备方法 |
EP14754412.6A EP2960908A4 (en) | 2013-02-20 | 2014-02-19 | ELECTROCONDUCTIVE NANOWILE NETWORK, AND ELECTROCONDUCTIVE SUBSTRATE AND TRANSPARENT ELECTRODE USING SAME, AND METHOD FOR MANUFACTURING AN ELECTROCONDUCTIVE NANOWIRE NETWORK, ELECTROCONDUCTIVE SUBSTRATE, AND TRANSPARENT ELECTRODE |
US14/768,800 US9717144B2 (en) | 2013-02-20 | 2014-02-19 | Electroconductive nanowire network, and electroconductive substrate and transparent electrode using same, and method for manufacturing electroconductive nanowire network, electroconductive substrate, and transparent electrode |
JP2015501477A JP6265968B2 (ja) | 2013-02-20 | 2014-02-19 | 導電性ナノワイヤーネットワークを利用した導電性基板及びその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-031003 | 2013-02-20 | ||
JP2013031003 | 2013-02-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014129504A1 true WO2014129504A1 (ja) | 2014-08-28 |
Family
ID=51391290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/053931 WO2014129504A1 (ja) | 2013-02-20 | 2014-02-19 | 導電性ナノワイヤーネットワーク並びにこれを利用した導電性基板及び透明電極、並びにそれらの製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9717144B2 (ja) |
EP (1) | EP2960908A4 (ja) |
JP (1) | JP6265968B2 (ja) |
KR (1) | KR102153428B1 (ja) |
CN (1) | CN105283927B (ja) |
TW (1) | TWI631580B (ja) |
WO (1) | WO2014129504A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105607357A (zh) * | 2016-01-06 | 2016-05-25 | 京东方科技集团股份有限公司 | 一种阵列基板、其制作方法及显示装置 |
KR20160097731A (ko) * | 2015-02-10 | 2016-08-18 | 동우 화인켐 주식회사 | 도전시트 및 도전패턴 |
WO2016159639A1 (ko) * | 2015-03-30 | 2016-10-06 | 고려대학교 산학협력단 | 투명 전극 제조 방법 및 투명 전극 제조 장치 |
WO2017163832A1 (ja) * | 2016-03-24 | 2017-09-28 | Jxエネルギー株式会社 | 透明導電性フィルム、透明導電性フィルムの製造方法、金属モールド、及び金属モールドの製造方法 |
US10085339B2 (en) | 2015-12-07 | 2018-09-25 | Unist(Ulsan National Institute Of Science And Technology) | Method of manufacturing electroconductive nanowire network using electron beam, transparent electrode and electronic device using the same |
JPWO2021234945A1 (ja) * | 2020-05-22 | 2021-11-25 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201543745A (zh) * | 2014-05-15 | 2015-11-16 | Nat Univ Tsing Hua | 以銅奈米線織布作為集電器的鋰離子電池 |
CN107342115A (zh) * | 2016-05-03 | 2017-11-10 | 上海大学 | 一种透明导电和低发射率微网及其制备方法 |
CN106340628B (zh) * | 2016-10-28 | 2019-04-02 | 南方科技大学 | 锂离子电池用含硅复合负极材料、制备方法及包含其的电池 |
US10776552B2 (en) | 2016-12-05 | 2020-09-15 | Synopsys, Inc. | Nano-wire resistance model |
US10685163B2 (en) | 2017-03-01 | 2020-06-16 | Synopsys, Inc. | Computationally efficient nano-scale conductor resistance model |
KR101955104B1 (ko) * | 2017-08-10 | 2019-03-06 | 울산과학기술원 | 고투과도 및 저저항 특성을 갖는 투명 전극의 제조방법 및 이를 이용하여 제조된 고투과도 및 저저항 특성을 갖는 투명 전극 |
GB2594941B (en) * | 2020-05-11 | 2022-05-11 | Provost Fellows Found Scholars & Other Members Board College Holy & Und | Method of preparing nanowire networks and networks prepared thereby |
