WO2014127501A1 - 一种氧和氮共掺杂的聚丙烯腈基碳纤维及其制备方法 - Google Patents

一种氧和氮共掺杂的聚丙烯腈基碳纤维及其制备方法 Download PDF

Info

Publication number
WO2014127501A1
WO2014127501A1 PCT/CN2013/071657 CN2013071657W WO2014127501A1 WO 2014127501 A1 WO2014127501 A1 WO 2014127501A1 CN 2013071657 W CN2013071657 W CN 2013071657W WO 2014127501 A1 WO2014127501 A1 WO 2014127501A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
oxygen
carbon fiber
based carbon
polyacrylonitrile
Prior art date
Application number
PCT/CN2013/071657
Other languages
English (en)
French (fr)
Inventor
徐海波
芦永红
Original Assignee
中国海洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国海洋大学 filed Critical 中国海洋大学
Priority to CN201380063131.8A priority Critical patent/CN104838051B/zh
Priority to US14/765,826 priority patent/US9683314B2/en
Priority to EP13876075.6A priority patent/EP2960361B1/en
Priority to JP2015557313A priority patent/JP6106766B2/ja
Priority to PCT/CN2013/071657 priority patent/WO2014127501A1/zh
Publication of WO2014127501A1 publication Critical patent/WO2014127501A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/16Chemical after-treatment of artificial filaments or the like during manufacture of carbon by physicochemical methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed systems contains four or more hetero rings
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/12Chemical after-treatment of artificial filaments or the like during manufacture of carbon with inorganic substances ; Intercalation
    • D01F11/129Intercalated carbon- or graphite fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/32Deferred-action cells activated through external addition of electrolyte or of electrolyte components
    • H01M6/34Immersion cells, e.g. sea-water cells
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/10Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide

Definitions

  • the invention relates to an oxygen-nitrogen co-doped polyacrylonitrile-based carbon fiber and a preparation method thereof, in particular to an electrochemically modified oxygen-nitrogen co-doped polyacrylonitrile-based carbon fiber, belonging to material electrochemical technology field. Background technique
  • the carbon fiber is obtained by carbonizing or graphitizing the organic fiber, and has a microscopic layered graphite structure.
  • Carbon fiber is an inorganic polymer fiber having a carbon content of more than 90%. Among them, graphite fibers are more than 99% carbon.
  • Carbon fiber has high axial strength and modulus, no creep, good fatigue resistance, specific heat and conductivity between non-metal and metal, low thermal expansion coefficient, good corrosion resistance, low fiber density, and X-ray transmission. It is good in passability, but its impact resistance is poor, it is easy to damage, it is oxidized under the action of strong acid, and metal carbonization, carburization and electrochemical corrosion occur when it is combined with metal. Therefore, carbon fiber must be surface treated before use.
  • Carbon fiber can be obtained by carbonization of polyacrylonitrile fiber, asphalt fiber, viscose fiber or phenolic fiber, and can be divided into filament, short fiber and chopped fiber according to the state, and is divided into general type and high performance type according to mechanical properties.
  • the general-purpose carbon fiber has a strength of 1000 MPa and a modulus of about 100 GPa.
  • High-performance carbon fibers are further classified into high-strength type (intensity 2000MPa, modulus 250GPa) and high model (modulus above 300GPa).
  • PAN As a carbon fiber precursor, PAN has a strong polar group cyano group (-C ⁇ N), giving it a unique personality in its structure and properties. After the PAN precursor is fully carbonized (1000-1500 °C), the mass fractions of N, H and 0 are drastically reduced, and the carbon content reaches 93-98%, but some nitrogen is still present, and the nitrogen content is 2-7. %.
  • Graphite fiber is obtained by graphitizing carbon fiber at a temperature of 2200-3000 °C, which is a continuation of solid phase carbonization reaction. The non-carbon elements mainly composed of nitrogen in carbon fiber are almost completely removed, and graphite with carbon content close to 100% is obtained.
  • PAN-based carbon fiber without high temperature graphitization has a unique nitrogen-doped structure which is one of its important features.
  • the nitrogen content of the doping is lower, generally less than 1%, while the viscose-based carbon fibers do not contain nitrogen.
  • Carbon fiber is mainly used for composite reinforcements because of its excellent mechanical properties.
  • the T700PAN-based carbon fiber produced by Toray Co., Ltd. has a resistivity of 1.6 X 103 ⁇ 4-cm, and its application in the field of electrochemistry has begun to attract people's attention and can be used for manufacturing.
  • Seawater dissolved oxygen battery metal semi-fuel cell with seawater as medium
  • proton exchange membrane fuel cell metal-air fuel cell
  • Electrode materials for microbial fuel cells, supercapacitors, energy storage flow batteries, lead acid batteries, lithium ion batteries, electrochemical wastewater treatment, and electrochemical sensors are examples of the T700PAN-based carbon fiber produced by Toray Co., Ltd.
  • Carbon fiber can be used as an oxygen cathode reduction electrode material in electrochemistry.
  • Oxygen Reduction Reaction plays an important role in electrochemical technology.
  • an electrochemical reaction process consisting of oxygen cathode reduction and anodization of a fuel (such as hydrogen, methanol, reactive metals, microorganisms, etc.) is used to generate electricity.
  • a fuel such as hydrogen, methanol, reactive metals, microorganisms, etc.
  • the oxygen cathode is electrochemically reduced to produce H 2 0 2 as a continuous source of Fenton reagent, which reacts with Fe 2+ in the solution to form a strong oxidizing ⁇ radical.
  • Non-selective destruction of almost all organic pollutants to total mineralization therefore, the development of carbon fiber electrode materials with excellent oxygen cathodic reduction electrocatalytic activity has very important application prospects.
  • Fuel cells are recognized as clean energy conversion systems.
  • two major technical bottlenecks constrain its commercialization process, cost and reliability.
  • Pt-based catalysts are one of the main constraints of high cost of fuel cells.
  • Low-cost, high-activity and stable oxygen reduction electrocatalysts have been the research hotspots of fuel cells.
  • doping nitrogen on the properties of carbon and its composite electrocatalyst has attracted wide attention. It has been reported that the catalytic performance of carbon and its composites is significantly improved after nitrogen doping.
  • the catalytic activity in alkaline media has surpassed that of commercial Pt catalysts.
  • the method of doping nitrogen with carbon materials can be roughly divided into two categories: (1) in-situ doping, that is, doping nitrogen during synthesis of carbon materials; (2) post-doping, that is, after synthesizing carbon materials, and then using N-containing The precursor is post-treated (Wen Yuehua et al., Nitrogen-doped nanocarbon and electrocatalysts synthesized with non-Pt metals, Progress in Chemistry, 2010, 22: 1550-1555).
  • In-situ doping is a chemical vapor deposition on a substrate or template using an organic nitride as a precursor.
  • Post-doping is a post-treatment of nanocarbon in a nitrogen-containing atmosphere to obtain a nitrogen-doped nanocarbon material.
  • the above two nitrogen-doping methods are all aimed at nano-scale carbon materials, and the preparation temperature is generally not higher than 1000 °C, otherwise the nitrogen doping overflow is serious, thereby affecting the effect of nitrogen doping, and the preparation temperature is too low, and the nitrogen-doped carbon material is also Conductivity causes adverse effects.
  • the conditions required for the preparation of the reaction are severe and are not suitable for mass production.
  • the nano-scale nitrogen-doped carbon material obtained by the preparation needs to be bonded to the electrode by using an adhesive.
  • PAN-based carbon fibers are fiber-like structures with several micrometer dimensions, which are electrically conductive and easy to be fabricated into electrodes.
  • Commercialized SWB1200 seawater dissolved oxygen battery (Kongsberg Simrad, Norway), brush electrode made of PAN-based carbon fiber as the positive electrode of seawater dissolved oxygen battery.
  • Commercialized PAN-based carbon Although the fiber is processed by a carbonization temperature higher than 1000 °C, the residual nitrogen content can still reach 2-7%, so the nitrogen-containing heat contained in the above-mentioned two nitrogen-doping methods is contained. And chemical stability is higher.
  • the surface modification of carbon fiber was mainly aimed at improving the bonding strength between carbon fiber and composite material.
  • the main modification methods were ozone chemical oxidation method and electrochemical anodization method.
  • the surface of the PAN-based carbon fiber is relatively smooth and exhibits chemical enthalpy, which is disadvantageous for its good interfacial adhesion to the resin matrix. If the surface treatment of the PAN-based carbon fiber is carried out to have a reactive group on the surface and the surface roughness is increased, the mechanical properties of the carbon fiber-reinforced resin-based composite material can be improved.
  • the anodizing method is easy to control, can realize uniform oxidation of each wire, has large operation flexibility, is easy to be processed in large batches, and introduces active functional groups such as oxygen and nitrogen on the surface to improve the interlaminar shear strength of the carbon fiber composite material. To about 100MPa.
  • this anodizing method for improving the mechanical properties requires mild oxidation conditions, and the treatment by a single anodizing process causes the introduced oxygen-containing functional groups to be mostly on the carbon-based surface, and the introduced nitrogen-containing functional group is sub- The amino group (-NH) or the amino group (-NH 2 ), which is derived from the compound in the anodizing solution, rather than the nitrogen-containing reactive functional group formed by the existing nitrogen doping of the carbon fiber itself.
  • these oxygen-containing and nitrogen-containing functional groups fail to exhibit effective quasi-capacitance characteristics and oxygen cathode reduction electrocatalytic activity, and thus cannot satisfy the need as an electrode material.
  • CN101697323A discloses an electrochemically modified graphite electrode which is directly subjected to electrochemical oxidation and electrochemical reduction treatment in an aqueous electrolyte solution to obtain an active layer, which has a certain thickness, is rough and porous, and is rich in content.
  • the oxygen-reactive functional group and the activation layer of the micro-wafer structure, the reversible redox reaction characteristics of the oxygen-containing reactive functional group can be used for the electrochemical capacitor.
  • CN102176380A discloses a redox reaction electrochemical capacitor in which it is illustrated that such an electrochemically modified graphite electrode also has an electrocatalytic activity for a conventional oxidative reduction couple in a stored energy flow battery. Since the graphite itself does not contain nitrogen, the surface of the graphite electrode obtained by the above electrochemical treatment method has no nitrogen-containing reactive functional groups, and thus has no characteristics of the nitrogen-doped carbon material.
  • electrochemical capacitors have high power characteristics, while fuel cells have high energy density characteristics. Since the two are independent devices, they need to be combined to meet the high power and high energy density dynamic performance requirements. If the two can be combined into one device, the system volume can be reduced, which requires simultaneous An electrode material that satisfies electrochemical capacitance characteristics and fuel cell characteristics (mainly depending on ORR performance).
  • an object of the present invention is to provide an oxygen-nitrogen co-doped polyacrylonitrile-based carbon fiber having an oxygen-containing reactive functional group and a nitrogen-containing reactive functional group on the surface thereof, and having a quasi-capacitance characteristic of a redox reaction and Electrocatalytic properties for oxygen cathode reduction (ORR).
  • the present invention provides an oxygen-nitrogen co-doped polyacrylonitrile-based carbon fiber obtained by electrochemically modifying a raw material polyacrylonitrile-based carbon fiber to have an oxygen-containing active functional group and a nitrogen-containing surface.
  • the oxygen-containing reactive functional group in the active layer is a functional group having reversible redox reaction characteristics
  • the nitrogen-containing reactive functional group is a functional group having electrocatalytic properties for an oxygen cathode reduction reaction. Therefore, the oxygen-nitrogen co-doped polyacrylonitrile-based carbon fibers of the present invention have both a quasi-capacitance characteristic by a reversible redox reaction based on a reactive functional group and an electrocatalytic property for an oxygen cathode reduction reaction.
  • the nitrogen-containing reactive functional group is a pyridine type at the carbon-based edge of the surface of the oxygen-nitrogen co-doped polyacrylonitrile-based carbon fiber.
  • One or more of the nitrogen-containing reactive functional groups have electrocatalytic properties for the oxygen cathode reduction reaction.
  • the oxygen-containing reactive functional group is a carboxyl oxygen at the edge of the carbon-based surface of the surface of the oxygen-nitrogen co-doped polyacrylonitrile-based carbon fiber. a combination of one or more of carbonyl oxygen and hydroxyl oxygen.
  • the above different oxygen-containing reactive functional groups have reversible redox reaction characteristics.
  • the raw material polyacrylonitrile-based carbon fiber is a raw material polyacrylonitrile-based carbon fiber which is not graphitized, and the raw material polyacrylonitrile-based carbon fiber Based on the total mass, the nitrogen content is not less than 1%.
  • the oxygen and nitrogen co-doped polyacrylonitrile-based carbon fibers have a shape of a tow, a felt, a foam, a brush, a paper, and a cloth. Or a combination of several.
  • the oxygen-nitrogen co-doped polyacrylonitrile-based carbon fiber provided by the invention can be prepared into the above shape and then electrochemically modified to obtain
  • the size of the polyacrylonitrile-based carbon fibers of different shapes can be selected by one of ordinary skill in the art as needed.
  • the electrochemical modification comprises the steps of: placing the raw material polyacrylonitrile-based carbon fibers in an electrolyte solution, after electrochemical oxidation and electrochemistry Between restores After the cyclic treatment, the oxygen and nitrogen co-doped polyacrylonitrile-based carbon fibers are obtained.
  • the present invention also provides a method for preparing the above oxygen and nitrogen co-doped polyacrylonitrile-based carbon fibers, comprising the steps of: placing a raw material polyacrylonitrile-based carbon fiber in an electrolyte solution, between electrochemical oxidation and electrochemical reduction After the cyclic treatment, the oxygen and nitrogen co-doped polyacrylonitrile-based carbon fibers are obtained.
  • an active layer composed of an oxygen-containing reactive functional group and a nitrogen-containing reactive functional group is obtained after a cyclic treatment between electrochemical oxidation and electrochemical reduction, and the nitrogen-containing reactive functional group is a raw material before modification.
  • the inactive doped nitrogen contained in the polyacrylonitrile-based carbon fiber is activated by electrochemical modification.
  • the total electrochemical oxidation amount is 1000-10000 C/g, and the total electrochemical reduction power is 1000- 10000 C/g.
  • the electrochemical oxidation and electrochemical reduction processes should be alternated, but there is no limitation on the first and last electrochemical oxidation process or electrochemical reduction process.
  • there is no limitation on the number of cycles between electrochemical oxidation and electrochemical reduction until the total electrochemical oxidation amount and the total electrochemical reduction amount satisfy the above requirements, the reaction can be stopped, and the oxygen and nitrogen are prepared.
  • Doped polyacrylonitrile-based carbon fiber When the total electrochemical oxidation amount and/or the total electrochemical reduction amount is less than 1000 C/g, the active functional group in the active layer is small in number and low in activity; and when it is more than 10000 C/g, the active layer may be peeled and destroyed, and even the substrate structure is destroyed. Lost activity.
  • the total electrochemical oxidation amount during the entire circulation treatment is greater than or equal to the total electrochemical reduction amount.
  • the amount of electricity per electrochemical oxidation treatment can be greater than, equal to, or less than each electrochemical reduction.
  • the amount of electricity per electrochemical oxidation treatment may be the same or different, and the amount of electricity per electrochemical reduction treatment may be the same or different.
  • the electrolyte solution is an acidic electrolyte solution, an alkaline electrolyte solution or a neutral electrolyte solution or the like.
  • the acidic electrolyte solution is a combination of one or more of an aqueous solution of an inorganic oxyacid or the like. More preferably, the acidic electrolyte solution is an aqueous sulfuric acid solution.
  • the alkaline electrolyte solution is one of an aqueous solution of an alkali metal hydroxide, an aqueous solution of an alkaline earth metal hydroxide, an aqueous solution of an alkali metal salt, and an aqueous solution of an ammonium salt, or the like.
  • the alkaline electrolyte solution is an aqueous solution of ammonium hydrogencarbonate.
  • the neutral electrolyte solution is a group of one or more of an aqueous solution of sodium nitrate, an aqueous solution of potassium nitrate, an aqueous solution of ammonium nitrate, an aqueous solution of sodium sulfate, an aqueous solution of potassium sulfate, and an aqueous solution of ammonium sulfate. Hehe. More preferably, the neutral electrolyte solution is an aqueous solution of sodium nitrate.
  • the oxygen-nitrogen co-doped polyacrylonitrile-based carbon fiber provided by the invention is electrochemically modified from the raw material polyacrylonitrile-based carbon fiber, and simultaneously forms an oxygen-containing active functional group and a The nitrogen is reactive with functional groups, thereby giving it a certain quasi-capacitance characteristic, as well as electrocatalytic properties for the oxygen reduction reaction and the redox couple.
  • the oxygen-nitrogen co-doped polyacrylonitrile-based carbon fiber provided by the invention can be used as an electrode material, and the quasi-capacitance and electrocatalytic properties of the electrode material can be used to improve the activity and performance of the electrode material, and have good activity. High conductivity, low material cost, stability and long service life.
  • the electrochemical modification preparation method of the oxygen-nitrogen co-doped polyacrylonitrile-based carbon fiber provided by the invention has the advantages of simple manufacture, low production cost, and suitable for industrial production.
  • the oxygen and nitrogen co-doped polyacrylonitrile-based carbon fiber provided by the invention can be used for manufacturing seawater dissolved oxygen battery, proton exchange membrane fuel cell, metal-air fuel cell, microbial fuel cell, supercapacitor, energy storage liquid flow Electrodes for batteries, lead-acid batteries, lithium-ion batteries, electrochemical wastewater treatment, and electrochemical sensors, and various electrochemical engineering techniques using the electrode materials.
  • FIG. 1 is a schematic view showing the structure of a surface functional group of an oxygen-nitrogen co-doped polyacrylonitrile-based carbon fiber provided by the present invention
  • Example 2 is a cyclic voltammetric capacitance curve of four oxygen-nitrogen co-doped PAN-based carbon fiber filaments and a raw material PAN-based carbon fiber filament provided in Example 1;
  • Example 3 is a timing current curve of four oxygen-nitrogen co-doped PAN-based carbon fiber filaments and a raw material PAN-based carbon fiber filament provided in Example 1;
  • Example 4 is a timing current curve of an oxygen-nitrogen co-doped PAN-based carbon fiber filament in oxygen-containing and oxygen-depleted seawater provided in Example 1;
  • Figure 5a is a cyclic voltammetric capacitance curve of an electrochemically modified graphite fiber filament
  • Figure 5b is a timing current curve of the electrochemically modified graphite fiber filament
  • Figure 6a is a cyclic voltammetry curve of the raw material PAN-based carbon fiber felt of Example 2;
  • Figure 6b is a cyclic voltammetry curve of the oxygen and nitrogen co-doped PAN-based carbon fiber mat of Example 2;
  • Figure 7a shows the 3 ⁇ 40 2 yield of a brush electrode made of oxygen and nitrogen co-doped PAN-based carbon fiber of Example 3.
  • Fig. 7b is a graph showing the current efficiency of a brush electrode made of oxygen-nitrogen co-doped PAN-based carbon fiber of Example 3. Detailed ways
  • FIG. 1 The schematic diagram of the surface functional group structure of the oxygen-nitrogen co-doped polyacrylonitrile-based carbon fiber provided by the present invention is shown in FIG. 1.
  • the surface of the oxygen-nitrogen co-doped polyacrylonitrile-based carbon fiber has a carbon-based surface edge.
  • An active layer 7 composed of carboxyloxy 1, carbonyl oxygen 2, hydroxy oxygen 3, pyridine nitrogen 4, pyrrole nitrogen 5 and graphite nitrogen 6, wherein the oxygen-containing functional group (carboxy oxygen 1, carbonyl oxygen 2, hydroxyl oxygen) 3) and an active layer 7 containing a nitrogen-containing reactive functional group (pyridine-type nitrogen 4, pyrrole-type nitrogen 5, graphite-type nitrogen 6) and a composition thereof, which are electrochemically modified, wherein the nitrogen-containing reactive functional group (pyridine type) Nitrogen 4, pyrrole type nitrogen 5, and graphite type nitrogen 6) are obtained by electrochemically modifying the inactive doped nitrogen contained in the polyacrylonitrile-based carbon fiber before the modification.
  • the present embodiment provides a polyacrylonitrile-based carbon fiber yarn co-doped with oxygen and nitrogen, which is prepared by electrochemically modifying a T700SC 12K polyacrylonitrile-based carbon fiber filament to have an oxygen-containing active functional group and a surface thereof.
  • the preparation method of the oxygen and nitrogen co-doped polyacrylonitrile-based carbon fiber filament of the present embodiment comprises the following steps: placing lg T700SC 12K PAN-based carbon fiber filament in a sulfuric acid aqueous solution having a concentration of 0.5 M; Conductive anodization for 5 minutes, electrochemical cathode reduction for 5 minutes, and then repeat the above process 5 times to prepare the oxygen and nitrogen co-doped polyacrylonitrile-based carbon fiber filaments; For 1000C (total charge of 6 electrochemical oxidation processes), the total reduction is 1000C (the total charge of 6 electrochemical reduction processes).
  • the total oxidation capacity and the total reduction amount of electricity introduced were changed, and three other oxygen-nitrogen co-doped PAN-based carbon fiber filaments were separately prepared.
  • the total oxidation power and total reduction power of the three oxygen and nitrogen co-doped PAN-based carbon fiber filaments are: 3000C and 3000C, 6000C and 6000C, 10000C and 10000 Co
  • FIG. 1 is a cyclic voltammetric capacitance curve of four oxygen-nitrogen co-doped PAN-based carbon fiber filaments and raw material PAN-based carbon fiber filaments in a 2 M sulfuric acid solution provided in the present embodiment. As shown in Fig.
  • the raw material PAN-based carbon fiber filament which has not been electrochemically modified has a very small capacitance and has no quasi-capacitance characteristics
  • the electrochemically modified oxygen-nitrogen co-doped PAN-based carbon fiber filament has The capacitance curve has good symmetry and a pair of symmetric, broadened redox peaks corresponding to the continuous redox reaction occurring between the oxygen-containing reactive functional group carboxyl oxygen, carbonyl oxygen and hydroxyl oxygen. Therefore, the oxygen
  • the PAN-based carbon fiber filament co-doped with nitrogen has reversible redox reaction characteristics (quasi-capacitance characteristics), and as the amount of redox charge applied by electrochemical modification increases, the capacitance value also increases linearly.
  • the specific capacitance value of the product reaches a maximum value of 150 F/g (which is a measurement value at a scanning speed of 5 mV/s). If the redox charge applied by the electrochemical modification is further increased, the active structure of the carbon fiber will be destroyed, resulting in loss of activity.
  • FIG. 3 is a timing current curve of four oxygen and nitrogen co-doped PAN-based carbon fiber filaments and a raw material PAN-based carbon fiber filament in a natural seawater at a flow rate of 3.2 cm/ s at -0.4 V VS . SCE according to the present embodiment. . As shown in Fig. 3, the raw material PAN-based carbon fiber filaments which have not been electrochemically modified have no electrocatalytic activity for the oxygen cathode reduction reaction of dissolved oxygen in seawater, and the ORR current is only about 6 mA/g.
  • the electrochemically modified oxygen-nitrogen co-doped PAN-based carbon fiber filaments have a large increase in ORR current, and the ORR current can reach 700 mA/g at a seawater flow rate of 3.2 cm/s, which is due to carbon fiber.
  • One or more of the nitrogen-containing reactive functional groups of the surface of the carbon-based surface such as pyridine-type nitrogen, pyrrole-type nitrogen and graphite-type nitrogen, have electrocatalytic properties for oxygen cathode reduction reaction, and redox applied with electrochemical modification
  • the ORR current increases accordingly. After the total oxidation power and the total reduction power reach 6000C, the ORR current does not increase and is basically stable. If the redox amount of the electrochemical modification exceeds 10,000 C, the active structure of the carbon fiber is destroyed, resulting in loss of activity.
  • FIG. 4 is a PAN-based carbon fiber filament co-doped with oxygen and nitrogen prepared at a total oxidation amount and a total reduction amount of 6000 C in the present embodiment, in an oxygen-containing and oxygen-depleted seawater having a flow rate of 3.2 cm/ s , 0.4V VS .
  • Timing current curve under SCE As shown in FIG. 4, after removing dissolved oxygen in seawater, the ORR current is reduced to almost zero, further illustrating the oxygen-nitrogen co-doped PAN-based carbon fiber filaments obtained by the electrochemical modification treatment of the present invention.
  • the reaction has electrocatalytic properties.
  • the lg raw material PAN-based carbon fiber yarn is subjected to graphitization at a high temperature of 2200-3000 ° C to obtain a graphite fiber filament, and then according to the preparation method of the embodiment, the total oxidation power and the total reduction electric quantity are 6000 C, and the graphite fiber is used.
  • the wire is subjected to electrochemical modification treatment to obtain an electrochemically modified graphite fiber filament.
  • the electrochemically modified graphite fiber filaments were subjected to cyclic voltammetric capacitance curves and chronoamperometry curves according to the test conditions shown in Figs. 2 and 3, and the results are shown in Figs. 5a and 5b.
  • Figure 5a is a cycle of electrochemically modified graphite fiber filaments in 2M sulfuric acid solution A voltammetric capacitance curve showing that the electrochemically modified graphite fiber filament has a quasi-capacitance characteristic.
  • Figure 5b is a chrono-current curve of electrochemically modified graphite fiber filaments at -0.4 V VS . SCE in seawater at a flow rate of 3.2 cm/ s , which shows the electrochemically modified graphite fiber filaments for oxygen cathode reduction There is no electrocatalytic property. This is because the graphite fiber filament obtained by high-temperature graphitization of the raw material PAN-based carbon fiber filament no longer contains nitrogen. Therefore, only the graphite fiber containing oxygen-containing reactive functional group is obtained after electrochemical modification treatment. wire.
  • Table 1 shows the surface element XPS analysis results of the four oxygen-nitrogen co-doped PAN-based carbon fiber filaments and the raw material PAN-based carbon fiber filaments provided in this example. It can be seen from Table 1 that the surface of the PAN-based carbon fiber filaments of the raw material which has not been electrochemically modified and contains the nitrogen-doped, oxygen- and nitrogen-doped PAN-based carbon fiber filaments after electrochemical modification treatment has surface oxygen content.
  • the present embodiment provides an oxygen-nitrogen co-doped polyacrylonitrile-based carbon fiber felt which is electrochemically modified by a polyacrylonitrile-based carbon fiber felt (thickness: 6 mm, unit geometric area mass: 0.1 g/cm 2 ).
  • the active layer having an oxygen-containing reactive functional group and a nitrogen-containing reactive functional group is prepared, wherein the nitrogen-containing reactive functional group is an inactive doped nitrogen contained in the polyacrylonitrile-based carbon fiber before the modification. Chemical modification is obtained by activation.
  • the preparation method of the oxygen and nitrogen co-doped polyacrylonitrile-based carbon fiber felt of the present embodiment comprises the following steps: placing the O.lg PAN-based carbon fiber felt in an aqueous solution of ammonium hydrogencarbonate having a concentration of 10%; The carbon fiber felt is electrochemically anodized for 5 minutes, then electrochemical cathode reduction for 2 minutes, and then the above process is repeated 4 times, during which the total oxidation power is 5000 C / g (the total amount of 5 electrochemical oxidation processes), The total amount of reduced electricity was 2000 C/g (total amount of electricity in 5 electrochemical reduction processes), thereby preparing the oxygen-nitrogen co-doped PAN-based carbon fiber felt.
  • Fig. 6a is a cyclic voltammetry curve of the raw material PAN-based carbon fiber felt in the vanadyl sulfate aqueous solution (1M VOS0 4 + 2M H 2 S0 4 ) of the present embodiment.
  • the scanning speeds corresponding to curves 1-3 in Fig. 6a are 5, 10 and 20 mV/s, respectively.
  • Figure 6b is an oxygen and nitrogen co-doped PAN-based carbon fiber felt in the present embodiment in an aqueous vanadium sulfate sulfate solution (1M VOS0 4 Cyclic voltammetry curve in + 2M H 2 S0 4 ).
  • the present embodiment provides a polyacrylonitrile-based carbon fiber yarn co-doped with oxygen and nitrogen, which is prepared by electrochemically modifying a T300 12K polyacrylonitrile-based carbon fiber filament, and has an oxygen-containing active functional group and a surface thereon.
  • An active layer composed of a nitrogen-reactive functional group, wherein the nitrogen-containing reactive functional group is obtained by electrochemically modifying an inactive doped nitrogen contained in a polyacrylonitrile-based carbon fiber before the modification.
  • the present embodiment also provides a brush electrode made of the oxygen-nitrogen co-doped polyacrylonitrile-based carbon fiber yarn, which can be applied to an electric Fenton process sewage treatment technology.
  • FIG. 7a is a 3 ⁇ 40 2 yield curve of a brush electrode made of oxygen and nitrogen co-doped PAN-based carbon fiber filaments in a concentration of 0.4 M Na 2 S0 4 solution at different currents;
  • FIG. 7a The current efficiency curves of the brush electrodes of the oxygen-nitrogen co-doped PAN-based carbon fiber filaments of the examples at different currents in a 0.4 M Na 2 SO 4 solution.
  • the current intensity is 100-300 mA
  • the concentration of 3 ⁇ 40 2 increases with the increase of current intensity.
  • the reaction lh, 3 ⁇ 40 2 concentration can reach 185 mg/L, and the current intensity is 400 mA.
  • 3 ⁇ 40 2 concentration is lower than 300 mA.
  • the brush electrode of the present embodiment was used for the electric Fenton process containing 20 mg/L methylene blue sewage, and the initial pH value of the sewage solution was adjusted to be 3, the decolorization rate was 91% when electrolyzed for 5 minutes, and the decolorization rate was above 98% after 30 minutes.
  • the result It is indicated that the electrochemically modified PAN-based carbon fiber filaments and the brush electrodes thereof can be used as high-efficiency cathode materials and electrodes for the electric Fenton method.
  • the present embodiment provides a polyacrylonitrile-based carbon fiber brush co-doped with oxygen and nitrogen, which is prepared by brushing T300 12K polyacrylonitrile-based carbon fiber filaments, and is electrochemically modified to prepare
  • the surface of the carbon fiber on the brush body has an active layer composed of an oxygen-containing reactive functional group and a nitrogen-containing reactive functional group, wherein the nitrogen-containing reactive functional group is an inactive doped nitrogen contained in the polyacrylonitrile carbon-carbon fiber before the modification. Chemical modification is obtained by activation.
  • the oxygen and nitrogen co-doped polyacrylonitrile-based carbon fiber brush can be used as a positive electrode of a seawater-dissolved oxygen battery.
  • the preparation method of the oxygen and nitrogen co-doped polyacrylonitrile-based carbon fiber brush of the present embodiment comprises the following steps: 2 g of T300 12K PAN-based carbon fiber yarn and titanium wire having a diameter of 1 mm are prepared into a brush shape, wherein the length of the brush body is 180 mm, diameter 30 mm; then the carbon fiber brush was placed in a 2M aqueous solution of sulfuric acid, which was first electrochemically anodized for 4 minutes, then electrochemically cathodically reduced for 3 minutes, and then the above process was repeated 6 times.
  • the total amount of oxidizing energy introduced is 9000 C/g (the total amount of electricity in the 7th electrochemical oxidation process), and the total amount of reduced electricity is 6000 C/g (the total amount of electricity in the 7th electrochemical reduction process), thereby preparing a total of oxygen and nitrogen.
  • a seawater-dissolved oxygen battery By using the oxygen-nitrogen co-doped polyacrylonitrile-based carbon fiber brush of the present embodiment as a positive electrode, a seawater-dissolved oxygen battery can be manufactured.
  • the battery is composed of a centrally located magnesium anode rod as a negative electrode and a series of upper and lower layers arranged around the circumference.
  • the positive electrode is welded to the all-titanium metal frame, and the negative electrode is fixed to the center of the frame by a bolt with an insulating sleeve.
  • the frame size is 360 mm x 360 mm x 390 mm (the battery volume is about 50 L), and the initial spacing between the positive and negative electrodes is 50 mm.
  • the actual sea discharge test data of the battery was analyzed and compared with the commercial seawater battery SWB1200. The results show that: the peak power of the battery is 5.4W, the minimum power is 2W, and the volumetric power is 40W/m 3 .
  • the battery performance is better. It can be seen that since the above seawater-dissolved oxygen battery uses the oxygen-nitrogen co-doped polyacrylonitrile-based carbon fiber brush of the present embodiment as the positive electrode of the battery, the seawater-dissolved oxygen battery has a smaller volume and volume than the prior art. Higher volumetric specific power.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种氧和氮共掺杂的聚丙烯腈基碳纤维及其制备方法。该氧和氮共掺杂的聚丙烯腈基碳纤维,由原料聚丙烯腈基碳纤维经过电化学改性制备得到,使其表面具有含氧活性官能团和含氮活性官能团组成的活性层,其中,含氮活性官能团是由原料聚丙烯腈基碳纤维中自身含有的掺杂氮经过电化学改性被活化而得到的。该氧和氮共掺杂的聚丙烯腈基碳纤维的制备方法包括以下步骤:将原料聚丙烯腈基碳纤维置于电解质溶液中,经过在电化学氧化和电化学还原之间的循环处理后,得到所述氧和氮共掺杂的聚丙烯腈基碳纤维。本发明的氧和氮共掺杂的聚丙烯腈基碳纤维同时具有氧化还原反应的准电容特性和对氧阴极还原反应的电催化特性。

Description

一种氧和氮共掺杂的聚丙烯腈基碳纤维及其制备方法 技术领域
本发明涉及一种氧和氮共掺杂的聚丙烯腈基碳纤维及其制备方法,尤其涉及一种电 化学改性制备的氧和氮共掺杂的聚丙烯腈基碳纤维, 属于材料电化学技术领域。 背景技术
碳纤维是由有机纤维经碳化或石墨化处理而得到的, 具有微观乱层石墨结构。 碳纤 维是含碳量高于 90%的无机高分子纤维。其中含碳量高于 99%的称为石墨纤维。碳纤维 的轴向强度和模量高, 无蠕变, 耐疲劳性好, 比热及导电性介于非金属和金属之间, 热 膨胀系数小, 耐腐蚀性好, 纤维的密度低, X射线透过性好, 但其耐冲击性较差, 容易 损伤,在强酸作用下发生氧化,与金属复合时会发生金属碳化、渗碳及电化学腐蚀现象。 因此, 碳纤维在使用前须进行表面处理。
碳纤维可分别用聚丙烯腈纤维、 沥青纤维、 粘胶丝或酚醛纤维经碳化制得, 按状态 分为长丝、 短纤维和短切纤维, 按力学性能分为通用型和高性能型。 通用型碳纤维强度 为 1000兆帕(MPa)、模量为 lOOGPa左右。高性能型碳纤维又分为高强型(强度 2000MPa、 模量 250GPa) 和高模型 (模量 300GPa以上)。 强度大于 4000MPa的又称为超高强型; 模量大于 450GPa的称为超高模型。 随着航天和航空工业的发展, 还出现了高强高伸型 碳纤维, 其延伸率大于 2%。 用量最大的是聚丙烯腈 (PAN) 碳纤维 (市场占有率 90%以 上)。 碳纤维的制造包括纤维纺丝 (原丝制备)、 热稳定化 (预氧化)、 碳化、 石墨化等 4 个过程, 其间伴随的化学变化包括: 脱氢、 环化、 预氧化、 氧化及脱氧等。
PAN作为碳纤维原丝具有强极性基团氰基(-C≡N), 赋予其结构和性能具有独特的 个性。 PAN原丝经充分碳化 ( 1000-1500 °C ) 后, N、 H和 0的质量分数急剧减少, 含 碳量达到 93-98%,但仍存在部分掺杂氮,含氮量为 2-7%。石墨纤维是碳纤维经 2200-3000 °C高温石墨化处理得到的, 是固相碳化反应的继续, 碳纤维中以氮为主的非碳元素几乎 全部被溢走, 得到含碳量接近 100%的石墨纤维, 因此, 未经高温石墨化处理的 PAN基 碳纤维中含有独特的氮掺杂结构是其重要特征之一。 对于沥青基碳纤维来说, 掺杂氮含 量较低, 一般低于 1%, 而粘胶基碳纤维中不含掺杂氮。
由于碳纤维具有出色的力学性能, 因此其主要用于复合材料增强体。 近来, 由于碳 纤维具有的优异导电性能, 例如, 日本东丽公司生产的 T700PAN基碳纤维的电阻率为 1.6 X 10¾-cm, 其在电化学领域中的应用已开始引起人们的重视, 可以用来制造海水溶 解氧电池(海水为介质的金属半燃料电池)、质子交换膜燃料电池、金属-空气燃料电池、 微生物燃料电池、 超级电容器、 储能液流电池、 铅酸电池、 锂离子电池、 电化学污水处 理和电化学传感器等的电极材料。
碳纤维可以作为电化学中的氧阴极还原电极材料。 氧阴极还原反应 (ORR, Oxygen Reduction Reaction)在电化学技术中具有举足轻重的作用。 在多种燃料电池技术中, 利 用氧阴极还原与燃料 (如氢气、 甲醇、 活泼金属、 微生物等) 的阳极氧化构成的电化学 反应过程来发电。在电 Fenton法污水处理技术中,用电化学方法使氧阴极还原产生 H202 作为 Fenton试剂的持续来源, 使其与溶液中的 Fe2+反应生成强氧化性的 ·ΟΗ自由基,可 以无选择地破坏几乎所有的有机污染物至全部矿化, 因此, 开发具有优异的氧阴极还原 反应电催化活性的碳纤维电极材料具有非常重要的应用前景。
燃料电池被公认为清洁的能量转换系统, 然而, 两大主要的技术瓶颈制约了它的商 品化进程, 即成本和可靠性。 目前, Pt基催化剂是燃料电池高成本的主要制约因素之一, 低成本、 高活性和稳定性的氧还原电催化剂一直是燃料电池的研究热点。 近年来, 掺杂 氮对碳及其复合电催化剂性能的显著影响引起广泛关注。 据报道, 碳及其复合材料掺氮 后催化性能显著改善, 在碱性介质中催化活性已超过商用 Pt催化剂, 作为非贵金属催 化剂取代 Pt应用于燃料电池的前景被十分看好 (Gong K, et al . Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction, Science, 2009, 323: 760-764)。
碳材料掺杂氮的方法大致可分为两类 : (1 ) 原位掺杂, 即在合成碳材料期间掺入 氮; (2)后掺杂, 即合成碳材料后, 再用含 N的前驱体对其进行后处理(文越华等, 掺 氮纳米碳及与非 Pt金属复合的电催化剂研究, 化学进展, 2010, 22: 1550-1555 )。 原位 掺杂是以有机氮化物为前驱体在基体或模板上进行化学气相沉积, 与烃类类似, 氮化物 在基体发生分解时, C-N键可在一定程度上保留, 进而形成 N掺杂纳米结构。后掺杂是 在含氮的气氛中对纳米碳进行后处理得到掺氮的纳米碳材料。上述两种掺氮方法均针对 纳米级碳材料, 制备温度一般要求不高于 1000 °C, 否则掺杂氮溢出严重, 从而影响掺氮 的效果, 制备温度过低也会对掺氮碳材料的导电性造成不利影响。 此外, 制备反应要求 的条件苛刻, 不适合大批量生产, 制得的纳米级掺氮碳材料, 应用时需要借助粘结剂黏 合制成电极使用。
商品化 PAN基碳纤维是具有几个微米尺度的纤维丝状结构, 导电性好, 易于制成 电极应用。 商品化的 SWB1200海水溶解氧电池 (Kongsberg Simrad公司, Norway) , 采用 PAN基碳纤维制成的刷状电极作为海水溶解氧电池的正极。这种商品化 PAN基碳 纤维尽管经过高于 1000 °C的碳化温度处理制得, 残留掺杂氮含量仍可达 2-7%, 因而相 比于上述提及的两种掺氮方法, 其含有的掺杂氮的热和化学稳定性更高。 然而, 未经改 性的 PAN基碳纤维中固有的掺杂氮对 ORR的催化活性有限, 因此, 未能引起人们的重 视, 需要通过一定的改性处理方法才能获得好的 ORR活性 (徐海波等, 海水超级电容 溶解氧电池, 电化学, 2012, 18: 24-30) 。
以往碳纤维的表面改性主要以提高碳纤维与复合材料的结合强度为目的, 主要改性 方法有臭氧化学氧化法和电化学阳极氧化法。 PAN基碳纤维表面较光滑,且呈现化学隋 性, 这些特征不利于其与树脂基体形成良好的界面粘接。 若对 PAN基碳纤维进行表面 处理, 使其表面具有活性基团, 增加表面粗糙度, 就可以提高碳纤维增强树脂基复合材 料的力学性能。 其中, 阳极氧化法易于控制, 可实现每根丝均匀氧化, 操作弹性大, 易 于大批量处理, 在其表面引入含氧、 含氮等活性官能团, 可使碳纤维复合材料的层间剪 切强度提高到 lOOMPa左右。 然而, 这种用于提高力学性能的阳极氧化方法, 需要的氧 化条件较为温和, 而且采取的单一阳极氧化过程处理, 会导致引入的含氧官能团大多处 于碳基面, 引入的含氮官能团为亚氨基 (-NH) 或氨基 (-NH2) , 这些掺杂氮来自于阳 极氧化溶液中的化合物, 而不是利用碳纤维自身已有的掺杂氮形成的含氮活性官能团。 此外, 这些含氧和含氮官能团未能显现出有效的准电容特性和氧阴极还原电催化活性, 因此不能满足作为电极材料的需要。
CN101697323A公开了一种电化学改性石墨电极, 其直接由石墨本体在水性电解质 溶液中经过电化学氧化和电化学还原循环处理后得到活化层, 是具有一定厚度的、 粗糙 多孔的、 含有丰富含氧活性官能团和微晶片状结构的活化层, 其含氧活性官能团的可逆 氧化还原反应特性可以用于电化学电容器。 CN102176380A公开了一种氧化还原反应电 化学电容器,其中阐述了这种电化学改性石墨电极还具有对储能液流电池中常用氧化还 原电偶对的电催化活性。 由于石墨本身不含氮, 采用上述的电化学处理方法得到的石墨 电极表面没有含氮活性官能团, 因而也就没有掺氮碳材料所具有的特性。
此外, 电化学电容器具有高功率特性, 而燃料电池具有高能量密度特性。 由于二者 是独立的器件, 需要联合使用才可以同时满足高功率和高能量密度的动力性能要求, 如 能将二者结合到一个器件中使用, 将可减少系统的体积, 这就需要能同时满足电化学电 容特性和燃料电池特性 (主要取决于 ORR性能) 的电极材料。
综上所述, 开发一种电化学改性制备的氧和氮共掺杂的聚丙烯腈基碳纤维仍是材料 电化学领域中急需解决的关键问题。 发明内容
为解决上述技术问题,本发明的目的在于提供一种氧和氮共掺杂的聚丙烯腈基碳纤 维, 其表面含有含氧活性官能团和含氮活性官能团, 同时具有氧化还原反应的准电容特 性和对氧阴极还原反应 (ORR)的电催化特性。
本发明的目的还在于提供上述氧和氮共掺杂的聚丙烯腈基碳纤维的制备方法。 为达到上述目的, 本发明提供一种氧和氮共掺杂的聚丙烯腈基碳纤维, 其由原料聚 丙烯腈基碳纤维经过电化学改性制备得到,使其表面具有含氧活性官能团和含氮活性官 能团组成的活性层, 其中, 含氮活性官能团是由原料聚丙烯腈基碳纤维中自身含有的掺 杂氮经过电化学改性被活化而得到的。该活性层中的含氧活性官能团是具有可逆的氧化 还原反应特性的官能团, 含氮活性官能团是对氧阴极还原反应具有电催化特性的官能 团。 因此, 本发明的氧和氮共掺杂的聚丙烯腈基碳纤维同时具有基于活性官能团的可逆 的氧化还原反应产生的准电容特性和对氧阴极还原反应的电催化特性。
在上述氧和氮共掺杂的聚丙烯腈基碳纤维中, 优选地, 所述含氮活性官能团为处于 所述氧和氮共掺杂的聚丙烯腈基碳纤维表面的碳基面边缘的吡啶型氮、吡咯型氮和石墨 型氮等中的一种或几种的组合。所述含氮活性官能团中的一种或几种对氧阴极还原反应 具有电催化特性。
在上述氧和氮共掺杂的聚丙烯腈基碳纤维中, 优选地, 所述含氧活性官能团为处于 所述氧和氮共掺杂的聚丙烯腈基碳纤维表面的碳基面边缘的羧基氧、羰基氧和羟基氧等 中的一种或几种的组合。 上述不同的含氧活性官能团之间具有可逆的氧化还原反应特 性。
在上述氧和氮共掺杂的聚丙烯腈基碳纤维中, 优选地, 所述原料聚丙烯腈基碳纤维 为未经石墨化处理的原料聚丙烯腈基碳纤维, 以所述原料聚丙烯腈基碳纤维的总质量为 基准, 其氮元素含量不小于 1%。
根据本发明的具体实施方式, 优选地, 上述氧和氮共掺杂的聚丙烯腈基碳纤维的形 状为丝束状、 毡状、 发泡状、 刷状、 纸状和布状等中的一种或几种的组合。 本发明提供 的氧和氮共掺杂的聚丙烯腈基碳纤维可以先制成上述形状再经电化学改性处理制备得 至 |J, 也可以先经电化学改性处理后再制成上述形状。 对于不同形状的聚丙烯腈基碳纤维 的尺寸, 本领域一般技术人员可以根据需要进行选择。
在上述氧和氮共掺杂的聚丙烯腈基碳纤维中, 优选地, 所述电化学改性包括以下步 骤: 将原料聚丙烯腈基碳纤维置于电解质溶液中, 经过在电化学氧化和电化学还原之间 的循环处理后, 得到所述氧和氮共掺杂的聚丙烯腈基碳纤维。
本发明还提供上述氧和氮共掺杂的聚丙烯腈基碳纤维的制备方法, 其包括以下步 骤: 将原料聚丙烯腈基碳纤维置于电解质溶液中, 经过在电化学氧化和电化学还原之间 的循环处理后, 得到所述氧和氮共掺杂的聚丙烯腈基碳纤维。 在该制备方法中, 经过在 电化学氧化和电化学还原之间的循环处理后得到含氧活性官能团和含氮活性官能团共 同组成的活性层,所述含氮活性官能团是由改性前的原料聚丙烯腈基碳纤维中自身含有 的非活性掺杂氮因电化学改性被活化得到的。
在上述制备方法中, 优选地, 以所述氧和氮共掺杂的聚丙烯腈基碳纤维的质量为基 准, 总电化学氧化电量为 1000-10000 C/g, 总电化学还原电量为 1000-10000 C/g。 在上 述电化学氧化和电化学还原之间的循环处理过程中, 电化学氧化和电化学还原过程应交 替进行, 但对最先和最后进行电化学氧化过程还是电化学还原过程不做限制。 此外, 对 于电化学氧化和电化学还原之间的循环次数并不做限制,直至总电化学氧化电量和总电 化学还原电量满足上述要求时, 即可停止反应, 制备得到所述氧和氮共掺杂的聚丙烯腈 基碳纤维。 总电化学氧化电量和 /或总电化学还原电量小于 1000C/g, 则活性层中的活性 官能团数量少, 活性低; 而大于 10000C/g, 则活性层会剥离破坏, 甚至基材结构破坏, 失去活性。
在上述制备方法中, 优选地, 整个循环处理过程中的总电化学氧化电量大于或等于 总电化学还原电量。对于每次电化学氧化处理的电量和每次电化学还原处理的电量并不 做限制, 每次电化学氧化电量可以大于、 等于或小于每次电化学还原电量。 而且, 每次 电化学氧化处理的电量可以为相同或不同,每次电化学还原处理的电量也可以为相同或 不同。
在上述制备方法中, 优选地, 所述电解质溶液为酸性电解质溶液、 碱性电解质溶液 或中性电解质溶液等。
在上述制备方法中, 优选地, 所述酸性电解质溶液为无机含氧酸的水溶液等中的一 种或几种的组合。 更优选地, 所述酸性电解质溶液为硫酸水溶液。
在上述制备方法中, 优选地, 所述碱性电解质溶液为碱金属氢氧化物的水溶液、 碱 土金属氢氧化物的水溶液、含氧碱金属盐的水溶液以及铵盐的水溶液等中的一种或几种 的组合。 更优选地, 所述碱性电解质溶液为碳酸氢铵水溶液。
在上述制备方法中,优选地,所述中性电解质溶液为硝酸钠水溶液、硝酸钾水溶液、 硝酸铵水溶液、 硫酸钠水溶液、 硫酸钾水溶液以及硫酸铵水溶液等中的一种或几种的组 合。 更优选地, 所述中性电解质溶液为硝酸钠水溶液。
在上述制备方法中, 在反应能够顺利进行的前提下, 本领域技术人员可以根据具体 情况对上述电解质溶液的浓度和用量进行选择和调控。此外,在上述的酸性电解质溶液、 碱性电解质溶液和中性电解质溶液中, 最优选的是硫酸水溶液。
本发明提供的氧和氮共掺杂的聚丙烯腈基碳纤维,其由原料聚丙烯腈基碳纤维经过 电化学改性处理之后,在其表面碳基面边缘处会同时形成含氧活性官能团和含氮活性官 能团, 从而使其具有一定的准电容特性, 以及对氧还原反应和氧化还原电偶对的电催化 特性。 将本发明提供的氧和氮共掺杂的聚丙烯腈基碳纤维作为电极材料, 可以单一或同 时利用其具有的准电容特性和电催化特性来提高电极材料的活性和使用性能, 具有活性 好、 导电性高、 材料成本低、 稳定性和使用寿命长等特点。 本发明提供的氧和氮共掺杂 的聚丙烯腈基碳纤维的电化学改性制备方法, 具有制造简易、 生产成本低、 适合工业化 生产等优点。
本发明所提供的氧和氮共掺杂的聚丙烯腈基碳纤维, 可以用于制造海水溶解氧电 池、 质子交换膜燃料电池、 金属-空气燃料电池、 微生物燃料电池、 超级电容器、 储能 液流电池、 铅酸电池、 锂离子电池、 电化学污水处理和电化学传感器等所使用的电极, 以及利用该电极材料的各种电化学工程技术领域。 附图说明
图 1为本发明提供的氧和氮共掺杂的聚丙烯腈基碳纤维的表面活性官能团结构示意 图;
图 2为实施例 1提供的四种氧和氮共掺杂的 PAN基碳纤维丝和原料 PAN基碳纤维 丝的循环伏安电容曲线;
图 3为实施例 1提供的四种氧和氮共掺杂的 PAN基碳纤维丝和原料 PAN基碳纤维 丝的计时电流曲线;
图 4为实施例 1提供的一种氧和氮共掺杂的 PAN基碳纤维丝在含氧和除氧海水中 的计时电流曲线;
图 5a为电化学改性的石墨纤维丝的循环伏安电容曲线;
图 5b为电化学改性的石墨纤维丝的计时电流曲线;
图 6a为实施例 2的原料 PAN基碳纤维毡的循环伏安曲线;
图 6b为实施例 2的氧和氮共掺杂的 PAN基碳纤维毡的循环伏安曲线;
图 7a为实施例 3的氧和氮共掺杂的 PAN基碳纤维丝制成的刷状电极的 ¾02产量 曲线;
图 7b为实施例 3的氧和氮共掺杂的 PAN基碳纤维丝制成的刷状电极的电流效率曲 线。 具体实施方式
为了对本发明的技术特征、 目的和有益效果有更加清楚的理解, 现对本发明的技术 方案进行以下详细说明, 但不能理解为对本发明的可实施范围的限定。
本发明提供的氧和氮共掺杂的聚丙烯腈基碳纤维的表面活性官能团结构示意图如 图 1所示, 该氧和氮共掺杂的聚丙烯腈基碳纤维的表面具有由碳基面边缘的羧基氧 1、 羰基氧 2、 羟基氧 3、 吡啶型氮 4、 吡咯型氮 5和石墨型氮 6所组成的活性层 7, 其中, 含氧活性官能团 (羧基氧 1、 羰基氧 2、 羟基氧 3 )和含氮活性官能团 (吡啶型氮 4、 吡 咯型氮 5、 石墨型氮 6)及其组成的活性层 7, 是经过电化学改性处理得到的, 其中的含 氮活性官能团(吡啶型氮 4、 吡咯型氮 5、 石墨型氮 6)是由改性前的原料聚丙烯腈基碳 纤维中自身含有的非活性掺杂氮经电化学改性被活化而得到的。
下面通过实施例对本发明的技术方案作进一步的说明。
实施例 1
本实施例提供一种氧和氮共掺杂的聚丙烯腈基碳纤维丝, 其由 T700SC 12K聚丙烯 腈基碳纤维丝经过电化学改性处理而制备得到,使其表面具有含氧活性官能团和含氮活 性官能团组成的活性层, 其中, 含氮活性官能团是由改性前的原料聚丙烯腈基碳纤维中 自身含有的非活性掺杂氮经电化学改性被活化而得到的。
本实施例的氧和氮共掺杂的聚丙烯腈基碳纤维丝的制备方法包括以下步骤: 将 lg T700SC 12K PAN基碳纤维丝置于浓度为 0.5M的硫酸水溶液中; 对原料 PAN 基碳纤维丝先进行电化学阳极氧化 5分钟, 再进行电化学阴极还原 5分钟, 然后重复上 述过程 5次, 制备得到所述的氧和氮共掺杂的聚丙烯腈基碳纤维丝; 期间通入的总氧化 电量为 1000C (6次电化学氧化过程的总电量), 总还原电量为 1000C (6次电化学还原 过程的总电量)。
按照上述的制备方法, 改变通入的总氧化电量和总还原电量, 分别制备得到另外三 种氧和氮共掺杂的 PAN基碳纤维丝。 其中, 制备这三种氧和氮共掺杂的 PAN基碳纤维 丝所通入的总氧化电量和总还原电量分别为: 3000C和 3000C、 6000C和 6000C、 10000C 和 10000 Co
由此, 本实施例制备得到四种氧和氮共掺杂的 PAN基碳纤维丝。 图 2为本实施例提供的四种氧和氮共掺杂的 PAN基碳纤维丝和原料 PAN基碳纤维 丝在 2M硫酸溶液中的循环伏安电容曲线。如图 2所示,未经电化学改性处理的原料 PAN 基碳纤维丝的电容非常小, 没有准电容特性, 而经过电化学改性处理的氧和氮共掺杂的 PAN基碳纤维丝,其电容曲线具有好的对称性,并存在一对对称的、宽化的氧化还原峰, 对应于在含氧活性官能团羧基氧、羰基氧和羟基氧之间发生的连续氧化还原反应,因此, 该氧和氮共掺杂的 PAN基碳纤维丝具有可逆的氧化还原反应特性 (准电容特性), 并且 随着电化学改性施加的氧化还原电量的增加, 电容值也相应线性增加。 在通入的总氧化 电量和总还原电量均为 10000C时, 产品的比电容值达到最大值 150F/g (其为 5mV/s扫 描速度下的测量值)。 若电化学改性施加的氧化还原电量进一步增大, 那么碳纤维的活 性结构将被破坏, 导致活性丧失。
图 3为本实施例提供的四种氧和氮共掺杂的 PAN基碳纤维丝和原料 PAN基碳纤维 丝在流速 3.2cm/S的天然海水中, 在 -0.4VVS.SCE下的计时电流曲线。 如图 3所示, 未经电 化学改性处理的原料 PAN基碳纤维丝对海水中溶解氧的氧阴极还原反应没有电催化活 性, ORR电流仅有 6mA/g左右。 而经过电化学改性处理的氧和氮共掺杂的 PAN基碳纤 维丝,其 ORR电流大幅度增加,在 3.2cm/s的海水流速下 ORR电流最大可达 700mA/g, 这是由于处于碳纤维表面的碳基面边缘的含氮活性官能团吡啶型氮、吡咯型氮和石墨型 氮中的一种或几种对氧阴极还原反应具有电催化特性, 并且随着电化学改性施加的氧化 还原电量的增加, ORR 电流也相应增加, 在通入的总氧化电量和总还原电量均达到 6000C电量后, ORR电流不再增加并基本稳定。若电化学改性施加的氧化还原电量超过 10000C, 那么碳纤维的活性结构被破坏, 导致活性丧失。
图 4为本实施例提供的总氧化电量和总还原电量均为 6000C时制备得到的氧和氮共 掺杂的 PAN基碳纤维丝在流速 3.2cm/S的含氧和除氧海水中, 在 -0.4VVS.SCE下的计时电 流曲线。 如图 4所示, 去除海水中的溶解氧后, ORR 电流降低到几乎为零, 进一步说 明经过本发明的电化学改性处理得到的氧和氮共掺杂的 PAN基碳纤维丝对氧阴极还原 反应具有电催化特性。
将 lg原料 PAN基碳纤维丝经 2200-3000 °C高温石墨化处理, 得到石墨纤维丝, 然 后按照本实施例的制备方法, 以总氧化电量和总还原电量均为 6000C的电量, 对该石墨 纤维丝进行电化学改性处理, 得到电化学改性的石墨纤维丝。 将该电化学改性的石墨纤 维丝, 按照图 2和图 3所示的测试条件, 测定其循环伏安电容曲线和计时电流曲线, 测 定结果如图 5a和图 5b所示。图 5a为电化学改性的石墨纤维丝在 2M硫酸溶液中的循环 伏安电容曲线, 其显示该电化学改性的石墨纤维丝具有准电容特性。 图 5b为电化学改 性的石墨纤维丝在流速 3.2cm/S的海水中, 在 -0.4VVS.SCE下的计时电流曲线, 其显示该电 化学改性的石墨纤维丝对氧阴极还原反应无电催化特性, 这是由于原料 PAN基碳纤维 丝经高温石墨化处理后得到的石墨纤维丝自身不再含有掺杂氮, 因此电化学改性处理后 得到的只是含有含氧活性官能团的石墨纤维丝。
表 1是本实施例提供的四种氧和氮共掺杂的 PAN基碳纤维丝和原料 PAN基碳纤维 丝的表面元素 XPS分析结果。 由表 1可知, 未经电化学改性处理的原料 PAN基碳纤维 丝表面含有掺杂氮, 经过电化学改性处理后得到的氧和氮共掺杂的 PAN基碳纤维丝, 其表面含氧量大幅度增加, 这是其具有准电容特性的原因; 而含氮量变化很小, 同时考 虑到处理液中没有含氮化合物, 结合上述电化学测试结果, 因此可以断定原料 PAN基 碳纤维丝自身含有的非活性掺杂氮因电化学改性被活化, 得到了含氮活性官能团。
表 1
Figure imgf000011_0001
实施例 2
本实施例提供一种氧和氮共掺杂的聚丙烯腈基碳纤维毡,其由聚丙烯腈基碳纤维毡 (厚度 6mm, 单位几何面积质量 O.lg/cm2)经过电化学改性处理而制备得到, 使其表面 具有含氧活性官能团和含氮活性官能团组成的活性层, 其中, 含氮活性官能团是由改性 前的原料聚丙烯腈基碳纤维中自身含有的非活性掺杂氮经电化学改性被活化而得到的。
本实施例的氧和氮共掺杂的聚丙烯腈基碳纤维毡的制备方法包括以下步骤: 将 O.lg PAN基碳纤维毡置于浓度为 10^%的碳酸氢铵水溶液中; 对原料 PAN基碳 纤维毡先进行电化学阳极氧化 5分钟, 再进行电化学阴极还原 2分钟, 然后重复上述过 程 4次, 期间通入的总氧化电量为 5000C/g (5次电化学氧化过程的总电量)、 总还原电 量为 2000C/g(5次电化学还原过程的总电量),从而制备得到所述的氧和氮共掺杂的 PAN 基碳纤维毡。
图 6a为本实施例的原料 PAN基碳纤维毡在硫酸氧钒硫酸水溶液( 1M VOS04 + 2M H2S04) 中的循环伏安曲线。 图 6a中曲线 1-3对应的扫描速度分别为 5、 10和 20mV/s。 图 6b为本实施例的氧和氮共掺杂的 PAN基碳纤维毡在硫酸氧钒硫酸水溶液( 1M VOS04 + 2M H2S04) 中的循环伏安曲线。 图 6b中曲线 1-5对应的扫描速度分别为 1.5、 3、 6、 12和 25mV/s。将图 6a与图 6b进行对比分析可以得知:未经电化学改性处理的原料 PAN 基碳纤维毡相比经电化学改性处理的氧和氮共掺杂的 PAN基碳纤维毡, V4+/ V5+氧化和 还原峰的峰电位差较大, 峰电流强度较低, 说明经过电化学改性处理得到的氧和氮共掺 杂的 PAN基碳纤维毡对 V4+/ V5+电偶对的氧化还原反应具有更好的可逆电催化活性。
实施例 3
本实施例提供一种氧和氮共掺杂的聚丙烯腈基碳纤维丝, 其由 T300 12K聚丙烯腈 基碳纤维丝经过电化学改性处理而制备得到,使其表面具有含氧活性官能团和含氮活性 官能团组成的活性层, 其中, 含氮活性官能团是由改性前的原料聚丙烯腈基碳纤维中自 身含有的非活性掺杂氮因电化学改性被活化而得到的。本实施例还提供一种该氧和氮共 掺杂的聚丙烯腈基碳纤维丝制成的刷状电极, 其可应用于电 Fenton法污水处理技术。
本实施例的氧和氮共掺杂的聚丙烯腈基碳纤维丝及其制成的刷状电极的制备方法 包括以下步骤:
将 2g T300 12K PAN基碳纤维丝置于浓度为 10 wt%的硝酸钠水溶液中;对原料 PAN 基碳纤维丝先进行电化学阴极还原 3分钟, 再进行电化学阳极氧化 5分钟, 然后重复上 述过程 3次, 期间通入的总氧化电量为 5000C/g (4次电化学氧化过程的总电量), 总还 原电量为 4000C/g (4次电化学还原过程的总电量), 从而制备得到一种氧和氮共掺杂的 PAN基碳纤维丝。 将该氧和氮共掺杂的 PAN基碳纤维丝和直径 1 mm的钛丝编制成刷 状电极, 其中刷体长度为 180 mm, 直径为 30 mm。
图 7a为本实施例的氧和氮共掺杂的 PAN基碳纤维丝制成的刷状电极在浓度为 0.4M 的 Na2S04溶液中, 不同电流下的 ¾02产量曲线; 图 7b为本实施例的氧和氮共掺杂的 PAN基碳纤维丝制成的刷状电极在浓度为 0.4M的 Na2S04溶液中, 不同电流下的电流 效率曲线。 如图 7a所示, 电流强度为 100-300mA时, 随电流强度增加, ¾02浓度也相 应增加, 电流强度为 300mA时, 反应 lh, ¾02浓度可达 185mg/L, 电流强度为 400mA 时, ¾02浓度较 300mA时降低。 如图 7b所示, 电流强度在 100-300mA时, 反应初期 电流效率接近 100%, 随反应时间的延长, 电流效率逐渐下降, 反应 lh时电流效率均在 65%以上。 电流强度为 400mA时, 副反应增加, 导致电流效率较电流强度为 300mA时 明显降低。
将本实施例的刷状电极用于含 20mg/L亚甲基蓝污水的电 Fenton法处理, 调节污水 溶液初始 pH值为 3, 电解 5min时脱色率为 91%, 30min后脱色率在 98%以上。 该结果 表明电化学改性处理的 PAN基碳纤维丝及其制成的刷状电极可以作为电 Fenton法的高 效阴极材料和电极。
实施例 4
本实施例提供一种氧和氮共掺杂的聚丙烯腈基碳纤维刷, 其由 T300 12K聚丙烯腈 基碳纤维丝经编制而形成刷状, 再经过电化学改性处理而制备得到, 使其刷体上的碳纤 维表面具有含氧活性官能团和含氮活性官能团组成的活性层, 其中, 含氮活性官能团是 由改性前的原料聚丙烯腈碳碳纤维中自身含有的非活性掺杂氮经电化学改性被活化而 得到的。 该氧和氮共掺杂的聚丙烯腈基碳纤维刷可以作为海水溶解氧电池的正极来使 用。
本实施例的氧和氮共掺杂的聚丙烯腈基碳纤维刷的制备方法包括以下步骤: 将 2g T300 12K PAN基碳纤维丝和直径 1 mm的钛丝编制成刷状, 其中, 刷体长度 为 180 mm, 直径为 30 mm; 然后将该碳纤维刷置于浓度为 2M的硫酸水溶液中, 对其 先进行电化学阳极氧化 4分钟, 再电化学阴极还原 3分钟, 然后重复上述过程 6次, 期 间通入的总氧化电量为 9000C/g(7次电化学氧化过程的总电量),总还原电量为 6000C/g ( 7次电化学还原过程的总电量),从而制备得到一种氧和氮共掺杂的 PAN基碳纤维刷。
采用天然海水, 测定其流速对上述氧和氮共掺杂的 PAN基碳纤维刷的氧阴极还原 反应的影响,其结果如表 2和表 3所示。表 2 为聚丙烯腈基碳纤维刷电化学改性处理前 后在不同流速海水中的起始氧还原电位;表 3 为聚丙烯腈基碳纤维刷电化学改性处理前 后在不同流速海水中相应极化电位下的氧阴极还原反应电流。 由表 2和 3可以得知, 经 电化学改性处理的 PAN基碳纤维刷的起始氧还原电位, 相较于未经电化学改性处理的 PAN基碳纤维刷, 高出近 300mV, 而且在相同阴极极化电位下的工作电流也更高; 同 时, 流速越高氧还原电流越大。 上述结果表明, 电化学改性处理得到的氧和氮共掺杂的 PAN基碳纤维刷, 对海水中的溶解氧具有极高的电还原活性。
表 2
Figure imgf000013_0001
6.92 -353 -45
7.23 -395 -47
9.25 -400 -47
表 3
Figure imgf000014_0001
采用本实施例的氧和氮共掺杂的聚丙烯腈基碳纤维刷作为正极, 能够制造海水溶解 氧电池。 该电池是由位于中心的作为负极的镁阳极棒和环绕其四周上、 下两层排列的共
60支氧和氮共掺杂的碳纤维刷正极组成。正极焊接固定在全钛金属框架上, 负极由带绝 缘保护套的螺栓固定于框架中心,框架尺寸为 360 mmx360 mmx390 mm (电池体积约为 50 L) , 正、 负极的初始间距为 50 mm。 对该电池的实海放电测试数据进行分析, 并与 商品化海水电池 SWB1200进行对比。 结果表明: 该电池的峰值功率为 5.4W, 最小功率 为 2W, 体积比功率为 40W/m3, 相比 SWB1200 2.7 W/m3的体积比功率, 该电池性能更 优。 由此可见, 由于上述海水溶解氧电池使用了本实施例的氧和氮共掺杂的聚丙烯腈基 碳纤维刷作为电池的正极,使得该海水溶解氧电池具有比现有技术更小的体积和更高的 体积比功率。

Claims

权利要求书
1、 一种氧和氮共掺杂的聚丙烯腈基碳纤维, 其由原料聚丙烯腈基碳纤维经过电化 学改性制备得到,使其表面具有含氧活性官能团和含氮活性官能团组成的活性层,其中, 含氮活性官能团是由原料聚丙烯腈基碳纤维中自身含有的掺杂氮经过电化学改性被活 化而得到的。
2、 如权利要求 1所述的氧和氮共掺杂的聚丙烯腈基碳纤维, 其中, 所述含氮活性 官能团为处于所述氧和氮共掺杂的聚丙烯腈基碳纤维表面的碳基面边缘的吡啶型氮、吡 咯型氮和石墨型氮中的一种或几种的组合。
3、 如权利要求 1所述的氧和氮共掺杂的聚丙烯腈基碳纤维, 其中, 所述含氧活性 官能团为处于所述氧和氮共掺杂的聚丙烯腈基碳纤维表面的碳基面边缘的羧基氧、羰基 氧和羟基氧中的一种或几种的组合。
4、 如权利要求 1所述的氧和氮共掺杂的聚丙烯腈基碳纤维, 其中, 所述原料聚丙 烯腈基碳纤维为未经石墨化处理的原料聚丙烯腈基碳纤维, 以所述原料聚丙烯腈基碳纤 维的总质量为基准, 其氮元素含量不小于 1%。
5、 如权利要求 1-4任一项所述的氧和氮共掺杂的聚丙烯腈基碳纤维, 其形状为丝 束状、 毡状、 发泡状、 刷状、 纸状和布状中的一种或几种的组合。
6、 如权利要求 1所述的氧和氮共掺杂的聚丙烯腈基碳纤维, 其中, 所述电化学改 性包括以下步骤: 将原料聚丙烯腈基碳纤维置于电解质溶液中, 经过在电化学氧化和电 化学还原之间的循环处理后, 得到所述氧和氮共掺杂的聚丙烯腈基碳纤维。
7、 一种权利要求 1-6任一项所述的氧和氮共掺杂的聚丙烯腈基碳纤维的制备方法, 其包括以下步骤: 将原料聚丙烯腈基碳纤维置于电解质溶液中, 经过在电化学氧化和电 化学还原之间的循环处理后, 得到所述氧和氮共掺杂的聚丙烯腈基碳纤维。
8、 如权利要求 7所述的制备方法, 其中, 以所述氧和氮共掺杂的聚丙烯腈基碳纤 维的质量为基准,总电化学氧化电量为 1000-10000 C/g,总电化学还原电量为 1000-10000 C/g0
9、 如权利要求 8所述的制备方法, 其中, 总电化学氧化电量大于或等于总电化学 还原电量。
10、 如权利要求 7所述的制备方法, 其中, 所述电解质溶液为酸性电解质溶液、 碱 性电解质溶液或中性电解质溶液。
11、 如权利要求 10所述的制备方法, 其中, 所述酸性电解质溶液为无机含氧酸的 水溶液中的一种或几种的组合。
12、 如权利要求 11所述的制备方法, 其中, 所述酸性电解质溶液为硫酸水溶液。
13、 如权利要求 10所述的制备方法, 其中, 所述碱性电解质溶液为碱金属氢氧化 物的水溶液、 碱土金属氢氧化物的水溶液、 含氧碱金属盐的水溶液以及铵盐的水溶液中 的一种或几种的组合。
14、 如权利要求 13所述的制备方法, 其中, 所述碱性电解质溶液为碳酸氢铵水溶 液。
15、 如权利要求 10所述的制备方法, 其中, 所述中性电解质溶液为硝酸钠水溶液、 硝酸钾水溶液、 硝酸铵水溶液、 硫酸钠水溶液、 硫酸钾水溶液以及硫酸铵水溶液中的一 种或几种的组合。
16、 如权利要求 15所述的制备方法, 其中, 所述中性电解质溶液为硝酸钠水溶液。
PCT/CN2013/071657 2013-02-19 2013-02-19 一种氧和氮共掺杂的聚丙烯腈基碳纤维及其制备方法 WO2014127501A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380063131.8A CN104838051B (zh) 2013-02-19 2013-02-19 一种氧和氮共掺杂的聚丙烯腈基碳纤维及其制备方法
US14/765,826 US9683314B2 (en) 2013-02-19 2013-02-19 Oxygen and nitrogen co-doped polyacrylonitrile-based carbon fiber and preparation method thereof
EP13876075.6A EP2960361B1 (en) 2013-02-19 2013-02-19 Oxygen and nitrogen co-doped polyacrylonitrile-based carbon fiber and preparation method thereof
JP2015557313A JP6106766B2 (ja) 2013-02-19 2013-02-19 酸素及び窒素が共ドープされたポリアクリロニトリル系炭素繊維及びその製造方法
PCT/CN2013/071657 WO2014127501A1 (zh) 2013-02-19 2013-02-19 一种氧和氮共掺杂的聚丙烯腈基碳纤维及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/071657 WO2014127501A1 (zh) 2013-02-19 2013-02-19 一种氧和氮共掺杂的聚丙烯腈基碳纤维及其制备方法

Publications (1)

Publication Number Publication Date
WO2014127501A1 true WO2014127501A1 (zh) 2014-08-28

Family

ID=51390463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071657 WO2014127501A1 (zh) 2013-02-19 2013-02-19 一种氧和氮共掺杂的聚丙烯腈基碳纤维及其制备方法

Country Status (5)

Country Link
US (1) US9683314B2 (zh)
EP (1) EP2960361B1 (zh)
JP (1) JP6106766B2 (zh)
CN (1) CN104838051B (zh)
WO (1) WO2014127501A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017027919A (ja) * 2015-07-28 2017-02-02 東洋紡株式会社 レドックス電池用電極材
CN106654163A (zh) * 2016-12-29 2017-05-10 中国电子科技集团公司第十八研究所 一种海水溶解氧电池阴极的制备方法
CN108373581A (zh) * 2018-02-07 2018-08-07 海宁信蜂材料科技有限公司 一种碳纤维复合材料汽车零部件的制备方法
CN111883780A (zh) * 2020-06-05 2020-11-03 辽宁科技大学 一种电解法制备活性石墨毡电极的方法
CN114497590A (zh) * 2022-02-10 2022-05-13 易航时代(北京)科技有限公司 一种氮磷共掺杂碳纤维负载CoP复合材料及其制备方法和应用、铝空气电池

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6695436B2 (ja) * 2016-09-30 2020-05-20 帝人株式会社 炭化ケイ素複合焼結体及びその製造方法
CN107090187B (zh) * 2017-05-11 2019-09-10 青岛伟健金属饰品有限公司 一种耐磨型热塑性碳纤维复合材料及其制备方法
JP6951623B2 (ja) * 2017-05-25 2021-10-20 日本電信電話株式会社 マグネシウム水電池およびその正極の製造方法
US10676426B2 (en) 2017-06-30 2020-06-09 Novomer, Inc. Acrylonitrile derivatives from epoxide and carbon monoxide reagents
WO2019040738A1 (en) * 2017-08-23 2019-02-28 The Board Of Tructees Of The Leland Stanford Junior University DOPED N AND O CARBON WITH HIGH SELECTIVITY FOR H2O2 ELECTROCHEMICAL PRODUCTION IN NEUTRAL CONDITIONS
CN109962209A (zh) * 2017-12-22 2019-07-02 中国电子科技集团公司第十八研究所 一种高效氧催化活性碳纤维电极的制备方法
CN109962247A (zh) * 2017-12-22 2019-07-02 中国电子科技集团公司第十八研究所 一种高效氧催化活性沉积铂碳纤维电极的制备方法
US11251430B2 (en) 2018-03-05 2022-02-15 The Research Foundation For The State University Of New York ϵ-VOPO4 cathode for lithium ion batteries
KR20200029699A (ko) * 2018-09-11 2020-03-19 현대자동차주식회사 질소 도핑된 탄소양극을 포함한 리튬공기전지의 제조방법
CN111211307B (zh) * 2020-01-15 2022-04-12 东南大学 一种柔性硫氮共掺杂多孔碳纤维复合电极材料及其制备方法与应用
CN112481817A (zh) * 2020-11-27 2021-03-12 中宝(西安)科技集团有限公司 一种碳纤维隔热材料及其制备方法
CN112582619B (zh) * 2020-12-14 2022-04-12 安徽大学 氮和氧共掺杂碳纳米纤维材料的制备方法、产物及应用
CN114039037B (zh) * 2021-11-30 2023-05-09 陕西榆能集团能源化工研究院有限公司 氮氧共掺双碳包覆的多孔硅碳复合材料、制备方法及其应用
CN117535684B (zh) * 2024-01-09 2024-04-19 天津大学 电解池的电极组件、生产过氧化氢的电解池装置及其应用
CN117531345B (zh) * 2024-01-09 2024-04-19 天津大学 用于除味和消毒清洗的电化学方法及电解池装置、系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101066802A (zh) * 2007-06-15 2007-11-07 北京化工大学 一种新型生物膜载体的制备及其在工业废水处理中的应用
CN101660185A (zh) * 2009-09-25 2010-03-03 北京化工大学 一种强效碳纤维阳极氧化表面处理的方法
CN101718011A (zh) * 2009-11-16 2010-06-02 天津工业大学 一种碳纳米纤维的制备方法
CN102176380A (zh) 2011-01-26 2011-09-07 中国海洋大学 一种氧化还原反应电化学电容器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61282470A (ja) * 1985-06-03 1986-12-12 東レ株式会社 炭素繊維の処理方法
JPH0621420B2 (ja) * 1985-08-20 1994-03-23 東燃株式会社 炭素繊維の表面処理法
JPH02169763A (ja) * 1988-12-12 1990-06-29 Mitsubishi Rayon Co Ltd 表面改質炭素繊維及びその製造方法
JPH02104767A (ja) * 1989-08-25 1990-04-17 Toray Ind Inc 超高強度複合材料製造用炭素繊維の製造法
FR2672307B1 (fr) * 1991-02-01 1993-06-04 Centre Nat Rech Scient Procede de modification de la surface de materiaux carbones par reduction electrochimique de sels de diazonium, notamment de fibres de carbone pour materiaux composites, materiaux carbones ainsi modifies.
JPH10266066A (ja) * 1997-03-27 1998-10-06 Toray Ind Inc 炭素繊維トウおよびその製造方法
JP4953410B2 (ja) * 2004-12-27 2012-06-13 三菱レイヨン株式会社 炭素繊維およびその製造方法
CN101504385A (zh) * 2009-03-17 2009-08-12 武汉大学 一种提高碳电极灵敏度、选择性和抗毒化能力的方法
CN101697323A (zh) 2009-10-26 2010-04-21 中国海洋大学 一种电化学改性石墨电极
JP5662113B2 (ja) * 2010-11-12 2015-01-28 東邦テナックス株式会社 炭素繊維の表面処理方法
EP2543631B1 (en) * 2011-07-06 2014-10-01 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Method for preparing metal-free nitrogen-containing carbon nanotubes
KR101274991B1 (ko) * 2011-09-28 2013-07-30 재단법인 포항산업과학연구원 커패시터용 질소도핑 그래핀 전극의 제조방법, 이를 이용한 전극 및 전기 이중층 커패시터
CN102826538A (zh) * 2012-09-17 2012-12-19 辽宁科技大学 一种聚合物改性制备氮掺杂碳质材料的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101066802A (zh) * 2007-06-15 2007-11-07 北京化工大学 一种新型生物膜载体的制备及其在工业废水处理中的应用
CN101660185A (zh) * 2009-09-25 2010-03-03 北京化工大学 一种强效碳纤维阳极氧化表面处理的方法
CN101718011A (zh) * 2009-11-16 2010-06-02 天津工业大学 一种碳纳米纤维的制备方法
CN102176380A (zh) 2011-01-26 2011-09-07 中国海洋大学 一种氧化还原反应电化学电容器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GONG K ET AL.: "Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction", SCIENCE, vol. 333, 2009, pages 760 - 764
See also references of EP2960361A4 *
WEN Y ET AL.: "Studies on Nitrogen-Doped Nano-Carbons and Their Non-Pt Metal Composites as Electrocatalysts", PROGRESS IN CHEMISTRY, vol. 22, 2010, pages 1550 - 1555
XU H ET AL.: "Seawater Battery with Electrochemical Supercapacitance", JOURNAL OF ELECTROCHEMISTRY, vol. 18, 2012, pages 24 - 30

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017027919A (ja) * 2015-07-28 2017-02-02 東洋紡株式会社 レドックス電池用電極材
CN106654163A (zh) * 2016-12-29 2017-05-10 中国电子科技集团公司第十八研究所 一种海水溶解氧电池阴极的制备方法
CN108373581A (zh) * 2018-02-07 2018-08-07 海宁信蜂材料科技有限公司 一种碳纤维复合材料汽车零部件的制备方法
CN111883780A (zh) * 2020-06-05 2020-11-03 辽宁科技大学 一种电解法制备活性石墨毡电极的方法
CN111883780B (zh) * 2020-06-05 2021-12-14 辽宁科技大学 一种电解法制备活性石墨毡电极的方法
CN114497590A (zh) * 2022-02-10 2022-05-13 易航时代(北京)科技有限公司 一种氮磷共掺杂碳纤维负载CoP复合材料及其制备方法和应用、铝空气电池

Also Published As

Publication number Publication date
US9683314B2 (en) 2017-06-20
JP6106766B2 (ja) 2017-04-05
CN104838051B (zh) 2016-07-06
EP2960361A4 (en) 2016-10-12
EP2960361B1 (en) 2018-05-30
CN104838051A (zh) 2015-08-12
JP2016510367A (ja) 2016-04-07
US20150376817A1 (en) 2015-12-31
EP2960361A1 (en) 2015-12-30

Similar Documents

Publication Publication Date Title
WO2014127501A1 (zh) 一种氧和氮共掺杂的聚丙烯腈基碳纤维及其制备方法
Cheng et al. Recent advances in electrospun carbon fiber electrode for vanadium redox flow battery: properties, structures, and perspectives
JP5677589B2 (ja) 炭素系材料、電極触媒、酸素還元電極触媒、ガス拡散電極、水溶液電解装置、並びに炭素系材料の製造方法
CN105948038B (zh) 一种活性炭微球及其制备方法
Padmavathi et al. Synthesis and characterization of electrospun carbon nanofiber supported Pt catalyst for fuel cells
Su et al. Phosphorus-doped carbon nitride as powerful electrocatalyst for high-power vanadium flow battery
Ramachandran et al. Enhancement of different fabricated electrode materials for microbial fuel cell applications: an overview
CN112079352B (zh) 一种生物质基多孔氮掺杂碳材料的制备方法及应用
CN111777059B (zh) 碳纳米管载体的活化方法、碳纳米管载体及其应用
CN108134098A (zh) 一种高效生物质碳电化学氧还原催化剂及其制备方法和应用
Liu et al. Titanium Nitride Nanorods Array‐Decorated Graphite Felt as Highly Efficient Negative Electrode for Iron–Chromium Redox Flow Battery
Qi et al. Doping engineering strategies for electrodes and catalysts in vanadium redox flow battery
CN111900417B (zh) 一种高碳含量燃料电池气体扩散层用碳纸的制备方法
JP4822554B2 (ja) キャパシタ用発泡状ニッケルクロム集電体およびそれを用いた電極、キャパシタ
Su et al. Modification of carbon paper electrode via hydrothermal oxidation applied in the vanadium redox battery
CN115094440B (zh) 钴/四氧化三铁/碳纳米管/c多孔微球制氢催化剂的制备方法
CN115881981A (zh) 一种氧化还原液流电池用碳毡的制备方法
Hou et al. Improving electrochemical properties of carbon paper as negative electrode for vanadium redox battery by anodic oxidation
CN109741970A (zh) 一种木质素改性活性炭高性能储能材料的制备方法
CN114195214A (zh) 用氧化石墨烯构筑太阳能蒸发器的方法
CN114256467B (zh) 一种双梯度分布的碳纤维电极的制备方法及其在液流电池中的应用
Paul et al. Heteroatom‐Doped, Three‐Dimensional, Carbon‐Based Catalysts for Energy Conversion and Storage by Metal‐Free Electrocatalysis
Kim et al. Vanadium Redox Flow Battery Using an N‐Doped Porous Carbon‐Coated Positive Electrode Derived from Zeolitic Imidazolate Framework‐8‐Coated Graphite Felt
Fan et al. 4 Key Materials of Vanadium Flow Batteries
Cheng et al. Carbon Structure Regulation Strategy for the Electrode of Vanadium Redox Flow Battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876075

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14765826

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015557313

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013876075

Country of ref document: EP