WO2014128877A1 - ブローバイガス環流装置を備えた内燃機関の過給機の冷却装置 - Google Patents

ブローバイガス環流装置を備えた内燃機関の過給機の冷却装置 Download PDF

Info

Publication number
WO2014128877A1
WO2014128877A1 PCT/JP2013/054315 JP2013054315W WO2014128877A1 WO 2014128877 A1 WO2014128877 A1 WO 2014128877A1 JP 2013054315 W JP2013054315 W JP 2013054315W WO 2014128877 A1 WO2014128877 A1 WO 2014128877A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
diffuser
supercharger
intake
temperature gas
Prior art date
Application number
PCT/JP2013/054315
Other languages
English (en)
French (fr)
Inventor
怜 杉山
吉郎 加藤
啓二 四重田
末吉 杉山
松本 功
成人 山根
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/769,254 priority Critical patent/US20150377118A1/en
Priority to PCT/JP2013/054315 priority patent/WO2014128877A1/ja
Priority to CN201380073598.0A priority patent/CN105143636B/zh
Priority to EP13875928.7A priority patent/EP2960464A4/en
Priority to JP2015501150A priority patent/JP6015843B2/ja
Publication of WO2014128877A1 publication Critical patent/WO2014128877A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0418Layout of the intake air cooling or coolant circuit the intake air cooler having a bypass or multiple flow paths within the heat exchanger to vary the effective heat transfer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/005Cooling of pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/16Other safety measures for, or other control of, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/06Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding lubricant vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10157Supercharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10222Exhaust gas recirculation [EGR]; Positive crankcase ventilation [PCV]; Additional air admission, lubricant or fuel vapour admission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/16Other safety measures for, or other control of, pumps
    • F02B2039/162Control of pump parameters to improve safety thereof
    • F02B2039/164Control of pump parameters to improve safety thereof the temperature of the pump, of the pump drive or the pumped fluid being limited
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/16Other safety measures for, or other control of, pumps
    • F02B2039/162Control of pump parameters to improve safety thereof
    • F02B2039/166Control of pump parameters to improve safety thereof the fluid pressure in the pump or exhaust drive being limited
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a cooling device for a supercharger of an internal combustion engine equipped with a blow-by gas recirculation device.
  • Patent Document 1 describes a system that ventilates a crankcase by recirculating blowby gas leaked from a combustion chamber of an internal combustion engine (hereinafter referred to as “engine”) into the crankcase into an intake passage.
  • engine an internal combustion engine
  • This system is also called blow-by gas recirculation device or PCV (positive crankcase ventilation).
  • JP 2007-187033 A Japanese Patent Laid-Open No. 8-14056
  • the oil scatters due to the crankshaft rotating at a high speed and the in-cylinder gas ejected between the piston ring and the inner peripheral wall surface of the cylinder bore.
  • oil mist that is, liquid fine particles of lubricating oil
  • the engine includes a supercharger
  • the oil mist is returned to the intake passage together with the blowby gas by the blowby gas recirculation device, the oil mist flows into the compressor of the supercharger.
  • the temperature of the intake air discharged from the impeller of the compressor rises due to the compression action of the compressor and becomes high.
  • an object of the present invention is to suppress the generation or accumulation of deposits in the compressor.
  • the present invention relates to a cooling device for a supercharger of an internal combustion engine equipped with a blow-by gas recirculation device.
  • the cooling device of the present invention includes a low temperature gas introducing means.
  • the blow-by gas recirculation device is configured to introduce blow-by gas upstream of the compressor of the supercharger.
  • the low temperature gas introduction means is configured to introduce a low temperature gas into the diffuser passage of the compressor.
  • the low-temperature gas is a gas having a temperature lower than the temperature of the intake air that is discharged from the impeller of the compressor and flows into the diffuser passage.
  • the low temperature gas introduction means is configured to introduce the low temperature gas into the diffuser passage at an acute angle with respect to the flow direction of the intake air flowing through the diffuser passage.
  • the low temperature gas is introduced into the diffuser passage. Therefore, the intake air discharged from the compressor impeller is cooled by the low temperature gas. As a result, the oil mist in the intake air is suppressed from being exposed to a high temperature. For this reason, generation
  • the low temperature gas is introduced into the diffuser passage at an acute angle with respect to the flow direction of the intake air flowing in the diffuser passage. Therefore, a low-temperature gas layer is formed between the intake air discharged from the impeller and the diffuser wall surface. This reduces the amount of heat that the intake air receives from the diffuser wall surface. Therefore, an increase in the temperature of intake air discharged from the impeller is suppressed. For this reason, generation
  • the low temperature gas introduction means has a low temperature gas introduction passage, and the low temperature gas introduction passage opens from the diffuser wall surface defining the diffuser passage to the diffuser passage, and the low temperature gas introduction passage Is preferably extended at an acute angle with respect to the flow direction of the intake air flowing in the diffuser passage in the vicinity of the diffuser wall surface.
  • the low temperature gas introduction passage extends at an acute angle with respect to the flow direction of the intake air flowing in the diffuser passage in the vicinity of the diffuser wall surface. For this reason, a layer of low-temperature gas is formed between the intake air and the diffuser wall surface with a simple configuration.
  • the low-temperature gas introduction means is configured to introduce the low-temperature gas into the diffuser passage from the vicinity of the intake discharge area of the impeller of the compressor.
  • the low temperature gas introduction means introduces the intake air cooled by the intercooler into the diffuser passage as a low temperature gas.
  • FIG. 1st embodiment of an internal-combustion engine provided with a blowby gas recirculation device It is a figure which shows the compressor of the supercharger of the internal combustion engine of 1st Embodiment. It is a figure which shows the internal combustion engine of 2nd Embodiment. It is a figure which shows the control flow of the flow control valve of 2nd Embodiment. It is a figure which shows the internal combustion engine of 3rd Embodiment. It is a figure which shows the control flow of the flow control valve of 3rd Embodiment.
  • the internal combustion engine described below is a piston reciprocating compression self-ignition internal combustion engine (so-called diesel engine).
  • diesel engine piston reciprocating compression self-ignition internal combustion engine
  • the present invention is also applicable to other types of internal combustion engines.
  • deposit means a deposit generated due to oil mist during intake.
  • the internal combustion engine of the first embodiment is shown in FIG.
  • the compressor of the supercharger of the first embodiment is shown in FIG.
  • the internal combustion engine (hereinafter “engine”) 10 includes an engine body 20, an intake passage 30, and an exhaust passage 40.
  • the engine body 20 includes a crankcase 21, an oil pan 22, a cylinder block 23, and a cylinder head 24.
