WO2014125735A1 - 集塵機用濾布 - Google Patents

集塵機用濾布 Download PDF

Info

Publication number
WO2014125735A1
WO2014125735A1 PCT/JP2013/084092 JP2013084092W WO2014125735A1 WO 2014125735 A1 WO2014125735 A1 WO 2014125735A1 JP 2013084092 W JP2013084092 W JP 2013084092W WO 2014125735 A1 WO2014125735 A1 WO 2014125735A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter cloth
fiber
dust collector
dust
fine
Prior art date
Application number
PCT/JP2013/084092
Other languages
English (en)
French (fr)
Inventor
光一 後夷
内村 勝次
寛之 天野
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to CN201380069622.3A priority Critical patent/CN104994929A/zh
Publication of WO2014125735A1 publication Critical patent/WO2014125735A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/498Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres entanglement of layered webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/18Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being cellulose or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2003Glass or glassy material
    • B01D39/2017Glass or glassy material the material being filamentary or fibrous

Definitions

  • the present invention relates to a filter cloth for a dust collector used for collecting suspended particles (dust) in a gas in a dust collector.
  • a fiber structure such as a nonwoven fabric made of a fiber material such as polyester has been used as a filter cloth for a dust collector used to collect suspended particles (dust) in a gas in a dust collector.
  • a surface filtration type filter cloth is widely used in which dust is collected on the filter cloth surface to form a dust layer on the filter cloth surface, and further dust is collected by the dust layer.
  • pressure loss increases as the dust layer becomes thicker. Therefore, when the dust layer exceeds a certain thickness, dust is removed from the filter cloth by means of pulse jet, air backwashing, etc. Regenerating the cloth is done.
  • Patent Documents 1 and 2 disclose a filter cloth in which a film-like surface layer having fine holes is formed on a nonwoven fabric substrate by heating or bonding.
  • Patent Documents 3 to 5 disclose filter structures having a plurality of layers and a layer made of fine fibers at the center.
  • the present invention relates to a filter cloth for a dust collector, which is finer than the fiber of the filter cloth base material, which is attached to the inside of the filter surface side of the filter base material, or from the surface to the inside of the filter cloth base material.
  • a fine fiber layer formed of fine fibers is provided.
  • the fine fiber layer functions as a surface filtration layer, and dust can be collected.
  • the fine fiber layer is formed from the inside of the filtration surface side or from the surface to the inside, the pressure loss can be reduced.
  • the fine fiber layer has a small pore size, it is difficult to collect while maintaining a low pressure loss with a conventional filter cloth, and improves the dust collection efficiency of 5 ⁇ m or less, especially about 1 to 3 ⁇ m. be able to. That is, it is possible to improve both of the characteristics that are difficult to achieve at the same time, such as improvement in dust collection efficiency and reduction in pressure loss.
  • the dust collector filter cloth collects dust in the vicinity of the surface and has an appropriate flexibility, so that dust can be efficiently removed.
  • the fine fiber layer is formed inside the filter surface side or entangled with the filter cloth base material from the surface to the inside, it is durable against bending wear due to the filter cloth for the dust collector being bent when dust is removed. Excellent in properties.
  • the fine fibers have an average fiber length of 0.01 to 5 mm.
  • the aspect ratio (average fiber length / average fiber diameter) is preferably 1000 to 10,000.
  • the present invention having such a configuration, it is easy to form fine fiber layers by introducing fine fibers into the inside of the filtration surface side of the filter cloth base material and entangle the fine fibers, and appropriate pressure loss and collection efficiency. Can be controlled to various conditions.
  • the fine fiber is preferably formed of at least one fiber selected from the group consisting of aramid fiber, polyester fiber, nylon fiber, cellulose fiber, glass fiber, carbon fiber and polyimide fiber.
  • fine fibers excellent in heat resistance, acid resistance, alkali resistance, and the like can be selected in accordance with the application and use environment.
  • the amount of fine fibers attached to the filter cloth substrate is preferably 0.1 to 10 g / m 2 .
  • both dust collection efficiency and pressure loss reduction can be achieved under appropriate conditions.
  • the filter cloth base material is a non-woven fabric.
  • the fine fiber layer can be uniformly formed.
  • the filter cloth base is formed of at least one fiber selected from the group consisting of aramid fiber, polyester fiber, nylon fiber, cellulose fiber, glass fiber, carbon fiber, and polyimide fiber. .
  • a filter cloth substrate having excellent heat resistance, acid resistance, alkali resistance and the like can be selected in accordance with the application and use environment.
  • the fine fiber layer preferably contains a conductive material.
  • conductivity can be imparted to the fine fiber layer, so that static electricity can be removed from the filter cloth for the dust collector, contributing to explosion prevention and fire prevention.
  • the conductive material is a material mainly composed of carbon.
  • an inexpensive carbon-based material can be used to impart conductivity to the fine fiber layer.
  • the filter cloth base material has conductivity.
  • static electricity can be removed from the filter cloth for the dust collector, which can contribute to explosion prevention and fire prevention.
  • FIG. 1 It is typical sectional drawing which shows the structure of the filter cloth for dust collectors by one Embodiment of this invention. It is a schematic diagram for demonstrating the dust collection method by the filter cloth for dust collectors shown in FIG. It is sectional drawing which shows typically the state by which the dust was collected by the filter cloth for dust collectors shown in FIG. It is a schematic diagram for demonstrating the regeneration method of the filter cloth for dust collectors shown in FIG.
  • the filter cloth 1 for a dust collector of the present embodiment is formed by fine fibers 21 finer than the fibers of the filter cloth base material 10 on the filter surface 10 a side of the fibrous filter cloth base material 10.
  • the fine fiber layer 20 is provided.
  • the filter cloth base 10 is made of a fibrous cloth material such as a nonwoven fabric or a woven fabric.
  • a nonwoven fabric provided with a base cloth 11 and a web layer 12 formed by needle punching on both sides of the base cloth 11 is used as the filter cloth base 10.
  • the filter cloth substrate 10 preferably has a weight per unit area of 400 to 600 g / m 2 from the viewpoint of durability, dust removal performance, collection efficiency, and cost. Further, a fiber having a fiber diameter of several ⁇ m to several tens of ⁇ m is preferably used.
  • a base cloth 11 having a thickness of about 0.2 mm and a web layer 12 having a thickness of about 2.0 mm on one side may be used.
  • a nonwoven fabric has a small unevenness
