WO2014129400A1 - ガス中の二酸化炭素を吸収及び回収するための液体、並びにそれを用いた二酸化炭素の回収方法 - Google Patents

ガス中の二酸化炭素を吸収及び回収するための液体、並びにそれを用いた二酸化炭素の回収方法 Download PDF

Info

Publication number
WO2014129400A1
WO2014129400A1 PCT/JP2014/053485 JP2014053485W WO2014129400A1 WO 2014129400 A1 WO2014129400 A1 WO 2014129400A1 JP 2014053485 W JP2014053485 W JP 2014053485W WO 2014129400 A1 WO2014129400 A1 WO 2014129400A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
group
liquid
absorbing
weight
Prior art date
Application number
PCT/JP2014/053485
Other languages
English (en)
French (fr)
Inventor
東井 隆行
フィロツ アラム チョウドリ
後藤 和也
洋市 松崎
正巳 小野田
Original Assignee
公益財団法人地球環境産業技術研究機構
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人地球環境産業技術研究機構, 新日鐵住金株式会社 filed Critical 公益財団法人地球環境産業技術研究機構
Priority to JP2015501428A priority Critical patent/JP6377602B2/ja
Priority to EP14754559.4A priority patent/EP2959956B1/en
Priority to US14/769,972 priority patent/US20160001220A1/en
Priority to BR112015020067A priority patent/BR112015020067A2/pt
Priority to KR1020157026195A priority patent/KR101955752B1/ko
Priority to CN201480010294.4A priority patent/CN105008022B/zh
Publication of WO2014129400A1 publication Critical patent/WO2014129400A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/2041Diamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20415Tri- or polyamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20426Secondary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/50Combinations of absorbents
    • B01D2252/504Mixtures of two or more absorbents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a liquid for absorbing and recovering carbon dioxide contained in a gas, and a method for efficiently absorbing and recovering carbon dioxide in a gas using the liquid.
  • Sources of carbon dioxide include thermal power plants that use coal, heavy oil, natural gas, etc. as fuels, blast furnaces in steelworks that reduce iron oxide with coke, and steelworks that burn carbon from pig iron to produce steel.
  • the equipment other than the transport aircraft is stationary equipment, and it is easy to take measures to reduce carbon dioxide emissions into the atmosphere.
  • a method of absorbing carbon dioxide by bringing a gas containing carbon dioxide into contact with an aqueous solution of alkanolamines in an absorption tower is known.
  • monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), methyldiethanolamine (MDEA), diisopropanolamine (DIPA), diglycolamine (DGA) and the like are known as alkanolamines.
  • MEA monoethanolamine
  • DEA diethanolamine
  • TEA triethanolamine
  • MDEA methyldiethanolamine
  • DIPA diisopropanolamine
  • DGA diglycolamine
  • alkanolamines have a high solubility in water, and the concentration thereof is preferably higher in order to separate and recover carbon dioxide more efficiently.
  • the rate at which carbon dioxide is recovered decreases as the concentration increases, a carbon dioxide-absorbing liquid with better reaction efficiency has not been developed.
  • the liquid In order to recover carbon dioxide from a liquid that has absorbed carbon dioxide, the liquid is heated to, for example, 120 ° C. to desorb carbon dioxide from the liquid that has absorbed carbon dioxide.
  • the heat of reaction When the heat of reaction is large, a large amount of energy is required to recover carbon dioxide.
  • the reaction heat with 1 mol of carbon dioxide is as high as 80 kJ (80 kJ / mol CO 2 ). Energy is required.
  • Patent Document 1 an aqueous solution of an amine compound (so-called hindered amine) having a steric hindrance such as an alkyl group around an amine group is brought into contact with combustion exhaust gas under atmospheric pressure, and the aqueous solution absorbs carbon dioxide. A method for removing carbon dioxide is described.
  • Specific examples of 2-methylaminoethanol (hereinafter also referred to as MAE) and 2-ethylaminoethanol (hereinafter also referred to as EAE) as hindered amines are described, and 30% by weight of MAE and EAE
  • An aqueous solution is used in the examples.
  • An amine compound such as 2-isopropylaminoethanol (hereinafter sometimes referred to as IPAE) is described as another hindered amine that has no examples.
  • IPAE 2-isopropylaminoethanol
  • Patent Document 2 describes an aqueous solution containing only IPAE, which is also a hindered amine, and has a feature of high carbon dioxide absorption and desorption performance, but as shown in the comparative example, It is described that when the concentration is 60% by weight, the absorption rate and desorption amount of carbon dioxide are reduced, and the absorption and desorption performance of carbon dioxide in the aqueous solution is reduced.
  • amine compounds which are effective components of these aqueous solutions for absorbing carbon dioxide, have been shown in a range of usually 3 to 5 mol / L in terms of molar concentration and 35 to 50% by weight in terms of weight concentration. It is known that use at a concentration reduces the carbon dioxide absorption performance of the solution.
  • Patent Document 3 describes a high-concentration alkanolamine aqueous solution in which the surface tension of the absorbing liquid is reduced by adding a surfactant.
  • a fluorine compound as a surfactant
  • Patent Document 3 describes a high-concentration alkanolamine aqueous solution in which the surface tension of the absorbing liquid is reduced by adding a surfactant.
  • Patent Document 4 describes a process including treating a gaseous fluid with an aqueous absorbent containing a polyamine.
  • Patent Document 5 describes an absorbent composition comprising a polyamine, a tertiary monoamine, and water and a method using the same.
  • Patent Document 6 describes an absorbent comprising an oligoamine and a primary or secondary alkanolamine, and a method for removing acid gas using an aqueous solution thereof
  • Patent Document 7 describes an oligoamine and piperazine. A method of removing acid gas using an absorbent comprising a derivative and an aqueous solution thereof is described.
  • the content of the primary or secondary alkanolamine in Patent Document 6 or the piperazine derivative in Patent Document 7 in Examples is less than 40% by weight with respect to the aqueous solution of the absorbent.
  • Patent Document 8 discloses a gas deoxidation method using an absorbent solution made of a reactive compound such as an alkanolamine
  • Patent Document 9 discloses a gas using an absorbent solution made of a reactive compound such as an alkanolamine. A method for deoxidizing a gaseous effluent is described.
  • the present invention provides a liquid and method that not only absorbs carbon dioxide in a gas with high efficiency but also realizes high-efficiency desorption of carbon dioxide and recovers high-purity carbon dioxide with low energy consumption. For the purpose.
  • the present inventors diligently studied a carbon dioxide absorbing liquid that can efficiently absorb carbon dioxide and desorb it to recover high purity carbon dioxide. As a result, the inventors have used a carbon dioxide absorption and recovery liquid containing 50% by weight or more of a secondary amine compound, a predetermined polyamine compound and water, so that the amount of carbon dioxide per unit absorption liquid can be reduced. The inventors have found that the amount of desorption is large and the rate of absorbing carbon dioxide of the absorbing liquid is high, and the present invention has been completed.
  • the present invention provides a liquid for absorbing and recovering carbon dioxide according to the following items 1 to 6, and a method for absorbing and recovering carbon dioxide according to the following item 7.
  • Item 1 A liquid for absorbing and recovering carbon dioxide from a gas containing carbon dioxide,
  • A General formula [1] R—NH— (CH 2 ) n —OH [1] (In the formula, R represents an alkyl group having 1 to 4 carbon atoms, and n represents an integer of 2 to 5)
  • B) General formula [2] R 1 R 2 N- (X) m -NR 3 R 4 [2] (Wherein R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, and X represents a —CH 2 — group, —O— group, —NH, respectively.
  • at least one of the m Xs is —O— group, —NH— group or —N ( CH 2 ) — groups, and two consecutive Xs adjacent to X representing an —O— group, —NH— group or —N (CH 3 ) — group are —CH 2 — groups.
  • Item 2. The liquid according to Item 1, wherein the content of the (A) secondary amine compound is 50 to 70% by weight (more preferably 55 to 65% by weight).
  • Item 3. The liquid according to Item 1 or 2, wherein the content of the (B) polyamine compound in the entire liquid is 0.1 to 5% by weight.
  • Item 4. The liquid according to Item 3, wherein the content of the (B) polyamine compound in the whole liquid is 0.1 to 1% by weight (particularly preferably 0.1 to 0.8% by weight).
  • Item 5 The liquid according to any one of Items 1 to 4, wherein R is an isopropyl group, a normal butyl group, or a sec-butyl group, and the n is 2 or 3.
  • the polyamine compound is diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, spermine, spermidine, 3,3′-diaminodipropylamine, N, N′-bis (3-aminopropyl) ethylenediamine, N, N′-bis (2-aminoethyl) -1,3-propanediamine, 3,3′-diamino-N-methyldipropylamine, N, N-bis [3- (methylamino) propyl] methylamine 3,3′-iminobis (N, N-dimethylpropylamine), 3- [3- (N, N-dimethylamino) propylamino] propylamine, 2,2′-oxybis (ethylamine), and 1,2 -At least one polyamine selected from the group consisting of bis (2-aminoethoxy) ethane
  • Item 7 A carbon dioxide absorption and recovery method for absorbing and recovering carbon dioxide from a gas containing carbon dioxide, (1) The liquid according to any one of the above items 1 to 6 is contacted with a gas containing carbon dioxide, and carbon dioxide is absorbed from the gas; and (2) obtained by the step (1).
  • the absorption liquid using MEA exhibits high corrosivity with respect to carbon steel, and is said to increase corrosivity especially in a high concentration solution.
  • the liquid containing carbon has low corrosiveness to carbon steel, and it is not necessary to use expensive high-grade corrosion-resistant steel in plant construction.
  • the liquid for absorbing and recovering carbon dioxide according to the present invention is also expected to have a cost reduction effect in investment in equipment and operation of the equipment.
  • Liquid for absorbing and recovering carbon dioxide from the carbon dioxide-containing gas of the present invention comprises: (A) General formula [1] R—NH— (CH 2 ) n —OH [1] (In the formula, R represents an alkyl group having 1 to 4 carbon atoms, and n represents an integer of 2 to 5) A secondary amine compound represented by: (B) General formula [2] R 1 R 2 N- (X) m -NR 3 R 4 [2] (Wherein R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, and X represents a —CH 2 — group, —O— group, —NH, respectively.
  • at least one of the m Xs is —O— group, —NH— group or —N ( CH 2 ) — groups, and two consecutive Xs adjacent to X representing an —O— group, —NH— group or —N (CH 3 ) — group are —CH 2 — groups.
  • the term “contains” is an expression including “contains” and “consists essentially of”.
  • (A) Secondary amine compound The secondary amine compound used in the present invention has the general formula [1].
  • R—NH— (CH 2 ) n —OH [1] (In the formula, R represents an alkyl group having 1 to 4 carbon atoms, and n represents an integer of 2 to 5) It is a secondary amine compound represented by these.
  • R in the general formula [1] may be linear or branched, and specific examples include, for example, a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, and an isobutyl group. , Sec-butyl group and the like, preferably isopropyl group, normal butyl group or sec-butyl group.
  • N in the general formula [1] is an integer of 2 to 5, and an integer of 2 to 3 is more preferable.
  • Specific examples of the secondary amine compound represented by the general formula [1] include, for example, 2-methylaminoethanol, 2-ethylaminoethanol, 2-normalpropylaminoethanol, 2-isopropylaminoethanol, 2-normal Butylaminoethanol, 2-isobutylaminoethanol, 2-sec-butylaminoethanol, 3-methylaminopropanol, 3-ethylaminopropanol, 3-normalpropylaminopropanol, 3-isopropylaminopropanol, 3-normalbutylaminopropanol, Examples include 3-isobutylaminopropanol and 3-sec-butylaminopropanol.
  • 2-isopropylaminoethanol selected from the group consisting of 2-isopropylaminoethanol, 2-normalbutylaminoethanol, 2-sec-butylaminoethanol, 3-isopropylaminopropanol, 3-normalbutylaminopropanol, and 3-sec-butylaminopropanol. It is preferable that it is at least one kind.
  • the purity of the secondary amine compound represented by the general formula [1] is not particularly limited, it is preferably as high as possible, and is usually 95% or more, preferably 98% or more, more preferably 99% or more. .
  • the content of the secondary amine compound in the liquid of the present invention is 50% by weight or more and 50 to 70% by weight with respect to the whole liquid for absorbing and recovering the carbon dioxide of the present invention in a weight ratio. It is preferably 55 to 65% by weight.
  • the mixed solvent of the present invention contains the secondary amine compound at such a high concentration, which leads to a decrease in the calorific value upon absorption of carbon dioxide.
  • the calorific value per mole of amine compound when carbon dioxide is absorbed from 0 mole to 0.6 mole in a molar ratio with respect to the amine compound is 76.6 kJ / mol CO 2 in a 30 wt% IPAE aqueous solution.
  • a high concentration of 60% by weight shows a low value of 70.2 kJ / mol CO 2 .
  • the reason is estimated as follows.
  • the reaction between carbon dioxide and the secondary amine compound is mainly a bicarbonate bond.
  • the calorific value at the time of carbon dioxide absorption corresponds to the calorific value required for carbon dioxide desorption, the reduction in the calorific value can keep the energy consumption necessary for desorbing carbon dioxide low. The effect that leads to the reduction of energy required for the recovery of wastewater is expected.
  • the polyamine compound used in the present invention has the general formula [2].
  • R 1 R 2 N- (X) m -NR 3 R 4 [2] (Wherein R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, and X represents a —CH 2 — group, —O— group, —NH, respectively.
  • a — group or —N (CH 3 ) — group, and m represents an integer of 5 to 20.
  • At least one of the m Xs is —O— group, —NH— group or —N ( CH 3 ) — groups, and two consecutive Xs adjacent to X representing an —O— group, —NH— group or —N (CH 3 ) — group are —CH 2 — groups.
  • the polyamine compound represented by the general formula [2] has two or more amino groups in the same molecule. That is, in other words, m of the alkanediamine compound R 1 R 2 N— (CH 2 ) m —NR 3 R 4 (R 1 , R 2 , R 3 , R 4 and m are the same as described above).
  • R 1 , R 2 , R 3 , R 4 and m are the same as described above.
  • a compound in which at least one methylene chain among the methylene groups is appropriately replaced with an —O— group, —NH— group or —N (CH 3 ) — group through at least an ethylene group.
  • Examples of the polyamine compound represented by the general formula [2] include the general formula [3].
  • R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, and (s + 1) R 5 s are the same or different from each other.
  • p, q and r each represents an integer of 2 to 16 (preferably an integer of 2 to 4 each), and s represents an integer of 0 to 5 (preferably an integer of 0 to 3).
  • the values of p, q, r, and s satisfy 5 ⁇ p + q + (r + 1) s + 1 ⁇ 20 (preferably 5 ⁇ p + q + (r + 1) s + 1 ⁇ 15). ) Is more preferable because it is easily available.
  • the alkyl group having 1 to 2 carbon atoms represented by R 1 , R 2 , R 3 and R 4 is a methyl group or an ethyl group.
  • R 5 represents an —O— group, —NH— group or —N (CH 3 ) — group, and at least one of R 5 is an —NH— group or —N (CH 3 ) — group. Is more preferable.
  • Examples of the polyamine compound represented by the general formula [2] include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, spermine, spermidine, 3,3′-diaminodipropylamine, N, N ′.
  • polyamine compound represented by the general formula [2] examples include, for example, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, spermine, spermidine, and 3,3′-diaminodipropyl.
  • Amines N, N′-bis (3-aminopropyl) ethylenediamine, N, N′-bis (2-aminoethyl) -1,3-propanediamine, 3,3′-diamino-N-methyldipropylamine, N, N-bis [3- (methylamino) propyl] methylamine, 3,3′-iminobis (N, N-dimethylpropylamine), 3- [3- (N, N-dimethylamino) propylamino] propyl Amines, 2,2′-oxybis (ethylamine), 1,2-bis (2-aminoethoxy) ethane, etc. It is.
  • the content of the polyamine compound in the liquid of the present invention brings about an effect of improving the desorption performance and absorption performance of carbon dioxide, particularly the absorption rate, with respect to the whole liquid that absorbs and recovers the carbon dioxide of the present invention by weight ratio. 0.1 to 5% by weight in terms of point, and 0.1 to 1.0% by weight in terms of providing a more comprehensive performance improvement effect on both the desorption performance and absorption rate of carbon dioxide. More preferred is 0.1 to 0.8% by weight.
  • the secondary amine compound and the polyamine compound are commercially available or can be produced by known methods.
  • (C) a liquid for absorbing and recovering carbon dioxide water present invention contains water.
  • the content of water in the liquid for absorbing and recovering carbon dioxide of the present invention is not particularly limited, and the balance can be water, but 49.9 to 25 wt. %, And more preferably 44.9 to 30% by weight.
  • the liquid of this invention may contain components other than the said secondary amine compound, a polyamine compound, and water in the range which does not inhibit the effect of this invention as needed.
  • Other components include a stabilizer (side reaction inhibitor such as an antioxidant) for ensuring the chemical or physical stability of the liquid and a material for equipment and equipment using the solution of the present invention to prevent deterioration.
  • Inhibitors such as corrosion inhibitors).
  • the content of these other components is not particularly limited as long as it does not impair the effects of the present invention, but is 5% relative to the total liquid for absorbing and recovering the carbon dioxide of the present invention by weight ratio. % By weight or less is preferred.
  • Carbon dioxide absorption and recovery method (1) A step of bringing a gas containing carbon dioxide into contact with a liquid for absorbing and recovering carbon dioxide of the present invention, and absorbing carbon dioxide from the gas; and (2) dioxide obtained by the step (1) It includes two steps of desorbing carbon dioxide from the liquid by heating the liquid that has absorbed carbon.
  • Carbon dioxide absorption step The method of absorbing carbon dioxide in the liquid of the present invention is not particularly limited. For example, a method of bubbling and absorbing a gas containing carbon dioxide in the liquid, in a gas stream The liquid is dropped into a mist (spraying or spraying method), the gas and the liquid are counter-contacted in an absorption tower containing a filler such as magnetic or metal mesh.
  • the temperature at which the gas containing carbon dioxide is absorbed by the liquid is usually from room temperature to 60 ° C. or less, preferably 50 ° C. or less, more preferably about 20 to 45 ° C. The lower the temperature is, the more carbon dioxide is absorbed, but the temperature is determined by the gas temperature and the like. Usually, the pressure at the time of carbon dioxide absorption is almost atmospheric pressure, but it can be higher than atmospheric pressure.
  • target carbon dioxide-containing gases examples include thermal power plants that use coal, heavy oil, natural gas, etc. as fuel, boilers at various factories, kilns at cement plants, and ironworks that reduce iron oxide with coke. Blast furnaces, converters in the same steelworks that burn carbon from pig iron and make steel, exhaust gas from coal gasification combined power generation facilities, natural gas during mining, reformed gas, gasoline, heavy oil, light oil, etc. Exhaust gas generated from transportation equipment such as automobiles, ships and aircraft.
  • the carbon dioxide concentration in the gas is usually about 5 to 30% by volume, particularly about 6 to 25% by volume. In such a carbon dioxide concentration range, the effects of the present invention are suitably exhibited.
  • the gas containing carbon dioxide may contain a gas such as water vapor, CO, H 2 S, COS, SO 2 , NO 2 , and hydrogen in addition to carbon dioxide.
  • Carbon dioxide desorption step The method of the present invention includes a step of heating the liquid obtained in the above-described (1) carbon dioxide absorption step to recover carbon dioxide.
  • a shelf examples include a method in which the interface of a liquid that has absorbed carbon dioxide is enlarged and heated in a column tower, a spray tower, or a desorption tower containing a filler such as magnetic or metal mesh. Thereby, carbon dioxide is liberated and released from the bicarbonate ions present in the liquid.
  • the liquid temperature at the time of carbon dioxide desorption is usually 70 ° C. or higher, preferably 80 ° C. or higher, more preferably about 90 to 120 ° C.
  • the liquid after desorbing carbon dioxide is again sent to the (1) carbon dioxide absorption step and recycled (recycled). During this circulation use, the heat applied in the carbon dioxide desorption process is effectively used in the circulation process to increase the temperature of the liquid by heat exchange with the liquid going to the carbon dioxide desorption process from now on. The reduction of energy can be measured.
  • the purity of the recovered carbon dioxide is usually extremely high at 98 to 99% by volume or more.
  • the recovered carbon dioxide is used not only for sequestration and storage in the basement to reduce the amount of carbon dioxide released to the atmosphere, but also as a raw material for chemicals or a synthetic material for high-molecular substances, food / beverage, refrigeration for freezing, etc. Can be used.
  • the liquid of the present invention is expected to exhibit high efficiency in both the reaction efficiency in the carbon dioxide absorption process and the energy efficiency in the carbon dioxide desorption process.
  • the former reaction efficiency is mainly due to the effect of the polyamine compound
  • the latter energy efficiency is mainly due to an increase in the amount of desorption due to an increase in concentration and a decrease in the amount of heat generated during absorption of carbon dioxide.
  • the decrease in calorific value is not yet completely clear, but it is necessary when desorbing carbon dioxide due to changes in the formation energy of various ion pairs generated during carbon dioxide absorption and the stabilization structure due to solvation of various ions. It is estimated that this is because the amount of heat is decreasing.
  • Example 1 A glass gas cleaning bottle is immersed in a constant temperature water bath set to a temperature of 40 ° C., and 60 wt% 2-isopropylaminoethanol (IPAE; manufactured by Tokyo Chemical Industry Co., Ltd.) and 40 wt% water % Mixed solvent 50 g and 3,3′-diamino-N-methyldipropylamine (Tokyo Chemical Industry Co., Ltd.) 0.15 g were charged.
  • a mixed gas containing 20% by volume of carbon dioxide and 80% by volume of nitrogen at a pressure of 0.7 liter / min is dispersed in the form of foam through a glass filter having a coarseness of 100 ⁇ m and a diameter of 13 mm. Absorbed for 60 minutes.
  • the carbon dioxide concentration in the gas at the absorption inlet and the absorption liquid outlet is continuously measured with an infrared carbon dioxide meter (HORIBA GAS ANALYZER VA-3000), and carbon dioxide absorption is determined from the difference in the carbon dioxide flow rate at the inlet and outlet. The amount was measured. If necessary, the amount of inorganic carbon in the absorbing solution was measured with a gas chromatographic total organic carbon meter (SHIMADZU TOC-VCSH) and compared with a value calculated from an infrared carbon dioxide meter. The saturated absorption amount was the amount at the time when the carbon dioxide concentration at the outlet of the absorbing liquid coincided with the carbon dioxide concentration at the inlet. Although the absorption rate varies depending on the absorption amount, the absorption rate at the time when 1/2 of the saturated absorption amount was absorbed was measured and compared.
  • HORIBA GAS ANALYZER VA-3000 infrared carbon dioxide meter
  • the liquid temperature was raised to 70 ° C. in several minutes in the same gas stream, and the amount of carbon dioxide desorbed was measured under the same conditions for 60 minutes.
  • the saturated absorption of carbon dioxide at 40 ° C. was 155 g / kg, and the absorption rate at half absorption of the saturated absorption was 4.3 g / kg / min.
  • Carbon dioxide desorption at 70 ° C. was 86 g / kg.
  • the purity of the collected carbon dioxide was 99.8%.
  • Example 2 Example 1 except that the gas washing bottle was filled with 50 g of a mixed solvent of IPAE 60 wt% and water 40 wt% and tetraethylenepentamine (Tokyo Chemical Industry Co., Ltd.) 0.15 g instead of the solution described in Example 1. Each measurement was performed in the same manner as described above.
  • Example 3 In place of the solution described in Example 1, 50 g of a mixed solvent of 60% by weight of IPAE and 40% by weight of water and 3- [3- (N, N-dimethylamino) propylamino] propylamine (manufactured by Sigma-Aldrich) Each measurement was performed in the same manner as in Example 1 except that 25 g was filled in the gas cleaning bottle.
  • Example 4 In place of the solution described in Example 1, 50 g of a mixed solvent of IPAE 60 wt% and water 40 wt% and 0.25 g of 1,2-bis (2-aminoethoxy) ethane (manufactured by Tokyo Chemical Industry Co., Ltd.) The carbon dioxide absorption rate at 40 ° C. was measured in the same manner as in Example 1 except that it was charged to 4.2 g / kg absorption liquid / min.
  • Comparative Examples 1 and 2 Instead of the solution described in Example 1, only a mixed solvent of IPAE 30% by weight and 70% by weight of water (Comparative Example 1) or a mixed solvent of IPAE 60% by weight and 40% by weight of water (Comparative Example 2) was used in the gas cleaning bottle. Each measurement was carried out in the same manner as in Example 1 except that it was filled.
  • Example 5 In place of the solution described in Example 4, 50 g of a mixed solvent of IPAE 60 wt% and water 40 wt% and 0.15 g of 1,2-bis (2-aminoethoxy) ethane (manufactured by Tokyo Chemical Industry Co., Ltd.) Each measurement was carried out in the same manner as in Example 1 except that the above was filled.
  • Example 7 In place of the solution described in Example 1, 50 g of a mixed solvent of 55% by weight of IPAE and 45% by weight of water and 1.00 g of 1,2-bis (2-aminoethoxy) ethane (manufactured by Tokyo Chemical Industry Co., Ltd.) 6); Alternatively, each measurement was performed in the same manner as in Example 1 except that 50 g of a mixed solvent of IPAE 55 wt% and water 45 wt% and 0.15 g (Example 7) were filled in the gas washing bottle.
  • Example 8 Example 1 except that the solution described in Example 1 was replaced with 50 g of a mixed solvent of IPAE 65% by weight and water 35% by weight and 0.25 g of tetraethylenepentamine (manufactured by Tokyo Chemical Industry Co., Ltd.) in a gas washing bottle. Each measurement was performed in the same manner as described above.
  • Examples 9-11 Instead of the solution described in Example 1, 50 g of a mixed solvent of 60% by weight of EAE and 40% by weight of water and 1.00 g of triethylenetetramine (manufactured by Tokyo Chemical Industry Co., Ltd.) (Example 9); 60% by weight of EAE and 40% of water 50% by weight of a mixed solvent and 0.15 g of 1,2-bis (2-aminoethoxy) ethane (Tokyo Chemical Industry Co., Ltd.) (Example 10); or 50 g of a mixed solvent of 60% by weight of EAE and 40% by weight of water and Each measurement was performed in the same manner as in Example 1 except that 1.00 g (Example 11) was filled in each gas cleaning bottle.
  • Comparative Example 4 Each measurement was performed in the same manner as in Example 1 except that instead of the solution described in Example 1, only a mixed solvent of 60% by weight of EAE and 40% by weight of water was filled in the gas washing bottle.
  • Comparative Example 1 At a low concentration of 30% by weight, the absorption rate is fast, but the saturated absorption amount and desorption amount are low. In Comparative Example 2, a drastic decrease in the absorption rate is observed at 60% by weight, and it can be seen that it is difficult to improve the performance of the absorbent with a simple increase in concentration.
  • Example 8 From the results of Example 8 and Comparative Example 4, when the concentration of the secondary amine compound is 65% by weight, the absorption rate is greatly increased by the addition of the polyamine compound, and the saturated absorption of carbon dioxide per unit absorption liquid. The amount and the amount of desorption were also greatly increased, confirming the effect of adding the polyamine compound.
  • Example 1 The liquid of Example 1 was subjected to a corrosion test on an SS400 metal test piece. The test was conducted using a Hastelloy autoclave under a condition of 130 ° C. and 48 hours in a carbon dioxide saturated atmosphere in the presence of carbon monoxide. As a result, the corrosion to SS400 with respect to the aqueous solution of Example 1 was a general corrosion, and the corrosion rate was calculated to be 0.06 mm / year. From this result, it was judged that the corrosiveness was low although it had slight corrosiveness.

Abstract

開示されているのは、二酸化炭素を含むガスから二酸化炭素を吸収及び回収するための液体であって、(A)一般式[1]R-NH-(CH2)n-OHで表される第2級アミン化合物、(B)一般式[2]R1R2N-(X)m-NR3R4で表されるポリアミン化合物、及び(C)水を含有し、該(A)第2級アミン化合物の含有量が50重量%以上である、液体、並びに当該液体を用いた二酸化炭素の吸収及び回収方法である。

Description

ガス中の二酸化炭素を吸収及び回収するための液体、並びにそれを用いた二酸化炭素の回収方法
 本発明は、ガス中に含まれる二酸化炭素を吸収及び回収するための液体、並びに当該液体を用いたガス中の二酸化炭素を効率的に吸収及び回収する方法に関する。
 近年、地球温暖化に起因すると考えられている気候変動や自然災害が、農業生産、住環境、エネルギー消費等に多大な影響を及ぼしている。この地球温暖化は、人類の社会活動が活発になることに付随して増大する二酸化炭素、メタン、亜酸化窒素、フロン等の温室効果ガスが大気中に増大することが原因と考えられており、その温室効果ガスの中で最も主要なものとして大気中の二酸化炭素が挙げられており、二酸化炭素の大気中への排出量の削減に向けての対策が世界的な課題となっている。
 二酸化炭素の発生源としては、石炭、重油、天然ガス等を燃料とする火力発電所、コークスで酸化鉄を還元する製鐵所の高炉、銑鉄中の炭素を燃焼して製鋼する製鐵所の転炉、各種製造所におけるボイラー、セメント工場におけるキルン等、さらには、ガソリン、重油、軽油等を燃料とする自動車、船舶、航空機等の輸送機器がある。これらのうち、輸送機以外は定置的な設備であり、二酸化炭素の大気中への排出量を削減する対策を施しやすい設備である。
 上記で例示される発生源から排出されるガスから二酸化炭素を分離回収する方法としては、従来からいくつかの方法が知られている。
 例えば、二酸化炭素を含むガスを吸収塔内でアルカノールアミン類の水溶液と接触させて二酸化炭素を吸収させる方法が知られている。ここでアルカノールアミン類としては、モノエタノールアミン(MEA)、ジエタノールアミン(DEA)、トリエタノールアミン(TEA)、メチルジエタノールアミン(MDEA)、ジイソプロパノールアミン(DIPA)、ジグリコールアミン(DGA)等が知られているが、通常はMEAが多く用いられている。
 一般に、アルカノールアミン類は水への溶解度が高く、より効率的に二酸化炭素を分離回収するためにはその濃度が高いほうが好ましい。しかしながら、濃度が高くなるにつれて二酸化炭素を回収する速度は低下するため、より反応効率の良い二酸化炭素吸収用液体の開発には至っていない。
 また、二酸化炭素を吸収した液体から二酸化炭素を回収するには、液体を例えば120℃に加熱することにより、二酸化炭素を吸収した液体から二酸化炭素を脱離させるが、二酸化炭素と当該アルカノールアミン類との反応熱が大きい場合には、二酸化炭素の回収に大きなエネルギーが必要となる。例えば、MEAの場合、二酸化炭素1モルとの反応熱は80kJ(80kJ/molCO)と高く、発電所においてMEAを用いて二酸化炭素を分離回収するには、発電量の約20%に相当するエネルギーが必要となる。
 このように、二酸化炭素への大気への排出量のみならず、省エネルギー及び省資源の観点から、この追加的なエネルギー消費は、二酸化炭素の分離回収の実用化における大きな課題であり、より低消費エネルギー、即ち、高いエネルギー効率で二酸化炭素を吸収及び回収するための二酸化炭素吸収液体や方法が求められているのが現状である。
 上記のような課題に対して、これまでに様々な検討がなされてきた。特許文献1には、アミン基周辺にアルキル基等の立体障害があるアミン化合物(いわゆるヒンダードアミン)の水溶液を大気圧下の燃焼排ガスに接触させ、当該水溶液に二酸化炭素を吸収させることによる燃焼排ガス中の二酸化炭素の除去方法が記載されている。ヒンダードアミンとして2-メチルアミノエタノール(以下、MAEと示すこともある)や2-エチルアミノエタノール(以下、EAEと示すこともある)の具体例が記されており、MAE及びEAEの30重量%の水溶液が実施例で使用されている。実施例はないものの他のヒンダードアミンとして2-イソプロピルアミノエタノール(以下、IPAEと示すこともある)等のアミン化合物が記されている。
 特許文献2には、同じくヒンダードアミンであるIPAEのみを含む水溶液が記載されており、高い二酸化炭素の吸収及び脱離性能が特徴として挙げられているが、比較例に示されているようにIPAEの濃度を60重量%にすると二酸化炭素の吸収速度及び脱離量が低下し、水溶液の二酸化炭素の吸収及び脱離性能が低下する結果が記載されている。
 これらの二酸化炭素の吸収用水溶液の有効成分であるアミン化合物は、通常モル濃度で3~5mol/L、重量濃度で35~50重量%の範囲で多くの実施例が示されており、より高濃度での使用は溶液の二酸化炭素吸収性能を低下させることが知られている。
 また、特許文献3には、界面活性剤を添加することにより、吸収液の表面張力を低下させた高濃度のアルカノールアミン水溶液が記載されている。しかしながら、工業的な使用においては、界面活性剤としてフッ素化合物を使用する場合、環境への影響やその工業的入手性について、ポリエチレングリコール等を使用する場合では発泡等による二酸化炭素の分離回収プロセスへの影響について改善させる必要がある。
 特許文献4には、ポリアミンを含む水性吸収体でガス状流体を処理することを含むプロセスが記載されている。
 特許文献5には、ポリアミン、3級モノアミン、及び水からなる吸収剤組成物およびそれを用いた方法が記載されている。
 特許文献6には、オリゴアミン及び第1級または第2級アルカノールアミンからなる吸収剤並びにその水溶液を用いた酸性ガスを除去する方法が記載されており、特許文献7には、オリゴアミン及びピペラジン誘導体からなる吸収剤並びにその水溶液を用いた酸性ガスを除去する方法が記載されている。ここで、特許文献6における第1級または第2級アルカノールアミン、若しくは特許文献7におけるピペラジン誘導体の実施例における含有量は吸収剤の水溶液に対して40重量%未満である。
 また、特許文献8には、アルカノールアミン類などの反応性化合物からなる吸収剤溶液を用いるガス脱酸方法が、特許文献9には、アルカノールアミン類などの反応性化合物からなる吸収溶液を用いるガス状流出物を脱酸する方法が記載されている。
 このように、ガス中に含まれる二酸化炭素の分離回収においては、二酸化炭素の吸収及び脱離を高い効率において実現する二酸化炭素の吸収用液体、並びに低消費エネルギーにより高純度の二酸化炭素を回収する方法が求められている。
特許第2871334号公報 特開2009-006275号公報 国際公開第2012/002394号 特表2012-533414号公報 特表2013-501608号公報 特表2011-525422号公報 特表2011-525423号公報 特開2006-136885号公報 特表2009-529420号公報
 本発明は、ガス中の二酸化炭素を高効率に吸収するだけでなく、高効率な二酸化炭素の脱離を実現し、低いエネルギー消費量で高純度の二酸化炭素を回収できる液体及び方法を提供することを目的とする。
 本発明者等は、効率的に二酸化炭素を吸収し、かつ、脱離して高純度の二酸化炭素を回収できる二酸化炭素の吸収用液体について、鋭意検討した。その結果、発明者等は、50重量%以上の第2級アミン化合物、所定のポリアミン化合物及び水を含有する二酸化炭素の吸収及び回収用液体を用いることにより、単位吸収用液体当たりの二酸化炭素の脱離量が大きく、且つ、吸収用液体の二酸化炭素を吸収する速度が高くなることを見出し、本発明を完成するに至った。
 即ち、本発明は、下記項1~6に記載の二酸化炭素を吸収及び回収するための液体、並びに下記項7に記載の二酸化炭素を吸収及び回収する方法を提供するものである。
 項1.二酸化炭素を含むガスから二酸化炭素を吸収及び回収するための液体であって、
(A)一般式[1]
   R-NH-(CH2)n-OH    [1]
(式中、Rは炭素数1~4のアルキル基を、nは2~5の整数を示す。)
で表される第2級アミン化合物、
(B)一般式[2]
   R1R2N-(X)m-NR3R4   [2]
(式中、R、R、R及びRはそれぞれ独立して水素原子又は炭素数1~2のアルキル基を示し、Xはそれぞれ-CH-基、-O-基、-NH-基又は-N(CH)-基を示し、mは5~20の整数を示す。ここで、m個あるXのうち少なくとも一つは-O-基、-NH-基又は-N(CH)-基であり、-O-基、-NH-基又は-N(CH)-基を示すXに隣接する連続した二つのXは-CH-基である。)
で表されるポリアミン化合物、及び
(C)水
を含有し、該(A)第2級アミン化合物の含有量が50重量%以上である、液体。
 項2.前記(A)第2級アミン化合物の含有量が50~70重量%(より好ましくは55~65重量%)である、前記項1に記載の液体。
 項3.前記(B)ポリアミン化合物の前記液体全体に対する含有量が、0.1~5重量%である、前記項1又は2に記載の液体。
 項4.前記(B)ポリアミン化合物の前記液体全体に対する含有量が、0.1~1重量%(特に好ましくは0.1~0.8重量%)である、前記項3に記載の液体。
 項5.前記Rがイソプロピル基、ノルマルブチル基又はsec-ブチル基であり、前記nが2又は3である、前記項1~4のいずれか1項に記載の液体。
 項6.前記(B)ポリアミン化合物がジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、スペルミン、スペルミジン、3,3’-ジアミノジプロピルアミン、N,N’-ビス(3-アミノプロピル)エチレンジアミン、N,N’-ビス(2-アミノエチル)-1,3-プロパンジアミン、3,3’-ジアミノ-N-メチルジプロピルアミン、N,N-ビス[3-(メチルアミノ)プロピル]メチルアミン、3,3’-イミノビス(N,N-ジメチルプロピルアミン)、3-[3-(N,N-ジメチルアミノ)プロピルアミノ]プロピルアミン、2,2’-オキシビス(エチルアミン)、及び1,2-ビス(2-アミノエトキシ)エタンからなる群より選ばれる少なくとも一種のポリアミンである、前記項1~5のいずれか1項に記載の液体。
 項7.二酸化炭素を含むガスから二酸化炭素を吸収及び回収する二酸化炭素の吸収及び回収方法であって、
(1)前記項1~6のいずれか1項に記載の液体に二酸化炭素を含むガスを接触させ、ガスから二酸化炭素を吸収する工程、及び
(2)前記(1)の工程により得られた二酸化炭素を吸収した液体を加熱することにより、該液体から二酸化炭素を脱離させる工程を含む、二酸化炭素の吸収及び回収方法。
 本発明による二酸化炭素を吸収及び回収するための液体を用いた二酸化炭素の分離回収では、ガス中に含まれる二酸化炭素の液体への吸収及び二酸化炭素を吸収した液体からの二酸化炭素の脱離が高い効率で行われ、低消費エネルギーで、高純度の二酸化炭素を回収する方法を提供することができる。
 また、液体中の第2級アミン化合物の高濃度化により、二酸化炭素の吸収及び脱離サイクルにおける液体の循環流量を低減することに繋がり、吸収塔、脱離塔及びこれらに付随する装置の小型化が可能となる。その上、従来用いられてきたMEAを用いた吸収用液体は炭素鋼に対して高い腐食性を示し、特に高濃度溶液において腐食性が増大するとされているが、本発明の第2級アミン化合物を含む液体は高濃度においても炭素鋼に対する腐食性は低く、プラント建設において高価な高級耐食鋼を用いる必要がない。これらの結果として、本発明による二酸化炭素を吸収及び回収するための液体は、設備への投資及び設備の運営におけるコスト低減効果も期待される。
 以下、本発明を詳述する。
 二酸化炭素を吸収及び回収するための液体
 本発明の二酸化炭素を含むガスから二酸化炭素を吸収及び回収するための液体は、
(A)一般式[1]
   R-NH-(CH2)n-OH    [1]
(式中、Rは炭素数1~4のアルキル基を、nは2~5の整数を示す。)
で表される第2級アミン化合物、
(B)一般式[2]
   R1R2N-(X)m-NR3R4   [2]
(式中、R、R、R及びRはそれぞれ独立して水素原子又は炭素数1~2のアルキル基を示し、Xはそれぞれ-CH-基、-O-基、-NH-基又は-N(CH)-基を示し、mは5~20の整数を示す。ここで、m個あるXのうち少なくとも一つは-O-基、-NH-基又は-N(CH)-基であり、-O-基、-NH-基又は-N(CH)-基を示すXに隣接する連続した二つのXは-CH-基である。)
で表されるポリアミン化合物、及び
(C)水
を含有し、該(A)第2級アミン化合物の含有量が50重量%以上であることを特徴とする。
 なお、本発明において、「~を含有する」という用語は、「~を含有する」、「実質的に~からなる」を包含する表現である。
 (A)第2級アミン化合物
 本発明で用いられる第2級アミン化合物は、一般式[1]
   R-NH-(CH2)n-OH    [1]
(式中、Rは炭素数1~4のアルキル基を、nは2~5の整数を示す。)
で表される第2級アミン化合物である。
 前記一般式[1]中におけるRは、直鎖又は分岐鎖のいずれであってもよく、具体例としては、例えば、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、sec-ブチル基等が挙げられ、好ましくは、イソプロピル基、ノルマルブチル基又はsec-ブチル基である。
 前記一般式[1]中におけるnは、2~5の整数であり、2~3の整数がより好ましい。
 前記一般式[1]で表される第2級アミン化合物の具体例は、例えば、2-メチルアミノエタノール、2-エチルアミノエタノール、2-ノルマルプロピルアミノエタノール、2-イソプロピルアミノエタノール、2-ノルマルブチルアミノエタノール、2-イソブチルアミノエタノール、2-sec-ブチルアミノエタノール、3-メチルアミノプロパノール、3-エチルアミノプロパノール、3-ノルマルプロピルアミノプロパノール、3-イソプロピルアミノプロパノール、3-ノルマルブチルアミノプロパノール、3-イソブチルアミノプロパノール、3-sec-ブチルアミノプロパノール等が挙げられる。これらの中でも、2-イソプロピルアミノエタノール、2-ノルマルブチルアミノエタノール、2-sec-ブチルアミノエタノール、3-イソプロピルアミノプロパノール、3-ノルマルブチルアミノプロパノール及び3-sec-ブチルアミノプロパノールからなる群より選ばれる少なくとも一種であることが好ましい。
 前記一般式[1]で表される第2級アミン化合物の純度は、特に限定的ではないが高いほどよく、通常95%以上であり、好ましくは98%以上、さらに好ましくは99%以上である。
 本発明の液体における前記第2級アミン化合物の含有量は、重量比で本発明の二酸化炭素を吸収及び回収するための液体全体に対して50重量%以上であり、50~70重量%であることが好ましく、55~65重量%であることがより好ましい。
 本発明の混合溶媒は、このように高い濃度において第2級アミン化合物を含有しており、二酸化炭素の吸収時の発熱量の低下に繋がる。例えば、アミン化合物に対するモル比で0モルから0.6モルまで二酸化炭素を吸収させた場合のアミン化合物1モル当たりの発熱量は、30重量%のIPAE水溶液では、76.6kJ/モルCOであるのに対して、高濃度である60重量%の場合は、70.2kJ/モルCOと低い値を示す。その理由については、以下のように推測される。二酸化炭素と第2級アミン化合物との反応はバイカーボネート結合が主なものであり、13C-NMRの測定によると、一般式[1]においてRが炭素数2のエチル基であるエチルアミノエタノールではカーバメート結合が約30%、Rが炭素数3又は4の置換基である場合はカーバメート結合はトレース量しか観測されない。そのため、主に二酸化炭素の吸収過程において発熱量を構成するものは、重炭酸イオンとプロトン化アミンとのイオン対の生成、及び溶媒である水との溶媒和に起因するものである。この場合、第2級アミン化合物の高濃度化により、溶媒和を含めた溶液中での各イオンの安定化構造に変化が生じ、反応熱の低下が起こるものと推定される。二酸化炭素吸収時の発熱量は、二酸化炭素脱離時に必要な熱量に対応するため、当該発熱量の低下により、二酸化炭素を脱離させるために必要なエネルギー消費を低く抑えることができ、二酸化炭素の回収に必要となるエネルギーの低減に繋がる効果が期待される。
 (B)ポリアミン化合物
 本発明で用いられるポリアミン化合物は、一般式[2]
   R1R2N-(X)m-NR3R4   [2]
(式中、R、R、R及びRはそれぞれ独立して水素原子又は炭素数1~2のアルキル基を示し、Xはそれぞれ-CH-基、-O-基、-NH-基又は-N(CH)-基を示し、mは5~20の整数を示す。ここで、m個あるXのうち少なくとも一つは-O-基、-NH-基又は-N(CH)-基であり、-O-基、-NH-基又は-N(CH)-基を示すXに隣接する連続した二つのXは-CH-基である。)で表されるポリアミン化合物である。
 前記一般式[2]で表されるポリアミン化合物は、同一分子内に2個以上のアミノ基を有するものである。即ち、換言すると、炭素数mのアルカンジアミン化合物 R1R2N-(CH2)m-NR3R4(R、R、R、R及びmは前記に同じ。)のm個のメチレン基のうち少なくとも一つのメチレン鎖を、少なくともエチレン基を介して、適宜、-O-基、-NH-基又は-N(CH)-基で置き換えた化合物である。
 前記一般式[2]で表されるポリアミン化合物としては、一般式[3]
   R1R2N-(CH2)-R5-[(CH2)r-R5]s-(CH2)q-NR3R4  [3]
(式中、R、R、R及びRはそれぞれ独立して水素原子又は炭素数1~2のアルキル基を示し、(s+1)個のRは互いに同一であっても異なっていてもよく、それぞれ独立して-O-基、-NH-基又は-N(CH)-基を示す。
p、q及びrはそれぞれ2~16の整数(好ましくは、それぞれ2~4の整数)を示し、sは0~5の整数(好ましくは、0~3の整数)を示す。但し、p、q、r及びsの値は、5≦p+q+(r+1)s+1≦20(好ましくは5≦p+q+(r+1)s+1≦15)を満たすものである。)
で表されるポリアミン化合物が、入手が容易な点でより好ましい。
 前記R、R、R及びRで示される炭素数1~2のアルキル基としては、メチル基又はエチル基である。
 前記Rは、-O-基、-NH-基又は-N(CH)-基を示すが、Rの少なくとも一つは-NH-基又は-N(CH)-基であることがより好ましい。
 前記一般式[2]で表されるポリアミン化合物としては、例えば、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、スペルミン、スペルミジン、3,3’-ジアミノジプロピルアミン、N,N’-ビス(3-アミノプロピル)エチレンジアミン、N,N’-ビス(2-アミノエチル)-1,3-プロパンジアミン、2,2’-オキシビス(エチルアミン)、1,2-ビス(2-アミノエトキシ)エタン、若しくはこれらの化合物の両末端の窒素原子上に炭素数1~2のアルキル基及び/又はそれ以外の窒素原子上にメチル基が適宜置換された化合物等が挙げられる。前記一般式[2]で表されるポリアミン化合物のより具体的な例としては、例えば、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、スペルミン、スペルミジン、3,3’-ジアミノジプロピルアミン、N,N’-ビス(3-アミノプロピル)エチレンジアミン、N,N’-ビス(2-アミノエチル)-1,3-プロパンジアミン、3,3’-ジアミノ-N-メチルジプロピルアミン、N,N-ビス[3-(メチルアミノ)プロピル]メチルアミン、3,3’-イミノビス(N,N-ジメチルプロピルアミン)、3-[3-(N,N-ジメチルアミノ)プロピルアミノ]プロピルアミン、2,2’-オキシビス(エチルアミン)、1,2-ビス(2-アミノエトキシ)エタン等が挙げられる。
 本発明の液体における前記ポリアミン化合物の含有量は、重量比で本発明の二酸化炭素を吸収及び回収する液体全体に対して、二酸化炭素の脱離性能や吸収性能、特に吸収速度における向上効果をもたらす点で0.1~5重量%であることが好ましく、二酸化炭素の脱離性能および吸収速度の両方に対してより総合的な性能向上効果をもたらす点で0.1~1.0重量%であることがより好ましく、0.1~0.8重量%であることが特に好ましい。
 前記第2級アミン化合物及びポリアミン化合物は、市販品を入手できるか又は公知の方法により製造できる。
 (C)水
 本発明の二酸化炭素を吸収及び回収するための液体は、水を含有する。
 本発明の二酸化炭素を吸収及び回収するための液体における水の含有量は、特に限定的なものではなく、残部を水とすることができるが、当該液体全体に対して49.9~25重量%であることが好ましく、44.9~30重量%であることがより好ましい。
 (D)その他の成分
 本発明の液体は、前記第2級アミン化合物、ポリアミン化合物及び水以外の成分を、必要に応じて、本発明の効果を阻害しない範囲で含んでいてもよい。その他の成分としては、液体の化学的又は物理的安定性を確保するための安定剤(酸化防止剤等の副反応抑制剤)や本発明の溶液を用いる装置や設備の材質の劣化を防ぐための防止剤(腐食防止剤等)等が挙げられる。これらその他の成分の含有量は本発明の効果を阻害しない範囲であれば特に制限的なものではないが、重量比で本発明の二酸化炭素を吸収及び回収するための液体全体に対して、5重量%以下が好ましい。
 二酸化炭素の吸収及び回収方法
 本発明の二酸化炭素の吸収及び回収方法は、
(1)本発明の二酸化炭素を吸収及び回収するための液体に二酸化炭素を含むガスを接触させ、ガスから二酸化炭素を吸収する工程、及び
(2)前記(1)の工程により得られた二酸化炭素を吸収した液体を加熱することにより、該液体から二酸化炭素を脱離させる工程
の2工程を含むことを特徴とする。
 (1)二酸化炭素吸収工程
 本発明の液体に二酸化炭素を吸収させる方法については、特に限定的ではないが、例えば、当該液体中に二酸化炭素を含むガスをバブリングさせて吸収する方法、ガス気流中に当該液体を霧状に降らす方法(噴霧乃至スプレー方式)、磁製や金属網製等の充填材の入った吸収塔内でガスと当該液体を向流接触させる方法等によって行われる。
 二酸化炭素を含むガスを当該液体に吸収させる時の温度は、通常室温から60℃以下で行われ、好ましくは50℃以下、より好ましくは20~45℃程度で行われる。温度が低いほど二酸化炭素の吸収量は増加するが、その温度はガスの温度等によって決定される。通常、二酸化炭素吸収時の圧力はほぼ大気圧で行われるが、大気圧以上でも可能である。
 対象となる二酸化炭素を含むガスとしては、例えば、石炭、重油、天然ガス等を燃料とする火力発電所、各種製造所のボイラー、セメント工場のキルン、コークスで酸化鉄を還元する製鐵所の高炉、銑鉄中の炭素を燃焼して製鋼する同じく製鐵所の転炉、石炭ガス化複合発電設備等からの排ガス、採掘時天然ガス、改質ガスや、ガソリン、重油、軽油等を燃料とする自動車、船舶、航空機等の輸送機器等から生じる排出ガス等が挙げられる。当該ガス中の二酸化炭素濃度は、通常、5~30体積%程度、特に6~25体積%程度であればよい。斯かる二酸化炭素濃度範囲では、本発明の作用効果が好適に発揮される。なお、二酸化炭素を含むガスには、二酸化炭素以外に水蒸気、CO、HS、COS、SO、NO、水素等のガスが含まれていてもよい。
 (2)二酸化炭素脱離工程
 本発明の方法は、前記した(1)二酸化炭素吸収工程で得られた液体を加熱して二酸化炭素を回収する工程を含む。
 二酸化炭素を吸収した液体から二酸化炭素を脱離し、高濃度の二酸化炭素を回収する方法としては、(1)工程において当該二酸化炭素を吸収した液体を加熱して二酸化炭素を脱離する方法、棚段塔、スプレー塔、又は磁製や金属網製等の充填材の入った脱離塔内で二酸化炭素を吸収した液体の界面を大きくして、かつ加熱する方法等が挙げられる。これにより、液体中に存在する重炭酸イオンから二酸化炭素が遊離して放出される。
 二酸化炭素脱離時の液体温度は、通常、70℃以上で行われ、好ましくは80℃以上、より好ましくは90~120℃程度で行われる温度が高いほど二酸化炭素の脱離量は増加するが、温度が高いほど液体の加熱に要するエネルギーが増加するため、その温度は熱源温度や分離回収プラントの熱効率等によって決定される。二酸化炭素を脱離した後の液体は、再び(1)二酸化炭素吸収工程に送られ、循環使用(リサイクル)される。この循環使用の間、二酸化炭素脱離工程で加えられた熱は、循環過程において、これから二酸化炭素脱離工程に向かう液体との熱交換により当該液体の昇温に有効に利用されて回収工程全体のエネルギーの低減が計られ得る。
 回収された二酸化炭素の純度は、通常、98~99体積%以上と極めて高いものとなる。回収した二酸化炭素は、二酸化炭素の大気への排出量の削減のための地下等への隔離貯蔵のみならず、化学品原料又は高分子物質の合成原料、食品・飲料や冷凍用冷剤等として用いることができる。
 本発明の液体は、二酸化炭素の吸収工程における反応効率及び二酸化炭素脱離工程におけるエネルギー効率の双方において、高い効率を示すことが期待される。前者の反応効率は主にポリアミン化合物による効果であり、後者のエネルギー効率は主に高濃度化による脱離量の増大及び二酸化炭素の吸収時の発熱量の低下である。発熱量の低下については、未だ完全に明らかではないが、二酸化炭素吸収時に生じる各種イオン対の生成エネルギーや各種イオンの溶媒和による安定化構造等に変化が生じることにより、二酸化炭素脱離時に必要な熱量が低下しているためであると推測される。
 次に、本発明について実施例を用いて詳細に説明するが、本発明はこの実施例に限定されるものではない。
 実施例1
 液の温度が40℃になるように設定した恒温水槽内に、ガラス製のガス洗浄ビンを浸し、これに2-イソプロピルアミノエタノール(IPAE;東京化成工業株式会社製)60重量%及び水40重量%の混合溶媒50g及び3,3’-ジアミノ-N-メチルジプロピルアミン(東京化成工業株式会社製)0.15gを充填した。この液体の中に、目の粗さ100μm、直径13mmのガラスフィルターを通して、大気圧、0.7リットル/分で二酸化炭素20体積%及び窒素80体積%を含む混合ガスを泡状に分散させて60分間吸収させた。
 吸収入口及び吸収液出口のガス中の二酸化炭素濃度を、赤外線式の二酸化炭素計(HORIBA GAS ANALYZER VA-3000)で連続的に測定して、入口及び出口の二酸化炭素流量の差から二酸化炭素吸収量を測定した。必要により吸収液中の無機炭素量をガスクロマトグラフ式の全有機炭素計(SHIMADZU TOC-VCSH)で測定し赤外線式二酸化炭素計から算出される値と比較した。飽和吸収量は吸収液出口の二酸化炭素濃度が入口の二酸化炭素濃度に一致する時点における量とした。吸収速度は吸収量に応じて変化するが、飽和吸収量の1/2を吸収した時点の吸収速度を基準として測定して比較した。
 次いで、同じガス気流中で液温を数分にて70℃にあげて、60分間同条件にて二酸化炭素の脱離量を測定した。40℃の二酸化炭素飽和吸収量は155g/kgで、飽和吸収量の1/2吸収時の吸収速度は4.3g/kg/分であった。70℃での二酸化炭素脱離は86g/kgであった。なお、回収された二酸化炭素の純度は99.8%であった。
 実施例2
 実施例1に記載の溶液に換えてIPAE60重量%及び水40重量%の混合溶媒50g並びにテトラエチレンペンタミン(東京化成工業株式会社製)0.15gをガス洗浄ビンに充填した他は実施例1と同様にして、各測定を行った。
 実施例3
 実施例1に記載の溶液に換えてIPAE60重量%及び水40重量%の混合溶媒50g並びに3-[3-(N,N-ジメチルアミノ)プロピルアミノ]プロピルアミン(シグマ-アルドリッチ社製)0.25gをガス洗浄ビンに充填した他は実施例1と同様にして、各測定を行った。
 実施例4
 実施例1に記載の溶液に換えてIPAE60重量%及び水40重量%の混合溶媒50g並びに1,2-ビス(2-アミノエトキシ)エタン(東京化成工業株式会社製)0.25gをガス洗浄ビンに充填した他は実施例1と同様にして、40℃における二酸化炭素吸収速度を測定したところ、4.2g/kg吸収液/分であった。
 比較例1~2
 実施例1に記載の溶液に換えてIPAE30重量%及び水70重量%の混合溶媒(比較例1)又はIPAE60重量%及び水40重量%の混合溶媒(比較例2)のみをそれぞれガス洗浄ビンに充填した他は実施例1と同様にして、各測定を行った。
 実施例5
 実施例4に記載の溶液に換えてIPAE60重量%及び水40重量%の混合溶媒50g並びに1,2-ビス(2-アミノエトキシ)エタン(東京化成工業株式会社製)0.15gをガス洗浄ビンに充填した他は実施例1と同様にして、各測定を行った。
 実施例6~7
 実施例1に記載の溶液に換えて、IPAE55重量%及び水45重量%の混合溶媒50g並びに1,2-ビス(2-アミノエトキシ)エタン(東京化成工業株式会社製)1.00g(実施例6);またはIPAE55重量%及び水45重量%の混合溶媒50g並びに0.15g(実施例7)をそれぞれガス洗浄ビンに充填した他は実施例1と同様にして、各測定を行った。
 比較例3
 実施例1に記載の溶液に換えてIPAE55重量%及び水45重量%の混合溶媒のみをガス洗浄ビンに充填した他は実施例1と同様にして、各測定を行った。
 実施例8
 実施例1に記載の溶液に換えてIPAE65重量%及び水35重量%の混合溶媒50g並びにテトラエチレンペンタミン(東京化成工業株式会社製)0.25gをガス洗浄ビンに充填した他は実施例1と同様にして、各測定を行った。
 実施例9~11
 実施例1に記載の溶液に換えて、EAE60重量%及び水40重量%の混合溶媒50g並びにトリエチレンテトラミン(東京化成工業株式会社製)1.00g(実施例9);EAE60重量%及び水40重量%の混合溶媒50g並びに1,2-ビス(2-アミノエトキシ)エタン(東京化成工業株式会社製)0.15g(実施例10);またはEAE60重量%及び水40重量%の混合溶媒50g並びに1.00g(実施例11)をそれぞれガス洗浄ビンに充填した他は実施例1と同様にして、各測定を行った。
 比較例4
 実施例1に記載の溶液に換えてEAE60重量%及び水40重量%の混合溶媒のみをガス洗浄ビンに充填した他は実施例1と同様にして、各測定を行った。
 以下、実施例並びに比較例の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~5、比較例1及び2の結果より、実施例1~5では、第2級アミン化合物の高濃度化(60重量%)により、吸収速度は同一濃度での比較例2の4.1g/Lより高くなり、また、単位吸収液当たりの二酸化炭素の飽和吸収量も増大しており、ポリアミン化合物の添加による効果が確認された。
 比較例1では、低濃度の30重量%では吸収速度は速いが飽和吸収量及び脱離量は低い。比較例2では、60重量%では吸収速度の大幅な低下が観察され、単純な高濃度化では吸収液の性能向上は難しいことが分かる。
 実施例6,7及び比較例3の結果より、第2級アミン化合物の濃度が55重量%の場合は、ポリアミン化合物の添加により、単位吸収液当たりの二酸化炭素の脱離量は同等程度であるが、吸収速度は増大し、また単位吸収液当たりの二酸化炭素の飽和吸収量も増大しておりポリアミン化合物の添加による効果が確認された。
 実施例8及び比較例4の結果より、第2級アミン化合物の濃度が65重量%の場合は、ポリアミン化合物の添加により、吸収速度は大幅に増大し、単位吸収液当たりの二酸化炭素の飽和吸収量及び脱離量も大幅に増大しておりポリアミン化合物の添加による効果が確認された。
 以上の結果より、第2級アミン化合物の濃度が高いほど、概ね、ポリアミン化合物の添加による効果が大きいことがわかる。
 実施例9~11及び比較例5の結果より、第2級アミン化合物がEAEであっても、ポリアミン化合物の添加により、吸収速度は増大しており、また単位吸収液当たりの二酸化炭素の飽和吸収量及び脱離量も増大し、ポリアミン化合物の添加による効果が確認された。
 <腐食性評価試験>
 実施例1の液体に対して、SS400金属テストピースへの腐食性試験を行った。試験は、ハステロイ製オートクレーブを用いて、一酸化炭素を共存させた二酸化炭素飽和雰囲気下、130℃、48時間の条件で実施した。その結果、実施例1の水溶液に対するSS400への腐食は全面腐食であり、腐食速度は0.06 mm/年と算出された。この結果から、わずかな腐食性を有するものの、腐食性は低いものと判断された。

Claims (7)

  1. 二酸化炭素を含むガスから二酸化炭素を吸収及び回収するための液体であって、
    (A)一般式[1]
       R-NH-(CH2)n-OH    [1]
    (式中、Rは炭素数1~4のアルキル基を、nは2~5の整数を示す。)
    で表される第2級アミン化合物、
    (B)一般式[2]
       R1R2N-(X)m-NR3R4   [2]
    (式中、R、R、R及びRはそれぞれ独立して水素原子又は炭素数1~2のアルキル基を示し、Xはそれぞれ-CH-基、-O-基、-NH-基又は-N(CH)-基を示し、mは5~20の整数を示す。ここで、m個あるXのうち少なくとも一つは-O-基、-NH-基又は-N(CH)-基であり、-O-基、-NH-基又は-N(CH)-基を示すXに隣接する連続した二つのXは-CH-基である。)
    で表されるポリアミン化合物、及び
    (C)水
    を含有し、該(A)第2級アミン化合物の含有量が50重量%以上である、液体。
  2. 前記(A)第2級アミン化合物の含有量が50~70重量%である、請求項1に記載の液体。
  3. 前記(B)ポリアミン化合物の前記液体全体に対する含有量が、0.1~5重量%である、請求項1又は2に記載の液体。
  4. 前記(B)ポリアミン化合物の前記液体全体に対する含有量が、0.1~1重量%である、請求項3に記載の液体。
  5. 前記Rがイソプロピル基、ノルマルブチル基又はsec-ブチル基であり、前記nが2又は3である、請求項1~4のいずれか1項に記載の液体。
  6. 前記(B)ポリアミン化合物がジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、スペルミン、スペルミジン、3,3’-ジアミノジプロピルアミン、N,N’-ビス(3-アミノプロピル)エチレンジアミン、N,N’-ビス(2-アミノエチル)-1,3-プロパンジアミン、3,3’-ジアミノ-N-メチルジプロピルアミン、N,N-ビス[3-(メチルアミノ)プロピル]メチルアミン、3,3’-イミノビス(N,N-ジメチルプロピルアミン)、3-[3-(N,N-ジメチルアミノ)プロピルアミノ]プロピルアミン、2,2’-オキシビス(エチルアミン)、及び1,2-ビス(2-アミノエトキシ)エタンからなる群より選ばれる少なくとも一種のポリアミンである、請求項1~5のいずれか1項に記載の液体。
  7. 二酸化炭素を含むガスから二酸化炭素を吸収及び回収する二酸化炭素の吸収及び回収方法であって、
    (1)請求項1~6のいずれか1項に記載の液体に二酸化炭素を含むガスを接触させ、ガスから二酸化炭素を吸収する工程、及び
    (2)前記(1)の工程により得られた二酸化炭素を吸収した液体を加熱することにより、該液体から二酸化炭素を脱離させる工程を含む、二酸化炭素の吸収及び回収方法。 
PCT/JP2014/053485 2013-02-25 2014-02-14 ガス中の二酸化炭素を吸収及び回収するための液体、並びにそれを用いた二酸化炭素の回収方法 WO2014129400A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015501428A JP6377602B2 (ja) 2013-02-25 2014-02-14 ガス中の二酸化炭素を吸収及び回収するための液体、並びにそれを用いた二酸化炭素の回収方法
EP14754559.4A EP2959956B1 (en) 2013-02-25 2014-02-14 Liquid for absorbing and recovering carbon dioxide in gas, and method for recovering carbon dioxide with use of same
US14/769,972 US20160001220A1 (en) 2013-02-25 2014-02-14 Liquid for absorbing and collecting carbon dioxide in gas, and method for collecting carbon dioxide with use of same
BR112015020067A BR112015020067A2 (pt) 2013-02-25 2014-02-14 líquido para absorver e coletar dióxido de carbono em gás e método para coletar dióxido de carbono com o uso do mesmo
KR1020157026195A KR101955752B1 (ko) 2013-02-25 2014-02-14 가스 중의 이산화탄소를 흡수 및 회수하기 위한 액체, 및 그것을 사용한 이산화탄소의 회수 방법
CN201480010294.4A CN105008022B (zh) 2013-02-25 2014-02-14 用于吸收和回收气体中的二氧化碳的液体、及使用该液体的二氧化碳的回收方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013035149 2013-02-25
JP2013-035149 2013-02-25

Publications (1)

Publication Number Publication Date
WO2014129400A1 true WO2014129400A1 (ja) 2014-08-28

Family

ID=51391193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053485 WO2014129400A1 (ja) 2013-02-25 2014-02-14 ガス中の二酸化炭素を吸収及び回収するための液体、並びにそれを用いた二酸化炭素の回収方法

Country Status (7)