  • the crankcase 21 rotatably supports the crankshaft 21A.
  • the oil pan 22 is fixed to the crankcase 21 below the crankcase 21.
  • the oil pan 22 together with the crankcase 21 forms a space (hereinafter referred to as “crankcase chamber”) for accommodating the crankshaft 21A and the lubricating oil OL.
  • the cylinder block 23 is fixed to the crankcase 21 above the crankcase 21.
  • the cylinder block 23 is made of aluminum.
  • the cylinder block 23 includes a plurality (four in the first embodiment) of hollow cylindrical cylinder bores 23A.
  • a cast iron cylinder liner 23B is fitted into the inner periphery of the cylinder bore 23A.
  • a piston 23C is accommodated in the cylinder bore 23A (in particular, the cylinder liner 23B in the first embodiment).
  • Piston 23C is substantially cylindrical. Piston 23C is provided with a plurality of piston rings on its side surface.
  • the lowermost ring (that is, the crankcase 21 side) of the plurality of piston rings is a so-called oil ring OR.
  • the oil ring OR slides on the inner peripheral wall surface of the cylinder bore 23A (in the first embodiment, in particular, the inner peripheral wall surface of the cylinder liner 23B), and the lubricating oil on the inner peripheral wall surface (in other words, an oil film) ) Is scraped off to the crankcase 21 side.
  • the piston 23C is connected to the crankshaft 21A by a connecting rod 23D.
  • the upper wall surface (ie, the top wall surface) of the piston 23C forms a combustion chamber CC together with the inner peripheral wall surface of the cylinder liner 23B and the lower wall surface of the cylinder head 24.
  • the cylinder head 24 is fixed to the cylinder block 23 above the cylinder block 23.
  • the cylinder head 24 is formed with an intake port and an exhaust port communicating with the combustion chamber CC.
  • the intake port is opened and closed by an intake valve.
  • the intake valve is driven by a cam (not shown) of an intake cam shaft housed in the cylinder head 24.
  • the exhaust port is opened and closed by an exhaust valve.
  • the exhaust valve is driven by a cam (not shown) of an exhaust cam shaft housed in the cylinder head 24.
  • the cylinder head 24 is covered with a cylinder head cover 24A.
  • a fuel injection valve (not shown) is provided in the cylinder head 24.
  • the intake passage 30 is generally composed of an intake pipe 31, an intercooler 32, a compressor 61 of a supercharger 60, and an intake port.
  • the intake pipe 31 is connected to the intake port.
  • the compressor 61 is interposed in the intake pipe 31.
  • the intercooler 32 is interposed in the intake pipe 31 downstream of the compressor 61.
  • the exhaust passage 40 is generally composed of an exhaust port, an exhaust pipe 41, and a turbine 62 of the supercharger 60.
  • the exhaust pipe 41 is connected to the exhaust port.
  • the turbine 62 is interposed in the exhaust pipe 41.
  • the turbine 62 is connected to the impeller 63 of the compressor 61 by a shaft.
  • the turbine 62 is rotated by the energy of the exhaust gas flowing into it.
  • the rotation of the turbine 62 is transmitted to the impeller 63 through the shaft.
  • the impeller 63 rotates.
  • the intake air is compressed by the rotation of the impeller 63. That is, the supercharger 60 performs supercharging.
  • the supercharger 60 is a centrifugal supercharger. That is, the compressor 61 takes in the intake air from the intake intake port 66 along the direction of the rotation axis RA of the impeller 63, compresses the intake air by the rotation of the impeller 63, and compresses the compressed intake air from the impeller 63 in the radial direction. Discharge outward.
  • the supercharger 60 has an annular diffuser passage 64. The intake air discharged from the impeller 63 flows into the diffuser passage 64.
  • the diffuser passage 64 is generally defined by two diffuser wall surfaces 65A and 65B.
  • one diffuser wall surface 65A faces the intake intake port 66 side with respect to the reference plane.
  • the other diffuser wall surface 65B is a wall surface on the opposite side of the one diffuser wall surface 65A with respect to the reference surface.
  • the blow-by gas recirculation device 50 includes a first passage 51, a second passage 52, and a third passage 53.
  • the first passage 51 is formed in the cylinder block 23.
  • the first passage 51 connects the crankcase chamber to the second passage 52 in the cylinder head 24.
  • the second passage 52 is connected to one end of the third passage 53 through a predetermined path in the cylinder head 24.
  • the third passage 53 is constituted by a gas pipe 53A provided outside the engine body 20.
  • the other end of the third passage 53 is connected to the intake pipe 31 upstream of the compressor 61.
  • Blow-by gas leaked from the combustion chamber CC into the crankcase chamber is recirculated to the intake passage 30 through the first passage 51, the second passage 52, and the third passage 53.
  • a known PCV valve may be disposed in the third passage 53 in order to control the amount of blow-by gas recirculated to the intake passage 30.
  • the supercharger cooling device of the first embodiment includes a cooling air introduction device.
  • the cooling air introduction device has a cooling air introduction passage 70.
  • the cooling air introduction passage 70 connects the intake passage 30 downstream of the intercooler 32 to the diffuser passage 64 of the compressor 61.
  • the cooling air introduction passage 70 is open to one diffuser wall surface 65A. A part of the cooling air flowing out from the intercooler 32 (that is, the intake air cooled by the intercooler) is introduced into the diffuser passage 64 through the cooling air introduction passage 70.
  • the cooling air introduction passage 70 is configured to introduce the cooling air into the diffuser passage 70 at an acute angle with respect to the intake flow direction (that is, the flow direction of the intake air flowing through the diffuser passage 64) IA. That is, the cooling air introduction passage 70 extends at an acute angle with respect to the intake air flow direction IA in the vicinity of the one diffuser wall surface 65A.
  • cooling air is introduced from the cooling air introduction passage 70 into the diffuser passage 64. Therefore, the intake air discharged from the impeller 63 is cooled by the cooling air. As a result, the oil mist in the intake air is suppressed from being exposed to a high temperature. For this reason, generation
  • the cooling air is introduced into the diffuser passage 64 at an acute angle with respect to the intake flow direction IA. Accordingly, a cooling air layer is formed between the intake air discharged from the impeller 63 and the diffuser wall surface 65A. This reduces the amount of heat that the intake air receives from the diffuser wall surface 65A. Therefore, an increase in the discharge temperature (that is, the temperature of the gas discharged from the impeller 63, and the temperature of the intake air discharged from the impeller 63 in the first embodiment) is suppressed. For this reason, generation
  • the diffuser Deposit accumulation on the wall surface 65A is suppressed by the cooling air layer.
  • the cooling air is introduced from the cooling air introduction passage 70 to the diffuser passage 64 substantially along the intake air flow direction IA. Therefore, the occurrence of intake air turbulence due to the introduction of the cooling air into the diffuser passage 64 is suppressed. For this reason, the fall of the supercharging efficiency of the supercharger 60 by introduction of the cooling air to the diffuser passage 64 is suppressed.
  • a gas other than the cooling air may be employed as the introduction gas (that is, the gas introduced into the diffuser passage 64).
  • the introduction gas including the cooling air is a gas that is at least low enough to lower the temperature of the diffuser wall surface 65A. That is, the temperature of the introduced gas including the cooling air is preferably at least lower than the temperature of the diffuser wall surface 65A.
