WO2011036712A1 - 炭酸ガス吸収液 - Google Patents
炭酸ガス吸収液 Download PDFInfo
- Publication number
- WO2011036712A1 WO2011036712A1 PCT/JP2009/004832 JP2009004832W WO2011036712A1 WO 2011036712 A1 WO2011036712 A1 WO 2011036712A1 JP 2009004832 W JP2009004832 W JP 2009004832W WO 2011036712 A1 WO2011036712 A1 WO 2011036712A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon dioxide
- weight
- parts
- alkanolamine
- amino acid
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1493—Selection of liquid materials for use as absorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1456—Removing acid components
- B01D53/1475—Removing carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/20—Organic absorbents
- B01D2252/204—Amines
- B01D2252/20478—Alkanolamines
- B01D2252/20484—Alkanolamines with one hydroxyl group
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/20—Organic absorbents
- B01D2252/204—Amines
- B01D2252/20478—Alkanolamines
- B01D2252/20489—Alkanolamines with two or more hydroxyl groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/20—Organic absorbents
- B01D2252/204—Amines
- B01D2252/20494—Amino acids, their salts or derivatives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/50—Combinations of absorbents
- B01D2252/504—Mixtures of two or more absorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/60—Additives
- B01D2252/604—Stabilisers or agents inhibiting degradation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/60—Additives
- B01D2252/606—Anticorrosion agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/0283—Flue gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Definitions
- the present invention relates to a carbon dioxide absorbing liquid for recovering exhaust gas generated from a plant or the like.
- an aqueous alkanolamine solution is contacted alone or mixed with a reaction accelerator such as piperazine to absorb the carbon dioxide gas, and then the carbon dioxide gas absorbing liquid is heated.
- the carbon dioxide gas is desorbed and recovered by the desorption tower.
- a reaction accelerator such as piperazine
- MEA monoethanolamine
- MDEA methyldiethanolamine
- Patent Document 1 In order to solve these problems, attempts have been made to reduce the oxidative deterioration of the absorbent by adding an antioxidant to the reaction system (for example, Patent Document 1). It is an invention that slows the degradation rate of MEA by adding a free radical scavenger such as thiosulfate as an antioxidant to the reaction system.
- a free radical scavenger such as thiosulfate
- BICINE N, N-bis- (2-hydroxymethyl) glycine
- an object of the present invention is to provide a carbon dioxide absorbing solution that suppresses the production of BICINE, which is an oxidative degradation product of alkanolamine.
- the carbon dioxide absorbing liquid according to one embodiment of the present invention is characterized by containing an alkanolamine and a sulfur amino acid represented by the following general formula [Chemical Formula 1] or [Chemical Formula 2].
- the carbon dioxide absorbing liquid in this embodiment is characterized by containing an alkanolamine and a sulfur amino acid represented by the following general formula [Chemical Formula 1] or [Chemical Formula 2].
- a nitrogen-containing compound such as piperazine, ethylaminopiperazine, and 2-methylpiperazine, which supplements absorption performance, and other compounds such as a pH adjuster as required. be able to.
- Alkanolamines mainly contribute to the absorption of carbon dioxide. Any alkanolamine may be used as long as it exhibits carbon dioxide absorption performance and exhibits water solubility due to the carbon dioxide recovery method described in detail below.
- water-soluble in this embodiment means that it can be dissolved in water, and specifically means that it can be dissolved in 1 part by weight or more with respect to 99 parts by weight of water.
- alkanolamine examples include triethanolamine (hereinafter referred to as TEA), MDEA, diethanolamine (hereinafter referred to as DEA), diisopropropanolamine (hereinafter referred to as DIPA), diglycolamine (hereinafter referred to as DGA). Described), MEA, and aminomethylpropanol (hereinafter referred to as AMP) are preferable. This is because, in addition to the large amount of carbon dioxide absorbed, the boiling point is low and it is difficult to evaporate, so the energy consumed when separating and releasing carbon dioxide is reduced.