JP2022086460A (ja) | 2020-11-30 | 2022-06-09 | 株式会社リコー | エレクトロクロミック素子及びエレクトロクロミック調光レンズ |
CN113701929B (zh) * | 2021-09-16 | 2022-06-14 | 湖南大学 | 一种基于SBCs-GaN micro-LED的柔性压力可视化传感器及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004223693A (ja) * | 2003-01-27 | 2004-08-12 | National Institute Of Advanced Industrial & Technology | 金属ナノワイヤ製造法及び金属ナノワイヤ製造用前駆体 |
JP2006352073A (ja) | 2005-05-20 | 2006-12-28 | Fujifilm Holdings Corp | 導電性パターン材料、透光性導電性膜、透光性電磁波シールド膜、光学フィルター、透明導電性シート、エレクトロルミネッセンス素子、及び平面光源システム |
JP2009505358A (ja) | 2005-08-12 | 2009-02-05 | カンブリオス テクノロジーズ コーポレイション | ナノワイヤに基づく透明導電体 |
WO2009035059A1 (ja) * | 2007-09-12 | 2009-03-19 | Kuraray Co., Ltd. | 導電膜、導電部材および導電膜の製造方法 |
JP2010003611A (ja) * | 2008-06-23 | 2010-01-07 | Doshisha | 金ナノワイヤー膜を有した透明導電性基板及びその製造方法 |
JP2011086413A (ja) * | 2009-10-13 | 2011-04-28 | Nissha Printing Co Ltd | ディスプレイ電極用透明導電膜 |
JP2011515003A (ja) * | 2007-12-20 | 2011-05-12 | シーマ ナノ テック イスラエル リミティド | フィラー材料を有する透明導電性コーティング |
JP2011168421A (ja) | 2010-02-17 | 2011-09-01 | Toray Ind Inc | 透明導電複合材 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2876863B1 (fr) * | 2004-10-19 | 2007-01-12 | Saint Gobain | Dispositif de gravure d'une couche conductrice et procede de gravure |
US7618580B2 (en) * | 2005-10-03 | 2009-11-17 | The United States Of America As Represented By The Secretary Of The Navy | Method for fabrication of a polymeric, conductive optical transparency |
US8088323B2 (en) * | 2007-02-27 | 2012-01-03 | Ppg Industries Ohio, Inc. | Process of electrospinning organic-inorganic fibers |
EP2147466B9 (en) * | 2007-04-20 | 2014-07-16 | Cambrios Technologies Corporation | Composite transparent conductors |
CN101945975A (zh) * | 2007-12-20 | 2011-01-12 | 西玛耐诺技术以色列有限公司 | 微结构化的材料及其制备方法 |
EP2353188A4 (en) | 2008-10-30 | 2015-04-08 | Hak Fei Poon | HYBRID, TRANSPARENT, CONDUCTIVE ELECTRODES |
EP2454069B1 (en) | 2009-07-15 | 2017-08-23 | The University of Akron | Manufacturing of multifunctional electrically conductive/transparent/flexible films |
EP2524380B1 (en) | 2010-01-15 | 2021-06-23 | Cambrios Film Solutions Corporation | Low-haze transparent conductors |
TWI549900B (zh) * | 2010-03-23 | 2016-09-21 | 坎畢歐科技公司 | 奈米結構透明導體之圖案化蝕刻 |
US8940194B2 (en) * | 2010-08-20 | 2015-01-27 | The Board Of Trustees Of The Leland Stanford Junior University | Electrodes with electrospun fibers |
WO2012040637A2 (en) * | 2010-09-24 | 2012-03-29 | The Regents Of The University Of California | Nanowire-polymer composite electrodes |
TWI511168B (zh) * | 2011-03-28 | 2015-12-01 | Lg Chemical Ltd | 導電基板、觸控螢幕及包含其之顯示器 |
KR20130022570A (ko) * | 2011-08-25 | 2013-03-07 | 삼성전기주식회사 | 터치패널이 포함된 디스플레이장치 |