  • the temperature of the introduced gas including the cooling air is preferably lower than the temperature of the intake air discharged from the impeller of the compressor and flowing into the diffuser passage.
  • the angle of the cooling air introduction passage 70 with respect to the intake air flow direction IA is not limited to a specific angle, but preferably an angle at which a layer of cooling air is formed on the diffuser wall surface 65A to a desired degree.
  • the angle is such that the turbulence generated in the intake air flowing through the diffuser passage 64 is suppressed to a desired level, and more preferably, the angle is close to zero.
  • the position at which the cooling air is introduced into the diffuser passage 64 is not limited to a specific position, but is preferably a position in the vicinity of the intake discharge region (that is, the region where intake air is discharged from the impeller 63). It is.
  • the cooling air introduction passage 70 may be opened not only on the one diffuser wall surface 65A but also on the other diffuser wall surface 65B. In the first embodiment, the cooling air introduction passage 70 may open to the other diffuser wall surface 65B instead of opening to the one diffuser wall surface 65A.
  • Second Embodiment A second embodiment will be described.
  • the internal combustion engine of the second embodiment is shown in FIG.
  • the second embodiment is different from the first embodiment in that the cooling air introduction device has a flow control valve.
  • Other configurations of the second embodiment are the same as those of the first embodiment.
  • the flow control valve 71 is disposed in the cooling air introduction passage 70.
  • the amount of cooling air introduced from the cooling air introduction passage 70 into the diffuser passage 64 can be controlled by the flow control valve 71.
  • the opening degree of the flow control valve 71 is determined according to the discharge temperature. More specifically, the opening degree of the flow control valve 71 is increased as the discharge temperature is higher. Note that the larger the opening degree of the flow control valve 71, the larger the amount of introduced cooling air (that is, the amount of cooling air introduced from the cooling air introduction passage 70 into the diffuser passage 64).
  • the introduced cooling air amount is an amount corresponding to the discharge temperature, it is possible to more reliably achieve deposit generation suppression and the like.
  • the discharge temperature depends on the intake air amount (that is, the amount of air sucked into the combustion chamber CC) and the supercharging pressure (that is, the pressure of the gas after being compressed by the compressor 61, that is, the intake passage downstream of the compressor 61). The pressure within 30). More specifically, the discharge temperature tends to increase as the intake air amount increases, and the discharge temperature tends to increase as the supercharging pressure increases. Therefore, in the second embodiment, the intake air amount, the supercharging pressure, or a combination thereof may be employed as a parameter representing the discharge temperature.
  • the opening degree of the flow control valve 71 is increased as the intake air amount increases.
  • the opening degree of the flow control valve 71 is increased as the supercharging pressure is increased.
  • the opening degree of the flow control valve 71 is increased as the intake air amount is increased, and the opening degree of the flow control valve 71 is increased as the supercharging pressure is increased. .
  • FIG. 4 A control flow of the flow control valve of the second embodiment will be described. An example of this control flow is shown in FIG.
  • step 200 the intake air amount Ga and the supercharging pressure Pim are acquired.
  • step 201 the target opening degree TDfr of the flow control valve 71 is calculated based on the intake air amount Ga and the intake pressure Pim acquired at step 200.
  • step 202 the opening degree Dfr of the flow control valve 71 is controlled so that the target opening degree TDfr calculated in step 201 is achieved, and then the flow ends.
  • FIG. 3 The internal combustion engine of the third embodiment is shown in FIG.
  • the third embodiment differs from the second embodiment in that the internal combustion engine has an exhaust gas recirculation device.
  • Other configurations of the third embodiment are the same as those of the second embodiment.
  • the exhaust gas recirculation device (hereinafter referred to as “EGR device”) 90 is a device that introduces exhaust gas into the intake passage 30.
  • the EGR device 90 includes an exhaust gas recirculation passage (hereinafter referred to as “EGR passage”) 91 and an exhaust gas recirculation control valve (hereinafter referred to as “EGR valve”) 92.
  • the EGR passage 91 directly connects the exhaust passage 40 downstream of the turbine 62 and the intake passage 30 upstream of the compressor 61.
  • the EGR valve 92 is disposed in the EGR passage 91.
  • the EGR valve 92 can control the flow rate of the exhaust gas flowing through the EGR passage 91.
  • EGR execution conditions that is, engine operating conditions for executing the introduction of exhaust gas into the intake passage 30 by the EGR device 90
  • EGR that is, introduction of exhaust gas into the intake passage 30 by the EGR device 90
  • the opening degree of the EGR valve 92 at the time of EGR execution is determined in advance according to the engine operating state.
  • the opening degree of the EGR valve 92 is controlled to an opening degree that is determined according to the engine operating state.
  • the opening degree of the flow control valve 71 is determined according to the discharge temperature (that is, the temperature of the gas discharged from the impeller 63).
  • the discharge temperature changes according to the intake air amount, the supercharging pressure, and the EGR gas amount. More specifically, the discharge temperature tends to increase as the intake air amount increases, the discharge temperature tends to increase as the boost pressure increases, and the discharge temperature tends to increase as the EGR gas amount decreases. Therefore, in the third embodiment, an intake air amount, a supercharging pressure, an EGR gas amount, or a combination thereof may be employed as a parameter representative of the discharge temperature.
  • the opening degree 71 of the flow control valve is increased as the intake air amount increases.
  • the opening degree of the flow control valve 71 is increased as the supercharging pressure is increased.
  • the opening degree of the flow control valve 71 is increased as the EGR gas amount is decreased.
  • the opening degree of the flow control valve 71 is increased as the intake air amount is increased, and the higher the supercharging pressure is increased.
  • the opening degree of the flow control valve 71 is increased. The smaller the EGR gas amount is, the larger the opening degree of the flow control valve 71 is.
  • the opening degree of the EGR valve 72 may be adopted as a parameter representing the discharge temperature instead of adopting the EGR gas amount.
  • FIG. 6 Control Flow of Flow Control Valve of Third Embodiment
  • An example of this control flow is shown in FIG.
  • the flow of FIG. 6 starts, first, in step 300, the intake air amount Ga, the supercharging pressure Pim, and the EGR gas amount Aegr are acquired.
  • the target opening degree TDfr of the flow control valve 71 is calculated based on the intake air amount Ga, the intake pressure Pim, and the EGR gas amount Aegr acquired at step 300.
  • step 302 the opening degree Dfr of the flow control valve 71 is controlled so that the target opening degree TDfr calculated in step 301 is achieved, and then the flow ends.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Supercharger (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)