- TEA triethanolamine
- MDEA diethanolamine
- DEA diethanolamine
- DIPA diisopropropanolamine
- DGA diglycolamine
- MEA aminomethylpropanol
- AMP aminomethylpropanol
- the sulfur amino acid contributes mainly to the prevention of oxidative degradation of the alkanolamine described above in the carbon dioxide absorbing liquid of this embodiment. In the presence of oxygen, sulfur amino acids are bonded to sulfur atoms, and the sulfur amino acids themselves are oxidized to prevent oxidative degradation of the alkanolamine.
- Sulfur amino acids are represented by the general formula [Chemical Formula 1] or [Chemical Formula 2], and specifically include cysteine, cystine, methionine, and glutathione. Of the above sulfur amino acids, cysteine and cystine are particularly preferred. This is because it is suitable for mass production and is relatively easy to obtain.
- each alkanolamine and sulfur amino acid is preferably in the range of 0.1 to 1.0 part by weight of sulfur amino acid with respect to 5 to 60 parts by weight of alkanolamine.
- the ratio of alkanolamine and sulfur amino acid is not limited to the above range as long as the effects of the present invention are exhibited.
- an aqueous solution is prepared by mixing alkanolamine and sulfur amino acid with water.
- the mixing ratio of alkanolamine and sulfur amino acid to water is preferably 40 to 95 parts by weight of water with respect to 5 to 60 parts by weight of alkanolamine.
- the pH of the aqueous solution is preferably 7 or more and 14 or less. As a result, the amount of carbon dioxide absorbed in the aqueous solution can be increased. This condition is inevitably satisfied in the case of the above-described TEA, MDEA, and DMAE, but a pH adjuster or the like can be mixed as necessary.
- a gas containing carbon dioxide is brought into contact with the aqueous solution to absorb the carbon dioxide.
- the gas containing carbon dioxide and the aqueous solution may be in contact with each other.
- a bubble stirring tank a gas dispersion type absorption device using a bubble tower, a spray tower, a spray chamber, a scrubber, a wet wall tower, a packed tower
- Existing carbon dioxide absorption equipment such as a liquid dispersion type absorption device can be used. From the viewpoint of carbon dioxide absorption efficiency, absorption using a carbon dioxide absorption tower filled with a filler is preferred.
- the reaction temperature at the time of carbon dioxide recovery may be any temperature as long as carbon dioxide can be absorbed, but is preferably 25 ° C. or higher and 70 ° C. or lower from the viewpoint of absorption speed and absorption efficiency.
- a decompression operation or a membrane separation operation can be used in combination.
- Table 1 shows the components and the amount of BICINE produced in Examples and Comparative Examples.
- Example 1 30 parts by weight of TEA as an alkanolamine, 10 parts by weight of piperazine as a reaction accelerator, and 0.1 parts by weight of cysteine as a sulfur amino acid were dissolved in 50 parts by weight of water to obtain a 10 mL aqueous solution.
- the pH of the aqueous solution was about 12.
- the obtained aqueous solution was heated at 130 ° C., and a mixed gas of about 50% carbon dioxide and 50% oxygen was aerated at a flow rate of 1.0 L / min for 8 hours. It was confirmed that the outlet carbon dioxide concentration of the absorbing solution after 1 hour and after 8 hours was constant and absorbed carbon dioxide.
- Example 2 When 1.0 part by weight of cysteine was used as the sulfur amino acid, the same experiment as in Example 1 was performed, and the BICINE in the aqueous solution was 11 ppm.
- Example 3 An experiment similar to that of Example 1 was performed using 45 parts by weight of MDEA as the alkanolamine, 5.0 parts by weight of piperazine as the reaction accelerator, and 0.1 parts by weight of cysteine as the sulfur amino acid. As a result, BICINE in the aqueous solution was 19 ppm. there were.
- Example 4 When the same experiment as in Example 1 was performed using 45 parts by weight of MDEA as the alkanolamine, 5.0 parts by weight of piperazine as the reaction accelerator, and 1.0 part by weight of cysteine as the sulfur amino acid, BICINE in the aqueous solution was detected. There wasn't.
- Example 5 An experiment similar to Example 1 was conducted using 50 parts by weight of DEA as an alkanolamine, 5.0 parts by weight of ethylaminopiperazine as a reaction accelerator, and 0.1 parts by weight of cysteine as a sulfur amino acid. As a result, BICINE in an aqueous solution was It was 31 ppm.
- Example 6 An experiment similar to that of Example 1 was conducted using 50 parts by weight of DEA as an alkanolamine, 5.0 parts by weight of ethylaminopiperazine as a reaction accelerator, and 1.0 part by weight of cysteine as a sulfur amino acid. As a result, BICINE in an aqueous solution was It was 18 ppm.
- Example 7 An experiment similar to that of Example 1 was performed using 30 parts by weight of DIPA as alkanolamine, 10 parts by weight of 2-methylpiperazine as a reaction accelerator, and 0.1 part by weight of cysteine as a sulfur amino acid. As a result, BICINE in an aqueous solution was 31 ppm. Met.
- Example 8 When the same experiment as in Example 1 was performed using 40 parts by weight of DGA as an alkanolamine and 0.1 parts by weight of cysteine as a sulfur amino acid without using a reaction accelerator, the BICINE in the aqueous solution was 11 ppm.
- Example 9 When the same experiment as in Example 1 was performed using no reaction accelerator, 30 parts by weight of MEA as alkanolamine, and 0.1 parts by weight of cysteine as a sulfur amino acid, the BICINE in the aqueous solution was 14 ppm.
- Example 10 When the same experiment as in Example 1 was performed using 30 parts by weight of AMP as the alkanolamine and 0.1 parts by weight of cysteine as the sulfur amino acid without using a reaction accelerator, the BICINE in the aqueous solution was 25 ppm.
- Example 11 When an experiment similar to Example 1 was performed using 30 parts by weight of TEA as an alkanolamine, 10 parts by weight of piperazine as a reaction accelerator, and 0.1 parts by weight of cystine as a sulfur amino acid, the BICINE in the aqueous solution was 20 ppm. .
- Example 12 When an experiment similar to that of Example 1 was performed using 45 parts by weight of TEA as an alkanolamine, 10 parts by weight of piperazine as a reaction accelerator, and 1.0 part by weight of cystine as a sulfur amino acid, the BICINE in the aqueous solution was 5 ppm. .
- Example 13 When an experiment similar to that of Example 1 was performed using 45 parts by weight of MDEA as alkanolamine, 5.0 parts by weight of piperazine as a reaction accelerator, and 0.1 parts by weight of cystine as a sulfur amino acid, BICINE in an aqueous solution was 13 ppm. there were.
- Example 14 When the same experiment as in Example 1 was performed using 45 parts by weight of MDEA as the alkanolamine, 5.0 parts by weight of piperazine as the reaction accelerator, and 1.0 part by weight of cystine as the sulfur amino acid, BICINE in the aqueous solution was detected. There wasn't.
- Example 15 An experiment similar to that of Example 1 was conducted using 50 parts by weight of DEA as alkanolamine, 5.0 parts by weight of ethylaminopiperazine as a reaction accelerator, and 0.1 parts by weight of cystine as a sulfur amino acid. It was 22 ppm.
- Example 16 An experiment similar to that of Example 1 was conducted using 50 parts by weight of DEA as an alkanolamine, 5.0 parts by weight of ethylaminopiperazine as a reaction accelerator, and 1.0 part by weight of cystine as a sulfur amino acid. As a result, BICINE in an aqueous solution was It was 15 ppm.
- Example 17 An experiment similar to that of Example 1 was carried out using 30 parts by weight of DIPA as the alkanolamine, 10 parts by weight of 2-methylpiperazine as the reaction accelerator, and 0.1 parts by weight of cystine as the sulfur amino acid. As a result, BICINE in the aqueous solution was 26 ppm. Met.
- Example 18 When the same experiment as in Example 1 was performed using 40 parts by weight of DGA as an alkanolamine and 0.1 parts by weight of cystine as a sulfur amino acid without using a reaction accelerator, the BICINE in the aqueous solution was 7 ppm.
- Example 19 When the same experiment as in Example 1 was conducted using 30 parts by weight of MEA as the alkanolamine and 0.1 parts by weight of cystine as the sulfur amino acid without using the reaction accelerator, the BICINE in the aqueous solution was 10 ppm.
- Example 20 When the same experiment as in Example 1 was performed using 30 parts by weight of AMP as an alkanolamine and 0.1 parts by weight of cystine as a sulfur amino acid without using a reaction accelerator, the BICINE in the aqueous solution was 12 ppm.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Gas Separation By Absorption (AREA)
- Treating Waste Gases (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
最初に、本態様における炭酸ガス吸収液について説明する。本発明の一態様に係る炭酸ガス吸収液は、アルカノールアミンと、下記一般式[化1]または[化2]で表される硫黄アミノ酸と、を含有することを特徴としている。以下、それぞれの構成要素について説明する。なお、本態様の炭酸ガス吸収液は必要に応じて、吸収性能を補足するピペラジン、エチルアミノピペラジン、2-メチルピペラジン等の含窒素化合物、pH調整剤等その他の化合物を任意の割合で含有させることができる。
アルカノールアミンは、主として炭酸ガスの吸収に寄与するものである。アルカノールアミンは炭酸ガス吸収性能を示すとともに、以下に詳述する炭酸ガスの回収方法に起因して、水溶性を示すものであればよい。なお本態様における「水溶性」とは水に対して溶解できることを意味し、具体的には水99重量部に対して1重量部以上溶解できることを意味する。
硫黄アミノ酸は本態様の炭酸ガス吸収液において、主として上述のアルカノールアミンの酸化劣化の防止に寄与するものである。硫黄アミノ酸は酸素の存在下では、硫黄原子に酸素が結合し、硫黄アミノ酸自身が酸化することで、アルカノールアミンの酸化劣化を防止する。
本態様において、アルカノールアミンと硫黄アミノ酸とのそれぞれの含有割合は、アルカノールアミン5~60重量部に対して、硫黄アミノ酸0.1~1.0重量部の範囲であることが好ましい。これによって、本態様の炭酸ガス吸収液における炭酸ガスの吸収とアルカノールアミンの酸化劣化の低減とを両立させることができる。
次に、本態様の炭酸ガスの回収方法について説明する。
アルカノールアミンとしてTEA30重量部、反応促進剤としてピペラジン10重量部、硫黄アミノ酸としてシステイン0.1重量部を水50重量部に溶解させ、10mLの水溶液とした。水溶液のpHは約12であった。得られた水溶液を130℃で加熱し、炭酸ガス約50%、酸素50%の混合ガスを流速1.0L/minで8時間通気した。1時間後及び8時間後の吸収液の出口炭酸ガス濃度は一定であり、炭酸ガスを吸収していることを確認した。
硫黄アミノ酸としてシステイン1.0重量部を用いて、実施例1と同様の実験を行ったところ、水溶液中のBICINEは11ppmであった。
アルカノールアミンとしてMDEA45重量部、反応促進剤としてピペラジン5.0重量部、硫黄アミノ酸としてシステイン0.1重量部を用いて、実施例1と同様の実験を行ったところ、水溶液中のBICINEは19ppmであった。
アルカノールアミンとしてMDEA45重量部、反応促進剤としてピペラジン5.0重量部、硫黄アミノ酸としてシステイン1.0重量部を用いて、実施例1と同様の実験を行ったところ、水溶液中のBICINEは検出されなかった。
アルカノールアミンとしてDEA50重量部、反応促進剤としてエチルアミノピペラジン5.0重量部、硫黄アミノ酸としてシステイン0.1重量部を用いて、実施例1と同様の実験を行ったところ、水溶液中のBICINEは31ppmであった。
アルカノールアミンとしてDEA50重量部、反応促進剤としてエチルアミノピペラジン5.0重量部、硫黄アミノ酸としてシステイン1.0重量部を用いて、実施例1と同様の実験を行ったところ、水溶液中のBICINEは18ppmであった。
アルカノールアミンとしてDIPA30重量部、反応促進剤として2-メチルピペラジン10重量部、硫黄アミノ酸としてシステイン0.1重量部を用いて、実施例1と同様の実験を行ったところ、水溶液中のBICINEは31ppmであった。
反応促進剤は用いず、アルカノールアミンとしてDGA40重量部、硫黄アミノ酸としてシステイン0.1重量部を用いて、実施例1と同様の実験を行ったところ、水溶液中のBICINEは11ppmであった。
反応促進剤は用いず、アルカノールアミンとしてMEA30重量部、硫黄アミノ酸としてシステイン0.1重量部を用いて、実施例1と同様の実験を行ったところ、水溶液中のBICINEは14ppmであった。
反応促進剤は用いず、アルカノールアミンとしてAMP30重量部、硫黄アミノ酸としてシステイン0.1重量部を用いて、実施例1と同様の実験を行ったところ、水溶液中のBICINEは25ppmであった。
アルカノールアミンとしてTEA30重量部、反応促進剤としてピペラジン10重量部、硫黄アミノ酸としてシスチン0.1重量部を用いて、実施例1と同様の実験を行ったところ、水溶液中のBICINEは20ppmであった。
アルカノールアミンとしてTEA45重量部、反応促進剤としてピペラジン10重量部、硫黄アミノ酸としてシスチン1.0重量部を用いて、実施例1と同様の実験を行ったところ、水溶液中のBICINEは5ppmであった。
アルカノールアミンとしてMDEA45重量部、反応促進剤としてピペラジン5.0重量部、硫黄アミノ酸としてシスチン0.1重量部を用いて、実施例1と同様の実験を行ったところ、水溶液中のBICINEは13ppmであった。
アルカノールアミンとしてMDEA45重量部、反応促進剤としてピペラジン5.0重量部、硫黄アミノ酸としてシスチン1.0重量部を用いて、実施例1と同様の実験を行ったところ、水溶液中のBICINEは検出されなかった。
アルカノールアミンとしてDEA50重量部、反応促進剤としてエチルアミノピペラジン5.0重量部、硫黄アミノ酸としてシスチン0.1重量部を用いて、実施例1と同様の実験を行ったところ、水溶液中のBICINEは22ppmであった。
アルカノールアミンとしてDEA50重量部、反応促進剤としてエチルアミノピペラジン5.0重量部、硫黄アミノ酸としてシスチン1.0重量部を用いて、実施例1と同様の実験を行ったところ、水溶液中のBICINEは15ppmであった。
アルカノールアミンとしてDIPA30重量部、反応促進剤として2-メチルピペラジン10重量部、硫黄アミノ酸としてシスチン0.1重量部を用いて、実施例1と同様の実験を行ったところ、水溶液中のBICINEは26ppmであった。
反応促進剤は用いず、アルカノールアミンとしてDGA40重量部、硫黄アミノ酸としてシスチン0.1重量部を用いて、実施例1と同様の実験を行ったところ、水溶液中のBICINEは7ppmであった。
反応促進剤は用いず、アルカノールアミンとしてMEA30重量部、硫黄アミノ酸としてシスチン0.1重量部を用いて、実施例1と同様の実験を行ったところ、水溶液中のBICINEは10ppmであった。
反応促進剤は用いず、アルカノールアミンとしてAMP30重量部、硫黄アミノ酸としてシスチン0.1重量部を用いて、実施例1と同様の実験を行ったところ、水溶液中のBICINEは12ppmであった。
硫黄アミノ酸を用いずに、実施例1と同様の実験を行ったところ、水溶液中のBICINEは283ppmであった。
硫黄アミノ酸を用いずに、実施例3と同様の実験を行ったところ、水溶液中のBICINEは173ppmであった。
硫黄アミノ酸を用いずに、実施例5と同様の実験を行ったところ、水溶液中のBICINEは528ppmであった。
硫黄アミノ酸を用いずに、実施例7と同様の実験を行ったところ、水溶液中のBICINEは211ppmであった。
硫黄アミノ酸を用いずに、実施例8と同様の実験を行ったところ、水溶液中のBICINEは74ppmであった。
硫黄アミノ酸を用いずに、実施例9と同様の実験を行ったところ、水溶液中のBICINEは45ppmであった。
Claims (4)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011532796A JP5603873B2 (ja) | 2009-09-24 | 2009-09-24 | 炭酸ガス吸収液 |
PCT/JP2009/004832 WO2011036712A1 (ja) | 2009-09-24 | 2009-09-24 | 炭酸ガス吸収液 |
AU2009353168A AU2009353168B2 (en) | 2009-09-24 | 2009-09-24 | Carbon dioxide gas absorbent solution |
US13/498,019 US9056271B2 (en) | 2009-09-24 | 2009-09-24 | Carbon dioxide absorbing solution |
CN200980161533.5A CN102548639B (zh) | 2009-09-24 | 2009-09-24 | 二氧化碳吸收液 |
EP09849743.1A EP2481464A4 (en) | 2009-09-24 | 2009-09-24 | SOLUTION ABSORBING GASEOUS CARBON DIOXIDE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/004832 WO2011036712A1 (ja) | 2009-09-24 | 2009-09-24 | 炭酸ガス吸収液 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011036712A1 true WO2011036712A1 (ja) | 2011-03-31 |
Family
ID=43795486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/004832 WO2011036712A1 (ja) | 2009-09-24 | 2009-09-24 | 炭酸ガス吸収液 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9056271B2 (ja) |
EP (1) | EP2481464A4 (ja) |
JP (1) | JP5603873B2 (ja) |
CN (1) | CN102548639B (ja) |
AU (1) | AU2009353168B2 (ja) |
WO (1) | WO2011036712A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015024374A (ja) * | 2013-07-26 | 2015-02-05 | 株式会社Ihi | 二酸化炭素の回収方法及び回収装置 |
CN104437005A (zh) * | 2014-12-11 | 2015-03-25 | 中煤科工集团重庆研究院有限公司 | 煤层气脱碳复合吸收剂 |
US9816029B2 (en) | 2013-06-18 | 2017-11-14 | China Petroleum & Chemical Corporation | Organic amine decarbonization solutions |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6541997B2 (ja) * | 2015-03-23 | 2019-07-10 | 株式会社東芝 | 二酸化炭素吸収剤の処理方法 |
CN109529541B (zh) * | 2017-09-21 | 2022-07-22 | 株式会社东芝 | 二氧化碳吸收剂及二氧化碳分离回收装置 |
TWI643660B (zh) * | 2018-03-20 | 2018-12-11 | 國立中山大學 | 用於吸收室內空氣中二氧化碳之載體的改質方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000229219A (ja) * | 1999-02-09 | 2000-08-22 | Agency Of Ind Science & Technol | 二酸化炭素の吸収剤 |
JP2006527153A (ja) | 2003-06-12 | 2006-11-30 | カンソルブ・テクノロジーズ・インコーポレーテツド | 気体流れからco2を回収する方法 |
WO2007134994A2 (de) * | 2006-05-18 | 2007-11-29 | Basf Se | Kohlendioxid-absorptionsmittel mit verringertem regenerations-energiebedarf |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1306853A (en) * | 1970-05-13 | 1973-02-14 | Ici Ltd | Process for separating and recovering acid gases from gaseous mixtures |
DE2551717C3 (de) * | 1975-11-18 | 1980-11-13 | Basf Ag, 6700 Ludwigshafen | und ggf. COS aus Gasen |
US4775519A (en) * | 1985-10-31 | 1988-10-04 | Texaco Inc. | Removal of acid gases from gas streams |
FR2708602B1 (fr) * | 1993-08-02 | 1995-10-06 | Oreal | Procédé d'extraction des composés malodorants présents dans une formulation contenant au moins un composé comportant un groupe thiol et compositions désodorisées ainsi obtenues. |
NZ286510A (en) * | 1995-05-15 | 1998-06-26 | Rohm & Haas | Method of detoxifying biocide in waste water using a water soluble thio compound |
US20020102694A1 (en) * | 2000-03-31 | 2002-08-01 | Ronald Breaker | Nucleozymes with endonuclease activity |
FR2809619B1 (fr) | 2000-06-06 | 2004-09-24 | Pharmatop | Nouvelles formulations aqueuses de principes actifs sensibles a l'oxydation et leur procede d'obtention |
EP1243524A3 (en) * | 2001-03-16 | 2004-04-07 | Pfizer Products Inc. | Pharmaceutical kit for oxygen-sensitive drugs |
JP3975782B2 (ja) * | 2002-03-04 | 2007-09-12 | 栗田工業株式会社 | ダイオキシン類の分解方法 |
US20050079095A1 (en) | 2003-10-09 | 2005-04-14 | Rosa Crovetto | Inhibition of corrosion in aqueous systems |
DE102006002784B4 (de) | 2006-01-20 | 2007-11-29 | Clariant International Limited | Salze aus einer Stickstoffbase und einem N-Acylmethionin und ihre Verwendung als Korrosionsinhibitoren mit erhöhter biologischer Abbaubarkeit und verminderter Toxizität |
FR2910247B1 (fr) * | 2006-12-22 | 2009-02-27 | Oreal | Procede de deformation permanente des fibres keratiniques comprenant une etape d'application d'une composition reductrice faiblement concentree et une etape intermediaire de sechage |
EP2225011B1 (en) | 2007-11-20 | 2016-03-16 | The University Of Regina | Method for inhibiting amine degradation during co2 capture from a gas stream |
CN102232004A (zh) * | 2008-09-29 | 2011-11-02 | 埃克民公司 | 加速捕捉二氧化碳的方法 |
JP2012076046A (ja) * | 2010-10-04 | 2012-04-19 | Kyodo Printing Co Ltd | システイン系酸素吸収剤 |
-
2009
- 2009-09-24 WO PCT/JP2009/004832 patent/WO2011036712A1/ja active Application Filing
- 2009-09-24 CN CN200980161533.5A patent/CN102548639B/zh not_active Expired - Fee Related
- 2009-09-24 US US13/498,019 patent/US9056271B2/en not_active Expired - Fee Related
- 2009-09-24 AU AU2009353168A patent/AU2009353168B2/en not_active Ceased
- 2009-09-24 JP JP2011532796A patent/JP5603873B2/ja not_active Expired - Fee Related
- 2009-09-24 EP EP09849743.1A patent/EP2481464A4/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000229219A (ja) * | 1999-02-09 | 2000-08-22 | Agency Of Ind Science & Technol | 二酸化炭素の吸収剤 |
JP2006527153A (ja) | 2003-06-12 | 2006-11-30 | カンソルブ・テクノロジーズ・インコーポレーテツド | 気体流れからco2を回収する方法 |
WO2007134994A2 (de) * | 2006-05-18 | 2007-11-29 | Basf Se | Kohlendioxid-absorptionsmittel mit verringertem regenerations-energiebedarf |
Non-Patent Citations (1)
Title |
---|
See also references of EP2481464A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9816029B2 (en) | 2013-06-18 | 2017-11-14 | China Petroleum & Chemical Corporation | Organic amine decarbonization solutions |
JP2015024374A (ja) * | 2013-07-26 | 2015-02-05 | 株式会社Ihi | 二酸化炭素の回収方法及び回収装置 |
CN104437005A (zh) * | 2014-12-11 | 2015-03-25 | 中煤科工集团重庆研究院有限公司 | 煤层气脱碳复合吸收剂 |
Also Published As
Publication number | Publication date |
---|---|
EP2481464A4 (en) | 2014-03-12 |
US20120217437A1 (en) | 2012-08-30 |
EP2481464A1 (en) | 2012-08-01 |
CN102548639A (zh) | 2012-07-04 |
JP5603873B2 (ja) | 2014-10-08 |
JPWO2011036712A1 (ja) | 2013-02-14 |
AU2009353168B2 (en) | 2014-09-04 |
US9056271B2 (en) | 2015-06-16 |
AU2009353168A1 (en) | 2012-04-19 |
CN102548639B (zh) | 2015-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2008268116B2 (en) | Method for efficiently recovering carbon dioxide in gas | |
JP5794913B2 (ja) | 吸収剤及び流体流、特に排ガスからの酸性ガスの除去のための方法 | |
AU2012367110B2 (en) | Method and absorption medium for absorbing CO2 from a gas mixture | |
JP5603873B2 (ja) | 炭酸ガス吸収液 | |
KR101239380B1 (ko) | 복수의 아민기를 갖는 아미노산 및 금속 수화물을 포함하는 이산화탄소 포집용 흡수제 | |
WO2012030630A1 (en) | Method and system for capturing carbon dioxide and/or sulfur dioxide from gas stream | |
AU2011271893B2 (en) | Aqueous solution capable of absorbing and collecting carbon dioxide in exhaust gas with high efficiency | |
KR101955752B1 (ko) | 가스 중의 이산화탄소를 흡수 및 회수하기 위한 액체, 및 그것을 사용한 이산화탄소의 회수 방법 | |
RU2014139222A (ru) | Способ аминной обработки для отделения кислого газа с использованием смесей аминов и алкилоксиаминов | |
CA2861345A1 (en) | Process for absorbing co2 from a gas mixture | |
WO2013118819A1 (ja) | 排ガス中の二酸化炭素を効率的に吸収及び回収する水溶液、及びそれを用いた二酸化炭素の回収方法 | |
US20150071840A1 (en) | Carbon capture solvents and methods for using such solvents | |
AU2010322941B2 (en) | Absorbent solution containing a breakdown inhibitor derived from pyrimidine or from triazine and absorption process for acid compounds contained in a gaseous effluent | |
CN113797714A (zh) | 一种用于捕集和分离纯化二氧化碳的复合吸收剂 | |
JP4922326B2 (ja) | 炭酸ガス吸収剤及び炭酸ガス回収方法 | |
JP7204369B2 (ja) | 酸性ガス吸収剤、酸性ガスの除去方法及び酸性ガス除去装置 | |
JP2009213974A (ja) | ガス中の二酸化炭素を効率的に吸収、脱離回収する水溶液及び方法 | |
KR20190057586A (ko) | 이온성 액체 기반 산가스 흡수제 및 산가스 분리방법 | |
CN106854478A (zh) | 一种含有离子液体活化剂的吸收液 | |
JP7204391B2 (ja) | 酸性ガス吸収剤、酸性ガスの除去方法及び酸性ガス除去装置 | |
KR101422671B1 (ko) | 산성가스 제거용 상분리 흡수제 조성물 및 이를 이용한 산성가스 제거방법 | |
JP2019202298A (ja) | 酸性ガス吸収剤、酸性ガスの除去方法および酸性ガス除去装置 | |
JP7269114B2 (ja) | 酸性ガス吸収剤、酸性ガスの除去方法および酸性ガス除去装置 | |
Merikoski | Flue gas processing in amine-based carbon capture systems | |
KR20140100874A (ko) | 가스 유래 산성가스 성분 제거용 흡수제 조성물 및 이를 이용한 산성가스 성분 제거방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980161533.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09849743 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011532796 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13498019 Country of ref document: US Ref document number: 2009849743 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009353168 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2009353168 Country of ref document: AU Date of ref document: 20090924 Kind code of ref document: A |