US20130062796A1 (en) * | 2011-09-14 | 2013-03-14 | Christopher S. Coughlin | Method for Fabrication of an Optically Transparent and Electrically Conductive Structural Material |
-
2014
- 2014-02-19 WO PCT/JP2014/053931 patent/WO2014129504A1/ja active Application Filing
- 2014-02-19 EP EP14754412.6A patent/EP2960908A4/en not_active Withdrawn
- 2014-02-19 US US14/768,800 patent/US9717144B2/en active Active
- 2014-02-19 CN CN201480009465.1A patent/CN105283927B/zh not_active Expired - Fee Related
- 2014-02-19 JP JP2015501477A patent/JP6265968B2/ja not_active Expired - Fee Related
- 2014-02-19 KR KR1020157022437A patent/KR102153428B1/ko active IP Right Grant
- 2014-02-19 TW TW103105496A patent/TWI631580B/zh not_active IP Right Cessation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004223693A (ja) * | 2003-01-27 | 2004-08-12 | National Institute Of Advanced Industrial & Technology | 金属ナノワイヤ製造法及び金属ナノワイヤ製造用前駆体 |
JP2006352073A (ja) | 2005-05-20 | 2006-12-28 | Fujifilm Holdings Corp | 導電性パターン材料、透光性導電性膜、透光性電磁波シールド膜、光学フィルター、透明導電性シート、エレクトロルミネッセンス素子、及び平面光源システム |
JP2009505358A (ja) | 2005-08-12 | 2009-02-05 | カンブリオス テクノロジーズ コーポレイション | ナノワイヤに基づく透明導電体 |
WO2009035059A1 (ja) * | 2007-09-12 | 2009-03-19 | Kuraray Co., Ltd. | 導電膜、導電部材および導電膜の製造方法 |
JP2011515003A (ja) * | 2007-12-20 | 2011-05-12 | シーマ ナノ テック イスラエル リミティド | フィラー材料を有する透明導電性コーティング |
JP2010003611A (ja) * | 2008-06-23 | 2010-01-07 | Doshisha | 金ナノワイヤー膜を有した透明導電性基板及びその製造方法 |
JP2011086413A (ja) * | 2009-10-13 | 2011-04-28 | Nissha Printing Co Ltd | ディスプレイ電極用透明導電膜 |
JP2011168421A (ja) | 2010-02-17 | 2011-09-01 | Toray Ind Inc | 透明導電複合材 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2960908A4 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102364746B1 (ko) * | 2015-02-10 | 2022-02-17 | 동우 화인켐 주식회사 | 도전시트 및 도전패턴 |
KR20160097731A (ko) * | 2015-02-10 | 2016-08-18 | 동우 화인켐 주식회사 | 도전시트 및 도전패턴 |
WO2016159639A1 (ko) * | 2015-03-30 | 2016-10-06 | 고려대학교 산학협력단 | 투명 전극 제조 방법 및 투명 전극 제조 장치 |
KR20160117660A (ko) * | 2015-03-30 | 2016-10-11 | 고려대학교 산학협력단 | 투명 전극 제조 방법 및 투명 전극 제조 장치 |
KR101715224B1 (ko) | 2015-03-30 | 2017-03-13 | 고려대학교 산학협력단 | 투명 전극 제조 방법 및 투명 전극 제조 장치 |
US10085339B2 (en) | 2015-12-07 | 2018-09-25 | Unist(Ulsan National Institute Of Science And Technology) | Method of manufacturing electroconductive nanowire network using electron beam, transparent electrode and electronic device using the same |
CN105607357A (zh) * | 2016-01-06 | 2016-05-25 | 京东方科技集团股份有限公司 | 一种阵列基板、其制作方法及显示装置 |
CN105607357B (zh) * | 2016-01-06 | 2018-12-18 | 京东方科技集团股份有限公司 | 一种阵列基板、其制作方法及显示装置 |
JPWO2017163832A1 (ja) * | 2016-03-24 | 2019-02-07 | Jxtgエネルギー株式会社 | 透明導電性フィルム、透明導電性フィルムの製造方法、金属モールド、及び金属モールドの製造方法 |
WO2017163832A1 (ja) * | 2016-03-24 | 2017-09-28 | Jxエネルギー株式会社 | 透明導電性フィルム、透明導電性フィルムの製造方法、金属モールド、及び金属モールドの製造方法 |
JPWO2021234945A1 (ja) * | 2020-05-22 | 2021-11-25 | ||