Abstract

本発明の目的はブローバイガス環流装置を備えた内燃機関において過給機のコンプレッサにおけるデポジットの発生または堆積を抑制することにある。本発明はブローバイガス環流装置(50)を備えた内燃機関(10)の過給機(60)の冷却装置に関する。冷却装置は冷却空気導入通路(70)を具備する。ブローバイガス環流装置はコンプレッサの上流にブローバイガスを導入する。冷却空気導入通路はコンプレッサのディフューザ通路(64)に冷却空気を導入する。冷却空気導入通路はディフューザ通路内を流れる吸気の流方向(IA)に対して鋭角に冷却空気をディフューザ通路に導入する。

Description

ブローバイガス環流装置を備えた内燃機関の過給機の冷却装置
 本発明はブローバイガス環流装置を備えた内燃機関の過給機の冷却装置に関する。
 特許文献1には、内燃機関(以下「機関」)の燃焼室からクランクケース内に漏出したブローバイガスを吸気通路に還流させることによってクランクケース内の換気を行うシステムが記載されている。このシステムはブローバイガス還流装置またはPCV(ポジティブ・クランクケース・ベンチレーション)とも呼ばれている。
特開2007-187033号公報 特開平8-14056号公報
 ところで、クランクケース内では、クランクシャフトが高速で回転すること及びピストンリングとシリンダボア内周壁面との間からの筒内ガスが噴出すること等によってオイルが飛散する。その結果、クランクケース内にオイルミスト(すなわち、潤滑油の液体状微粒子)が形成される。ここで、機関が過給機を具備する場合、オイルミストがブローバイガス還流装置によってブローバイガスとともに吸気通路に還流されると、オイルミストが過給機のコンプレッサに流入する。一方、コンプレッサのインペラから吐出される吸気の温度はコンプレッサの圧縮作用によって上昇して高温になっている。したがって、オイルミストがインペラから吐出されるときに当該オイルミストが高温に晒され、その結果、オイルミストに起因するデポジットが発生してコンプレッサのディフューザ壁面に堆積する。こうしたデポジットの堆積によって過給機の過給効率が低下してしまう。
 そこで、本発明の目的はコンプレッサにおけるデポジットの発生または堆積を抑制することにある。
 本発明はブローバイガス環流装置を備えた内燃機関の過給機の冷却装置に関する。本発明の冷却装置は低温ガス導入手段を具備する。本発明では、前記ブローバイガス環流装置が前記過給機のコンプレッサの上流にブローバイガスを導入するように構成されている。さらに、前記低温ガス導入手段が前記コンプレッサのディフューザ通路に低温ガスを導入するように構成されている。さらに、前記低温ガスが前記コンプレッサのインペラから吐出されて前記ディフューザ通路に流入する吸気の温度よりも温度の低いガスである。さらに、前記低温ガス導入手段が前記ディフューザ通路内を流れる吸気の流方向に対して鋭角に低温ガスを前記ディフューザ通路に導入するように構成されている。
 本発明によれば、ディフューザ通路に低温ガスが導入される。したがって、コンプレッサのインペラから吐出される吸気が低温ガスによって冷却される。これによって、吸気中のオイルミストが高温に晒されることが抑制される。このため、吸気中のオイルミストに起因するデポジットの発生が抑制される。
 これに加えて、本発明によれば、ディフューザ通路内を流れる吸気の流方向に対して鋭角に低温ガスがディフューザ通路に導入される。したがって、インペラから吐出される吸気とディフューザ壁面との間に低温ガスの層が形成される。これによって、吸気がディフューザ壁面から受ける熱量が少なくなる。したがって、インペラから吐出される吸気の温度の上昇が抑制される。このため、吸気中のオイルミストに起因するデポジットの発生が抑制される。
 これに加えて、本発明によれば、吸気とディフューザ壁面との間に低温ガスの層が形成されているので、吸気中のオイルミストに起因してデポジットが発生したとしても、ディフューザ壁面へのデポジットの堆積が低温ガスの層によって抑制される。
 また、上記発明において、前記低温ガス導入手段が低温ガス導入通路を有し、該低温ガス導入通路が前記ディフューザ通路を画成するディフューザ壁面から前記ディフューザ通路に開口しており、前記低温ガス導入通路が前記ディフューザ壁面近傍において前記ディフューザ通路内を流れる吸気の流方向に対して鋭角に延在していると好ましい。
 これによれば、低温ガス導入通路がディフューザ壁面近傍においてディフューザ通路内を流れる吸気の流方向に対して鋭角に延在している。このため、簡易な構成によって吸気とディフューザ壁面との間に低温ガスの層が形成される。
 また、上記発明において、前記低温ガス導入手段が前記コンプレッサのインペラの吸気吐出領域近傍から前記ディフューザ通路に低温ガスを導入するように構成されていると好ましい。
 これによれば、ディフューザ壁面の広い範囲に亘って低温ガスの層が形成される。このため、インペラから吐出される吸気の温度の上昇抑制効果が大きくなる。
 また、上記発明において、前記低温ガス導入手段がインタークーラによって冷却された吸気を低温ガスとして前記ディフューザ通路に導入すると好ましい。
 これによれば、簡易な構成によって低温ガスが得られる。
ブローバイガス環流装置を備えた内燃機関の第1実施形態を示す図である。 第1実施形態の内燃機関の過給機のコンプレッサを示す図である。 第2実施形態の内燃機関を示す図である。 第2実施形態の流量制御弁の制御フローを示す図である。 第3実施形態の内燃機関を示す図である。 第3実施形態の流量制御弁の制御フローを示す図である。
 以下、図面を参照して本発明の実施形態について説明する。以下で説明する内燃機関はピストン往復動型の圧縮自着火式内燃機関(いわゆるディーゼルエンジン)である。しかしながら、本発明はその他の形式の内燃機関にも適用可能である。なお、以下の説明において「デポジット」とは吸気中のオイルミストに起因して発生するデポジットを意味する。
<第1実施形態>
 第1実施形態について説明する。第1実施形態の内燃機関が図1に示されている。第1実施形態の過給機のコンプレッサが図2に示されている。内燃機関(以下「機関」)10は機関本体20と、吸気通路30と、排気通路40とを具備する。機関本体20はクランクケース21と、オイルパン22と、シリンダブロック23と、シリンダヘッド24とを有する。クランクケース21はクランクシャフト21Aを回転可能に支持している。オイルパン22はクランクケース21の下方においてクランクケース21に固定されている。そして、オイルパン22はクランクケース21とともにクランクシャフト21Aおよび潤滑油OLを収容する空間(以下「クランクケース室」)を形成している。
 シリンダブロック23はクランクケース21の上方においてクランクケース21に固定されている。シリンダブロック23はアルミニウム製である。また、シリンダブロック23は中空円筒状のシリンダボア23Aを複数個(第1実施形態では、4つ)備えている。シリンダボア23Aの内周には鋳鉄製のシリンダライナ23Bが嵌入されている。シリンダボア23A(第1実施形態では、特に、シリンダライナ23B)にはピストン23Cが収容されている。
 ピストン23Cは略円筒形である。また、ピストン23Cはその側面に複数のピストンリングを備えている。複数のピストンリングのうちの最も下方(すなわち、クランクケース21側)のリングはいわゆるオイルリングORである。オイルリングORはシリンダボア23Aの内周壁面(第1実施形態では、特に、シリンダライナ23Bの内周壁面)上を摺動しながら同内周壁面上の潤滑油(別の言い方をすれば、油膜)をクランクケース21側に掻き落とすようになっている。ピストン23Cはコネクティングロッド23Dによってクランクシャフト21Aに連結されている。ピストン23Cの上壁面(すなわち、頂壁面)はシリンダライナ23Bの内周壁面およびシリンダヘッド24の下壁面とともに燃焼室CCを形成している。
 シリンダヘッド24はシリンダブロック23の上方においてシリンダブロック23に固定されている。シリンダヘッド24には燃焼室CCに連通する吸気ポートおよび排気ポートが形成されている。吸気ポートは吸気弁によって開閉される。吸気弁はシリンダヘッド24に収容されたインテークカムシャフトのカム(図示せず)によって駆動される。排気ポートは排気弁によって開閉される。排気弁はシリンダヘッド24に収容されたエグゾーストカムシャフトのカム(図示せず)によって駆動される。シリンダヘッド24はシリンダヘッドカバー24Aによって覆われている。シリンダヘッド24内には燃料噴射弁(図示せず)が備えられている。
 吸気通路30は概して吸気管31とインタークーラ32と過給機60のコンプレッサ61と吸気ポートとから構成されている。吸気管31は吸気ポートに接続されている。コンプレッサ61は吸気管31に介装されている。インタークーラ32はコンプレッサ61よりも下流の吸気管31に介装されている。
 排気通路40は概して排気ポートと排気管41と過給機60のタービン62とから構成されている。排気管41は排気ポートに接続されている。タービン62は排気管41に介装されている。タービン62はシャフトによってコンプレッサ61のインペラ63に連結されている。
 タービン62はそこに流入する排気ガスのエネルギによって回転せしめられる。タービン62の回転はシャフトを介してインペラ63に伝達される。これによって、インペラ63が回転する。このインペラ63の回転によって吸気が圧縮せしめられる。すなわち、過給機60が過給を行う。
 過給機60は遠心式の過給機である。すなわち、コンプレッサ61はインペラ63の回転軸線RAの方向に沿って吸気取込口66から吸気を取り込み、この取り込んだ吸気をインペラ63の回転によって圧縮し、この圧縮された吸気をインペラ63から径方向外方へ吐出する。過給機60は円環状のディフューザ通路64を有する。インペラ63から吐出された吸気はディフューザ通路64に流入する。ディフューザ通路64は概して2つのディフューザ壁面65A、65Bによって画成されている。インペラ63の回転軸線RAに対して垂直な平面であってディフューザ通路64の中央領域に延在する平面を基準平面としたときに、一方のディフューザ壁面65Aは基準面に関して吸気取込口66側にある壁面であり、他方のディフューザ壁面65Bは基準面に関して一方のディフューザ壁面65Aの反対側にある壁面である。
 第1実施形態のブローバイガス還流装置50は第1通路51と第2通路52と第3通路53とを有する。第1通路51はシリンダブロック23内に形成されている。第1通路51はクランクケース室をシリンダヘッド24内の第2通路52に接続する。第2通路52はシリンダヘッド24内の所定の経路を通って第3通路53の一端に接続されている。第3通路53は機関本体20の外部に設けられたガス管53Aによって構成されている。第3通路53の他端はコンプレッサ61よりも上流の吸気管31に接続されている。
 燃焼室CCからクランクケース室に漏出したブローバイガスは第1通路51、第2通路52および第3通路53を通って吸気通路30に還流せしめられる。なお、吸気通路30へのブローバイガスの還流量を制御するために周知のPCVバルブが第3通路53に配置されていてもよい。
<第1実施形態の過給機の冷却装置>
 第1実施形態の過給機の冷却装置について説明する。第1実施形態の冷却装置は冷却空気導入装置からなる。冷却空気導入装置は冷却空気導入通路70を有する。冷却空気導入通路70はインタークーラ32よりも下流の吸気通路30をコンプレッサ61のディフューザ通路64に接続する。冷却空気導入通路70は一方のディフューザ壁面65Aに開口している。インタークーラ32から流出する冷却空気(すなわち、インタークーラによって冷却された吸気)の一部が冷却空気導入通路70を介してディフューザ通路64に導入される。冷却空気導入通路70は吸気流方向(すなわち、ディフューザ通路64内を流れる吸気の流方向)IAに対して鋭角に冷却空気をディフューザ通路70に導入するように構成されている。すなわち、冷却空気導入通路70は一方のディフューザ壁面65Aの近傍において吸気流方向IAに対して鋭角に延在している。
<第1実施形態の効果>
 第1実施形態によれば、冷却空気導入通路70からディフューザ通路64に冷却空気が導入される。したがって、インペラ63から吐出される吸気が冷却空気によって冷却される。これによって、吸気中のオイルミストが高温に晒されることが抑制される。このため、吸気中のオイルミストに起因するデポジットの発生が抑制される。
 これに加えて、第1実施形態によれば、吸気流方向IAに対して鋭角に冷却空気がディフューザ通路64に導入される。したがって、インペラ63から吐出される吸気とディフューザ壁面65Aとの間に冷却空気の層が形成される。これによって、吸気がディフューザ壁面65Aから受ける熱量が少なくなる。したがって、吐出温度(すなわち、インペラ63から吐出されるガスの温度であり、第1実施形態では、インペラ63から吐出される吸気の温度)の上昇が抑制される。このため、吸気中のオイルミストに起因するデポジットの発生が抑制される。
 これに加えて、第1実施形態によれば、吸気とディフューザ壁面65Aとの間に冷却空気の層が形成されているので、吸気中のオイルミストに起因してデポジットが発生したとしても、ディフューザ壁面65Aへのデポジットの堆積が冷却空気の層によって抑制される。
 これに加えて、第1実施形態によれば、冷却空気は吸気流方向IAにほぼ沿って冷却空気導入通路70からディフューザ通路64に導入される。したがって、ディフューザ通路64への冷却空気の導入による吸気流乱れの発生が抑制される。このため、ディフューザ通路64への冷却空気の導入による過給機60の過給効率の低下が抑制される。
 なお、第1実施形態において、導入ガス(すなわち、ディフューザ通路64に導入されるガス)として、冷却空気以外のガスが採用されてもよい。ここで、冷却空気を含む導入ガスは、少なくとも、ディフューザ壁面65Aの温度を低下させる程度に低温のガスであることが好ましい。すなわち、冷却空気を含む導入ガスの温度は、少なくとも、ディフューザ壁面65Aの温度よりも低いことが好ましい。また、冷却空気を含む導入ガスの温度は、少なくとも、コンプレッサのインペラから吐出されてディフューザ通路に流入する吸気の温度よりも温度の低いことが好ましい。
 また、第1実施形態において、吸気流方向IAに対する冷却空気導入通路70の角度は特定の角度に限定されないが、好ましくは、ディフューザ壁面65A上に冷却空気の層が所望の程度に形成される角度、または、ディフューザ通路64内を流れる吸気に生じる乱れが所望の程度に抑制される角度であり、さらに好ましくは、零に近い角度である。
 また、第1実施形態において、冷却空気がディフューザ通路64に導入される位置は特定の位置に限定されないが、好ましくは、吸気吐出領域(すなわち、インペラ63から吸気が吐出される領域)近傍の位置である。
 また、第1実施形態において、冷却空気導入通路70が一方のディフューザ壁面65Aに開口するだけではなく他方のディフューザ壁面65Bにも開口していてもよい。また、第1実施形態において、冷却空気導入通路70が一方のディフューザ壁面65Aに開口する代わりに他方のディフューザ壁面65Bに開口していてもよい。
<第2実施形態>
 第2実施形態について説明する。第2実施形態の内燃機関が図3に示されている。第2実施形態は冷却空気導入装置が流量制御弁を有している点で第1実施形態とは異なっている。第2実施形態のその他の構成は第1実施形態のものと同じである。
 流量制御弁71は冷却空気導入通路70に配置されている。冷却空気導入通路70からディフューザ通路64に導入される冷却空気の量を流量制御弁71によって制御可能である。第2実施形態では、吐出温度に応じて流量制御弁71の開度が決定される。より具体的には、吐出温度が高いほど流量制御弁71の開度が大きくされる。なお、流量制御弁71の開度が大きいほど導入冷却空気量(すなわち、冷却空気導入通路70からディフューザ通路64に導入される冷却空気の量)が多い。
<第2実施形態の効果>
 第2実施形態によれば、導入冷却空気量が吐出温度に応じた量であるので、デポジット発生抑制などをより確実に達成可能である。
 なお、吐出温度は吸気量(すなわち、燃焼室CCに吸入される空気の量)と過給圧(すなわち、コンプレッサ61によって圧縮された後のガスの圧力、すなわち、コンプレッサ61よりも下流の吸気通路30内の圧力)とに応じて変化する。より具体的には、吸気量が多いほど吐出温度が高くなる傾向にあり、過給圧が高いほど吐出温度が高くなる傾向にある。そこで、第2実施形態において、吐出温度を代表するパラメータとして、吸気量、または、過給圧、または、これらの組合せが採用されてもよい。ここで、吸気量が採用された場合には、吸気量が多いほど流量制御弁71の開度が大きくされる。過給圧が採用された場合には、過給圧が高いほど流量制御弁71の開度が大きくされる。吸気量と過給圧との組合せが採用された場合には、吸気量が多いほど流量制御弁71の開度が大きくされ、過給圧が高いほど流量制御弁71の開度が大きくされる。
<第2実施形態の流量制御弁の制御フロー>
 第2実施形態の流量制御弁の制御フローについて説明する。この制御フローの一例が図4に示されている。図4のフローが開始すると、始めに、ステップ200において、吸気量Gaと過給圧Pimとが取得される。次いで、ステップ201において、ステップ200で取得された吸気量Gaと吸気圧Pimとに基づいて流量制御弁71の目標開度TDfrが算出される。次いで、ステップ202において、ステップ201で算出された目標開度TDfrが達成されるように流量制御弁71の開度Dfrが制御され、その後、フローが終了する。
<第3実施形態>
 第3実施形態について説明する。第3実施形態の内燃機関が図5に示されている。第3実施形態は内燃機関が排気再循環装置を有している点で第2実施形態とは異なっている。第3実施形態のその他の構成は第2実施形態のものと同じである。
 排気再循環装置(以下「EGR装置」)90は排気ガスを吸気通路30に導入する装置である。EGR装置90は排気再循環通路(以下「EGR通路」)91と排気再循環制御弁(以下「EGR弁」)92とを有する。EGR通路91はタービン62よりも下流の排気通路40とコンプレッサ61よりも上流の吸気通路30とを直接連結している。EGR弁92はEGR通路91に配置されている。EGR弁92はEGR通路91内を流れる排気ガスの流量を制御可能である。機関運転中にEGR弁92が開弁されると排気ガスがEGR通路91を介して吸気通路30に導入される。また、EGR弁92の開度が大きいほどEGRガス量(すなわち、吸気通路30に導入される排気ガスの量)が多い。
 EGR実行条件(すなわち、EGR装置90による吸気通路30への排気ガスの導入を実行する機関運転条件)が予め定められている。機関運転状態がEGR実行条件を満たした場合、EGR弁92が開弁され、これによって、EGR(すなわち、EGR装置90による吸気通路30への排気ガスの導入)が実行される。
 また、EGR実行時のEGR弁92の開度は機関運転状態に応じて予め定められている。EGR実行中、EGR弁92の開度は機関運転状態に応じて定まる開度に制御される。
 また、第2実施形態と同様に、吐出温度(すなわち、インペラ63から吐出されるガスの温度)に応じて流量制御弁71の開度が決定される。
<第3実施形態の効果>
 第3実施形態によれば、導入冷却空気量が吐出温度に応じた量であるので、EGR実行時であっても、デポジット発生抑制などをより確実に達成可能である。
 なお、吐出温度は吸気量と過給圧とEGRガス量とに応じて変化する。より具体的には、吸気量が多いほど吐出温度が高くなる傾向にあり、過給圧が高いほど吐出温度が高くなる傾向にあり、EGRガス量が少ないほど吐出温度が高くなる傾向にある。そこで、第3実施形態において、吐出温度を代表するパラメータとして、吸気量、または、過給圧、または、EGRガス量、または、これらの組合せが採用されてもよい。ここで、吸気量が採用された場合には、吸気量が多いほど流量制御弁の開度71が大きくされる。過給圧が採用された場合には、過給圧が高いほど流量制御弁71の開度が大きくされる。EGRガス量が採用された場合には、EGRガス量が少ないほど流量制御弁71の開度が大きくされる。吸気量と過給圧とEGRガス量とのうちの2つまたは3つの組合せが採用された場合には、吸気量が多いほど流量制御弁71の開度が大きくされ、過給圧が高いほど流量制御弁71の開度が大きくされ、EGRガス量が少ないほど流量制御弁71の開度が大きくされる。
 なお、吐出温度を代表するパラメータとして、EGRガス量を採用する代わりに、EGR弁72の開度が採用されてもよい。
<第3実施形態の流量制御弁の制御フロー>
 第3実施形態の流量制御弁の制御フローについて説明する。この制御フローの一例が図6に示されている。図6のフローが開始すると、始めに、ステップ300において、吸気量Gaと過給圧PimとEGRガス量Aegrとが取得される。次いで、ステップ301において、ステップ300で取得された吸気量Gaと吸気圧PimとEGRガス量Aegrとに基づいて流量制御弁71の目標開度TDfrが算出される。次いで、ステップ302において、ステップ301で算出された目標開度TDfrが達成されるように流量制御弁71の開度Dfrが制御され、その後、フローが終了する。
 なお、本発明の技術思想を逸脱しない範囲において上記4つの実施形態が適宜組み合わされてもよい。

Claims (4)

  1.  ブローバイガス環流装置を備えた内燃機関の過給機の冷却装置において、低温ガス導入手段を具備し、前記ブローバイガス環流装置が前記過給機のコンプレッサの上流にブローバイガスを導入するように構成されており、前記低温ガス導入手段が前記コンプレッサのディフューザ通路に低温ガスを導入するように構成されており、前記低温ガスが前記コンプレッサのインペラから吐出されて前記ディフューザ通路に流入する吸気の温度よりも温度の低いガスであり、前記低温ガス導入手段が前記ディフューザ通路内を流れる吸気の流方向に対して鋭角に低温ガスを前記ディフューザ通路に導入するように構成されている内燃機関の過給機の冷却装置。
  2.  前記低温ガス導入手段が低温ガス導入通路を有し、該低温ガス導入通路が前記ディフューザ通路を画成するディフューザ壁面から前記ディフューザ通路に開口しており、前記低温ガス導入通路が前記ディフューザ壁面近傍において前記ディフューザ通路内を流れる吸気の流方向に対して鋭角に延在している請求項1に記載の内燃機関の過給機の冷却装置。
  3.  前記低温ガス導入手段が前記コンプレッサのインペラの吸気吐出領域近傍から前記ディフューザ通路に低温ガスを導入するように構成されている請求項1または2に記載の内燃機関の過給機の冷却装置。
  4.  前記低温ガス導入手段がインタークーラによって冷却された吸気を低温ガスとして前記ディフューザ通路に導入する請求項1~3のいずれか1つに記載の内燃機関の過給機の冷却装置。
PCT/JP2013/054315 2013-02-21 2013-02-21 ブローバイガス環流装置を備えた内燃機関の過給機の冷却装置 WO2014128877A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/769,254 US20150377118A1 (en) 2013-02-21 2013-02-21 Cooling device for turbocharger of internal combustion engine provided with blowby gas recirculation device (as amended)
PCT/JP2013/054315 WO2014128877A1 (ja) 2013-02-21 2013-02-21 ブローバイガス環流装置を備えた内燃機関の過給機の冷却装置
CN201380073598.0A CN105143636B (zh) 2013-02-21 2013-02-21 具备窜缸混合气环流装置的内燃机的增压器的冷却装置
EP13875928.7A EP2960464A4 (en) 2013-02-21 2013-02-21 COOLING DEVICE OF A TURBOCHARGER OF A COMBUSTION ENGINE WITH VENTILATION VIA A GAS CIRCULATION DEVICE
JP2015501150A JP6015843B2 (ja) 2013-02-21 2013-02-21 ブローバイガス環流装置を備えた内燃機関の過給機の冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/054315 WO2014128877A1 (ja) 2013-02-21 2013-02-21 ブローバイガス環流装置を備えた内燃機関の過給機の冷却装置

Publications (1)

Publication Number Publication Date
WO2014128877A1 true WO2014128877A1 (ja) 2014-08-28

Family

ID=51390707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054315 WO2014128877A1 (ja) 2013-02-21 2013-02-21 ブローバイガス環流装置を備えた内燃機関の過給機の冷却装置

Country Status (5)

Country Link
US (1) US20150377118A1 (ja)
EP (1) EP2960464A4 (ja)
JP (1) JP6015843B2 (ja)
CN (1) CN105143636B (ja)
WO (1) WO2014128877A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106812597A (zh) * 2015-11-27 2017-06-09 长城汽车股份有限公司 蜗轮增压器结构和发动机总成

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5985401A (ja) * 1982-08-03 1984-05-17 ユニオン・カ−バイド・コ−ポレ−シヨン 流体洩れを減少させた回転式流体処理装置
JPH0350328A (ja) * 1989-07-18 1991-03-04 Nissan Motor Co Ltd ターボチャージャ
JPH04365997A (ja) * 1991-06-14 1992-12-17 Mitsubishi Heavy Ind Ltd 遠心圧縮機
JPH0814056A (ja) 1994-06-24 1996-01-16 Tochigi Fuji Ind Co Ltd 遠心式過給機
JP2003525377A (ja) * 1999-10-20 2003-08-26 アーベーベー ターボ システムズ アクチエンゲゼルシャフト ターボ機械のロータとステータとの間に形成されたラジアルギャップの流れを間接的に冷却する方法と装置
JP2007187033A (ja) 2006-01-12 2007-07-26 Mitsubishi Motors Corp 内燃機関のブローバイガス還流構造
JP2012241598A (ja) * 2011-05-18 2012-12-10 Toyota Motor Corp 内燃機関の制御装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1503581B1 (de) * 1965-05-04 1970-12-17 Maschf Augsburg Nuernberg Ag Mit Abgasturbo-Aufladung betriebene Zweitakt-Brennkraftmaschine
DE3443324C1 (de) * 1984-11-28 1986-08-07 M.A.N.-B & W Diesel GmbH, 8900 Augsburg Brennkraftmaschine mit Aufladung
US5080078A (en) * 1989-12-07 1992-01-14 Ford Motor Company Fuel vapor recovery control system
US5297928A (en) * 1992-06-15 1994-03-29 Mitsubishi Jukogyo Kabushiki Kaisha Centrifugal compressor
DE4312078C2 (de) * 1993-04-13 1995-06-01 Daimler Benz Ag Abgasturbolader für eine aufgeladene Brennkraftmaschine
DE4334466A1 (de) * 1993-10-09 1995-04-13 Abb Management Ag Abgasturbolader
DE59809488D1 (de) * 1998-05-25 2003-10-09 Abb Turbo Systems Ag Baden Radialverdichter
JP2003515690A (ja) * 1999-10-20 2003-05-07 アーベーベー ターボ システムズ アクチエンゲゼルシャフト タービン機械のロータとステータとの間に形成された半径方向間隙における流れを冷却するための方法及び装置
US6609375B2 (en) * 2001-09-14 2003-08-26 Honeywell International Inc. Air cooling system for electric assisted turbocharger
DE10321572A1 (de) * 2003-05-14 2004-12-02 Daimlerchrysler Ag Ladeluftverdichter für eine Brennkraftmaschine, Brennkraftmaschine und Verfahren hierzu
JP2004360461A (ja) * 2003-06-02 2004-12-24 Aisan Ind Co Ltd 過給機付エンジンの蒸発燃料処理装置
DE10325980A1 (de) * 2003-06-07 2004-12-23 Daimlerchrysler Ag Abgasturbolader
JP4367184B2 (ja) * 2003-10-03 2009-11-18 トヨタ自動車株式会社 ターボチャージャ
AT501184B1 (de) * 2004-12-23 2008-05-15 Ge Jenbacher Gmbh & Co Ohg Brennkraftmaschine
US7685819B2 (en) * 2006-03-27 2010-03-30 Aqwest Llc Turbocharged internal combustion engine system
US20080000230A1 (en) * 2006-06-30 2008-01-03 Caterpillar Inc. Exhaust Gas Recirculation System
DE102007017668A1 (de) * 2007-04-14 2008-10-16 Bayerische Motoren Werke Aktiengesellschaft Aufgeladene Brennkraftmaschine und Verfahren zur Überwachung, ob die Kurbelgehäuseentlüftung angeschlossen worden ist
JP2011236811A (ja) * 2010-05-11 2011-11-24 Toyota Motor Corp 過給器を備えた内燃機関
EP2787195A4 (en) * 2011-12-01 2015-12-30 Toyota Motor Co Ltd INTERNAL COMBUSTION ENGINE EQUIPPED WITH A SUPPLY COMPRESSOR
JP5983868B2 (ja) * 2013-04-12 2016-09-06 トヨタ自動車株式会社 ブローバイガス還流装置と過給機とを備えた内燃機関の冷却装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5985401A (ja) * 1982-08-03 1984-05-17 ユニオン・カ−バイド・コ−ポレ−シヨン 流体洩れを減少させた回転式流体処理装置
JPH0350328A (ja) * 1989-07-18 1991-03-04 Nissan Motor Co Ltd ターボチャージャ
JPH04365997A (ja) * 1991-06-14 1992-12-17 Mitsubishi Heavy Ind Ltd 遠心圧縮機
JPH0814056A (ja) 1994-06-24 1996-01-16 Tochigi Fuji Ind Co Ltd 遠心式過給機
JP2003525377A (ja) * 1999-10-20 2003-08-26 アーベーベー ターボ システムズ アクチエンゲゼルシャフト ターボ機械のロータとステータとの間に形成されたラジアルギャップの流れを間接的に冷却する方法と装置
JP2007187033A (ja) 2006-01-12 2007-07-26 Mitsubishi Motors Corp 内燃機関のブローバイガス還流構造
JP2012241598A (ja) * 2011-05-18 2012-12-10 Toyota Motor Corp 内燃機関の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2960464A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106812597A (zh) * 2015-11-27 2017-06-09 长城汽车股份有限公司 蜗轮增压器结构和发动机总成
CN106812597B (zh) * 2015-11-27 2019-04-30 长城汽车股份有限公司 蜗轮增压器结构和发动机总成

Also Published As

Publication number Publication date
JPWO2014128877A1 (ja) 2017-02-02
EP2960464A4 (en) 2016-02-10
EP2960464A1 (en) 2015-12-30
US20150377118A1 (en) 2015-12-31
CN105143636B (zh) 2018-01-09
CN105143636A (zh) 2015-12-09
JP6015843B2 (ja) 2016-10-26

Similar Documents

Publication Publication Date Title
JP5527486B2 (ja) 内燃機関の換気制御装置
EP3290667B1 (en) Blowby gas treatment device for internal combustion engine with supercharger
US20150361839A1 (en) Oil cooling system for supercharged engine
JP5975102B2 (ja) 内燃機関の過給機のコンプレッサ
JP6011423B2 (ja) 過給機
JP5822445B2 (ja) ブローバイガス還流装置
JP5974886B2 (ja) 過給機
JP2009013814A (ja) 過給機
JP5983868B2 (ja) ブローバイガス還流装置と過給機とを備えた内燃機関の冷却装置
JP6015843B2 (ja) ブローバイガス環流装置を備えた内燃機関の過給機の冷却装置
JP2009270524A (ja) 過給機付き内燃機関
JP2012237231A (ja) ブローバイガス還流装置
JP2012154195A (ja) リターン通路の構造
JP5577836B2 (ja) 内燃機関のブローバイガス処理装置
JP2014202195A (ja) 内燃機関のブローバイガス環流装置
JP2016065527A (ja) ブローバイガス還流装置、ブローバイガス管の接続部材、エンジンシステム
JP2022055681A (ja) オイル冷却装置
JP2020090934A (ja) 内燃機関
JP2021008859A (ja) コンプレッサの保護構造
JP5679949B2 (ja) 過給機付エンジンの吸気通路内オイル排出装置
JP2014152730A (ja) 過給機
JP2014098310A (ja) ブローバイガス処理装置
JP2011179367A (ja) 車両の制御装置
JP2012007507A (ja) ブローバイガス還流装置
JP2014159751A (ja) 過給機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380073598.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875928

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501150

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14769254

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013875928

Country of ref document: EP