Country Link
US (1) US20160001220A1 (ja)
EP (1) EP2959956B1 (ja)
JP (1) JP6377602B2 (ja)
KR (1) KR101955752B1 (ja)
CN (1) CN105008022B (ja)
BR (1) BR112015020067A2 (ja)
WO (1) WO2014129400A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031062A (ja) * 2015-07-29 2017-02-09 国立大学法人金沢大学 2−オキサゾリジノン誘導体の製造方法
KR101827318B1 (ko) 2016-11-11 2018-02-08 한국에너지기술연구원 상분리 산성가스 흡수제 및 산성가스 분리 방법
WO2024085046A1 (ja) * 2022-10-19 2024-04-25 Agc株式会社 二酸化炭素吸着材

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016219301A1 (de) 2016-10-05 2018-04-05 Audi Ag Verfahren und Vorrichtung zur Abgasreinigung
US10332623B2 (en) * 2017-01-17 2019-06-25 Kaleo, Inc. Medicament delivery devices with wireless connectivity and event detection
KR102037878B1 (ko) 2018-02-22 2019-10-29 서강대학교산학협력단 이산화탄소 흡수제와 이를 이용한 이산화탄소의 분리방법
US11266947B2 (en) * 2019-03-25 2022-03-08 Battelle Memorial Institute Diamine solvent system for CO2 capture

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02504367A (ja) * 1988-05-24 1990-12-13 エルフ・エクスプロラシオン・プロデユクシオン 第三級アルカノールアミン成分及びco2吸収活性剤を含有する酸性ガス吸収液体並びにco2及び任意にその他の酸性ガスを含むガスの脱酸へのその使用
JP2871334B2 (ja) 1992-02-27 1999-03-17 関西電力株式会社 燃焼排ガス中の二酸化炭素の除去方法
JP2005296897A (ja) * 2004-04-15 2005-10-27 Mitsubishi Heavy Ind Ltd 吸収助剤、吸収液、吸収液を用いたco2又はh2s又はその双方の除去装置及び方法
JP2006136885A (ja) 2004-11-12 2006-06-01 Inst Fr Petrole 部分再生吸収剤溶液によるガス脱酸方法
JP2009006275A (ja) 2007-06-28 2009-01-15 Research Institute Of Innovative Technology For The Earth 排ガス中の二酸化炭素を効率的に回収する方法
JP2009529420A (ja) 2006-03-10 2009-08-20 イエフペ 加熱による分別再生を伴う、吸収溶液によりガスを脱酸する方法
JP2011525422A (ja) 2008-06-23 2011-09-22 ビーエーエスエフ ソシエタス・ヨーロピア 吸収剤及び流体流、特に排ガスからの酸性ガスの除去のための方法
JP2011525423A (ja) 2008-06-23 2011-09-22 ビーエーエスエフ ソシエタス・ヨーロピア 吸収剤及び流体流、特に排ガスからの酸性ガスの除去のための方法
JP2011194388A (ja) * 2010-03-24 2011-10-06 Research Institute Of Innovative Technology For The Earth ガス中に含まれる二酸化炭素を効果的に吸収及び回収する水溶液
WO2012002394A1 (ja) 2010-06-30 2012-01-05 財団法人地球環境産業技術研究機構 排ガス中の二酸化炭素を効率的に吸収及び回収する水溶液
JP2012533414A (ja) 2009-07-23 2012-12-27 キャンソルヴ テクノロジーズ インコーポレーテッド 二酸化炭素および硫化水素吸収体及びその使用プロセス
JP2013501608A (ja) 2009-08-11 2013-01-17 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Co2及び/又はh2sを含む気体からco2及び/又はh2sを除去するための吸収剤組成物及び方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5277885A (en) * 1988-05-24 1994-01-11 Elf Aquitaine Production Liquid absorbing acidic gases and use thereof in deacidification of gases
DE69428057T2 (de) * 1993-10-06 2002-04-18 Kansai Electric Power Co Verfahren zur Abscheidung von Kohlendioxid aus Verbrennungsabgasen
CA2651888C (en) * 2006-05-18 2015-07-07 Basf Se Carbon dioxide absorbent requiring less regeneration energy
FR2934172B1 (fr) * 2008-07-28 2011-10-28 Inst Francais Du Petrole Solution absorbante a base de n,n,n'n'-tetramethylhexane -1,6-diamine et procede d'elimination de composes acides d'un effluent gazeux
DE102010004070A1 (de) * 2010-01-05 2011-07-07 Uhde GmbH, 44141 CO2-Entfernung aus Gasen mittels wässriger Amin-Lösung unter Zusatz eines sterisch gehinderten Amins

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02504367A (ja) * 1988-05-24 1990-12-13 エルフ・エクスプロラシオン・プロデユクシオン 第三級アルカノールアミン成分及びco2吸収活性剤を含有する酸性ガス吸収液体並びにco2及び任意にその他の酸性ガスを含むガスの脱酸へのその使用
JP2871334B2 (ja) 1992-02-27 1999-03-17 関西電力株式会社 燃焼排ガス中の二酸化炭素の除去方法
JP2005296897A (ja) * 2004-04-15 2005-10-27 Mitsubishi Heavy Ind Ltd 吸収助剤、吸収液、吸収液を用いたco2又はh2s又はその双方の除去装置及び方法
JP2006136885A (ja) 2004-11-12 2006-06-01 Inst Fr Petrole 部分再生吸収剤溶液によるガス脱酸方法
JP2009529420A (ja) 2006-03-10 2009-08-20 イエフペ 加熱による分別再生を伴う、吸収溶液によりガスを脱酸する方法
JP2009006275A (ja) 2007-06-28 2009-01-15 Research Institute Of Innovative Technology For The Earth 排ガス中の二酸化炭素を効率的に回収する方法
JP2011525422A (ja) 2008-06-23 2011-09-22 ビーエーエスエフ ソシエタス・ヨーロピア 吸収剤及び流体流、特に排ガスからの酸性ガスの除去のための方法
JP2011525423A (ja) 2008-06-23 2011-09-22 ビーエーエスエフ ソシエタス・ヨーロピア 吸収剤及び流体流、特に排ガスからの酸性ガスの除去のための方法
JP2012533414A (ja) 2009-07-23 2012-12-27 キャンソルヴ テクノロジーズ インコーポレーテッド 二酸化炭素および硫化水素吸収体及びその使用プロセス
JP2013501608A (ja) 2009-08-11 2013-01-17 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Co2及び/又はh2sを含む気体からco2及び/又はh2sを除去するための吸収剤組成物及び方法
JP2011194388A (ja) * 2010-03-24 2011-10-06 Research Institute Of Innovative Technology For The Earth ガス中に含まれる二酸化炭素を効果的に吸収及び回収する水溶液
WO2012002394A1 (ja) 2010-06-30 2012-01-05 財団法人地球環境産業技術研究機構 排ガス中の二酸化炭素を効率的に吸収及び回収する水溶液

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031062A (ja) * 2015-07-29 2017-02-09 国立大学法人金沢大学 2−オキサゾリジノン誘導体の製造方法
KR101827318B1 (ko) 2016-11-11 2018-02-08 한국에너지기술연구원 상분리 산성가스 흡수제 및 산성가스 분리 방법
WO2024085046A1 (ja) * 2022-10-19 2024-04-25 Agc株式会社 二酸化炭素吸着材

Also Published As

Publication number Publication date
JPWO2014129400A1 (ja) 2017-02-02
KR20150121152A (ko) 2015-10-28
EP2959956A4 (en) 2016-10-19
CN105008022B (zh) 2018-06-05
BR112015020067A2 (pt) 2017-07-18
CN105008022A (zh) 2015-10-28
US20160001220A1 (en) 2016-01-07
EP2959956B1 (en) 2019-12-18
JP6377602B2 (ja) 2018-08-22
EP2959956A1 (en) 2015-12-30
KR101955752B1 (ko) 2019-03-07

Similar Documents

Publication Publication Date Title
JP6377602B2 (ja) ガス中の二酸化炭素を吸収及び回収するための液体、並びにそれを用いた二酸化炭素の回収方法
JP5452222B2 (ja) ガス中の二酸化炭素を効率的に回収する方法
KR101432951B1 (ko) 배기 가스 중의 이산화탄소를 효율적으로 흡수 및 회수하는 수용액
JP6095579B2 (ja) 排ガス中の二酸化炭素を効率的に吸収及び回収する水溶液、及びそれを用いた二酸化炭素の回収方法
CA2817704C (en) Amine-containing absorption medium, process and apparatus for absorption of acid gases from gas mixtures
CA2777326C (en) Acid gas absorbent, acid gas removal method, and acid gas removal device
JP5506486B2 (ja) ガス中に含まれる二酸化炭素を効果的に吸収及び回収する水溶液
CA2861345A1 (en) Process for absorbing co2 from a gas mixture
US20130343974A1 (en) Acid gas absorbent, acid gas removal method, and acid gas removal device
CA2893611A1 (en) Method of absorbing co2 from a gas mixture
JP2015027647A (ja) 酸性ガス吸収剤、酸性ガス除去方法及び酸性ガス除去装置
JP2017035669A (ja) 酸性ガス吸収剤、酸性ガス除去方法および酸性ガス除去装置
JP2009213974A (ja) ガス中の二酸化炭素を効率的に吸収、脱離回収する水溶液及び方法
WO2011036712A1 (ja) 炭酸ガス吸収液
JP2015047581A (ja) 二酸化炭素吸収剤及びそれを用いた二酸化炭素の分離回収方法。
CN105289207A (zh) 捕集二氧化碳气体的三乙醇胺复合胺吸收剂
WO2019163867A1 (ja) 二酸化炭素の吸収剤および二酸化炭素の分離回収方法
JP2022085754A (ja) 吸収液および分離回収方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501428

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14769972

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015020067

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2014754559

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157026195

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015020067

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150820