  • the filter cloth base material 10 As a material of the filter cloth base material 10, a material formed from at least one kind of fiber selected from the group consisting of aramid fiber, polyester fiber, nylon fiber, cellulose fiber, glass fiber, carbon fiber and polyimide fiber is used. Good. For example, when heat resistance is required, the filter cloth base 10 formed of at least one kind of fiber selected from the group consisting of aramid fiber, cellulose fiber, glass fiber, carbon fiber, and polyimide fiber is used. Is preferred. In addition, when acid resistance is required, it is preferable to use a filter cloth substrate 10 formed of at least one kind of fiber selected from the group consisting of cellulose fiber, glass fiber, carbon fiber and polyimide fiber. .
  • the filter cloth base material 10 currently formed from the at least 1 sort (s) of fiber selected from the group which consists of an aramid fiber, nylon fiber, a cellulose fiber, glass fiber, and a polyimide fiber is used. It is preferable. Moreover, when high durability, such as heat resistance and chemical resistance, is not required, it is preferable to use the filter cloth base material 10 formed from polyester fiber from the viewpoint of cost.
  • the fine fiber layer 20 is formed from the filtration surface 10 a to the inside of the filter cloth substrate 10.
  • the fine fiber layer 20 may be formed inside the filter cloth base 10 on the filtration surface 10a side (inside the web layer 12).
  • the fine fiber layer 20 has a finer network structure than the filter cloth substrate 10 and functions as a surface filtration layer.
  • the “fine fiber layer” in the present invention is a layer in which the fine fibers 21 are entangled with the web layer 12 and is limited to a layer formed in a uniform thickness. It should just be formed continuously without a gap as viewed from the filtration surface 10a side.
  • the fine fiber 21 it is preferable to use at least one fiber selected from the group consisting of aramid fiber, polyester fiber, nylon fiber, cellulose fiber, glass fiber, carbon fiber, and polyimide fiber.
  • the fine fiber 21 formed from at least one kind of fiber selected from the group consisting of aramid fiber, cellulose fiber, glass fiber, carbon fiber, and polyimide fiber is used.
  • acid resistance it is preferable to use fine fibers 21 formed from at least one kind of fiber selected from the group consisting of cellulose fiber, glass fiber, carbon fiber and polyimide fiber.
  • s the at least 1 sort of fiber selected from the group which consists of an aramid fiber, a nylon fiber, a cellulose fiber, a glass fiber, and a polyimide fiber.
  • fine fibers 21 made of cellulose fibers in view of ease of handling, difficulty in charging, and price.
  • the average fiber length of the fine fibers 21 is preferably 0.01 to 5 mm. Such fine fibers having a long fiber length are easy to manufacture and can reduce the cost. In addition, when the fiber length is 0.01 mm or more, the fine fibers can be sufficiently fixed (entangled) to the web layer 12, and when the fiber length is 5 mm or less, the dispersibility in the dispersion at the time of production. And the uniformity of the fine fiber layer 20 is improved. Further, the ratio of the average fiber length to the average fiber diameter of the fine fibers 21 (average fiber length / average fiber diameter: aspect ratio) is preferably 1000 to 10,000.
  • the fine fiber 21 it is preferable to use a fine fiber having a relatively long fiber length although it has a nano-sized average diameter (for example, 1 nm to 5000 nm, more preferably 10 nm to several hundred nm).
  • a nano-sized average diameter for example, 1 nm to 5000 nm, more preferably 10 nm to several hundred nm.
  • the fine fiber layer 20 has a weight per unit area (adhesion amount) of 0.1 to 10 g / m 2 in order to obtain characteristics that are difficult to achieve at the same time, improving the collection efficiency and reducing the pressure loss. preferable.
  • a sufficient amount of the fine fiber layer 20 to function as a surface filtration layer can be formed, so dust collection efficiency, particularly 5 ⁇ m or less. Dust collection efficiency can be improved.
  • the adhesion amount of the fine fibers 21 is 10 g / m 2 or less, the pressure loss can be reduced, and since the adhesion amount is not too large, it has an appropriate flexibility, so that it can be collected. It is easy to remove dust.
  • the quality factor Qf used as a performance index of the filter it is more preferably in the range of 1 to 5 g / m 2 .
  • the filter cloth 1 for a dust collector having the above-described structure is formed by, for example, infiltrating the web layer 12 by spraying, applying, dipping, or the like from one side of the filter cloth base 10 with a dispersion in which fine fibers 21 are dispersed. Can do. Below, a suitable example of the manufacturing method of the filter cloth 1 for dust collectors is shown.
  • a filter cloth base material 10 and a dispersion liquid in which fine fibers 21 are uniformly dispersed in water are prepared.
  • Fine fibers especially cellulose fibers
  • the viscosity of the dispersion is preferably adjusted to 150 to 200 mPa ⁇ s, more preferably 100 to 150 mPa ⁇ s.
  • the viscosity of the dispersion can be adjusted, for example, by adding a dispersant such as an anionic polyacrylic acid copolymer.
  • the viscosity referred to here is rotor No. using a B-type viscometer. 4 is a value measured as an apparent viscosity at 25 ° C. at a rotation speed of 60 rpm.
  • the filtration surface 10a is a surface located on the upstream side when the suspended particles are removed by the filter cloth 1 for the dust collector.
  • simply spraying the dispersion liquid makes it difficult to control impregnation in the thickness direction because the sprayed dispersion liquid penetrates the entire filter cloth base material 10 by capillary action. Therefore, in the present embodiment, in order to form the fine fiber layer 20 only on the filtration surface 10a side, control using the saturated moisture content of the filter cloth substrate 10 is performed.
  • the impregnation depth of the dispersion is proportional to the saturated moisture content of the filter cloth substrate 10 and can be controlled by spraying a dispersion having a moisture content corresponding to the impregnation depth (thickness).
  • the saturated water content of the filter cloth base material 10 (the maximum water content of the filter cloth base material 10 / the weight of the filter cloth base material 10) is 300%, and the web layer 12 on one side of the filter cloth base material 10
  • the dispersion liquid containing an amount of fine fibers such that the water content is about 75% may be sprayed.
  • This control method can also be applied to the case where the filter cloth 1 for a dust collector is produced by another method such as applying a dispersion.
  • the dispersion is dried, for example, dried at 120 ° C. for 1 hour, and the fine fibers 21 are fixed inside the web layer 12.
  • the fine fibers 21 are entangled with the web layer 12, whereby the layered fine fiber layer 20 is formed inside the web layer 12, and the filter cloth 1 for a dust collector described above can be produced.
  • an organic binder such as polyvinyl alcohol or epoxy resin, a zirconium compound such as zirconium oxychloride, a silicon compound such as silicate, aluminum,
  • An inorganic binder such as titanium metal alkoxide can be added to the fine fiber 21 in an amount of about 0.01 part by weight.
  • the dust collector filter cloth 1 is attached to the dust collector so that the filtration surface 10a is on the upstream side.
  • the air containing the dust D passes through the dust collector filter cloth 1 from the filter surface 10a side as shown in FIG.
  • the fine fiber layer 20 functions as a surface filtration layer, and the dust D is collected in the fine fiber layer 20.
  • the fine fiber layer 20 is thinly formed only on the filtration surface 10a side, so that the pressure loss can be reduced.
  • the fine fiber layer 20 has a small pore diameter, it has been difficult to collect while maintaining a low pressure loss with a conventional filter cloth, improving the collection efficiency of dust of 5 ⁇ m or less, especially about 1 to 3 ⁇ m. can do. That is, it is possible to improve both of the characteristics that are difficult to achieve at the same time, such as an improvement in dust collection efficiency and a reduction in pressure loss.
  • the filter cloth 1 for the dust collector When the amount of dust D collected by the filter cloth 1 for the dust collector exceeds a certain amount, as shown in FIG. 4, the dust collected by performing pulse jet or air back washing from the opposite side of the filtration surface 10a. Is removed from the filter cloth 1 for the dust collector, and the filter cloth 1 for the dust collector is regenerated.
  • the filter cloth 1 for dust collectors collects dust in the vicinity of the surface and has an appropriate flexibility, it is possible to efficiently remove dust.
  • the fine fiber layer 20 is entangled inside the web layer 12, it has an anchor effect, and the stress applied to the fine fiber layer 20 is also reduced, so that the dust collector filter cloth can be used when dust is removed. 1 has excellent durability against bending wear caused by bending.
  • the fine fiber layer 20 may slightly protrude from the filtration surface 10a as long as durability against bending abrasion during dust removal can be maintained, but the entire fiber layer 20 exists inside the web layer 12. It is preferable to do.
  • the filter cloth 1 for a dust collector of the present embodiment it is possible to improve both the characteristics that are difficult to achieve at the same time, that is, improvement of dust collection efficiency and reduction of pressure loss. Moreover, since the filter cloth 1 for dust collectors collects dust in the vicinity of the surface and has an appropriate flexibility, it is possible to efficiently remove dust. Since the fine fiber layer 20 is entangled inside the web layer 12, the fine fiber layer 20 is excellent in durability against bending wear caused by the dust collector filter cloth 1 being bent at the time of dust removal.
  • the dust collector filter cloth 1 may be provided with conductivity for explosion prevention and fire prevention.
  • the filter cloth base material 10 for example, an aramid fiber, a polyester fiber, a nylon fiber, a cellulose fiber, a glass fiber, a carbon fiber, a polyimide fiber, or the like is added with a metal fiber such as stainless steel, copper, or nickel, and has conductivity. Can be used.
  • the fine fiber layer 20 has conductivity
  • conductive fine fibers 21 such as conductive fibers coated with conductivity by nanoparticles can be used.
  • inexpensive carbon-based fibers such as carbon nanotubes and carbon nanofibers can be used.
  • the fine fiber layer 20 has conductivity, it can be mixed with other fine fibers not having conductivity.
  • conductivity can be imparted by adding a conductive material such as carbon black or carbon nanocoil to the fine fiber 21 and attaching it to the fine fiber 21.
  • a filter cloth base material As a filter cloth base material, a polyester needle punched nonwoven fabric (weight per unit: 600 g / m 2 ) is used, and a fine fiber layer is formed by cellulosic fine fibers having an average fiber diameter of 100 to 500 nm and an aspect ratio of 1000 to 10,000 (Daicel Finechem Co., Ltd .: Cerish KY110N). And a filter cloth for a dust collector was produced.
  • the formation of the fine fiber layer was performed by spraying a dispersion liquid in which fine fibers were dispersed in water on the filtration surface side of the filter cloth base material and entangle the fine fibers.
  • the solid content concentration of the fine fibers in the dispersion was 0.2% by weight, and the fine fiber layer was formed by spraying the dispersion, so that an anionic polyacrylic acid copolymer was used as the dispersant. 0.02% by weight was added. Further, 0.01% by weight of a self-crosslinking type anionic acrylic emulsion was added as a binder.
  • Adjusting the spray amount of the dispersion in consideration of the saturated moisture content of the filter cloth base material, spray-coating, drying at 120 ° C for 1 hour, and a fine fiber adhesion amount of 0-10 g / m 2 A fabric was made.
  • a PTFE membrane felt having a basis weight of 560 g / m 2 and a thickness of 1.9 mm was prepared.
  • the filter cloths for the dust collectors of Examples 1 to 4 and Comparative Examples 1 and 2 are arranged in the flow path through which the compressed air in which the test dust is dispersed flows, and the flow rate is set so that the filtration speed is 2.0 m / min. .
  • As test particles KCL particles produced according to the KCL particle generator of ISO / FDIS 21220: 2008 (E) were used.
  • the pressure loss was determined from the differential pressure between the upstream and downstream of the filter cloth for the dust collector when the flow rate was changed.
  • the collection efficiency was calculated by the following equation by measuring the number of dust particles upstream and downstream of the filter cloth for the dust collector using a particle counter.
  • Quality factor Qf [1 / Pa] was calculated from the following equation.
  • the quality factor Qf indicates a larger value as the passage rate is smaller and the pressure loss is smaller, and the larger the value is, the higher the performance as a filter cloth is.
  • Table 2 shows the measurement results. The collection efficiency was compared with a value in the particle size range of 1 to 2 ⁇ m in order to compare the collection efficiency of fine dust.
  • the collection efficiency of the fine dust increased with the increase in the weight per unit area.
  • the pressure loss is an allowable value up to about 500 Pa.
  • the weight per unit area is more preferably in the range of 1 to 5 g / m 2 .
  • Example 5 In order to impart conductivity, 0.04% by weight of an aqueous paste (Lion Corporation: W-370C) based on conductive carbon black was added to the dispersion to prepare a filter cloth for a dust collector. As a result of measuring the conductivity of the filter cloth for the dust collector of Example 5 using a mega tester, it was a value of 20 M ⁇ or less (applied voltage: 500 V), and the antistatic effect was confirmed.
  • aqueous paste Lion Corporation: W-370C
  • Example 6 A filter cloth for a dust collector (Example 6) in which a fine fiber layer is formed only on the filtration surface side with an adhesion amount of 8.0 g / m 2 , and an adhesion amount of 4 on each of the filtration surface side and the pulse jet surface side.
  • a filter cloth for a dust collector (Comparative Example 3) formed at 0.0 g / m 2 was prepared, and the quality factor Qf was compared. The value was 0.033 in Example 6 and 0.029 in Comparative Example 3, indicating a low value. Therefore, it was better in performance to form the fine fiber layer only on the filtration surface side. It was confirmed that
  • Nanofibers are generally said to have an average fiber diameter of 100 nm or less and an aspect ratio of 100 or more.
  • Comparative Example 4 using fine fiber cellulose having an aspect ratio of 100 to 1000 as the starting material and having an average particle diameter of 45 ⁇ m (Nippon Paper Chemicals KC Flock / GK Series) is shown.
  • 0.02% by weight of an anionic polyacrylic acid copolymer was added as a dispersant, and the mixture was prepared by wet pulverization and dispersion treatment in an aqueous solution having a solid content concentration of 0.2% by weight. Thereafter, a fine fiber layer was formed on the same filter cloth base material as in the example, and a filter cloth for a dust collector was obtained.
  • the fine fiber has an aspect ratio of 1000 or more, which is superior in performance compared with the fine fiber having an aspect ratio of 100 to 1000. It was confirmed that

Abstract

 ダストの高い捕集効率と低圧力損失とを両立するとともに、耐久性に優れた集塵機用濾布を提供する。 集塵機用濾布1は、繊維質の濾布基材10と、濾布基材10の濾過面10a側に、濾布基材10の繊維よりも微細な微細繊維21により微細繊維層20が形成されている。微細繊維層20は、濾布基材10の濾過面10a側の内部(ウェブ層12内部)、または濾過面10aから濾布基材10の内部にかけて形成されており、濾布基材10よりも微細な網目構造を有し、表面濾過層として機能する。微細繊維層20は濾過面10a側にのみ薄く形成されているため、圧力損失を小さくすることができる。また、微細繊維層20は細孔径が小さいので微細なダストの捕集効率を向上させることができ、ダストの捕集効率の向上と圧力損失の低減とを両立させることができる。

Description

集塵機用濾布
 本発明は、集塵機においてガス中の浮遊粒子(ダスト)を捕集するために使用される集塵機用濾布に関する。
 従来より、集塵機においてガス中の浮遊粒子(ダスト)を捕集するために用いる集塵機用濾布として、ポリエステルなどの繊維材料からなる不織布などの繊維構造体が用いられている。集塵機では、ダストを濾布表面で捕集することによりダスト層を濾布表面に形成し、そのダスト層により更にダストを捕集する表面濾過方式の濾布が広く用いられている。このような表面濾過方式では、ダスト層が厚くなると圧力損失が増大するため、ダスト層がある程度の厚さ以上になると、パルスジェット、エア逆洗等の手段により濾布からダストを払い落とし、濾布を再生することが行われる。
 不織布を集塵機用濾布として用いる場合に、目付重量を大きくするとダストの捕集効率を向上させることができるが圧力損失が大きくなってしまう。逆に、目付重量を小さくすると圧力損失を小さくすることはできるがダストの捕集効率(特に5μm以下の微小なダストの捕集効率)が低下したり、ダストの払い落とし後のダスト漏れが生じたりしてしまうといった問題があった。
 そこで、圧力損失を小さくし、かつ、ダストの捕集効率を向上させるために、各種構造の濾布が提案されている。例えば、特許文献1、2などには、不織布基材に微細な孔を有した膜状の表面層を加熱や接着などにより形成した濾布が開示されている。
 また、例えば、特許文献3~5などには、複数層からなり中央部に微細繊維からなる層を設けたフィルタ用構造体が開示されている。
特開2012-97363号公報 特開2006-334457号公報 特開2007-301436号公報 特開2010-89456号公報 国際公開第2010/073958号
 しかしながら、特許文献1、2に記載されているような不織布基材に微細な孔を有した膜状の表面層を加熱や接着などにより形成した濾布では、表面層が屈曲摩耗に弱い。このため、ダストの払い落とし時に集塵機用濾布が撓み、表面層や層間に過大な応力が作用すると、破損、剥離などが生じやすく、耐久性が低いという問題があった。さらに、接着などにより濾布の濾過面側に堅い表面層が形成される場合には、濾布の柔軟性が低下するため、パルスジェットなどによる十分なダストの払い落しが困難になるという問題があった。
 また、引用文献3~5に記載されているような複数層からなり中央部に微細繊維からなる層を設けたフィルタ用構造体による集塵は、表面濾過方式ではないため、微小ダストが微細繊維からなる層までの層に堆積しやすい。このため、圧力損失が大きくなりやすい、ダストの払い落しが困難である等の点から、集塵機には適していない。
 本発明は上記の問題を解決するためになされたものであり、ダストの高い捕集効率と低圧力損失とを両立するとともに、耐久性に優れた集塵機用濾布を提供することを目的とする。
 本発明は、集塵機用濾布であって、繊維質の濾布基材と、濾布基材の濾過面側の内部、または表面から内部にかけて付着された、濾布基材の繊維よりも微細な微細繊維により形成される微細繊維層を備えたことを特徴とする。
 このような構成の本発明によれば、微細繊維層が表面濾過層として機能し、ダストを捕集することができる。ここで、微細繊維層は濾過面側の内部、または表面から内部にかけて形成されているため、圧力損失を小さくすることができる。また、微細繊維層は細孔径が小さいので、従来の濾布では低い圧力損失を維持しながら捕集することが困難であった5μm以下、特に1~3μm程度のダストの捕集効率を向上させることができる。つまり、ダストの捕集効率の向上と圧力損失の低減という、両立が困難な特性をともに向上させることができる。更に、集塵機用濾布は表面近傍でダストを捕集するとともに、適度な柔軟性を有しているので、ダストの払い落としを効率的に行うことができる。また、微細繊維層は濾過面側の内部、または表面から内部にかけて濾布基材に交絡して形成されているので、ダストの払い落とし時に集塵機用濾布が撓むことによる屈曲摩耗などに対する耐久性に優れている。
 本発明において、好ましくは、微細繊維は、平均繊維長が0.01~5mmである。また、本発明において好ましくは、アスペクト比(平均繊維長/平均繊維径)が1000~10000である。
 このような構成の本発明によれば、微細繊維を濾布基材の濾過面側の内部に導入し、微細繊維を交絡させて微細繊維層を形成しやすく、圧力損失と捕集効率を適切な条件に制御することができる。
 本発明において、好ましくは、微細繊維は、アラミド繊維、ポリエステル繊維、ナイロン繊維、セルロース繊維、ガラス繊維、炭素繊維及びポリイミド繊維からなる群から選択された少なくとも1種の繊維から形成されている。
 このような構成の本発明によれば、用途、使用環境に合わせて、耐熱性、耐酸性、耐アルカリ性などに優れた微細繊維を選定することができる。
 本発明において、好ましくは、微細繊維の濾布基材への付着量は、0.1~10g/m2である。
 このような構成の本発明によれば、ダストの捕集効率と圧力損失の低減とをともに適切な条件で両立させることができる。
 本発明において、好ましくは、濾布基材は、不織布である。
 このような構成の本発明によれば、濾布基材として不織布を用いると、織布に比べて凹凸が小さいため、微細繊維層をまんべんなく均一に形成することができる。
 本発明において、好ましくは、濾布基材は、アラミド繊維、ポリエステル繊維、ナイロン繊維、セルロース繊維、ガラス繊維、炭素繊維及びポリイミド繊維からなる群から選択された少なくとも1種の繊維から形成されている。
 このような構成の本発明によれば、用途、使用環境に合わせて、耐熱性、耐酸性、耐アルカリ性などに優れた濾布基材を選定することができる。
 本発明において、好ましくは、微細繊維層は、導電性材料を含有する。
 このような構成の本発明によれば、微細繊維層に導電性を付与することができるので、集塵機用濾布から静電気を除去することができ、防爆、火災防止に寄与することができる。
 本発明において、好ましくは、導電性材料は、炭素を主成分とする材料である。
 このような構成の本発明によれば、微細繊維層に導電性を付与するために安価な炭素を主成分とする材料を用いることができる。
 本発明において、好ましくは、濾布基材が導電性を有する。
 このような構成の本発明によれば、集塵機用濾布から静電気を除去することができ、防爆、火災防止に寄与することができる。
本発明の一実施形態による集塵機用濾布の構成を示す模式的な断面図である。 図1に示す集塵機用濾布による集塵方法を説明するための模式的な図である。 図1に示す集塵機用濾布にダストが捕集された状態を模式的に示す断面図である。 図1に示す集塵機用濾布の再生方法を説明するための模式的な図である。
 本発明の集塵機用濾布の一実施形態について、図面を参照して説明する。
 図1に示すように、本実施形態の集塵機用濾布1は、繊維質の濾布基材10の濾過面10a側に、濾布基材10の繊維よりも微細な微細繊維21により形成された微細繊維層20を備えている。
 濾布基材10は、不織布や織布などの繊維質の布状材料からなる。本実施形態では、濾布基材10として、基布11と、基布11の両側にニードルパンチにより形成されたウェブ層12と、を備えた不織布が用いられている。濾布基材10は、耐久性、ダスト払落し性能、捕集効率及びコストの観点から目付重量400~600g/m2のものが好ましい。また、繊維径が数μm~数10μmのものを用いるとよい。
 濾布基材10として、例えば、基布11の厚さが約0.2mm、ウェブ層12の厚さが片側約2.0mmのものを用いるとよい。なお、不織布は、織布に比べて凹凸が小さく、表面に微細繊維層20をまんべんなく均一に形成することができるため、濾布基材10として不織物を用いるのが好ましい。
 濾布基材10の材料としては、アラミド繊維、ポリエステル繊維、ナイロン繊維、セルロース繊維、ガラス繊維、炭素繊維及びポリイミド繊維からなる群から選択された少なくとも1種の繊維から形成されているものを用いるとよい。例えば、耐熱性が要求される場合には、アラミド繊維、セルロース繊維、ガラス繊維、炭素繊維及びポリイミド繊維からなる群から選択された少なくとも1種の繊維から形成されている濾布基材10を用いるのが好ましい。また、耐酸性が要求される場合には、セルロース繊維、ガラス繊維、炭素繊維及びポリイミド繊維からなる群から選択された少なくとも1種の繊維から形成されている濾布基材10を用いるのが好ましい。そして、耐アルカリ性が要求される場合には、アラミド繊維、ナイロン繊維、セルロース繊維、ガラス繊維及びポリイミド繊維からなる群から選択された少なくとも1種の繊維から形成されている濾布基材10を用いることが好ましい。また、耐熱性や耐薬品性などの高度な耐久性が要求されない場合には、コスト面などからポリエステル繊維から形成されている濾布基材10を用いることが好ましい。
 微細繊維層20は、濾過面10aから濾布基材10の内部にかけて形成されている。なお、微細繊維層20は、濾布基材10の濾過面10a側の内部(ウェブ層12内部)に形成してもよい。微細繊維層20は、濾布基材10よりも微細な網目構造を有し、表面濾過層として機能する。ここで、本発明における「微細繊維層」とは、微細繊維21がウェブ層12と交絡して層状に形成されているものであり、一様な厚さで層状に形成されたものに限定されるものではなく、濾過面10a側から見て隙間なく連続して形成されていればよい。
 本実施形態では、微細繊維21としては、アラミド繊維、ポリエステル繊維、ナイロン繊維、セルロース繊維、ガラス繊維、炭素繊維及びポリイミド繊維からなる群から選択された少なくとも1種の繊維を用いるのが好ましい。例えば、耐熱性が要求される場合には、アラミド繊維、セルロース繊維、ガラス繊維、炭素繊維及びポリイミド繊維からなる群から選択された少なくとも1種の繊維から形成されている微細繊維21を用いるのが好ましい。また、耐酸性が要求される場合には、セルロース繊維、ガラス繊維、炭素繊維及びポリイミド繊維からなる群から選択された少なくとも1種の繊維から形成されている微細繊維21を用いるのが好ましい。そして、耐アルカリ性が要求される場合には、アラミド繊維、ナイロン繊維、セルロース繊維、ガラス繊維及びポリイミド繊維からなる群から選択された少なくとも1種の繊維から形成されている微細繊維21を用いるのが好ましい。特に、上記特性に加え、ハンドリングの容易さ、帯電しにくさ、価格面などからセルロース繊維からなる微細繊維21を用いるのが好ましい。
 微細繊維21の平均繊維長は、0.01~5mmが好ましい。このような繊維長の微細繊維は製造が容易でありコストを抑えることができる。また、繊維長を0.01mm以上とすることで、微細繊維がウェブ層12へ十分固定(交絡)しやすくなり、繊維長を5mm以下とすることで、製造時における分散液中での分散性や微細繊維層20の均一性がよくなる。
 また、微細繊維21の平均繊維径に対する平均繊維長の比(平均繊維長/平均繊維径:アスペクト比)は、1000~10000が好ましい。微細繊維21としては、ナノサイズの平均径(例えば、1nm~5000nm、より好ましくは10nm~数百nm)を有するにも拘わらず、比較的長い繊維長の微細繊維を用いることが好ましい。このような微細繊維21を用いることにより、微細繊維21をウェブ層12内部に導入し、微細繊維21を交絡させて微細繊維層20を形成しやすく、圧力損失と捕集効率を適切な条件に制御することができる。
 微細繊維層20は、捕集効率を向上させ、圧力損失を低減させるという両立が困難な特性を得るため、微細繊維21の目付(付着量)を0.1~10g/m2とすることが好ましい。
 微細繊維21を0.1g/m2以上付着させることにより、表面濾過層として機能するために十分な量の微細繊維層20を形成することができるので、ダストの捕集効率、特に5μm以下のダストの捕集効率を向上させることができる。
 また、微細繊維21の付着量を10g/m2以下とすることにより、圧力損失を低減することができ、また、付着量が多すぎないため適度な柔軟性を有しているので、捕集したダストを払い落としやすい。
 また、フィルタの性能指標として用いられるクオリティーファクタQfの値からは、1~5g/m2の範囲であることがより好ましい。
 上述した構造を有する集塵機用濾布1は、例えば、微細繊維21を分散させた分散液を濾布基材10の片面側から噴霧、塗布、浸漬などによりウェブ層12に浸透させて形成することができる。以下に、集塵機用濾布1の製造方法を好適な一例を示す。
 まず、濾布基材10と、水中に微細繊維21を均一に分散させた分散液と、を用意する。微細繊維(特にセルロース繊維)は水に対する分散性が高く、安定な分散液を形成することができる。分散液の噴霧による微細繊維層20の形成を行うためには、分散液の粘度を150~200mPa・sに調整することが好ましく、100~150mPa・sとすることがより好ましい。分散液の粘度調整は、例えば、アニオン系のポリアクリル酸共重合体などの分散剤を添加することにより行うことができる。ここでいう粘度とは、B型粘度計を用いて、ロータNo.4を使用し、60rpmの回転数で、25℃における見かけ粘度として測定される値である。
 次に、分散液を濾布基材10の濾過面10a側に噴霧する。なお、濾過面10aとは、集塵機用濾布1により浮遊粒子を除去する際に上流側に位置する面である。ここで、分散液を噴霧するだけでは、噴霧した分散液が毛細管現象により濾布基材10全体に浸透してしまうため、厚み方向の含浸制御は困難である。そこで、本実施形態では、微細繊維層20を濾過面10a側のみに形成するために、濾布基材10の飽和含水率を利用した制御を行う。分散液の含浸深さは、濾布基材10の飽和含水率と比例関係にあり、含浸深さ(厚さ)に相当する含水率の分散液を噴霧することにより制御を行うことができる。例えば、濾布基材10の飽和含水率(濾布基材10の最大含水量/濾布基材10の目付重量)は300%であり、その濾布基材10の片側のウェブ層12の厚さの約1/2まで分散液を含浸させて微細繊維層20を形成するためには、含水率が約75%とまるような量の微細繊維を含んだ分散液を噴霧すればよい。この制御方法は、分散液を塗布するなどの他の方法により集塵機用濾布1を作製する場合にも適用することができる。
 続いて、分散液を乾燥させ、例えば、120℃で1時間、乾燥させて微細繊維21をウェブ層12内部に固定する。
 以上の工程により、微細繊維21がウェブ層12と交絡することにより、ウェブ層12内部に層状の微細繊維層20が形成され、上述した集塵機用濾布1を作製することができる。
 ここで、微細繊維21を強固にウェブ層12に固着させるために、分散液にポリビニールアルコール、エポキシ樹脂等の有機バインダや、オキシ塩化ジルコニウム等のジルコニウム化合物、珪酸塩等の珪素化合物、アルミニウムやチタンの金属アルコキシド等の無機バインダを、微細繊維21に対し0.01重量部程度、添加することもできる。
 以下、上記説明した集塵機用濾布1を用いて浮遊粒子を除去する方法を説明する。本実施形態の集塵機用濾布1により浮遊粒子を除去するには、集塵機用濾布1を濾過面10aが上流側になるように集塵機に取り付ける。集塵機を作動させると、図2に示すようにダストDを含んだ空気が濾過面10a側から集塵機用濾布1を通過する。
 このとき、図3に示すように、微細繊維層20が表面濾過層として機能し、ダストDが微細繊維層20に捕集される。集塵機用濾布1では、微細繊維層20は濾過面10a側にのみ薄く形成されているため、圧力損失を小さくすることができる。また、微細繊維層20は細孔径が小さいので、従来の濾布では低い圧力損失を維持しながら捕集することが困難であった5μm以下、特に1~3μm程度のダストの捕集効率を向上することができる。つまり、ダストの捕集効率の向上と圧力損失の低減という、両立が困難な特性をともに向上させることができる。
 集塵機用濾布1に捕集されたダストDの量が一定量を超えると、図4に示すように、濾過面10aの反対側からパルスジェットやエア逆洗などを行い、捕集されたダストを集塵機用濾布1から払い落とし、集塵機用濾布1の再生を行う。ここで、集塵機用濾布1は表面近傍でダストを捕集するとともに、適度な柔軟性を有しているので、ダストの払い落としを効率的に行うことができる。また、微細繊維層20はウェブ層12内部に交絡して形成されているため、アンカー効果を有し、微細繊維層20に負荷される応力も小さくなるため、ダストの払い落とし時に集塵機用濾布1が撓むことによる屈曲摩耗などに対する耐久性に優れている。
 なお、微細繊維層20は、ダストの払い落としの際の屈曲摩耗などに対する耐久性を維持できる範囲であれば、濾過面10aからわずかに突出していてもよいが、全体がウェブ層12内部に存在することが好ましい。
 本実施形態の集塵機用濾布1によれば、ダストの捕集効率の向上と圧力損失の低減という、両立が困難な特性をともに向上させることができる。また、集塵機用濾布1は表面近傍でダストを捕集するとともに、適度な柔軟性を有しているので、ダストの払い落としを効率的に行うことができる。微細繊維層20はウェブ層12の内部に交絡して形成されているので、ダストの払い落とし時に集塵機用濾布1が撓むことによる屈曲摩耗に対する耐久性に優れている。
 なお、集塵機用濾布1には、防爆、火災防止のために導電性を付与してもよい。濾布基材10として、例えば、アラミド繊維、ポリエステル繊維、ナイロン繊維、セルロース繊維、ガラス繊維、炭素繊維及びポリイミド繊維などにステンレス、銅、ニッケルなどの金属繊維を付加し、導電性を有するものを用いることができる。
 また、微細繊維層20が導電性を有する構成を採用してもよい。微細繊維層20に導電性を付与するために、ナノ粒子により導電性を有するコーティングがなされた導電性繊維など、導電性を有する微細繊維21を用いることができる。また、導電性を有する微細繊維として、カーボンナノチューブ、カーボンナノファイバーなど、安価な炭素を主成分とする繊維を用いることができる。ここで、微細繊維層20が導電性を有する範囲内で、導電性を有していない他の微細繊維と混合することもできる。
 また、微細繊維層20を形成するときに、微細繊維21にカーボンブラックやカーボンナノコイルなどの導電性材料を添加し、微細繊維21に付着させることにより導電性を付与することもできる。
 以下に、本発明に係る集塵機用濾布の実施例について説明する。なお、本発明はこれら実施例に限定されるものではない。
(集塵機用濾布の作製)
 濾布基材として、ポリエステルニードルパンチ不織布(目付け600g/m2)を用い、平均繊維径100~500nm、アスペクト比1000~10000のセルロース系微細繊維(ダイセルファインケム株式会社:セリッシュ KY110N)により微細繊維層を形成し、集塵機用濾布を作製した。
 微細繊維層の形成は、微細繊維を水中に分散させた分散液を濾布基材の濾過面側に噴霧し、微細繊維を交絡させることにより行った。本実施例では、分散液中の微細繊維の固形分濃度は0.2重量%とし、分散液の噴霧による微細繊維層の形成を行うため、分散剤としてアニオン系ポリアクリル酸共重合体を0.02重量%添加した。また、バインダとして自己架橋型アニオン系アクリルエマルジョンを0.01重量%添加した。
 濾布基材の飽和含水率を考慮して分散液の噴霧量を調整し、スプレー塗付した後、120℃で1時間乾燥し、微細繊維の付着量0~10g/m2の集塵機用濾布を作製した。比較のため、目付重量560g/m2、厚さ1.9mmのPTFEメンブレンフェルトを用意した。
Figure JPOXMLDOC01-appb-T000001
(圧力損失、捕集効率、クオリティーファクタQfの測定方法)
 試験ダストが分散された圧縮空気が流れる流路に実施例1~4及び比較例1、2の集塵機用濾布を配置し、濾過速度が2.0m/minとなるように、流量を設定した。試験粒子としてISO/FDIS21220:2008(E)のKCL粒子発生装置に準拠して生成したKCL粒子を用いた。圧力損失は、流量を変化させたときの集塵機用濾布の上流と下流との差圧から求めた。捕集効率は、パーティクルカウンタにより、集塵機用濾布の上流と下流とのダストの粒子個数を計測し、以下の式により算出した。
(数1)
(捕集効率)=1-(下流の粒子個数)/(上流の粒子個数)
 クオリティーファクタQf[1/Pa]は以下の式から算出した。クオリティーファクタQfは、通過率が小さく、圧力損失が小さいほど大きな値を示し、この値が大きいほど濾布としての性能が高いことを表す。
(数2)
Qf=-lnP/ΔP
 ここで、
P[-] :通過率、(通過率)=(下流の粒子個数)/(上流の粒子個数)
ΔP[Pa]:圧力損失
 測定結果を表2に示す。捕集効率は、微小ダストの捕集効率を比較するために、粒子径範囲1~2μmの値で比較した。
Figure JPOXMLDOC01-appb-T000002
 表2からわかるように、微小ダストの捕集効率は、目付重量の増加に伴い増大した。また、圧力損失は500Pa程度までは許容される値であり、目付重量を0.1~10g/m2とすることにより、微小ダストの捕集効率の向上と低い圧力損失とを両立した集塵機用濾布を作製することができることがわかった。また、クオリティーファクタQfの値からは、目付重量は1~5g/m2の範囲であることがより好ましいことがわかった。
(実施例5)
 導電性を付与するために、分散液に導電性カーボンブラックをベースにした水系ペースト(ライオン株式会社:W-370C)を0.04重量%添加して集塵機用濾布を作製した。実施例5の集塵機用濾布の導電性をメガテスターを使って計測した結果、20MΩ以下(印加電圧500V)の値であり、帯電防止効果が確認できた。
(実施例6)
 微細繊維層を濾過面側のみに付着量8.0g/m2として形成した集塵機用濾布(実施例6)と、微細繊維層を濾過面側とパルスジェット面側の両面にそれぞれ付着量4.0g/m2として形成した集塵機用濾布(比較例3)を作製し、クオリティーファクタQfを比較した。その値は、実施例6では0.033であるのに対し、比較例3では0.029と低い値を示したことから、微細繊維層を濾過面側のみに形成したほうが性能的に優れていることが確認された。
(実施例7)
 ナノファイバーは一般的に平均繊維径が100nm以下、アスペクト比が100以上と言われている。アスペクト比が100~1000相当の微細繊維セルロースとして、出発原料を平均粒子径が45μm相当品(日本製紙ケミカル株式会社 KCフロック・GKシリーズ)を用いた比較例4を示す。分散剤としてアニオン系ポリアクリル酸共重合体を0.02重量%添加し、固形分濃度が0.2重量%の水溶液に湿式粉砕・分散処理して調製した。その後、実施例と同じ濾布基材に微細繊維層を形成し、集塵機用濾布とした。目付重量:5g/m2の条件で、圧力損失は140Pa、捕集効率は82%となり、クオリティーファクタQfは0.012となった。この結果は、微細繊維の目付重量が同じである実施例3と比べQfの値が小さいことから、微細繊維のアスペクト比が100~1000相当のものと比べ、1000以上のほうが性能的に優れていることが確認された。
1 集塵機用濾布
10 濾布基材
10a 濾過面
11 基布
12 ウェブ層
20 微細繊維層
21 微細繊維
D ダスト

Claims (10)

  1.  集塵機用濾布であって、
     繊維質の濾布基材と、
     前記濾布基材の濾過面側の内部、または表面から内部にかけて付着された、濾布基材の繊維よりも微細な微細繊維により形成される微細繊維層を備えたことを特徴とする集塵機用濾布。
  2.  前記微細繊維は、平均繊維長が0.01~5mmであることを特徴とする請求項1に記載の集塵機用濾布。
  3.  前記微細繊維は、平均繊維径に対する平均繊維長の比であるアスペクト比が1000~10000であることを特徴とする請求項1または2に記載の集塵機用濾布。
  4.  前記微細繊維は、アラミド繊維、ポリエステル繊維、ナイロン繊維、セルロース繊維、ガラス繊維、炭素繊維及びポリイミド繊維からなる群から選択された少なくとも1種の繊維から形成されていることを特徴とする請求項1から3の何れか1つに記載の集塵機用濾布。
  5.  前記微細繊維の前記濾布基材への付着量は、0.1~10g/m2であることを特徴とする請求項1ないし4のいずれか1つに記載の集塵機用濾布。
  6.  前記濾布基材は、不織布であることを特徴とする請求項1ないし5のいずれか1つに記載の集塵機用濾布。
  7.  前記濾布基材は、アラミド繊維、ポリエステル繊維、ナイロン繊維、セルロース繊維、ガラス繊維、炭素繊維及びポリイミド繊維からなる群から選択された少なくとも1種の繊維から形成されていることを特徴とする請求項1ないし6のいずれか1つに記載の集塵機用濾布。
  8.  前記微細繊維層は、導電性材料を含有することを特徴とする請求項1ないし7のいずれか1つに記載の集塵機用濾布。
  9.  前記導電性材料は、炭素を主成分とする材料であることを特徴とする請求項8に記載の集塵機用濾布。
  10.  前記濾布基材が導電性を有することを特徴とする請求項1ないし9のいずれか1つに記載の集塵機用濾布。
PCT/JP2013/084092 2013-02-12 2013-12-19 集塵機用濾布 WO2014125735A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380069622.3A CN104994929A (zh) 2013-02-12 2013-12-19 集尘器用滤布

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013024808A JP2014151293A (ja) 2013-02-12 2013-02-12 集塵機用濾布
JP2013-024808 2013-02-12

Publications (1)

Publication Number Publication Date
WO2014125735A1 true WO2014125735A1 (ja) 2014-08-21

Family

ID=51353754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084092 WO2014125735A1 (ja) 2013-02-12 2013-12-19 集塵機用濾布

Country Status (3)

Country Link
JP (1) JP2014151293A (ja)
CN (1) CN104994929A (ja)
WO (1) WO2014125735A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3219376T3 (en) * 2016-03-17 2019-01-14 Eurofilters Nv Vacuum cleaner filter bag of recycled plastics
JP6493276B2 (ja) * 2016-03-31 2019-04-03 マツダ株式会社 吸音材
CN107569914B (zh) * 2017-09-16 2019-08-16 约柏滤材工业(上海)有限公司 一种无纺布复合燃油滤材的制备方法
CN107951527A (zh) * 2017-12-29 2018-04-24 刘慧� 一种外科手术用包扎止血带
JP7112228B2 (ja) * 2018-03-30 2022-08-03 日本無機株式会社 エアフィルタ用濾材、及びエアフィルタ
EP3804832A4 (en) 2018-06-01 2022-03-16 Nitto Denko Corporation FILTER MEDIUM AND FILTER UNIT WITH IT
JP7103871B2 (ja) * 2018-06-29 2022-07-20 日本バイリーン株式会社 不織布フィルタ
CN113015570A (zh) * 2019-10-08 2021-06-22 进和技术株式会社 集尘滤布及袋式过滤器
JP6858428B1 (ja) * 2020-08-21 2021-04-14 株式会社ニッシン フィルター製造方法およびフィルター製造装置
CN114904332A (zh) * 2022-05-23 2022-08-16 安徽元琛环保科技股份有限公司 一种抗静电滤料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192520A (ja) * 1992-01-22 1993-08-03 Fujikoo:Kk 捕集効率の高い濾過布及びその製造方法
JPH06123051A (ja) * 1992-10-09 1994-05-06 Osaka Gas Co Ltd フェルト地及びバッグフィルター用濾布
JPH09313839A (ja) * 1996-06-03 1997-12-09 Mitsui Eng & Shipbuild Co Ltd フィルタ及びその製造方法
JP2004041941A (ja) * 2002-07-12 2004-02-12 Mitsui Eng & Shipbuild Co Ltd フィルタ部材
JP2006326579A (ja) * 2005-04-26 2006-12-07 Nitto Denko Corp フィルタ濾材とその製造方法および使用方法ならびにフィルタユニット
JP2009197374A (ja) * 2008-02-25 2009-09-03 Teijin Fibers Ltd 柔軟性不織布
JP2009279930A (ja) * 2008-04-25 2009-12-03 Nippon Synthetic Chem Ind Co Ltd:The 不織布積層構造体およびその製法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009112888A (ja) * 2007-11-01 2009-05-28 Daikin Ind Ltd 濾材およびフィルターバグ
JP2009190269A (ja) * 2008-02-14 2009-08-27 Teijin Techno Products Ltd 繊維積層体およびそれを用いた空気清浄用フィルター
JP2010125432A (ja) * 2008-11-29 2010-06-10 Ambic Co Ltd スラリー分離用濾過布
JP2010221210A (ja) * 2009-02-27 2010-10-07 Sintokogio Ltd 表面濾過方式集塵機用帯電防止濾布
JP2010264430A (ja) * 2009-05-18 2010-11-25 Ambic Co Ltd バグフィルター用ろ布
CN103442781B (zh) * 2011-04-05 2015-02-25 日本斯频德制造株式会社 集尘用过滤器、具备该集尘用过滤器的集尘装置及集尘用过滤器的制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192520A (ja) * 1992-01-22 1993-08-03 Fujikoo:Kk 捕集効率の高い濾過布及びその製造方法
JPH06123051A (ja) * 1992-10-09 1994-05-06 Osaka Gas Co Ltd フェルト地及びバッグフィルター用濾布
JPH09313839A (ja) * 1996-06-03 1997-12-09 Mitsui Eng & Shipbuild Co Ltd フィルタ及びその製造方法
JP2004041941A (ja) * 2002-07-12 2004-02-12 Mitsui Eng & Shipbuild Co Ltd フィルタ部材
JP2006326579A (ja) * 2005-04-26 2006-12-07 Nitto Denko Corp フィルタ濾材とその製造方法および使用方法ならびにフィルタユニット
JP2009197374A (ja) * 2008-02-25 2009-09-03 Teijin Fibers Ltd 柔軟性不織布
JP2009279930A (ja) * 2008-04-25 2009-12-03 Nippon Synthetic Chem Ind Co Ltd:The 不織布積層構造体およびその製法

Also Published As

Publication number Publication date
JP2014151293A (ja) 2014-08-25
CN104994929A (zh) 2015-10-21

Similar Documents

Publication Publication Date Title
WO2014125735A1 (ja) 集塵機用濾布
JP6212619B2 (ja) エアフィルタ用濾材及びそれを備えるエアフィルタ
CN105829593B (zh) 碳纤维无纺布、碳纤维无纺布的制造方法和碳纤维前体纤维无纺布
JP6086096B2 (ja) 多孔質電極基材
CN101795747B (zh) 空气过滤器用过滤材料以及空气过滤器
JP6008000B2 (ja) 前駆体シート
JP2010247035A (ja) エアフィルタ用ろ材並びにエアフィルタ
JP6158061B2 (ja) エアフィルタ用濾材
JP2015196263A (ja) ナノファイバー積層材、ナノファイバー積層材の製造方法、フィルター基材又はフィルター、及び、マスク又はマスク基材
CN204051271U (zh) 一种拒油拒水防静电的过滤粉尘滤袋
JP2018204150A (ja) 炭素繊維シ−ト、ガス拡散電極、膜−電極接合体、固体高分子形燃料電池、及び炭素繊維シートの製造方法
Karwa et al. A novel nano-nonwoven fabric with three-dimensionally dispersed nanofibers: entrapment of carbon nanofibers within nonwovens using the wet-lay process
KR20110128464A (ko) 절연막 코팅 전극 적용 필터
EP4338812A1 (en) Filter material for air filter and production method therefor
JPWO2019017354A1 (ja) 電気化学素子用セパレータ
CN214680556U (zh) 一种梯度过滤无纺布以及由其组成的滤芯
JP3991576B2 (ja) フィルタ素子、その製造方法及びフィルタ
JP2016137459A (ja) フィルタ用不織布及びフィルタ用濾材
CN107039192B (zh) 两面亲疏水不同的巴基纸、制备方法及其应用
WO2023175894A1 (ja) エアフィルタ用濾材及びその製造方法
JP2019034269A (ja) フィルタ用濾材及び積層フィルタ用濾材
JP4552249B2 (ja) 高温用エアフィルタ用濾材
JP6858678B2 (ja) エアフィルタ用濾材及びその製造方法
CN117241869A (zh) 空气过滤器用过滤材料及其制造方法
CN115845497A (zh) 一种过滤材料及滤芯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875216

Country of ref document: EP

Kind code of ref document: A1