WO2021234945A1 (ja) * | 2020-05-22 | 2021-11-25 | 北越コーポレーション株式会社 | ナノネットワーク及びその製造方法 |
JP7432717B2 (ja) | 2020-05-22 | 2024-02-16 | 北越コーポレーション株式会社 | ナノネットワーク及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TWI631580B (zh) | 2018-08-01 |
US20160007456A1 (en) | 2016-01-07 |
TW201447928A (zh) | 2014-12-16 |
CN105283927B (zh) | 2018-02-13 |
KR20150120989A (ko) | 2015-10-28 |
JPWO2014129504A1 (ja) | 2017-02-02 |
EP2960908A4 (en) | 2016-09-07 |
CN105283927A (zh) | 2016-01-27 |
US9717144B2 (en) | 2017-07-25 |
EP2960908A1 (en) | 2015-12-30 |
JP6265968B2 (ja) | 2018-01-24 |
KR102153428B1 (ko) | 2020-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6265968B2 (ja) | 導電性ナノワイヤーネットワークを利用した導電性基板及びその製造方法 | |
Bessaire et al. | Synthesis of continuous conductive PEDOT: PSS nanofibers by electrospinning: A conformal coating for optoelectronics | |
KR101310051B1 (ko) | 금속 나노선 및 전도성 고분자를 포함하는 투명 전도막의 제조방법 | |
KR101468690B1 (ko) | 고점도 전도성 나노 잉크 조성물로 이루어진 전극선을 포함하는 투명전극 및 이를 이용한 터치센서, 투명히터 및 전자파 차폐제 | |
KR101715224B1 (ko) | 투명 전극 제조 방법 및 투명 전극 제조 장치 | |
US20150208498A1 (en) | Transparent conductive electrodes comprising merged metal nanowires, their structure design, and method of making such structures | |
KR101263194B1 (ko) | 금속 나노구조체와 전도성 고분자로 이루어진 복수개의 혼합 도전층을 포함하는 투명 전도성 박막 및 이의 제조방법. | |
KR20100105179A (ko) | 가요성 투명 전극 및 그의 제조방법 | |
WO2007004758A1 (en) | Method for manufacturing transparent electrode and transparent electrode man¬ ufactured thereby | |
CN103068573A (zh) | 透明导电膜、带透明导电膜的基材及使用其的有机电致发光元件 | |
KR100902561B1 (ko) | 투명 전극 제조방법 | |
KR101851641B1 (ko) | 전기방사 나노/마이크로 섬유 네트를 포함하는 나노구조체 필름 제조장치 및 이를 이용한 나노/마이크로 섬유 네트를 포함하는 나노구조체 필름 제조방법 | |
TWI675743B (zh) | 複合結構與分散液 | |
Saveh-Shemshaki et al. | Electrospun metal oxide nanofibrous mat as a transparent conductive layer | |
WO2017163832A1 (ja) | 透明導電性フィルム、透明導電性フィルムの製造方法、金属モールド、及び金属モールドの製造方法 | |
KR101816341B1 (ko) | 투명 전극 필름의 제조방법 및 투명 전극 필름 | |
KR101680424B1 (ko) | 전도성 투명 필름 및 그 제조 방법 | |
KR20140066014A (ko) | 금속 나노선과 전도성 폴리머를 포함하는 투명 전극 및 그 제조방법 | |
KR101826139B1 (ko) | 투명 면상 발열체 | |
KR20150092405A (ko) | 투명 도전막, 그 제조 방법, 및 투명 도전막을 포함하는 전자장치 | |
JP2014214397A (ja) | 芯鞘型導電繊維 | |
JP2013182871A (ja) | 透明導電膜付き基材及びその製造方法 | |
JP5437583B2 (ja) | 金属酸化物の製膜方法 | |
US11142845B2 (en) | Composite structure and dispersion | |
JP2012156031A (ja) | 導電性フィルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480009465.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14754412 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015501477 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20157022437 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14768800 Country of ref document: US Ref document number: 2014754412 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |