WO2014125688A1 - Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法 - Google Patents

Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法 Download PDF

Info

Publication number
WO2014125688A1
WO2014125688A1 PCT/JP2013/080550 JP2013080550W WO2014125688A1 WO 2014125688 A1 WO2014125688 A1 WO 2014125688A1 JP 2013080550 W JP2013080550 W JP 2013080550W WO 2014125688 A1 WO2014125688 A1 WO 2014125688A1
Authority
WO
WIPO (PCT)
Prior art keywords
group iii
iii nitride
substrate
nitride film
main surface
Prior art date
Application number
PCT/JP2013/080550
Other languages
English (en)
French (fr)
Inventor
石橋 恵二
拓弥 柳澤
上松 康二
裕紀 関
喜之 山本
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013029123A external-priority patent/JP6146041B2/ja
Priority claimed from JP2013029119A external-priority patent/JP2014157979A/ja
Priority claimed from JP2013029126A external-priority patent/JP2014157983A/ja
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US14/767,706 priority Critical patent/US9923063B2/en
Priority to CN201380073228.7A priority patent/CN104995713A/zh
Publication of WO2014125688A1 publication Critical patent/WO2014125688A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • H01L21/30621Vapour phase etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68345Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during the manufacture of self supporting substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6835Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during build up manufacturing of active devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Definitions

  • the present invention relates to a group III nitride composite substrate and a manufacturing method thereof, a laminated group III nitride composite substrate, a group III nitride semiconductor device, and a manufacturing method thereof.
  • Group III nitrides such as GaN have excellent semiconductor characteristics and are therefore preferably used in semiconductor devices.
  • group III nitrides such as GaN have good material characteristics different from those of Si, GaAs, SiC, and the like in various types of semiconductor devices, for example, light emitting devices and electronic devices, and therefore can be used for various devices. it can.
  • Patent Document 1 discloses a self-standing group III nitride substrate having a diameter of 25 mm to 160 mm and a thickness of 100 ⁇ m to 1000 ⁇ m as a semiconductor device substrate, as a specific example.
  • a self-supporting GaN substrate having a diameter of 100 mm and a thickness of 400 ⁇ m is disclosed.
  • Patent Document 2 discloses a substrate for manufacturing a semiconductor device, a heterogeneous substrate having a chemical composition different from that of GaN, and a thickness of 0.1 ⁇ m or more and 100 ⁇ m or less bonded to the heterogeneous substrate.
  • a GaN thin film bonded substrate including a GaN thin film having a thickness and as a specific example, a GaN thin film bonded with a sapphire substrate and a GaN thin film having a thickness of 0.1 ⁇ m or 100 ⁇ m is bonded to a GaN thin film having a diameter of 50.8 mm
  • a laminated substrate is disclosed.
  • Patent Document 3 discloses a substrate for a semiconductor device, a support substrate, a nitride semiconductor layer, and a bonding layer provided between the support substrate and the nitride semiconductor layer.
  • a composite substrate having a thickness of 5 ⁇ m to 220 ⁇ m and a diameter of 50.8 mm, in which a sapphire substrate and a GaN layer are bonded together by a bonding layer formed by pressure bonding as a specific example, is provided.
  • Patent Document 1 The self-supporting group III nitride substrate disclosed in Japanese Patent Application Laid-Open No. 2009-126722 (Patent Document 1) is very expensive due to high manufacturing cost, and is easily cracked, so that the diameter is increased and the thickness is reduced. There was a problem of difficulty. Furthermore, it is necessary to reduce the thickness of the free-standing group III nitride substrate during the formation of the semiconductor device. There is a problem that the manufacturing cost increases due to a processing step such as grinding.
  • the GaN thin film bonded substrate disclosed in Japanese Patent Application Laid-Open No. 2008-010766 having a GaN thin film thickness of 0.1 ⁇ m
  • ion implantation is performed to form the GaN thin film.
  • the quality of the crystal of the GaN thin film is lowered by the implantation.
  • the thickness of the GaN thin film is preferably 10 ⁇ m or more.
  • the thickness of the GaN thin film is increased, the depth of ions implanted from the main surface is increased. There is a problem that the variation becomes large and the distribution in the main surface of the thickness of the GaN thin film of the obtained GaN thin film composite substrate becomes large. Further, when the diameter of the GaN thin film composite substrate is increased, there is a problem that the distribution in the main surface of the thickness of the GaN thin film is further increased.
  • Such a GaN thin film bonded substrate or composite substrate having a large distribution in the main surface of the GaN thin film or GaN layer can grow a semiconductor layer having a high crystal quality on the main surface of the GaN thin film or GaN layer. There is a problem that it is difficult to increase the yield of the obtained semiconductor device.
  • the present invention solves the above problems, reduces the cost of manufacturing a semiconductor device, and provides a group III nitride film having a low cost, a large diameter, a thin film thickness, a small film thickness distribution, and a high crystal quality. It is an object of the present invention to provide a group III nitride composite substrate and a method for manufacturing the same, a group III nitride composite substrate, a group III nitride semiconductor device, and a method for manufacturing the same.
  • a group III nitride composite substrate having a diameter of 75 mm or more in which a supporting substrate and a group III nitride film having a thickness of 50 nm or more and less than 10 ⁇ m are bonded to each other.
  • the ratio s t / m t of the standard deviation s t of the thickness to the average value m t of the thickness of the nitride film is 0.01 to 0.5, predetermined surface of the principal plane of the group III nitride layer in absolute value average absolute value III nitride composite substrate ratio s o / m o of the standard deviation s o is 0.005 to 0.6 of the off-angle with respect to m o of the off-angle relative to the plane of orientation is there.
  • the average value m III-N of the root mean square roughness of the main surface on the group III nitride film side is set to 0.4 nm or more and 10 nm or less, and the group III nitride film
  • the ratio s III-N / m III-N of the standard deviation s III-N to the mean value m III-N of the root mean square roughness of the main surface on the side can be 0.008 or more and 0.5 or less.
  • the ratio W III-N / D of the curvature W III-N of the main surface on the group III nitride film side to the diameter D can be set to ⁇ 7 ⁇ 10 ⁇ 4 or more and 8 ⁇ 10 ⁇ 4 or less.
  • the ratio ⁇ III-N / ⁇ S of the thermal expansion coefficient of the III nitride film to the thermal expansion coefficient alpha S of the supporting substrate alpha III-N and 0.75 to 1.25, the thickness of the support substrate t the ratio t III-N / t S of thickness t III-N III nitride layer may be 1 ⁇ 10 -4 or more 2 ⁇ 10 -2 or less against S.
  • the impurity metal atoms in the main surface of the group III nitride film can be set to 1 ⁇ 10 13 atoms / cm 2 or less.
  • the thermal conductivity lambda S of the supporting substrate may be a 3W ⁇ m -1 ⁇ K -1 or more 280W ⁇ m -1 ⁇ K -1 or less.
  • the Young's modulus E S of the supporting substrate can be 150GPa than 500GPa or less.
  • a diameter can be 100 mm or more.
  • a group III nitride composite substrate according to the above aspect and at least one layer of group III disposed on the main surface of the group III nitride composite substrate on the group III nitride film side A laminated group III nitride composite substrate including a nitride layer.
  • a group III nitride film in the group III nitride composite substrate according to the above aspect and at least one group III nitride layer disposed on the group III nitride film are provided. And a group III nitride semiconductor device.
  • a method for manufacturing a group III nitride composite substrate according to the above aspect wherein a group III nitride film is disposed on the main surface side of the support substrate. After the step of forming the substrate and the step of forming the group III nitride composite substrate, performing at least one of polishing and etching on the main surface of the group III nitride composite substrate on the group III nitride film side, Adjusting the thickness of the nitride film and the off-angle of the main surface of the group III nitride film with respect to a plane having a predetermined plane orientation.
  • the method for manufacturing a group III nitride semiconductor device may further include a step of removing the support substrate from the group III nitride composite substrate after the step of growing the group III nitride layer. Furthermore, after the step of growing the group III nitride layer and before the step of removing the support substrate, a step of further bonding a device support substrate on the group III nitride layer can be further included.
  • a group III nitride composite having a group III nitride film having a low crystal cost, a large diameter, a small film thickness, a small film thickness distribution, and a high crystal quality is reduced.
  • a substrate and a manufacturing method thereof, a laminated group III nitride composite substrate, a group III nitride semiconductor device, and a manufacturing method thereof can be provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of a laminated group III nitride composite substrate according to the present invention and Reference Invention I.
  • FIG. 1 is a schematic cross-sectional view showing an example of a group III nitride semiconductor device according to the present invention and reference invention I.
  • FIG. 6 is a schematic cross-sectional view showing another example of a group III nitride semiconductor device according to the present invention and reference invention I.
  • FIG. 6 is a schematic cross-sectional view showing still another example of a group III nitride semiconductor device according to the present invention and reference invention I. It is a schematic sectional drawing which shows a certain example of the manufacturing method of the group III nitride composite substrate concerning this invention and the reference invention I.
  • FIG. 6 is a schematic cross-sectional view showing another example of a method for producing a group III nitride composite substrate according to the present invention and reference invention I.
  • FIG. 6 is a schematic cross-sectional view showing still another example of a method for producing a group III nitride composite substrate according to the present invention and reference invention I.
  • FIG. 6 is a schematic cross-sectional view showing still another example of a method for producing a group III nitride composite substrate according to the present invention and reference invention I.
  • FIG. 6 is a schematic cross-sectional view showing still another example of a method for producing a group III nitride composite substrate according to the present invention and reference invention I.
  • a group III nitride composite substrate 1 has a diameter in which a support substrate 11 and a group III nitride film 13 having a thickness of 50 nm or more and less than 10 ⁇ m are bonded together.
  • the ratio s t / m t of the standard deviation s t of the thickness to the average value m t of the thickness of the III nitride film 13 is 0.01 or more and a .5 or less
  • the ratio s of the standard deviation s o of the absolute value of the off-angle with respect to the average value m o of the absolute value of the off angle relative to the plane of the predetermined plane orientation of the principal plane of the group III nitride layer 13 o / m o is 0.005 or more and 0.6 or less.
  • the group III nitride composite substrate 1 of this embodiment has a diameter of 75 mm or more, and the group III nitride film 13 bonded onto the support substrate 11 has a thickness of 50 nm or more and less than 10 ⁇ m.
  • mean value 0.5 or less is 0.01 or more ratio s t / m t of the standard deviation s t of the thickness to m t of the average value of the absolute value of the off angle relative to the plane of the predetermined plane orientation of the main surface by the ratio s o / m o of the standard deviation s o of the absolute value of the off angle for m o is 0.005 to 0.6, on the III nitride film 13, high crystal quality with large diameter Since at least one group III nitride layer can be grown, a group III nitride semiconductor device having high characteristics can be obtained with high yield.
  • TTV Total Thickness Variation
  • Group III thickness distribution of the nitride composite substrate of the III nitride film (specifically, a group III standard deviation of thickness to the average thickness value m t of the nitride film s t the ratio s t / m t) and the group III distribution of the off-angle with respect to a predetermined plane surface of the orientation of the principal surface of the nitride film (specifically, the surface of the predetermined plane orientation of the principal plane of the group III nitride films of the ratio s o / m o) of the standard deviation s o of the absolute value of the off-angle with respect to the average value m o of the absolute value of the off-angle is made within the above range, on the III nitride film 13 for a large It has been found that at least one group III nitride layer having a large diameter and high crystal quality can be grown, and a group III nitride semiconductor device having high characteristics can be obtained with high
  • the bonding form of the support substrate 11 and the group III nitride film 13 is not particularly limited, but in order to increase the bonding strength by bonding. It is preferable to interpose the bonding film 12.
  • the diameter of the group III nitride composite substrate 1 is 75 mm or more, preferably 100 mm or more, more preferably 125 mm or more, and more preferably 150 mm or more from the viewpoint of increasing the number of chips of a semiconductor device from one composite substrate. preferable. Further, the diameter of the group III nitride composite substrate 1 is preferably 300 mm or less, and more preferably 200 mm or less, from the viewpoint of reducing the warpage of the composite substrate and increasing the yield of the semiconductor device.
  • the thickness of group III nitride film 13 of group III nitride composite substrate 1 of the present embodiment is not less than 50 nm and less than 10 ⁇ m.
  • the thickness of group III nitride film 13 means an average value calculated from the thicknesses measured at 13 measurement points on main surface 13m of group III nitride film 13 shown in FIG.
  • the 13 measurement points P on the main surface 13m of the group III nitride film 13 shown in FIG. 2 are one center point P C and its center point P C regardless of the diameter of the group III nitride film.
  • the thickness of the group III nitride film 13 is required to be 50 nm or more, preferably 80 nm or more, more preferably 100 nm or more, still more preferably 120 nm or more, from the viewpoint of growing a group III nitride layer having high crystal quality.
  • 150 nm or more is particularly preferable, and from the viewpoint of significantly suppressing the material cost of the group III nitride composite substrate 1, it is required to be less than 10 ⁇ m, preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less, further preferably 500 nm or less, and 250 nm or less. Particularly preferred.
  • the standard deviation of the thickness to the average value m t of the thickness of the III nitride film 13 s t ratio s t / m t is 0.01 or more and 0.5 or less.
  • the ratio s t / m t, in view of crystal quality on the main surface 13m of group III nitride layer 13 is grown high III-nitride layer, it is necessary to 0.5 or less, preferably 0.4 or less 0.3 or less is more preferable, and 0.2 or less is more preferable.
  • the ratio s t / m t is required at least 0.01, preferably 0.02 or more, 0.03 or more Is more preferable, and 0.05 or more is more preferable.
  • the average thickness value m t and standard deviation s t III nitride layer 13, respectively, were measured at measurement points of 13 points on the major surface 13m of the III nitride film 13 shown in FIG. 2 An average value and a standard deviation calculated from the thickness.
  • the 13 measurement points P on the main surface 13m of the group III nitride film 13 shown in FIG. 2 are, as described above, one center point P C , four outer points P O , and eight intermediate points P M. It consists of.
  • the standard deviation here means the positive square root of unbiased variance.
  • group III nitride III-nitride composite substrate 1 thickness of less than 10 ⁇ m more than 50nm in film, in order to make the ratio s t / m t 0.01 to 0.5 is, group III as described below It is preferable to perform at least one of polishing and etching on the main surface 13m of the nitride film 13 by a special procedure and condition.
  • group III nitride composite substrate 1 of the present embodiment has an average value of absolute values of off angles (shift angles) with respect to a plane of a predetermined plane orientation of main surface 13 m of group III nitride film 13.
  • the ratio s o / m o of the standard deviation s o of the absolute value of the off angle for m o is 0.005 to 0.6.
  • the ratio s o / m o from the viewpoint of crystal quality on the main surface 13m of group III nitride layer 13 is grown high III-nitride layer, it is necessary to 0.6 or less, preferably 0.5 or less 0.4 or less is more preferable, and 0.2 or less is more preferable.
  • the ratio s o / m o from the viewpoint of suppressing surface treatment cost of the main surface 13m of group III nitride layer 13, it is necessary to 0.005 or more, preferably 0.008 or more, 0.02 or more Is more preferable.
  • the 13 measurement points P on the main surface 13m of the group III nitride film 13 shown in FIG. 2 are, as described above, one center point P C , four outer points P O , and eight intermediate points P M. It consists of.
  • the standard deviation here means the positive square root of unbiased dispersion as described above.
  • group III nitride III-nitride composite substrate 1 thickness of less than 10 ⁇ m more than 50nm in film, in order to make the ratio s o / m o 0.005 to 0.6 is, group III as described below It is preferable to perform at least one of polishing and etching on the main surface 13m of the nitride film 13 by a special procedure and condition.
  • the average value m III-N of the root mean square roughness of main surface 13 m on the group III nitride film 13 side is 0. 4 nm or more and 10 nm or less is preferable, and the ratio s III-N / m III-N of the standard deviation s III-N to the average value m III-N of the root mean square roughness of the main surface 13m on the group III nitride film 13 side is 0.008 or more and 0.5 or less are preferable.
  • the average value m III-N is preferably 10 nm or less, more preferably 5 nm or less, and even more preferably 3 nm or less.
  • the standard deviation of the root mean square roughness relative to the mean value m III-N of the root mean square roughness s III-N ratio s III-N / m III- N of preferably 0.5 or less, more preferably 0.4 or less, more preferably 0.2 or less.
  • m III-N is preferably 0.4 nm or more, more preferably 1 nm or more, and even more preferably 1.5 nm or more.
  • the standard deviation of the root mean square roughness with respect to the mean value of root mean square roughness m III-N s III-N ratio s III-N / m III- N of preferably 0.008 or more, more preferably 0.02 or more, more preferably 0.05 or more.
  • the mean value m III-N and the standard deviation s III-N of the root mean square roughness of the main surface 13m on the group III nitride film 13 side of the group III nitride composite substrate 1 are: These are the average value and the standard deviation calculated from the root mean square roughness measured at 13 measurement points P on the main surface 13m of the group III nitride film 13, respectively.
  • the 13 measurement points P on the main surface 13m of the group III nitride film 13 shown in FIG. 2 are, as described above, one center point P C , four outer points P O , and eight intermediate points P M. It consists of.
  • the standard deviation here means the positive square root of unbiased dispersion as described above.
  • the root mean square roughness measured at 13 measurement points P on the main surface 13m of the group III nitride film 13 shown in FIG. 2 is a size of 85 ⁇ m ⁇ 85 ⁇ m square centering on the measurement point P.
  • a standard plane is calculated from each point in the measurement region, and is a positive square root of the mean square of the distance to each point from the reference plane.
  • AFM Anatomic Force Microscope
  • optical interference roughness meter It is measured by a laser microscope, a stylus type roughness meter or the like.
  • the average value m III-N and the standard deviation s III-N of the root mean square roughness of the main surface 13m on the group III nitride film 13 side of the group III nitride composite substrate 1 are the group III as will be described later.
  • the main surface 13m of the nitride film 13 can be adjusted by polishing conditions and / or etching conditions when performing at least one of polishing and etching.
  • the ratio of warpage W III-N of main surface 13 m on group III nitride film 13 side to diameter D with respect to diameter D W III-N / D is preferably ⁇ 7 ⁇ 10 ⁇ 4 or more and 8 ⁇ 10 ⁇ 4 or less, more preferably ⁇ 4 ⁇ 10 ⁇ 4 or more and 5 ⁇ 10 ⁇ 4 or less, and ⁇ 2.5 ⁇ 10 ⁇ 4 or more. It is more preferably 3 ⁇ 10 ⁇ 4 or less, and particularly preferably from 1 ⁇ 10 ⁇ 4 to 1.5 ⁇ 10 ⁇ 4 .
  • the signs of the warp W III-N and the ratio W III-N / D are those in which the main surface 13m on the side of the group III nitride film 13 is convexly warped, and is the + (positive) sign.
  • a negative surface sign is given to the case where the main surface on the film 13 side is warped concavely.
  • the ratio W III-N / D of the warp W III-N of the main surface 13 m on the group III nitride film 13 side to the diameter D of the group III nitride composite substrate 1 is preferably ⁇ 7 ⁇ 10 ⁇ 4 or more and 8 ⁇ 10 ⁇ 4 or less, more preferably ⁇ 4 ⁇ 10 ⁇ 4 or more and 5 ⁇ 10 ⁇ 4 or less, further preferably ⁇ 2.5 ⁇ 10 ⁇ 4 or more and 3 ⁇ 10 ⁇ 4 or less, and particularly preferably ⁇ 1 ⁇ 10 ⁇ 4 or more.
  • a group III nitride layer with high crystal quality can be grown on the main surface 13m of the group III nitride film 13, and thus a group III nitride semiconductor device with high characteristics can be obtained. Can be obtained with good yield.
  • group III nitride composite substrate 1 of the present embodiment is warped of a group III nitride layer grown on main surface 13 m of group III nitride composite substrate 1 and group III nitride film 13 thereof. and from the viewpoint of crack while suppressing increase the yield of the group III nitride semiconductor device, the ratio of the thermal expansion coefficient alpha III-N III nitride film 13 for thermal expansion coefficient alpha S of the supporting substrate 11 alpha III-N / ⁇ S is preferably from 0.75 to 1.25, more preferably from 0.85 to 1.15, and even more preferably from 0.95 to 1.05.
  • the thermal expansion coefficient ⁇ S of the support substrate 11 and the thermal expansion coefficient ⁇ III-N of the group III nitride film 13 can be measured by a thermomechanical analyzer.
  • group III nitride composite substrate 1 of the present embodiment is warped of a group III nitride layer grown on main surface 13 m of group III nitride composite substrate 1 and group III nitride film 13 thereof.
  • the ratio of the thickness t III-N of the group III nitride film 13 to the thickness t S of the support substrate 11 from the viewpoint of suppressing the cracking and increasing the yield of the group III nitride semiconductor device t III-N / t S is preferably from 1 ⁇ 10 ⁇ 4 to 2 ⁇ 10 ⁇ 2, more preferably from 2 ⁇ 10 ⁇ 4 to 2 ⁇ 10 ⁇ 3 , and even more preferably from 5 ⁇ 10 ⁇ 4 to 1 ⁇ 10 ⁇ 3 .
  • the thickness t S of the support substrate 11 and the thickness t III-N of the group III nitride film 13 are determined by observation of the cross section of the film by an optical microscope and / or SEM (scanning electron microscope), reflectance spectroscopy. It can be measured with a digital indicator.
  • the support substrate with respect to the thickness t S of the thermal expansion coefficient alpha III-N ratio ⁇ III-N / ⁇ S 0.75 to 1.25 and the supporting substrate 11 of the group III nitride layer 13 on the thermal expansion coefficient alpha S 11
  • the ratio t III-N / t S of the group III nitride film thickness t III-N is preferably 1 ⁇ 10 ⁇ 4 or more and 2 ⁇ 10 ⁇ 2 or less, and the ratio ⁇ III-N / ⁇ S is 0.85 or more.
  • the ratio t III-N / t S is more preferably 2 ⁇ 10 ⁇ 4 or more and 2 ⁇ 10 ⁇ 3 or less, and the ratio ⁇ III-N / ⁇ S is 0.95 or more and 1.05 or less and the ratio t III-N / t S is 5 ⁇ 10 -4 or more 1 ⁇ 10 -3 or less is more preferred.
  • group III nitride composite substrate 1 of the present embodiment increases the crystal quality of a group III nitride layer grown on main surface 13 m of group III nitride film 13 and forms it.
  • the impurity metal atoms in the main surface 13m of the group III nitride film 13 are preferably 1 ⁇ 10 13 atoms / cm 2 or less, more preferably 3 ⁇ 10 12 atoms / cm 2 or less.
  • the concentration of the impurity metal atoms on the main surface 13m of the group III nitride film 13 can be measured by a TXRF (total reflection fluorescence X analysis) method.
  • the cleaning method for reducing the concentration of impurity metal atoms in the main surface 13m of the group III nitride film 13 of the group III nitride composite substrate 1 is not particularly limited, but the support substrate 11 may be mullite (3Al 2 O 3 ⁇ 2SiO 2 ⁇ 2Al 2 O 3 ⁇ SiO 2), mullite -YSZ (yttria stabilized zirconia), spinel (MgAl 2 O 4), a sintered body of Al 2 O 3 -SiO 2 -based composite oxides If the substrate is included, cleaning that suppresses elution of metal atoms from the support substrate 11, for example, scrub cleaning using a surfactant and pure water, two-fluid cleaning or megasonic cleaning (megasonic of 500 kHz to 5 MHz) Cleaning with ultrasonic waves of a band frequency) and single-sided cleaning such as single-wafer cleaning with a low concentration of acid and / or alkali (this one side is the group III
  • Impurities other than the impurity metal atoms on the main surface 13m of the group III nitride film 13 improve the crystal quality of the group III nitride layer grown on the group III nitride film 13 and enhance the characteristics of the semiconductor device to be formed.
  • Cl atoms are preferably 2 ⁇ 10 14 atoms / cm 2 or less
  • Si atoms are preferably 9 ⁇ 10 13 atoms / cm 2 or less.
  • the concentration of impurities other than the impurity metal atoms in the main surface 13m of the group III nitride film 13 can be measured by the TXRF method.
  • the thermal conductivity lambda S of the supporting substrate 11 is 3W ⁇ m -1 ⁇ K -1 or more 280W ⁇ m -1 ⁇ K -1 or less Is preferably 5 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more and 210 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or less, more preferably 10 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more and 120 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or less.
  • the thermal conductivity ⁇ S of the support substrate 11 can be measured by a laser flash method.
  • Support substrate having a thermal conductivity ⁇ S of preferably 3 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more, more preferably 5 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more, more preferably 10 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more.
  • the group III nitride composite substrate 1 efficiently generates heat from the main surface of the susceptor that supports the group III nitride composite substrate 1 when the group III nitride layer is grown. This can be transmitted to the main surface 13 m of the group III nitride film 13.
  • Thermal conductivity lambda S is preferably 280W ⁇ m -1 ⁇ K -1 or less, more preferably 210W ⁇ m -1 ⁇ K -1 or less, more preferably 120W ⁇ m -1 ⁇ K -1 or less, particularly preferably
  • the group III nitride composite substrate 1 having the support substrate 11 of 50 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or less is a group III nitride composite substrate that generates heat from the main surface of the susceptor when the group III nitride layer is grown. 1 can be transmitted uniformly to the entire main surface of the group III nitride film 13.
  • Thermal conductivity lambda S is 280W ⁇ m -1 ⁇ K -1 or less of the supporting substrate 11, than when the heat conductivity lambda S is used SiC substrate of approximately 300W ⁇ m -1 ⁇ K -1 as a supporting substrate,
  • the group III nitride layer is grown, heat from the main surface of the susceptor can be uniformly transmitted to the entire main surface of the group III nitride film 13 of the group III nitride composite substrate 1.
  • the Young's modulus E S is less preferred 500GPa than 150GPa of the support substrate 11 or less, more preferably more than 200 GPa 350 GPa.
  • the Young's modulus E S of the supporting substrate 11 can be measured by a resonance method.
  • Young's modulus E S is preferably 150GPa or more, more preferably Group III nitride composite substrate 1 having the above supporting substrate 11 200 GPa may form a group III nitride semiconductor devices by growing a Group III nitride layer thereon In doing so, it is possible to prevent the group III nitride composite substrate 1 and / or the group III nitride layer from warping.
  • Young's modulus E S is preferably not more than 500GaPa, more preferably Group III nitride composite substrate 1 having the supporting substrate 11 350 GPa is formed a Group III nitride semiconductor devices by growing a Group III nitride layer thereon In doing so, it is possible to suppress the occurrence of cracks and / or cracks in the group III nitride composite substrate 1 and / or the group III nitride layer.
  • the support substrate 11 included in the group III nitride composite substrate 1 of this embodiment is not particularly limited as long as it can support the group III nitride film 13, but reduces the amount of expensive group III nitride used. From the viewpoint of reducing costs, it is preferable to use a different composition substrate having a chemical composition different from that of the group III nitride.
  • the ratio of the thermal expansion coefficient ⁇ III-N of the group III nitride film 13 to the thermal expansion coefficient ⁇ S of the support substrate 11 is ⁇ III-N / ⁇ .
  • S is preferably 0.75 or more and 1.25 or less.
  • the thermal conductivity lambda S is preferably 3W ⁇ m -1 ⁇ K -1 or more 280W ⁇ m -1 ⁇ K -1 or less of the supporting substrate 11, Young's modulus E S of the supporting substrate 11 is preferably not more than 500GPa than 150GPa .
  • the support substrate 11 is not particularly limited, it is preferable that the support substrate 11 satisfies at least one of the above characteristics.
  • mullite 3Al 2 O 3 .2SiO 2 to 2Al 2 O 3 .SiO 2
  • mullite-YSZ yttria) Stabilized zirconia
  • spinel MgAl 2 O 4
  • sintered body of Al 2 O 3 —SiO 2 composite oxide and a substrate formed of a sintered body obtained by adding an oxide, carbonate, etc. to these
  • a molybdenum (Mo) substrate, a tungsten (W) substrate, or the like is preferable.
  • the elements contained in the oxide and carbonate are Ca, Mg, Sr, Ba, Al, Sc, Y, Ce, Pr, Si, Ti, Zr, V, Nb, Ta, Cr, Mn, Fe, Preferred examples include Co, Ni, Cu, and Zn.
  • the support substrate 11 may include any of single crystal, polycrystal, and non-crystal. However, when the semiconductor device is formed, the support substrate 11 can be easily removed by grinding and / or etching. Or it is preferable that a polycrystal is included from a viewpoint which can maintain the intensity
  • the bonding film 12 that can be included in the group III nitride composite substrate 1 of the present embodiment is not particularly limited as long as it can bond the support substrate 11 and the group III nitride film 13. From the viewpoint of high bondability between the support substrate 11 and the group III nitride film 13, a SiO 2 film, a Si 3 N 4 film, a TiO 2 film, a Ga 2 O 3 film, or the like is preferable.
  • the group III nitride film 13 of the present embodiment is a film formed of a group III nitride, and is an In x Al y Ga 1-xy N film (0, such as a GaN film or an AlN film). ⁇ x, 0 ⁇ y, x + y ⁇ 1) and the like.
  • the thickness of the group III nitride film 13 is required to be 50 nm or more, preferably 80 nm or more, more preferably 100 nm or more, further preferably 120 nm or more, and particularly preferably 150 nm or more. Further, as described above, the thickness of the group III nitride film 13 is required to be less than 10 ⁇ m, preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less, from the viewpoint of significantly reducing the amount of expensive group III nitride used. Preferably, 500 nm or less is more preferable, and 250 nm or less is particularly preferable.
  • the crystal structure of the group III nitride film 13 is preferably a wurtzite structure from the viewpoint of obtaining a semiconductor device with good characteristics.
  • the above-mentioned predetermined plane orientation that is most approximate to the main surface 13m of the group III nitride film 13 is not limited as long as it is suitable for a desired semiconductor device, and is ⁇ 0001 ⁇ , ⁇ 10-10 ⁇ , ⁇ 11- 20 ⁇ , ⁇ 21-30 ⁇ , ⁇ 20-21 ⁇ , ⁇ 10-11 ⁇ , ⁇ 11-22 ⁇ , ⁇ 22-43 ⁇ , and their respective plane orientations were turned off at 15 ° or less (15 ° It may be a plane orientation (shifted by the following angle).
  • the surface orientation of the back surface of each of these surface orientations and the surface orientation turned off at 15 ° or less from the surface orientation of the back surface may be used. That is, the main surface 13m of the group III nitride film 13 may be any of a polar surface, a nonpolar surface, and a semipolar surface. Further, the principal surface 13m of the group III nitride film 13 is preferably a ⁇ 0001 ⁇ surface and its back surface from the viewpoint of easily increasing the diameter, and a ⁇ 10-10 ⁇ surface from the viewpoint of suppressing the blue shift of the resulting light emitting device. , ⁇ 20-21 ⁇ surfaces and their back surfaces are preferred.
  • the group III nitride film 13 preferably has a carrier concentration of 1 ⁇ 10 17 cm ⁇ 3 or more from the viewpoint of reducing the resistance of the semiconductor device, and has a dislocation density of 1 ⁇ 10 8 from the viewpoint of reducing the leakage current of the semiconductor device. cm ⁇ 2 or less is preferable, and the half width of the diffraction peak in the rocking curve of X-ray diffraction is preferably 20 arcsec or more and 150 arcsec or less from the viewpoint of improving the crystal quality of the group III nitride film.
  • a laminated group III nitride composite substrate 2 includes a group III nitride composite substrate 1 of embodiment 1 and a group III nitride of group III nitride composite substrate 1. And at least one group III nitride layer 20 disposed on the main surface 13m on the material film 13 side.
  • the standard deviation of the thickness to the average value m t of the thickness of the III nitride film has the smaller thickness distribution of the group III nitride layer (specifically s ratio s t / m t of t is 0.01 to 0.5), a small distribution of the off angle relative to the plane of the predetermined plane orientation of the principal plane of the group III nitride layer (specifically, the group III nitride the ratio s o / m o of the standard deviation s o of the absolute value of the off-angle with respect to the average value m o of the absolute value of the off angle of 0.005 or more with respect to the surface of a given plane orientation of the main surface of the object film 0.6 ) Since the group III nitride composite substrate 1 and the group III nitride layer 20 having a high crystal quality disposed by growing on the group III nitride composite substrate 1 are included, a high
  • group III nitride layer 20 disposed on the main surface 13m on the group III nitride film 13 side varies depending on the type of semiconductor device to be manufactured.
  • group III nitride layer 20 when fabricating an SBD (Schottky barrier diode) as an example of an electronic device as a semiconductor device, group III nitride layer 20 includes, for example, n + -GaN layer 28 (with a carrier concentration of For example, it can be composed of 2 ⁇ 10 18 cm ⁇ 3 ) and an n ⁇ -GaN layer 29 (carrier concentration is, for example, 5 ⁇ 10 15 cm ⁇ 3 ).
  • SBD Schottky barrier diode
  • group III nitride layer 20 when fabricating a HEMT (High Electron Mobility Transistor) which is another example of an electronic device as a semiconductor device, group III nitride layer 20 includes, for example, GaN layer 26, Al 0.2 Ga 0.8. An N layer 27 can be used.
  • group III nitride layer 20 when fabricating a light emitting device as a semiconductor device, group III nitride layer 20 has, for example, n-GaN layer 21, n-In 0.05 Ga 0.95 N layer 22, and multiple quantum well structure.
  • the active layer 23, the p-Al 0.09 Ga 0.91 N layer 24, and the p-GaN layer 25 can be used.
  • a group III nitride semiconductor device 4 which is still another embodiment of the present invention includes a group III nitride film 13 in the group III nitride composite substrate of embodiment 1, and III And at least one group III nitride layer 20 disposed on group nitride film 13.
  • III-nitride semiconductor device 4 of this embodiment III-group distribution of thickness of the nitride film is small (specifically, a group III thickness standard deviation s to the average value m t of the thickness of the nitride film t ratio s t / m t 0.01 to 0.5 in), the group III small distribution of the off-angle with respect to a predetermined plane surface of the orientation of the principal surface of the nitride film (specifically, a group III nitride the ratio s o / m o standard deviation s o of the absolute value of the off-angle with respect to the average value m o of the absolute value of the off-angle with respect to a predetermined plane surface of the orientation of the major surface of the film is 0.005 or more and 0.6 or less) Since the group III nitride composite substrate 1 and the group III nitride layer 20 of high crystal quality disposed by growing on the group III nitride composite substrate 1 are included, it has high characteristics
  • group III nitride layer 20 of the group III nitride semiconductor device 4 differs depending on the type of the group III nitride semiconductor device 4.
  • group III nitride layer 20 includes, for example, n + -GaN layer 28 (with a carrier concentration of, for example, 2 ⁇ 10 18 cm ⁇ 3 ), n ⁇ -GaN layer 29 (carrier concentration is, for example, 5 ⁇ 10 15 cm ⁇ 3 ).
  • group III nitride layer 20 includes, for example, GaN layer 26 and Al 0.2 Ga 0.8 N layer 27. Can be configured.
  • group III nitride layer 20 when group III nitride semiconductor device 4 is a light emitting device, group III nitride layer 20 includes, for example, n-GaN layer 21, n-In 0.05 Ga 0.95 N layer 22, multiple quantum wells.
  • the active layer 23 having the structure, the p-Al 0.09 Ga 0.91 N layer 24, and the p-GaN layer 25 can be used.
  • Still other examples of electronic devices include PNDs (PN diodes) and transistors.
  • the group III nitride semiconductor device 4 may be a vertical type or a horizontal type.
  • group III nitride semiconductor device 4 preferably further includes at least one of support substrate 11 and device support substrate 40 for supporting group III nitride layer 20.
  • the shape of the device support substrate 40 is not limited to a flat plate shape, and the group III nitride semiconductor device 4 can be formed by supporting the group III nitride film 13 and the group III nitride layer 20. As long as it can take any shape.
  • the group III nitride semiconductor device may have a structure in which the group III nitride film 13 is removed from the group III nitride semiconductor device 4 shown in FIG. 4 or FIG.
  • the group III nitride semiconductor device has a structure in which the group III nitride film 13 is removed, so that the device characteristics can be further improved.
  • a method for manufacturing a group III nitride composite substrate according to still another embodiment of the present invention is a method for manufacturing a group III nitride composite substrate according to embodiment 1, and includes a support substrate.
  • the group III nitride composite After the step of forming the group III nitride composite substrate 1 by disposing the group III nitride film 13 on the main surface 11m side of 11 and the step of forming the group III nitride composite substrate 1, the group III nitride composite By performing at least one of polishing and etching on the main surface 13m of the substrate 1 on the group III nitride film 13 side, the thickness of the group III nitride film 13 and a predetermined surface of the main surface 13m of the group III nitride film 13 are determined. Adjusting the off-angle with respect to the azimuth plane.
  • the group III nitride semiconductor device can be manufactured with a high yield, the cost is low, the diameter is large, the group III nitride film is thin, and the group III The group III nitride composite substrate 1 having a small thickness distribution of the nitride film 13 and a distribution of the off angles with respect to the plane of the predetermined plane orientation of the main surface 13m of the group III nitride film 13 can be efficiently manufactured.
  • the manufacturing method of the group III nitride composite substrate 1 of the present embodiment includes a step of forming the group III nitride composite substrate 1 by disposing the group III nitride film 13 on the main surface 11 m side of the support substrate 11.
  • the method for disposing the group III nitride film 13 on the main surface 11m side of the support substrate 11 is not particularly limited, and the following first to third methods can be mentioned.
  • a group III nitride film 13 formed on the main surface 130n of the base substrate 130 is bonded to the main surface 11m of the support substrate 11, and then the base substrate 130 is bonded. It is a method of removing.
  • the group III nitride film donor substrate 13D is bonded to the main surface 11m of the support substrate 11, the group III nitride film donor substrate 13D is bonded.
  • the group III nitride film 13 is formed on the main surface 11m of the support substrate 11 by separating the surface at a predetermined depth.
  • the third method as shown in FIG.
  • the group III nitride film donor substrate 13D is bonded to the main surface 11m of the support substrate 11, after the group III nitride film donor substrate 13D is bonded to the main surface 11m of the support substrate 11, the group III nitride film donor substrate 13D is opposite to the bonded surface.
  • the group III nitride film 13 is formed on the main surface 11m of the support substrate 11 by adjusting the thickness from the main surface 13m on the side by decreasing the thickness by at least one of grinding, polishing and etching.
  • the group III nitride film 13 is bonded to the support substrate 11 by joining the main surface 11m of the support substrate 11 with the bonding film 12 interposed between the main surface 13n of the group III nitride film 13. And the like (see FIG. 7).
  • the method of bonding the group III nitride film donor substrate 13D to the support substrate 11 includes group III nitridation with the bonding film 12 interposed on the main surface 11m of the support substrate 11. Examples thereof include a method of bonding the main surface 13n of the physical film donor substrate 13D (see FIGS. 8 to 11).
  • a method of forming the bonding film 12a on the support substrate 11 and forming the bonding film 12b on the group III nitride film 13 or the group III nitride film donor substrate 13D and bonding them together may be formed only on the support substrate 11 and bonded to the group III nitride film 13 or the group III nitride film donor substrate 13D, or the group III nitride film Alternatively, the bonding film 12 may be formed only on the 13- or III-nitride film donor substrate 13D and bonded to the support substrate 11.
  • the step of forming group III nitride composite substrate 1 by the first method is not particularly limited, but from the viewpoint of efficiently manufacturing the composite substrate, a sub-step of preparing support substrate 11 (FIG. 7A1), a sub-process (FIG. 7A2) for forming the bonding film 12a on the main surface 11m of the support substrate 11, and the group III nitride film 13 on the main surface 130n of the base substrate 130.
  • a sub-step of preparing support substrate 11 FIG. 7A1
  • a sub-process FIG. 7A2
  • Forming the bonding film 12b on the main surface 13n of the group III nitride film 13 formed on the base substrate 130 (FIG.
  • the sub-process for preparing the support substrate 11 shown in FIG. 7A1 is not particularly limited.
  • MO x which is an oxide containing a metal element M (x is an arbitrary positive real number)
  • oxidation containing Al an oxide containing Al
  • the main surface of the substrate obtained by cutting a sintered body obtained by mixing and sintering Al 2 O 3 which is an object and SiO 2 which is an oxide containing Si at a predetermined molar ratio to a predetermined size This can be done by polishing.
  • the sub-process for forming the bonding film 12a on the main surface 11m of the support substrate 11 shown in FIG. 7A2 is not particularly limited, but from the viewpoint of suppressing the film formation cost, sputtering, vapor deposition, CVD ( A chemical vapor deposition method or the like is preferably performed.
  • the sub-process for forming the group III nitride film 13 on the main surface 130n of the base substrate 130 shown in FIG. 7B1 is not particularly limited, but the viewpoint of forming the group III nitride film 13 with high crystal quality is not limited.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • PLD pulse laser deposition
  • HVPE hydrogen vapor phase epitaxy
  • the sub-process for forming the bonding film 12b on the main surface 13n of the group III nitride film 13 formed on the base substrate 130 shown in FIG. 7B2 is performed on the main surface 11m of the support substrate 11 described above. This is performed in the same manner as the sub-process for forming 12a.
  • the main surface 12am of the bonding film 12a formed on the support substrate 11 and the main surface 12bn of the bonding film 12b formed on the group III nitride film 13 formed on the base substrate 130 are pasted.
  • the temperature is about 600 ° C. to 1200 ° C.
  • Direct bonding method in which bonding is performed by raising the temperature, surface activated bonding method in which bonding surfaces are cleaned and activated with plasma or ions, and then bonded in a low temperature atmosphere of room temperature (for example, 25 ° C.) to 400 ° C., bonding
  • the bonding surface is cleaned with a chemical solution and pure water, and then bonded by applying a high pressure of about 0.1 MPa to 10 MPa.
  • 10 -6 A high vacuum bonding method in which bonding is performed in a high vacuum atmosphere of about Pa to 10 ⁇ 3 Pa is suitable.
  • the bonding strength can be further increased by raising the temperature to about 600 ° C. to 1200 ° C.
  • the effect of increasing the bonding strength by raising the temperature to about 600 ° C. to 1200 ° C. after the bonding is large.
  • the step of removing the base substrate 130 from the bonding substrate 1L shown in FIG. 7D is not particularly limited, but from the viewpoint of efficiently removing the base substrate 130, the base substrate 130 is made of an etchant such as hydrofluoric acid.
  • an etchant such as hydrofluoric acid
  • a method of dissolving and removing the base substrate 130 and a method of removing the ground substrate from the exposed main surface side by grinding or polishing are preferably performed.
  • a protective member 140 for protecting the support substrate 11 is preferably formed around the support substrate 11.
  • the support substrate 11, the bonding film 12 disposed on the main surface 11m of the support substrate 11, and the group III nitride film 13 disposed on the main surface 12m of the bonding film 12 are included.
  • a group nitride composite substrate 1 is obtained.
  • the step of forming group III nitride composite substrate 1 by the second method is not particularly limited, but from the viewpoint of efficiently manufacturing the composite substrate, FIGS.
  • the cutting method shown in FIG. 10 or the ion implantation method shown in FIG. 10 is preferably used.
  • the cutting method and the ion implantation method will be described.
  • the step of forming group III nitride composite substrate 1 by a cutting method is not particularly limited, but from the viewpoint of efficiently manufacturing the composite substrate, main surface 11m of support substrate 11 is used.
  • B) and FIG. 9 (B)) are bonded to the main surface 12am of the bonding film 12a formed on the support substrate 11 and the main surface 12bn of the bonding film 12b formed on the group III nitride film donor substrate 13D.
  • the group III nitride film donor substrate 13D is a donor substrate that provides the group III nitride film 13 by separation in a later step.
  • the method of forming the group III nitride film donor substrate 13D is the same as the method of forming the group III nitride film 13 in the method of manufacturing the composite substrate by the first method.
  • the method for forming the bonding films 12a and 12b is the same as the method for forming the bonding films 12a and 12b in the method of manufacturing the composite substrate by the first method.
  • the method of bonding the support substrate 11 and the group III nitride film donor substrate 13D is a method of bonding the support substrate 11 and the group III nitride film 13 in the method of manufacturing the composite substrate by the first method described above. It is the same.
  • the cutting method used in the sub-process for cutting the group III nitride film donor substrate 13D is not particularly limited, and a wire saw, blade, laser, electric discharge machining, water jet, or the like is preferably used.
  • a wire saw, blade, laser, electric discharge machining, water jet, or the like is preferably used.
  • a fixed abrasive wire is preferable.
  • a loose abrasive system using a fine wire is preferable.
  • the wire swings and the ingot moves up and down synchronously. Cutting can be performed with high accuracy by reducing cutting resistance.
  • viscosity ⁇ (unit: Pa ⁇ s) of machining fluid for slicing, flow rate Q (unit: m 3 / s) of machining fluid, wire wire Using speed V (unit: m / s), maximum cutting length L (unit: m), cutting speed P (unit: m / s), and simultaneous cutting number n
  • R ⁇ ⁇ Q ⁇ V / (L)
  • R is preferably 4000 N or more and 5000 N or less.
  • the bonding substrates 1L and 1LS are separated from the main surface 13n, which is the bonding surface of the group III nitride film donor substrate 13D, at a surface located at a predetermined depth, and the supporting substrate 11 and the supporting substrate 11L are supported.
  • the group III nitride composite substrate 1 including the bonding film 12 disposed on the main surface 11m of the substrate 11 and the group III nitride film 13 disposed on the main surface 12m of the bonding film 12 is obtained.
  • a group III nitride film donor substrate 5D with a support in which a group III nitride film donor substrate support 15 is bonded to a group III nitride film donor substrate 13D is used.
  • the group III nitride composite substrate 1 can be manufactured in the same manner as described above.
  • the group III nitride film donor substrate 5D with the support since the group III nitride film donor substrate 13D is supported by the group III nitride film donor substrate support 15, the group III nitride film donor substrate 13D cannot stand alone. Even if it becomes as thin as possible, it can be used repeatedly.
  • the bonding form of the group III nitride film donor substrate support 15 and the group III nitride film donor substrate 13D is not particularly limited, but the bonding strength by bonding is not limited. In order to increase the thickness, it is preferable to interpose the bonding film 14. Further, the group III nitride film donor substrate support 15 is not particularly limited, but is formed of a material having the same physical properties as the support substrate 11 from the viewpoint of high support strength and prevention of cracking and warping. It is preferable.
  • the bonding film 14 is not particularly limited, but from the viewpoint of high bondability between the group III nitride film donor substrate support 15 and the group III nitride film donor substrate 13D, the SiO 2 film, the Si 3 N 4 film, the TiO 2 Two films, a Ga 2 O 3 film, and the like are preferable.
  • the step of forming group III nitride composite substrate 1 by the ion implantation method is not particularly limited. However, from the viewpoint of efficiently manufacturing the composite substrate, it is formed on main surface 11 m of support substrate 11.
  • the method of forming the group III nitride film donor substrate 13D is the same as the method of forming the group III nitride film 13 in the method of manufacturing the composite substrate by the first method.
  • the method for forming the bonding films 12a and 12b is the same as the method for forming the bonding films 12a and 12b in the method of manufacturing the composite substrate by the first method.
  • the method of bonding the support substrate 11 and the group III nitride film donor substrate 13D is a method of bonding the support substrate 11 and the group III nitride film 13 in the method of manufacturing the composite substrate by the first method described above. It is the same.
  • the ions I implanted into the group III nitride film donor substrate 13D are not particularly limited, but the gasification temperature of the ions I implanted into the ion implantation region 13i can be determined from the viewpoint of suppressing the deterioration of the quality of the main film. From the viewpoint of lowering the decomposition temperature of the nitride film 13, ions of atoms with a small mass, such as hydrogen ions and helium ions, are preferable.
  • the method for separating the group III nitride film donor substrate 13D by the ion implantation region 13i is not particularly limited as long as it is a method for gasifying the ions I implanted into the ion implantation region 13i.
  • the bonding substrate 1L is separated from the main surface 13n, which is a bonding surface of the group III nitride film donor substrate 13D, at a surface located at a predetermined depth inside, and the supporting substrate 11 and the supporting substrate 11 are separated.
  • the group III nitride composite substrate 1 including the bonding film 12 disposed on the main surface 11m of the metal and the group III nitride film 13 disposed on the main surface 12m of the bonding film 12 is obtained.
  • a group III nitride film donor substrate 5D with a support as shown in FIG. 9 can be used.
  • the step of forming group III nitride composite substrate 1 by the third method is not particularly limited, but from the viewpoint of efficiently manufacturing the composite substrate, on main surface 11 m of support substrate 11.
  • a sub-process for forming the bonding film 12a (FIG. 11A), a sub-process for forming the bonding film 12b on the main surface 13n of the group III nitride film donor substrate 13D (FIG. 11B), A sub-process for bonding the main surface 12am of the bonding film 12a formed on the substrate 11 and the main surface 12bn of the bonding film 12b formed on the group III nitride film donor substrate 13D to form the bonding substrate 1L (FIG.
  • the group III nitride film donor substrate 13D is a donor substrate that provides the group III nitride film 13 by at least one of grinding, polishing, and etching in addition to the separation in the second method in a later step. is there.
  • the method of forming the group III nitride film donor substrate 13D is the same as the method of forming the group III nitride film 13 in the method of manufacturing the composite substrate by the first method.
  • the method for forming the bonding films 12a and 12b is the same as the method for forming the bonding films 12a and 12b in the method of manufacturing the composite substrate by the first method.
  • the method of bonding the support substrate 11 and the group III nitride film donor substrate 13D is a method of bonding the support substrate 11 and the group III nitride film 13 in the method of manufacturing the composite substrate by the first method described above. It is the same.
  • the method for grinding the group III nitride film donor substrate 13D is not particularly limited, and examples thereof include grinding with a grindstone (surface grinding) and shot blasting.
  • a method for polishing the group III nitride film donor substrate 13D is not particularly limited, and examples thereof include mechanical polishing and CMP (chemical mechanical polishing).
  • the method for etching the group III nitride film donor substrate 13D is not particularly limited, and examples include wet etching with a chemical solution and dry etching such as RIE (reactive ion etching).
  • the support substrate 11, the bonding film 12 disposed on the main surface 11m of the support substrate 11, and the group III nitride film 13 disposed on the main surface 12m of the bonding film 12 are included.
  • a group nitride composite substrate 1 is obtained.
  • Step of adjusting the thickness of the group III nitride film of the group III nitride composite substrate and the off angle of the principal surface of the group III nitride film with respect to the surface of a predetermined plane orientation ⁇ In the manufacturing method of the group III nitride composite substrate 1 of the present embodiment, after the step of forming the group III nitride composite substrate 1, the main surface 13m on the group III nitride film 13 side of the group III nitride composite substrate 1 is formed.
  • a step of adjusting the thickness of the group III nitride film 13 and the off angle of the main surface 13m of the group III nitride film 13 with respect to a plane having a predetermined plane orientation is included.
  • the ratio s t / m t of the standard deviation s t of the thickness to the average value m t of the thickness of the group III nitride composite substrate 1 of the III nitride film 13 0.01 to 0.5 and then, the ratio s o / m o of the standard deviation s o of the absolute value of the off-angle with respect to the average value m o of the absolute value of the off angle relative to the plane of the predetermined surface orientation of the main 13m of group III nitride film 13 0 0.005 or more and 0.6 or less.
  • the thickness distribution of the group III nitride film 13 (the ratio s t / m t of the standard deviation s t of specifically thickness to the average value m t of the thickness of the III nitride film 13) and Off-angle distribution with respect to a plane of a predetermined plane orientation of main surface 13m of group III nitride film 13 (specifically, an absolute value of an off-angle with respect to a plane of predetermined plane orientation of main surface 13m of group III nitride film 13) in order to adjust the ratio s o / m o of the standard deviation s o of the absolute value of the off-angle with respect to the average value m o) within the predetermined range described above, III-nitride group III nitride composite substrate 1 It is preferable that at least one of polishing and etching be performed on the main surface 13m on the film 13 side in a plurality of stages. Among the plurality of stages of polishing and etching, final polishing
  • Etching is preferably dry etching, particularly RIE (reactive ion etching) from the viewpoint of easy control of the thickness of the group III nitride film 13.
  • dry etching particularly RIE is preferable.
  • the abrasive is preferably oily rather than aqueous, the viscosity of the abrasive is preferably higher, the abrasive grain size is preferably smaller, and the surface plate and the polishing pad are preferably harder.
  • the polishing conditions are preferably low pressure and low peripheral speed.
  • the viscosity ⁇ (unit: mPa ⁇ s) of the polishing liquid, the flow rate Q (unit: m 3 / s), the area S (unit: m 2 ) of the surface plate, the polishing pressure P (unit: kPa), and the peripheral speed V
  • the polishing conditions are preferably low pressure and low peripheral speed.
  • the coefficient of action FE (unit: m 2 / s) defined as described above is in a predetermined range, specifically, 4 ⁇ 10 ⁇ 14 m 2 / s to 1 ⁇ 10 ⁇ 13 m 2 / s. It is preferable that
  • a chlorine-based gas such as Cl 2 or BCl 3 or an inert gas such as Ar or N 2 in order to increase the etching rate, suppress the in-plane distribution, and stabilize the etching.
  • H 2 may be added to these gases.
  • Etching conditions are preferably high flow, high pressure, and high power.
  • the pressure P (unit: Pa) in the chamber, the flow rate Q (unit: sccm) of the mixed gas, the chamber volume V (unit: l (liter)), and the etching area S (unit) : M 2 ) preferably satisfies the relationship of 350 ⁇ PV / SQ ⁇ 500.
  • a chlorine-based gas such as Cl 2 or BCl 3 in order to increase the etching rate, suppress in-plane distribution, stabilize etching, reduce surface roughness, and suppress damage.
  • H 2 may be added to these gases.
  • the conditions are preferably low flow, low pressure, and low power.
  • the pressure P (unit: Pa) in the chamber, the flow rate Q (unit: sccm) of the mixed gas, the chamber volume V (unit: l (liter)), and the etching area S (unit) : M 2 ) preferably satisfies the relationship of 310 ⁇ PV / SQ ⁇ 380.
  • pre-finishing and finishing stage processing methods can be selected from pre-finishing and finishing polishing, pre-finishing and finishing etching, pre-finishing and finishing polishing, and pre-finishing and finishing etching. .
  • the average value m III-N and the distribution of the root mean square roughness of the main surface 13m on the group III nitride film 13 side of the group III nitride composite substrate 1 are distributed.
  • the ratio sIII -N / mIII-N of the standard deviation sIII -N of the root mean square roughness to the average value mIII-N can be controlled by the condition of finish polishing or finish etching. it can.
  • the viscosity of the polishing agent is The higher one is preferable, the smaller the abrasive grain size is preferable, and the surface plate and the polishing pad are preferably soft.
  • the surface shape of the surface plate and the polishing pad is preferably a shape in which grooves for removing sludge are formed.
  • the groove for removing sludge refers to a groove having a relatively wide width and a wide pitch, which is formed to remove sludge and / or agglomerated abrasive grains at the polishing interface.
  • the polishing conditions are preferably low pressure and low peripheral speed. In the case of finish etching, it is preferable to use chlorine gas such as Cl 2 and BCl 3 and H 2, and conditions of low flow rate, low pressure and low power are preferable.
  • the groove for uniformizing the abrasive means a groove having a relatively narrow width and a narrow pitch, which is formed in order to hold the abrasive uniformly at the center of the substrate.
  • the pressure P (unit: Pa) in the chamber, the flow rate Q (unit: sccm) of the mixed gas, the chamber volume V (unit: l (liter)), and the etching area S (unit: m 2 ) are: , 310 ⁇ PV / SQ ⁇ 380 is preferably satisfied.
  • FIG. 12A a step of preparing group III nitride composite substrate 1 of embodiment 1 (FIG. 12A) And a step of growing at least one group III nitride layer 20 on the main surface 13m of the group III nitride composite substrate 1 on the group III nitride film 13 side (FIG. 10A).
  • the group III nitride having a small thickness distribution and off-angle distribution in the main surface 13m of the group III nitride film 13 when the group III nitride layer 20 is grown Since the group III nitride layer is grown on the main surface 13m of the compound composite substrate 1, a group III nitride semiconductor device with high characteristics and high characteristics can be manufactured.
  • the step of removing the support substrate 11 from the group III nitride composite substrate 1 after the step of growing the group III nitride layer 20 (FIG. 12A).
  • FIG. 12C the step of removing the support substrate 11 from the group III nitride composite substrate 1 after the step of growing the group III nitride layer 20
  • FIG. 12C the step of removing the support substrate 11 from the group III nitride composite substrate 1 after the step of growing the group III nitride layer 20
  • FIG. 12C the step of removing the support substrate 11 from the group III nitride composite substrate 1 after the step of growing the group III nitride layer 20
  • the step of growing the group III nitride layer (FIG. 12A)
  • the step of removing the support substrate (FIG. 12C)
  • the method for producing a group III nitride semiconductor device of the present embodiment can be performed by the following steps.
  • Step of preparing group III nitride composite substrate 1 is the same as the method for manufacturing group III nitride composite substrate 1 described above.
  • group III nitride layer growth process Referring to FIG. 12A, in the step of growing at least one group III nitride layer 20 on main surface 13m of group III nitride composite substrate 1 on the group III nitride film 13 side, group III The method for growing the nitride layer 20 is a liquid phase method such as a MOCVD method, MBE method, HVPE method, sublimation method, or other vapor phase method, or a flux method, from the viewpoint of epitaxially growing the group III nitride layer 20 with high crystal quality. Etc. are preferable, and the MOCVD method is particularly preferable.
  • group III nitride layer 20 differs depending on the type of group III nitride semiconductor device 4.
  • group III nitride semiconductor device 4 is an SBD (Schottky barrier diode)
  • group III nitride layer 20 is, for example, on main surface 13m of group III nitride film 13 of group III nitride composite substrate 1
  • the n + -GaN layer 28 carrier concentration is, for example, 2 ⁇ 10 18 cm ⁇ 3
  • the n ⁇ -GaN layer 29 carrier concentration is, for example, 5 ⁇ 10 15 cm ⁇ 3
  • At least one group III-nitride layer 20 is grown on the main surface 13m on the group-III nitride film 13 side of the group-III nitride composite substrate 1, thereby stacking the group III-nitride composite.
  • a substrate 2 is obtained.
  • the step of further bonding the device support substrate 40 on the group III nitride layer 20 includes the Schottky electrode on the group III nitride layer 20 of the laminated group III nitride composite substrate 2.
  • the first electrode 30 and the pad electrode 33 are formed, the pad electrode 43 and the bonding metal film 44 are formed on the device support substrate 40, and the bonding metal film 44 is bonded to the pad electrode 33.
  • the laminated substrate 3 is obtained by this process.
  • a Si substrate, a Mo substrate, a CuW substrate, or the like is used for the device support substrate 40.
  • the step of removing support substrate 11 from group III nitride composite substrate 1 is performed by removing support substrate 11 of group III nitride composite substrate 1 from laminated substrate 3. .
  • the bonding film 12 can also be removed.
  • a method for removing the support substrate 11 and the bonding film 12 is not particularly limited, and grinding, etching, and the like are preferably used.
  • the support substrate 11 formed of a material that has low hardness, strength, and wear resistance and is easily cut can be removed by at least one of grinding and polishing from the viewpoint of reducing manufacturing costs.
  • the support substrate 11 formed of a material that dissolves in a chemical solution such as acid or alkali can be removed by etching with a chemical solution from the viewpoint of low manufacturing cost.
  • the support substrate 11 has a larger number of ceramics or the like than a support substrate formed of a single crystal material such as sapphire, SiC, or a group III nitride (for example, GaN).
  • a support substrate made of a crystalline material is preferred.
  • the group III nitride film 13 can be removed.
  • the group III nitride layer 20 is easier to improve the crystallinity, lower the dislocation density, and adjust the carrier concentration than the group III nitride film 13.
  • polishing and etching can be used to remove the group III nitride film 13. From the viewpoint of easy control of the removal thickness, it is preferable to use dry etching.
  • the second electrode 50 is formed on the group III nitride film 13 exposed by removing the support substrate 11 and the bonding film 12 from the laminated substrate 3, and the device support substrate 40 is formed.
  • a device supporting substrate electrode 45 is formed on the substrate.
  • Reference invention I relates to a group III nitride composite substrate and a manufacturing method thereof, a laminated group III nitride composite substrate, a group III nitride semiconductor device, and a manufacturing method thereof.
  • Group III nitrides such as GaN are suitably used for semiconductor devices because they have excellent semiconductor properties.
  • group III nitrides such as GaN have good material characteristics different from those of Si, GaAs, SiC, and the like in various types of semiconductor devices, for example, light emitting devices and electronic devices, and therefore can be used for various devices. it can.
  • Japanese Patent Laid-Open No. 2009-126722 discloses a self-standing group III nitride substrate having a diameter of 25 mm or more and 160 mm or more and a thickness of 100 ⁇ m or more and 1000 ⁇ m or less as a semiconductor device substrate, as a specific example, a diameter of 100 mm and a thickness.
  • a self-standing GaN substrate having a thickness of 400 ⁇ m is disclosed.
  • Japanese Patent Application Laid-Open No. 2008-010766 discloses a heterogeneous substrate having a chemical composition different from that of GaN as a substrate for manufacturing a semiconductor device, and a GaN thin film having a thickness of 0.1 ⁇ m or more and 100 ⁇ m or less bonded to the heterogeneous substrate. And a GaN thin film bonded substrate having a diameter of 50.8 mm in which a sapphire substrate and a GaN thin film having a thickness of 0.1 ⁇ m or 100 ⁇ m are bonded as a specific example. .
  • Japanese Unexamined Patent Application Publication No. 2010-182936 discloses a composite substrate including a support substrate, a nitride semiconductor layer, and a bonding layer provided between the support substrate and the nitride semiconductor layer as a semiconductor device substrate.
  • a composite substrate is disclosed in which the thickness of a GaN layer bonded to a sapphire substrate and a GaN layer by a bonding layer formed by pressure bonding is 5 ⁇ m to 220 ⁇ m and the diameter is 50.8 mm.
  • the GaN thin film composite substrate disclosed in Japanese Patent Application Laid-Open No. 2008-010766 and the composite substrate disclosed in Japanese Patent Application Laid-Open No. 2010-182936 are both bonded with a group III nitride film or layer on a support substrate.
  • a group III nitride layer is grown on the substrate to manufacture a group III nitride semiconductor device.
  • the temperature variation on the main surface of the substrate tends to increase, there is a problem that it is difficult to increase the yield of the manufactured semiconductor device when the diameter of the substrate is increased.
  • Reference invention I solves the above-mentioned problems, reduces the cost of manufacturing a semiconductor device, enables the manufacture of a group III nitride semiconductor device with a high yield, and has a low cost and a large diameter group III nitride.
  • Group III nitride composite substrate having a thin material film and a small temperature distribution (ie, variation, the same shall apply hereinafter) on the main surface during the growth of the group III nitride layer, a manufacturing method thereof, and a laminated group III nitride composite It is an object of the present invention to provide a substrate, a group III nitride semiconductor device, and a manufacturing method thereof.
  • Reference invention I is a group III nitride composite substrate having a diameter of 75 mm or more in which a supporting substrate and a group III nitride film having a thickness of 50 nm or more and less than 10 ⁇ m are bonded to each other.
  • the average value m S of the root mean square roughness of the main surface on the substrate side is 0.3 nm or more and 20 nm or less, and the root mean square roughness of the mean value m S of the root mean square roughness of the main surface on the support substrate side is This is a group III nitride composite substrate having a standard deviation s S ratio s S / m S of 0.005 or more and 0.4 or less.
  • the average value m III-N of the root mean square roughness of the main surface on the group III nitride film side is set to 0.4 nm or more and 10 nm or less
  • the group III nitride the ratio s III-N / m III- N of the standard deviation s III-N to the average value m III-N root mean square roughness of the main surface of the film side can be 0.008 to 0.5
  • the ratio W S / D of the warp W S of the main surface on the support substrate side to the diameter D can be set to ⁇ 7 ⁇ 10 ⁇ 4 or more and 8 ⁇ 10 ⁇ 4 or less.
  • the ratio ⁇ III-N / ⁇ S of the thermal expansion coefficient of the III nitride film to the thermal expansion coefficient alpha S of the supporting substrate alpha III-N and 0.75 to 1.25, the thickness of the support substrate t the ratio t III-N / t S of thickness t III-N III nitride layer may be 1 ⁇ 10 -4 or more 2 ⁇ 10 -2 or less against S.
  • the thermal conductivity lambda S of the supporting substrate may be a 3W ⁇ m -1 ⁇ K -1 or more 280W ⁇ m -1 ⁇ K -1 or less.
  • the Young's modulus E S of the supporting substrate can be 150GPa than 500GPa or less.
  • the support substrate can include a polycrystal.
  • the impurity metal atoms in the main surface of the group III nitride film can be set to 1 ⁇ 10 13 atoms / cm 2 or less.
  • a diameter can be 100 mm or more.
  • the diameter can be 125 mm or more and 300 mm or less.
  • the reference invention I is a group III nitride composite substrate according to the above aspect, and at least one layer of III disposed on the main surface of the group III nitride composite substrate on the group III nitride film side And a group III nitride composite substrate including a group nitride layer.
  • the group III nitride film in the group III nitride composite substrate according to the above aspect and at least one group III nitride arranged on the group III nitride film
  • a III-nitride semiconductor device comprising a layer.
  • Reference invention I is a method for producing a group III nitride composite substrate according to the above aspect, according to still another aspect, wherein a group III nitride film is disposed on one main surface side of the support substrate.
  • a group III nitride film is disposed on one main surface side of the support substrate.
  • At least one layer is provided on the main surface of the group III nitride composite substrate on the group III nitride film side of the step of preparing the group III nitride composite substrate according to the above aspect. And a step of growing a group III nitride layer.
  • the method for manufacturing a Group III nitride semiconductor device can further include a step of removing the support substrate from the Group III nitride composite substrate after the step of growing the Group III nitride layer. Furthermore, after the step of growing the group III nitride layer and before the step of removing the support substrate, a step of bonding the device support substrate onto the group III nitride layer can be further included. [Effect of Reference Invention I] According to Reference Invention I, the cost for manufacturing a semiconductor device can be reduced, and a Group III nitride semiconductor device can be manufactured with a high yield.
  • the cost is low, the diameter is large, the Group III nitride film is thin, and III Provided are a group III nitride composite substrate having a small temperature distribution on the main surface during the growth of the group nitride layer, a manufacturing method thereof, a laminated group III nitride composite substrate, a group III nitride semiconductor device, and a manufacturing method thereof can do.
  • group III nitride composite substrate 1 which is a reference form of reference invention I is bonded to support substrate 11 and group III nitride film 13 having a thickness of 50 nm or more and less than 10 ⁇ m. It is a group III nitride composite substrate 1 having a diameter of 75 mm or more, and an average value of root mean square roughness m S of the main surface 11n on the support substrate 11 side is 0.3 nm or more and 20 nm or less.
  • the ratio s S / m S of the standard deviation s S of the root mean square roughness to the mean square root mean square roughness m S of the main surface 11n is 0.005 or more and 0.4 or less.
  • the group III nitride composite substrate 1 of the present embodiment has a small temperature distribution (that is, variation) on the main surface during the growth of the group III nitride layer for manufacturing the group III nitride semiconductor device, A high-quality group III nitride layer can be grown, and thus a high-quality group III nitride semiconductor device can be manufactured with a high yield. This will be described in more detail below.
  • group III nitride composite substrate 1 of the present embodiment has a structure in which group III nitride film 13 is bonded onto support substrate 11, and a group III nitride semiconductor is obtained.
  • the main surface 11n on the side of the support substrate 11 corresponding to the back surface side of the group III nitride composite substrate 1 is arranged to face the main surface of a susceptor (not shown) provided with a temperature raising device.
  • at least one group III nitride layer 20 is grown on the main surface 13m on the group III nitride film 13 side corresponding to the front surface side of the group III nitride composite substrate 1.
  • the group III nitride composite substrate 1 of this reference embodiment has a diameter of 75 mm or more, and the thickness of the group III nitride film 13 bonded to the support substrate 11 is 50 nm or more and less than 10 ⁇ m.
  • side average value m S of the root mean square roughness of the main surface 11n is at 0.3nm or 20nm or less, the root-mean-square roughness to the average value m S of the root mean square roughness of the supporting substrate 11 side of the main surface 11n Since the ratio s S / m S of the standard deviation s S is 0.005 or more and 0.4 or less, it is from the main surface of the heated susceptor to the back surface side of the large-diameter group III nitride composite substrate 1.
  • the entire group III nitride composite substrate 1 having a large diameter is uniformly heated.
  • the temperature distribution on the main surface 13m on the group III nitride film 13 side, which is the surface side of the large-diameter group III nitride composite substrate 1 is small and uniform. Since the group III nitride layer 20 having a high crystal quality and a uniform large diameter can be grown on the main surface 13m on the group III nitride film 13 side of the substrate 1, a group III nitride semiconductor device having high characteristics can be manufactured. Can be manufactured well.
  • the form in which the support substrate 11 and the group III nitride film 13 are bonded is not particularly limited, but in order to increase the bonding strength by bonding. It is preferable to interpose the bonding film 12.
  • the thickness of group III nitride film 13 of group III nitride composite substrate 1 of the present embodiment is not less than 50 nm and less than 10 ⁇ m.
  • the thickness of group III nitride film 13 means an average value calculated from the thicknesses measured at 13 measurement points on main surface 13m of group III nitride film 13 shown in FIG.
  • the three measurement points P on the main surface of the group III nitride film 13 shown in FIG. 2 are based on one center point P C and its center point P C regardless of the diameter of the group III nitride film.
  • the thickness of the group III nitride film 13 is required to be 50 nm or more, preferably 80 nm or more, more preferably 100 nm or more, still more preferably 120 nm or more, from the viewpoint of growing a group III nitride layer having high crystal quality.
  • 150 nm or more is particularly preferable, and from the viewpoint of significantly suppressing the material cost of the group III nitride composite substrate 1, it is required to be less than 10 ⁇ m, preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less, further preferably 500 nm or less, and 250 nm or less. Particularly preferred.
  • the diameter of group III nitride composite substrate 1 of the present embodiment is 75 ⁇ m or more.
  • the diameter of the group III nitride composite substrate 1 is required to be 75 mm or more, preferably 100 mm or more, more preferably 125 mm or more, and 150 mm or more from the viewpoint of increasing the number of chips of a semiconductor device from one composite substrate. Is more preferable.
  • the diameter of the group III nitride composite substrate 1 is preferably 300 mm or less, and more preferably 200 mm or less, from the viewpoint of reducing the warpage of the composite substrate and increasing the yield of the semiconductor device.
  • group III nitride composite substrate 1 of the present embodiment has an average value m S of the root mean square roughness of main surface 11n on support substrate 11 side of 0.3 nm or more and 20 nm or less.
  • the ratio s S / m S of the standard deviation s S of the root mean square roughness to the mean square root mean square roughness m S of the main surface 11n on the support substrate 11 side is 0.005 or more and 0.4 or less. .
  • the main surface 11n on the support substrate 11 side which is the back side of the group III nitride composite substrate 1, has a high crystal quality and a uniform III on the main surface 13m on the group III nitride film 13 side of the group III nitride composite substrate 1
  • the mean value m S of the root mean square roughness is required to be 20 nm or less, preferably 10 nm or less, more preferably 5 nm or less, and the mean value of the root mean square roughness.
  • the ratio s S / m S of the standard deviation s S of the root mean square roughness for the m S is the required 0.4 or less, preferably 0.3 or less, more preferably 0.2 or less.
  • the mean value m S of the root mean square roughness is 0.3 nm or more, 0.5 nm or more is preferable, 1 nm or more is more preferable, and the ratio s S of the standard deviation s S of the root mean square roughness to the mean value m S of the root mean square roughness thereof / M S is required to be 0.005 or more, preferably 0.01 or more, and more preferably 0.05 or more.
  • the mean value square root mean square roughness m S and standard deviation s S of the main surface 11 n of the group III nitride composite substrate 1 on the support substrate 11 side are respectively the values of the support substrate 11. These are the average value and standard deviation calculated from the root mean square roughness measured at 13 measurement points P on the main surface 11n.
  • the 13 measurement points P on the main surface 11n of the support substrate 11 shown in FIG. 2 are one center point P C and 4 perpendicular to the center point P C regardless of the diameter of the support substrate 11.
  • the standard deviation here means the positive square root of unbiased variance.
  • the root mean square roughness measured at 13 measurement points P on the main surface 11n of the support substrate 11 shown in FIG. 2 is within a measurement region having a size of 85 ⁇ m ⁇ 85 ⁇ m square with the measurement point P as the center.
  • the standard plane is calculated from each point, and the value of the positive square root of the mean square of the distance to each point from the reference plane is used.
  • AFM Anatomic Force Microscope
  • optical interference roughness meter laser microscope, Measured with a stylus roughness meter.
  • the average value m S and the standard deviation s S of the root mean square roughness of the main surface 11n of the group III nitride composite substrate 1 on the support substrate 11 side are polished on the main surface 11n of the support substrate 11 as will be described later.
  • the polishing agent, the surface plate, and the physical properties of the polishing pad, the shape of the surface plate and the polishing pad, and the polishing conditions can be adjusted.
  • the average value m III-N of the root mean square roughness of main surface 13m on the group III nitride film 13 side is 0. 4 nm or more and 10 nm or less is preferable, and the ratio s III-N / m III-N of the standard deviation s III-N to the average value m III-N of the root mean square roughness of the main surface 13m on the group III nitride film 13 side is 0.008 or more and 0.5 or less are preferable.
  • the average value m III-N is preferably 10 nm or less, more preferably 5 nm or less, and even more preferably 3 nm or less.
  • the standard deviation of the root mean square roughness relative to the mean value m III-N of the root mean square roughness s III-N ratio s III-N / m III- N of preferably 0.5 or less, more preferably 0.4 or less, more preferably 0.2 or less.
  • m III-N is preferably 0.4 nm or more, more preferably 1 nm or more, and even more preferably 1.5 nm or more.
  • the standard deviation of the root mean square roughness with respect to the mean value of root mean square roughness m III-N s III-N ratio s III-N / m III- N of preferably 0.008 or more, more preferably 0.02 or more, more preferably 0.05 or more.
  • the mean value m III-N and the standard deviation s III-N of the root mean square roughness of the main surface 13m on the group III nitride film 13 side of the group III nitride composite substrate 1 are: These are the average value and the standard deviation calculated from the root mean square roughness measured at 13 measurement points P on the main surface 13m of the group III nitride film 13, respectively.
  • the 13 measurement points P on the main surface 13m of the group III nitride film 13 shown in FIG. 2 are one center point P C and the center point P C regardless of the diameter of the group III nitride film 13.
  • the root mean square roughness measured at 13 measurement points P on the main surface 13m of the group III nitride film 13 shown in FIG. 2 is a size of 85 ⁇ m ⁇ 85 ⁇ m square centering on the measurement point P.
  • a standard plane is calculated from each point in the measurement region, and is a positive square root of the mean square of the distance to each point from the reference plane.
  • AFM Anatomic Force Microscope
  • optical interference roughness meter It is measured by a laser microscope, a stylus type roughness meter or the like.
  • the average value m III-N and the standard deviation s III-N of the root mean square roughness of the main surface 13m on the group III nitride film 13 side of the group III nitride composite substrate 1 are the group III as will be described later. It can be adjusted according to the physical properties of the polishing agent, the surface plate, and the polishing pad, the shape of the surface plate, the polishing pad, and the polishing conditions when the main surface 13m of the nitride film 13 is polished.
  • the ratio W S / D of the warp W S of the main surface 11n on the support substrate 11 side with respect to the diameter D is ⁇ 7 ⁇ 10 ⁇ 4. It is preferably 8 ⁇ 10 ⁇ 4 or less, more preferably ⁇ 4 ⁇ 10 ⁇ 4 or more and 5 ⁇ 10 ⁇ 4 or less, further preferably ⁇ 2.5 ⁇ 10 ⁇ 4 or more and 3 ⁇ 10 ⁇ 4 or less, and ⁇ 1 ⁇ 10 ⁇ 4 to 1.5 ⁇ 10 ⁇ 4 is particularly preferable.
  • the sign of the warp W S and the ratio W S / D is a + (positive) sign when the main surface 11n on the support substrate 11 side is warped concavely, and the main surface on the support substrate 11 side warps convexly.
  • the minus sign is used.
  • the ratio W S / D of the warp W S of the main surface 11n on the support substrate 11 side to the diameter D of the group III nitride composite substrate 1 is preferably ⁇ 7 ⁇ 10 ⁇ 4 or more and 8 ⁇ 10 ⁇ 4 or less, more preferably -4 ⁇ 10 ⁇ 4 or more and 5 ⁇ 10 ⁇ 4 or less, more preferably ⁇ 2.5 ⁇ 10 ⁇ 4 or more and 3 ⁇ 10 ⁇ 4 or less, particularly preferably ⁇ 1 ⁇ 10 ⁇ 4 or more and 1.5 ⁇ 10 ⁇ 4.
  • the large diameter III is increased from the main surface of the susceptor that has been heated. Since heat is uniformly transmitted to the entire main surface 11n of the group nitride composite substrate 1 on the support substrate 11 side, the entire group III nitride composite substrate 1 is uniformly heated. As a result, the temperature on the main surface 13m on the group III nitride film 13 side which is the surface side of the group III nitride composite substrate 1 has a small distribution and becomes uniform. Since a group III nitride layer having a high crystal quality and a uniform large diameter can be grown on the main surface 13m on the material film 13 side, a group III nitride semiconductor device having high characteristics can be manufactured with a high yield.
  • group III nitride composite substrate 1 of the present embodiment suppresses warpage and cracking of group III nitride composite substrate 1 and group III nitride layer grown on group III nitride film 13.
  • the ratio ⁇ III-N / ⁇ S of the thermal expansion coefficient ⁇ III-N of the group III nitride film 13 to the thermal expansion coefficient ⁇ S of the support substrate 11 is 0.75 or more and 1.25 or less are preferable, 0.85 or more and 1.15 or less are more preferable, and 0.95 or more and 1.05 or less are more preferable.
  • the thermal expansion coefficient ⁇ S of the support substrate 11 and the thermal expansion coefficient ⁇ III-N of the group III nitride film 13 can be measured by a thermomechanical analyzer.
  • group III nitride composite substrate 1 of the present embodiment suppresses warpage and cracking of group III nitride composite substrate 1 and group III nitride layer grown on group III nitride film 13.
  • the ratio t III-N / t S of the thickness t III-N of the group III nitride film 13 to the thickness t S of the support substrate 11 is 1 ⁇ .
  • the thickness t S of the support substrate 11 can be measured by observation of a cross section of the film with an optical microscope and / or SEM (scanning electron microscope), a digital indicator, or the like.
  • the thickness t III-N of the group III nitride film 13 can be measured by observation of a cross section of the film with an optical microscope and / or SEM, reflectance spectroscopy, or the like.
  • the support substrate with respect to the thickness t S of the thermal expansion coefficient alpha III-N ratio ⁇ III-N / ⁇ S 0.75 to 1.25 and the supporting substrate 11 of the group III nitride layer 13 on the thermal expansion coefficient alpha S 11
  • the ratio t III-N / t S of the group III nitride film thickness t III-N is preferably 1 ⁇ 10 ⁇ 4 or more and 2 ⁇ 10 ⁇ 2 or less, and the ratio ⁇ III-N / ⁇ S is 0.85 or more.
  • the ratio t III-N / t S is more preferably 2 ⁇ 10 ⁇ 4 or more and 2 ⁇ 10 ⁇ 3 or less, and the ratio ⁇ III-N / ⁇ S is 0.95 or more and 1.05 or less and the ratio t III-N / t S is 5 ⁇ 10 -4 or more 1 ⁇ 10 -3 or less is more preferred.
  • the support substrate 11 included in the group III nitride composite substrate 1 of the present embodiment is not particularly limited as long as it can support the group III nitride film 13, but reduces the amount of expensive group III nitride used. From the viewpoint of reducing costs, it is preferable to use a different composition substrate having a chemical composition different from that of the group III nitride.
  • the group III nitride composite substrate 1 of the present embodiment has the ratio ⁇ III-N / ⁇ of the thermal expansion coefficient ⁇ III-N of the group III nitride film 13 to the thermal expansion coefficient ⁇ S of the support substrate 11.
  • S is preferably 0.75 or more and 1.25 or less.
  • the thermal conductivity lambda S is preferably 3W ⁇ m -1 ⁇ K -1 or more 280W ⁇ m -1 ⁇ K -1 or less of the supporting substrate 11, 5W ⁇ m - 1 ⁇ K ⁇ 1 or more and 210 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or less is more preferable, and 10 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more and 120 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or less is more preferable.
  • the thermal conductivity ⁇ S of the support substrate 11 can be measured by a laser flash method.
  • Support substrate having a thermal conductivity ⁇ S of preferably 3 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more, more preferably 5 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more, more preferably 10 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more.
  • the group III nitride composite substrate 1 having the main surface 13m of the group III nitride film 13 of the group III nitride composite substrate 1 efficiently generates heat from the main surface of the susceptor when the group III nitride layer is grown. Can tell.
  • Thermal conductivity lambda S is preferably 280W ⁇ m -1 ⁇ K -1 or less, more preferably 210W ⁇ m -1 ⁇ K -1 or less, more preferably 120W ⁇ m -1 ⁇ K -1 or less, particularly preferably
  • the group III nitride composite substrate 1 having the support substrate 11 of 50 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or less is a group III nitride composite substrate that generates heat from the main surface of the susceptor when the group III nitride layer is grown. 1 can be transmitted uniformly to the entire main surface of the group III nitride film 13.
  • Thermal conductivity lambda S is 280W ⁇ m -1 ⁇ K -1 or less of the supporting substrate 11, than when the heat conductivity lambda S is used SiC substrate of approximately 300W ⁇ m -1 ⁇ K -1 as a supporting substrate,
  • the group III nitride layer is grown, heat from the main surface of the susceptor can be uniformly transmitted to the entire main surface of the group III nitride film 13 of the group III nitride composite substrate 1.
  • the Young's modulus E S is less preferred 500GPa than 150GPa of the support substrate 11 or less, more preferably more than 200 GPa 350 GPa.
  • the Young's modulus E S of the supporting substrate 11 can be measured by a resonance method.
  • Young's modulus E S is preferably 150GPa or more, more preferably Group III nitride composite substrate 1 having the above supporting substrate 11 200 GPa may form a group III nitride semiconductor devices by growing a Group III nitride layer thereon In doing so, it is possible to prevent the group III nitride composite substrate 1 and / or the group III nitride layer from warping.
  • Young's modulus E S is preferably not more than 500GaPa, more preferably Group III nitride composite substrate 1 having the supporting substrate 11 350 GPa is formed a Group III nitride semiconductor devices by growing a Group III nitride layer thereon In doing so, it is possible to suppress the occurrence of cracks and / or cracks in the group III nitride composite substrate 1 and / or the group III nitride layer.
  • the support substrate 11 is not particularly limited. From the above viewpoint, the ratio ⁇ III-N / ⁇ S of the thermal expansion coefficient ⁇ III-N of the group III nitride film 13 to the thermal expansion coefficient ⁇ S of the support substrate 11 is 0.75 to 1.25, the thermal conductivity lambda S is 3W ⁇ m -1 ⁇ K -1 or more 280W ⁇ m -1 ⁇ K -1 or less of the supporting substrate 11, and the Young's modulus E S of the supporting substrate 11 is Those satisfying at least one of 150 GPa or more and 500 GPa or less are preferable.
  • mullite 3Al 2 O 3 .2SiO 2 to 2Al 2 O 3 .SiO 2
  • mullite-YSZ yttria stabilized zirconia
  • spinel MgAl 2 O 4
  • a sintered body of Al 2 O 3 —SiO 2 composite oxide and a substrate formed of a sintered body obtained by adding an oxide, carbonate, etc., molybdenum (Mo) substrate, tungsten (W)
  • Mo molybdenum
  • W tungsten
  • the elements contained in the oxide and carbonate are Ca, Mg, Sr, Ba, Al, Sc, Y, Ce, Pr, Si, Ti, Zr, V, Nb, Ta, Cr, Mn, Fe, Preferred examples include Co, Ni, Cu, and Zn.
  • the support substrate 11 may include any of single crystal, polycrystal, and non-crystal. However, when the semiconductor device is formed, the support substrate 11 can be easily removed by grinding and / or etching. From the viewpoint of maintaining the strength capable of suppressing warpage and cracking, it is preferable to contain polycrystals.
  • the bonding film 12 that can be included in the group III nitride composite substrate 1 of the present embodiment is not particularly limited as long as it can bond the support substrate 11 and the group III nitride film 13. From the viewpoint of high bondability between the support substrate 11 and the group III nitride film 13, a SiO 2 film, a Si 3 N 4 film, a TiO 2 film, a Ga 2 O 3 film, or the like is preferable.
  • III-nitride layer 13 of this preferred embodiment is a film formed of a group III nitride, In x Al y Ga 1- xy N film (0, such as GaN film, AlN film ⁇ x, 0 ⁇ y, x + y ⁇ 1) and the like.
  • the thickness of the group III nitride film 13 is required to be 50 nm or more, preferably 80 nm or more, more preferably 100 nm or more, and 120 nm. The above is more preferable. Further, as described above, the thickness of the group III nitride film 13 is required to be less than 10 ⁇ m, preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less, from the viewpoint of significantly reducing the amount of expensive group III nitride used. Preferably, it is 0.25 ⁇ m or less.
  • the crystal structure of the group III nitride film 13 is preferably a wurtzite structure from the viewpoint of obtaining a semiconductor device with good characteristics.
  • the above-mentioned predetermined plane orientation that is most approximate to the main surface 13m of the group III nitride film 13 is not limited as long as it is suitable for a desired semiconductor device, and is ⁇ 0001 ⁇ , ⁇ 10-10 ⁇ , ⁇ 11- 20 ⁇ , ⁇ 21-30 ⁇ , ⁇ 20-21 ⁇ , ⁇ 10-11 ⁇ , ⁇ 11-22 ⁇ , ⁇ 22-43 ⁇ , and their respective plane orientations were turned off at 15 ° or less (15 ° It may be a plane orientation (shifted by the following angle).
  • the surface orientation of the back surface of each of these surface orientations and the surface orientation turned off at 15 ° or less from the surface orientation of the back surface may be used. That is, the main surface 13m of the group III nitride film 13 may be any of a polar surface, a nonpolar surface, and a semipolar surface. Further, the principal surface 13m of the group III nitride film 13 is preferably a ⁇ 0001 ⁇ surface and its back surface from the viewpoint of easily increasing the diameter, and a ⁇ 10-10 ⁇ surface from the viewpoint of suppressing the blue shift of the resulting light emitting device. , ⁇ 20-21 ⁇ surfaces and their back surfaces are preferred.
  • the impurity metal atoms in the main surface 13m of the group III nitride film 13 are 1 ⁇ 10 13 atoms / cm 2 or less is preferable, 3 ⁇ 10 12 atoms / cm 2 or less is more preferable, 1 ⁇ 10 12 atoms / cm 2 or less is more preferable, and 1 ⁇ 10 11 atoms / cm 2 or less is particularly preferable.
  • Support substrate 11 includes mullite (3Al 2 O 3 .2SiO 2 to 2Al 2 O 3 .SiO 2 ), mullite-YSZ (yttria stabilized zirconia), spinel (MgAl 2 O 4 ), Al 2 O 3 —SiO 2 system.
  • the group III nitride composite substrate 1 including a substrate such as a composite oxide sintered body is cleaned with suppressed elution of metal atoms from the support substrate 11, for example, scrub cleaning using a surfactant and / or pure water.
  • Single-sided cleaning such as two-fluid cleaning or megasonic cleaning (cleaning using ultrasonic waves in the frequency range of 500 kHz to 5 MHz) and single-wafer cleaning using low concentrations of acid and / or alkali (this side is III
  • This side is III
  • the concentration of impurity metal atoms on the main surface 13m of the group III nitride film 13 is reduced by cleaning the main surface 13m of the group nitride film 13).
  • a protective film can be formed on the support substrate side to suppress elution of metal atoms.
  • Impurities other than the impurity metal atoms on the main surface 13m of the group III nitride film 13 improve the crystal quality of the group III nitride layer grown on the group III nitride film 13 and enhance the characteristics of the semiconductor device to be formed.
  • Cl atoms are preferably 2 ⁇ 10 14 atoms / cm 2 or less
  • Si atoms are preferably 9 ⁇ 10 13 atoms / cm 2 or less.
  • the dislocation density of the group III nitride film 13 is not particularly limited, but is preferably 1 ⁇ 10 8 cm ⁇ 2 or less and more preferably 1 ⁇ 10 7 cm ⁇ 2 or less from the viewpoint of reducing the leakage current of the semiconductor device.
  • the carrier concentration of group III nitride film 13 is not particularly limited, but is preferably 1 ⁇ 10 17 cm ⁇ 3 or more and more preferably 1 ⁇ 10 18 cm ⁇ 3 or more from the viewpoint of reducing the resistance of the semiconductor device.
  • laminated group III nitride composite substrate 2 which is another reference form of reference invention I includes group III nitride composite substrate 1 of reference form I-1 and group III nitride composite substrate 1. And at least one group III nitride layer 20 disposed on the main surface 13m on the group III nitride film 13 side.
  • the laminated group III nitride composite substrate 2 of the present embodiment includes a group III nitride composite substrate 1 having a small average value m S and a standard deviation s S of the main surface 11n root mean square roughness on the support substrate 11 side, and a top thereof. Since it includes the group III nitride layer 20 with high crystal quality disposed by growing, a high-performance semiconductor device can be manufactured with a high yield.
  • group III nitride layer 20 disposed on the main surface 13m on the group III nitride film 13 side differs depending on the type of semiconductor device to be fabricated.
  • group III nitride layer 20 when fabricating an SBD (Schottky barrier diode) as an example of an electronic device as a semiconductor device, group III nitride layer 20 includes, for example, n + -GaN layer 28 (with a carrier concentration of For example, it can be composed of 2 ⁇ 10 18 cm ⁇ 3 ) and an n ⁇ -GaN layer 29 (carrier concentration is, for example, 5 ⁇ 10 15 cm ⁇ 3 ).
  • SBD Schottky barrier diode
  • group III nitride layer 20 when fabricating a HEMT (High Electron Mobility Transistor) which is another example of an electronic device as a semiconductor device, group III nitride layer 20 includes, for example, GaN layer 26, Al 0.2 Ga 0.8. An N layer 27 can be used.
  • group III nitride layer 20 when fabricating a light emitting device as a semiconductor device, group III nitride layer 20 has, for example, n-GaN layer 21, n-In 0.05 Ga 0.95 N layer 22, and multiple quantum well structure.
  • the active layer 23, the p-Al 0.09 Ga 0.91 N layer 24, and the p-GaN layer 25 can be used.
  • a group III nitride semiconductor device 4 which is still another reference form of reference invention I is a group III nitride film 13 in a group III nitride composite substrate of reference form I-1. And at least one group III nitride layer 20 disposed on the group III nitride film 13.
  • the group III nitride semiconductor device 4 of the present embodiment includes a group III nitride composite substrate 1 having a small mean square root mean square roughness m S and a standard deviation s S of the main surface 11n on the support substrate 11 side, and a group III nitride composite substrate 1 thereon. Since it includes the group III nitride layer 20 with high crystal quality arranged by growing, it has high characteristics.
  • group III nitride layer 20 of the group III nitride semiconductor device 4 differs depending on the type of the group III nitride semiconductor device 4.
  • group III nitride layer 20 includes, for example, n + -GaN layer 28 (with a carrier concentration of, for example, 2 ⁇ 10 18 cm ⁇ 3 ), n ⁇ -GaN layer 29 (carrier concentration is, for example, 5 ⁇ 10 15 cm ⁇ 3 ).
  • group III nitride layer 20 includes, for example, GaN layer 26 and Al 0.2 Ga 0.8 N layer 27. Can be configured.
  • group III nitride layer 20 when group III nitride semiconductor device 4 is a light emitting device, group III nitride layer 20 includes, for example, n-GaN layer 21, n-In 0.05 Ga 0.95 N layer 22, multiple quantum wells.
  • the active layer 23 having the structure, the p-Al 0.09 Ga 0.91 N layer 24, and the p-GaN layer 25 can be used.
  • Still other examples of electronic devices include PNDs (PN diodes) and transistors.
  • the group III nitride semiconductor device 4 may be a vertical type or a horizontal type.
  • group III nitride semiconductor device 4 preferably further includes at least one of support substrate 11 and device support substrate 40 for supporting group III nitride layer 20.
  • the shape of the device support substrate 40 is not limited to a flat plate shape, and the group III nitride semiconductor device 4 can be formed by supporting the group III nitride film 13 and the group III nitride layer 20. As long as it can take any shape.
  • the group III nitride semiconductor device may have a structure in which the group III nitride film 13 is removed from the group III nitride semiconductor device 4 shown in FIG. 4 or FIG.
  • the group III nitride semiconductor device has a structure in which the group III nitride film 13 is removed, so that the device characteristics can be further improved.
  • the step of adjusting the root mean square roughness of the main surface 11n on the support substrate 11 side by polishing the main surface 11n on the support substrate 11 side of the group III nitride composite substrate 1 is included.
  • the group III nitride semiconductor device can be manufactured with a high yield, the cost is low, the diameter is large, the group III nitride film is thick, and the group III The group III nitride composite substrate 1 having a small temperature distribution on the main surface during the growth of the nitride layer can be efficiently manufactured.
  • the manufacturing method of the group III nitride composite substrate 1 of the present embodiment includes the step of forming the group III nitride composite substrate 1 by disposing the group III nitride film 13 on the one main surface 11m side of the support substrate 11. Including.
  • the method for disposing the group III nitride film 13 on the one main surface 11m side of the support substrate 11 is not particularly limited, and the following first to third methods can be mentioned.
  • a group III nitride film 13 formed on the main surface 130n of the base substrate 130 is bonded to the main surface 11m of the support substrate 11, and then the base substrate 130 is bonded. It is a method of removing.
  • the group III nitride film donor substrate 13D is bonded to the main surface 11m of the support substrate 11, the group III nitride film donor substrate 13D is bonded.
  • the group III nitride film 13 is formed on the main surface 11m of the support substrate 11 by separating the surface at a predetermined depth.
  • the third method as shown in FIG.
  • the group III nitride film donor substrate 13D is bonded to the main surface 11m of the support substrate 11, after the group III nitride film donor substrate 13D is bonded to the main surface 11m of the support substrate 11, the group III nitride film donor substrate 13D is opposite to the bonded surface.
  • the group III nitride film 13 is formed on the main surface 11m of the support substrate 11 by adjusting the thickness from the main surface 13m on the side by decreasing the thickness by at least one of grinding, polishing and etching.
  • the group III nitride film 13 is bonded to the support substrate 11 by joining the main surface 11m of the support substrate 11 with the bonding film 12 interposed between the main surface 13n of the group III nitride film 13. And the like (see FIG. 7).
  • the method of bonding the group III nitride film donor substrate 13D to the support substrate 11 includes group III nitridation with the bonding film 12 interposed on the main surface 11m of the support substrate 11. Examples thereof include a method of bonding the main surface 13n of the physical film donor substrate 13D (see FIGS. 8 to 11).
  • a method of forming the bonding film 12a on the support substrate 11 and forming the bonding film 12b on the group III nitride film 13 or the group III nitride film donor substrate 13D and bonding them together may be formed only on the support substrate 11 and bonded to the group III nitride film 13 or the group III nitride film donor substrate 13D, or the group III nitride film Alternatively, the bonding film 12 may be formed only on the 13- or III-nitride film donor substrate 13D and bonded to the support substrate 11.
  • the step of forming group III nitride composite substrate 1 by the first method is not particularly limited, but the sub-step of preparing support substrate 11 from the viewpoint of efficiently manufacturing the composite substrate (FIG. 7A1), a sub-process (FIG. 7A2) for forming the bonding film 12a on the main surface 11m of the support substrate 11, and the group III nitride film 13 on the main surface 130n of the base substrate 130. Forming a bonding film 12b on the main surface 13n of the group III nitride film 13 formed on the base substrate 130 (FIG.
  • the sub-process for preparing the support substrate 11 shown in FIG. 7A1 is not particularly limited.
  • MO x which is an oxide containing a metal element M (x is an arbitrary positive real number)
  • oxidation containing Al an oxide containing Al
  • the main surface of the substrate obtained by cutting a sintered body obtained by mixing and sintering Al 2 O 3 which is an object and SiO 2 which is an oxide containing Si at a predetermined molar ratio to a predetermined size This can be done by polishing.
  • the sub-process for forming the bonding film 12a on the main surface 11m of the support substrate 11 shown in FIG. 7A2 is not particularly limited, but from the viewpoint of suppressing the film formation cost, sputtering, vapor deposition, CVD ( A chemical vapor deposition method or the like is preferably performed.
  • the sub-process for forming the group III nitride film 13 on the main surface 130n of the base substrate 130 shown in FIG. 7B1 is not particularly limited, but the viewpoint of forming the group III nitride film 13 with high crystal quality is not limited.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • PLD pulse laser deposition
  • HVPE hydrogen vapor phase epitaxy
  • the sub-process for forming the bonding film 12b on the main surface 13n of the group III nitride film 13 formed on the base substrate 130 shown in FIG. 7B2 is performed on the main surface 11m of the support substrate 11 described above. This is performed in the same manner as the sub-process for forming 12a.
  • the main surface 12am of the bonding film 12a formed on the support substrate 11 and the main surface 12bn of the bonding film 12b formed on the group III nitride film 13 formed on the base substrate 130 are pasted.
  • the temperature is about 600 ° C. to 1200 ° C.
  • Direct bonding method in which bonding is performed by raising the temperature, surface activated bonding method in which bonding surfaces are cleaned and activated with plasma or ions, and then bonded in a low temperature atmosphere of room temperature (for example, 25 ° C.) to 400 ° C., bonding
  • the bonding surface is cleaned with a chemical solution and pure water, and then bonded by applying a high pressure of about 0.1 MPa to 10 MPa.
  • 10 -6 A high vacuum bonding method in which bonding is performed in a high vacuum atmosphere of about Pa to 10 ⁇ 3 Pa is suitable.
  • the bonding strength can be further increased by raising the temperature to about 600 ° C. to 1200 ° C.
  • the effect of increasing the bonding strength by raising the temperature to about 600 ° C. to 1200 ° C. after the bonding is large.
  • the step of removing the base substrate 130 from the bonding substrate 1L shown in FIG. 7D is not particularly limited, but from the viewpoint of efficiently removing the base substrate 130, the base substrate 130 is made of an etchant such as hydrofluoric acid.
  • an etchant such as hydrofluoric acid
  • a method of dissolving and removing the base substrate 130 and a method of removing the ground substrate from the exposed main surface side by grinding or polishing are preferably performed.
  • a protective member 140 for protecting the support substrate 11 is preferably formed around the support substrate 11.
  • the support substrate 11, the bonding film 12 disposed on the main surface 11m of the support substrate 11, and the group III nitride film 13 disposed on the main surface 12m of the bonding film 12 are included.
  • a group nitride composite substrate 1 is obtained.
  • the step of forming group III nitride composite substrate 1 by the second method is not particularly limited, but from the viewpoint of efficiently manufacturing the composite substrate, FIGS.
  • the cutting method shown in FIG. 10 or the ion implantation method shown in FIG. 10 is preferably used.
  • the cutting method and the ion implantation method will be described.
  • the step of forming group III nitride composite substrate 1 by a cutting method is not particularly limited, but from the viewpoint of efficiently manufacturing the composite substrate, main surface 11m of support substrate 11 is used.
  • B) and FIG. 9 (B)) are bonded to the main surface 12am of the bonding film 12a formed on the support substrate 11 and the main surface 12bn of the bonding film 12b formed on the group III nitride film donor substrate 13D.
  • the group II nitride film donor substrate 13D is a donor substrate that provides the group III nitride film 13 by separation in a later step.
  • the method of forming the group III nitride film donor substrate 13D is the same as the method of forming the group III nitride film 13 in the method of manufacturing the composite substrate by the first method.
  • the method for forming the bonding films 12a and 12b is the same as the method for forming the bonding films 12a and 12b in the method of manufacturing the composite substrate by the first method.
  • the method of bonding the support substrate 11 and the group III nitride film donor substrate 13D is a method of bonding the support substrate 11 and the group III nitride film 13 in the method of manufacturing the composite substrate by the first method described above. It is the same.
  • the cutting method used in the sub-process for cutting the group III nitride film donor substrate 13D is not particularly limited, and a wire saw, an inner peripheral blade, an outer peripheral blade, laser processing, electric discharge processing, water jet, and the like are preferably used. .
  • the bonding substrates 1L and 1LS are separated from the main surface 13n, which is the bonding surface of the group III nitride film donor substrate 13D, at a surface located at a predetermined depth, and the supporting substrate 11 and the supporting substrate 11L are supported.
  • the group III nitride composite substrate 1 including the bonding film 12 disposed on the main surface 11m of the substrate 11 and the group III nitride film 13 disposed on the main surface 12m of the bonding film 12 is obtained.
  • a group III nitride film donor substrate 5D with a support in which a group III nitride film donor substrate support 15 is bonded to a group III nitride film donor substrate 13D is used.
  • the group III nitride composite substrate 1 can be manufactured in the same manner as described above.
  • the group III nitride film donor substrate 5D with the support since the group III nitride film donor substrate 13D is supported by the group III nitride film donor substrate support 15, the group III nitride film donor substrate 13D cannot stand alone. Even if it becomes as thin as possible, it can be used repeatedly.
  • the bonding form of the group III nitride film donor substrate support 15 and the group III nitride film donor substrate 13D is not particularly limited, but the bonding strength by bonding is not limited. In order to increase the thickness, it is preferable to interpose the bonding film 14. Further, the group III nitride film donor substrate support 15 is not particularly limited, but is formed of a material having the same physical properties as the support substrate 11 from the viewpoint of high support strength and prevention of cracking and warping. It is preferable.
  • the bonding film 14 is not particularly limited, but from the viewpoint of high bondability between the group III nitride film donor substrate support 15 and the group III nitride film donor substrate 13D, the SiO 2 film, the Si 3 N 4 film, the TiO 2 Two films, a Ga 2 O 3 film, and the like are preferable.
  • the step of forming group III nitride composite substrate 1 by the ion implantation method is not particularly limited. However, from the viewpoint of efficiently manufacturing the composite substrate, it is formed on main surface 11 m of support substrate 11.
  • a sub-process (FIG. 10A) and a position at a predetermined depth from the main surface 13n by implanting ions I from the main surface 13n side of the group III nitride film donor substrate 13D.
  • the method of forming the group III nitride film donor substrate 13D is the same as the method of forming the group III nitride film 13 in the method of manufacturing the composite substrate by the first method.
  • the method for forming the bonding films 12a and 12b is the same as the method for forming the bonding films 12a and 12b in the method of manufacturing the composite substrate by the first method.
  • the method of bonding the support substrate 11 and the group III nitride film donor substrate 13D is a method of bonding the support substrate 11 and the group III nitride film 13 in the method of manufacturing the composite substrate by the first method described above. It is the same.
  • the ions I implanted into the group III nitride film donor substrate 13D are not particularly limited, but the gasification temperature of the ions I implanted into the ion implantation region 13i can be determined from the viewpoint of suppressing the deterioration of the quality of the main film. From the viewpoint of lowering the decomposition temperature of the nitride film 13, ions of atoms with a small mass, such as hydrogen ions and helium ions, are preferable.
  • the method for separating the group III nitride film donor substrate 13D by the ion implantation region 13i is not particularly limited as long as it is a method for gasifying the ions I implanted into the ion implantation region 13i.
  • the bonding substrate 1L is separated from the main surface 13n, which is a bonding surface of the group III nitride film donor substrate 13D, at a surface located at a predetermined depth inside, and the supporting substrate 11 and the supporting substrate 11 are separated.
  • the group III nitride composite substrate 1 including the bonding film 12 disposed on the main surface 11m of the metal and the group III nitride film 13 disposed on the main surface 12m of the bonding film 12 is obtained.
  • a group III nitride film donor substrate 5D with a support as shown in FIG. 9 can be used.
  • the step of forming group III nitride composite substrate 1 by the third method is not particularly limited, but from the viewpoint of efficiently manufacturing the composite substrate, on main surface 11 m of support substrate 11.
  • a sub-process for forming the bonding film 12a (FIG. 11A), a sub-process for forming the bonding film 12b on the main surface 13n of the group III nitride film donor substrate 13D (FIG. 11B),
  • the group III nitride film donor substrate 13D is a donor substrate that provides the group III nitride film 13 by at least one of grinding, polishing, and etching in addition to the separation in the second method in a later step. is there.
  • the method of forming the group III nitride film donor substrate 13D is the same as the method of forming the group III nitride film 13 in the method of manufacturing the composite substrate by the first method.
  • the method for forming the bonding films 12a and 12b is the same as the method for forming the bonding films 12a and 12b in the method of manufacturing the composite substrate by the first method.
  • the method of bonding the support substrate 11 and the group III nitride film donor substrate 13D is a method of bonding the support substrate 11 and the group III nitride film 13 in the method of manufacturing the composite substrate by the first method described above. It is the same.
  • the method for grinding the group III nitride film donor substrate 13D is not particularly limited, and examples thereof include grinding with a grindstone (surface grinding) and shot blasting.
  • a method for polishing the group III nitride film donor substrate 13D is not particularly limited, and examples thereof include mechanical polishing and CMP (chemical mechanical polishing).
  • the method for etching the group III nitride film donor substrate 13D is not particularly limited, and examples include wet etching with a chemical solution and dry etching such as RIE (reactive ion etching).
  • the manufacturing method of the group III nitride composite substrate 1 of the present embodiment is the main method of the group III nitride composite substrate 1 on the support substrate 11 side before, during or after the step of forming the group III nitride composite substrate 1. It includes a step of adjusting the root mean square roughness of the main surface 11n on the support substrate 11 side by polishing the surface 11n.
  • the mean value m S of the root mean square roughness of the main surface 11n on the support substrate 11 side is set to 0.3 nm or more and 20 nm or less, and the mean value m of the root mean square roughness of the main surface 11n on the support substrate 11 side.
  • the ratio s S / m S of the standard deviation s S of root mean square roughness for S can be 0.005 to 0.4.
  • the average value m S of the root mean square roughness of the main surface 11n on the support substrate 11 side is controlled by the viscosity of the abrasive, the abrasive grain size, the material and surface shape of the surface plate and the polishing pad, and the polishing conditions. can do.
  • the abrasive is preferably oily rather than aqueous, the viscosity of the abrasive is preferably higher, the abrasive grain size is preferably smaller, the surface plate and the polishing The pad is preferably soft.
  • the surface shape of the surface plate and the polishing pad is preferably a shape in which grooves for removing sludge are formed.
  • the groove for removing sludge refers to a groove having a relatively wide width and a wide pitch, which is formed to remove sludge and / or agglomerated abrasive grains at the polishing interface.
  • the polishing conditions are preferably low pressure and low peripheral speed.
  • the surface shape of the surface plate and the polishing pad is preferably a shape in which grooves for uniformizing the abrasive are formed.
  • the groove for uniformizing the abrasive means a groove having a relatively narrow width and a narrow pitch, which is formed in order to hold the abrasive uniformly at the center of the substrate.
  • the main surface 13m on the group III nitride film 13 side of the group III nitride composite substrate 1 is polished after the step of forming the group III nitride composite substrate. It is preferable to include a step of adjusting the root mean square roughness of the main surface 13m on the group III nitride film 13 side.
  • the root mean square roughness of the main surface 13m on the group III nitride film 13 side of the group III nitride composite substrate 1 is adjusted.
  • the average value m III-N is set to 0.4 nm or more and 10 nm or less, and the standard deviation s III of the root mean square roughness with respect to the mean value m III-N of the root mean square roughness of the main surface 13m on the group III nitride film 13 side.
  • the -N ratio sIII -N / mIII -N can be 0.008 or more and 0.5 or less.
  • the mean value m S of the root mean square roughness of the main surface 13m on the group III nitride film 13 side is the viscosity of the abrasive, the abrasive grain size, the material and surface shape of the surface plate and the polishing pad, and the polishing. It can be controlled according to conditions.
  • the viscosity of the abrasive is preferably high, the abrasive grain size is preferably small, and the surface plate and the polishing pad are preferably soft.
  • the surface shape of the surface plate and the polishing pad is preferably a shape in which grooves for removing sludge are formed.
  • the polishing conditions are preferably low pressure and low peripheral speed.
  • the surface shape of the surface plate and the polishing pad is preferably
  • the group III nitride compound substrate 1 has a small temperature distribution on the main surface 13m during the growth of the group III nitride layer. Since the nitride layer is grown, a high-performance group III nitride semiconductor device can be manufactured with a high yield.
  • the step of removing the support substrate 11 from the group III nitride composite substrate 1 after the step of growing the group III nitride layer 20 (FIG. 12A).
  • FIG. 12C the step of removing the support substrate 11 from the group III nitride composite substrate 1 after the step of growing the group III nitride layer 20
  • FIG. 12C the step of removing the support substrate 11 from the group III nitride composite substrate 1 after the step of growing the group III nitride layer 20
  • FIG. 12C the step of removing the support substrate 11 from the group III nitride composite substrate 1 after the step of growing the group III nitride layer 20
  • a step of attaching the device support substrate 40 to the group III nitride layer 20 (FIG. 12B) may be further included.
  • the method of manufacturing a group III nitride semiconductor device of the present embodiment can be performed by the following steps.
  • Step of preparing group III nitride composite substrate 1 is the same as the method for manufacturing group III nitride composite substrate 1 described above.
  • group III nitride layer growth process Referring to FIG. 12A, in the step of growing at least one group III nitride layer 20 on main surface 13m of group III nitride composite substrate 1 on the group III nitride film 13 side, group III The method for growing the nitride layer 20 is a liquid phase method such as a MOCVD method, MBE method, HVPE method, sublimation method, or other vapor phase method, or a flux method, from the viewpoint of epitaxially growing the group III nitride layer 20 with high crystal quality. Etc. are preferable, and the MOCVD method is particularly preferable.
  • group III nitride layer 20 differs depending on the type of group III nitride semiconductor device 4.
  • group III nitride semiconductor device 4 is an SBD (Schottky barrier diode)
  • group III nitride layer 20 is, for example, on main surface 13m of group III nitride film 13 of group III nitride composite substrate 1
  • the n + -GaN layer 28 carrier concentration is, for example, 2 ⁇ 10 18 cm ⁇ 3
  • the n ⁇ -GaN layer 29 carrier concentration is, for example, 5 ⁇ 10 15 cm ⁇ 3
  • At least one group III-nitride layer 20 is grown on the main surface 13m on the group-III nitride film 13 side of the group-III nitride composite substrate 1, thereby stacking the group III-nitride composite.
  • a substrate 2 is obtained.
  • the step of bonding the device support substrate 40 on the group III nitride layer 20 includes a Schottky electrode on the group III nitride layer 20 of the laminated group III nitride composite substrate 2.
  • the first electrode 30 and the pad electrode 33 are formed, the pad electrode 43 and the bonding metal film 44 are formed on the device support substrate 40, and the bonding metal film 44 is bonded to the pad electrode 33.
  • the laminated substrate 3 is obtained by this process.
  • a Si substrate, a Mo substrate, a CuW substrate, or the like is used for the device support substrate 40.
  • the step of removing support substrate 11 from group III nitride composite substrate 1 is performed by removing support substrate 11 of group III nitride composite substrate 1 from laminated substrate 3. .
  • the bonding film 12 can also be removed.
  • a method for removing the support substrate 11 and the bonding film 12 is not particularly limited, and grinding, etching, and the like are preferably used.
  • the support substrate 11 formed of a material that has low hardness, strength, and wear resistance and is easily cut can be removed by at least one of grinding and polishing from the viewpoint of reducing manufacturing costs.
  • the support substrate 11 formed of a material that dissolves in a chemical solution such as an acid or an alkali can be removed by etching with a chemical solution from the viewpoint of reducing the manufacturing cost.
  • the support substrate 11 has a larger number of ceramics or the like than a support substrate formed of a single crystal material such as sapphire, SiC, or a group III nitride (for example, GaN).
  • a support substrate made of a crystalline material is preferred.
  • the group III nitride film 13 can be removed.
  • the group III nitride layer 20 is easier to improve the crystallinity, lower the dislocation density, and adjust the carrier concentration than the group III nitride film 13.
  • polishing and etching can be used to remove the group III nitride film 13. From the viewpoint of easy control of the removal thickness, it is preferable to use dry etching.
  • the second electrode 50 is formed on the group III nitride film 13 exposed by removing the support substrate 11 and the bonding film 12 from the laminated substrate 3, and the device support substrate 40 is formed.
  • a device supporting substrate electrode 45 is formed on the substrate.
  • Reference invention II relates to a group III nitride composite substrate, a laminated group III nitride composite substrate, a group III nitride semiconductor device, and a method for manufacturing the same.
  • Group III nitrides such as GaN are suitably used for semiconductor devices because they have excellent semiconductor properties.
  • Japanese Patent Application Laid-Open No. 2009-126722 discloses a self-standing group III nitride substrate having a diameter of 25 mm to 160 mm and a thickness of 100 ⁇ m to 1000 ⁇ m as a semiconductor device substrate.
  • a self-standing GaN substrate having a thickness of 400 ⁇ m is disclosed.
  • the substrate when the substrate is thinned, the substrate is likely to be warped, and in the process of growing the epitaxial layer on the substrate, the crystal quality may be deteriorated or the substrate may be peeled off. In order to reduce the manufacturing yield, it has been difficult to increase the added value of semiconductor devices.
  • the reference invention II solves the above-mentioned problems, can be manufactured at low cost, and has a group III nitride composite substrate and a laminated layer III having a group III nitride film having a large diameter, a small thickness, and a high crystal quality. It is an object of the present invention to provide a group nitride composite substrate, a group III nitride semiconductor device, and a method for manufacturing the same.
  • Reference invention II is a group III nitride composite substrate having a diameter of 75 mm or more in which a support substrate and a group III nitride film having a thickness of 50 nm or more and less than 10 ⁇ m are bonded to each other.
  • III It is a group nitride composite substrate.
  • Reference Invention II is a Group III nitride composite substrate having a diameter of 75 mm or more obtained by bonding a supporting substrate and a Group III nitride film having a thickness of 50 nm or more and less than 10 ⁇ m, A bonding film is provided between the support substrate and the group III nitride film to bond the support substrate and the group III nitride film, and a shear bonding strength between the support substrate and the group III nitride film is 4 MPa or more and 40 MPa.
  • the group III nitride composite substrate has a bonding area ratio between the support substrate and the group III nitride film of 60% or more and 98% or less.
  • the ratio ⁇ III-N / ⁇ S of the thermal expansion coefficient ⁇ III-N of the III nitride film to the thermal expansion coefficient ⁇ S of the support substrate is 0.
  • the ratio t III-N / t S of the thickness t III-N of the group III nitride film to the thickness t S of the support substrate is 0.0002 or more and 0.02 or less. It can be.
  • the thermal conductivity lambda S of the supporting substrate may be a 3W ⁇ m -1 ⁇ K -1 or more 280W ⁇ m -1 ⁇ K -1 or less.
  • the Young's modulus E S of the supporting substrate may be a less 500GPa least 150 GPa.
  • the diameter of the group III nitride composite substrate can be 125 mm or more and 300 mm or less.
  • the group III nitride composite substrate according to the above aspect and at least one layer disposed on the main surface of the group III nitride composite substrate on the group III nitride film side are provided.
  • the group III nitride film in the group III nitride composite substrate according to the above aspect and at least one group III nitride disposed on the group III nitride film A group III nitride semiconductor device.
  • a step of preparing a Group III nitride composite substrate, and at least one Group III nitride layer on the Group III nitride film of the Group III nitride composite substrate are provided.
  • a method of manufacturing a group III nitride semiconductor device is provided.
  • a method for producing a group III nitride semiconductor device includes a step of further bonding a device support substrate on the group III nitride layer, a step of removing the support substrate from the group III nitride composite substrate, Can further be included.
  • a Group III nitride composite substrate having a Group III nitride film having a large diameter, a small thickness, and a high crystal quality that can be manufactured at low cost, a method for manufacturing the same, and a group III stacked layer A nitride composite substrate, a group III nitride semiconductor device, and a manufacturing method thereof can be provided.
  • the group III nitride composite substrate 1 which is a reference form of the reference invention II will be described.
  • the group III nitride composite substrate 1 is a substrate having a diameter of 75 mm or more obtained by bonding a support substrate 11 and a group III nitride film 13 having a thickness of 50 nm or more and less than 10 ⁇ m.
  • the group III nitride composite substrate 1 includes a bonding film 12 interposed between the support substrate 11 and the group III nitride film 13 and bonding the support substrate 11 and the group III nitride film 13.
  • the bonding film 12 has a thickness distribution of 2% to 40%.
  • This reference embodiment is a composite substrate in which a group III nitride film 13 is bonded to a support substrate 11 unlike a conventional free-standing group III nitride substrate.
  • the susceptor mounting the substrate is used. Since the heat is uniformly conducted in the film, an epitaxial layer having a good thickness distribution and a high crystal quality can be obtained, thereby increasing the manufacturing yield of semiconductor devices. .
  • the group III nitride composite substrate 1 has a shear bonding strength between the support substrate 11 and the group III nitride film 13 bonded by the bonding film 12 of 4 MPa or more and 40 MPa or less, and the support substrate. 11 and the group III nitride film 13 have a junction area ratio of 60% to 98%.
  • the bonding strength and the bonding area ratio between the support substrate 11 and the group III nitride film 13 are controlled to a specific range, the stress applied to the bonding film is relieved and the occurrence of warpage can be suppressed. Therefore, the manufacturing yield of semiconductor devices can be increased.
  • the group III nitride composite substrate 1 according to the present embodiment is characterized in the thickness distribution of the bonding film 12 as described above, the bonding strength between the support substrate 11 and the group III nitride film 13, and the characteristics of the bonding area ratio. By having at least one of these, the manufacturing yield of a semiconductor device can be improved. When the group III nitride composite substrate 1 has both characteristics, these effects work synergistically and the effects of the present invention can be further enhanced, which is particularly preferable.
  • the diameter of the group III nitride composite substrate 1 is 75 mm or more, preferably 100 mm or more, more preferably 125 mm or more, and more preferably 150 mm or more from the viewpoint of increasing the number of chips of a semiconductor device from one composite substrate. preferable. Further, the diameter of the group III nitride composite substrate 1 is preferably 300 mm or less, and more preferably 200 mm or less, from the viewpoint of reducing the warpage of the composite substrate and increasing the yield of the semiconductor device.
  • the bonding film 12 of the present embodiment absorbs and relaxes the unevenness of the bonding surface of the support substrate 11 and the group III nitride film 13 and increases the bonding strength between the support substrate 11 and the group III nitride film 13.
  • the bonding film 12 is not particularly limited as long as it can bond the support substrate 11 and the group III nitride film 13, but from the viewpoint of high bondability between the support substrate 11 and the group III nitride film 13, the SiO 2 film Si 3 N 4 film, TiO 2 film, Ga 2 O 3 film and the like are preferable.
  • the average thickness of the bonding film 12 is not particularly limited, but can be, for example, about 100 nm to 4 ⁇ m.
  • the thickness distribution of the bonding film 12 is 2% or more and 40% or less.
  • the “thickness distribution” is an index indicating the uniformity of the thickness of the bonding film 12.
  • the “thickness distribution” It is a value calculated by the following equation from the “maximum value t max ” and the “minimum thickness value t min ”.
  • the reference surface for the thickness of the bonding film can be, for example, the main surface 11 m of the support substrate 11.
  • the thickness measurement points are preferably at least 13, and the intervals between adjacent measurement points are preferably substantially uniform.
  • the thickness of the bonding film can be measured by a conventionally known optical interference film thickness meter or level difference meter.
  • the thickness of the bonding film can also be measured by observing a cross section perpendicular to the main surface of the bonding film 12 with a scanning electron microscope (SEM (Scanning Electron Microscope)) or the like.
  • the thickness distribution is less than 2%, when the epitaxial layer is grown, the heat conduction from the susceptor on which the substrate is mounted becomes non-uniform, and the central portion and the outer peripheral portion are deformed by warping the substrate in a concave shape. As a result, the quality difference of the semiconductor device cannot be grown, so that a high-quality epitaxial layer cannot be grown, the manufacturing yield of the semiconductor device is lowered, and the characteristics of the semiconductor device are lowered.
  • the thickness distribution exceeds 40%, the thin region of the bonding film and the region where the bonding film has disappeared (that is, the non-bonded region) increase. In this case as well, a high-quality epitaxial layer can be grown. Therefore, the manufacturing yield of semiconductor devices is reduced.
  • the thickness distribution of the bonding film of this reference embodiment is 2% or more and 40% or less.
  • the thickness distribution of the bonding film 12 occupies such a range the temperature distribution of the entire composite substrate is made uniform during epitaxial growth, and an excellent effect that a high-quality epitaxial layer having high crystal quality can be grown is shown.
  • the thickness distribution is more preferably 5% or more and 25% or less, and further preferably 7% or more and 16% or less.
  • the thickness distribution occupies such a range, the uniformity of the thickness of the bonding film can be further increased, and the crystal quality of the epitaxial layer formed on the group III nitride film 13 can be further enhanced. .
  • the thickness distribution of the bonding film is controlled to a desired range by appropriately adjusting the conditions when the surface of the bonding film is subjected to chemical mechanical polishing (hereinafter also referred to as “CMP (chemical mechanical polishing)”), for example.
  • CMP chemical mechanical polishing
  • Examples of such conditions include the material of the abrasive, the linear velocity of polishing, and the material of the polishing pad.
  • the shear bonding strength between the support substrate 11 and the group III nitride film 13 bonded by the bonding film 12 is 4 MPa or more and 40 MPa or less. Since the shear bonding strength occupies such a range, in the manufacturing process of the semiconductor device, the substrate is not peeled and the warpage of the substrate is alleviated, so that the manufacturing yield of the semiconductor device is remarkably improved.
  • Such shear bonding strength is more preferably 10 MPa or more and 30 MPa or less. In this case, it is preferable because the effect of reducing the warpage of the substrate tends to be further increased.
  • the shear bonding strength is less than 4 MPa, the bonding strength is not sufficient, and during the epitaxial growth, the substrate is peeled off due to the deformation of the substrate due to the heat conduction from the susceptor on which the substrate is mounted. Decreases.
  • the shear bonding strength exceeds 40 MPa, the stress applied to the bonding film 12 increases, and the warpage of the substrate tends to be promoted, and the manufacturing yield of the semiconductor device decreases.
  • the shear bond strength can be measured by a method based on JIS K 6850 “Tensile shear bond strength test method for rigid adherends” using a die shear tester, a tensile tester, or the like. . That is, a rectangular composite substrate (6 mm long ⁇ 8 mm wide) is prepared as a measurement sample, the support substrate side is faced down, the composite substrate is placed flat on the sample stage of the testing machine, and then 9 mm wide. Maximum shear load when a load is applied to a group III nitride film in a test jig in a direction parallel to the joint surface between the support substrate and the group III nitride film (ie, shear direction) and the joint surface is broken. Measure. Then, the shear joint strength is calculated by dividing the maximum shear load by the area of the joint surface (4.8 ⁇ 10 ⁇ 5 m 2 ).
  • a method for setting the shear bonding strength between the support substrate 11 and the group III nitride film 13 to 4 MPa or more and 40 MPa or less for example, a method of performing an annealing process before and after the support substrate 11 and the group III nitride film 13 are bonded is preferable.
  • the annealing conditions are preferably 400 ° C. or higher for 1 hour or longer in a nitrogen atmosphere, more preferably 600 ° C. or higher and 1 hour or longer in a nitrogen atmosphere, and particularly preferably 800 ° C. or higher in a nitrogen atmosphere. 1 hour or more.
  • the temperature condition for the annealing treatment is preferably 1200 ° C. or less, and the treatment time is preferably 48 hours or less.
  • the shear bonding strength can be controlled by the surface state (ie, surface roughness) of the bonding film before bonding.
  • the group III nitride composite substrate 1 of the present embodiment has a shear bonding strength between the support substrate 11 and the group III nitride film 13 of 4 MPa or more and 40 MPa or less, and the support substrate 11 and the group III nitride. It is necessary that the bonding area ratio with the film 13 is 60% or more and 98% or less.
  • the group III nitride composite substrate 1 of the present embodiment has a remarkable substrate warpage during epitaxial growth. Therefore, it is possible to grow a high-quality epitaxial layer with reduced flatness.
  • the junction area ratio is less than 60%, the substrate peeling occurs frequently in the epitaxial growth process and the semiconductor device manufacturing process, and the semiconductor device manufacturing yield decreases.
  • the bonding area ratio exceeds 98%, the stress applied to the bonding film 12 is increased, and the substrate is likely to be warped. In this case also, the manufacturing yield of the semiconductor device is lowered.
  • the “bonding area ratio” is a bonding defect (void or peeling) when the bonding film 12 that is a bonding surface between the support substrate 11 and the group III nitride film 13 is observed with an ultrasonic microscope. ) Is a value obtained by dividing the sum of the areas detected as) by the area of the main surface 11 m of the support substrate 11 and multiplying by 100.
  • Such a bonding area ratio is more preferably 70% or more and 90% or less, and further preferably 80% or more and 86% or less. When the bonding area ratio occupies this range, the stress applied to the bonding film 12 is greatly relaxed, and the manufacturing yield of the semiconductor device can be further increased.
  • a method of cleaning the surface of the bonding film 12 can be used. Specifically, a method of ultrasonically cleaning the surface of the bonding film 12 with water after removing dirt on the surface by CMP can be suitably used. Further, as a more preferable method, a method is used in which the stain on the surface of the bonding film 12 is removed by CMP, and then the stain is further removed by abrasive-free polishing cleaning using a chemical solution such as a potassium hydroxide (KOH) aqueous solution or water. You can also. For example, ultrasonic cleaning and abrasive-free polishing cleaning may be used in combination.
  • KOH potassium hydroxide
  • the bonding area ratio can be controlled more precisely by setting the thickness distribution of the bonding film 12 to 2% or more and 40% or less. That is, it is particularly preferable that the thickness distribution of the bonding film 12 is 2% or more and 40% or less and the bonding area ratio is 60% or more and 98% or less.
  • the support substrate 11 is not particularly limited as long as it can support the group III nitride film 13, but from the viewpoint of reducing the cost by reducing the amount of expensive group III nitride used, A different composition substrate having a different composition is preferable.
  • the support substrate 11 may be transparent or opaque, and can be appropriately selected according to the semiconductor device to be used.
  • Ceramic materials As a material constituting the support substrate 11, conventionally known ceramic materials, semiconductor materials, metal materials, polycrystalline materials, single crystal materials, and the like can be used.
  • sintered materials such as aluminum nitride (AlN), spinel (MgAl 2 O 4 ), mullite (3Al 2 O 3 .2SiO 2 to 2Al 2 O 3 .SiO 2 ), alumina (Al 2 O 3 ), graphite, etc.
  • single-crystal materials such as AlN and sapphire, metal materials such as molybdenum (Mo) and tungsten (W), and alloy materials such as copper-tungsten (Cu-W).
  • the support substrate 11 is preferably a substrate having corrosion resistance because it may be exposed to a high-temperature corrosive gas such as ammonia gas during epitaxial growth. Therefore, for example, various surface protective coatings may be attached to increase the corrosion resistance of the surface.
  • Thermal conductivity lambda s of the supporting substrate 11 is preferably 3W ⁇ m -1 ⁇ K -1 or more 280W ⁇ m -1 ⁇ K -1 or less, 5W ⁇ m -1 ⁇ K -1 or more 210W ⁇ m -1 ⁇ K- 1 or less is more preferable, and 10 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more and 120 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or less is more preferable.
  • the thermal conductivity ⁇ s of the support substrate 11 can be measured by a laser flash method.
  • Support substrate having a thermal conductivity ⁇ s of preferably 3 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more, more preferably 5 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more, more preferably 10 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more.
  • the group III nitride composite substrate 1 having the main surface 13m of the group III nitride film 13 of the group III nitride composite substrate 1 efficiently generates heat from the main surface of the susceptor when the group III nitride layer is grown. Can tell.
  • Thermal conductivity lambda s is preferably 280W ⁇ m -1 ⁇ K -1 or less, more preferably 210W ⁇ m -1 ⁇ K -1 or less, still more preferably not more than 120W ⁇ m -1 ⁇ K -1 support substrate
  • heat from the main surface of the susceptor is grown on the entire main surface of the group III nitride film 13 of the group III nitride composite substrate 1 when the group III nitride layer is grown. Can communicate evenly.
  • Thermal conductivity lambda s is 280W ⁇ m -1 ⁇ K -1 or less of the supporting substrate 11, than when the heat conductivity lambda s is used SiC substrate of approximately 300W ⁇ m -1 ⁇ K -1 as a supporting substrate,
  • the thermal conductivity of the support substrate 11 may be different from the thermal conductivity of the group III nitride film 13.
  • the support substrate 11 is preferably a substrate that is difficult to break.
  • the thermal expansion coefficient of the support substrate 11 is preferably approximate to the thermal expansion coefficient of the group III nitride film 13.
  • the support substrate 11 having such properties is suitable because the group III nitride film 13 is hardly broken even when the group III nitride composite substrate 1 is heated in an epitaxial growth process, a semiconductor device manufacturing process, or the like. .
  • the ratio ⁇ III-N / ⁇ S of the thermal expansion coefficient ⁇ III-N of the group III nitride film 13 to the thermal expansion coefficient ⁇ S of the support substrate 11 is preferably 0.75 or more and 1.25 or less. 0.8 to 1.2, more preferably 0.9 to 1.1, and particularly preferably 0.95 to 1.05.
  • the thickness of the support substrate 11 is not particularly limited, but from the viewpoint of suppressing warping or cracking of the group III nitride film 13 during heating, the thickness of the group III nitride film 13 is as follows. It is preferable to satisfy the relationship. That is, the ratio t III-N / t S of the thickness t III-N of the group III nitride film 13 to the thickness t S of the support substrate 11 is preferably 0.0002 or more and 0.02 or less.
  • the thermal expansion coefficient ratio ⁇ III-N / ⁇ S is 0.75 or more and 1.25 or less
  • the thickness ratio t III-N / t S is 0.0002 or more and 0.02 or less.
  • the thickness ratio t III-N / t S is more preferably 0.0005 or more and 0.02 or less.
  • Young's modulus of support substrate Young's modulus of support substrate 11, from the viewpoint of suppressing the occurrence of warpage when the group III nitride composite substrate 1 is heated, it is preferred that E S is less than or equal to 500GPa least 150 GPa. E S is tend to warp is likely to occur during the heating is less than 150 GPa, E S is not preferable because there is a tendency that cracks or cracks at the time of heating is likely to occur and more than 500 GPa. Here, a more preferred range of E S is not less than 200 GPa 350 GPa or less. Note that the Young's modulus of the support substrate 11 may be different from that of the group III nitride film 13.
  • examples of materials having a thermal expansion coefficient and Young's modulus close to those of the group III nitride film 13 include mullite (3Al 2 O 3 .2SiO 2 to 2Al 2 O 3 .SiO 2). 2 ), sintered body of mullite-YSZ (yttria stabilized zirconia), spinel (MgAl 2 O 4 ), Al 2 O 3 —SiO 2 composite oxide, and oxide, nitride, carbonate, etc.
  • a substrate formed by the added sintered body, a molybdenum (Mo) substrate, a tungsten (W) substrate, and the like can be given.
  • the elements contained in oxide, nitride and carbonate are Ca, Mg, Sr, Ba, Al, Sc, Y, Ce, Pr, Si, Ti, Zr, V, Nb, Ta, Cr, Mn Fe, Co, Ni, Cu, Zn and the like are preferable.
  • III-nitride film 13 is a film formed of a group III nitride, GaN film, In x Al y Ga 1- xy N film (0 ⁇ x, 0 ⁇ y , x + y ⁇ 1) such as AlN film Etc.
  • the thickness of the group III nitride film 13 is not less than 50 nm and less than 10 ⁇ m. When the thickness is less than 50 nm, the group III nitride film 13 tends to break, and it is difficult to grow a high-quality epitaxial layer thereon. Further, when the thickness is less than 10 ⁇ m, the amount of expensive group III nitride used can be suppressed, and the added value of the semiconductor device can be increased.
  • the crystal structure of the group III nitride film 13 is preferably a wurtzite structure from the viewpoint of obtaining a semiconductor device with good characteristics.
  • the above-mentioned predetermined plane orientation that is most approximate to the main surface 13m of the group III nitride film 13 is not limited as long as it is suitable for a desired semiconductor device, and is ⁇ 0001 ⁇ , ⁇ 10-10 ⁇ , ⁇ 11- 20 ⁇ , ⁇ 21-30 ⁇ , ⁇ 20-21 ⁇ , ⁇ 10-11 ⁇ , ⁇ 11-22 ⁇ , ⁇ 22-43 ⁇ , and their respective plane orientations are shifted by an angle of 15 ° or less ( It may be a plane orientation (off at 15 ° or less).
  • the surface orientation of the back surface of each of these surface orientations and the surface orientation shifted from the surface orientation of the back surface by an angle of 15 ° or less may be used. That is, the main surface 13m of the group III nitride film 13 may be any of a polar surface, a nonpolar surface, and a semipolar surface. Further, the main surface 13m of the group III nitride film 13 is preferably the ⁇ 0001 ⁇ plane and its back surface from the viewpoint that it is easy to increase the diameter, and from the viewpoint of suppressing the blue shift of the resulting light emitting device. 10 ⁇ planes, ⁇ 20-21 ⁇ planes and their backs are preferred.
  • the impurity metal atoms in the main surface 13m of the group III nitride film 13 are 3 ⁇ 10 13 atoms / cm 2 or less is preferable, 1 ⁇ 10 13 atoms / cm 2 or less is more preferable, and 1 ⁇ 10 12 atoms / cm 2 or less is more preferable.
  • Support substrate 11 includes mullite (3Al 2 O 3 .2SiO 2 to 2Al 2 O 3 .SiO 2 ), mullite-YSZ (yttria stabilized zirconia), spinel (MgAl 2 O 4 ), Al 2 O 3 —SiO 2 system.
  • mullite 3Al 2 O 3 .2SiO 2 to 2Al 2 O 3 .SiO 2
  • mullite-YSZ yttria stabilized zirconia
  • spinel MgAl 2 O 4
  • Al 2 O 3 —SiO 2 system Al 2 O 3 —SiO 2 system.
  • the group III nitride composite substrate 1 including a substrate such as a composite oxide sintered body is cleaned while suppressing elution of metal atoms from the support substrate 11, for example, scrub cleaning using a surfactant and pure water,
  • concentration of impurity metal atoms on the main surface 13m of the group III nitride film 13 is preferably reduced by two-fluid cleaning, megasonic cleaning, single-sided single-wafer cleaning using a low concentration acid or alkali, and the like.
  • group III nitride film 13 improves crystal quality of the group III nitride layer grown on the group III nitride film 13 and improve the characteristics of the semiconductor device to be formed.
  • Cl atoms are preferably 2 ⁇ 10 14 atoms / cm 2 or less
  • Si atoms are preferably 9 ⁇ 10 13 atoms / cm 2 or less.
  • the dislocation density of group III nitride film 13 is not particularly limited, but is preferably 1 ⁇ 10 8 cm ⁇ 2 or less from the viewpoint of reducing the leakage current of the semiconductor device.
  • the carrier concentration of group III nitride film 13 is not particularly limited, but is preferably 1 ⁇ 10 17 cm ⁇ 3 or more from the viewpoint of reducing the resistance of the semiconductor device.
  • the laminated group III nitride composite substrate 2 is disposed on the group III nitride composite substrate 1 of Reference Form II-1 and the main surface 13m of the group III nitride composite substrate 1 on the group III nitride film 13 side. And at least one group III nitride layer 20.
  • the group III nitride layer 20 is disposed on the main surface 13m on the group III nitride film 13 side of the group III nitride composite substrate 1, whereby the group III nitride layer 20 is a good quality epitaxial layer. Can grow as.
  • the group III nitride layer 20 disposed on the main surface 13m on the group III nitride film 13 side differs depending on the type of semiconductor device to be fabricated.
  • the group III nitride layer 20 includes, for example, an n-GaN layer 21, an n-In 0.05 Ga 0.95 N layer 22, an active layer 23 having a multiple quantum well structure, p-Al It can be composed of a 0.09 Ga 0.91 N layer 24 and a p-GaN layer 25.
  • the group III nitride layer can be composed of, for example, a GaN layer or an Al 0.2 Ga 0.8 N layer.
  • the group III nitride layer is, for example, an n + -GaN layer (with a carrier concentration of 2 ⁇ 10 18 cm ⁇ 3, for example). ), N ⁇ -GaN layer (carrier concentration is, for example, 5 ⁇ 10 15 cm ⁇ 3 ).
  • the group III nitride semiconductor device 4 includes a group III nitride film 13 in the group III nitride composite substrate of the reference form II-1 and at least one group III group nitride disposed on the group III nitride film 13.
  • a physical layer 20 is provided.
  • the group III nitride semiconductor device 4 of the present embodiment includes the group III nitride composite substrate 1 and the group III nitride layer 20 having an extremely high crystal quality disposed by growing on the group III nitride composite substrate 1. Therefore, it has high semiconductor characteristics.
  • the group III nitride layer 20 of the group III nitride semiconductor device 4 differs depending on the type of the group III nitride semiconductor device 4. As shown in FIG. 15, when the group III nitride semiconductor device 4 is a light emitting device, the group III nitride layer 20 includes, for example, an n-GaN layer 21, an n-In 0.05 Ga 0.95 N layer 22, a multiple quantum well.
  • the active layer 23 having the structure, the p-Al 0.09 Ga 0.91 N layer 24, and the p-GaN layer 25 can be used. As shown in FIG.
  • the group III nitride layer 20 includes, for example, a GaN layer 26 and an Al 0.2 Ga 0.8 N layer 27.
  • the source electrode 60, the drain electrode 70, the gate electrode 80, and the like can be formed on the Al 0.2 Ga 0.8 N layer 27.
  • the group III nitride layer is, for example, an n + -GaN layer (carrier concentration is 2 ⁇ 10 18 cm ⁇ 3 ), n ⁇ -GaN, for example. It can be composed of layers (carrier concentration is, for example, 5 ⁇ 10 15 cm ⁇ 3 ).
  • the group III nitride semiconductor device 4 preferably further includes at least one of a support substrate 11 and a device support substrate 40 for supporting the group III nitride layer 20.
  • the shape of the device support substrate 40 is not limited to a flat plate shape, and the group III nitride semiconductor device 4 can be formed by supporting the group III nitride film 13 and the group III nitride layer 20. As long as it can take any shape.
  • the step of preparing the group III nitride composite substrate 1 and the main surface 13m on the group III nitride film 13 side of the group III nitride composite substrate 1 Growing at least one group III-nitride layer 20.
  • Step of preparing a group III nitride composite substrate First, with reference to FIGS. 17 to 20, a process of preparing the group III nitride composite substrate 1 will be described.
  • the group III nitride composite substrate 1 In the step of preparing the group III nitride composite substrate 1, the group III nitride composite substrate 1 according to Reference Mode II-1 is manufactured.
  • the method of manufacturing the group III nitride composite substrate 1 is not particularly limited as long as the group III nitride film 13 is disposed on the main surface 11m side of the support substrate 11, and the following first to third methods are listed. It is done.
  • the base substrate 130 is then bonded. It is a method of removing.
  • the second method as shown in FIGS. 18 and 19, after the group III nitride film donor substrate 13D is bonded to the main surface 11m of the support substrate 11, the group III nitride film donor substrate 13D is bonded. In this method, the group III nitride film 13 is formed on the main surface 11m of the support substrate 11 by separating the surface at a predetermined depth.
  • the third method as shown in FIG.
  • the group III nitride film donor substrate 13D is bonded to the main surface 11m of the support substrate 11, the group III nitride film donor substrate 13D is opposite to the bonded surface.
  • the group III nitride film 13 is formed on the main surface 11m of the support substrate 11 by adjusting the thickness from the main surface on the side by decreasing the thickness by at least one of grinding, polishing and etching.
  • the group III nitride film 13 is bonded to the support substrate 11 by bonding the group III nitride film 13 with the bonding film 12 interposed between the main surface 11m of the support substrate 11. (See FIG. 17).
  • the method of bonding the group III nitride film donor substrate 13D to the support substrate 11 includes group III nitridation with the bonding film 12 interposed on the main surface 11m of the support substrate 11. Examples thereof include a method of bonding the physical film donor substrate 13D (see FIGS. 18 to 20).
  • FIG. 17 shows a method of forming the bonding film 12a on the support substrate 11 and forming the bonding film 12b on the group III nitride film 13 and bonding them together. Even if the bonding film 12 is formed only on the surface and bonded to the group III nitride film 13, there is no problem.
  • the method of manufacturing the composite substrate by the first method is not particularly limited, but the step of preparing the support substrate 11 from the viewpoint of efficiently manufacturing the composite substrate (FIG. 17A). ), A step of forming the group III nitride film 13 on the main surface 130n of the base substrate 130 (FIG. 17B), and the supporting substrate 11 and the group III nitride film 13 are bonded together to form the bonded substrate 1L. It is preferable to include a step of forming (FIG. 17C) and a step of removing the base substrate 130 from the bonding substrate 1L (FIG. 17D).
  • the process for preparing the support substrate 11 shown in FIG. 17A is not particularly limited.
  • MO x (x is an arbitrary positive real number) which is an oxide containing a metal element M, and an oxide containing Al polished Al 2 O 3, and the main surface of the substrate obtained by cutting the obtained sintered body of SiO 2 as an oxide are mixed and sintered at a predetermined molar ratio in a predetermined size containing Si is This can be done.
  • the step of forming the group III nitride film 13 on the main surface 130n of the base substrate 130 shown in FIG. 17B includes MOCVD (metal organic chemical vapor deposition), sputtering, and MBE (molecular beam epitaxy). , PLD (pulse laser deposition) method, HVPE (hydride vapor phase epitaxy) method, sublimation method, flux method, high nitrogen pressure solution method, etc.
  • the step of forming the bonding substrate 1L by bonding the supporting substrate 11 and the group III nitride film 13 is a sub-process for forming the bonding film 12a on the main surface 11m of the supporting substrate 11.
  • the bonding film 12a formed on the main surface 11m of the support substrate 11 and the bonding film 12b formed on the main surface 13n of the group III nitride film 13 formed on the main surface 130n of the base substrate 130 are pasted.
  • the bonding film 12a and the bonding film 12b bonded together are integrated by bonding to form the bonding film 12, and the group III nitride film 13 formed on the support substrate 11 and the base substrate 130 is formed. Are bonded with the bonding film 12 interposed therebetween, whereby the bonded substrate 1L is formed.
  • the method of forming the bonding films 12a and 12b is not particularly limited, but from the viewpoint of suppressing the film formation cost, a sputtering method, a vapor deposition method, a CVD (chemical vapor deposition) method, or the like is preferably performed.
  • the method of bonding the bonding film 12a and the bonding film 12b is not particularly limited, and the bonding surface is cleaned and bonded as it is, and then heated to about 600 ° C. to 1200 ° C. and bonded.
  • Surface activated bonding method in which the bonded surface is cleaned and activated with plasma or ions, and then bonded in a low temperature atmosphere of room temperature (for example, 25 ° C.) to 400 ° C.
  • the bonded surface is cleaned with a chemical solution and pure water.
  • a high pressure bonding method in which a high pressure of about 0.1 MPa to 10 MPa is applied and the bonded surface is cleaned with a chemical solution and pure water, and then in a high vacuum atmosphere of about 10 ⁇ 6 Pa to 10 ⁇ 3 Pa.
  • a high vacuum bonding method in which bonding is performed by, for example, is preferable.
  • the bonding strength can be further increased by raising the temperature to about 600 ° C. to 1200 ° C. after the bonding.
  • the effect of increasing the bonding strength by raising the temperature to about 600 ° C. to 1200 ° C. after the bonding is large.
  • the step of removing the base substrate 130 from the bonding substrate 1L shown in FIG. 17D is not particularly limited, but from the viewpoint of efficiently removing the base substrate 130, the base substrate 130 is etched with an etchant such as hydrofluoric acid.
  • an etchant such as hydrofluoric acid
  • a method of dissolving and removing the base substrate 130 and a method of removing the ground substrate from the exposed main surface side by grinding or polishing are preferably performed.
  • a protective member 140 for protecting the support substrate 11 is preferably formed around the support substrate 11.
  • the group III including the support substrate 11, the bonding film 12 disposed on the main surface 11 m of the support substrate 11, and the group III nitride film 13 disposed on the main surface of the bonding film 12.
  • a nitride composite substrate 1 is obtained.
  • the method of manufacturing the composite substrate by the second method shown in FIGS. 18 and 19 is not particularly limited, but from the viewpoint of efficiently manufacturing the composite substrate, the support substrate 11 and the group III nitride film donor substrate 13D are used. And a main surface 13n which is a bonding surface of the group III nitride film donor substrate 13D of the bonding substrate 1L (FIG. 18A and FIG. 19A). It is preferable to include a step (FIG. 18 (B) and FIG. 19 (B)) of separating at a surface located at a predetermined depth inside.
  • the method of separating the main surface 13n which is the bonding surface of the group III nitride film donor substrate 13D of the bonding substrate 1L, on the surface located at a predetermined depth, but efficient separation is possible. From the viewpoint of performing, an ion implantation method as shown in FIG. 18 and a cutting method as shown in FIG. 19 are preferable.
  • the ion implantation method shown in FIG. 18 will be described below.
  • the bonding film 12a is formed on the main surface 11m of the supporting substrate 11.
  • the ions I implanted into the group III nitride film donor substrate 13D of the group III nitride composite substrate 1 of the bonding substrate 1L are gasified in a subsequent process to cause rapid volume expansion, thereby causing a group III nitride film.
  • the donor substrate 13D is separated at the ion implantation region 13i.
  • the group III nitride film donor substrate 13D is a donor substrate that provides the group III nitride film 13 by separation in a later step.
  • the method of forming the group III nitride film donor substrate 13D is the same as the method of forming the group III nitride film 13 in the method of manufacturing the composite substrate by the first method.
  • the method for forming the bonding films 12a and 12b is the same as the method for forming the bonding films 12a and 12b in the method of manufacturing the composite substrate by the first method.
  • the method of bonding the support substrate 11 and the group III nitride film donor substrate 13D is a method of bonding the support substrate 11 and the group III nitride film 13 in the method of manufacturing the composite substrate by the first method described above. It is the same.
  • the ions I implanted into the group III nitride film donor substrate 13D are not particularly limited, but the viewpoint of suppressing the quality deterioration of the group III nitride film 13 and the gasification of the ions I implanted into the ion implantation region 13i. From the viewpoint of making the temperature lower than the decomposition temperature of the group III nitride film 13, ions of atoms having a small mass, such as hydrogen ions and helium ions, are preferable.
  • ions formed at a predetermined depth from the main surface, which is the bonding surface of the group III nitride film donor substrate 13D of the bonding substrate 1L by applying heat or applying ultrasonic waves. This is performed by gasifying the ions I implanted into the implantation region 13i and causing rapid volume expansion.
  • the bonding substrate 1L is separated from the main surface 13n, which is a bonding surface of the group III nitride film donor substrate 13D, at a surface located at a predetermined depth inside, and the supporting substrate 11 and the supporting substrate 11 are separated.
  • the group III nitride composite substrate 1 including the bonding film 12 disposed on the main surface 11m of the metal and the group III nitride film 13 disposed on the main surface of the bonding film 12 is obtained.
  • FIG. 19A in the step of bonding the supporting substrate 11 and the group III nitride film donor substrate 13D to form the bonding substrate 1L, the bonding film 12a is formed on the main surface 11m of the supporting substrate 11.
  • a sub-process FIG. 19A1
  • the bonding film 12a and the bonding film 12b bonded together are integrated by bonding to form the bonding film 12, and the support substrate 11 and the group III nitride film donor substrate 13D are bonded to the bonding film 12.
  • the bonding substrate 1L is formed by interposing.
  • the step of separating the main surface 13n which is the bonding surface of the group III nitride film donor substrate 13D of the bonding substrate 1L shown in FIG. This is performed by cutting group III nitride film donor substrate 13D along a surface located at a predetermined depth from main surface 13n, which is a bonding surface of group III nitride film donor substrate 13D.
  • a method for cutting the group III nitride film donor substrate is not particularly limited, and a wire saw, an inner peripheral blade, an outer peripheral blade, or the like is preferably used.
  • the bonding substrate 1L is separated from the main surface 13n, which is a bonding surface of the group III nitride film donor substrate 13D, at a surface located at a predetermined depth inside, and the supporting substrate 11 and the supporting substrate 11 are separated.
  • the group III nitride composite substrate 1 including the bonding film 12 disposed on the main surface 11m of the metal and the group III nitride film 13 disposed on the main surface of the bonding film 12 is obtained.
  • the method of manufacturing the composite substrate by the third method is not particularly limited, but from the viewpoint of efficiently manufacturing the composite substrate, the support substrate 11 and the group III nitride film donor substrate 13D And a main surface 13m opposite to the main surface 13n which is a bonding surface of the group III nitride film donor substrate 13D of the bonding substrate 1L (FIG. 20A). And a step of performing at least one of grinding, polishing, and etching (FIG. 20B).
  • the bonding film 12a is formed on the main surface 11m of the supporting substrate 11.
  • a sub-process (FIG. 20A1), a sub-process (FIG. 20A2) for forming the bonding film 12b on the main surface 13n of the group III nitride film donor substrate 13D, and a main surface 11m of the support substrate 11.
  • a sub-process (FIG. 20 (A3)) for bonding the bonding film 12a formed thereon and the bonding film 12b formed on the main surface 13n of the group III nitride film donor substrate 13D.
  • the bonding film 12a and the bonding film 12b bonded together are integrated by bonding to form the bonding film 12, and the support substrate 11 and the group III nitride film donor substrate 13D are bonded to the bonding film 12.
  • the bonding substrate 1L is formed by interposing.
  • the group III nitride film donor substrate 13D is a donor substrate that provides the group III nitride film 13 by separation in a later step, as in the second method.
  • the method of forming the group III nitride film donor substrate 13D is the same as the method of forming the group III nitride film 13 in the method of manufacturing the composite substrate by the first method.
  • the method for forming the bonding films 12a and 12b is the same as the method for forming the bonding films 12a and 12b in the method of manufacturing the composite substrate by the first method.
  • the method of bonding the support substrate 11 and the group III nitride film donor substrate 13D is a method of bonding the support substrate 11 and the group III nitride film 13 in the method of manufacturing the composite substrate by the first method described above. It is the same.
  • At least one of grinding, polishing, and etching is performed from the main surface 13m opposite to the main surface 13n that is the bonding surface of the group III nitride film donor substrate 13D of the bonding substrate 1L. Since the group III nitride film 13 having a desired thickness is formed by reducing the thickness of the group III nitride film donor substrate 13D by the process, the support substrate 11 and the main surface 11m of the support substrate 11 are arranged. Thus, the group III nitride composite substrate 1 including the bonded film 12 and the group III nitride film 13 disposed on the main surface of the bonding film 12 is obtained.
  • the method of grinding the group III nitride film donor substrate 13D is not particularly limited, and examples thereof include grinding with a grindstone (surface grinding) and shot blasting.
  • the method for polishing the group III nitride film donor substrate 13D is not particularly limited, and examples thereof include mechanical polishing and chemical mechanical polishing.
  • the method for etching the group III nitride film donor substrate 13D is not particularly limited, and examples include wet etching with a chemical solution and dry etching such as RIE (reactive ion etching).
  • the group III nitride composite substrate 1 can be manufactured as described above.
  • the group III nitride composite substrate 1 manufactured as described above has an excellent effect that a high-quality epitaxial layer can be grown thereon and the manufacturing yield of semiconductor devices is improved.
  • the method for manufacturing a group III nitride semiconductor device includes a step of preparing the group III nitride composite substrate 1 described above. As shown in FIG. A step (FIG. 21A) of growing at least one group III nitride layer 20 on the main surface 13m on the material film 13 side is included.
  • the manufacturing method of the group III nitride semiconductor device of the present embodiment is high because the group III nitride layer is grown on the main surface 13m of the group III nitride composite substrate 1 when the group III nitride layer is grown.
  • a high-performance group III nitride semiconductor device can be manufactured with a yield.
  • a step of bonding a device support substrate 40 onto the group III nitride layer 20 (FIG. 21B) and a support from the group III nitride composite substrate 1 And a step of removing the substrate 11 (FIG. 21C).
  • the method of manufacturing a group III nitride semiconductor device of the present embodiment can be performed by the following steps.
  • the method for growing the layer 20 includes a vapor phase method such as MOCVD method, MBE method, HVPE method, sublimation method, and liquid phase method such as a flux method from the viewpoint of epitaxial growth of the group III nitride layer 20 having high crystal quality.
  • the MOCVD method is particularly preferable.
  • the configuration of group III nitride layer 20 differs depending on the type of group III nitride semiconductor device 4.
  • the group III nitride layer 20 includes, for example, an n-GaN layer 21, an n-In 0.05 Ga 0.95 N layer 22, a multiple layer on the group III nitride film 13.
  • An active layer 23 having a quantum well structure, a p-Al 0.09 Ga 0.91 N layer 24, and a p-GaN layer 25 can be grown in this order.
  • the laminated group III nitride composite substrate 2 is obtained by growing at least one group III nitride layer 20 on the group III nitride film 13 of the group III nitride composite substrate 1. .
  • the first electrode 30 and the group III nitride layer 20 of the laminated group III nitride composite substrate 2 are formed.
  • the pad electrode 33 is formed, the pad electrode 43 and the bonding metal film 44 are formed on the device support substrate 40, and the bonding metal film 44 is bonded to the pad electrode 33.
  • the laminated substrate 3 is obtained by this process.
  • a Si substrate, a CuW substrate, or the like is used for the device support substrate 40.
  • the step of removing support substrate 11 from group III nitride composite substrate 1 shown in FIG. 21C is performed by removing support substrate 11 of group III nitride composite substrate 1 from laminated substrate 3. Thereby, the bonding film 12 interposed between the support substrate 11 and the group III nitride film 13 can also be removed at the same time.
  • the method for removing the support substrate 11 and the bonding film 12 is not particularly limited, and grinding, etching, and the like are preferably used.
  • the support substrate 11 formed of a material that has low hardness, strength, and wear resistance and is easily cut can be removed by at least one of grinding and polishing from the viewpoint of reducing manufacturing costs.
  • the support substrate 11 formed of a material that dissolves in a chemical solution such as acid or alkali can be removed by etching with a chemical solution from the viewpoint of low manufacturing cost.
  • the support substrate 11 has a larger number of ceramics or the like than a support substrate formed of a single crystal material such as sapphire, SiC, or a group III nitride (for example, GaN).
  • a support substrate made of a crystalline material is preferred.
  • a second electrode 50 is formed on the group III nitride film 13 exposed by removing the support substrate 11 and the bonding film 12 from the multilayer substrate 3 shown in FIG.
  • a support substrate electrode 45 is formed.
  • a group III nitride semiconductor device having extremely good characteristics can be manufactured with a high yield.
  • support substrate 11 is a mullite substrate having a diameter of 75 mm and a thickness of 400 ⁇ m (60% by mole of Al 2 O 3 and 40% of SiO 2 with respect to the whole substrate). Mol%) was prepared.
  • the support substrate 11 had a thermal conductivity of 3 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 and a Young's modulus of 200 GPa.
  • the main surfaces 11m and 11n on both sides of the support substrate 11 were subjected to rough polishing with a copper-based surface plate, pre-finishing polishing with a tin surface plate, and final polishing with a nonwoven fabric polishing pad, using diamond slurry as an abrasive.
  • an SiO 2 film having a thickness of 800 nm is grown by PE-CVD (plasma assisted chemical vapor deposition) on the main surface 11 m of the support substrate 11 after the final polishing, and the SiO 2 film is grown at 800 ° C. in a nitrogen atmosphere.
  • the main surface 12am After annealing for a period of time, the main surface 12am has a root mean square roughness of 0.3 nm or less by CMP (chemical mechanical polishing) using a slurry containing colloidal silica abrasive grains having an average particle diameter of 40 nm and a pH of 10.
  • a 400 nm thick bonding film 12a having a mirror surface was formed.
  • a GaN crystal body having a diameter of 75 mm and a thickness of 8 mm is prepared as the group III nitride film donor substrate 13D, and the bonded surface of the group III nitride film donor substrate 13D is mechanically polished.
  • an SiO 2 film having a thickness of 800 nm was grown thereon by PE-CVD, and annealed at 800 ° C. for 1 hour in a nitrogen atmosphere.
  • CMP CMP-free polishing with KOH aqueous solution, polishing with pure water, and pure water using ultrasonic waves having a frequency in the megasonic band of 500 kHz to 5 MHz. Ultrasonic cleaning was performed.
  • the group III nitride film donor substrate 13D was grown by HVPE using a GaAs substrate as a base substrate.
  • Group III nitride film donor substrate 13D had an n-type conductivity, a dislocation density of 1 ⁇ 10 8 cm ⁇ 2 , and a carrier concentration of 1 ⁇ 10 17 cm ⁇ 3 .
  • the support substrate 11 and the group III nitride film 13 are bonded to each other by bonding the main surface 12am of the bonding film 12a and the main surface 12bn of the bonding film 12b.
  • a bonded substrate 1L bonded together was obtained.
  • the bonding substrate 1L was annealed by raising the temperature to 800 ° C. in a nitrogen gas atmosphere to increase the bonding strength.
  • the group III nitride film donor substrate 13D of the bonding substrate 1L is a wire saw on the surface located at a depth of 40 ⁇ m from the bonding surface with the bonding film 12.
  • the group III nitride composite substrate 1 in which the support substrate 11 and the GaN film as the group III nitride film 13 were bonded with the bonding film 12 interposed therebetween was obtained.
  • As the wire a fixed abrasive wire having a wire diameter of 120 ⁇ m and electrodeposited with diamond abrasive grains was used.
  • the cutting method is a method in which the wire is swung and the group III nitride film donor substrate 13D is vibrated in synchronization therewith.
  • the resistance coefficient of wire saw cutting was 4200N.
  • the group III nitride film 13 of the group III nitride composite substrate 1 was subjected to mechanical polishing and CMP. Using diamond slurry as an abrasive, rough polishing was performed with a copper surface plate, and pre-finish polishing was performed with a tin surface plate.
  • finish polishing was performed with a colloidal silica slurry having a pH of 11 (a slurry having a pH of 11 containing colloidal silica abrasive grains having an average particle diameter of 80 ⁇ m) and a nonwoven fabric polishing pad.
  • the composite substrate is attached to the apparatus by CMP by preliminarily correcting the shape of the substrate by vacuum chuck adsorption and then adsorbing and fixing to the apparatus.
  • the pre-finish polishing is performed under the condition that the operation coefficient FE is 4 ⁇ 10 ⁇ 17 m 2 / s to 1 ⁇ 10 ⁇ 16 m 2 / s, and the final polishing is performed with the operation coefficient FE of 4 ⁇ 10 ⁇ 14 m 2 / s to 1. This was carried out under the condition of ⁇ 10 ⁇ 13 m 2 / s.
  • the thickness of the group III nitride film 13 after final polishing was 0.3 ⁇ m.
  • III-nitride films ratio s t / m t of the standard deviation s t thickness relative to the thickness of the average value m t of 13, and the Group III nitride layer the ratio s o / m o of the standard deviation s o of the absolute value of the off-angle with respect to the average value m o of the absolute value of the off-angle with respect to a predetermined plane surface of the orientation of the principal surface 13m of 13 are summarized in Table 1.
  • a center point P C four outer points P O on four directions perpendicular to the center point P C and 5 mm inside the outer edge, one center point P C and four outer points P O.
  • a group III nitride layer 20 having a thickness of 2 ⁇ m is formed on the main surface 13m of the group III nitride composite substrate 1 on the group III nitride film 13 side by MOCVD.
  • An n + -GaN layer 28 (carrier concentration is 2 ⁇ 10 18 cm ⁇ 3 ) and a 7 ⁇ m thick n ⁇ -GaN layer 29 (carrier concentration is 5 ⁇ 10 15 cm ⁇ 3 ) are epitaxially grown in this order, so that the layer III A group nitride composite substrate 2 was obtained.
  • an EB (electron beam) evaporation method is performed on the n ⁇ -GaN layer 29 that is the uppermost layer of the group III nitride layer 20 of the laminated group III nitride composite substrate 2.
  • a Ni layer having a thickness of 4 nm and an Au layer having a thickness of 200 nm were sequentially formed and alloyed by annealing to form the first electrode 30 which is a Schottky electrode.
  • the diameter of the first electrode 30 was 200 ⁇ m.
  • a pad electrode 33 was formed on the first electrode 30 by sequentially forming a Ti layer having a thickness of 200 nm, a Pt layer having a thickness of 100 nm, and an Au layer having a thickness of 1000 nm by an EB vapor deposition method.
  • an Mo substrate was prepared as the device support substrate 40, and an AuSn solder film was formed as the bonding metal film 44 on one main surface of the device support substrate 40.
  • a device support substrate electrode 46 is formed by sequentially forming a Ti layer having a thickness of 200 nm, a Pt layer having a thickness of 100 nm, and an Au layer having a thickness of 1000 nm by EB vapor deposition. Formed.
  • the laminated metal substrate 3 was obtained by bonding the bonding metal film 44 to the pad electrode 33.
  • the support substrate 11 and the bonding film 12 were removed from the laminated substrate 3 by etching.
  • Hydrofluoric acid was used for etching.
  • a Ti layer having a thickness of 20 nm is formed on the group III nitride film 13 exposed by removing the support substrate 11 and the bonding film 12 from the laminated substrate 3 by EB vapor deposition. Then, an Al layer having a thickness of 200 nm and an Au layer having a thickness of 300 nm were sequentially formed and annealed to form the second electrode 50 that is an ohmic electrode. Thus, SBD was obtained as the group III nitride semiconductor device 4.
  • the yield of the SBD that is the obtained group III nitride semiconductor device 4 was calculated as follows. In other words, the current-voltage characteristics in the reverse direction of SBD are measured, and those that comply with the standard with a breakdown voltage of 250 V or higher are regarded as non-defective products, those that do not conform are regarded as defective products, and non-defective products are classified as surface products and defective products. The percentage obtained by dividing the total was used as the yield rate.
  • the yields of group III nitride semiconductor devices are summarized in Table 1.
  • a Group III nitride composite having a support substrate and a Group III nitride film having a thickness of 0.3 ⁇ m (this value is 50 nm or more and less than 10 ⁇ m) and having a diameter of 75 mm (this value is 75 mm or more).
  • the ratio s t / m t of the standard deviation s t of the thickness to the average value m t of the thickness of the III nitride film is 0.01 to 0.5, III nitride layer the ratio s o / m o of the standard deviation s o of the absolute value of the off angle is 0.005 to 0.6 with respect to the average value m o of the absolute value of the off angle relative to the plane of the predetermined surface orientation of the principal surface of the
  • the yield of group III nitride semiconductor devices fabricated using group III nitride composite substrates was high.
  • Example B 8 10, and 12
  • the diameter is varied between 75 mm and 150 mm.
  • the group III nitride film donor substrate 13D of the bonding substrate 1L is connected to the bonding film 12.
  • ICP-RIE inductively coupled plasma-reactive ion etching
  • the substrate 13D was separated at the ion implantation region 13i and further dry-etched by ICP-RIE, and the main surface 1 on the group III nitride film 13 side it was finish polishing action factor FE of 5.0 ⁇ 10 -14 m 2 / s of m, varying the thickness of the III nitride film 13 after the finish polishing between 0.03 .mu.m ⁇ 9.5 .mu.m
  • a group III nitride composite substrate 1 and a group III nitride semiconductor device 4 were manufactured in the same manner as in Example A except that the group III nitride composite substrate 1 was manufactured.
  • the group III nitride composite substrate 1, III-ratio s t / m t of the standard deviation s t thickness relative to the average value m t of the thickness of the nitride film 13, and the Group III by calculating the ratio s o / m o of the standard deviation s o of the absolute value of the off-angle with respect to the average value m o of the absolute value of the off-angle with respect to a predetermined plane surface of the orientation of the principal surface 13m of the nitride film 13, the table It was summarized in 2. Further, in the same manner as in Example A, the yield of the group III nitride semiconductor device 4 was calculated and summarized in Table 2.
  • Example C As a semiconductor device substrate, a group III nitride self-supporting substrate, and a diameter of 75 mm to 150 mm were varied, and the final polishing action coefficient FE of the main surface 13 m on the group III nitride film 13 side was 5.5 ⁇ 10 ⁇ .
  • the group III nitride free-standing substrate was made into a substrate having a diameter and thickness shown in Tables 3 and 4 by cutting and polishing a GaN crystal body having a predetermined diameter with a wire saw.
  • a group III nitride semiconductor device was produced in the same manner as in Example A except that the above group III nitride composite substrate and group III nitride free-standing substrate were used.
  • a Group III nitride semiconductor device was manufactured using a Group III nitride composite substrate
  • a Group III nitride semiconductor device was manufactured using a Group III nitride free-standing substrate.
  • the obtained group III nitride composite substrate, warpage W III-N, the ratio W III-N / D, group III ratio s of the standard deviation s t thickness relative to the average value m t of the thickness of the nitride film 13 t / m t, and the group III standard deviation of the absolute value of the off-angle with respect to the average value m o of the absolute value of the off-angle with respect to a predetermined plane surface of the orientation of the principal surface 13m of the nitride film 13 s o ratio s o / m o was calculated and summarized in Tables 3 and 4.
  • the group III nitride freestanding substrate, warpage W III-N, the ratio W III-N / D, the ratio s of the standard deviation s t of the thickness to the average value m t of the thickness of the III-nitride self-supporting substrate t / m t , and the absolute value of the off angle with respect to the average value m o of the absolute value of the off angle with respect to the surface of the predetermined surface orientation of the main surface 13m on the surface (front side) of the group III nitride free-standing substrate by calculating the ratio s o / m o of the standard deviation s o, summarized in Table 4. Further, in the same manner as in Example A, the yield of group III nitride semiconductor device 4 was calculated and summarized in Tables 3 and 4.
  • Example D Referring to FIGS. 8 and 12, Al 2 O 3 —SiO 2 composite oxide substrate having a diameter of 100 mm is used as supporting substrate 11 (78% by mass of Al 2 O 3 and 22% by mass of SiO 2 with respect to the entire substrate). And a group III nitride film donor substrate 13D doped with O (oxygen) atoms and Si (silicon) atoms, having no dislocation concentration region, and having a uniform dislocation density of 5 ⁇ 10 6 cm ⁇ 2 and carriers.
  • the group III nitride composite substrate 1 after the finish polishing the ratio s of the thickness of the standard deviation s t to the average value m t of the thickness of the III nitride film 13 t / m t , and calculates the ratio s o / m o of the standard deviation s o of the absolute value of the off-angle with respect to the average value m o of the absolute value of the off-angle with respect to a predetermined plane surface of the orientation of the main 13m of the III nitride film 13
  • Table 5 The results are summarized in Table 5.
  • the average value m III-N of the root mean square roughness of the main surface 13m on the group III nitride film 13 side, and the main value on the group III nitride film 13 side The ratio s III-N / m III-N of the standard deviation s III-N of the root mean square roughness to the mean value m III-N of the mean square root roughness of the surface 13 m was calculated and summarized in Table 5.
  • the ratio s III-N / m III of the standard deviation s III-N of the root mean square roughness to the mean value m III-N of the root mean square roughness and the mean value m III-N of the root mean square roughness On the main surface 13m on the group III nitride film 13 side shown in FIG. 2, -N is located on one central point P C and four directions perpendicular to the central point P C and 5 mm inside from the outer edge.
  • the four outer points P O , the four points located in the middle of one central point P C and the four outer points P O, and the four points located in the middle of the four outer points P O are combined. It was calculated from the root-mean-square roughness of the main surface 13m of group III nitride film 13 side at the measurement point P of 13 points consisting of the eight intermediate point P M.
  • Example E Referring to FIGS. 8 and 12, the support as the substrate 11, Al 2 O 3 and a chemical composition ratio of SiO 2 is two different mullite substrate and Al 2 O 3 and a chemical composition ratio of SiO 2 is six different
  • the Al 2 O 3 —SiO 2 composite oxide substrate was used, and the final polishing action coefficient FE of the main surface 13m on the group III nitride film 13 side was 4.5 ⁇ 10 ⁇ 14 m 2 / s.
  • the ratio t III-N / t S of the thickness t III-N of the group III nitride film 13 to the thickness t S of the support substrate 11 after finish polishing is between 5 ⁇ 10 ⁇ 5 and 3 ⁇ 10 ⁇ 2 .
  • a group III nitride composite substrate 1 and a group III nitride semiconductor device 4 were produced in the same manner as in Example A, except that the diameter was varied and the diameter was varied between 75 mm and 150 mm.
  • the group III nitride composite substrate 1, III-ratio s t / m t of the standard deviation s t thickness relative to the average value m t of the thickness of the nitride film 13, and the Group III by calculating the ratio s o / m o of the standard deviation s o of the absolute value of the off-angle with respect to the average value m o of the absolute value of the off-angle with respect to a predetermined plane surface of the orientation of the principal surface 13m of the nitride film 13, the table 6 and Table 7.
  • the thermal expansion coefficient ⁇ S of the support substrate 11 and the thermal expansion coefficient ⁇ III-N of the group III nitride film 13 are measured by a thermomechanical analyzer, and the group III nitride film with respect to the thermal expansion coefficient ⁇ S of the support substrate is measured.
  • the ratio ⁇ III-N / ⁇ S of the thermal expansion coefficient ⁇ III-N was calculated, and the results are summarized in Table 6 and Table 7.
  • the thickness t S of the support substrate 11 and the thickness t III-N of the group III nitride film 13 are measured by a digital indicator and reflectance spectroscopy, respectively, and the group III nitride with respect to the thickness t S of the support substrate 11 is measured.
  • the group III nitride film has a thickness of 50 nm or more and less than 10 ⁇ m, a diameter of 75 mm to 150 mm, and the average thickness of the group III nitride film 13 value ratio s t / m t of the standard deviation s t of thickness to m t is 0.4 (this value is 0.01 to 0.5), and a predetermined surface of the main surface of the II-nitride film off angle ratio s o / m o of the standard deviation s o of the absolute value of the off-angle with respect to the average value m o of the absolute value of 0.5 with respect to the surface of the orientation at (this value is
  • the support substrate 11 When the ratio ⁇ III-N / ⁇ S of the thermal expansion coefficient ⁇ III-N of the group III nitride film 13 to the thermal expansion coefficient ⁇ S of the support substrate 11 is 0.75 or more and 1.25 or less, the support substrate If the ratio t III-N / t S of thickness t III-N III nitride layer to the thickness t S of 11 is 2 ⁇ 10 -2 or less 1 ⁇ 10 -4 or more, fabricated III The yield of group nitride semiconductor devices was high.
  • Example F an Al 2 O 3 —SiO 2 composite oxide substrate (78% by mass of Al 2 O 3 and 22% by mass of SiO 2 with respect to the entire substrate) is used as the support substrate 11.
  • the effect coefficient FE of final polishing of the main surface 13m on the group III nitride film 13 side was set to 8.2 ⁇ 10 ⁇ 14 m 2 / s, and the group III whose diameter was varied between 75 mm and 150 mm.
  • a group III nitride composite substrate 1 and a group III nitride semiconductor device were prepared in the same manner as in Example A except that the nitride composite substrate 1 was manufactured and the obtained group III nitride composite substrate 1 was further washed.
  • the support substrate 11 had a thermal conductivity of 4 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 and a Young's modulus of 220 GPa, and the cleaning method used a surfactant and pure water. Scrub cleaning used, two-fluid cleaning using pure water, and This was performed by combining megasonic cleaning with pure water.
  • the average value m S of the root mean square roughness of the main surface 11n on the support substrate 11 side of the group III nitride composite substrate 1 was calculated and summarized in Table 8. Further, with respect to the group III nitride composite substrate 1, the concentration of impurity metal atoms in the main surface 13m on the group III nitride film 13 side was measured by TXRF (total reflection fluorescence X analysis) method and summarized in Table 8. Here, the measurement by the TXRF method was performed at an incident angle of 0.05 ° using a W (tungsten) radiation source. Further, in the same manner as in Example A, the yield of the group III nitride semiconductor device 4 was calculated and summarized in Table 8.
  • the diameter is 75 mm to 150 mm having a group III nitride film having a thickness of 0.3 ⁇ m (this value is not less than 50 nm and less than 10 ⁇ m), and the average thickness m t of group III nitride film 13 the ratio s t / m t of the thickness of the standard deviation s t against 0.08 (this value is 0.01 to 0.5), and the surface of the predetermined plane orientation of the principal surface of the II-nitride film the ratio s o / m o of the standard deviation s o of the absolute value of the off-angle with respect to the average value m o of the absolute value of the off angle relative is 0.22 (this value is 0.005 to 0.6), III
  • III The yield of group III nitride semiconductor devices manufactured using a group III nitride composite substrate in which the concentration of impurity metal atoms on the main surface on the group nitride film side is 1 ⁇ 10 13 atoms
  • Example G With reference to FIG. 11 and FIG. 12, a substrate having a diameter of 75 mm having a thermal conductivity between 2 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 and 300 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 was used as the support substrate 11.
  • the group III nitride composite substrate 1 and III are the same as in Example A except that the coefficient of action FE for final polishing of the main surface 13m on the material film 13 side is 8.8 ⁇ 10 ⁇ 14 m 2 / s.
  • a group nitride semiconductor device 4 was produced.
  • the thermal conductivity of the support substrate 11 was performed by adjusting the blending ratio of the oxide raw materials and the firing conditions.
  • vitrified abrasive grains containing diamond grains having an average grain size of 25 ⁇ m to 35 ⁇ m were used for grinding the group III nitride film donor substrate 13D.
  • the group III nitride composite substrate 1 the ratio of the Group III for nitride composite substrate 1, III-standard deviation s t thickness relative to the average value m t of the thickness of the nitride film 13 s t / m t, and group III ratio s o of the standard deviation s o of the absolute value of the off-angle with respect to the average value m o of the absolute value of the off-angle with respect to a predetermined plane surface of the orientation of the principal surface 13m nitride film 13 / M o was calculated and summarized in Table 9.
  • the thermal conductivity of the support substrate of the group III nitride composite substrate 1 was measured by a laser flash method and summarized in Table 9. Further, in the same manner as in Example A, the yield of the group III nitride semiconductor device 4 was calculated and summarized in Table 9.
  • a III-nitride composite substrate having a diameter of 75 mm (this value is 75 mm or more) having a III-nitride film having a thickness of 0.3 ⁇ m (this value is 50 nm or more and less than 10 ⁇ m).
  • the ratio s t / m t of the standard deviation s t thickness relative to the average value m t of the thickness of the nitride film 13 is 0.12 (this value is 0.01 to 0.5) and, II nitride things ratio s o / m o of the standard deviation s o of the absolute value of the off-angle with respect to the average value m o of the absolute value of the off angle relative to the plane of the predetermined plane orientation of main surface of the film is 0.16 (this value is 0 a .005 to 0.6), using a group III nitride composite substrate thermal conductivity has a support substrate is not more than 3W ⁇ m -1 ⁇ K -1 or more 280W ⁇ m -1 ⁇ K -1 The yield of the manufactured group III nitride semiconductor device was high.
  • support substrate 11 is a mullite substrate having a diameter of 75 mm and a thickness of 400 ⁇ m (60% by mole of Al 2 O 3 and 40% of SiO 2 with respect to the whole substrate). Mol%) was prepared.
  • the support substrate 11 had a thermal conductivity of 3 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 and a Young's modulus of 200 GPa.
  • the main surfaces 11m and 11n on both sides of the support substrate 11 were subjected to rough polishing using a copper-based surface plate, intermediate polishing using a tin surface plate, and final polishing using a nonwoven fabric polishing pad, using diamond slurry as an abrasive.
  • polishing was performed under the condition that the coefficient of action FE was 4 ⁇ 10 ⁇ 17 m 2 / s or more and 1 ⁇ 10 ⁇ 16 m 2 / s or less.
  • an SiO 2 film having a thickness of 800 nm is grown by PE-CVD (plasma assisted chemical vapor deposition) on the main surface 11 m of the support substrate 11 after the final polishing, and the SiO 2 film is grown at 800 ° C. in a nitrogen atmosphere.
  • the main surface 12am After annealing for a period of time, the main surface 12am has a root mean square roughness of 0.3 nm or less by CMP (chemical mechanical polishing) using a slurry containing colloidal silica abrasive grains having an average particle diameter of 40 nm and a pH of 10.
  • a 400 nm thick bonding film 12a having a mirror surface was formed.
  • a GaN crystal body having a diameter of 75 mm and a thickness of 8 mm is prepared as the group III nitride film donor substrate 13D, and the bonded surface of the group III nitride film donor substrate 13D is mechanically polished.
  • an SiO 2 film having a thickness of 800 nm was grown thereon by PE-CVD, and annealed at 800 ° C. for 1 hour in a nitrogen atmosphere.
  • a bonding film having a thickness of 500 nm in which the main surface 12bn is mirror-polished to a root mean square roughness of 0.3 nm or less by CMP using a slurry containing colloidal silica abrasive grains having an average particle diameter of 40 nm and a pH of 10. 12b was formed.
  • abrasive-free polishing with KOH aqueous solution, polishing with pure water, and megasonic cleaning with pure water (exceeding the frequency of the megasonic band of 500 kHz to 5 MHz). Cleaning with sonic waves).
  • the group III nitride film donor substrate 13D was grown by HVPE using a GaAs substrate as a base substrate.
  • Group III nitride film donor substrate 13D had an n-type conductivity, a dislocation density of 1 ⁇ 10 8 cm ⁇ 2 , and a carrier concentration of 1 ⁇ 10 17 cm ⁇ 3 .
  • the support substrate 11 and the group III nitride film 13 are bonded to each other by bonding the main surface 12am of the bonding film 12a and the main surface 12bn of the bonding film 12b.
  • a bonded substrate 1L bonded together was obtained.
  • the bonding substrate 1L was annealed by raising the temperature to 800 ° C. in a nitrogen gas atmosphere to increase the bonding strength.
  • the group III nitride film donor substrate 13D of the bonding substrate 1L is a wire saw on the surface located at a depth of 40 ⁇ m from the bonding surface with the bonding film 12.
  • the group III nitride composite substrate 1 in which the support substrate 11 and the GaN film as the group III nitride film 13 were bonded with the bonding film 12 interposed therebetween was obtained.
  • As the wire a fixed abrasive wire having a wire diameter of 180 ⁇ m and electrodeposited with diamond abrasive grains was used.
  • the cutting method is a method in which the wire is swung and the group III nitride film donor substrate 13D is vibrated in synchronization therewith.
  • the resistance coefficient of wire saw cutting was 4200N.
  • the group III nitride film 13 of the group III nitride composite substrate 1 was subjected to mechanical polishing and CMP. Using diamond slurry as an abrasive, rough polishing was performed with a copper-based surface plate, and intermediate polishing was performed with a tin surface plate.
  • finish polishing was performed with a nonwoven fabric polishing pad using a colloidal silica slurry having a pH of 11 (containing a colloidal silica abrasive having an average particle diameter of 60 nm and having a pH of 11).
  • the composite substrate is attached to the apparatus by CMP in such a manner that the substrate shape is preliminarily corrected by vacuum chuck adsorption and then adsorbed and fixed to the apparatus. .
  • the polishing was performed under the condition that the action coefficient FE was 7 ⁇ 10 ⁇ 14 m 2 / s.
  • the thickness of the group III nitride film 13 after finish polishing was 0.6 ⁇ m.
  • the ratio s S / m S of the standard deviation s S of the root mean square roughness to the mean value m S of the root mean square roughness and the mean value m S of the root mean square roughness is represented by the support substrate shown in FIG.
  • the root mean square roughness of the main surface 11n on the support substrate 11 side at the measurement point P was calculated.
  • a group III nitride layer 20 having a thickness of 2 ⁇ m is formed on the main surface 13m of the group III nitride composite substrate 1 on the group III nitride film 13 side by MOCVD.
  • An n + -GaN layer 28 (carrier concentration is 2 ⁇ 10 18 cm ⁇ 3 ) and a 7 ⁇ m thick n ⁇ -GaN layer 29 (carrier concentration is 5 ⁇ 10 15 cm ⁇ 3 ) are epitaxially grown in this order, so that the layer III A group nitride composite substrate 2 was obtained.
  • EB (electron beam) deposition is performed on the n ⁇ -GaN layer 29 that is the uppermost layer of the group III nitride layer 20 of the laminated group III nitride composite substrate 2. Then, a Ni layer having a thickness of 4 nm and an Au layer having a thickness of 200 nm were sequentially formed, and alloyed by annealing to form the first electrode 30 as a Schottky electrode. The diameter of the first electrode 30 was 200 ⁇ m.
  • a pad electrode 33 was formed on the first electrode 30 by sequentially forming a Ti layer having a thickness of 200 nm, a Pt layer having a thickness of 100 nm, and an Au layer having a thickness of 1000 nm by an EB vapor deposition method.
  • an Mo substrate was prepared as the device support substrate 40, and an AuSn solder film was formed as the bonding metal film 44 on one main surface of the device support substrate 40.
  • a device support substrate electrode 46 is formed by sequentially forming a Ti layer having a thickness of 200 nm, a Pt layer having a thickness of 100 nm, and an Au layer having a thickness of 1000 nm by EB vapor deposition. Formed.
  • the laminated metal substrate 3 was obtained by bonding the bonding metal film 44 to the pad electrode 33.
  • the support substrate 11 and the bonding film 12 were removed from the laminated substrate 3 by etching.
  • Hydrofluoric acid was used for etching.
  • a Ti layer having a thickness of 20 nm is formed on the group III nitride film 13 exposed by removing the support substrate 11 and the bonding film 12 from the laminated substrate 3 by EB vapor deposition. Then, an Al layer having a thickness of 200 nm and an Au layer having a thickness of 300 nm were sequentially formed and annealed to form the second electrode 50 that is an ohmic electrode. Thus, SBD was obtained as the group III nitride semiconductor device 4.
  • the yield of the SBD that is the obtained group III nitride semiconductor device 4 was calculated as follows. In other words, the current-voltage characteristics in the reverse direction of SBD are measured, and those that comply with the standard with a breakdown voltage of 250 V or higher are regarded as non-defective products, those that do not conform are regarded as defective products, and non-defective products are classified as surface products and defective products. The percentage obtained by dividing the total was used as the yield rate. Table 10 summarizes the yields of group III nitride semiconductor devices.
  • the average value m S of the root mean square roughness of the main surface on the support substrate side is 0.3 nm or more and 20 nm or less, and the mean value m S of the root mean square roughness of the main surface on the support substrate side.
  • the diameter is varied between 75 mm and 150 mm.
  • the group III nitride film donor substrate 13D of the bonding substrate 1L is used.
  • ICP-RIE inductively coupled plasma-reactive ion etching
  • Group III nitride film donor substrate 13D was separated by ion implantation region 13i and further dry-etched by ICP-RIE. In the final polishing of the main surface 11n of the plate 11 side to effect coefficient FE it was polished under the conditions of 9.0 ⁇ 10 -17 m 2 / s , the thickness of the III nitride film 13 after the finish polishing 0.
  • the group III nitride composite substrate 1 and the group III nitride semiconductor device 4 were the same as in Reference Example IA except that the group III nitride composite substrate 1 was varied between 03 ⁇ m and 9.5 ⁇ m. Was made.
  • the support substrate 11 had a thermal conductivity of 3 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 and a Young's modulus of 200 GPa.
  • the average value m S is 1.2 nm (this value is 0.3 nm or more and 20 nm or less), and the standard deviation of the root mean square roughness with respect to the mean value m S of the root mean square roughness of the main surface on the support substrate side the ratio s S / m S of s S 0.06 (this value is 0.005 to 0.4) cut step of manufacturing III-nitride semiconductor device using the group III nitride composite substrate is that it was high.
  • Reference Example IC As a semiconductor device substrate, a III-nitride free-standing substrate having a diameter varied between 75 mm and 150 mm, and III manufactured in the same manner as Reference Example IA except that the diameter was varied between 75 mm and 150 mm. A group nitride composite substrate was prepared. The group III nitride free-standing substrate was formed into a substrate having a diameter and thickness shown in Table 13 by cutting and polishing a GaN crystal body having a predetermined diameter with a wire saw.
  • a group III nitride semiconductor device was fabricated in the same manner as in Reference Example IA except that the above group III nitride composite substrate and group III nitride free-standing substrate were used.
  • a Group III nitride semiconductor device was manufactured using a Group III nitride composite substrate
  • a Group III nitride semiconductor device was manufactured using a Group III nitride free-standing substrate.
  • the group III nitride freestanding substrate, warpage W S, the ratio W S / D, the root mean square roughness average value m S, the back side main surface 11n of the root mean square roughness of the main surface of the back side The ratio s S / m S of the standard deviation s S of the root mean square roughness with respect to the average value m S was calculated and summarized in Tables 12 and 13. Further, in the same manner as in Reference Example IA, the yield of group III nitride semiconductor device 4 was calculated and summarized in Tables 12 and 13.
  • Al 2 O 3 —SiO 2 composite oxide substrate having a diameter of 125 mm is used as supporting substrate 11 (Al 2 O 3 is 82% by mass and SiO 2 is 18% by mass with respect to the entire substrate).
  • the group III nitride film donor substrate 13D is doped with O (oxygen) atoms and Si (silicon) atoms as the group III nitride film donor substrate 13D, and there is no dislocation concentration region, and the dislocation density is 5 ⁇ .
  • Table 14 shows the ratio s III-N / m III-N of the standard deviation s III-N of the root mean square roughness to the mean value m III-N of the root mean square roughness of 13 m.
  • the ratio s III-N / m III of the standard deviation s III-N of the root mean square roughness to the mean value m III-N of the root mean square roughness and the mean value m III-N of the root mean square roughness On the main surface 13m on the group III nitride film 13 side shown in FIG. 2, -N is located on one central point P C and four directions perpendicular to the central point P C and 5 mm inside from the outer edge.
  • the mean value m S of the root mean square roughness of the principal surface of the substrate is 5 nm (this value is 0.3 nm or more and 20 nm or less), and the mean square with respect to the mean value m S of the root mean square roughness of the principal surface on the support substrate side
  • the ratio s S / m S of the standard deviation s S of the square root roughness is 0.15 (this value is not less than 0.005 and not more than 0.4), and the root mean square roughness of the main surface on the group III nitride film side average m III-N of is not less less 10nm least 0.4 nm, standard deviation to the average value m III-N root mean square roughness of the main surface of the
  • the support as the substrate 11, Al 2 O 3 and a chemical composition ratio of SiO 2 is two different mullite substrate and Al 2 O 3 and a chemical composition ratio of SiO 2 is six different
  • the Al 2 O 3 —SiO 2 composite oxide substrate was used, and the final polishing of the main surface 11n on the support substrate 11 side was polished under the condition that the coefficient of action FE was 7.2 ⁇ 10 ⁇ 17 m 2 / s.
  • the group III nitride composite was prepared in the same manner as in Reference Example IA, except that the thickness of the group III nitride film 13 after final polishing was varied and the diameter was varied between 75 mm and 150 mm.
  • a substrate 1 and a group III nitride semiconductor device 4 were produced.
  • the average value m S of the root mean square roughness of the main surface 11n on the support substrate 11 side, and the root mean square of the main surface 11n on the support substrate 11 side The ratio s S / m S of the standard deviation s S of the root mean square roughness to the average value m S of the square root roughness was calculated and summarized in Table 15 and Table 16. Further, the thermal expansion coefficient ⁇ S of the support substrate 11 and the thermal expansion coefficient ⁇ III-N of the group III nitride film 13 are measured by a thermomechanical analyzer, and the group III nitride film with respect to the thermal expansion coefficient ⁇ S of the support substrate is measured.
  • the ratio ⁇ III-N / ⁇ S of the thermal expansion coefficient ⁇ III-N was calculated, and the results are summarized in Table 15 and Table 16. Further, the thickness t S of the support substrate 11 and the thickness t III-N of the group III nitride film 13 are measured by a digital indicator and reflectance spectroscopy, respectively, and the group III nitride with respect to the thickness t S of the support substrate 11 is measured. The ratio t III-N / t S of the thickness t III-N of the material film 13 was calculated, and the results are summarized in Table 15 and Table 16. Further, in the same manner as in Reference Example IA, the yield of the group III nitride semiconductor device 4 was calculated and summarized in Tables 15 and 16.
  • the group III nitride film has a thickness of 50 nm or more and less than 10 ⁇ m, a diameter of 75 mm to 150 mm, and the root mean square roughness of the main surface on the support substrate side
  • the average value m S is 4 nm (this value is 0.3 nm or more and 20 nm or less), and the standard deviation s S of the root mean square roughness with respect to the mean square root mean square roughness m S of the main surface on the support substrate side.
  • the yield of group III nitride semiconductor devices manufactured using group III nitride composite substrate 1 having a ratio s S / m S of 0.12 (this value is not less than 0.005 and not more than 0.4) is high. It was.
  • the ratio ⁇ III-N / ⁇ S of the thermal expansion coefficient ⁇ III-N of the group III nitride film 13 to the thermal expansion coefficient ⁇ S of the support substrate 11 is 0.75 or more and 1.25 or less
  • the support substrate If the ratio t III-N / t S of thickness t III-N III nitride layer to the thickness t S of 11 is 2 ⁇ 10 -2 or less 1 ⁇ 10 -4 or more, fabricated III
  • the yield of group nitride semiconductor devices was high.
  • an Al 2 O 3 —SiO 2 composite oxide substrate (80% by mass of Al 2 O 3 and 20% by mass of SiO 2 with respect to the entire substrate) is used as support substrate 11.
  • the thickness of the support substrate 11 was set to 500 ⁇ m by grinding and the final polishing with a working coefficient FE of 8.9 ⁇ 10 ⁇ 17 m 2 / s, and the thickness of the group III nitride film 13 was 0.4 ⁇ m.
  • Reference Example IA except that the Group III nitride composite substrate 1 having a diameter varied between 75 mm and 150 mm was manufactured and the Group III nitride composite substrate 1 obtained was further washed.
  • the group III nitride composite substrate 1 and the group III nitride semiconductor device 4 were produced in the same manner as described above.
  • the support substrate 11 had a thermal conductivity of 4 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 and a Young's modulus of 220 GPa.
  • the cleaning method uses scrub cleaning using a surfactant and pure water, two-fluid cleaning using hydrochloric acid or TMAH (tetramethylammonium hydroxide) and pure water, and hydrochloric acid or TMAH and pure water. It was carried out by combining megasonic cleaning.
  • the average value m S of the root mean square roughness of the main surface 11n on the support substrate 11 side of the group III nitride composite substrate 1 was calculated and summarized in Table 17. Further, with respect to the group III nitride composite substrate 1, the concentrations of impurity metal atoms on the main surface 13m on the group III nitride film 13 side were measured by TXRF (total reflection fluorescence X analysis) method, and are summarized in Table 17. Here, the measurement by the TXRF method was performed at an incident angle of 0.05 ° using a W (tungsten) radiation source. Further, in the same manner as in Reference Example IA, the yield of the group III nitride semiconductor device 4 was calculated and summarized in Table 17.
  • the average of the root mean square roughness of the main surface on the support substrate side having a diameter of 75 mm to 150 mm having a group III nitride film having a thickness of 0.4 ⁇ m (this value is 50 nm or more and less than 10 ⁇ m)
  • the value m S is 7 nm (this value is 0.3 nm or more and 20 nm or less), and the ratio s of the standard deviation s S of the root mean square roughness to the mean square root mean square roughness m S of the main surface on the support substrate side S / m S is 0.06 (this value is 0.005 or more and 0.4 or less), and the concentration of impurity metal atoms on the main surface on the group III nitride film side is 3 ⁇ 10 12 atoms / cm 2 or less.
  • the yield of Group III nitride semiconductor devices fabricated using a certain Group III nitride composite substrate was high.
  • a substrate having a diameter of 75 mm having a thermal conductivity between 2 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 and 300 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 was used as the support substrate 11.
  • the thickness of the group III nitride film 13 is set to 1 ⁇ m by grinding and polishing from the main surface 13m opposite to the bonded main surface of the group III nitride film donor substrate 13D having a diameter of 75 mm.
  • a group III nitride composite substrate 1 was prepared in the same manner as in Reference Example IA, except that the polishing was performed under the condition that the coefficient of action FE was 8.7 ⁇ 10 ⁇ 17 m 2 / s. And the group III nitride semiconductor device 4 was produced.
  • the group III nitride film donor substrate 13D vitrified abrasive grains containing diamond grains having an average grain size of 25 ⁇ m to 35 ⁇ m were used.
  • the heat conductivity of the support substrate 11 was performed by adjusting the compounding ratio of an oxide raw material, and baking conditions.
  • the average value m S of the root mean square roughness of the main surface 11n on the support substrate 11 side of the group III nitride composite substrate 1 was calculated and summarized in Table 18. Further, the thermal conductivity of the supporting substrate of the group III nitride composite substrate 1 was measured by a laser flash method and summarized in Table 18. Further, in the same manner as in Reference Example IA, the yield of the group III nitride semiconductor device 4 was calculated and summarized in Table 18.
  • the ratio s S / m S of the standard deviation s S of roughness is 0.07 (this value is 0.005 or more and 0.4 or less), and the thermal conductivity is 3 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more and 280 W ⁇
  • the yield of group III nitride semiconductor devices manufactured using a group III nitride composite substrate having a support substrate of m ⁇ 1 ⁇ K ⁇ 1 or less was high.
  • an Al 2 O 3 —SiO 2 composite oxide substrate having a diameter of 75 mm and a thickness of 500 ⁇ m is used as the support substrate 11 (the Al 2 O 3 content is 85 mass% with respect to the entire substrate).
  • a composite oxide substrate having a SiO 2 content of 15% by mass was prepared.
  • This support substrate 11 had a thermal conductivity of 10 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 and a Young's modulus of 250 GPa.
  • polishing was performed under the condition that the coefficient of action FE was 4 ⁇ 10 ⁇ 17 m 2 / s or more and 1 ⁇ 10 ⁇ 16 m 2 / s or less.
  • an SiO 2 film having a thickness of 800 nm is grown by PE-CVD (plasma assisted chemical vapor deposition) on the main surface 11 m of the support substrate 11 after the final polishing, and the SiO 2 film is grown at 800 ° C. in a nitrogen atmosphere. Time annealing was performed.
  • PE-CVD plasma assisted chemical vapor deposition
  • the main surface 12am has a root mean square roughness (hereinafter also referred to as “RMS (Root-Mean-Square roughness)”) by CMP using a slurry having colloidal silica abrasive grains having an average particle diameter of 40 nm and a pH of 10.
  • the 400 nm-thick bonding film 12a mirrored to 0.3 nm or less was formed.
  • abrasive-free polishing with KOH aqueous solution, polishing with pure water, and megasonic cleaning with pure water (frequency in the megasonic band of 500 kHz to 5 MHz) (Cleaning using ultrasonic waves).
  • a group III nitride film donor substrate 13D having a diameter of 75 mm and a thickness of 8 mm was prepared using a GaN bulk crystal.
  • the group III nitride film donor substrate 13D is a GaN crystal.
  • the main surface 13n on the bonding surface side of the group III nitride film donor substrate 13D was planarized by mechanical polishing and CMP to have an RMS of 2 nm or less. Thereafter, an SiO 2 film having a thickness of 800 nm was grown on the main surface 13n on the bonding surface side by PE-CVD, and annealed at 800 ° C. for 1 hour in a nitrogen atmosphere.
  • a bonding film 12b having a thickness of 500 nm in which the main surface 12bn is mirror-finished to 0.3 nm or less by RMS is formed by CMP using a slurry having a colloidal silica abrasive particle having an average particle diameter of 40 nm and a pH of 10. did.
  • abrasive-free polishing with KOH aqueous solution, polishing with pure water, and megasonic cleaning with pure water were performed.
  • an ion implantation apparatus is used to bond the main surface 13n on the bonding surface side of the group III nitride film donor substrate 13D, which is a GaN crystal, under conditions of a dose amount of 1 ⁇ 10 17 cm ⁇ 2 and an acceleration voltage of 50 keV.
  • Hydrogen ions were implanted as ions I into the ion implantation region 13i having a depth t of 110 nm from the main surface 13n on the mating surface side.
  • ion implantation region 13i indicates a surface into which hydrogen ions are implanted.
  • the group III nitride film donor substrate 13D was grown by HVPE using a GaAs substrate as a base substrate.
  • the group III nitride film donor substrate 13D was an n-type conductivity type, had a transition density of 1 ⁇ 10 8 cm ⁇ 2 and a carrier concentration of 1 ⁇ 10 17 cm ⁇ 3 .
  • the main surface 12am of the bonding film 12a and the main surface 12bn of the bonding film 12b are bonded to each other, whereby the support substrate 11 and the group III nitride film 13 are bonded.
  • a bonded substrate 1L was obtained by bonding together with a bonding film 12 interposed therebetween. After bonding, the bonding substrate 1L was annealed by raising the temperature to 800 ° C. in a nitrogen atmosphere to increase the bonding strength.
  • the group III nitride film donor substrate 13D is heat-treated at 400 ° C. to embrittle the ion implantation region 13i, and on this surface, the group III nitride film 13 is formed.
  • a group III nitride film donor substrate 13Dr and a group III nitride composite substrate 1 were obtained.
  • a Group III nitride composite substrate 1 having a diameter of 75 mm was obtained, in which the supporting substrate and the GaN thin film having a thickness of 110 nm were bonded together via the SiO 2 film.
  • the group III nitride layer 20 having a thickness of 2 ⁇ m is formed on the main surface 13m of the group III nitride composite substrate 1 on the group III nitride film 13 side by MOCVD.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • n + -GaN layer 28 carrier concentration 2 ⁇ 10 18 cm ⁇ 3
  • n ⁇ -GaN layer 29 carrier concentration 5 ⁇ 10 15 cm ⁇ 3
  • an electron beam evaporation method (hereinafter referred to as EB) is formed on the n ⁇ -GaN layer 29 which is the uppermost layer of the group III nitride layer 20 of the laminated group III nitride composite substrate 2.
  • the first electrode 30 that is a Schottky electrode was formed by sequentially forming an Ni layer having a thickness of 4 nm and an Au layer having a thickness of 200 nm by alloying by (Electron Beam) evaporation method). At this time, the diameter of the first electrode 30 was set to 200 ⁇ m.
  • a pad electrode 33 was formed on the first electrode 30 by sequentially forming a Ti layer having a thickness of 200 nm, a Pt layer having a thickness of 100 nm, and an Au layer having a thickness of 1000 nm by an EB vapor deposition method.
  • a Mo substrate is prepared as the device support substrate 40, and a 200 nm thick Ti layer, a 100 nm thick Pt layer, and a 1000 nm thick Au layer are sequentially formed on the device support substrate 40 by EB vapor deposition.
  • the pad electrode 43 was formed.
  • an AuSn solder film was formed as the bonding metal film 44 on the pad electrode 43.
  • the laminated metal substrate 3 was obtained by bonding the bonding metal film 44 to the pad electrode 33.
  • the support substrate 11 and the bonding film 12 of the group III nitride composite substrate 1 were removed from the laminated substrate 3 by etching using hydrofluoric acid.
  • a 20 nm-thickness is formed on the group III nitride film 13 exposed by removing the support substrate 11 and the bonding film 12 from the laminated substrate 3 by EB vapor deposition.
  • a Ti layer, an Al layer with a thickness of 200 nm, and an Au layer with a thickness of 300 nm were sequentially formed and annealed to form a second electrode 50 that is an ohmic electrode.
  • a 20 nm thick Ti layer and a 300 nm thick Au layer were sequentially formed on the device support substrate 40 by EB vapor deposition, and annealed to form a device support substrate electrode 45. In this way, the group III nitride semiconductor device 4 which is SBD was obtained.
  • the yield of group III nitride semiconductor device 4 obtained as described above was calculated as follows. That is, the current-voltage characteristics in the reverse direction for SBD are measured, and those that meet the standard with a withstand voltage of 250V or more are regarded as non-defective products, those that do not conform are regarded as defective products, the number of good products, the number of good products and the number of defective products The percentage of the value divided by the total was used as the yield rate.
  • group III nitride composite substrates are composite substrates having a diameter of 75 mm (ie, 75 mm or more) in which a supporting substrate and a group III nitride film having a thickness of 110 nm (ie, 50 nm or more and less than 10 ⁇ m) are bonded together. It is.
  • Table 19 shows the relationship between the thickness distribution of the bonding film and the yield rate of the group III nitride semiconductor device calculated by the above-described method.
  • the semiconductor device (A2 to A6) using the group III nitride composite substrate in which the thickness distribution of the bonding film is 2% or more and 40% or less is a group III nitride that does not satisfy such conditions.
  • the yield was good.
  • group III nitride composite substrates are composite substrates having a diameter of 75 mm (ie, 75 mm or more) in which a supporting substrate and a group III nitride film having a thickness of 110 nm (ie, 50 nm or more and less than 10 ⁇ m) are bonded together. It is.
  • Table 20 shows the relationship between the shear bonding strength and the bonding area ratio and the yield rate of the group III nitride semiconductor device calculated by the above-described method.
  • the shear bonding strength between the support substrate and the group III nitride film is 4 MPa or more and 40 MPa or less, and the bonding area ratio between the support substrate and the group III nitride film is 60% or more and 98% or less.
  • a semiconductor device (B2 to B5, B7, and B8) using a certain group III nitride composite substrate is compared with a semiconductor device (B1, B6, and B9) using a group III nitride composite substrate that does not satisfy such conditions. The yield rate was good.
  • an Al 2 O 3 —SiO 2 composite oxide substrate (a composite oxide substrate in which Al 2 O 3 is 82% by mass and SiO 2 is 18% by mass with respect to the entire substrate),
  • the composite oxide substrate selected from mullite-YSZ and mullite was used (ii) the diameter was varied between 75 mm and 150 mm, respectively (iii) the bonding film 12 was formed by AP-CVD (Iv)
  • the coefficient of action FE is 8.5 ⁇ 10 ⁇ 17 m 2 / s or more and 1 ⁇ 10 ⁇ 16 m 2 / s in the final polishing of the main surface 11m on the support substrate 11 side.
  • the thickness of the group III nitride film 13 after final polishing was varied between 100 nm and 1 ⁇ m, respectively. Note that the group III nitride composite according to Reference Example II-C was used. The thickness distribution of the bonding film on the substrate is all 5% (i.e., 2% or more than 40%) was.
  • Table 21 shows the relationship between the structure of the group III nitride composite substrate according to Reference Example II-C and the yield rate of the group III semiconductor device using them.
  • ⁇ III-N / ⁇ S represents the ratio of the thermal expansion coefficient alpha III-N III nitride film to the thermal expansion coefficient alpha S of the supporting substrate
  • t III-N / t S is the support substrate
  • the ratio of the thickness t III-N of the group III nitride film to the thickness t S is shown.
  • a III-nitride composite substrate having a diameter of 75 mm or more obtained by laminating a supporting substrate and a group III nitride film having a thickness of 100 nm to 1 ⁇ m (that is, 50 nm or more and less than 10 ⁇ m).
  • group III nitride composite substrates having a thickness distribution of the bonding film of 5% that is, 2% or more and 40% or less
  • t III-N / t S is 0.0002 or more and 0.02 or less.
  • Group III nitride semiconductor devices using a composite substrate could be manufactured with a particularly high yield.
  • the composite substrate having ⁇ III-N / ⁇ S of 0.75 or more and 1.25 or less had no cracks and good yield.
  • Table 22 shows the relationship between the thermal conductivity ⁇ s of the support substrate and the yield of the group III nitride semiconductor device.
  • a III-nitride composite substrate having a diameter of 75 mm or more obtained by laminating a supporting substrate and a group III nitride film having a thickness of 100 nm to 1 ⁇ m (that is, 50 nm or more and less than 10 ⁇ m).
  • the thermal conductivity ⁇ S is 3 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more and 280 W ⁇
  • a group III nitride semiconductor device using a composite substrate having m ⁇ 1 ⁇ K ⁇ 1 or less could be produced with a particularly high yield.
  • Group III nitride composite substrate 1L, 1LS bonded substrate, 2 layered group III nitride composite substrate, 3 layered substrate, 4 group III nitride semiconductor device, 5D, 5Dr Group III nitride film donor substrate with support, 11 Support substrate, 11m, 11n, 12am, 12bn, 12m, 13m, 13n, 130n main surface, 12, 14 junction film, 13 group III nitride film, 13D, 13Dr group III nitride film donor substrate, 13i ion implantation region, 15 Group III nitride film donor substrate support, 20 Group III nitride layer, 21 n-GaN layer, 22 n-In 0.05 Ga 0.95 N layer, 23 active layer, 24 p-Al 0.09 Ga 0.91 N layer, 25 p -GaN layer, 26 GaN layer, 27 Al 0.2 Ga 0.8 n layer, 28 n + -GaN layer, 29 n - -GaN layer, 30 first electrode, 33

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 III族窒化物複合基板(1)は、支持基板(11)と、厚さが50nm以上10μm未満のIII族窒化物膜(13)と、が貼り合わされた直径が75mm以上のIII族窒化物複合基板(1)であって、III族窒化物膜(13)の厚さの平均値mtに対する厚さの標準偏差stの比st/mtが0.01以上0.5以下であり、III族窒化物膜(13)の主面(13m)の所定の面方位の面に対するオフ角の絶対値の平均値moに対するオフ角の絶対値の標準偏差soの比so/moが0.005以上0.6以下である。これにより、半導体デバイスの製造の際のコストを低減し、コストが低く大口径で膜厚が薄く膜厚の分布が小さく結晶品質の高いIII族窒化物膜を有するIII族窒化物複合基板およびその製造方法、積層III族窒化物複合基板、ならびにIII族窒化物半導体デバイスおよびその製造方法が提供される。

Description

III族窒化物複合基板およびその製造方法、積層III族窒化物複合基板、ならびにIII族窒化物半導体デバイスおよびその製造方法
 本発明は、III族窒化物複合基板およびその製造方法、積層III族窒化物複合基板、ならびにIII族窒化物半導体デバイスおよびその製造方法に関する。
 GaNなどのIII族窒化物は、優れた半導体特性を有していることから、半導体デバイスに好適に用いられている。また、GaNなどのIII族窒化物は、半導体デバイスの種類別、たとえば、発光デバイス、電子デバイスにおいて、Si、GaAs、SiCなどとは異なる良好な材料特性を有するため、種々のデバイスに用いることができる。
 たとえば、特開2009-126722号公報(特許文献1)は、半導体デバイス用基板として、直径が25mm以上160mm以上で厚さが100μm以上1000μm以下の自立III族窒化物基板、具体的な実施例として直径が100mmで厚さが400μmの自立GaN基板を開示する。
 また、特開2008-010766号公報(特許文献2)は、半導体デバイスを製造するための基板として、GaNと化学組成の異なる異種基板と、異種基板に貼り合わされている0.1μm以上100μm以下の厚さのGaN薄膜と、を含むGaN薄膜貼り合わせ基板、具体的な実施例としてサファイア基板と厚さが0.1μmまたは100μmのGaN薄膜とが貼り合わされている直径が50.8mmのGaN薄膜貼り合わせ基板を開示する。
 また、特開2010-182936号公報(特許文献3)は、半導体デバイス用基板として、支持基板と、窒化物半導体層と、支持基板と窒化物半導体層との間に設けられた接合層とを備える複合基板、具体的な実施例としてサファイア基板とGaN層とが両者間に圧着により形成される接合層で接合されたGaN層の厚さが5μm~220μmで直径が50.8mmの複合基板を開示する。
特開2009-126722号公報 特開2008-010766号公報 特開2010-182936号公報
 特開2009-126722号公報(特許文献1)に開示される自立III族窒化物基板は、製造コストが高いため非常に高価であり、また、割れやすいため口径の拡大化、厚さの低減化が困難という問題があった。さらに、半導体デバイス形成の際に自立III族窒化物基板の厚さを低減する必要があり、自立III族窒化物基板の裏面(デバイス機能を発現させるIII族窒化物層を形成する主面と反対側の主面をいう。以下同じ。)の研削などの加工工程により製造コストが増加するという問題があった。
 特開2008-010766号公報(特許文献2)に開示されるGaN薄膜の厚さが0.1μmであるGaN薄膜貼り合わせ基板は、GaN薄膜の形成のためにイオン注入を行なっているが、イオン注入により、GaN薄膜の結晶の品質が低下するという問題があった。特に、GaN薄膜の厚さが0.1μm程度と薄いGaN薄膜貼り合わせ基板においては、GaN薄膜の厚さの主面内における分布(すなわちバラツキ)が大きいという問題があった。さらに、形成する半導体デバイスの特性を高くする観点からGaN薄膜の厚さを10μm以上にすることが好ましいが、GaN薄膜の厚さを大きくすると、イオン注入されるイオンの主面からの深さのバラツキが大きくなり、得られるGaN薄膜複合基板のGaN薄膜の厚さの主面内分布が大きくなるという問題があった。さらにGaN薄膜複合基板を大口径化した際には、GaN薄膜の厚さの主面内分布がさらに大きくなるという問題があった。
 また、特開2008-010766号公報(特許文献2)に開示されるGaN薄膜の厚さが100μmのGaN薄膜貼り合わせ基板、および特開2010-182936号公報(特許文献3)に開示されるGaN層の厚さが5μm~22μmの複合基板は、いずれも直径が50.8mm程度であり、直径を大きくするとGaN薄膜またはGaN層の厚さの主面内分布が大きくなるという問題があった。
 このようなGaN薄膜またはGaN層の厚さの主面内分布の大きいGaN薄膜貼り合わせ基板または複合基板は、そのGaN薄膜またはGaN層の主面上に結晶品質の高い半導体層を成長させることが難しく、得られる半導体デバイスの歩留を高めることが難しいという問題があった。
 本発明は、上記の問題を解決して、半導体デバイスの製造の際のコストを低減し、コストが低く大口径で膜厚が薄く膜厚の分布が小さく結晶品質の高いIII族窒化物膜を有するIII族窒化物複合基板およびその製造方法、積層III族窒化物複合基板、ならびにIII族窒化物半導体デバイスおよびその製造方法を提供することを目的とする。
 本発明は、ある局面に従えば、支持基板と、厚さが50nm以上10μm未満のIII族窒化物膜と、が貼り合わされた直径が75mm以上のIII族窒化物複合基板であって、III族窒化物膜の厚さの平均値mtに対する厚さの標準偏差stの比st/mtが0.01以上0.5以下であり、III族窒化物膜の主面の所定の面方位の面に対するオフ角の絶対値の平均値moに対するオフ角の絶対値の標準偏差soの比so/moが0.005以上0.6以下であるIII族窒化物複合基板である。
 本発明のかかる局面に従うIII族窒化物複合基板において、III族窒化物膜側の主面の二乗平均平方根粗さの平均値mIII-Nを0.4nm以上10nm以下とし、III族窒化物膜側の主面の二乗平均平方根粗さの平均値mIII-Nに対する標準偏差sIII-Nの比sIII-N/mIII-Nを0.008以上0.5以下とすることができる。また、直径Dに対するIII族窒化物膜側の主面の反りWIII-Nの比WIII-N/Dを-7×10-4以上8×10-4以下とすることができる。また、支持基板の熱膨張係数αSに対するIII族窒化物膜の熱膨張係数αIII-Nの比αIII-N/αSを0.75以上1.25以下とし、支持基板の厚さtSに対するIII族窒化物膜の厚さtIII-Nの比tIII-N/tSを1×10-4以上2×10-2以下とすることができる。また、III族窒化物膜の主面における不純物金属原子を1×1013原子/cm2以下とすることができる。また、支持基板の熱伝導率λSを3W・m-1・K-1以上280W・m-1・K-1以下とすることができる。また、支持基板のヤング率ESを150GPa以上500GPa以下とすることができる。また、直径を100mm以上とすることができる。
 本発明は、別の局面に従えば、上記局面に従うIII族窒化物複合基板と、III族窒化物複合基板のIII族窒化物膜側の主面上に配置されている少なくとも1層のIII族窒化物層と、を含む積層III族窒化物複合基板である。
 本発明は、さらに別の局面に従えば、上記局面に従うIII族窒化物複合基板中のIII族窒化物膜と、III族窒化物膜上に配置されている少なくとも1層のIII族窒化物層と、を含むIII族窒化物半導体デバイスである。
 本発明は、さらに別の局面に従えば、上記局面に従うIII族窒化物複合基板の製造方法であって、支持基板の主面側にIII族窒化物膜を配置することによりIII族窒化物複合基板を形成する工程と、III族窒化物複合基板を形成する工程の後に、III族窒化物複合基板のIII族窒化物膜側の主面に研磨およびエッチングの少なくともひとつを行なうことにより、III族窒化物膜の厚さおよびIII族窒化物膜の主面の所定の面方位の面に対するオフ角を調整する工程と、を含むIII族窒化物複合基板の製造方法である。
 本発明は、さらに別の局面に従えば、上記局面に従うIII族窒化物複合基板を準備する工程と、III族窒化物複合基板のIII族窒化物膜側の主面上に、少なくとも1層のIII族窒化物層を成長させる工程と、を含むIII族窒化物半導体デバイスの製造方法である。
 本発明のかかる局面に従うIII族窒化物半導体デバイスの製造方法は、III族窒化物層を成長させる工程の後に、III族窒化物複合基板から支持基板を除去する工程をさらに含むことができる。さらに、III族窒化物層を成長させる工程の後、支持基板を除去する工程の前に、前記III族窒化物層上にさらにデバイス支持基板を貼り合わせる工程をさらに含むことができる。
 本発明によれば、半導体デバイスの製造の際のコストを低減し、コストが低く大口径で膜厚が薄く膜厚の分布が小さく結晶品質の高いIII族窒化物膜を有するIII族窒化物複合基板およびその製造方法、積層III族窒化物複合基板、ならびにIII族窒化物半導体デバイスおよびその製造方法を提供できる。
本発明および参考発明IにかかるIII族窒化物複合基板のある例を示す概略断面図である。 III族窒化物複合基板における物性値の測定点を示す概略平面図である。 本発明および参考発明Iにかかる積層III族窒化物複合基板のある例を示す概略断面図である。 本発明および参考発明IにかかるIII族窒化物半導体デバイスのある例を示す概略断面図である。 本発明および参考発明IにかかるIII族窒化物半導体デバイスの別の例を示す概略断面図である。 本発明および参考発明IにかかるIII族窒化物半導体デバイスのさらに別の例を示す概略断面図である。 本発明および参考発明IにかかるIII族窒化物複合基板の製造方法のある例を示す概略断面図である。 本発明および参考発明IにかかるIII族窒化物複合基板の製造方法の別の例を示す概略断面図である。 本発明および参考発明IにかかるIII族窒化物複合基板の製造方法のさらに別の例を示す概略断面図である。 本発明および参考発明IにかかるIII族窒化物複合基板の製造方法のさらに別の例を示す概略断面図である。 本発明および参考発明IにかかるIII族窒化物複合基板の製造方法のさらに別の例を示す概略断面図である。 本発明および参考発明IにかかるIII族窒化物半導体デバイスの製造方法のある例を示す概略断面図である。 参考発明IIにかかるIII族窒化物複合基板の一例を示す概略断面図である。 参考発明IIにかかる積層III族窒化物複合基板の一例を示す概略断面図である。 参考発明IIにかかるIII族窒化物半導体デバイスの一例を示す概略断面図である。 参考発明IIにかかるIII族窒化物半導体デバイスの一例を示す概略断面図である。 参考発明IIにかかるIII族窒化物複合基板の製造方法の一例を示す概略断面図である。 参考発明IIにかかるIII族窒化物複合基板の製造方法の一例を示す概略断面図である。 参考発明IIにかかるIII族窒化物複合基板の製造方法の一例を示す概略断面図である。 参考発明IIにかかるIII族窒化物複合基板の製造方法の一例を示す概略断面図である。 参考発明IIにかかるIII族窒化物半導体デバイスの製造方法の一例を示す概略断面図である。 参考発明IIにかかるIII族窒化物半導体デバイスの製造方法の一例を示す概略断面図である。
 [実施形態1:III族窒化物複合基板]
 図1を参照して、本発明のある実施形態であるIII族窒化物複合基板1は、支持基板11と、厚さが50nm以上10μm未満のIII族窒化物膜13と、が貼り合わされた直径が75mm以上のIII族窒化物複合基板1であって、III族窒化物膜13の厚さの平均値mtに対する厚さの標準偏差stの比st/mtが0.01以上0.5以下であり、III族窒化物膜13の主面の所定の面方位の面に対するオフ角の絶対値の平均値moに対するオフ角の絶対値の標準偏差soの比so/moが0.005以上0.6以下である。
 本実施形態のIII族窒化物複合基板1は、その直径が75mm以上であり、その支持基板11上に貼り合わされたIII族窒化物膜13が、その厚さが50nm以上10μm未満で、厚さの平均値mtに対する厚さの標準偏差stの比st/mtが0.01以上0.5以下で、その主面の所定の面方位の面に対するオフ角の絶対値の平均値moに対するオフ角の絶対値の標準偏差soの比so/moが0.005以上0.6以下であることにより、III族窒化物膜13上に、大口径で結晶品質の高い少なくとも1層のIII族窒化物層を成長させることができるため、特性の高いIII族窒化物半導体デバイスを歩留よく得ることができる。
 III族窒化物複合基板に関して、従来は、基板全体の厚さ分布であるTTV(Total Thickness Variation。ウェハ平坦度の評価項目の1つである。基板の裏面を基準面として厚み方向に測定した高さの基板全面における最大値と最小値の差をいう。)および基板全体の形状である反りが重要物性値であると理解されていた。本願においては、さらに、III族窒化物複合基板のIII族窒化物膜の厚さの分布(具体的には、III族窒化物膜の厚さの平均値mtに対する厚さの標準偏差stの比st/mt)およびIII族窒化物膜の主面の所定の面方位の面に対するオフ角の分布(具体的には、III族窒化物膜の主面の所定の面方位の面に対するオフ角の絶対値の平均値moに対するオフ角の絶対値の標準偏差soの比so/mo)を上記の範囲内とすることにより、III族窒化物膜13上に、大口径で結晶品質の高い少なくとも1層のIII族窒化物層を成長させることができ、特性の高いIII族窒化物半導体デバイスを歩留よく得ることができることを見出したものである。
 なお、図1を参照して、III族窒化物複合基板1において、支持基板11とIII族窒化物膜13との貼り合わせ形態は、特に制限はないが、貼り合わせによる接合強度を高めるために、接合膜12を介在させることが好ましい。
 (III族窒化物複合基板の直径)
 III族窒化物複合基板1の直径は、1枚の複合基板から半導体デバイスのチップの取れ数を多くする観点から、75mm以上であり、100mm以上が好ましく、125mm以上がより好ましく、150mm以上がさらに好ましい。また、III族窒化物複合基板1の直径は、複合基板の反りを低減し半導体デバイスの歩留を高くする観点から、300mm以下が好ましく、200mm以下がより好ましい。
 (III族窒化物膜の厚さ)
 図1および図2を参照して、本実施形態のIII族窒化物複合基板1のIII族窒化物膜13の厚さは、50nm以上10μm未満である。ここで、III族窒化物膜13の厚さとは、図2に示すIII族窒化物膜13の主面13m上の13点の測定点において測定した厚さから算出した平均値を意味する。図2に示すIII族窒化物膜13の主面13m上の13点の測定点Pは、III族窒化物膜の直径の大小にかかわらず、1つの中心点PCと、その中心点PCから互いに直角な4方向上でかつ外縁から5mm内側にある4つの外側点POと、1つの中心点PCと4つの外側点POとの中間に位置する4つの点および4つの外側点POの互いの中間に位置する4つの点をあわせた8つの中間点PMとで構成される。III族窒化物膜13の厚さは、反射率分光法により測定することができる。
 III族窒化物膜13の厚さは、結晶品質の高いIII族窒化物層を成長させる観点から、50nm以上が必要であり、80nm以上が好ましく、100nm以上がより好ましく、120nm以上がさらに好ましく,150nm以上が特に好ましく、III族窒化物複合基板1の材料コストを著しく抑制する観点から、10μm未満が必要であり、5μm以下が好ましく、1μm以下がより好ましく、500nm以下がさらに好ましく、250nm以下が特に好ましい。
 (III族窒化物膜の厚さの平均値に対する厚さの標準偏差の比)
 図1および図2を参照して、本実施形態のIII族窒化物複合基板1は、III族窒化物膜13の厚さの平均値mtに対する厚さの標準偏差stの比st/mtが0.01以上0.5以下である。比st/mtは、III族窒化物膜13の主面13m上に結晶品質が高いIII族窒化物層を成長させる観点から、0.5以下が必要であり、0.4以下が好ましく、0.3以下がより好ましく、0.2以下がさらに好ましい。また、比st/mtは、III族窒化物膜13の主面13mの表面処理コストを抑制する観点から、0.01以上が必要であり、0.02以上が好ましく、0.03以上がより好ましく、0.05以上がさらに好ましい。
 ここで、III族窒化物膜13の厚さの平均値mtおよび標準偏差stは、それぞれ、図2に示すIII族窒化物膜13の主面13m上の13点の測定点において測定した厚さから算出した平均値および標準偏差である。図2に示すIII族窒化物膜13の主面13m上の13点の測定点Pは、上記のとおり、1つの中心点PCと、4つの外側点POと、8つの中間点PMとで構成される。ここでいう標準偏差とは、不偏分散の正の平方根を意味する。
 III族窒化物膜の厚さが50nm以上10μm未満のIII族窒化物複合基板1において、比st/mtを0.01以上0.5以下とするためには、後述するようにIII族窒化物膜13の主面13mに特別な手順および条件で研磨およびエッチングの少なくともいずれかを行なうことが好適である。
 (III族窒化物膜の主面の所定の面方位の面に対するオフ角の絶対値の平均値に対するオフ角の絶対値の標準偏差の比)
 図1を参照して、本実施形態のIII族窒化物複合基板1は、III族窒化物膜13の主面13mの所定の面方位の面に対するオフ角(ずれ角)の絶対値の平均値moに対するオフ角の絶対値の標準偏差soの比so/moが0.005以上0.6以下である。比so/moは、III族窒化物膜13の主面13m上に結晶品質が高いIII族窒化物層を成長させる観点から、0.6以下が必要であり、0.5以下が好ましく、0.4以下がより好ましく、0.2以下がさらに好ましい。また、比so/moは、III族窒化物膜13の主面13mの表面処理コストを抑制する観点から、0.005以上が必要であり、0.008以上が好ましく、0.02以上がより好ましい。
 ここで、III族窒化物膜13の主面13mのオフ角の平均値mOおよび標準偏差sOは、それぞれ図2に示すIII族窒化物膜13の主面13m上の13点の測定点において測定したオフ角から算出した平均値および標準偏差である。図2に示すIII族窒化物膜13の主面13m上の13点の測定点Pは、上記のとおり、1つの中心点PCと、4つの外側点POと、8つの中間点PMとで構成される。ここでいう標準偏差とは、上記のとおり、不偏分散の正の平方根を意味する。
 III族窒化物膜の厚さが50nm以上10μm未満のIII族窒化物複合基板1において、比so/moを0.005以上0.6以下とするためには、後述するようにIII族窒化物膜13の主面13mに特別な手順および条件で研磨およびエッチングの少なくともいずれかを行なうことが好適である。
 (III族窒化物膜側の主面の二乗平均平方根粗さの平均値および平均値に対する標準偏差の比)
 図1および図2を参照して、本実施形態のIII族窒化物複合基板1は、III族窒化物膜13側の主面13mの二乗平均平方根粗さの平均値mIII-Nが0.4nm以上10nm以下が好ましく、III族窒化物膜13側の主面13mの二乗平均平方根粗さの平均値mIII-Nに対する標準偏差sIII-Nの比sIII-N/mIII-Nが0.008以上0.5以下が好ましい。
 III族窒化物複合基板1の表面側であるIII族窒化物膜13側の主面13mについて、その上に結晶品質が高く均一なIII族窒化物層を成長させる観点から、その二乗平均平方根粗さの平均値mIII-Nは、10nm以下が好ましく、5nm以下がより好ましく、3nm以下がさらに好ましく、その二乗平均平方根粗さの平均値mIII-Nに対するその二乗平均平方根粗さの標準偏差sIII-Nの比sIII-N/mIII-Nは、0.5以下が好ましく、0.4以下がより好ましく、0.2以下がさらに好ましい。
 また、III族窒化物複合基板1の表面側であるIII族窒化物膜13側の主面13mについて、かかる主面13mの表面処理コストを抑制する観点から、その二乗平均平方根粗さの平均値mIII-Nは、0.4nm以上が好ましく、1nm以上がより好ましく、1.5nm以上がさらに好ましく、その二乗平均平方根粗さの平均値mIII-Nに対するその二乗平均平方根粗さの標準偏差sIII-Nの比sIII-N/mIII-Nは、0.008以上が好ましく、0.02以上がより好ましく、0.05以上がさらに好ましい。
 ここで、図2を参照して、III族窒化物複合基板1のIII族窒化物膜13側の主面13mの二乗平均平方根粗さの平均値mIII-Nおよび標準偏差sIII-Nは、それぞれ、III族窒化物膜13の主面13m上の13点の測定点Pにおいて測定した二乗平均平方根粗さから算出した平均値および標準偏差である。図2に示すIII族窒化物膜13の主面13m上の13点の測定点Pは、上記のとおり、1つの中心点PCと、4つの外側点POと、8つの中間点PMとで構成される。ここでいう標準偏差とは、上記のとおり、不偏分散の正の平方根を意味する。
 また、図2に示すIII族窒化物膜13の主面13m上の13点の測定点Pにおいて測定した二乗平均平方根粗さとは、その測定点Pを中心とする85μm×85μm角の大きさの測定領域内の各点から標準平面を算出し、基準平面からの各点までの距離の二乗の平均の正の平方根の値をいい、AFM(原子間力顕微鏡)、光干渉式粗さ計、レーザ顕微鏡、触針式粗さ計などにより測定される。
 なお、III族窒化物複合基板1のIII族窒化物膜13側の主面13mの二乗平均平方根粗さの平均値mIII-Nおよび標準偏差sIII-Nは、後述するように、III族窒化物膜13の主面13mを研磨およびエッチングの少なくともいずれかを行なう際の研磨条件および/またはエッチング条件によって調整することができる。
 (直径に対するIII族窒化物膜側の反りの比)
 図1を参照して、図1を参照して、本実施形態のIII族窒化物複合基板1については、直径Dに対するIII族窒化物膜13側の主面13mの反りWIII-Nの比WIII-N/Dは、-7×10-4以上8×10-4以下が好ましく、-4×10-4以上5×10-4以下がより好ましく、-2.5×10-4以上3×10-4以下がさらに好ましく、-1×10-4以上1.5×10-4以下が特に好ましい。ここで、反りWIII-Nおよび比WIII-N/Dの符号は、III族窒化物膜13側の主面13mが凸に反っているものを+(正)符号とし、III族窒化物膜13側の主面が凹に反っているものを-(負)符号とする。III族窒化物複合基板1の直径Dに対するIII族窒化物膜13側の主面13mの反りWIII-Nの比WIII-N/Dが、好ましくは-7×10-4以上8×10-4以下、より好ましくは-4×10-4以上5×10-4以下、さらに好ましくは-2.5×10-4以上3×10-4以下、特に好ましくは-1×10-4以上1.5×10-4以下と小さいと、III族窒化物膜13の主面13m上に結晶品質の高いIII族窒化物層を成長させることができるため、特性の高いIII族窒化物半導体デバイスを歩留よく得ることができる。
 (支持基板の熱膨張係数に対するIII族窒化物膜の熱膨張係数の比)
 図1を参照して、本実施形態のIII族窒化物複合基板1は、III族窒化物複合基板1およびそのIII族窒化物膜13の主面13m上に成長させるIII族窒化物層の反りおよび割れを抑制してIII族窒化物半導体デバイスの歩留を高める観点から、支持基板11の熱膨張係数αSに対するIII族窒化物膜13の熱膨張係数αIII-Nの比αIII-N/αSが0.75以上1.25以下が好ましく、0.85以上1.15以下がより好ましく、0.95以上1.05以下がさらに好ましい。ここで、支持基板11の熱膨張係数αSおよびIII族窒化物膜13の熱膨張係数αIII-Nは、熱機械分析装置により測定することができる。
 (支持基板の厚さに対するIII族窒化物膜の厚さの比)
 図1を参照して、本実施形態のIII族窒化物複合基板1は、III族窒化物複合基板1およびそのIII族窒化物膜13の主面13m上に成長させるIII族窒化物層の反りおよび割れを抑制してIII族窒化物半導体デバイスの歩留を高める観点から、支持基板11の厚さtSに対するIII族窒化物膜13の厚さtIII-Nの比tIII-N/tSが1×10-4以上2×10-2以下が好ましく、2×10-4以上2×10-3以下がより好ましく、5×10-4以上1×10-3以下がさらに好ましい。ここで、支持基板11の厚さtSおよびIII族窒化物膜13の厚さtIII-Nは、光学顕微鏡および/またはSEM(走査型電子顕微鏡)による膜の断面の観察、反射率分光法、デジタルインジケーターなどにより測定することができる。
 したがって、III族窒化物複合基板1およびそのIII族窒化物膜13上に成長させるIII族窒化物層の反りおよび割れを抑制してIII族窒化物半導体デバイスの歩留を高める観点から、支持基板11の熱膨張係数αSに対するIII族窒化物膜13の熱膨張係数αIII-Nの比αIII-N/αSが0.75以上1.25以下かつ支持基板11の厚さtSに対するIII族窒化物膜の厚さtIII-Nの比tIII-N/tSが1×10-4以上2×10-2以下が好ましく、比αIII-N/αSが0.85以上1.15以下かつ比tIII-N/tSが2×10-4以上2×10-3以下がより好ましく、比αIII-N/αSが0.95以上1.05以下かつ比tIII-N/tSが5×10-4以上1×10-3以下がさらに好ましい。
 (III族窒化物膜の主面における不純物金属原子)
 図1および図2を参照して、本実施形態のIII族窒化物複合基板1は、III族窒化物膜13の主面13m上に成長させるIII族窒化物層の結晶品質を高め、形成する半導体デバイスの特性を高くする観点から、III族窒化物膜13の主面13mにおける不純物金属原子が、1×1013原子/cm2以下が好ましく、3×1012原子/cm2以下がより好ましく、1×1012原子/cm2以下がさらに好ましく、1×1011原子/cm2以下が特に好ましい。ここで、III族窒化物膜13の主面13mにおける不純物金属原子の濃度は、TXRF(全反射蛍光X分析)法により測定することができる。
 ここで、III族窒化物複合基板1のIII族窒化物膜13の主面13mにおける不純物金属原子の濃度を低減するための洗浄方法は、特に制限はないが、支持基板11として、ムライト(3Al23・2SiO2~2Al23・SiO2)、ムライト-YSZ(イットリア安定化ジルコニア)、スピネル(MgAl24)、Al23-SiO2系複合酸化物の焼結体などの基板を含む場合は、支持基板11からの金属原子の溶出を抑制した洗浄、たとえば、界面活性剤と純水とを用いたスクラブ洗浄、二流体洗浄もしくはメガソニック洗浄(500kHz~5MHzのメガソニック帯域の周波数の超音波を用いた洗浄)、ならびに低濃度の酸および/またはアルカリを用いた枚葉洗浄などの片面(この片面はIII族窒化物膜13の主面13mである)の洗浄などが好ましい。
 なお、III族窒化物膜13の主面13mにおける不純物金属原子以外の不純物は、III族窒化物膜13上に成長させるIII族窒化物層の結晶品質を高め、形成する半導体デバイスの特性を高くする観点から、Cl原子が2×1014原子/cm2以下が好ましく、Si原子が9×1013原子/cm2以下が好ましい。ここで、III族窒化物膜13の主面13mにおける不純物金属原子以外の不純物の濃度は、TXRF法により測定することができる。
 (支持基板の熱伝導率)
 図1を参照して、本実施形態のIII族窒化物複合基板1は、支持基板11の熱伝導率λSが3W・m-1・K-1以上280W・m-1・K-1以下が好ましく、5W・m-1・K-1以上210W・m-1・K-1以下がより好ましく、10W・m-1・K-1以上120W・m-1・K-1以下がさらに好ましい。ここで、支持基板11の熱伝導率λSは、レーザフラッシュ法により測定することができる。熱伝導率λSが好ましくは3W・m-1・K-1以上、より好ましくは5W・m-1・K-1以上、さらに好ましくは10W・m-1・K-1以上である支持基板11を有するIII族窒化物複合基板1は、III族窒化物層を成長させる際に、III族窒化物複合基板1を支持するサセプタの主面からの熱を効率よくIII族窒化物複合基板1のIII族窒化物膜13の主面13mに伝えることができる。熱伝導率λSが好ましくは280W・m-1・K-1以下、より好ましくは210W・m-1・K-1以下、さらに好ましくは120W・m-1・K-1以下、特に好ましくは50W・m-1・K-1以下である支持基板11を有するIII族窒化物複合基板1は、III族窒化物層を成長させる際にサセプタの主面からの熱をIII族窒化物複合基板1のIII族窒化物膜13の主面の全体に均一に伝えることができる。熱伝導率λSが280W・m-1・K-1以下の支持基板11は、熱伝導率λSが約300W・m-1・K-1のSiC基板を支持基板として用いる場合よりも、III族窒化物層を成長させる際にサセプタの主面からの熱をIII族窒化物複合基板1のIII族窒化物膜13の主面の全体に均一に伝えることができる。
 (支持基板のヤング率)
 本実施形態のIII族窒化物複合基板1は、支持基板11のヤング率ESが150GPa以上500GPa以下が好ましく、200GPa以上350GPa以下がより好ましい。ここで、支持基板11のヤング率ESは、共振法により測定することができる。ヤング率ESが好ましくは150GPa以上、より好ましくは200GPa以上の支持基板11を有するIII族窒化物複合基板1は、その上にIII族窒化物層を成長させてIII族窒化物半導体デバイスを形成する際に、III族窒化物複合基板1および/またはIII族窒化物層に反りが発生するのを抑制することができる。ヤング率ESが好ましくは500GaPa以下、より好ましくは350GPa以下の支持基板11を有するIII族窒化物複合基板1は、その上にIII族窒化物層を成長させてIII族窒化物半導体デバイスを形成する際に、III族窒化物複合基板1および/またはIII族窒化物層に割れおよび/またはクラックが発生するのを抑制することができる。
 (支持基板)
 本実施形態のIII族窒化物複合基板1に含まれる支持基板11は、III族窒化物膜13を支持できるものであれば特に制限はないが、高価なIII族窒化物の使用量を低減してコストを低減する観点から、III族窒化物と化学組成が異なる異組成基板であることが好ましい。
 本実施形態のIII族窒化物複合基板1は、上記のように、支持基板11の熱膨張係数αSに対するIII族窒化物膜13の熱膨張係数αIII-Nの比αIII-N/αSが0.75以上1.25以下であることが好ましい。また、支持基板11の熱伝導率λSが3W・m-1・K-1以上280W・m-1・K-1以下が好ましく、支持基板11のヤング率ESが150GPa以上500GPa以下が好ましい。
 支持基板11は、特に制限はないが、上記の特性の少なくともいずれかを満たすものが好ましく、たとえば、ムライト(3Al23・2SiO2~2Al23・SiO2)、ムライト-YSZ(イットリア安定化ジルコニア)、スピネル(MgAl24)、Al23-SiO2系複合酸化物の焼結体、およびこれらに酸化物、炭酸塩などを添加した焼結体により形成される基板、モリブデン(Mo)基板、タングステン(W)基板などが好ましい。ここで、酸化物、炭酸塩に含まれる元素は、Ca、Mg、Sr、Ba、Al、Sc、Y、Ce、Pr、Si、Ti、Zr、V、Nb、Ta、Cr、Mn、Fe、Co、Ni、Cu、Znなどが好適に挙げられる。
 支持基板11は、単結晶、多結晶、および非結晶のいずれを含んでいてもよいが、半導体デバイスの形成の際に、研削および/またはエッチングによる支持基板の除去が容易であり、反りおよび/または割れを抑制できる強度を維持できる観点から、多結晶を含むことが好ましい。
 (接合膜)
 図1を参照して、本実施形態のIII族窒化物複合基板1に含まれ得る接合膜12は、支持基板11とIII族窒化物膜13とを接合できるものであれば特に制限はないが、支持基板11とIII族窒化物膜13との接合性が高い観点から、SiO2膜、Si34膜、TiO2膜、Ga23膜などが好ましい。
 (III族窒化物膜)
 図1を参照して、本実施形態のIII族窒化物膜13は、III族窒化物で形成される膜であり、GaN膜、AlN膜などのInxAlyGa1-x-yN膜(0≦x、0≦y、x+y≦1)などが挙げられる。
 III族窒化物膜13の厚さは、上記のように、50nm以上が必要であり、80nm以上が好ましく、100nm以上がより好ましく、120nm以上がさらに好ましく、150nm以上が特に好ましい。また、III族窒化物膜13の厚さは、上記のように、高価なIII族窒化物の使用量を著しく低減する観点から、10μm未満が必要であり、5μm以下が好ましく、1μm以下がより好ましく、500nm以下がさらに好ましく、250nm以下が特に好ましい。
 III族窒化物膜13の結晶構造は、良好な特性の半導体デバイスが得られる観点から、ウルツ鉱型構造が好ましい。III族窒化物膜13の主面13mが最も近似する上記の所定の面方位は、所望の半導体デバイスに適したものであれば制限はなく、{0001}、{10-10}、{11-20}、{21-30}、{20-21}、{10-11}、{11-22}、{22-43}、およびこれらのそれぞれの面方位から15°以下でオフした(15°以下の角度でずらした)面方位でもよい。また、これらのそれぞれの面方位の面の裏面の面方位およびかかる裏面の面方位から15°以下でオフした面方位でもよい。すなわち、III族窒化物膜13の主面13mは、極性面、非極性面、および半極性面のいずれであってもよい。また、III族窒化物膜13の主面13mは、大口径化が容易な観点から{0001}面およびその裏面が好ましく、得られる発光デバイスのブルーシフトを抑制する観点から{10-10}面、{20-21}面およびそれらの裏面が好ましい。
 また、III族窒化物膜13は、半導体デバイスの抵抗を低減する観点からキャリア濃度が1×1017cm-3以上が好ましく、半導体デバイスのリーク電流を低減する観点から転位密度が1×108cm-2以下が好ましく、III族窒化物膜の結晶品質を高める観点からX線回折のロッキングカーブにおける回折ピークの半値幅が20arcsec以上150arcsec以下が好ましい。
 [実施形態2:積層III族窒化物複合基板]
 図3を参照して、本発明の別の実施形態である積層III族窒化物複合基板2は、実施形態1のIII族窒化物複合基板1と、III族窒化物複合基板1のIII族窒化物膜13側の主面13m上に配置されている少なくとも1層のIII族窒化物層20と、を含む。
 本実施形態の積層III族窒化物複合基板2は、III族窒化物膜の厚さの分布が小さく(具体的にはIII族窒化物膜の厚さの平均値mtに対する厚さの標準偏差stの比st/mtが0.01以上0.5以下)、III族窒化物膜の主面の所定の面方位の面に対するオフ角の分布が小さい(具体的にはIII族窒化物膜の主面の所定の面方位の面に対するオフ角の絶対値の平均値moに対するオフ角の絶対値の標準偏差soの比so/moが0.005以上0.6以下)III族窒化物複合基板1とその上に成長することにより配置されている結晶品質の高いIII族窒化物層20とを含むため、高特性の半導体デバイスを歩留よく作製することができる。
 本実施形態の積層III族窒化物複合基板2において、III族窒化物膜13側の主面13m上に配置されているIII族窒化物層20は、作製する半導体デバイスの種類に応じて異なる。図4を参照して、半導体デバイスとして電子デバイスの1例であるSBD(ショットキーバリアダイオード)を作製する場合は、III族窒化物層20は、たとえば、n+-GaN層28(キャリア濃度がたとえば2×1018cm-3)、n--GaN層29(キャリア濃度がたとえば5×1015cm-3)で構成することができる。図5を参照して、半導体デバイスとして電子デバイスの別の例であるHEMT(高電子移動度トランジスタ)を作製する場合は、III族窒化物層20は、たとえば、GaN層26、Al0.2Ga0.8N層27で構成することができる。図6を参照して、半導体デバイスとして発光デバイスを作製する場合は、III族窒化物層20は、たとえば、n-GaN層21、n-In0.05Ga0.95N層22、多重量子井戸構造を有する活性層23、p-Al0.09Ga0.91N層24、およびp-GaN層25で構成することができる。
 [実施形態3:III族窒化物半導体デバイス]
 図4~図6を参照して、本発明のさらに別の実施形態であるIII族窒化物半導体デバイス4は、実施形態1のIII族窒化物複合基板中のIII族窒化物膜13と、III族窒化物膜13上に配置されている少なくとも1層のIII族窒化物層20と、を含む。
 本実施形態のIII族窒化物半導体デバイス4は、III族窒化物膜の厚さの分布が小さく(具体的にはIII族窒化物膜の厚さの平均値mtに対する厚さの標準偏差stの比st/mtが0.01以上0.5以下)、III族窒化物膜の主面の所定の面方位の面に対するオフ角の分布が小さい(具体的にはIII族窒化物膜の主面の所定の面方位の面に対するオフ角の絶対値の平均値moに対するオフ角の絶対値の標準偏差soの比so/moが0.005以上0.6以下)III族窒化物複合基板1とその上に成長することにより配置されている結晶品質の高いIII族窒化物層20とを含むため、高い特性を有する。
 III族窒化物半導体デバイス4のIII族窒化物層20は、III族窒化物半導体デバイス4の種類に応じて異なる。図4を参照して、III族窒化物半導体デバイス4が電子デバイスの1例であるSBDの場合は、III族窒化物層20は、たとえば、n+-GaN層28(キャリア濃度がたとえば2×1018cm-3)、n--GaN層29(キャリア濃度がたとえば5×1015cm-3)で構成することができる。図5を参照して、III族窒化物半導体デバイス4が電子デバイスの別の例であるHEMTの場合は、III族窒化物層20は、たとえば、GaN層26、Al0.2Ga0.8N層27で構成することができる。図6を参照して、III族窒化物半導体デバイス4が発光デバイスの場合は、III族窒化物層20は、たとえば、n-GaN層21、n-In0.05Ga0.95N層22、多重量子井戸構造を有する活性層23、p-Al0.09Ga0.91N層24、およびp-GaN層25で構成することができる。電子デバイスのさらに別の例として、PND(PNダイオード)、トランジスタなどが挙げられる。なお、上記のIII族窒化物半導体デバイス4は、縦型であっても、横型であってもよい。
 図4~図6を参照して、III族窒化物半導体デバイス4は、III族窒化物層20を支持するための支持基板11およびデバイス支持基板40の少なくともひとつをさらに含むことが好ましい。ここで、デバイス支持基板40の形状は、平板形状に限らず、III族窒化物膜13およびIII族窒化物層20を支持してIII族窒化物半導体デバイス4を形成することができるものである限り、任意の形状をとることができる。
 なお、III族窒化物半導体デバイスは、図4または図6に示すIII族窒化物半導体デバイス4からIII族窒化物膜13を除去した構造とすることもできる。III族窒化物半導体デバイスは、III族窒化物膜13を除去した構造とすることにより、デバイス特性をより向上することができる。
 [実施形態4:III族窒化物複合基板の製造方法]
 図7~図11を参照して、本発明のさらに別の実施形態であるIII族窒化物複合基板の製造方法は、実施形態1のIII族窒化物複合基板の製造方法であって、支持基板11の主面11m側にIII族窒化物膜13を配置することによりIII族窒化物複合基板1を形成する工程と、III族窒化物複合基板1を形成する工程の後に、III族窒化物複合基板1のIII族窒化物膜13側の主面13mに研磨およびエッチングの少なくともひとつを行なうことにより、III族窒化物膜13の厚さおよびIII族窒化物膜13の主面13mの所定の面方位の面に対するオフ角を調整する工程と、を含む。
 本実施形態のIII族窒化物複合基板1の製造方法によれば、高い歩留でIII族窒化物半導体デバイスの製造が可能な、コストが低く大口径でIII族窒化物膜が薄く、III族窒化物膜13の厚さの分布およびIII族窒化物膜13の主面13mの所定の面方位の面に対するオフ角の分布が小さいIII族窒化物複合基板1を効率よく製造することができる。
 {III族窒化物複合基板の形成工程}
 本実施形態のIII族窒化物複合基板1の製造方法は、支持基板11の主面11m側にIII族窒化物膜13を配置することによりIII族窒化物複合基板1を形成する工程を含む。かかる工程において、支持基板11の主面11m側にIII族窒化物膜13を配置する方法は、特に制限はなく、以下の第1~第3の方法が挙げられる。
 第1の方法は、図7に示すように、支持基板11の主面11mに、下地基板130の主面130n上に成膜させたIII族窒化物膜13を貼り合わせた後、下地基板130を除去する方法である。第2の方法は、図8~図10に示すように、支持基板11の主面11mにIII族窒化物膜ドナー基板13Dを貼り合わせた後、そのIII族窒化物膜ドナー基板13Dを貼り合わせ面から所定の深さの面で分離することにより支持基板11の主面11m上にIII族窒化物膜13を形成する方法である。第3の方法は、図11に示すように、支持基板11の主面11mにIII族窒化物膜ドナー基板13Dを貼り合わせた後、そのIII族窒化物膜ドナー基板13Dを貼り合わせ面の反対側の主面13mから研削、研磨およびエッチングの少なくともいずれかにより厚さを減少させて調整することにより支持基板11の主面11m上にIII族窒化物膜13を形成する方法である。
 上記の第1の方法において、支持基板11にIII族窒化物膜13を貼り合わせる方法には、支持基板11の主面11mに接合膜12を介在させてIII族窒化物膜13の主面13nを貼り合わせる方法(図7を参照)などが挙げられる。また、上記の第2および第3の方法において、支持基板11にIII族窒化物膜ドナー基板13Dを貼り合わせる方法には、支持基板11の主面11mに接合膜12を介在させてIII族窒化物膜ドナー基板13Dの主面13nを貼り合わせる方法(図8~図11を参照)などが挙げられる。
 なお、図7~図11には、支持基板11に接合膜12aを形成するとともに、III族窒化物膜13またはIII族窒化物膜ドナー基板13Dに接合膜12bを形成し、それらを貼り合わせる方法が図示されているが、たとえば、支持基板11にのみ接合膜12を形成しておきIII族窒化物膜13またはIII族窒化物膜ドナー基板13Dと貼り合わせてもよいし、III族窒化物膜13またはIII族窒化物膜ドナー基板13Dにのみ接合膜12を形成しておき支持基板11と貼り合わせてもよい。
 (第1の方法)
 図7を参照して、第1の方法によりIII族窒化物複合基板1を形成する工程は、特に制限はないが、効率的に複合基板を製造する観点から、支持基板11を準備するサブ工程(図7(A1))と、支持基板11の主面11m上に接合膜12aを形成するサブ工程(図7(A2))と、下地基板130の主面130n上にIII族窒化物膜13を形成する工程(図7(B1))と、下地基板130に形成されたIII族窒化物膜13の主面13n上に接合膜12bを形成するサブ工程(図7(B2))と、支持基板11に形成された接合膜12aの主面12amと下地基板130に形成されたIII族窒化物膜13に形成された接合膜12bの主面12bnとを貼り合わせて接合基板1Lを形成する工程(図5(C))と、接合基板1Lから下地基板130を除去する工程(図5(D))と、を含むことが好ましい。
 図7(A1)に示す、支持基板11を準備するサブ工程は、特に制限はなく、たとえば、金属元素Mを含む酸化物であるMOx(xは任意の正の実数)、Alを含む酸化物であるAl23、およびSiを含む酸化物であるSiO2を所定のモル比で混合し焼結して得られる焼結体を所定の大きさに切り出して得られる基板の主面を研磨することにより行なうことができる。
 図7(A2)に示す、支持基板11の主面11m上に接合膜12aを形成するサブ工程は、特に制限はないが、膜形成コストを抑制する観点から、スパッタ法、蒸着法、CVD(化学気相堆積)法などが好適に行なわれる。
 図7(B1)に示す、下地基板130の主面130n上にIII族窒化物膜13を形成するサブ工程は、特に制限はないが、結晶品質の高いIII族窒化物膜13を形成する観点から、MOCVD(有機金属化学気相堆積)法、スパッタ法、MBE(分子線エピタキシ)法、PLD(パルス・レーザ堆積)法、HVPE(ハイドライド気相エピタキシ)法、昇華法、フラックス法、高窒素圧溶液法などにより好適に行なうことができる。
 図7(B2)に示す、下地基板130に形成されたIII族窒化物膜13の主面13n上に接合膜12bを形成するサブ工程は、上記の支持基板11の主面11m上に接合膜12aを形成するサブ工程と同様にして行なわれる。
 図7(C)に示す、支持基板11に形成された接合膜12aの主面12amと下地基板130に形成されたIII族窒化物膜13に形成された接合膜12bの主面12bnとを貼り合わせて接合基板1Lを形成するサブ工程において、接合膜12aと接合膜12bとを貼り合わせる方法には、特に制限はなく、貼り合わせ面を洗浄しそのまま貼り合わせた後600℃~1200℃程度に昇温して接合する直接接合法、貼り合わせ面を洗浄しプラズマやイオンなどで活性化処理した後に室温(たとえば25℃)~400℃程度の低温雰囲気下で接合する表面活性化接合法、貼り合わせ面を薬液と純水で洗浄処理した後、0.1MPa~10MPa程度の高圧力を掛けて接合する高圧接合法、貼り合わせ面を薬液と純水で洗浄処理した後、10-6Pa~10-3Pa程度の高真空雰囲気下で接合する高真空接合法、などが好適である。上記のいずれの接合法においてもそれらの接合後に600℃~1200℃程度に昇温することによりさらに接合強度を高めることができる。特に、表面活性化接合法、高圧接合法、および高真空接合法においては、それらの接合後に600℃~1200℃程度に昇温することによる接合強度を高める効果が大きい。
 図7(D)に示す、接合基板1Lから下地基板130を除去する工程は、特に制限はないが、下地基板130を効率的に除去する観点から、下地基板130をフッ化水素酸などのエッチャントにより溶解させて除去する方法、下地基板130の露出している主面側から研削または研磨により除去する方法などが好適に行なわれる。ここで、下地基板130をフッ化水素酸などのエッチャントにより溶解させて除去する場合には、支持基板11を保護するための保護部材140を支持基板11の回りに形成することが好ましい。
 このようにして、支持基板11と、支持基板11の主面11m上に配置された接合膜12と、接合膜12の主面12m上に配置されたIII族窒化物膜13と、を含むIII族窒化物複合基板1が得られる。
 (第2の方法)
 図8~図10を参照して、第2の方法によりIII族窒化物複合基板1を形成する工程は、特に制限はないが、効率的に複合基板を製造する観点から、図8および図9に示す切断法あるいは図10に示すイオン注入法が好適に用いられる。以下、切断法、イオン注入法について説明する。
 (切断法)
 図8および図9を参照して、切断法によりIII族窒化物複合基板1を形成する工程は、特に制限はないが、効率的に複合基板を製造する観点から、支持基板11の主面11m上に接合膜12aを形成するサブ工程(図8(A)および図9(A))と、III族窒化物膜ドナー基板13Dの主面13n上に接合膜12bを形成するサブ工程(図8(B)および図9(B))と、支持基板11に形成された接合膜12aの主面12amとIII族窒化物膜ドナー基板13Dに形成された接合膜12bの主面12bnとを貼り合わせて接合基板1L,1LSを形成するサブ工程(図8(C)および図9(C))と、接合基板1L,1LSのIII族窒化物膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さに位置する面でIII族窒化物膜ドナー基板13Dを切断するサブ工程(図8(D)および図9(D))と、を含むことが好ましい。
 ここで、III族窒化物膜ドナー基板13Dとは、後工程において分離によりIII族窒化物膜13を提供するドナー基板である。かかるIII族窒化物膜ドナー基板13Dを形成する方法は、上記の第1の方法により複合基板を製造する方法におけるIII族窒化物膜13を形成する方法と同様である。また、接合膜12a,12bの形成方法は、第1の方法により複合基板を製造する方法における接合膜12a,12bの形成方法と同様である。また、支持基板11とIII族窒化物膜ドナー基板13Dとを貼り合わせる方法は、上記の第1の方法により複合基板を製造する方法における支持基板11とIII族窒化物膜13とを貼り合わせる方法と同様である。
 また、III族窒化物膜ドナー基板13Dを切断するサブ工程において用いられる切断方法は、特に制限なく、ワイヤーソー、ブレード、レーザ、放電加工、ウォータージェットなどが好適に用いられる。大口径を平坦にワイヤーソーで切断するには、固定砥粒ワイヤーが好ましい。切断代(せつだんしろ)を低減させるためには、細線ワイヤーを用いた遊離砥粒方式が好ましい。スライス装置はワイヤーが揺動し、同期してインゴットが上下動することが好ましい。切断抵抗を減少して高精度に切断することができる。切断抵抗を低減して厚さの精度および平坦性を高めるためには、スライス用加工液の粘度η(単位:Pa・s)、加工液の流量Q(単位:m3/s)、ワイヤー線速度V(単位:m/s)、最大切断長さL(単位:m)、切断速度P(単位:m/s)、同時切断数nを用いて、R=η×Q×V/(L×P×n)の式で定義される抵抗係数R(単位:N)が適切な範囲にあることが好ましい。Rは4000N以上5000N以下であることが好ましい。
 このようにして、接合基板1L,1LSがIII族窒化物膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さに位置する面で分離して、支持基板11と、支持基板11の主面11m上に配置された接合膜12と、接合膜12の主面12m上に配置されたIII族窒化物膜13と、を含むIII族窒化物複合基板1が得られる。
 (支持体付III族窒化物膜ドナー基板の利用)
 図9(B)~(D)を参照して、III族窒化物膜ドナー基板13DにIII族窒化物膜ドナー基板支持体15が貼り合わされた支持体付III族窒化物膜ドナー基板5Dを用いて、上記と同様にして、III族窒化物複合基板1を製造することができる。支持体付III族窒化物膜ドナー基板5Dは、III族窒化物膜ドナー基板支持体15によりIII族窒化物膜ドナー基板13Dが支持されているため、III族窒化物膜ドナー基板13Dが自立できない程度に薄くなっても、繰り返し用いることができる。
 支持体付III族窒化物膜ドナー基板5Dにおいて、III族窒化物膜ドナー基板支持体15とIII族窒化物膜ドナー基板13Dとの貼り合わせ形態は、特に制限はないが、貼り合わせによる接合強度を高めるために接合膜14を介在させることが好ましい。また、III族窒化物膜ドナー基板支持体15は、特に制限はないが、支持強度が高くまた割れおよび反りの発生を防止する観点から、支持基板11と同様の物性の材料で形成されていることが好ましい。接合膜14は、特に制限はないが、III族窒化物膜ドナー基板支持体15とIII族窒化物膜ドナー基板13Dとの接合性が高い観点から、SiO2膜、Si34膜、TiO2膜、Ga23膜などが好ましい。
 (イオン注入法)
 図10を参照して、イオン注入法によりIII族窒化物複合基板1を形成する工程は、特に制限はないが、効率的に複合基板を製造する観点から、支持基板11の主面11m上に接合膜12aを形成するサブ工程(図10(A))と、III族窒化物膜ドナー基板13Dの主面13n側からイオンIを注入することにより主面13nから内部に所定の深さの位置の面にイオン注入領域13iを形成するとともに主面13n上に接合膜12bを形成するサブ工程(図10(B))と、支持基板11に形成された接合膜12aの主面12amとIII族窒化物膜ドナー基板13Dに形成された接合膜12bの主面12bnとを貼り合わせて接合基板1Lを形成するサブ工程(図10(C))と、で接合基板1LのIII族窒化物膜ドナー基板13Dをそのイオン注入領域13iで分離するサブ工程(図10(D))と、を含むことが好ましい。
 ここで、III族窒化物膜ドナー基板13Dを形成する方法は、上記の第1の方法により複合基板を製造する方法におけるIII族窒化物膜13を形成する方法と同様である。また、接合膜12a,12bの形成方法は、第1の方法により複合基板を製造する方法における接合膜12a,12bの形成方法と同様である。また、支持基板11とIII族窒化物膜ドナー基板13Dとを貼り合わせる方法は、上記の第1の方法により複合基板を製造する方法における支持基板11とIII族窒化物膜13とを貼り合わせる方法と同様である。
 III族窒化物膜ドナー基板13Dに注入されるイオンIは、特に制限はないが、主膜の品質の低下を抑制する観点およびイオン注入領域13iに注入されたイオンIのガス化温度をIII族窒化物膜13の分解温度より低くする観点から、質量の小さい原子のイオン、たとえば、水素イオン、ヘリウムイオンなどが好ましい。また、III族窒化物膜ドナー基板13Dをそのイオン注入領域13iで分離する方法は、イオン注入領域13iに注入されたイオンIをガス化させる方法であれば特に制限はない。たとえば、熱を加えたり、超音波を加えたりする方法などで、接合基板1LのIII族窒化物膜ドナー基板13Dの貼り合わせ面である主面から所定の深さの位置に形成されているイオン注入領域13iに注入されているイオンIをガス化させて急激な体積膨張をさせることにより行なう。
 このようにして、接合基板1LがIII族窒化物膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さに位置する面で分離して、支持基板11と、支持基板11の主面11m上に配置された接合膜12と、接合膜12の主面12m上に配置されたIII族窒化物膜13と、を含むIII族窒化物複合基板1が得られる。なお、上記イオン注入法においても、図9に示すような支持体付III族窒化物膜ドナー基板5Dを利用することができる。
 (第3の方法)
 図11を参照して、第3の方法によりIII族窒化物複合基板1を形成する工程は、特に制限はないが、効率的に複合基板を製造する観点から、支持基板11の主面11m上に接合膜12aを形成するサブ工程(図11(A))と、III族窒化物膜ドナー基板13Dの主面13n上に接合膜12bを形成するサブ工程(図11(B))と、支持基板11に形成された接合膜12aの主面12amとIII族窒化物膜ドナー基板13Dに形成された接合膜12bの主面12bnとを貼り合わせて接合基板1Lを形成するサブ工程(図11(C))と、接合基板1LのIII族窒化物膜ドナー基板13Dの貼り合わせ面である主面13nと反対側の主面13mから研削、研磨およびエッチングの少なくともいずれかを行なうサブ工程(図11(D))と、を含むことが好ましい。
 ここで、III族窒化物膜ドナー基板13Dとは、後工程において、第2の方法における分離による以外にも研削、研磨およびエッチングの少なくともいずれかによりIII族窒化物膜13を提供するドナー基板である。かかるIII族窒化物膜ドナー基板13Dを形成する方法は、上記の第1の方法により複合基板を製造する方法におけるIII族窒化物膜13を形成する方法と同様である。また、接合膜12a,12bの形成方法は、第1の方法により複合基板を製造する方法における接合膜12a,12bの形成方法と同様である。また、支持基板11とIII族窒化物膜ドナー基板13Dとを貼り合わせる方法は、上記の第1の方法により複合基板を製造する方法における支持基板11とIII族窒化物膜13とを貼り合わせる方法と同様である。
 また、III族窒化物膜ドナー基板13Dを研削する方法は、特に制限はなく、砥石による研削(平面研削)、ショット・ブラストなどが挙げられる。III族窒化物膜ドナー基板13Dを研磨する方法は、特に制限はなく、機械的研磨、CMP(化学機械的研磨)などが挙げられる。III族窒化物膜ドナー基板13Dをエッチングする方法は、特に制限はなく、薬液によるウェットエッチング、RIE(反応性イオンエッチング)などのドライエッチングなどが挙げられる。
 このようにして、支持基板11と、支持基板11の主面11m上に配置された接合膜12と、接合膜12の主面12m上に配置されたIII族窒化物膜13と、を含むIII族窒化物複合基板1が得られる。
 {III族窒化物複合基板のIII族窒化物膜の厚さおよびIII族窒化物膜の主面の所定の面方位の面に対するオフ角の調整工程}
 本実施形態のIII族窒化物複合基板1の製造方法は、III族窒化物複合基板1を形成する工程の後に、III族窒化物複合基板1のIII族窒化物膜13側の主面13mに研磨およびエッチングの少なくともひとつを行なうことにより、III族窒化物膜13の厚さおよびIII族窒化物膜13の主面13mの所定の面方位の面に対するオフ角を調整する工程を含む。かかる工程により、III族窒化物複合基板1のIII族窒化物膜13の厚さの平均値mtに対する厚さの標準偏差stの比st/mtを0.01以上0.5以下とし、III族窒化物膜13の主面13mの所定の面方位の面に対するオフ角の絶対値の平均値moに対するオフ角の絶対値の標準偏差soの比so/moを0.005以上0.6以下とすることができる。
 ここで、III族窒化物膜13の厚さの分布(具体的にはIII族窒化物膜13の厚さの平均値mtに対する厚さの標準偏差stの比st/mt)およびIII族窒化物膜13の主面13mの所定の面方位の面に対するオフ角の分布(具体的にはIII族窒化物膜13の主面13mの所定の面方位の面に対するオフ角の絶対値の平均値moに対するオフ角の絶対値の標準偏差soの比so/mo)を上記の所定の範囲内に調整するためには、III族窒化物複合基板1のIII族窒化物膜13側の主面13mに研磨およびエッチングの少なくともひとつを複数段階で行なうことが好ましく、複数段階の研磨およびエッチングの内、最後の段階である仕上げ研磨および仕上げエッチング、最終から2番目の段階である仕上げ前研磨および仕上げ前エッチングの条件が特に重要である。
 エッチングは、III族窒化物膜13の厚さの制御が容易な観点から、ドライエッチング、特にRIE(反応性イオンエッチング)が好ましい。特にIII族窒化物膜13の厚さが5μm以下の薄い場合は、ドライエッチング、特にRIEが好ましい。
 仕上げ前研磨においては、研磨剤は水性よりも油性が好ましく、研磨剤の粘度は高い方が好ましく、砥粒径は小さい方が好ましく、定盤および研磨パッドは硬質である方が好ましい。研磨条件としては、低圧力、低周速が好ましい。また、研磨液の粘度η(単位:mPa・s)、流量Q(単位:m3/s)、定盤の面積S(単位:m2)、研磨圧力P(単位:kPa)、周速V(単位:m/s)を用いて、FE=η×Q×V/S×Pの式で定義される作用係数FE(単位:m2/s)を所定範囲、具体的には、4×10-172/s以上1×10-162/s以下とすることが好ましい。
 仕上げ研磨においては、研磨剤の粘度は高い方が好ましく、砥粒径は小さい方が好ましく、定盤および研磨パッドは硬質である方が好ましい。研磨条件としては、低圧力、低周速が好ましい。また、上記のようにして定義される作用係数FE(単位:m2/s)を所定範囲、具体的には、4×10-142/s以上1×10-132/s以下とすることが好ましい。
 仕上げ前エッチングにおいては、エッチング速度増加、面内分布抑制、エッチング安定化のために、Cl2、BCl3などの塩素系ガス、Ar、N2などの不活性ガスを用いるのが好ましい。これらのガスにH2を添加してもよい。エッチング条件は、高流量、高圧力、高電力の条件が好ましい。エッチングの面内分布抑制のためには、チャンバ内の圧力P(単位:Pa)、混合ガスの流量Q(単位:sccm)、チャンバ容積V(単位:l(リットル))およびエッチング面積S(単位:m2)が、350≦PV/SQ≦500の関係を満たすことが好ましい。
 仕上げエッチングにおいては、エッチング速度増加、面内分布抑制、エッチング安定化、表面粗さ低減、ダメージ抑制のために、Cl2、BCl3などの塩素系ガスを用いるのが好ましい。これらのガスにH2を添加してもよい。条件は、低流量、低圧力、低電力の条件が好ましい。エッチングの面内分布抑制のためには、チャンバ内の圧力P(単位:Pa)、混合ガスの流量Q(単位:sccm)、チャンバ容積V(単位:l(リットル))およびエッチング面積S(単位:m2)が、310≦PV/SQ≦380の関係を満たすことが好ましい。
 ここで、研磨とエッチングとの選択は、特に制限はなく、任意である。したがって、仕上げ前段階および仕上げ段階の処理方法の選択としては、仕上げ前研磨および仕上げ研磨、仕上げ前研磨および仕上げエッチング、仕上げ前エッチングおよび仕上げ研磨、および仕上げ前エッチングおよび仕上げエッチングのいずれも可能である。
 本実施形態のIII族窒化物複合基板1の製造方法において、III族窒化物複合基板1のIII族窒化物膜13側の主面13mの二乗平均平方根粗さの平均値mIII-Nおよび分布(具体的には平均値mIII-Nに対する二乗平均平方根粗さの標準偏差sIII-Nの比sIII-N/mIII-N)は、仕上げ研磨または仕上げエッチングの条件により制御することができる。
 III族窒化物複合基板1のIII族窒化物膜13側の主面13mの二乗平均平方根粗さの平均値mIII-Nを小さくするためには、仕上げ研磨の場合は、研磨剤の粘度は高い方が好ましく、砥粒径は小さい方が好ましく、定盤および研磨パッドは軟質である方が好ましい。定盤および研磨パッドの表面形状は、スラッジ除去のための溝を形成した形状が好ましい。ここで、スラッジ除去のための溝とは、研磨界面のスラッジおよび/または凝集砥粒を排除して除去するために形成される、比較的幅が広くピッチの広い溝をいう。研磨条件としては、低圧力、低周速が好ましい。仕上げエッチングの場合は、Cl2、BCl3などの塩素系ガス、H2を用いるのが好ましく、低流量、低圧力、低電力の条件が好ましい。
 III族窒化物複合基板1のIII族窒化物膜13側の主面13mの二乗平均平方根粗さの二乗平均平方根粗さの平均値mIII-Nに対する二乗平均平方根粗さの標準偏差sIII-Nの比sIII-N/mIII-Nは、研磨液の粘度η(単位:mPa・s)、流量Q(単位:m3/s)、定盤の面積S(単位:m2)、研磨圧力P(単位:kPa)、周速V(単位:m/s)を用いて、FE=η×Q×V/S×Pの式で定義される作用係数FE(単位:m2/s)を所定範囲、具体的には、4×10-142/s以上1×10-132/s以下とすることが好ましく、定盤および研磨パッドの表面形状としては、研磨剤の均一化のための溝を形成した形状が好ましい。ここで、研磨剤の均一化のための溝とは、研磨剤を基板の中央部で均一に保持するために形成される、比較的幅が狭くピッチの狭い溝をいう。仕上げエッチングの場合は、チャンバ内の圧力P(単位:Pa)、混合ガスの流量Q(単位:sccm)およびチャンバ容積V(単位:l(リットル))およびエッチング面積S(単位:m2)が、310≦PV/SQ≦380の関係を満たすことが好ましい。
 [実施形態5:III族窒化物半導体デバイスの製造方法]
 図12を参照して、本発明のさらに別の実施形態であるIII族窒化物半導体デバイスの製造方法は、実施形態1のIII族窒化物複合基板1を準備する工程(図12(A))と、III族窒化物複合基板1のIII族窒化物膜13側の主面13m上に、少なくとも1層のIII族窒化物層20を成長させる工程(図10(A))と、を含む。本実施形態のIII族窒化物半導体デバイスの製造方法は、III族窒化物層20の成長の際にIII族窒化物膜13の主面13m内における厚さ分布およびオフ角分布が小さいIII族窒化物複合基板1の主面13m上にIII族窒化物層を成長させるため、高い歩留で高特性のIII族窒化物半導体デバイスを製造できる。
 本実施形態のIII族窒化物半導体デバイスの製造方法において、III族窒化物層20を成長させる工程(図12(A))の後に、III族窒化物複合基板1から支持基板11を除去する工程(図12(C))をさらに含むことができる。かかる工程により、多様な形態のIII族窒化物半導体デバイスを製造できる。
 さらに、本実施形態のIII族窒化物半導体デバイスの製造方法において、III族窒化物層を成長させる工程(図12(A))の後、支持基板を除去する工程(図12(C))の前に、III族窒化物層20上にさらにデバイス支持基板40を貼り合わせる工程(図12(B))をさらに含むことができる。かかる工程により、高い歩留でデバイス支持基板40により支持された機械的強度が強く高特性のIII族窒化物半導体デバイスを製造できる。
 本実施形態のIII族窒化物半導体デバイスの製造方法は、具体的には、以下の工程により、行なうことができる。
 (III族窒化物複合基板の準備工程)
 図12(A)を参照して、III族窒化物複合基板1を準備する工程は、上記のIII族窒化物複合基板1の製造方法と同様である。
 (III族窒化物層の成長工程)
 図12(A)を参照して、III族窒化物複合基板1のIII族窒化物膜13側の主面13m上に、少なくとも1層のIII族窒化物層20を成長させる工程において、III族窒化物層20を成長させる方法は、結晶品質の高いIII族窒化物層20をエピタキシャル成長させる観点から、MOCVD法、MBE法、HVPE法、昇華法などの気相法、フラックス法などの液相法などが好適であり、特にMOCVD法が好適である。
 III族窒化物層20の構成は、III族窒化物半導体デバイス4の種類に応じて異なる。III族窒化物半導体デバイス4がSBD(ショットキーバリアダイオード)の場合は、III族窒化物層20は、たとえば、III族窒化物複合基板1のIII族窒化物膜13の主面13m上に、n+-GaN層28(キャリア濃度がたとえば2×1018cm-3)およびn--GaN層29(キャリア濃度がたとえば5×1015cm-3)を順に成長させることにより構成することができる。
 上記のようにして、III族窒化物複合基板1のIII族窒化物膜13側の主面13m上に、少なくとも1層のIII族窒化物層20を成長させることにより、積層III族窒化物複合基板2が得られる。
 (デバイス支持基板の貼り合わせ工程)
 図12(B)を参照して、III族窒化物層20上にさらにデバイス支持基板40を貼り合わせる工程は、積層III族窒化物複合基板2のIII族窒化物層20上に、ショットキー電極となる第1電極30、およびパッド電極33を形成するとともに、デバイス支持基板40上にパッド電極43および接合金属膜44を形成し、パッド電極33に接合金属膜44を貼り合わせることにより行なう。かかる工程により、積層基板3が得られる。デバイス支持基板40には、Si基板、Mo基板、CuW基板などが用いられる。
 (支持基板の除去工程)
 図12(C)を参照して、III族窒化物複合基板1から支持基板11を除去する工程は、積層基板3から、III族窒化物複合基板1の支持基板を11を除去することにより行なう。III族窒化物複合基板1において支持基板11とIII族窒化物膜13との間に接合膜12が介在している場合には、接合膜12をも除去することができる。支持基板11および接合膜12の除去方法は、特に制限はなく、研削、エッチングなどが好適に用いられる。たとえば、硬度、強度、および耐摩耗性が低く削られ易い材料で形成される支持基板11は、製造コストを低減する観点から、研削および研磨の少なくともいずれかにより除去することができる。また、酸、アルカリなどの薬液に溶解する材料で形成される支持基板11は、製造コストが低い観点から薬液でエッチングして除去することができる。なお、支持基板11の除去が容易な観点から、支持基板11は、サファイア、SiC、III族窒化物(たとえばGaN)などの単結晶材料で形成されている支持基板に比べて、セラミックスなどの多結晶材料で形成されている支持基板の方が好ましい。
 なお、III族窒化物自立基板を用いたIII族窒化物半導体デバイスの製造においては、デバイスの厚みを低減させるために、III族窒化物自立基板の裏面(III族窒化物層が形成されている主面と反対側の主面をいう。以下、同じ。)からの研削加工などが行われる。これに対して、III族窒化物複合基板を用いたIII族窒化物半導体デバイスの製造においては、デバイスの厚みを低減させるために、支持基板をエッチングや研削で除去することが容易なことから、III族窒化物半導体デバイスの製造コストを低減することができる。
 上記のように、支持基板11、さらには接合膜12を除去した際に、III族窒化物膜13を除去することができる。III族窒化物層20はIII族窒化物膜13に比べて結晶性の向上、転位密度の低減、キャリア濃度の調整が容易である。III族窒化物膜13を除去することにより、デバイス特性をより向上することができる。III族窒化物膜13の除去には、研磨、エッチングを用いることができる。除去厚みの制御が容易である観点から、ドライエッチングを用いることが好ましい。
 (電極の形成工程)
 図12(D)を参照して、積層基板3から支持基板11および接合膜12が除去されることにより露出したIII族窒化物膜13上に第2電極50を形成し、デバイス支持基板40上にデバイス支持基板電極45を形成する。
 このようにして、特性の高いIII族窒化物半導体デバイスを歩留よく製造できる。
 本発明の参考となるいくつかの参考発明として、参考発明Iおよび参考発明IIについて、以下に説明する。
 <参考発明I>
 参考発明Iは、III族窒化物複合基板およびその製造方法、積層III族窒化物複合基板、ならびにIII族窒化物半導体デバイスおよびその製造方法に関する。
 [参考発明Iに関する背景技術]
 GaNなどのIII族窒化物は、優れた半導体特性を有していることから、半導体デバイスに好適に用いられている。また、GaNなどのIII族窒化物は、半導体デバイスの種類別、たとえば、発光デバイス、電子デバイスにおいて、Si、GaAs、SiCなどとは異なる良好な材料特性を有するため、種々のデバイスに用いることができる。
 たとえば、特開2009-126722号公報は、半導体デバイス用基板として、直径が25mm以上160mm以上で厚さが100μm以上1000μm以下の自立III族窒化物基板、具体的な実施例として直径が100mmで厚さが400μmの自立GaN基板を開示する。
 また、特開2008-010766号公報は、半導体デバイスを製造するための基板として、GaNと化学組成の異なる異種基板と、異種基板に貼り合わされている0.1μm以上100μm以下の厚さのGaN薄膜と、を含むGaN薄膜貼り合わせ基板、具体的な実施例としてサファイア基板と厚さが0.1μmまたは100μmのGaN薄膜とを貼り合わされている直径が50.8mmのGaN薄膜貼り合わせ基板を開示する。
 また、特開2010-182936号公報は、半導体デバイス用基板として、支持基板と、窒化物半導体層と、支持基板と窒化物半導体層との間に設けられた接合層とを備える複合基板、具体的な実施例としてサファイア基板とGaN層と両者間に圧着により形成される接合層で接合されたGaN層の厚さが5μm~220μmで直径が50.8mmの複合基板を開示する。
 [参考発明Iが解決しようとする課題]
 特開2009-126722号公報に開示される自立III族窒化物基板は、製造コストが高いため非常に高価であり、また、割れやすいため口径の拡大化、厚さの低減化が困難という問題があった。さらに、半導体デバイス形成の際に自立III族窒化物基板の厚さを低減する必要があり、自立III族窒化物基板の裏面(デバイス機能を発現させるIII族窒化物層を形成する主面と反対側の主面をいう。以下同じ。)の研削などの加工工程により製造コストが増加するという問題があった。
 また、特開2008-010766号公報に開示されるGaN薄膜複合基板および特開2010-182936号公報に開示される複合基板は、いずれも支持基板上にIII族窒化物の膜または層が接合された複合基板であるため、特開2009-126722号公報に開示された自立III族窒化物基板に比べて、III族窒化物半導体デバイスを製造するために基板上にIII族窒化物層を成長させる際に基板の主面上における温度のバラツキが大きくなり易いため、基板の直径を大きくすると製造される半導体デバイスの歩留を高くすることが困難という問題があった。
 参考発明Iは、上記の問題を解決して、半導体デバイスの製造の際のコストを低減し、高い歩留でIII族窒化物半導体デバイスの製造が可能な、コストが低く大口径でIII族窒化物膜が薄く、III族窒化物層の成長の際に主面上における温度の分布(すなわち、バラツキ、以下同じ。)が小さいIII族窒化物複合基板およびその製造方法、積層III族窒化物複合基板、ならびにIII族窒化物半導体デバイスおよびその製造方法を提供することを目的とする。
 [課題を解決するための手段]
 参考発明Iは、ある局面に従えば、支持基板と、厚さが50nm以上10μm未満のIII族窒化物膜と、が貼り合わされた直径が75mm以上のIII族窒化物複合基板であって、支持基板側の主面の二乗平均平方根粗さの平均値mSが0.3nm以上20nm以下であり、支持基板側の主面の二乗平均平方根粗さの平均値mSに対する二乗平均平方根粗さの標準偏差sSの比sS/mSが0.005以上0.4以下であるIII族窒化物複合基板である。
 参考発明Iのかかる局面に従うIII族窒化物複合基板において、III族窒化物膜側の主面の二乗平均平方根粗さの平均値mIII-Nを0.4nm以上10nm以下とし、III族窒化物膜側の主面の二乗平均平方根粗さの平均値mIII-Nに対する標準偏差sIII-Nの比sIII-N/mIII-Nを0.008以上0.5以下とすることができる。また、直径Dに対する支持基板側の主面の反りWSの比WS/Dを-7×10-4以上8×10-4以下とすることができる。また、支持基板の熱膨張係数αSに対するIII族窒化物膜の熱膨張係数αIII-Nの比αIII-N/αSを0.75以上1.25以下とし、支持基板の厚さtSに対するIII族窒化物膜の厚さtIII-Nの比tIII-N/tSを1×10-4以上2×10-2以下とすることができる。また、支持基板の熱伝導率λSを3W・m-1・K-1以上280W・m-1・K-1以下とすることができる。また、支持基板のヤング率ESを150GPa以上500GPa以下とすることができる。また、支持基板は多結晶を含むことができる。また、III族窒化物膜の主面における不純物金属原子を1×1013原子/cm2以下とすることができる。また、直径を100mm以上とすることができる。さらに、直径を125mm以上300mm以下とすることができる。
 参考発明Iは、別の局面に従えば、上記局面に従うIII族窒化物複合基板と、III族窒化物複合基板のIII族窒化物膜側の主面上に配置されている少なくとも1層のIII族窒化物層と、を含む積層III族窒化物複合基板である。
 参考発明Iは、さらに別の局面に従えば、上記局面に従うIII族窒化物複合基板中のIII族窒化物膜と、III族窒化物膜上に配置されている少なくとも1層のIII族窒化物層と、を含むIII族窒化物半導体デバイスである。
 参考発明Iは、さらに別の局面に従えば、上記局面に従うIII族窒化物複合基板の製造方法であって、支持基板の一方の主面側にIII族窒化物膜を配置することによりIII族窒化物複合基板を形成する工程と、III族窒化物複合基板を形成する工程の前、途中または後に、III族窒化物複合基板の支持基板側の主面を研磨することにより、支持基板側の主面の二乗平均平方根粗さを調整する工程と、を含むIII族窒化物複合基板の製造方法である。
 参考発明Iは、さらに別の局面に従えば、上記局面に従うIII族窒化物複合基板を準備する工程と、III族窒化物複合基板のIII族窒化物膜側の主面上に、少なくとも1層のIII族窒化物層を成長させる工程と、を含むIII族窒化物半導体デバイスの製造方法である。
 参考発明Iのかかる局面に従うIII族窒化物半導体デバイスの製造方法は、III族窒化物層を成長させる工程の後に、III族窒化物複合基板から支持基板を除去する工程をさらに含むことができる。さらに、III族窒化物層を成長させる工程の後、支持基板を除去する工程の前に、III族窒化物層上にデバイス支持基板を貼り合わせる工程をさらに含むことができる。
[参考発明Iの効果]
 参考発明Iによれば、半導体デバイスの製造の際のコストを低減し、高い歩留でIII族窒化物半導体デバイスの製造が可能な、コストが低く大口径でIII族窒化物膜が薄く、III族窒化物層の成長の際に主面上における温度の分布が小さいIII族窒化物複合基板およびその製造方法、積層III族窒化物複合基板、ならびにIII族窒化物半導体デバイスおよびその製造方法を提供することができる。
 [参考形態I-1:III族窒化物複合基板]
 図1を参照して、参考発明Iのある参考形態であるIII族窒化物複合基板1は、支持基板11と、厚さが50nm以上10μm未満のIII族窒化物膜13と、が貼り合わされた直径が75mm以上のIII族窒化物複合基板1であって、支持基板11側の主面11nの二乗平均平方根粗さの平均値mSが0.3nm以上20nm以下であり、支持基板11側の主面11nの二乗平均平方根粗さの平均値mSに対する二乗平均平方根粗さの標準偏差sSの比sS/mSが0.005以上0.4以下である。
 本参考形態のIII族窒化物複合基板1は、III族窒化物半導体デバイスを製造するためのIII族窒化物層の成長の際に主面上における温度の分布(すなわちバラツキ)が小さいため、結晶品質の高いIII族窒化物層を成長させることができ、このため高い歩留で高品質のIII族窒化物半導体デバイスを製造することができる。以下に、より詳しく説明する。
 図1および図3を参照して、本参考形態のIII族窒化物複合基板1は、支持基板11上にIII族窒化物膜13が貼り合わされた構造を有しており、III族窒化物半導体デバイスを製造する際に、昇温装置を備えるサセプタ(図示せず)の主面にIII族窒化物複合基板1の裏面側に相当する支持基板11側の主面11nが対向するように配置して、III族窒化物複合基板1の表(おもて)面側に相当するIII族窒化物膜13側の主面13m上に少なくとも1層のIII族窒化物層20を成長させる。
 本参考形態のIII族窒化物複合基板1は、その直径が75mm以上であり、その支持基板11上に貼り合わされたIII族窒化物膜13の厚さが50nm以上10μm未満であり、支持基板11側の主面11nの二乗平均平方根粗さの平均値mSが0.3nm以上20nm以下で、支持基板11側の主面11nの二乗平均平方根粗さの平均値mSに対する二乗平均平方根粗さの標準偏差sSの比sS/mSが0.005以上0.4以下であることから、昇温されたサセプタの主面から大口径のIII族窒化物複合基板1の裏面側である二乗平均平方根粗さの平均および分布が小さな支持基板11側の主面11nの全体に均一に熱が伝わるため、大口径のIII族窒化物複合基板1の全体が均一に加熱される。これにより、大口径のIII族窒化物複合基板1の表面側であるIII族窒化物膜13側の主面13m上における温度の分布が小さく均一になることから、大口径のIII族窒化物複合基板1のIII族窒化物膜13側の主面13m上に結晶品質が高く均一な大口径のIII族窒化物層20を成長させることができるため、特性の高いIII族窒化物半導体デバイスを歩留よく製造できる。
 なお、図1を参照して、III族窒化物複合基板1において、支持基板11とIII族窒化物膜13とを貼り合わせる形態は、特に制限はないが、貼り合わせによる接合強度を高めるために、接合膜12を介在させることが好ましい。
 (III族窒化物膜の厚さ)
 図1を参照して、本参考形態のIII族窒化物複合基板1のIII族窒化物膜13の厚さは、50nm以上10μm未満である。ここで、III族窒化物膜13の厚さとは、図2に示すIII族窒化物膜13の主面13m上の13点の測定点において測定した厚さから算出した平均値を意味する。図2に示すIII族窒化物膜13の主面上の13点の測定点Pは、III族窒化物膜の直径の大小にかかわらず、1つの中心点PCと、その中心点PCから互いに直角な4方向上でかつ外縁から5mm内側にある4つの外側点POと、1つの中心点PCと4つの外側点POとの中間に位置する4つの点および4つの外側点POの互いの中間に位置する4つの点をあわせた8つの中間点PMとで構成される。
 III族窒化物膜13の厚さは、結晶品質の高いIII族窒化物層を成長させる観点から、50nm以上が必要であり、80nm以上が好ましく、100nm以上がより好ましく、120nm以上がさらに好ましく、150nm以上が特に好ましく、III族窒化物複合基板1の材料コストを著しく抑制する観点から、10μm未満が必要であり、5μm以下が好ましく、1μm以下がより好ましく、500nm以下がさらに好ましく、250nm以下が特に好ましい。
 (III族窒化物複合基板の直径)
 図1を参照して、本参考形態のIII族窒化物複合基板1の直径は、75μm以上である。III族窒化物複合基板1の直径は、1枚の複合基板から半導体デバイスのチップの取れ数を多くする観点から、75mm以上が必要であり、100mm以上が好ましく、125mm以上がより好ましく、150mm以上がさらに好ましい。また、III族窒化物複合基板1の直径は、複合基板の反りを低減し半導体デバイスの歩留を高くする観点から、300mm以下が好ましく、200mm以下がより好ましい。
 (支持基板側の二乗平均平方根粗さ)
 図1および図2を参照して、本参考形態のIII族窒化物複合基板1は、支持基板11側の主面11nの二乗平均平方根粗さの平均値mSが0.3nm以上20nm以下であり、支持基板11側の主面11nの二乗平均平方根粗さの平均値mSに対する二乗平均平方根粗さの標準偏差sSの比sS/mSが0.005以上0.4以下である。
 III族窒化物複合基板1の裏面側である支持基板11側の主面11nについて、III族窒化物複合基板1のIII族窒化物膜13側の主面13m上に結晶品質が高く均一なIII族窒化物層を成長させる観点から、その二乗平均平方根粗さの平均値mSは、20nm以下が必要であり、10nm以下が好ましく、5nm以下がより好ましく、その二乗平均平方根粗さの平均値mSに対するその二乗平均平方根粗さの標準偏差sSの比sS/mSは、0.4以下が必要であり、0.3以下が好ましく、0.2以下がより好ましい。
 また、III族窒化物複合基板1の裏面側である支持基板11側の主面11nについて、かかる主面11nの表面処理コストを抑制する観点から、その二乗平均平方根粗さの平均値mSは、0.3nm以上が必要であり、0.5nm以上が好ましく、1nm以上がより好ましく、その二乗平均平方根粗さの平均値mSに対するその二乗平均平方根粗さの標準偏差sSの比sS/mSは、0.005以上が必要であり、0.01以上が好ましく、0.05以上がより好ましい。
 ここで、図2を参照して、III族窒化物複合基板1の支持基板11側の主面11nの二乗平均平方根粗さの平均値mSおよび標準偏差sSは、それぞれ、支持基板11の主面11n上の13点の測定点Pにおいて測定した二乗平均平方根粗さから算出した平均値および標準偏差である。図2に示す支持基板11の主面11n上の13点の測定点Pは、支持基板11の直径の大小にかかわらず、1つの中心点PCと、その中心点PCから互いに直角な4方向上でかつ外縁から5mm内側にある4つの外側点POと、1つの中心点PCと4つの外側点POとの中間に位置する4つの点および4つの外側点POの互いの中間に位置する4つの点をあわせた8つの中間点PMとで構成される。ここでいう標準偏差とは、不偏分散の正の平方根を意味する。
 また、図2に示す支持基板11の主面11n上の13点の測定点Pにおいて測定した二乗平均平方根粗さとは、その測定点Pを中心とする85μm×85μm角の大きさの測定領域内の各点から標準平面を算出し、基準平面からの各点までの距離の二乗の平均の正の平方根の値をいい、AFM(原子間力顕微鏡)、光干渉式粗さ計、レーザ顕微鏡、触針式粗さ計などにより測定される。
 なお、III族窒化物複合基板1の支持基板11側の主面11nの二乗平均平方根粗さの平均値mSおよび標準偏差sSは、後述するように、支持基板11の主面11nを研磨する際の研磨剤、定盤、および研磨パッドの物性、定盤、および研磨パッドの形状、ならびに研磨条件によって調整することができる。
 (III族窒化物膜側の二乗平均平方根粗さ)
 図1および図2を参照して、本参考形態のIII族窒化物複合基板1は、III族窒化物膜13側の主面13mの二乗平均平方根粗さの平均値mIII-Nが0.4nm以上10nm以下が好ましく、III族窒化物膜13側の主面13mの二乗平均平方根粗さの平均値mIII-Nに対する標準偏差sIII-Nの比sIII-N/mIII-Nが0.008以上0.5以下が好ましい。
 III族窒化物複合基板1の表面側であるIII族窒化物膜13側の主面13mについて、その上に結晶品質が高く均一なIII族窒化物層を成長させる観点から、その二乗平均平方根粗さの平均値mIII-Nは、10nm以下が好ましく、5nm以下がより好ましく、3nm以下がさらに好ましく、その二乗平均平方根粗さの平均値mIII-Nに対するその二乗平均平方根粗さの標準偏差sIII-Nの比sIII-N/mIII-Nは、0.5以下が好ましく、0.4以下がより好ましく、0.2以下がさらに好ましい。
 また、III族窒化物複合基板1の表面側であるIII族窒化物膜13側の主面13mについて、かかる主面13mの表面処理コストを抑制する観点から、その二乗平均平方根粗さの平均値mIII-Nは、0.4nm以上が好ましく、1nm以上がより好ましく、1.5nm以上がさらに好ましく、その二乗平均平方根粗さの平均値mIII-Nに対するその二乗平均平方根粗さの標準偏差sIII-Nの比sIII-N/mIII-Nは、0.008以上が好ましく、0.02以上がより好ましく、0.05以上がさらに好ましい。
 ここで、図2を参照して、III族窒化物複合基板1のIII族窒化物膜13側の主面13mの二乗平均平方根粗さの平均値mIII-Nおよび標準偏差sIII-Nは、それぞれ、III族窒化物膜13の主面13m上の13点の測定点Pにおいて測定した二乗平均平方根粗さから算出した平均値および標準偏差である。図2に示すIII族窒化物膜13の主面13m上の13点の測定点Pは、III族窒化物膜13の直径の大小にかかわらず、1つの中心点PCと、その中心点PCから互いに直角な4方向上でかつ外縁から5mm内側にある4つの外側点POと、1つの中心点PCと4つの外側点POとの中間に位置する4つの点および4つの外側点POの互いの中間に位置する4つの点をあわせた8つの中間点PMとで構成される。ここでいう標準偏差とは、不偏分散の正の平方根を意味する。
 また、図2に示すIII族窒化物膜13の主面13m上の13点の測定点Pにおいて測定した二乗平均平方根粗さとは、その測定点Pを中心とする85μm×85μm角の大きさの測定領域内の各点から標準平面を算出し、基準平面からの各点までの距離の二乗の平均の正の平方根の値をいい、AFM(原子間力顕微鏡)、光干渉式粗さ計、レーザ顕微鏡、触針式粗さ計などにより測定される。
 なお、III族窒化物複合基板1のIII族窒化物膜13側の主面13mの二乗平均平方根粗さの平均値mIII-Nおよび標準偏差sIII-Nは、後述するように、III族窒化物膜13の主面13mを研磨する際の研磨剤、定盤、および研磨パッドの物性、定盤、および研磨パッドの形状、ならびに研磨条件によって調整することができる。
 (直径に対する支持基板側の主面の反りの比)
 図1を参照して、本参考形態のIII族窒化物複合基板1については、直径Dに対する支持基板11側の主面11nの反りWSの比WS/Dは、-7×10-4以上8×10-4以下が好ましく、-4×10-4以上5×10-4以下がより好ましく、-2.5×10-4以上3×10-4以下がさらに好ましく、-1×10-4以上1.5×10-4以下が特に好ましい。ここで、反りWSおよび比WS/Dの符号は、支持基板11側の主面11nが凹に反っているものを+(正)符号とし、支持基板11側の主面が凸に反っているものを-(負)符号とする。III族窒化物複合基板1の直径Dに対する支持基板11側の主面11nの反りWSの比WS/Dが、好ましくは-7×10-4以上8×10-4以下、より好ましくは-4×10-4以上5×10-4以下、さらに好ましくは-2.5×10-4以上3×10-4以下、特に好ましくは-1×10-4以上1.5×10-4以下と小さいと、III族窒化物複合基板1のIII族窒化物膜13側の主面13m上にIII族窒化物層を成長させる際に、昇温されたサセプタの主面から大口径のIII族窒化物複合基板1の支持基板11側の主面11nの全体に均一に熱が伝わるため、III族窒化物複合基板1の全体が均一に加熱される。これにより、III族窒化物複合基板1の表面側であるIII族窒化物膜13側の主面13m上における温度は分布が小さく均一になることから、III族窒化物複合基板1のIII族窒化物膜13側の主面13m上に結晶品質が高く均一な大口径のIII族窒化物層を成長させることができるため、特性の高いIII族窒化物半導体デバイスを歩留よく製造できる。
 (支持基板の熱膨張係数に対するIII族窒化物膜の熱膨張係数の比)
 図1を参照して、本参考形態のIII族窒化物複合基板1は、III族窒化物複合基板1およびそのIII族窒化物膜13上に成長させるIII族窒化物層の反りおよび割れを抑制してIII族窒化物半導体デバイスの歩留を高める観点から、支持基板11の熱膨張係数αSに対するIII族窒化物膜13の熱膨張係数αIII-Nの比αIII-N/αSが0.75以上1.25以下が好ましく、0.85以上1.15以下がより好ましく、0.95以上1.05以下がさらに好ましい。ここで、支持基板11の熱膨張係数αSおよびIII族窒化物膜13の熱膨張係数αIII-Nは、熱機械分析装置により測定することができる。
 (支持基板の厚さに対するIII族窒化物膜の厚さの比)
 図1を参照して、本参考形態のIII族窒化物複合基板1は、III族窒化物複合基板1およびそのIII族窒化物膜13上に成長させるIII族窒化物層の反りおよび割れを抑制してIII族窒化物半導体デバイスの歩留を高める観点から、支持基板11の厚さtSに対するIII族窒化物膜13の厚さtIII-Nの比tIII-N/tSが1×10-4以上2×10-2以下が好ましく、2×10-4以上2×10-3以下がより好ましく、5×10-4以上1×10-3以下がさらに好ましい。ここで、支持基板11の厚さtSは、光学顕微鏡および/またはSEM(走査型電子顕微鏡)による膜の断面の観察、デジタルインジケーターなどにより測定することができる。また、III族窒化物膜13の厚さtIII-Nは、光学顕微鏡および/またはSEMによる膜の断面の観察、反射率分光法などにより測定することができる。
 したがって、III族窒化物複合基板1およびそのIII族窒化物膜13上に成長させるIII族窒化物層の反りおよび割れを抑制してIII族窒化物半導体デバイスの歩留を高める観点から、支持基板11の熱膨張係数αSに対するIII族窒化物膜13の熱膨張係数αIII-Nの比αIII-N/αSが0.75以上1.25以下かつ支持基板11の厚さtSに対するIII族窒化物膜の厚さtIII-Nの比tIII-N/tSが1×10-4以上2×10-2以下が好ましく、比αIII-N/αSが0.85以上1.15以下かつ比tIII-N/tSが2×10-4以上2×10-3以下がより好ましく、比αIII-N/αSが0.95以上1.05以下かつ比tIII-N/tSが5×10-4以上1×10-3以下がさらに好ましい。
 (支持基板)
 本参考形態のIII族窒化物複合基板1に含まれる支持基板11は、III族窒化物膜13を支持できるものであれば特に制限はないが、高価なIII族窒化物の使用量を低減してコストを低減する観点から、III族窒化物と化学組成が異なる異組成基板であることが好ましい。
 本参考形態のIII族窒化物複合基板1は、上記のように、支持基板11の熱膨張係数αSに対するIII族窒化物膜13の熱膨張係数αIII-Nの比αIII-N/αSが0.75以上1.25以下であることが好ましい。
 本参考形態のIII族窒化物複合基板1は、支持基板11の熱伝導率λSが3W・m-1・K-1以上280W・m-1・K-1以下が好ましく、5W・m-1・K-1以上210W・m-1・K-1以下がより好ましく、10W・m-1・K-1以上120W・m-1・K-1以下がさらに好ましい。ここで、支持基板11の熱伝導率λSは、レーザフラッシュ法により測定することができる。熱伝導率λSが好ましくは3W・m-1・K-1以上、より好ましくは5W・m-1・K-1以上、さらに好ましくは10W・m-1・K-1以上である支持基板11を有するIII族窒化物複合基板1は、III族窒化物層を成長させる際にサセプタの主面からの熱を効率よくIII族窒化物複合基板1のIII族窒化物膜13の主面13mに伝えることができる。熱伝導率λSが好ましくは280W・m-1・K-1以下、より好ましくは210W・m-1・K-1以下、さらに好ましくは120W・m-1・K-1以下、特に好ましくは50W・m-1・K-1以下である支持基板11を有するIII族窒化物複合基板1は、III族窒化物層を成長させる際にサセプタの主面からの熱をIII族窒化物複合基板1のIII族窒化物膜13の主面の全体に均一に伝えることができる。熱伝導率λSが280W・m-1・K-1以下の支持基板11は、熱伝導率λSが約300W・m-1・K-1のSiC基板を支持基板として用いる場合よりも、III族窒化物層を成長させる際にサセプタの主面からの熱をIII族窒化物複合基板1のIII族窒化物膜13の主面の全体に均一に伝えることができる。
 本参考形態のIII族窒化物複合基板1は、支持基板11のヤング率ESが150GPa以上500GPa以下が好ましく、200GPa以上350GPa以下がより好ましい。ここで、支持基板11のヤング率ESは、共振法により測定することができる。ヤング率ESが好ましくは150GPa以上、より好ましくは200GPa以上の支持基板11を有するIII族窒化物複合基板1は、その上にIII族窒化物層を成長させてIII族窒化物半導体デバイスを形成する際に、III族窒化物複合基板1および/またはIII族窒化物層に反りが発生するのを抑制することができる。ヤング率ESが好ましくは500GaPa以下、より好ましくは350GPa以下の支持基板11を有するIII族窒化物複合基板1は、その上にIII族窒化物層を成長させてIII族窒化物半導体デバイスを形成する際に、III族窒化物複合基板1および/またはIII族窒化物層に割れおよび/またはクラックが発生するのを抑制することができる。
 支持基板11は、特に制限はないが、上記の観点から、支持基板11の熱膨張係数αSに対するIII族窒化物膜13の熱膨張係数αIII-Nの比αIII-N/αSが0.75以上1.25以下、支持基板11の熱伝導率λSが3W・m-1・K-1以上280W・m-1・K-1以下、および支持基板11のヤング率ESが150GPa以上500GPa以下の少なくともいずれかを満たすものが好ましく、たとえば、ムライト(3Al23・2SiO2~2Al23・SiO2)、ムライト-YSZ(イットリア安定化ジルコニア)、スピネル(MgAl24)、Al23-SiO2系複合酸化物の焼結体、およびこれらに酸化物、炭酸塩などを添加した焼結体により形成される基板、モリブデン(Mo)基板、タングステン(W)基板などが好ましい。ここで、酸化物、炭酸塩に含まれる元素は、Ca、Mg、Sr、Ba、Al、Sc、Y、Ce、Pr、Si、Ti、Zr、V、Nb、Ta、Cr、Mn、Fe、Co、Ni、Cu、Znなどが好適に挙げられる。
 支持基板11は、単結晶、多結晶、および非結晶のいずれを含んでいてもよいが、半導体デバイスを形成する際に、研削および/またはエッチングによる支持基板11の除去が容易であり、半導体デバイスの反りや割れを抑制できる強度を維持できる観点から、多結晶を含むことが好ましい。
 (接合膜)
 図1を参照して、本参考形態のIII族窒化物複合基板1に含まれ得る接合膜12は、支持基板11とIII族窒化物膜13とを接合できるものであれば特に制限はないが、支持基板11とIII族窒化物膜13との接合性が高い観点から、SiO2膜、Si34膜、TiO2膜、Ga23膜などが好ましい。
 (III族窒化物膜)
 図1を参照して、本参考形態のIII族窒化物膜13は、III族窒化物で形成される膜であり、GaN膜、AlN膜などのInxAlyGa1-x-yN膜(0≦x、0≦y、x+y≦1)などが挙げられる。
 III族窒化物膜13の厚さは、上記のように、高特性のIII族窒化物半導体デバイスを形成する観点から、50nm以上が必要であり、80nm以上が好ましく、100nm以上がより好ましく、120nm以上がさらに好ましい。また、III族窒化物膜13の厚さは、上記のように、高価なIII族窒化物の使用量を著しく低減する観点から、10μm未満が必要であり、5μm以下が好ましく、1μm以下がより好ましく、0.25μm以下がさらに好ましい。
 III族窒化物膜13の結晶構造は、良好な特性の半導体デバイスが得られる観点から、ウルツ鉱型構造が好ましい。III族窒化物膜13の主面13mが最も近似する上記の所定の面方位は、所望の半導体デバイスに適したものであれば制限はなく、{0001}、{10-10}、{11-20}、{21-30}、{20-21}、{10-11}、{11-22}、{22-43}、およびこれらのそれぞれの面方位から15°以下でオフした(15°以下の角度でずらした)面方位でもよい。また、これらのそれぞれの面方位の面の裏面の面方位およびかかる裏面の面方位から15°以下でオフした面方位でもよい。すなわち、III族窒化物膜13の主面13mは、極性面、非極性面、および半極性面のいずれであってもよい。また、III族窒化物膜13の主面13mは、大口径化が容易な観点から{0001}面およびその裏面が好ましく、得られる発光デバイスのブルーシフトを抑制する観点から{10-10}面、{20-21}面およびそれらの裏面が好ましい。
 III族窒化物膜13の主面13mにおける不純物金属原子は、III族窒化物膜13上に成長させるIII族窒化物層の結晶品質を高め、形成する半導体デバイスの特性を高くする観点から、1×1013原子/cm2以下が好ましく、3×1012原子/cm2以下がより好ましく、1×1012原子/cm2以下がさらに好ましく、1×1011原子/cm2以下が特に好ましい。
 支持基板11として、ムライト(3Al23・2SiO2~2Al23・SiO2)、ムライト-YSZ(イットリア安定化ジルコニア)、スピネル(MgAl24)、Al23-SiO2系複合酸化物の焼結体などの基板を含むIII族窒化物複合基板1は、支持基板11からの金属原子の溶出を抑制した洗浄、たとえば、界面活性剤および/または純水を用いたスクラブ洗浄、二流体洗浄もしくはメガソニック洗浄(500kHz~5MHzのメガソニック帯域の周波数の超音波を用いた洗浄)、ならびに低濃度の酸および/またはアルカリを用いた枚葉洗浄などの片面(この片面はIII族窒化物膜13の主面13mである)の洗浄などにより、III族窒化物膜13の主面13mにおける不純物金属原子の濃度を低減することが好ましい。また、支持基板側に保護膜を形成して金属原子の溶出を抑制することもできる。
 また、III族窒化物膜13の主面13mにおける不純物金属原子以外の不純物は、III族窒化物膜13上に成長させるIII族窒化物層の結晶品質を高め、形成する半導体デバイスの特性を高くする観点から、Cl原子が2×1014原子/cm2以下が好ましく、Si原子が9×1013原子/cm2以下が好ましい。III族窒化物膜13の転位密度は、特に制限はないが、半導体デバイスのリーク電流を低減する観点から、1×108cm-2以下が好ましく、1×107cm-2以下がより好ましい。III族窒化物膜13のキャリア濃度は、特に制限はないが、半導体デバイスの抵抗を低減する観点から、1×1017cm-3以上が好ましく、1×1018cm-3以上がより好ましい。
 [参考形態I-2:積層III族窒化物複合基板]
 図3を参照して、参考発明Iの別の参考形態である積層III族窒化物複合基板2は、参考形態I-1のIII族窒化物複合基板1と、III族窒化物複合基板1のIII族窒化物膜13側の主面13m上に配置されている少なくとも1層のIII族窒化物層20と、を含む。
 本参考形態の積層III族窒化物複合基板2は、支持基板11側の主面11n二乗平均平方根粗さの平均値mSおよび標準偏差sSが小さいIII族窒化物複合基板1とその上に成長することにより配置されている結晶品質の高いIII族窒化物層20とを含むため、高特性の半導体デバイスを歩留よく作製することができる。
 本参考形態の積層III族窒化物複合基板2において、III族窒化物膜13側の主面13m上に配置されているIII族窒化物層20は、作製する半導体デバイスの種類に応じて異なる。図4を参照して、半導体デバイスとして電子デバイスの1例であるSBD(ショットキーバリアダイオード)を作製する場合は、III族窒化物層20は、たとえば、n+-GaN層28(キャリア濃度がたとえば2×1018cm-3)、n--GaN層29(キャリア濃度がたとえば5×1015cm-3)で構成することができる。図5を参照して、半導体デバイスとして電子デバイスの別の例であるHEMT(高電子移動度トランジスタ)を作製する場合は、III族窒化物層20は、たとえば、GaN層26、Al0.2Ga0.8N層27で構成することができる。図6を参照して、半導体デバイスとして発光デバイスを作製する場合は、III族窒化物層20は、たとえば、n-GaN層21、n-In0.05Ga0.95N層22、多重量子井戸構造を有する活性層23、p-Al0.09Ga0.91N層24、およびp-GaN層25で構成することができる。
 [参考形態I-3:III族窒化物半導体デバイス]
 図4~図6を参照して、参考発明Iのさらに別の参考形態であるIII族窒化物半導体デバイス4は、参考形態I-1のIII族窒化物複合基板中のIII族窒化物膜13と、III族窒化物膜13上に配置されている少なくとも1層のIII族窒化物層20と、を含む。
 本参考形態のIII族窒化物半導体デバイス4は、支持基板11側の主面11nの二乗平均平方根粗さの平均値mSおよび標準偏差sSが小さいIII族窒化物複合基板1とその上に成長することにより配置されている結晶品質の高いIII族窒化物層20とを含むため、高い特性を有する。
 III族窒化物半導体デバイス4のIII族窒化物層20は、III族窒化物半導体デバイス4の種類に応じて異なる。図4を参照して、III族窒化物半導体デバイス4が電子デバイスの1例であるSBDの場合は、III族窒化物層20は、たとえば、n+-GaN層28(キャリア濃度がたとえば2×1018cm-3)、n--GaN層29(キャリア濃度がたとえば5×1015cm-3)で構成することができる。図5を参照して、III族窒化物半導体デバイス4が電子デバイスの別の例であるHEMTの場合は、III族窒化物層20は、たとえば、GaN層26、Al0.2Ga0.8N層27で構成することができる。図6を参照して、III族窒化物半導体デバイス4が発光デバイスの場合は、III族窒化物層20は、たとえば、n-GaN層21、n-In0.05Ga0.95N層22、多重量子井戸構造を有する活性層23、p-Al0.09Ga0.91N層24、およびp-GaN層25で構成することができる。電子デバイスのさらに別の例として、PND(PNダイオード)、トランジスタなどが挙げられる。なお、上記のIII族窒化物半導体デバイス4は、縦型であっても、横型であってもよい。
 図4~図6を参照して、III族窒化物半導体デバイス4は、III族窒化物層20を支持するための支持基板11およびデバイス支持基板40の少なくともひとつをさらに含むことが好ましい。ここで、デバイス支持基板40の形状は、平板形状に限らず、III族窒化物膜13およびIII族窒化物層20を支持してIII族窒化物半導体デバイス4を形成することができるものである限り、任意の形状をとることができる。
 なお、III族窒化物半導体デバイスは、図4または図6に示すIII族窒化物半導体デバイス4からIII族窒化物膜13を除去した構造とすることもできる。III族窒化物半導体デバイスは、III族窒化物膜13を除去した構造とすることにより、デバイス特性をより向上することができる。
 [参考形態I-4:III族窒化物複合基板の製造方法]
 図7~図11を参照して、参考発明Iのさらに別の参考形態であるIII族窒化物複合基板の製造方法は、参考形態I-1のIII族窒化物複合基板1の製造方法であって、支持基板11の一方の主面11m側にIII族窒化物膜13を配置することによりIII族窒化物複合基板1を形成する工程と、III族窒化物複合基板1を形成する工程の前、途中または後に、III族窒化物複合基板1の支持基板11側の主面11nを研磨することにより、支持基板11側の主面11nの二乗平均平方根粗さを調整する工程と、を含む。
 本参考形態のIII族窒化物複合基板1の製造方法によれば、高い歩留でIII族窒化物半導体デバイスの製造が可能な、コストが低く大口径でIII族窒化物膜が厚く、III族窒化物層の成長の際に主面上における温度の分布が小さいIII族窒化物複合基板1を効率よく製造することができる。
 {III族窒化物複合基板の形成工程}
 本参考形態のIII族窒化物複合基板1の製造方法は、支持基板11の一方の主面11m側にIII族窒化物膜13を配置することによりIII族窒化物複合基板1を形成する工程を含む。かかる工程において、支持基板11の一方の主面11m側にIII族窒化物膜13を配置する方法は、特に制限はなく、以下の第1~第3の方法が挙げられる。
 第1の方法は、図7に示すように、支持基板11の主面11mに、下地基板130の主面130n上に成膜させたIII族窒化物膜13を貼り合わせた後、下地基板130を除去する方法である。第2の方法は、図8~図10に示すように、支持基板11の主面11mにIII族窒化物膜ドナー基板13Dを貼り合わせた後、そのIII族窒化物膜ドナー基板13Dを貼り合わせ面から所定の深さの面で分離することにより支持基板11の主面11m上にIII族窒化物膜13を形成する方法である。第3の方法は、図11に示すように、支持基板11の主面11mにIII族窒化物膜ドナー基板13Dを貼り合わせた後、そのIII族窒化物膜ドナー基板13Dを貼り合わせ面の反対側の主面13mから研削、研磨およびエッチングの少なくともいずれかにより厚さを減少させて調整することにより支持基板11の主面11m上にIII族窒化物膜13を形成する方法である。
 上記の第1の方法において、支持基板11にIII族窒化物膜13を貼り合わせる方法には、支持基板11の主面11mに接合膜12を介在させてIII族窒化物膜13の主面13nを貼り合わせる方法(図7を参照)などが挙げられる。また、上記の第2および第3の方法において、支持基板11にIII族窒化物膜ドナー基板13Dを貼り合わせる方法には、支持基板11の主面11mに接合膜12を介在させてIII族窒化物膜ドナー基板13Dの主面13nを貼り合わせる方法(図8~図11を参照)などが挙げられる。
 なお、図7~図11には、支持基板11に接合膜12aを形成するとともに、III族窒化物膜13またはIII族窒化物膜ドナー基板13Dに接合膜12bを形成し、それらを貼り合わせる方法が図示されているが、たとえば、支持基板11にのみ接合膜12を形成しておきIII族窒化物膜13またはIII族窒化物膜ドナー基板13Dと貼り合わせてもよいし、III族窒化物膜13またはIII族窒化物膜ドナー基板13Dにのみ接合膜12を形成しておき支持基板11と貼り合わせてもよい。
 (第1の方法)
 図7を参照して、第1の方法によりIII族窒化物複合基板1を形成する工程は、特に制限はないが、効率的に複合基板を製造する観点から、支持基板11を準備するサブ工程(図7(A1))と、支持基板11の主面11m上に接合膜12aを形成するサブ工程(図7(A2))と、下地基板130の主面130n上にIII族窒化物膜13を形成する工程(図7(B1))と、下地基板130に形成されたIII族窒化物膜13の主面13n上に接合膜12bを形成するサブ工程(図7(B2))と、支持基板11に形成された接合膜12aの主面12amと下地基板130に形成されたIII族窒化物膜13に形成された接合膜12bの主面12bnとを貼り合わせて接合基板1Lを形成する工程(図7(C))と、接合基板1Lから下地基板130を除去する工程(図7(D))と、を含むことが好ましい。
 図7(A1)に示す、支持基板11を準備するサブ工程は、特に制限はなく、たとえば、金属元素Mを含む酸化物であるMOx(xは任意の正の実数)、Alを含む酸化物であるAl23、およびSiを含む酸化物であるSiO2を所定のモル比で混合し焼結して得られる焼結体を所定の大きさに切り出して得られる基板の主面を研磨することにより行なうことができる。
 図7(A2)に示す、支持基板11の主面11m上に接合膜12aを形成するサブ工程は、特に制限はないが、膜形成コストを抑制する観点から、スパッタ法、蒸着法、CVD(化学気相堆積)法などが好適に行なわれる。
 図7(B1)に示す、下地基板130の主面130n上にIII族窒化物膜13を形成するサブ工程は、特に制限はないが、結晶品質の高いIII族窒化物膜13を形成する観点から、MOCVD(有機金属化学気相堆積)法、スパッタ法、MBE(分子線エピタキシ)法、PLD(パルス・レーザ堆積)法、HVPE(ハイドライド気相エピタキシ)法、昇華法、フラックス法、高窒素圧溶液法などにより好適に行なうことができる。
 図7(B2)に示す、下地基板130に形成されたIII族窒化物膜13の主面13n上に接合膜12bを形成するサブ工程は、上記の支持基板11の主面11m上に接合膜12aを形成するサブ工程と同様にして行なわれる。
 図7(C)に示す、支持基板11に形成された接合膜12aの主面12amと下地基板130に形成されたIII族窒化物膜13に形成された接合膜12bの主面12bnとを貼り合わせて接合基板1Lを形成するサブ工程において、接合膜12aと接合膜12bとを貼り合わせる方法には、特に制限はなく、貼り合わせ面を洗浄しそのまま貼り合わせた後600℃~1200℃程度に昇温して接合する直接接合法、貼り合わせ面を洗浄しプラズマやイオンなどで活性化処理した後に室温(たとえば25℃)~400℃程度の低温雰囲気下で接合する表面活性化接合法、貼り合わせ面を薬液と純水で洗浄処理した後、0.1MPa~10MPa程度の高圧力を掛けて接合する高圧接合法、貼り合わせ面を薬液と純水で洗浄処理した後、10-6Pa~10-3Pa程度の高真空雰囲気下で接合する高真空接合法、などが好適である。上記のいずれの接合法においてもそれらの接合後に600℃~1200℃程度に昇温することによりさらに接合強度を高めることができる。特に、表面活性化接合法、高圧接合法、および高真空接合法においては、それらの接合後に600℃~1200℃程度に昇温することによる接合強度を高める効果が大きい。
 図7(D)に示す、接合基板1Lから下地基板130を除去する工程は、特に制限はないが、下地基板130を効率的に除去する観点から、下地基板130をフッ化水素酸などのエッチャントにより溶解させて除去する方法、下地基板130の露出している主面側から研削または研磨により除去する方法などが好適に行なわれる。ここで、下地基板130をフッ化水素酸などのエッチャントにより溶解させて除去する場合には、支持基板11を保護するための保護部材140を支持基板11の回りに形成することが好ましい。
 このようにして、支持基板11と、支持基板11の主面11m上に配置された接合膜12と、接合膜12の主面12m上に配置されたIII族窒化物膜13と、を含むIII族窒化物複合基板1が得られる。
 (第2の方法)
 図8~図10を参照して、第2の方法によりIII族窒化物複合基板1を形成する工程は、特に制限はないが、効率的に複合基板を製造する観点から、図8および図9に示す切断法あるいは図10に示すイオン注入法が好適に用いられる。以下、切断法、イオン注入法について説明する。
 (切断法)
 図8および図9を参照して、切断法によりIII族窒化物複合基板1を形成する工程は、特に制限はないが、効率的に複合基板を製造する観点から、支持基板11の主面11m上に接合膜12aを形成するサブ工程(図8(A)および図9(A))と、III族窒化物膜ドナー基板13Dの主面13n上に接合膜12bを形成するサブ工程(図8(B)および図9(B))と、支持基板11に形成された接合膜12aの主面12amとIII族窒化物膜ドナー基板13Dに形成された接合膜12bの主面12bnとを貼り合わせて接合基板1L,1LSを形成するサブ工程(図8(C)および図9(C))と、接合基板1L,1LSのIII族窒化物膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さに位置する面でIII族窒化物膜ドナー基板13Dを切断するサブ工程(図8(D)および図9(D))と、を含むことが好ましい。
 ここで、II族窒化物膜ドナー基板13Dとは、後工程において分離によりIII族窒化物膜13を提供するドナー基板である。かかるIII族窒化物膜ドナー基板13Dを形成する方法は、上記の第1の方法により複合基板を製造する方法におけるIII族窒化物膜13を形成する方法と同様である。また、接合膜12a,12bの形成方法は、第1の方法により複合基板を製造する方法における接合膜12a,12bの形成方法と同様である。また、支持基板11とIII族窒化物膜ドナー基板13Dとを貼り合わせる方法は、上記の第1の方法により複合基板を製造する方法における支持基板11とIII族窒化物膜13とを貼り合わせる方法と同様である。また、III族窒化物膜ドナー基板13Dを切断するサブ工程において用いられる切断方法は、特に制限なく、ワイヤーソー、内周刃、外周刃、レーザ加工、放電加工、ウォータージェットなどが好適に用いられる。
 このようにして、接合基板1L,1LSがIII族窒化物膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さに位置する面で分離して、支持基板11と、支持基板11の主面11m上に配置された接合膜12と、接合膜12の主面12m上に配置されたIII族窒化物膜13と、を含むIII族窒化物複合基板1が得られる。
 (支持体付III族窒化物膜ドナー基板の利用)
 図9(B)~(D)を参照して、III族窒化物膜ドナー基板13DにIII族窒化物膜ドナー基板支持体15が貼り合わされた支持体付III族窒化物膜ドナー基板5Dを用いて、上記と同様にして、III族窒化物複合基板1を製造することができる。支持体付III族窒化物膜ドナー基板5Dは、III族窒化物膜ドナー基板支持体15によりIII族窒化物膜ドナー基板13Dが支持されているため、III族窒化物膜ドナー基板13Dが自立できない程度に薄くなっても、繰り返し用いることができる。
 支持体付III族窒化物膜ドナー基板5Dにおいて、III族窒化物膜ドナー基板支持体15とIII族窒化物膜ドナー基板13Dとの貼り合わせ形態は、特に制限はないが、貼り合わせによる接合強度を高めるために接合膜14を介在させることが好ましい。また、III族窒化物膜ドナー基板支持体15は、特に制限はないが、支持強度が高くまた割れおよび反りの発生を防止する観点から、支持基板11と同様の物性の材料で形成されていることが好ましい。接合膜14は、特に制限はないが、III族窒化物膜ドナー基板支持体15とIII族窒化物膜ドナー基板13Dとの接合性が高い観点から、SiO2膜、Si34膜、TiO2膜、Ga23膜などが好ましい。
 (イオン注入法)
 図10を参照して、イオン注入法によりIII族窒化物複合基板1を形成する工程は、特に制限はないが、効率的に複合基板を製造する観点から、支持基板11の主面11m上に接合膜12aを形成するサブ工程(図10(A))と、III族窒化物膜ドナー基板13Dの主面13n側からイオンIを注入することにより主面13nから内部に所定の深さの位置の面にイオン注入領域13iを形成するとともに主面13n上に接合膜12bを形成するサブ工程(図10(B))と、支持基板11に形成された接合膜12aの主面12amとIII族窒化物膜ドナー基板13Dに形成された接合膜12bの主面12bnとを貼り合わせて接合基板1Lを形成するサブ工程(図10(C))と、接合基板1LのIII族窒化物膜ドナー基板13Dをそのイオン注入領域13iで分離するサブ工程(図10(D))と、を含むことが好ましい。
 ここで、III族窒化物膜ドナー基板13Dを形成する方法は、上記の第1の方法により複合基板を製造する方法におけるIII族窒化物膜13を形成する方法と同様である。また、接合膜12a,12bの形成方法は、第1の方法により複合基板を製造する方法における接合膜12a,12bの形成方法と同様である。また、支持基板11とIII族窒化物膜ドナー基板13Dとを貼り合わせる方法は、上記の第1の方法により複合基板を製造する方法における支持基板11とIII族窒化物膜13とを貼り合わせる方法と同様である。
 III族窒化物膜ドナー基板13Dに注入されるイオンIは、特に制限はないが、主膜の品質の低下を抑制する観点およびイオン注入領域13iに注入されたイオンIのガス化温度をIII族窒化物膜13の分解温度より低くする観点から、質量の小さい原子のイオン、たとえば、水素イオン、ヘリウムイオンなどが好ましい。また、III族窒化物膜ドナー基板13Dをそのイオン注入領域13iで分離する方法は、イオン注入領域13iに注入されたイオンIをガス化させる方法であれば特に制限はない。たとえば、熱を加えたり、超音波を加えたりする方法などで、接合基板1LのIII族窒化物膜ドナー基板13Dの貼り合わせ面である主面から所定の深さの位置に形成されているイオン注入領域13iに注入されているイオンIをガス化させて急激な体積膨張をさせることにより行なう。
 このようにして、接合基板1LがIII族窒化物膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さに位置する面で分離して、支持基板11と、支持基板11の主面11m上に配置された接合膜12と、接合膜12の主面12m上に配置されたIII族窒化物膜13と、を含むIII族窒化物複合基板1が得られる。なお、上記イオン注入法においても、図9に示すような支持体付III族窒化物膜ドナー基板5Dを利用することができる。
 (第3の方法)
 図11を参照して、第3の方法によりIII族窒化物複合基板1を形成する工程は、特に制限はないが、効率的に複合基板を製造する観点から、支持基板11の主面11m上に接合膜12aを形成するサブ工程(図11(A))と、III族窒化物膜ドナー基板13Dの主面13n上に接合膜12bを形成するサブ工程(図11(B))と、支持基板11に形成された接合膜12aの主面12amとIII族窒化物膜ドナー基板13Dに形成された接合膜12bの主面12bnととを貼り合わせて接合基板1Lを形成するサブ工程(図11(C))と、接合基板1LのIII族窒化物膜ドナー基板13Dの貼り合わせ面である主面13nと反対側の主面13mから研削、研磨およびエッチングの少なくともいずれかを行なうサブ工程(図11(D))と、を含むことが好ましい。
 ここで、III族窒化物膜ドナー基板13Dとは、後工程において、第2の方法における分離による以外にも研削、研磨およびエッチングの少なくともいずれかによりIII族窒化物膜13を提供するドナー基板である。かかるIII族窒化物膜ドナー基板13Dを形成する方法は、上記の第1の方法により複合基板を製造する方法におけるIII族窒化物膜13を形成する方法と同様である。また、接合膜12a,12bの形成方法は、第1の方法により複合基板を製造する方法における接合膜12a,12bの形成方法と同様である。また、支持基板11とIII族窒化物膜ドナー基板13Dとを貼り合わせる方法は、上記の第1の方法により複合基板を製造する方法における支持基板11とIII族窒化物膜13とを貼り合わせる方法と同様である。
 また、III族窒化物膜ドナー基板13Dを研削する方法は、特に制限はなく、砥石による研削(平面研削)、ショット・ブラストなどが挙げられる。III族窒化物膜ドナー基板13Dを研磨する方法は、特に制限はなく、機械的研磨、CMP(化学機械的研磨)などが挙げられる。III族窒化物膜ドナー基板13Dをエッチングする方法は、特に制限はなく、薬液によるウェットエッチング、RIE(反応性イオンエッチング)などのドライエッチングなどが挙げられる。
 {III族窒化物複合基板の支持基板側の主面の二乗平均平方根粗さの調整工程}
 本参考形態のIII族窒化物複合基板1の製造方法は、上記のIII族窒化物複合基板1を形成する工程の前、途中または後に、III族窒化物複合基板1の支持基板11側の主面11nを研磨することにより支持基板11側の主面11nの二乗平均平方根粗さを調整する工程を含む。かかる工程により、支持基板11側の主面11nの二乗平均平方根粗さの平均値mSを0.3nm以上20nm以下とし、支持基板11側の主面11nの二乗平均平方根粗さの平均値mSに対する二乗平均平方根粗さの標準偏差sSの比sS/mSを0.005以上0.4以下とすることができる。
 ここで、支持基板11側の主面11nの二乗平均平方根粗さの平均値mSは、研磨剤の粘度、砥粒サイズと、定盤や研磨パッドの材質および表面形状、ならびに研磨条件により制御することができる。二乗平均平方根粗さの平均値mSを小さくするためには、研磨剤は水性よりも油性が好ましく、研磨剤の粘度は高い方が好ましく、砥粒径は小さい方が好ましく、定盤および研磨パッドは軟質である方が好ましい。定盤および研磨パッドの表面形状は、スラッジ除去のための溝を形成した形状が好ましい。ここで、スラッジ除去のための溝とは、研磨界面のスラッジおよび/または凝集砥粒を排除して除去するために形成される、比較的幅が広くピッチの広い溝をいう。研磨条件としては、低圧力、低周速が好ましい。
 また、支持基板11側の主面11nの二乗平均平方根粗さの二乗平均平方根粗さの平均値mSに対する二乗平均平方根粗さの標準偏差sSの比sS/mSの制御のためには、研磨液の粘度η(単位:mPa・s)、流量Q(単位:m3/s)、定盤の面積S(単位:m2)、研磨圧力P(単位:kPa)、周速V(単位:m/s)を用いて、FE=η×Q×V/S×Pの式で定義される作用係数FE(単位:m2/s)を所定範囲、具体的には、4×10-172/s以上1×10-162/s以下とすることが好ましい。また、定盤および研磨パッドの表面形状としては、研磨剤の均一化のための溝を形成した形状が好ましい。ここで、研磨剤の均一化のための溝とは、研磨剤を基板の中央部で均一に保持するために形成される、比較的幅が狭くピッチの狭い溝をいう。
 {III族窒化物複合基板のIII族窒化物膜側の主面の二乗平均平方根粗さの調整工程}
 本参考形態のIII族窒化物複合基板1の製造方法は、III族窒化物複合基板を形成する工程の後、III族窒化物複合基板1のIII族窒化物膜13側の主面13mを研磨することによりIII族窒化物膜13側の主面13mの二乗平均平方根粗さを調整する工程を含むことが好ましい。かかるIII族窒化物複合基板1のIII族窒化物膜13側の主面13mの二乗平均平方根粗さを調整する工程により、III族窒化物膜13側の主面13mの二乗平均平方根粗さの平均値mIII-Nを0.4nm以上10nm以下とし、III族窒化物膜13側の主面13mの二乗平均平方根粗さの平均値mIII-Nに対する二乗平均平方根粗さの標準偏差sIII-Nの比sIII-N/mIII-Nを0.008以上0.5以下とすることができる。
 ここで、III族窒化物膜13側の主面13mの二乗平均平方根粗さの平均値mSは、研磨剤の粘度、砥粒サイズと、定盤や研磨パッドの材質および表面形状、ならびに研磨条件により制御することができる。二乗平均平方根粗さの平均値mIII-Nを小さくするためには、研磨剤の粘度は高い方が好ましく、砥粒径は小さい方が好ましく、定盤および研磨パッドは軟質である方が好ましい。定盤および研磨パッドの表面形状は、スラッジ除去のための溝を形成した形状が好ましい。研磨条件としては、低圧力、低周速が好ましい。
 また、III族窒化物膜13側の主面13mの二乗平均平方根粗さの二乗平均平方根粗さの平均値mIII-Nに対する二乗平均平方根粗さの標準偏差sIII-Nの比sIII-N/mIII-Nは、研磨液の粘度η(単位:mPa・s)、流量Q(単位:m3/s)、定盤の面積S(単位:m2)、研磨圧力P(単位:kPa)、周速V(単位:m/s)を用いて、FE=η×Q×V/S×Pの式で定義される作用係数FE(単位:m2/s)を所定範囲、具体的には、4×10-142/s以上1×10-132/s以下とすることが好ましい。また、定盤および研磨パッドの表面形状としては、研磨剤の均一化のための溝を形成した形状が好ましい。
 [参考形態I-5:III族窒化物半導体デバイスの製造方法]
 図12を参照して、参考発明Iのさらに別の参考形態であるIII族窒化物半導体デバイスの製造方法は、参考形態I-1のIII族窒化物複合基板1を準備する工程(図12(A))と、III族窒化物複合基板1のIII族窒化物膜13側の主面13m上に、少なくとも1層のIII族窒化物層20を成長させる工程(図12(A))と、を含む。本参考形態のIII族窒化物半導体デバイスの製造方法は、III族窒化物層の成長の際に主面13m上における温度の分布が小さいIII族窒化物複合基板1の主面13m上にIII族窒化物層を成長させるため、高い歩留で高特性のIII族窒化物半導体デバイスを製造できる。
 本参考形態のIII族窒化物半導体デバイスの製造方法において、III族窒化物層20を成長させる工程(図12(A))の後に、III族窒化物複合基板1から支持基板11を除去する工程(図12(C))をさらに含むことができる。かかる工程により、多様な形態のIII族窒化物半導体デバイスを製造できる。
 さらに、本参考形態のIII族窒化物半導体デバイスの製造方法において、III族窒化物層を成長させる工程(図12(A))の後、支持基板を除去する工程(図12(C))の前に、III族窒化物層20上にデバイス支持基板40を貼り合わせる工程(図12(B))をさらに含むことができる。かかる工程により、高い歩留でデバイス支持基板40により支持された機械的強度が強く高特性のIII族窒化物半導体デバイスを製造できる。
 本参考形態のIII族窒化物半導体デバイスの製造方法は、具体的には、以下の工程により、行なうことができる。
 (III族窒化物複合基板の準備工程)
 図12(A)を参照して、III族窒化物複合基板1を準備する工程は、上記のIII族窒化物複合基板1の製造方法と同様である。
 (III族窒化物層の成長工程)
 図12(A)を参照して、III族窒化物複合基板1のIII族窒化物膜13側の主面13m上に、少なくとも1層のIII族窒化物層20を成長させる工程において、III族窒化物層20を成長させる方法は、結晶品質の高いIII族窒化物層20をエピタキシャル成長させる観点から、MOCVD法、MBE法、HVPE法、昇華法などの気相法、フラックス法などの液相法などが好適であり、特にMOCVD法が好適である。
 III族窒化物層20の構成は、III族窒化物半導体デバイス4の種類に応じて異なる。III族窒化物半導体デバイス4がSBD(ショットキーバリアダイオード)の場合は、III族窒化物層20は、たとえば、III族窒化物複合基板1のIII族窒化物膜13の主面13m上に、n+-GaN層28(キャリア濃度がたとえば2×1018cm-3)およびn--GaN層29(キャリア濃度がたとえば5×1015cm-3)を順に成長させることにより構成することができる。
 上記のようにして、III族窒化物複合基板1のIII族窒化物膜13側の主面13m上に、少なくとも1層のIII族窒化物層20を成長させることにより、積層III族窒化物複合基板2が得られる。
 (デバイス支持基板の貼り合わせ工程)
 図12(B)を参照して、III族窒化物層20上にデバイス支持基板40を貼り合わせる工程は、積層III族窒化物複合基板2のIII族窒化物層20上に、ショットキー電極となる第1電極30、およびパッド電極33を形成するとともに、デバイス支持基板40上にパッド電極43および接合金属膜44を形成し、パッド電極33に接合金属膜44を貼り合わせることにより行なう。かかる工程により、積層基板3が得られる。デバイス支持基板40には、Si基板、Mo基板、CuW基板などが用いられる。
 (支持基板の除去工程)
 図12(C)を参照して、III族窒化物複合基板1から支持基板11を除去する工程は、積層基板3から、III族窒化物複合基板1の支持基板を11を除去することにより行なう。III族窒化物複合基板1において支持基板11とIII族窒化物膜13との間に接合膜12が介在している場合には、接合膜12をも除去することができる。支持基板11および接合膜12の除去方法は、特に制限はなく、研削、エッチングなどが好適に用いられる。たとえば、硬度、強度、および耐摩耗性が低く削られ易い材料で形成される支持基板11は、製造コストを低減する観点から、研削および研磨の少なくともいずれかにより除去することができる。また、酸、アルカリなどの薬液に溶解する材料で形成される支持基板11は、製造コストを低減する観点から薬液でエッチングして除去することができる。なお、支持基板11の除去が容易な観点から、支持基板11は、サファイア、SiC、III族窒化物(たとえばGaN)などの単結晶材料で形成されている支持基板に比べて、セラミックスなどの多結晶材料で形成されている支持基板の方が好ましい。
 なお、III族窒化物自立基板を用いたIII族窒化物半導体デバイスの製造においては、デバイスの厚みを低減させるために、III族窒化物自立基板の裏面(III族窒化物層が形成されている主面と反対側の主面をいう。以下、同じ。)からの研削加工などが行われる。これに対して、III族窒化物複合基板を用いたIII族窒化物半導体デバイスの製造においては、デバイスの厚みを低減させるために、支持基板をエッチングや研削で除去することが容易なことから、III族窒化物半導体デバイスの製造コストを低減することができる。
 上記のように、支持基板11、さらには接合膜12を除去した際に、III族窒化物膜13を除去することができる。III族窒化物層20はIII族窒化物膜13に比べて結晶性の向上、転位密度の低減、キャリア濃度の調整が容易である。III族窒化物膜13を除去することにより、デバイス特性をより向上することができる。III族窒化物膜13の除去には、研磨、エッチングを用いることができる。除去厚みの制御が容易である観点から、ドライエッチングを用いることが好ましい。
 (電極の形成工程)
 図12(D)を参照して、積層基板3から支持基板11および接合膜12が除去されることにより露出したIII族窒化物膜13上に第2電極50を形成し、デバイス支持基板40上にデバイス支持基板電極45を形成する。
 このようにして、特性の高いIII族窒化物半導体デバイスを歩留よく製造できる。
 <参考発明II>
 参考発明IIは、III族窒化物複合基板および積層III族窒化物複合基板、ならびにIII族窒化物半導体デバイスおよびその製造方法に関する。
 [参考発明IIに関する背景技術]
 GaNなどのIII族窒化物は、優れた半導体特性を有していることから、半導体デバイスに好適に用いられている。
 たとえば、特開2009-126722号公報は、半導体デバイス用基板として、直径が25mm以上160mm以下で厚さが100μm以上1000μm以下の自立III族窒化物基板、具体的な実施例として直径が100mmで厚さが400μmの自立GaN基板を開示する。
 [参考発明IIが解決しようとする課題]
 しかしながら、特開2009-126722号公報に開示される自立III族窒化物基板は非常に高価である。これは主に、III族窒化物は液相を形成しないため、安価な製造方法である液相成長法を採用することができず、収率が低い気相成長法を採用せざるを得ないからである。また、III族窒化物は、破壊靱性が低く、非常に割れやすい材料である。そのため、基板の大口径化が困難である。また、基板を薄厚化すると、基板に反りが生じやすく、基板の上にエピタキシャル層を成長させる工程において、結晶品質が低下したり、基板剥離が発生したりするなどの場合があり、半導体デバイスの製造歩留を低下させるため、半導体デバイスの高付加価値化が困難であった。
 参考発明IIは上記の課題を解決して、安価に製造することができるとともに、大口径で厚さが薄く、かつ結晶品質の高いIII族窒化物膜を有するIII族窒化物複合基板および積層III族窒化物複合基板、ならびにIII族窒化物半導体デバイスおよびその製造方法を提供することを目的とする。
 [課題を解決するための手段]
 参考発明IIは、ある局面に従えば、支持基板と、厚さが50nm以上10μm未満のIII族窒化物膜と、が貼り合わされた直径が75mm以上のIII族窒化物複合基板であって、支持基板とIII族窒化物膜との間に介在して、支持基板とIII族窒化物膜とを接合する接合膜を備え、接合膜は、厚さ分布が2%以上40%以下である、III族窒化物複合基板である。
 参考発明IIは、別の局面に従えば、支持基板と、厚さが50nm以上10μm未満のIII族窒化物膜と、が貼り合わされた直径が75mm以上のIII族窒化物複合基板であって、支持基板とIII族窒化物膜との間に介在して、支持基板とIII族窒化物膜とを接合する接合膜を備え、支持基板とIII族窒化物膜とのせん断接合強度が4MPa以上40MPa以下であり、支持基板とIII族窒化物膜との接合面積率が60%以上98%以下である、III族窒化物複合基板である。
 参考発明IIのこれらの局面に従うIII族窒化物複合基板において、支持基板の熱膨張係数αSに対する上記III族窒化物膜の熱膨張係数αIII-Nの比αIII-N/αSは0.75以上1.25以下であり、上記支持基板の厚さtSに対する上記III族窒化物膜の厚さtIII-Nの比tIII-N/tSは0.0002以上0.02以下とすることができる。
 また、支持基板の熱伝導率λSは3W・m-1・K-1以上280W・m-1・K-1以下とすることができる。
 また、支持基板のヤング率ESは150GPa以上500GPa以下とすることができる。
 さらに、III族窒化物複合基板の直径は125mm以上300mm以下とすることができる。
 参考発明IIは、さらに別の局面に従えば、上記局面に従うIII族窒化物複合基板と、III族窒化物複合基板のIII族窒化物膜側の主面上に配置されている少なくとも1層のIII族窒化物層と、を含む積層III族窒化物複合基板である。
 参考発明IIは、さらに別の局面に従えば、上記局面に従うIII族窒化物複合基板中のIII族窒化物膜と、III族窒化物膜上に配置されている少なくとも1層のIII族窒化物層と、を含む、III族窒化物半導体デバイスである。
 参考発明IIは、さらに別の局面に従えば、III族窒化物複合基板を準備する工程と、III族窒化物複合基板のIII族窒化物膜上に、少なくとも1層のIII族窒化物層を成長させる工程と、を含む、III族窒化物半導体デバイスの製造方法である。
 参考発明IIのかかる局面に従うIII族窒化物半導体デバイスの製造方法は、III族窒化物層上にさらにデバイス支持基板を貼り合わせる工程と、III族窒化物複合基板から支持基板を除去する工程と、をさらに含むことができる。
 [参考発明IIの効果]
 参考発明IIによれば、安価に製造することができるとともに、大口径で厚さが薄く、かつ結晶品質の高いIII族窒化物膜を有するIII族窒化物複合基板およびその製造方法、積層III族窒化物複合基板、ならびにIII族窒化物半導体デバイスおよびその製造方法を提供することができる。
 [参考形態II-1:III族窒化物複合基板]
 図13を参照して、参考発明IIのある参考形態であるIII族窒化物複合基板1を説明する。III族窒化物複合基板1は、支持基板11と、厚さが50nm以上10μm未満のIII族窒化物膜13と、が貼り合わされた直径が75mm以上の基板である。III族窒化物複合基板1は、支持基板11とIII族窒化物膜13との間に介在して、支持基板11とIII族窒化物膜13とを接合する接合膜12を備えている。そして、接合膜12は、厚さ分布が2%以上40%以下であることを特徴とする。
 本参考形態は、従来の自立III族窒化物基板と異なり、III族窒化物膜13が支持基板11に接合された複合基板である。かかる構成を採用することにより、高価なIII族窒化物膜の厚さを低減することができ、半導体デバイスの低廉化を図ることができる。
 また、上記のように、厚さ分布が特定の範囲に制御された接合膜12を備えることにより、III族窒化物膜13上にエピタキシャル層を形成する半導体デバイス工程において、基板を搭載するサセプタからの熱が膜内に均一に伝導されるため、良好な厚さ分布を有し、高い結晶品質を有するエピタキシャル層を得ることができ、以って、半導体デバイスの製造歩留を高めることができる。
 また、本参考形態であるIII族窒化物複合基板1は、接合膜12によって、接合された支持基板11とIII族窒化物膜13とのせん断接合強度が4MPa以上40MPa以下であり、かつ支持基板11とIII族窒化物膜13との接合面積率が60%以上98%以下であることを特徴とする。
 このように、支持基板11とIII族窒化物膜13との接合強度および接合面積率を特定の範囲に制御することにより、接合膜にかかる応力が緩和され、反りの発生を抑制することができ、以って、半導体デバイスの製造歩留を高めることができる。
 本参考形態であるIII族窒化物複合基板1は、上記のような接合膜12の厚さ分布の特徴と、支持基板11とIII族窒化物膜13との接合強度および接合面積率の特徴と、の少なくとも一方を有することにより、半導体デバイスの製造歩留を高めることができる。そして、III族窒化物複合基板1が両方の特徴を併せ持つ場合には、それらの効果が相乗的に作用し、本発明の効果をより一層高めることができるため特に好ましい。
 (III族窒化物複合基板の直径)
 III族窒化物複合基板1の直径は、1枚の複合基板から半導体デバイスのチップの取れ数を多くする観点から、75mm以上であり、100mm以上が好ましく、125mm以上がより好ましく、150mm以上がさらに好ましい。また、III族窒化物複合基板1の直径は、複合基板の反りを低減し半導体デバイスの歩留を高くする観点から、300mm以下が好ましく、200mm以下がより好ましい。
 以下、本参考形態であるIII族窒化物複合基板1を構成する各部について説明する。
 (接合膜)
 本参考形態の接合膜12は、支持基板11の接合面およびIII族窒化物膜13の接合面の凹凸を吸収、緩和して支持基板11とIII族窒化物膜13との接合強度を高める機能を有する。
 接合膜12は、支持基板11とIII族窒化物膜13とを接合できるものであれば特に制限されないが、支持基板11とIII族窒化物膜13との接合性が高い観点から、SiO2膜、Si34膜、TiO2膜、Ga23膜などが好ましい。接合膜12の平均厚さは、特に制限されないが、たとえば、100nm~4μm程度とすることができる。
 (接合膜の厚さ分布)
 本実施の形態において、接合膜12の厚さ分布は2%以上40%以下である。ここで、「厚さ分布」とは、接合膜12の厚みの均一性を示す指標であり、接合膜12の主面の面内全域に亘って測定された厚さのうち、「厚さの最大値tmax」と「厚さの最小値tmin」とから次式により算出された値である。
 式:厚さ分布(%)={(tmax-tmin)/(tmax+tmin)}×100
 ここで、接合膜の厚さの基準面は、たとえば、支持基板11の主面11mとすることができる。また、厚さの測定点は少なくとも13点とすることが好ましく、隣接する各測定点の間隔は略均等間隔であることが好ましい。
 なお、接合膜の厚さは、従来公知の光干渉式膜厚計や段差計などにより測定することができる。また、接合膜の厚さは接合膜12の主面に対する垂直断面を走査型電子顕微鏡(SEM(Scanning Electron Microscope))などにより観察することによっても測定することができる。
 かかる厚さ分布が2%未満である場合には、エピタキシャル層を成長させる際に、基板を搭載するサセプタからの熱伝導が不均一となり、基板が凹状に反ることで中央部と外周部との温度差が大きくなり、良質なエピタキシャル層を成長させることができず、半導体デバイスの製造歩留が低下するとともに、半導体デバイスの特性が低下する。厚さ分布が40%を超える場合には、接合膜の薄い領域や接合膜が消失した領域(すなわち、未接合領域)が増加するため、この場合にも良質なエピタキシャル層を成長させることができず、半導体デバイスの製造歩留が低下する。したがって、本参考形態の接合膜の厚さ分布は、2%以上40%以下である。接合膜12の厚さ分布がかかる範囲を占めることにより、エピタキシャル成長時に複合基板全体の温度分布が均一化され、高い結晶品質を有する良質なエピタキシャル層を成長させることができるという優れた効果を示す。かかる厚さ分布は、より好ましくは5%以上25%以下であり、さらに好ましくは7%以上16%以下である。厚さ分布がかかる範囲を占めることにより、さらに接合膜の厚みの均一性が高められ、III族窒化物膜13の上に形成されるエピタキシャル層の結晶品質をより一層高いものとすることができる。
 接合膜の厚さ分布は、たとえば、接合膜の表面を化学機械的研磨(以下「CMP(chemical mechanical polishing)」とも記す)する際の条件を適宜調整することにより、所望の範囲に制御することができる。かかる条件としては、たとえば、研磨材の材質、研磨の線速度、研磨パッドの材質などを挙げることができる。
 (せん断接合強度)
 本参考形態において、接合膜12によって接合された支持基板11とIII族窒化物膜13とのせん断接合強度は4MPa以上40MPa以下である。せん断接合強度がかかる範囲を占めることにより、半導体デバイスの製造工程おいて、基板剥離が発生することなく、基板の反りも緩和されるため、半導体デバイスの製造歩留が顕著に向上する。かかるせん断接合強度は、より好ましくは10MPa以上30MPa以下である。この場合、基板の反りを緩和させる効果がより一層高まる傾向にあるため好適である。せん断接合強度が4MPa未満の場合には、接合強度が十分ではなく、エピタキシャル成長時に、基板を搭載するサセプタからの熱伝導に起因する基板の変形により、基板剥離が発生し、半導体デバイスの製造歩留が低下する。せん断接合強度が40MPaを超える場合には、接合膜12に加わる応力が大きくなり、基板の反りが促進される傾向にあり、半導体デバイスの製造歩留が低下する。
 本参考形態において、かかるせん断接合強度は、ダイシェア試験機、引張試験機などを用いて、JIS K 6850「剛性被着材の引張せん断接着強さ試験方法」に準拠した方法によって測定することができる。すなわち、測定試料として矩形の複合基板(縦6mm×横8mm)を準備し、支持基板側を下にして、その複合基板を試験機の試料ステージ上に平置きにして固定した後、幅9mmの試験ジグでIII族窒化物膜に、支持基板とIII族窒化物膜との接合面に対して平行方向(すなわち、せん断方向)に荷重を印加し、接合面が破壊される際の最大せん断荷重を測定する。そして、最大せん断荷重を接合面の面積(4.8×10-52)で除すことにより、せん断接合強度を算出する。
 支持基板11とIII族窒化物膜13とのせん断接合強度を4MPa以上40MPa以下とする方法としては、たとえば、支持基板11とIII族窒化物膜13とを接合する前後にアニール処理する方法を好適に用いることができる。すなわち、支持基板11およびIII族窒化物膜13それぞれの一主表面に接合膜を形成した後、支持基板11とIII族窒化物膜13とをそれぞれアニール処理し、アニール処理後の支持基板11とIII族窒化物膜13とを、接合膜を介して接合した後、再度アニール処理を行なう方法が好適である。
 かかるアニール処理の条件は、好ましくは窒素雰囲気下、400℃以上で1時間以上であり、より好ましくは窒素雰囲気下、600℃以上で1時間以上であり、特に好ましくは窒素雰囲気下、800℃以上1時間以上である。
 ここで、接合膜の品質の観点から、アニール処理の温度条件は、1200℃以下であることが好ましく、処理時間は48時間以下であることが好ましい。
 また、せん断接合強度は、接合膜の接合前における表面状態(すなわち、表面粗さ)によっても制御することができる。
 (接合面積率)
 本参考形態のIII族窒化物複合基板1は、上記のように、支持基板11とIII族窒化物膜13とのせん断接合強度が4MPa以上40MPa以下であるとともに、支持基板11とIII族窒化物膜13との接合面積率が60%以上98%以下であることを要する。このように、2つの観点から、支持基板11とIII族窒化物膜13との関係を規定したことにより、本参考形態のIII族窒化物複合基板1は、エピタキシャル成長時の基板の反りを顕著に低減し、平坦性が高く良質なエピタキシャル層を成長させることができる。また、これにより、半導体デバイスの製造工程において、基板剥離の発生頻度が極めて低く、半導体デバイスの製造歩留が高いという優れた効果を有する。接合面積率が60%未満である場合には、エピタキシャル成長工程および半導体デバイス製造工程において、基板剥離の発生頻度が高く、半導体デバイスの製造歩留が低下する。接合面積率が98%を超える場合には、接合膜12に加わる応力が大きくなり、基板に反りが生じやすくなるため、この場合にも半導体デバイスの製造歩留が低下する。
 ここで、本参考形態において、「接合面積率」は、支持基板11とIII族窒化物膜13との接合面である接合膜12を超音波顕微鏡により観測した場合に、接合欠陥(ボイドあるいは剥離)として検出される面積の総和を、支持基板11の主面11mの面積で除した値に100を乗じた値である。かかる接合面積率は、より好ましくは70%以上90%以下であり、さらに好ましくは80%以上86%以下である。接合面積率が該範囲を占める場合には、接合膜12に加わる応力が大幅に緩和され、半導体デバイスの製造歩留をより一層高めることができる。
 接合面積率を60%以上98%以下とする方法としては、たとえば、接合膜12の表面を清浄化する方法を用いることができる。具体的には、接合膜12の表面の汚れをCMPにより除去した後に、該表面をさらに水で超音波洗浄する方法を好適に用いることができる。また、より好ましい方法として、接合膜12の表面の汚れをCMPにより除去した後に、水酸化カリウム(KOH)水溶液や水などの薬液を用いた無砥粒ポリシング洗浄によりさらに汚れを除去する方法を用いることもできる。また、たとえば、超音波洗浄と無砥粒ポリシング洗浄とを併用しても良い。
 なお、接合面積率は、接合膜12の厚さ分布を2%以上40%以下とすることにより、より精細に制御することができる。すなわち、接合膜12の厚さ分布が2%以上40%以下であり、かつ接合面積率が60%以上98%以下であることが特に好ましい。
 (支持基板)
 支持基板11は、III族窒化物膜13を支持できるものであれば特に制限はないが、高価なIII族窒化物の使用量を低減してコストを低減する観点から、III族窒化物と化学組成が異なる異組成基板であることが好ましい。支持基板11は透明であっても、不透明であっても良く、利用される半導体デバイスに応じて適宜選択することができる。
 支持基板11を構成する材料としては、従来公知のセラミックス材料、半導体材料、金属材料、多結晶材料、単結晶材料などを用いることができる。たとえば、窒化アルミニウム(AlN)、スピネル(MgAl24)、ムライト(3Al23・2SiO2~2Al23・SiO2)、アルミナ(Al23)、グラファイトなどの焼結体材料、AlN、サファイアなどの単結晶材料、モリブデン(Mo)、タングステン(W)などの金属材料、ならびに銅-タングステン(Cu-W)などの合金材料などを挙げることができる。
 また、支持基板11は、エピタキシャル成長時などにおいて、アンモニアガスをはじめとする高温の腐食性ガスに曝されることもあるため、耐食性を有する基板であることが好ましい。したがって、たとえば、表面の耐食性を高めるため各種の表面保護コーティングなどが付されていても良い。
 (支持基板の熱伝導率)
 支持基板11の熱伝導率λsは、3W・m-1・K-1以上280W・m-1・K-1以下が好ましく、5W・m-1・K-1以上210W・m-1・K-1以下がより好ましく、10W・m-1・K-1以上120W・m-1・K-1以下がさらに好ましい。ここで、支持基板11の熱伝導率λsは、レーザフラッシュ法により測定することができる。熱伝導率λsが好ましくは3W・m-1・K-1以上、より好ましくは5W・m-1・K-1以上、さらに好ましくは10W・m-1・K-1以上である支持基板11を有するIII族窒化物複合基板1は、III族窒化物層を成長させる際にサセプタの主面からの熱を効率よくIII族窒化物複合基板1のIII族窒化物膜13の主面13mに伝えることができる。熱伝導率λsが好ましくは280W・m-1・K-1以下、より好ましくは210W・m-1・K-1以下、さらに好ましくは120W・m-1・K-1以下である支持基板11を有するIII族窒化物複合基板1は、III族窒化物層を成長させる際にサセプタの主面からの熱をIII族窒化物複合基板1のIII族窒化物膜13の主面の全体に均一に伝えることができる。熱伝導率λsが280W・m-1・K-1以下の支持基板11は、熱伝導率λsが約300W・m-1・K-1のSiC基板を支持基板として用いる場合よりも、III族窒化物層を成長させる際にサセプタの主面からの熱をIII族窒化物複合基板1のIII族窒化物膜13の主面の全体に均一に伝えることができる。なお、支持基板11の熱伝導率は、III族窒化物膜13の熱伝導率と異なっていても良い。
 (支持基板の熱膨張係数)
 支持基板11は、割れ難い基板であることが好ましい。そして、支持基板11の熱膨張係数は、III族窒化物膜13の熱膨張係数と近似していることが好ましい。支持基板11がこのような性質を有することにより、III族窒化物複合基板1が、エピタキシャル成長工程、半導体デバイス製造工程などで加熱されても、III族窒化物膜13が割れ難くなるため好適である。
 具体的には、支持基板11の熱膨張係数αSに対するIII族窒化物膜13の熱膨張係数αIII-Nの比αIII-N/αSは、0.75以上1.25以下が好ましく、0.8以上1.2以下がより好ましく、0.9以上1.1以下がさらに好ましく、0.95以上1.05以下が特に好ましい。
 (支持基板11の厚さ)
 支持基板11の厚さ自体は特に制限されないが、加熱時にIII族窒化物膜13の反りや割れなどを抑制するという観点から、III族窒化物膜13の厚さとの間で、次のような関係を満たすことが好ましい。すなわち、支持基板11の厚さtSに対するIII族窒化物膜13の厚さtIII-Nの比tIII-N/tSは、0.0002以上0.02以下であることが好ましい。ここで、上記の熱膨張係数の比αIII-N/αSが0.75以上1.25以下であり、かつ厚さの比tIII-N/tSが0.0002以上0.02以下であることにより、複合基板の製造工程、エピタキシャル成長工程、半導体デバイス製造工程などのあらゆる場面において、III族窒化物膜13の反りや割れなどに起因する不良の発生を大幅に低減することができる。なお、厚さの比tIII-N/tSは、より好ましくは、0.0005以上0.02以下である。
 (支持基板のヤング率)
 支持基板11のヤング率Esは、III族窒化物複合基板1が加熱された際の反りの発生を抑制するとの観点から、ESが150GPa以上500GPa以下であることが好ましい。ESが150GPa未満であると加熱時に反りが発生しやすい傾向にあり、ESが500GPaを超えると加熱時に割れやクラックが発生しやすい傾向にあるため好ましくない。ここで、ESのより好ましい範囲は、200GPa以上350GPa以下である。なお、支持基板11のヤング率は、III族窒化物膜13と異なっていても良い。
 支持基板11を構成する材料のうち、III族窒化物膜13と熱膨張係数やヤング率が近い値である材料としては、たとえば、ムライト(3Al23・2SiO2~2Al23・SiO2)、ムライト-YSZ(イットリア安定化ジルコニア)、スピネル(MgAl24)、Al23-SiO2系複合酸化物の焼結体、およびこれらに酸化物、窒化物、炭酸塩などを添加した焼結体により形成される基板、モリブデン(Mo)基板、タングステン(W)基板などを挙げることができる。ここで、酸化物、窒化物および炭酸塩に含まれる元素は、Ca、Mg、Sr、Ba、Al、Sc、Y、Ce、Pr、Si、Ti、Zr、V、Nb、Ta、Cr、Mn、Fe、Co、Ni、Cu、Znなどが好適に挙げられる。
 (III族窒化物膜)
 III族窒化物膜13は、III族窒化物で形成される膜であり、GaN膜、AlN膜などのInxAlyGa1-x-yN膜(0≦x、0≦y、x+y≦1)などが挙げられる。
 III族窒化物膜13の厚さは、50nm以上10μm未満である。厚さが50nm未満の場合は、III族窒化物膜13が割れやすい傾向にあり、その上に良質なエピタキシャル層を成長させることが困難となる。また、厚さが10μm未満であることにより、高価なIII族窒化物の使用量を抑え、半導体デバイスの付加価値を高めることができる。
 III族窒化物膜13の結晶構造は、良好な特性の半導体デバイスが得られる観点から、ウルツ鉱型構造が好ましい。III族窒化物膜13の主面13mが最も近似する上記の所定の面方位は、所望の半導体デバイスに適したものであれば制限はなく、{0001}、{10-10}、{11-20}、{21-30}、{20-21}、{10-11}、{11-22}、{22-43}、およびこれらのそれぞれの面方位から15°以下の角度でずらした(15°以下でオフした)面方位でもよい。また、これらのそれぞれの面方位の面の裏面の面方位およびかかる裏面の面方位から15°以下の角度でずらした(15°以下でオフした)面方位でもよい。すなわち、III族窒化物膜13の主面13mは、極性面、非極性面、および半極性面のいずれであってもよい。また、III族窒化物膜13の主面13mは、大口径化が容易であるとの観点から{0001}面およびその裏面が好ましく、得られる発光デバイスのブルーシフトを抑制する観点から{10-10}面、{20-21}面およびそれらの裏面が好ましい。
 III族窒化物膜13の主面13mにおける不純物金属原子は、III族窒化物膜13上に成長させるIII族窒化物層の結晶品質を高め、形成する半導体デバイスの特性を高くする観点から、3×1013原子/cm2以下が好ましく、1×1013原子/cm2以下がより好ましく、1×1012原子/cm2以下がさらに好ましい。支持基板11として、ムライト(3Al23・2SiO2~2Al23・SiO2)、ムライト-YSZ(イットリア安定化ジルコニア)、スピネル(MgAl24)、Al23-SiO2系複合酸化物の焼結体などの基板を含むIII族窒化物複合基板1は、支持基板11からの金属原子の溶出を抑制した洗浄、たとえば、界面活性剤と純水とを用いたスクラブ洗浄、二流体洗浄、メガソニック洗浄、低濃度の酸またはアルカリを用いた片面の枚葉洗浄などにより、III族窒化物膜13の主面13mにおける不純物金属原子の濃度が低減されていることが好ましい。
 また、III族窒化物膜13の主面13mにおけるその他の不純物は、III族窒化物膜13上に成長させるIII族窒化物層の結晶品質を高め、形成する半導体デバイスの特性を高くする観点から、Cl原子が2×1014原子/cm2以下が好ましく、Si原子が9×1013原子/cm2以下が好ましい。III族窒化物膜13の転位密度は、特に制限はないが、半導体デバイスのリーク電流低減化の観点から、1×108cm-2以下が好ましい。III族窒化物膜13のキャリア濃度は、特に制限はないが、半導体デバイスの低抵抗化の観点から、1×1017cm-3以上が好ましい。
 [参考形態II-2:積層III族窒化物複合基板]
 以下、図14を参照して、参考発明IIの別の参考形態である積層III族窒化物複合基板2を説明する。
 積層III族窒化物複合基板2は、参考形態II-1のIII族窒化物複合基板1と、III族窒化物複合基板1のIII族窒化物膜13側の主面13m上に配置されている少なくとも1層のIII族窒化物層20と、を含む。
 このように、III族窒化物複合基板1のIII族窒化物膜13側の主面13m上に、III族窒化物層20が配置されることにより、III族窒化物層20は良質なエピタキシャル層として成長することができる。
 本参考形態の積層III族窒化物複合基板2において、III族窒化物膜13側の主面13m上に配置されているIII族窒化物層20は、作製する半導体デバイスの種類に応じて異なる。半導体デバイスとして発光デバイスを作製する場合は、III族窒化物層20は、たとえば、n-GaN層21、n-In0.05Ga0.95N層22、多重量子井戸構造を有する活性層23、p-Al0.09Ga0.91N層24、およびp-GaN層25で構成することができる。半導体デバイスとして電子デバイスの1例であるHEMT(高電子移動度トランジスタ)を作製する場合は、III族窒化物層は、たとえば、GaN層、Al0.2Ga0.8N層で構成することができる。半導体デバイスとして電子デバイスの別の例であるSBD(ショットキーバリアダイオード)を作製する場合は、III族窒化物層は、たとえば、n+-GaN層(キャリア濃度がたとえば2×1018cm-3)、n--GaN層(キャリア濃度がたとえば5×1015cm-3)で構成することができる。
 [参考形態II-3:III族窒化物半導体デバイス]
 以下、図15および図16を参照して、参考発明IIのさらに別の参考形態であるIII族窒化物半導体デバイス4を説明する。
 III族窒化物半導体デバイス4は、参考形態II-1のIII族窒化物複合基板中のIII族窒化物膜13と、III族窒化物膜13上に配置されている少なくとも1層のIII族窒化物層20と、を含む。
 このように、本参考形態のIII族窒化物半導体デバイス4は、III族窒化物複合基板1とその上に成長することにより配置されている結晶品質の極めて高いIII族窒化物層20とを含むため、高い半導体特性を有する。
 III族窒化物半導体デバイス4のIII族窒化物層20は、III族窒化物半導体デバイス4の種類に応じて異なる。図15に示すように、III族窒化物半導体デバイス4が発光デバイスの場合は、III族窒化物層20は、たとえば、n-GaN層21、n-In0.05Ga0.95N層22、多重量子井戸構造を有する活性層23、p-Al0.09Ga0.91N層24、およびp-GaN層25で構成することができる。図16に示すように、III族窒化物半導体デバイス4が電子デバイスの一例であるHEMTの場合は、III族窒化物層20は、たとえば、GaN層26、Al0.2Ga0.8N層27で構成することができ、Al0.2Ga0.8N層27上に、ソース電極60、ドレイン電極70、ゲート電極80などを形成することができる。半導体デバイスとして電子デバイスの別の例であるSBDを作製する場合は、III族窒化物層は、たとえば、n+-GaN層(キャリア濃度がたとえば2×1018cm-3)、n--GaN層(キャリア濃度がたとえば5×1015cm-3)で構成することができる。
 また、図15および図16に示すように、III族窒化物半導体デバイス4は、III族窒化物層20を支持するための支持基板11およびデバイス支持基板40の少なくともひとつをさらに含むことが好ましい。ここで、デバイス支持基板40の形状は、平板形状に限らず、III族窒化物膜13およびIII族窒化物層20を支持してIII族窒化物半導体デバイス4を形成することができるものである限り、任意の形状をとることができる。
 [参考形態II-4:III族窒化物半導体デバイスの製造方法]
 以下、図17~図21を参照して、参考発明IIのさらに別の参考形態であるIII族窒化物半導体デバイスの製造方法について説明する。
 本参考形態のIII族窒化物半導体デバイスの製造方法は、III族窒化物複合基板1を準備する工程と、III族窒化物複合基板1のIII族窒化物膜13側の主面13m上に、少なくとも1層のIII族窒化物層20を成長させる工程と、を含む。
 (III族窒化物複合基板を準備する工程)
 まず、図17~図20を参照して、III族窒化物複合基板1を準備する工程について説明する。
 III族窒化物複合基板1を準備する工程では、参考形態II-1にかかるIII族窒化物複合基板1を製造する。III族窒化物複合基板1の製造方法は、支持基板11の主面11m側にIII族窒化物膜13を配置する方法であれば特に制限はなく、次の第1~第3の方法が挙げられる。
 第1の方法は、図17に示すように、支持基板11の主面11mに、下地基板130の主面30n上に成膜させたIII族窒化物膜13を貼り合わせた後、下地基板130を除去する方法である。第2の方法は、図18および図19に示すように、支持基板11の主面11mにIII族窒化物膜ドナー基板13Dを貼り合わせた後、そのIII族窒化物膜ドナー基板13Dを貼り合わせ面から所定の深さの面で分離することにより支持基板11の主面11m上にIII族窒化物膜13を形成する方法である。第3の方法は、図20に示すように、支持基板11の主面11mにIII族窒化物膜ドナー基板13Dを貼り合わせた後、そのIII族窒化物膜ドナー基板13Dを貼り合わせ面の反対側の主面から研削、研磨およびエッチングの少なくともいずれかにより厚さを減少させて調整することにより支持基板11の主面11m上にIII族窒化物膜13を形成する方法である。
 上記の第1の方法において、支持基板11にIII族窒化物膜13を貼り合わせる方法には、支持基板11の主面11mに接合膜12を介在させてIII族窒化物膜13を貼り合わせる方法(図17を参照)などが挙げられる。また、上記の第2および第3の方法において、支持基板11にIII族窒化物膜ドナー基板13Dを貼り合わせる方法には、支持基板11の主面11mに接合膜12を介在させてIII族窒化物膜ドナー基板13Dを貼り合わせる方法(図18~図20を参照)などが挙げられる。
 なお、図17には、支持基板11に接合膜12aを形成するとともに、III族窒化物膜13に接合膜12bを形成し、それらを貼り合わせる方法が図示されているが、たとえば、支持基板11のみに接合膜12を形成しておき、III族窒化物膜13と貼り合わせても何ら差し支えない。
 (第1の方法)
 図17に示すように、第1の方法により複合基板を製造する方法は、特に制限はないが、効率的に複合基板を製造する観点から、支持基板11を準備する工程(図17(A))と、下地基板130の主面130n上にIII族窒化物膜13を形成する工程(図17(B))と、支持基板11とIII族窒化物膜13とを貼り合わせて接合基板1Lを形成する工程(図17(C))と、接合基板1Lから下地基板130を除去する工程(図17(D))と、を含むことが好ましい。
 図17(A)に示す、支持基板11を準備する工程は、特に制限はなく、たとえば、金属元素Mを含む酸化物であるMOx(xは任意の正の実数)、Alを含む酸化物であるAl23、およびSiを含む酸化物であるSiO2を所定のモル比で混合し焼結して得られる焼結体を所定の大きさに切り出して得られる基板の主面を研磨することにより行なうことができる。
 図17(B)に示す、下地基板130の主面130n上にIII族窒化物膜13を形成する工程は、MOCVD(有機金属化学気相堆積)法、スパッタ法、MBE(分子線エピタキシ)法、PLD(パルス・レーザ堆積)法、HVPE(ハイドライド気相エピタキシ)法、昇華法、フラックス法、高窒素圧溶液法などにより好適に行なうことができる。
 図17(C)に示すように、支持基板11とIII族窒化物膜13とを貼り合わせて接合基板1Lを形成する工程は、支持基板11の主面11m上に接合膜12aを形成するサブ工程(図17(C1))と、下地基板130の主面130n上に形成されたIII族窒化物膜13の主面13n上に接合膜12bを形成するサブ工程(図17(C2))と、支持基板11の主面11m上に形成された接合膜12aと下地基板130の主面130n上に形成されたIII族窒化物膜13の主面13n上に形成された接合膜12bとを貼り合わせるサブ工程(図17(C3))と、を含む。これらのサブ工程により、互いに貼り合わされた接合膜12aと接合膜12bとが接合により一体化して接合膜12が形成され、支持基板11と、下地基板130上に形成されたIII族窒化物膜13とが、接合膜12を介在させて接合されることにより、接合基板1Lが形成される。
 ここで、接合膜12a,12bの形成方法は、特に制限はないが、膜形成コストを抑制する観点から、スパッタ法、蒸着法、CVD(化学気相堆積)法などが好適に行なわれる。また、接合膜12aと接合膜12bとを貼り合わせる方法には、特に制限はなく、貼り合わせ面を洗浄しそのまま貼り合わせた後600℃~1200℃程度に昇温して接合する直接接合法、貼り合わせ面を洗浄しプラズマやイオンなどで活性化処理した後に室温(たとえば25℃)~400℃程度の低温雰囲気下で接合する表面活性化接合法、貼り合わせ面を薬液と純水で洗浄処理した後、0.1MPa~10MPa程度の高圧力を掛けて接合する高圧接合法、貼り合わせ面を薬液と純水で洗浄処理した後、10-6Pa~10-3Pa程度の高真空雰囲気下で接合する高真空接合法、などが好適である。上記のいずれの接合法においてもそれらの接合後に600℃~1200℃程度に昇温することによりさらに接合強度を高めることができる。特に、表面活性化接合法、高圧接合法、および高真空接合法においては、それらの接合後に600℃~1200℃程度に昇温することによる接合強度を高める効果が大きい。
 図17(D)に示す、接合基板1Lから下地基板130を除去する工程は、特に制限はないが、下地基板130を効率的に除去する観点から、下地基板130をフッ化水素酸などのエッチャントにより溶解させて除去する方法、下地基板130の露出している主面側から研削または研磨により除去する方法などが好適に行なわれる。ここで、下地基板130をフッ化水素酸などのエッチャントにより溶解させて除去する場合には、支持基板11を保護するための保護部材140を支持基板11の回りに形成することが好ましい。
 このようにして、支持基板11と、支持基板11の主面11m上に配置された接合膜12と、接合膜12の主面上に配置されたIII族窒化物膜13と、を含むIII族窒化物複合基板1が得られる。
 (第2の方法)
 図18および図19に示す、第2の方法により複合基板を製造する方法は、特に制限はないが、効率的に複合基板を製造する観点から、支持基板11とIII族窒化物膜ドナー基板13Dとを貼り合わせて接合基板1Lを形成する工程と(図18(A)および図19(A))と、接合基板1LのIII族窒化物膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さに位置する面で分離する工程(図18(B)および図19(B))と、を含むことが好ましい。接合基板1LのIII族窒化物膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さに位置する面で分離する方法には、特に制限はないが、効率的な分離を行なう観点から、図18に示すようなイオン注入法、図19に示す切断法などが好ましい。
 (イオン注入法)
 図18に示すイオン注入法について以下に説明する。図18(A)に示すように、支持基板11とIII族窒化物膜ドナー基板13Dとを貼り合わせて接合基板1Lを形成する工程は、支持基板11の主面11m上に接合膜12aを形成するサブ工程(図18(A1))と、III族窒化物膜ドナー基板13Dの主面13n側からイオンIを注入することにより主面13nから内部に所定の深さの位置の面にイオン注入領域13iを形成するとともに主面13n上に接合膜12bを形成するサブ工程(図18(A2))と、支持基板11の主面11m上に形成された接合膜12aとIII族窒化物膜ドナー基板13Dの主面13n上に形成された接合膜12bとを貼り合わせるサブ工程(図18(A3))と、を含む。これらのサブ工程により、互いに貼り合わされた接合膜12aと接合膜12bとが接合により一体化して接合膜12が形成され、支持基板11と、III族窒化物膜ドナー基板13Dとが、接合膜12を介在させて接合されて、接合基板1Lが形成される。接合基板1LのIII族窒化物複合基板1のIII族窒化物膜ドナー基板13Dの内部に注入されたイオンIは、後工程においてガス化して急激な体積膨張を起こすことにより、III族窒化物膜ドナー基板13Dをイオン注入領域13iで分離させる。
 III族窒化物膜ドナー基板13Dとは、後工程において分離によりIII族窒化物膜13を提供するドナー基板である。かかるIII族窒化物膜ドナー基板13Dを形成する方法は、上記の第1の方法により複合基板を製造する方法におけるIII族窒化物膜13を形成する方法と同様である。また、接合膜12a,12bの形成方法は、第1の方法により複合基板を製造する方法における接合膜12a,12bの形成方法と同様である。また、支持基板11とIII族窒化物膜ドナー基板13Dとを貼り合わせる方法は、上記の第1の方法により複合基板を製造する方法における支持基板11とIII族窒化物膜13とを貼り合わせる方法と同様である。
 III族窒化物膜ドナー基板13Dに注入されるイオンIは、特に制限はないが、III族窒化物膜13の品質の低下を抑制する観点およびイオン注入領域13iに注入されたイオンIのガス化温度をIII族窒化物膜13の分解温度より低くする観点から、質量の小さい原子のイオン、たとえば、水素イオン、ヘリウムイオンなどが好ましい。
 図18(B)に示す、接合基板1LのIII族窒化物膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さに位置する面で分離する工程は、III族窒化物膜ドナー基板13Dに注入されたイオンIをガス化させる方法であれば特に制限はない。たとえば、熱を加えたり、超音波を加えたりする方法などで、接合基板1LのIII族窒化物膜ドナー基板13Dの貼り合わせ面である主面から所定の深さの位置に形成されているイオン注入領域13iに注入されているイオンIをガス化させて急激な体積膨張をさせることにより行なう。
 このようにして、接合基板1LがIII族窒化物膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さに位置する面で分離して、支持基板11と、支持基板11の主面11m上に配置された接合膜12と、接合膜12の主面上に配置されたIII族窒化物膜13と、を含むIII族窒化物複合基板1が得られる。
 (切断法)
 図19に示す切断法について以下に説明する。図19(A)に示すように、支持基板11とIII族窒化物膜ドナー基板13Dとを貼り合わせて接合基板1Lを形成する工程は、支持基板11の主面11m上に接合膜12aを形成するサブ工程(図19(A1))と、III族窒化物膜ドナー基板13Dの主面13n上に接合膜12bを形成するサブ工程(図19(A2))と、支持基板11の主面11m上に形成された接合膜12aとIII族窒化物膜ドナー基板13Dの主面13n上に形成された接合膜12bとを貼り合わせるサブ工程(図19(A3))と、を含む。これらのサブ工程により、互いに貼り合わされた接合膜12aと接合膜12bとが接合により一体化して接合膜12が形成され、支持基板11と、III族窒化物膜ドナー基板13Dとが、接合膜12を介在させて接合されて、接合基板1Lが形成される。
 図20(B)に示す、接合基板1LのIII族窒化物膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さに位置する面で分離する工程は、接合基板1LのIII族窒化物膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さに位置する面でIII族窒化物膜ドナー基板13Dを切断することにより行なう。III族窒化物膜ドナー基板を切断する方法は、特に制限なく、ワイヤーソー、内周刃、外周刃などが好適に用いられる。
 このようにして、接合基板1LがIII族窒化物膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さに位置する面で分離して、支持基板11と、支持基板11の主面11m上に配置された接合膜12と、接合膜12の主面上に配置されたIII族窒化物膜13と、を含むIII族窒化物複合基板1が得られる。
 (第3の方法)
 図20に示すように、第3の方法により複合基板を製造する方法は、特に制限はないが、効率的に複合基板を製造する観点から、支持基板11とIII族窒化物膜ドナー基板13Dとを貼り合わせて接合基板1Lを形成する工程と(図20(A))と、接合基板1LのIII族窒化物膜ドナー基板13Dの貼り合わせ面である主面13nと反対側の主面13mから研削、研磨およびエッチングの少なくともいずれかを行なう工程(図20(B))と、を含むことが好ましい。
 図20(A)に示すように、支持基板11とIII族窒化物膜ドナー基板13Dとを貼り合わせて接合基板1Lを形成する工程は、支持基板11の主面11m上に接合膜12aを形成するサブ工程(図20(A1))と、III族窒化物膜ドナー基板13Dの主面13n上に接合膜12bを形成するサブ工程(図20(A2))と、支持基板11の主面11m上に形成された接合膜12aとIII族窒化物膜ドナー基板13Dの主面13n上に形成された接合膜12bとを貼り合わせるサブ工程(図20(A3))と、を含む。これらのサブ工程により、互いに貼り合わされた接合膜12aと接合膜12bとが接合により一体化して接合膜12が形成され、支持基板11と、III族窒化物膜ドナー基板13Dとが、接合膜12を介在させて接合されて、接合基板1Lが形成される。
 III族窒化物膜ドナー基板13Dとは、上記第2の方法と同様に、後工程において分離によりIII族窒化物膜13を提供するドナー基板である。かかるIII族窒化物膜ドナー基板13Dを形成する方法は、上記の第1の方法により複合基板を製造する方法におけるIII族窒化物膜13を形成する方法と同様である。また、接合膜12a,12bの形成方法は、第1の方法により複合基板を製造する方法における接合膜12a,12bの形成方法と同様である。また、支持基板11とIII族窒化物膜ドナー基板13Dとを貼り合わせる方法は、上記の第1の方法により複合基板を製造する方法における支持基板11とIII族窒化物膜13とを貼り合わせる方法と同様である。
 図20(B)に示すように、接合基板1LのIII族窒化物膜ドナー基板13Dの貼り合わせ面である主面13nと反対側の主面13mから研削、研磨およびエッチングの少なくともいずれかを行なう工程により、III族窒化物膜ドナー基板13Dの厚さを減少させて所望の厚さのIII族窒化物膜13が形成されるため、支持基板11と、支持基板11の主面11m上に配置された接合膜12と、接合膜12の主面上に配置されたIII族窒化物膜13と、を含むIII族窒化物複合基板1が得られる。
 ここで、III族窒化物膜ドナー基板13Dを研削する方法は、特に制限はなく、砥石による研削(平面研削)、ショット・ブラストなどが挙げられる。III族窒化物膜ドナー基板13Dを研磨する方法は、特に制限はなく、機械的研磨、化学機械的研磨などが挙げられる。III族窒化物膜ドナー基板13Dをエッチングする方法は、特に制限はなく、薬液によるウェットエッチング、RIE(反応性イオンエッチング)などのドライエッチングなどが挙げられる。
 以上のようにして、III族窒化物複合基板1を製造することができる。以上のようにして製造されたIII族窒化物複合基板1は、その上に良質なエピタキシャル層を成長させることができるとともに、半導体デバイスの製造歩留を向上させるという優れた効果を有する。
 (III族窒化物半導体デバイスの製造工程)
 次に、III族窒化物半導体デバイスの製造工程について説明する。
 本参考形態であるIII族窒化物半導体デバイスの製造方法は、上記のIII族窒化物複合基板1を準備する工程を含み、図21に示すように、III族窒化物複合基板1のIII族窒化物膜13側の主面13m上に、少なくとも1層のIII族窒化物層20を成長させる工程(図21(A))を含む。本参考形態のIII族窒化物半導体デバイスの製造方法は、III族窒化物層の成長の際に、III族窒化物複合基板1の主面13m上にIII族窒化物層を成長させるため、高い歩留で高特性のIII族窒化物半導体デバイスを製造できる。
 本参考形態のIII族窒化物半導体デバイスの製造方法において、III族窒化物層20上にさらにデバイス支持基板40を貼り合わせる工程(図21(B))と、III族窒化物複合基板1から支持基板11を除去する工程(図21(C))と、をさらに含むことができる。これらの工程を加えることにより、高い歩留でデバイス支持基板40により支持された機械的強度が強く高特性のIII族窒化物半導体デバイスを製造できる。
 本参考形態のIII族窒化物半導体デバイスの製造方法は、具体的には、以下の工程により、行なうことができる。
 (III族窒化物層の成長工程)
 図21(A)に示す、III族窒化物複合基板1のIII族窒化物膜13側の主面13m上に、少なくとも1層のIII族窒化物層20を成長させる工程において、III族窒化物層20を成長させる方法は、結晶品質の高いIII族窒化物層20をエピタキシャル成長させる観点から、MOCVD法、MBE法、HVPE法、昇華法などの気相法、フラックス法などの液相法などが好適であり、特にMOCVD法が好適である。
 III族窒化物層20の構成は、III族窒化物半導体デバイス4の種類に応じて異なる。III族窒化物半導体デバイス4が発光デバイスの場合は、III族窒化物層20は、たとえば、III族窒化物膜13上に、n-GaN層21、n-In0.05Ga0.95N層22、多重量子井戸構造を有する活性層23、p-Al0.09Ga0.91N層24、およびp-GaN層25を順に成長させることにより構成することができる。
 上記のようにして、III族窒化物複合基板1のIII族窒化物膜13上に、少なくとも1層のIII族窒化物層20を成長させることにより、積層III族窒化物複合基板2が得られる。
 (デバイス支持基板の貼り合わせ工程)
 図21(B)に示す、III族窒化物層20上にさらにデバイス支持基板40を貼り合わせる工程は、積層III族窒化物複合基板2のIII族窒化物層20上に、第1電極30およびパッド電極33を形成するとともに、デバイス支持基板40上にパッド電極43および接合金属膜44を形成し、パッド電極33に接合金属膜44を貼り合わせることにより行なう。かかる工程により、積層基板3が得られる。デバイス支持基板40には、Si基板、CuW基板などが用いられる。
 (支持基板の除去工程)
 図21(C)に示す、III族窒化物複合基板1から支持基板11を除去する工程は、積層基板3から、III族窒化物複合基板1の支持基板11を除去することにより行なう。これにより、支持基板11とIII族窒化物膜13との間に介在している接合膜12も同時に除去することができる。
 支持基板11および接合膜12の除去方法は、特に制限はなく、研削、エッチングなどが好適に用いられる。たとえば、硬度、強度、および耐摩耗性が低く削られ易い材料で形成される支持基板11は、製造コストを低減する観点から、研削および研磨の少なくともいずれかにより除去することができる。また、酸、アルカリなどの薬液に溶解する材料で形成される支持基板11は、製造コストが低い観点から薬液でエッチングして除去することができる。なお、支持基板11の除去が容易な観点から、支持基板11は、サファイア、SiC、III族窒化物(たとえばGaN)などの単結晶材料で形成されている支持基板に比べて、セラミックスなどの多結晶材料で形成されている支持基板の方が好ましい。
 (電極の形成工程)
 図21(D)に示す、積層基板3から支持基板11および接合膜12が除去されることにより露出したIII族窒化物膜13上に第2電極50を形成し、デバイス支持基板40上にデバイス支持基板電極45を形成する。
 以上のようにして、高い歩留で極めて良好な特性を有するIII族窒化物半導体デバイスを製造することができる。
 (実施例A)
 1.III族窒化物複合基板の作製
 図8(A)を参照して、支持基板11として直径75mmで厚さ400μmのムライト基板(基板全体に対してAl23が60モル%でSiO2が40モル%である)を準備した。支持基板11は、その熱伝導率が3W・m-1・K-1であり、そのヤング率が200GPaであった。支持基板11の両側の主面11m,11nを、研磨剤としてダイヤモンドスラリーを用いて、銅系定盤により粗研磨、スズ定盤により仕上げ前研磨、不織布研磨パッドにより仕上げ研磨を行なった。
 次に、支持基板11の仕上げ研磨後の主面11m上に、厚さ800nmのSiO2膜をPE-CVD(プラズマ援用-化学気相堆積)法により成長させ、窒素雰囲気中で800℃で1時間のアニールを行った後に、平均粒径40nmのコロイダルシリカ砥粒を含みpHが10のスラリーを用いたCMP(化学機械的研磨)により、主面12amが二乗平均平方根粗さで0.3nm以下に鏡面化された厚さ400nmの接合膜12aを形成した。次いで、CMPで用いたコロイダルシリカ砥粒を除去するために、KOH水溶液による無砥粒ポリシング洗浄、純水によるポリシング洗浄、および純水によるメガソニック洗浄(500kHz~5MHzのメガソニック帯域の周波数の超音波を用いた洗浄)を行なった。
 また、図8(B)を参照して、III族窒化物膜ドナー基板13Dとして直径75mmで厚さ8mmのGaN結晶体を準備し、III族窒化物膜ドナー基板13Dの貼り合わせ面を機械研磨およびCMPにより二乗平均平方根粗さを2nm以下に平坦化した後、その上に厚さ800nmのSiO2膜をPE-CVD法により成長させ、窒素雰囲気中で800℃で1時間のアニールを行った後に、平均粒径が40nmのコロイダルシルカ砥粒を含みpHが10のスラリーを用いたCMPにより、主面が二乗平均平方根粗さで0.3nm以下に鏡面化された厚さ500nmの接合膜12bを形成した。次いで、CMPで用いたコロイダルシリカ砥粒を除去するために、KOH水溶液による無砥粒ポリシング洗浄、純水によるポリシング洗浄、および500kHz~5MHzのメガソニック帯域の周波数の超音波を用いた純水による超音波洗浄を行なった。ここで、III族窒化物膜ドナー基板13Dは、下地基板としてGaAs基板を用いて、HVPE法により成長させたものであった。III族窒化物膜ドナー基板13Dは、その導電型がn型で、その転位密度が1×108cm-2で、そのキャリア濃度が1×1017cm-3であった。
 次に、図8(C)を参照して、接合膜12aの主面12amと接合膜12bの主面12bnとを貼り合わせることにより、支持基板11とIII族窒化物膜13とを接合膜12を介在させて貼り合わせた接合基板1Lを得た。貼り合わせ後に、接合基板1Lを窒素ガス雰囲気中で800℃まで昇温することによりアニールして接合強度を高めた。
 次に、図8(D)を参照して、接合基板1LのIII族窒化物膜ドナー基板13Dを接合膜12との貼り合わせ面から内部に40μmの距離の深さに位置する面でワイヤーソーにより切断することにより、支持基板11とIII族窒化物膜13であるGaN膜とが接合膜12を介在させて貼り合わされたIII族窒化物複合基板1を得た。ワイヤーは、ダイヤモンド砥粒を電着した線径120μmの固定砥粒ワイヤーを用いた。切断抵抗を低減して厚さの精度および平坦性を高めるために、切断方式としてはワイヤーを揺動させ、それに同期してIII族窒化物膜ドナー基板13Dを振動させる方式とした。ワイヤーソー切断の抵抗係数は、4200Nとした。切断後に、III族窒化物複合基板1のIII族窒化物膜13を機械研磨およびCMPを行なった。研磨剤としてダイヤモンドスラリーを用いて、銅系定盤により粗研磨、スズ定盤により仕上げ前研磨を実施した。さらに、pH11のコロイダルシリカスラリー(平均粒径80μmのコロイダルシリカ砥粒を含むpH11のスラリー)と不織布研磨パッドにより仕上げ研磨を行なった。III族窒化物膜の厚さの均一化のため、CMPでの複合基板の装置への取り付けには、予備的に真空チャック吸着で基板形状を矯正した後に、装置に吸着固定する方式とした。仕上げ前研磨は作用係数FEが4×10-172/s~1×10-162/sの条件で行ない、仕上げ研磨は作用係数FEが4×10-142/s~1×10-132/sの条件で行なった。仕上げ研磨後のIII族窒化物膜13の厚さは0.3μmであった。
 上記仕上げ研磨後のIII族窒化物複合基板1について、III族窒化物膜13の厚さの平均値mtに対する厚さの標準偏差stの比st/mt、およびIII族窒化物膜13の主面13mの所定の面方位の面に対するオフ角の絶対値の平均値moに対するオフ角の絶対値の標準偏差soの比so/moを表1にまとめた。
 ここで、III族窒化物膜13の厚さの平均値mtに対する厚さの標準偏差stの比st/mtおよびIII族窒化物膜13の主面13mの所定の面方位の面に対するオフ角の絶対値の平均値moに対するオフ角の絶対値の標準偏差soの比so/moは、図2に示すIII族窒化物膜13側の主面13m上において、1つの中心点PCと、その中心点PCから互いに直角な4方向上でかつ外縁から5mm内側にある4つの外側点POと、1つの中心点PCと4つの外側点POとの中間に位置する4つの点および4つの外側点POの互いの中間に位置する4つの点をあわせた8つの中間点PMとで構成される13点の測定点PにおけるIII族窒化物膜13の厚さおよびIII族窒化物膜13の主面13mの所定の面方位の面に対するオフ角の絶対値からそれぞれ算出した。
 2.III族窒化物半導体デバイスの作製
 図12を参照して、III族窒化物半導体デバイスとしてSBD(ショットキーバリアダイオード)を作製した。
 まず、図12(A)を参照して、III族窒化物複合基板1のIII族窒化物膜13側の主面13m上に、MOCVD法により、III族窒化物層20として、厚さ2μmのn+-GaN層28(キャリア濃度が2×1018cm-3)、厚さ7μmのn--GaN層29(キャリア濃度が5×1015cm-3)を順にエピタキシャル成長させることにより、積層III族窒化物複合基板2を得た。
 次に、図12(B)を参照して、積層III族窒化物複合基板2のIII族窒化物層20の最上層であるn--GaN層29上にEB(電子線)蒸着法により、厚さ4nmのNi層および厚さ200nmのAu層を順次形成し、アニールにより合金化することによりショットキー電極である第1電極30を形成した。第1電極30の径は200μmとした。第1電極30上に、EB蒸着法により、厚さ200nmのTi層、厚さ100nmのPt層、および厚さ1000nmのAu層を順次形成することによりパッド電極33を形成した。
 また、デバイス支持基板40としてMo基板を準備し、デバイス支持基板40の一方の主面上に、接合金属膜44としてAuSnはんだ膜を形成した。デバイス支持基板40の他方の主面上に、EB蒸着法により、厚さ200nmのTi層、厚さ100nmのPt層、および厚さ1000nmのAu層を順次形成することによりデバイス支持基板電極46を形成した。
 次に、パッド電極33に接合金属膜44を貼り合わせることにより、積層基板3を得た。
 次に、図12(C)を参照して、積層基板3から支持基板11および接合膜12をエッチングにより除去した。エッチングにはフッ化水素酸を用いた。
 次に、図12(D)を参照して、積層基板3から支持基板11および接合膜12が除去されて露出したIII族窒化物膜13上に、EB蒸着法により、厚さ20nmのTi層、厚さ200nmのAl層、および厚さ300nmのAu層を順次形成し、アニールすることにより、オーミック電極である第2電極50を形成した。こうして、III族窒化物半導体デバイス4としてSBDが得られた。
 得られたIII族窒化物半導体デバイス4であるSBDの歩留率は、以下のようにして算出した。すなわち、SBDについて逆方向の電流―電圧特性を測定し、そのSBDの耐圧が250V以上の基準に適合したものを良品、適合しなかったものを不良品とし、良品を表品と不良品との合計で除したものの百分率を歩留率とした。III族窒化物半導体デバイスの歩留率を表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
 表1を参照して、支持基板と、厚さ0.3μm(この値は50nm以上10μm未満)のIII族窒化物膜と、を有する直径75mm(この値は75mm以上)のIII族窒化物複合基板であって、III族窒化物膜の厚さの平均値mtに対する厚さの標準偏差stの比st/mtが0.01以上0.5以下であり、III族窒化物膜の主面の所定の面方位の面に対するオフ角の絶対値の平均値moに対するオフ角の絶対値の標準偏差soの比so/moが0.005以上0.6以下であるIII族窒化物複合基板を用いて作製されたIII族窒化物半導体デバイスの歩留が高かった。
 (実施例B)
 図8、図10および図12を参照して、直径を75mm~150mmの間で変動させ、例B2~例B10については、接合基板1LのIII族窒化物膜ドナー基板13Dを接合膜12との貼り合わせ面から内部に50μmの距離の深さに位置する面でワイヤーソーにより切断し、研磨およびICP-RIE(誘導結合プラズマ-反応性イオンエッチング)によりドライエッチングしたこと、例B1、例B11および例12については、III族窒化物膜ドナー基板13Dに1×1018cm-2のドーズ量で水素イオンを注入して貼り合わせた後、800℃まで加熱することにより、III族窒化物膜ドナー基板13Dをイオン注入領域13iで分離し、さらにICP-RIEによりドライエッチングしたこと、III族窒化物膜13側の主面13mの仕上げ研磨の作用係数FEを5.0×10-142/sとしたこと、仕上げ研磨後のIII族窒化物膜13の厚さを0.03μm~9.5μmの間で変動させた1III族窒化物複合基板1を作製したこと以外は、実施例Aと同様にして、III族窒化物複合基板1およびIII族窒化物半導体デバイス4を作製した。
 実施例Aと同様にして、III族窒化物複合基板1について、III族窒化物膜13の厚さの平均値mtに対する厚さの標準偏差stの比st/mt、およびIII族窒化物膜13の主面13mの所定の面方位の面に対するオフ角の絶対値の平均値moに対するオフ角の絶対値の標準偏差soの比so/moを算出して、表2にまとめた。また、実施例Aと同様にして、III族窒化物半導体デバイス4の歩留率を算出して、表2にまとめた。
Figure JPOXMLDOC01-appb-T000002
 表2を参照して、厚さ0.05μm~9.5μm(すなわち50nm以上10μm未満)のIII族窒化物膜を有する直径75mm~150mm(すなわち75mm以上)のIII族窒化物複合基板であって、III族窒化物膜13の厚さの平均値mtに対する厚さの標準偏差stの比st/mtが0.3(この値は0.01以上0.5以下)であり、III族窒化物膜の主面の所定の面方位の面に対するオフ角の絶対値の平均値moに対するオフ角の絶対値の標準偏差soの比so/moが0.45(この値は0.005以上0.6以下)であるIII族窒化物複合基板を用いて作製されたIII族窒化物半導体デバイスの歩留が高かった。
 (実施例C)
 半導体デバイス用基板として、III族窒化物自立基板、および、直径75mm~150mmで変動させたこと、III族窒化物膜13側の主面13mの仕上げ研磨の作用係数FEを5.5×10-142/sとしたこと以外は実施例Aと同様にして作製されたIII族窒化物複合基板を準備した。III族窒化物自立基板は、所定の直径を有するGaN結晶体をワイヤーソーで切断し研磨することにより表3および表4に示す直径および厚さの基板とした。
 上記のIII族窒化物複合基板およびIII族窒化物自立基板を用いたこと以外は、実施例Aと同様にして、III族窒化物半導体デバイスを作製した。例C1~例C15ではIII族窒化物複合基板を用いてIII族窒化物半導体デバイスを作製し、例C16~例C18ではIII族窒化物自立基板を用いてIII族窒化物半導体デバイスを作製した。
 得られたIII族窒化物複合基板について、反りWIII-N、比WIII-N/D、III族窒化物膜13の厚さの平均値mtに対する厚さの標準偏差stの比st/mt、およびIII族窒化物膜13の主面13mの所定の面方位の面に対するオフ角の絶対値の平均値moに対するオフ角の絶対値の標準偏差soの比so/moを算出して、表3および表4にまとめた。また、III族窒化物自立基板について、反りWIII-N、比WIII-N/D、そのIII族窒化物自立基板の厚さの平均値mtに対する厚さの標準偏差stの比st/mt、およびIII族窒化物自立基板の表面(おもてめん)側の主面13mの所定の面方位の面に対するオフ角の絶対値の平均値moに対するオフ角の絶対値の標準偏差soの比so/moを算出して、表4にまとめた。さらに、実施例Aと同様にして、III族窒化物半導体デバイス4の歩留率を算出して、表3および表4にまとめた。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3および表4を参照して、III族窒化物半導体デバイス作製の際の基板としてIII族窒化物自立基板を用いた場合は、直径が大きく厚さが小さいと反りが大きくなり、割れが発生した。これに対して、III族窒化物半導体デバイス作製の際の基板としてIII族窒化物複合基板を用いた場合は、直径が大きくIII族窒化物膜の厚さが小さくても、割れは発生せず、高い歩留でIII族窒化物半導体デバイスが得られた。
 (実施例D)
 図8および図12を参照して、支持基板11として直径100mmのAl23-SiO2複合酸化物基板(基板全体に対してAl23が78質量%でSiO2が22質量%である)を用いたこと、III族窒化物膜ドナー基板13DとしてO(酸素)原子およびSi(ケイ素)原子がドーピングされ転位集中領域がなく転位密度が5×106cm-2で均一でありキャリア濃度が2×1018cm-3の導電性が高い直径100mmのGaN基板を用いたこと、III族窒化物膜ドナー基板13Dの切断を放電ワイヤー加工で実施したこと、III族窒化物膜13側の主面13mの仕上げ研磨の作用係数FEを6.2×10-142/sとしたこと、仕上げ研磨後のIII族窒化物膜13の厚さを0.15μmとしたこと以外は、実施例Aと同様にして、III族窒化物複合基板1およびIII族窒化物半導体デバイス4を作製した。支持基板11は、熱伝導率が4W・m-1・K-1で、ヤング率が220GPaであった。
 実施例Aと同様にして、仕上げ研磨後のIII族窒化物複合基板1について、III族窒化物膜13の厚さの平均値mtに対する厚さの標準偏差stの比st/mt、およびIII族窒化物膜13の主面13mの所定の面方位の面に対するオフ角の絶対値の平均値moに対するオフ角の絶対値の標準偏差soの比so/moを算出して、表5にまとめた。
 また、仕上げ研磨後のIII族窒化物複合基板1について、III族窒化物膜13側の主面13mの二乗平均平方根粗さの平均値mIII-N、およびIII族窒化物膜13側の主面13mの二乗平均平方根粗さの平均値mIII-Nに対する二乗平均平方根粗さの標準偏差sIII-Nの比sIII-N/mIII-Nを算出して、表5にまとめた。ここで、二乗平均平方根粗さの平均値mIII-Nおよび二乗平均平方根粗さの平均値mIII-Nに対する二乗平均平方根粗さの標準偏差sIII-Nの比sIII-N/mIII-Nは、図2に示すIII族窒化物膜13側の主面13m上において、1つの中心点PCと、その中心点PCから互いに直角な4方向上でかつ外縁から5mm内側にある4つの外側点POと、1つの中心点PCと4つの外側点POとの中間に位置する4つの点および4つの外側点POの互いの中間に位置する4つの点をあわせた8つの中間点PMとで構成される13点の測定点PにおけるIII族窒化物膜13側の主面13mの二乗平均平方根粗さから算出した。
 さらに、実施例Aと同様にして、III族窒化物半導体デバイス4の歩留率を算出して、表5にまとめた。
Figure JPOXMLDOC01-appb-T000005
 表5を参照して、厚さ0.15μm(この値は50nm以上10μm未満)のIII族窒化物膜を有する直径100mm(この値は75mm以上)のIII族窒化物複合基板であって、III族窒化物膜13の厚さの平均値mtに対する厚さの標準偏差stの比st/mtが0.15(この値は0.01以上0.5以下)であり、II族窒化物膜の主面の所定の面方位の面に対するオフ角の絶対値の平均値moに対するオフ角の絶対値の標準偏差soの比so/moが0.3(この値は0.005以上0.6以下)であり、III族窒化物膜側の主面の二乗平均平方根粗さの平均値mIII-Nが0.4nm以上10nm以下であり、III族窒化物膜側の主面の二乗平均平方根粗さの平均値mIII-Nに対する標準偏差sIII-Nの比sIII-N/mIII-Nが0.008以上0.5以下であるIII族窒化物複合基板を用いて作製されたIII族窒化物半導体デバイスの歩留が高かった。
 (実施例E)
 図8および図12を参照して、支持基板11として、Al23とSiO2の化学組成比が異なる2種類のムライト基板とAl23とSiO2の化学組成比が異なる6種類のAl23-SiO2複合酸化物基板を用いたこと、III族窒化物膜13側の主面13mの仕上げ研磨の作用係数FEを4.5×10-142/sとしたこと、仕上げ研磨後における支持基板11の厚さtSに対するIII族窒化物膜13の厚さtIII-Nの比tIII-N/tSを5×10-5~3×10-2の間で変動させたこと、直径を75mm~150mmの間で変動させたこと以外は、実施例Aと同様にして、III族窒化物複合基板1およびIII族窒化物半導体デバイス4を作製した。
 実施例Aと同様にして、III族窒化物複合基板1について、III族窒化物膜13の厚さの平均値mtに対する厚さの標準偏差stの比st/mt、およびIII族窒化物膜13の主面13mの所定の面方位の面に対するオフ角の絶対値の平均値moに対するオフ角の絶対値の標準偏差soの比so/moを算出して、表6および表7にまとめた。さらに、支持基板11の熱膨張係数αSおよびIII族窒化物膜13の熱膨張係数αIII-Nを熱機械分析装置により測定し、支持基板の熱膨張係数αSに対するIII族窒化物膜の熱膨張係数αIII-Nの比αIII-N/αSを算出して、結果を表6および表7にまとめた。さらに、支持基板11の厚さtSおよびIII族窒化物膜13の厚さtIII-Nを、それぞれデジタルインジケーターおよび反射率分光法により測定し、支持基板11の厚さtSに対するIII族窒化物膜13の厚さtIII-Nの比tIII-N/tSを算出して、結果を表6および表7にまとめた。さらに、実施例Aと同様にして、III族窒化物半導体デバイス4の歩留率を算出して、表6および表7にまとめた。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表6および表7を参照して、III族窒化物複合基板であれば、支持基板11として化学組成がそれぞれ異なるムライト基板、化学組成がそれぞれ異なるAl23-SiO2複合酸化物基板のいずれかを有するIII族窒化物複合基板1を用いても、そのIII族窒化物膜の厚さが50nm以上10μm未満とし、直径が75mm~150mmであり、III族窒化物膜13の厚さの平均値mtに対する厚さの標準偏差stの比st/mtが0.4(この値は0.01以上0.5以下)であり、II族窒化物膜の主面の所定の面方位の面に対するオフ角の絶対値の平均値moに対するオフ角の絶対値の標準偏差soの比so/moが0.5(この値は0.005以上0.6以下)であるIII族窒化物複合基板1を用いて作製されたIII族窒化物半導体デバイスの歩留が高かった。また、支持基板11の熱膨張係数αSに対するIII族窒化物膜13の熱膨張係数αIII-Nの比αIII-N/αSが0.75以上1.25以下である場合、支持基板11の厚さtSに対するIII族窒化物膜の厚さtIII-Nの比tIII-N/tSが1×10-4以上2×10-2以下である場合に、作製されたIII族窒化物半導体デバイスの歩留が高かった。
 (実施例F)
 図8および図12を参照して、支持基板11としてAl23-SiO2複合酸化物基板(基板全体に対してAl23が78質量%でSiO2が22質量%であるを用いたこと、III族窒化物膜13側の主面13mの仕上げ研磨の作用係数FEを8.2×10-142/sとしたこと、直径を75mm~150mmの間で変動させたIII族窒化物複合基板1を作製したこと、得られたIII族窒化物複合基板1をさらに洗浄したこと以外は、実施例Aと同様にして、III族窒化物複合基板1およびIII族窒化物半導体デバイス4を作製した。ここで、支持基板11は、熱伝導率が4W・m-1・K-1で、ヤング率が220GPaであった。また、洗浄方法は、界面活性剤と純水とを用いたスクラブ洗浄、純水を用いた二流体洗浄、および純水を用いたメガソニック洗浄を組み合わせることにより実施した。
 実施例Aと同様にして、III族窒化物複合基板1について、支持基板11側の主面11nの二乗平均平方根粗さの平均値mSを算出して、表8にまとめた。また、III族窒化物複合基板1について、III族窒化物膜13側の主面13mにおける不純物金属原子の濃度を、TXRF(全反射蛍光X分析)法により測定して、表8にまとめた。ここで、TXRF法による測定は、W(タングステン)線源を用いて、0.05°の入射角で行なった。さらに、実施例Aと同様にして、III族窒化物半導体デバイス4の歩留率を算出して、表8にまとめた。
Figure JPOXMLDOC01-appb-T000008
 表8を参照して、厚さ0.3μm(この値は50nm以上10μm未満)のIII族窒化物膜を有する直径75mm~150mmであり、III族窒化物膜13の厚さの平均値mtに対する厚さの標準偏差stの比st/mtが0.08(この値は0.01以上0.5以下)であり、II族窒化物膜の主面の所定の面方位の面に対するオフ角の絶対値の平均値moに対するオフ角の絶対値の標準偏差soの比so/moが0.22(この値は0.005以上0.6以下)であり、III族窒化物膜側の主面における不純物金属原子の濃度が1×1013原子/cm2以下であるIII族窒化物複合基板を用いて作製されたIII族窒化物半導体デバイスの歩留が高かった。
 (実施例G)
 図11および図12を参照して、支持基板11として熱伝導率が2W・m-1・K-1~300W・m-1・K-1の間にある直径75mmの基板を用いたこと、直径75mmのIII族窒化物膜ドナー基板13Dの貼り合わせ主面と反対側の主面13mから研削および研磨を行なってIII族窒化物膜13の厚さを0.3μmとしたこと、III族窒化物膜13側の主面13mの仕上げ研磨の作用係数FEを8.8×10-142/sとしたこと以外は、実施例Aと同様にして、III族窒化物複合基板1およびIII族窒化物半導体デバイス4を作製した。ここで、支持基板11の熱伝導率は、酸化物原料の配合比率、および焼成条件を調整することにより行った。また、III族窒化物膜ドナー基板13Dの研削には、平均砥粒が25μm~35μmのダイヤモンド砥粒を含むビトリファイド砥粒を用いた。
 実施例Aと同様にして、III族窒化物複合基板1について、III族窒化物複合基板1について、III族窒化物膜13の厚さの平均値mtに対する厚さの標準偏差stの比st/mt、およびIII族窒化物膜13の主面13mの所定の面方位の面に対するオフ角の絶対値の平均値moに対するオフ角の絶対値の標準偏差soの比so/moを算出して、表9にまとめた。また、III族窒化物複合基板1の支持基板の熱伝導率をレーザフラッシュ法により測定して表9にまとめた。さらに、実施例Aと同様にして、III族窒化物半導体デバイス4の歩留率を算出して、表9にまとめた。
Figure JPOXMLDOC01-appb-T000009
 表9を参照して、厚さ0.3μm(この値は50nm以上10μm未満)のIII族窒化物膜を有する直径75mm(この値は75mm以上)のIII族窒化物複合基板であり、III族窒化物膜13の厚さの平均値mtに対する厚さの標準偏差stの比st/mtが0.12(この値は0.01以上0.5以下)であり、II族窒化物膜の主面の所定の面方位の面に対するオフ角の絶対値の平均値moに対するオフ角の絶対値の標準偏差soの比so/moが0.16(この値は0.005以上0.6以下)であり、熱伝導率が3W・m-1・K-1以上280W・m-1・K-1以下である支持基板を有するIII族窒化物複合基板を用いて作製されたIII族窒化物半導体デバイスの歩留が高かった。
 参考発明Iにかかる参考例I-A~参考例I-Gについて以下に示す。
 (参考例I-A)
 1.III族窒化物複合基板の作製
 図8(A)を参照して、支持基板11として直径75mmで厚さ400μmのムライト基板(基板全体に対してAl23が60モル%でSiO2が40モル%である)を準備した。支持基板11は、その熱伝導率が3W・m-1・K-1であり、そのヤング率が200GPaであった。支持基板11の両側の主面11m,11nを、研磨剤としてダイヤモンドスラリーを用いて、銅系定盤により粗研磨、スズ定盤により中間研磨、不織布研磨パッドにより仕上げ研磨を行なった。仕上げ研磨においては、作用係数FEが4×10-172/s以上1×10-162/s以下の条件で研磨した。
 次に、支持基板11の仕上げ研磨後の主面11m上に、厚さ800nmのSiO2膜をPE-CVD(プラズマ援用-化学気相堆積)法により成長させ、窒素雰囲気中で800℃で1時間のアニールを行った後に、平均粒径40nmのコロイダルシリカ砥粒を含みpHが10のスラリーを用いたCMP(化学機械的研磨)により、主面12amが二乗平均平方根粗さで0.3nm以下に鏡面化された厚さ400nmの接合膜12aを形成した。次いで、CMPで用いたコロイダルシリカ砥粒を除去するために、KOH水溶液による無砥粒ポリシング洗浄、純水によるポリシング洗浄、および純水によるメガソニック洗浄(500kHz~5MHzのメガソニック帯域の周波数の超音波を用いた洗浄)を行なった。
 また、図8(B)を参照して、III族窒化物膜ドナー基板13Dとして直径75mmで厚さ8mmのGaN結晶体を準備し、III族窒化物膜ドナー基板13Dの貼り合わせ面を機械研磨およびCMPにより二乗平均平方根粗さを2nm以下に平坦化した後、その上に厚さ800nmのSiO2膜をPE-CVD法により成長させ、窒素雰囲気中で800℃で1時間のアニールを行った後に、平均粒径が40nmのコロイダルシルカ砥粒を含みpHが10のスラリーを用いたCMPにより、主面12bnが二乗平均平方根粗さで0.3nm以下に鏡面化された厚さ500nmの接合膜12bを形成した。次いで、CMPで用いたコロイダルシリカ砥粒を除去するために、KOH水溶液による無砥粒ポリシング洗浄、純水によるポリシング洗浄、および純水によるメガソニック洗浄(500kHz~5MHzのメガソニック帯域の周波数の超音波を用いた洗浄)を行なった。ここで、III族窒化物膜ドナー基板13Dは、下地基板としてGaAs基板を用いて、HVPE法により成長させたものであった。III族窒化物膜ドナー基板13Dは、その導電型がn型で、その転位密度が1×108cm-2で、そのキャリア濃度が1×1017cm-3であった。
 次に、図8(C)を参照して、接合膜12aの主面12amと接合膜12bの主面12bnとを貼り合わせることにより、支持基板11とIII族窒化物膜13とを接合膜12を介在させて貼り合わせた接合基板1Lを得た。貼り合わせ後に、接合基板1Lを窒素ガス雰囲気中で800℃まで昇温することによりアニールして接合強度を高めた。
 次に、図8(D)を参照して、接合基板1LのIII族窒化物膜ドナー基板13Dを接合膜12との貼り合わせ面から内部に40μmの距離の深さに位置する面でワイヤーソーにより切断することにより、支持基板11とIII族窒化物膜13であるGaN膜とが接合膜12を介在させて貼り合わされたIII族窒化物複合基板1を得た。ワイヤーは、ダイヤモンド砥粒を電着した線径180μmの固定砥粒ワイヤーを用いた。切断抵抗を低減して厚さの精度および平坦性を高めるために、切断方式としてはワイヤーを揺動させ、それに同期してIII族窒化物膜ドナー基板13Dを振動させる方式とした。ワイヤーソー切断の抵抗係数は、4200Nとした。切断後に、III族窒化物複合基板1のIII族窒化物膜13を機械研磨およびCMPを行なった。研磨剤としてダイヤモンドスラリーを用いて、銅系定盤により粗研磨、スズ定盤により中間研磨を実施した。さらに、pH11のコロイダルシリカスラリー(平均粒径60nmのコロイダルシリカ砥粒を含みpH11のスラリー)を用いて不織布研磨パッドにより仕上げ研磨を行なった。III族窒化物膜13の厚さの均一化のため、CMPでの複合基板の装置への取り付けには、予備的に真空チャック吸着で基板形状を矯正した後に、装置に吸着固定する方式とした。仕上げ研磨においては、作用係数FEが7×10-142/sの条件で研磨した。仕上げ研磨後のIII族窒化物膜13の厚さは0.6μmであった。
 上記仕上げ研磨後のIII族窒化物複合基板1について、支持基板11側の主面11nの二乗平均平方根粗さの平均値mS、支持基板11側の主面11nの二乗平均平方根粗さの平均値mSに対する二乗平均平方根粗さの標準偏差sSの比sS/mSを表10にまとめた。
 ここで、二乗平均平方根粗さの平均値mSおよび二乗平均平方根粗さの平均値mSに対する二乗平均平方根粗さの標準偏差sSの比sS/mSは、図2に示す支持基板11側の主面11n上において、1つの中心点PCと、その中心点PCから互いに直角な4方向上でかつ外縁から5mm内側にある4つの外側点POと、1つの中心点PCと4つの外側点POとの中間に位置する4つの点および4つの外側点POの互いの中間に位置する4つの点をあわせた8つの中間点PMとで構成される13点の測定点Pにおける支持基板11側の主面11nの二乗平均平方根粗さから算出した。
 2.III族窒化物半導体デバイスの作製
 図12を参照して、III族窒化物半導体デバイスとしてSBD(ショットキーバリアダイオード)を作製した。
 まず、図12(A)を参照して、III族窒化物複合基板1のIII族窒化物膜13側の主面13m上に、MOCVD法により、III族窒化物層20として、厚さ2μmのn+-GaN層28(キャリア濃度が2×1018cm-3)、厚さ7μmのn--GaN層29(キャリア濃度が5×1015cm-3)を順にエピタキシャル成長させることにより、積層III族窒化物複合基板2を得た。
 次に、図12(B)を参照して、積層III族窒化物複合基板2のIII族窒化物層20の最上層であるn--GaN層29上に、EB(電子線)蒸着法により、厚さ4nmのNi層および厚さ200nmのAu層を順次形成し、アニールにより合金化することによりショットキー電極である第1電極30を形成した。第1電極30の径は200μmとした。第1電極30上に、EB蒸着法により、厚さ200nmのTi層、厚さ100nmのPt層、および厚さ1000nmのAu層を順次形成することによりパッド電極33を形成した。
 また、デバイス支持基板40としてMo基板を準備し、デバイス支持基板40の一方の主面上に、接合金属膜44としてAuSnはんだ膜を形成した。デバイス支持基板40の他方の主面上に、EB蒸着法により、厚さ200nmのTi層、厚さ100nmのPt層、および厚さ1000nmのAu層を順次形成することによりデバイス支持基板電極46を形成した。
 次に、パッド電極33に接合金属膜44を貼り合わせることにより、積層基板3を得た。
 次に、図12(C)を参照して、積層基板3から支持基板11および接合膜12をエッチングにより除去した。エッチングにはフッ化水素酸を用いた。
 次に、図12(D)を参照して、積層基板3から支持基板11および接合膜12が除去されて露出したIII族窒化物膜13上に、EB蒸着法により、厚さ20nmのTi層、厚さ200nmのAl層、および厚さ300nmのAu層を順次形成し、アニールすることにより、オーミック電極である第2電極50を形成した。こうして、III族窒化物半導体デバイス4としてSBDが得られた。
 得られたIII族窒化物半導体デバイス4であるSBDの歩留率は、以下のようにして算出した。すなわち、SBDについて逆方向の電流―電圧特性を測定し、そのSBDの耐圧が250V以上の基準に適合したものを良品、適合しなかったものを不良品とし、良品を表品と不良品との合計で除したものの百分率を歩留率とした。III族窒化物半導体デバイスの歩留率を表10にまとめた。
Figure JPOXMLDOC01-appb-T000010
 表10を参照して、支持基板と、厚さ0.6μm(この値は50nm以上10μm未満)のIII族窒化物膜と、を有する直径75mm(この値は75mm以上)のIII族窒化物複合基板であって、支持基板側の主面の二乗平均平方根粗さの平均値mSが0.3nm以上20nm以下であり、前記支持基板側の主面の二乗平均平方根粗さの平均値mSに対する二乗平均平方根粗さの標準偏差sSの比sS/mSが0.005以上0.4以下であるIII族窒化物複合基板を用いて作製されたIII族窒化物半導体デバイスの歩留が高かった。
 (参考例I-B)
 図8、図10および図12を参照して、直径を75mm~150mmの間で変動させ、例B2~例B10、例B12および例B13については、接合基板1LのIII族窒化物膜ドナー基板13Dを接合膜12との貼り合わせ面から内部に50μmの距離の深さに位置する面でワイヤーソーにより切断し、研磨およびICP-RIE(誘導結合プラズマ-反応性イオンエッチング)によりドライエッチングしたこと、例B1、例B11および例B14については、III族窒化物膜ドナー基板13Dに1×1018cm-2のドーズ量で水素イオンを注入して貼り合わせた後、800℃まで加熱することにより、III族窒化物膜ドナー基板13Dをイオン注入領域13iで分離し、さらにICP-RIEによりドライエッチングしたこと、支持基板11側の主面11nの仕上げ研磨においては作用係数FEが9.0×10-172/sの条件で研磨したこと、仕上げ研磨後のIII族窒化物膜13の厚さを0.03μm~9.5μmの間で変動させた1III族窒化物複合基板1を作製したこと以外は、参考例I-Aと同様にして、III族窒化物複合基板1およびIII族窒化物半導体デバイス4を作製した。支持基板11は、熱伝導率が3W・m-1・K-1で、ヤング率が200GPaであった。
 参考例I-Aと同様にして、III族窒化物複合基板1について、支持基板11側の主面11nの二乗平均平方根粗さの平均値mS、支持基板11側の主面11nの二乗平均平方根粗さの平均値mSに対する二乗平均平方根粗さの標準偏差sSの比sS/mSを算出して、表11にまとめた。また、参考例I-Aと同様にして、III族窒化物半導体デバイス4の歩留率を算出して、表11にまとめた。
Figure JPOXMLDOC01-appb-T000011
 表11を参照して、厚さ0.05μm~9.5μmのIII族窒化物膜を有する直径75mm~150mmのIII族窒化物複合基板であって、支持基板側の主面の二乗平均平方根粗さの平均値mSが1.2nm(この値は0.3nm以上20nm以下)であり、支持基板側の主面の二乗平均平方根粗さの平均値mSに対する二乗平均平方根粗さの標準偏差sSの比sS/mSが0.06(この値は0.005以上0.4以下)であるIII族窒化物複合基板を用いて作製されたIII族窒化物半導体デバイスの歩留が高かった。
 (参考例I-C)
 半導体デバイス用基板として、直径を75mm~150mm間で変動させたIII族窒化物自立基板、および直径を75mm~150mm間で変動させたこと以外は参考例I-Aと同様にして作製されたIII族窒化物複合基板を準備した。III族窒化物自立基板は、所定の直径を有するGaN結晶体をワイヤーソーで切断し研磨することにより表13に示す直径および厚さの基板とした。
 上記のIII族窒化物複合基板およびIII族窒化物自立基板を用いたこと以外は、参考例I-Aと同様にして、III族窒化物半導体デバイスを作製した。例C1~例C15ではIII族窒化物複合基板を用いてIII族窒化物半導体デバイスを作製し、例C16~例C18ではIII族窒化物自立基板を用いてIII族窒化物半導体デバイスを作製した。
 得られたIII族窒化物複合基板について、反りWS、比WS/D、支持基板11側の主面11nの二乗平均平方根粗さの平均値mS、支持基板11側の主面11nの二乗平均平方根粗さの平均値mSに対する二乗平均平方根粗さの標準偏差sSの比sS/mSを算出して、表12および表13にまとめた。また、III族窒化物自立基板について、反りWS、比WS/D、その裏面側の主面の二乗平均平方根粗さの平均値mS、裏面側の主面11nの二乗平均平方根粗さの平均値mSに対する二乗平均平方根粗さの標準偏差sSの比sS/mSを算出して、表12および表13にまとめた。さらに、参考例I-Aと同様にして、III族窒化物半導体デバイス4の歩留率を算出して、表12および表13にまとめた。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 表12および表13を参照して、III族窒化物半導体デバイス作製の際の基板としてIII族窒化物自立基板を用いた場合は、直径が大きく厚さが小さいと反りが大きくなり、割れが発生した。これに対して、III族窒化物半導体デバイス作製の際の基板としてIII族窒化物複合基板を用いた場合は、直径が大きくIII族窒化物膜の厚さが小さくても、割れは発生せず、高い歩留でIII族窒化物半導体デバイスが得られた。
 (参考例I-D)
 図8および図12を参照して、支持基板11として直径が125mmのAl23-SiO2複合酸化物基板(基板全体に対してAl23が82質量%でSiO2が18質量%である)を用いたこと、III族窒化物膜ドナー基板13DとしてIII族窒化物膜ドナー基板13DとしてO(酸素)原子およびSi(ケイ素)原子がドーピングされ転位集中領域がなく転位密度が5×106cm-2で均一でありキャリア濃度が2×1018cm-3の導電性が高い直径が125mmのGaN基板を用いたこと、支持基板11側の主面11nの仕上げ研磨においては作用係数FEが6.5×10-172/sの条件で研磨したこと、III族窒化物膜ドナー基板13Dの切断を放電ワイヤー加工で実施したこと、III族窒化物膜13側の主面13mの仕上げ研磨の際に粒径が20nm~400nmのコロイダルシリカを含むスラリーを用いて作用係数FEを4×10-142/s以上1×10-132/s以下としたこと、III族窒化物膜の厚さを150nmとしたこと以外は、参考例I-Aと同様にして、III族窒化物複合基板1およびIII族窒化物半導体デバイス4を作製した。支持基板11は、熱伝導率が5W・m-1・K-1で、ヤング率が230GPaであった。
 参考例I-Aと同様にして、仕上げ研磨後のIII族窒化物複合基板1について、支持基板11側の主面11nの二乗平均平方根粗さの平均値mS、支持基板11側の主面11nの二乗平均平方根粗さの平均値mSに対する二乗平均平方根粗さの標準偏差sSの比sS/mSを算出して、表14にまとめた。
 また、仕上げ研磨後のIII族窒化物複合基板1について、III族窒化物膜13側の主面13mの二乗平均平方根粗さの平均値mIII-N、III族窒化物膜13側の主面13mの二乗平均平方根粗さの平均値mIII-Nに対する二乗平均平方根粗さの標準偏差sIII-Nの比sIII-N/mIII-Nを表14にまとめた。ここで、二乗平均平方根粗さの平均値mIII-Nおよび二乗平均平方根粗さの平均値mIII-Nに対する二乗平均平方根粗さの標準偏差sIII-Nの比sIII-N/mIII-Nは、図2に示すIII族窒化物膜13側の主面13m上において、1つの中心点PCと、その中心点PCから互いに直角な4方向上でかつ外縁から5mm内側にある4つの外側点POと、1つの中心点PCと4つの外側点POとの中間に位置する4つの点および4つの外側点の互いの中間に位置する4つの点をあわせた8つの中間点PMとで構成される13点の測定点PにおけるIII族窒化物膜13側の主面13mの二乗平均平方根粗さから算出した。
 さらに、参考例I-Aと同様にして、III族窒化物半導体デバイス4の歩留率を算出して、表14にまとめた。
Figure JPOXMLDOC01-appb-T000014
 表14を参照して、厚さ150nm(この値は50nm以上10μm未満)のIII族窒化物膜を有する直径125mm(この値は75mm以上)のIII族窒化物複合基板であって、支持基板側の主面の二乗平均平方根粗さの平均値mSが5nm(この値は0.3nm以上20nm以下)であり、支持基板側の主面の二乗平均平方根粗さの平均値mSに対する二乗平均平方根粗さの標準偏差sSの比sS/mSが0.15(この値は0.005以上0.4以下)であり、III族窒化物膜側の主面の二乗平均平方根粗さの平均値mIII-Nが0.4nm以上10nm以下であり、III族窒化物膜側の主面の二乗平均平方根粗さの平均値mIII-Nに対する標準偏差sIII-Nの比sIII-N/mIII-Nが0.008以上0.5以下であるIII族窒化物複合基板を用いて作製されたIII族窒化物半導体デバイスの歩留が高かった。
 (参考例I-E)
 図8および図12を参照して、支持基板11として、Al23とSiO2の化学組成比が異なる2種類のムライト基板とAl23とSiO2の化学組成比が異なる6種類のAl23-SiO2複合酸化物基板を用いたこと、支持基板11側の主面11nの仕上げ研磨においては作用係数FEが7.2×10-172/sの条件で研磨したこと、仕上げ研磨後のIII族窒化物膜13の厚さを変動させたこと、直径を75mm~150mmの間で変動させたこと以外は、参考例I-Aと同様にして、III族窒化物複合基板1およびIII族窒化物半導体デバイス4を作製した。
 参考例I-Aと同様にして、III族窒化物複合基板1について、支持基板11側の主面11nの二乗平均平方根粗さの平均値mS、支持基板11側の主面11nの二乗平均平方根粗さの平均値mSに対する二乗平均平方根粗さの標準偏差sSの比sS/mSを算出して、表15および表16にまとめた。さらに、支持基板11の熱膨張係数αSおよびIII族窒化物膜13の熱膨張係数αIII-Nを熱機械分析装置により測定し、支持基板の熱膨張係数αSに対するIII族窒化物膜の熱膨張係数αIII-Nの比αIII-N/αSを算出して、結果を表15および表16にまとめた。さらに、支持基板11の厚さtSおよびIII族窒化物膜13の厚さtIII-Nを、それぞれデジタルインジケーターおよび反射率分光法により測定し、支持基板11の厚さtSに対するIII族窒化物膜13の厚さtIII-Nの比tIII-N/tSを算出して、結果を表15および表16にまとめた。さらに、参考例I-Aと同様にして、III族窒化物半導体デバイス4の歩留率を算出して、表15および表16にまとめた。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 表15および表16を参照して、III族窒化物複合基板であれば、支持基板11として化学組成がそれぞれ異なるムライト基板、化学組成がそれぞれ異なるAl23-SiO2複合酸化物基板のいずれかを有するIII族窒化物複合基板1を用いても、そのIII族窒化物膜の厚さが50nm以上10μm未満とし、直径が75mm~150mmであり、支持基板側の主面の二乗平均平方根粗さの平均値mSが4nm(この値は0.3nm以上20nm以下)であり、支持基板側の主面の二乗平均平方根粗さの平均値mSに対する二乗平均平方根粗さの標準偏差sSの比sS/mSが0.12(この値は0.005以上0.4以下)であるIII族窒化物複合基板1を用いて作製されたIII族窒化物半導体デバイスの歩留が高かった。また、支持基板11の熱膨張係数αSに対するIII族窒化物膜13の熱膨張係数αIII-Nの比αIII-N/αSが0.75以上1.25以下である場合、支持基板11の厚さtSに対するIII族窒化物膜の厚さtIII-Nの比tIII-N/tSが1×10-4以上2×10-2以下である場合に、作製されたIII族窒化物半導体デバイスの歩留が高かった。
 (参考例I-F)
 図8および図12を参照して、支持基板11としてAl23-SiO2複合酸化物基板(基板全体に対してAl23が80質量%でSiO2が20質量%である)を用いたこと、研削および作用係数FEが8.9×10-172/sの仕上げ研磨により支持基板11の厚さを500μmとしたこと、III族窒化物膜13の厚さを0.4μmとしたこと、直径を75mm~150mmの間で変動させた1III族窒化物複合基板1を作製したこと、得られたIII族窒化物複合基板1をさらに洗浄したこと以外は、参考例I-Aと同様にして、III族窒化物複合基板1およびIII族窒化物半導体デバイス4を作製した。ここで、支持基板11は、熱伝導率が4W・m-1・K-1で、ヤング率が220GPaであった。また、洗浄方法は、界面活性剤と純水とを用いたスクラブ洗浄、塩酸またはTMAH(水酸化テトラメチルアンモニウム)と純水とを用いた二流体洗浄、および塩酸またはTMAHと純水とを用いたメガソニック洗浄を組み合わせることにより実施した。
 参考例I-Aと同様にして、III族窒化物複合基板1について、支持基板11側の主面11nの二乗平均平方根粗さの平均値mSを算出して、表17にまとめた。また、III族窒化物複合基板1について、III族窒化物膜13側の主面13mにおける不純物金属原子の濃度を、TXRF(全反射蛍光X分析)法により測定して、表17にまとめた。ここで、TXRF法による測定は、W(タングステン)線源を用いて、0.05°の入射角で行なった。さらに、参考例I-Aと同様にして、III族窒化物半導体デバイス4の歩留率を算出して、表17にまとめた。
Figure JPOXMLDOC01-appb-T000017
 表17を参照して、厚さ0.4μm(この値は50nm以上10μm未満)のIII族窒化物膜を有する直径75mm~150mmであり、支持基板側の主面の二乗平均平方根粗さの平均値mSが7nm(この値は0.3nm以上20nm以下)であり、支持基板側の主面の二乗平均平方根粗さの平均値mSに対する二乗平均平方根粗さの標準偏差sSの比sS/mSが0.06(この値は0.005以上0.4以下)であり、III族窒化物膜側の主面における不純物金属原子の濃度が3×1012原子/cm2以下であるIII族窒化物複合基板を用いて作製されたIII族窒化物半導体デバイスの歩留が高かった。
 (参考例I-G)
 図11および図12を参照して、支持基板11として熱伝導率が2W・m-1・K-1~300W・m-1・K-1の間にある直径75mmの基板を用いたこと、直径75mmのIII族窒化物膜ドナー基板13Dの貼り合わせ主面と反対側の主面13mから研削および研磨を行なってIII族窒化物膜13の厚さを1μmとしたこと、支持基板11側の主面11nの仕上げ研磨においては作用係数FEが8.7×10-172/sの条件で研磨したこと、以外は、参考例I-Aと同様にして、III族窒化物複合基板1およびIII族窒化物半導体デバイス4を作製した。ここで、III族窒化物膜ドナー基板13Dの研削には、平均砥粒が25μm~35μmのダイヤモンド砥粒を含むビトリファイド砥粒を用いた。また、支持基板11の熱伝導率は、酸化物原料の配合比率、および焼成条件を調整することにより行った。
 参考例I-Aと同様にして、III族窒化物複合基板1について、支持基板11側の主面11nの二乗平均平方根粗さの平均値mSを算出して、表18にまとめた。また、III族窒化物複合基板1の支持基板の熱伝導率をレーザフラッシュ法により測定して表18にまとめた。さらに、参考例I-Aと同様にして、III族窒化物半導体デバイス4の歩留率を算出して、表18にまとめた。
Figure JPOXMLDOC01-appb-T000018
 表18を参照して、厚さ1μm(この値は50nm以上10μm未満)のIII族窒化物膜を有する直径75mm(この値は75mm以上)のIII族窒化物複合基板であり、支持基板側の主面の二乗平均平方根粗さの平均値mSが3nm(この値は0.3nm以上20nm以下)であり、支持基板側の主面の二乗平均平方根粗さの平均値mSに対する二乗平均平方根粗さの標準偏差sSの比sS/mSが0.07(この値は0.005以上0.4以下)であり、熱伝導率が3W・m-1・K-1以上280W・m-1・K-1以下である支持基板を有するIII族窒化物複合基板を用いて作製されたIII族窒化物半導体デバイスの歩留が高かった。
 参考発明IIにかかる参考例II-A~参考例II-Hについて以下に示す。
 [(1) III族窒化物複合基板の作製]
 (参考例II-A)
 以下、図18を参照して、参考例II-AにかかるIII族窒化物複合基板を説明する。
 まず、図18(A1)に示すように、支持基板11として直径75mmで厚さ500μmのAl23-SiO2複合酸化物基板(基板全体に対してAl23が85質量%であり、SiO2が15質量%である複合酸化物基板)を準備した。この支持基板11は、熱伝導率が10W・m-1・K-1であり、ヤング率が250GPaであった。
 次いで、支持基板11の両側の主面11mを、研磨剤としてダイヤモンドスラリーを用いて、銅系定盤により粗研磨、スズ系定盤により中間研磨、不織布研磨パッドにより仕上げ研磨を行なった。仕上げ研磨においては、作用係数FEが4×10-172/s以上1×10-162/s以下の条件で研磨した。
 次に、支持基板11の仕上げ研磨後の主面11m上に、厚さ800nmのSiO2膜をPE-CVD(プラズマ援用-化学気相堆積)法により成長させ、窒素雰囲気中で800℃で1時間のアニールを行なった。
 次に、平均粒径40nmのコロイダルシリカ砥粒を含みpHが10のスラリーを用いたCMPにより、主面12amが二乗平均平方根粗さ(以下「RMS(Root-Mean-Square roughness)」とも記す)で0.3nm以下に鏡面化された厚さ400nmの接合膜12aを形成した。次いで、CMPの際に用いたコロイダルシリカ砥粒を除去するために、KOH水溶液による無砥粒ポリシング洗浄、純水によるポリシング洗浄、および純水によるメガソニック洗浄(500kHz~5MHzのメガソニック帯域の周波数の超音波を用いた洗浄)を行なった。
 次に、図18(A2)に示すように、GaNバルク結晶を用いて、直径75mmで厚さ8mmのIII族窒化物膜ドナー基板13Dを準備した。III族窒化物膜ドナー基板13Dは、GaN結晶体である。
 次いで、III族窒化物膜ドナー基板13Dの貼り合わせ面側の主面13nを機械研磨およびCMPによりRMSを2nm以下に平坦化した。その後、貼り合わせ面側の主面13n上に厚さ800nmのSiO2膜をPE-CVD法により成長させ、窒素雰囲気中、800℃で1時間のアニールを行なった。続いて、平均粒径が40nmのコロイダルシリカ砥粒を含みpHが10のスラリーを用いたCMPにより、主面12bnがRMSで0.3nm以下に鏡面化された厚さ500nmの接合膜12bを形成した。次いで、CMPの際に用いたコロイダルシリカ砥粒を除去するために、KOH水溶液による無砥粒ポリシング洗浄、純水によるポリシング洗浄、および純水によるメガソニック洗浄を行なった。
 次いで、イオン注入装置により、ドーズ量1×1017cm-2および加速電圧50keVの条件で、GaN結晶体であるIII族窒化物膜ドナー基板13Dの貼り合わせ面側の主面13n側から、貼り合わせ面側の主面13nからの深さtが110nmであるイオン注入領域13iに、イオンIとして水素イオンを注入した。なお、ここで「イオン注入領域13i」は、水素イオンが注入された面を示す。
 なお、ここで、III族窒化物膜ドナー基板13Dは、下地基板としてGaAs基板を用いて、HVPE法により成長させたものであった。III族窒化物膜ドナー基板13Dは、n型の導電型であり、転移密度が1×108cm-2であり、キャリア濃度が1×1017cm-3であった。
 次に、図18(A1)~(A3)に示すように、接合膜12aの主面12amと接合膜12bの主面12bnとを貼り合わせることにより、支持基板11とIII族窒化物膜13とを接合膜12を介在させて貼り合わせた接合基板1Lを得た。貼り合わせた後に、接合基板1Lを窒素雰囲気中で800℃まで昇温することによりアニールして接合強度を高めた。
 次に、図18(B)に示すように、III族窒化物膜ドナー基板13Dを400℃で熱処理して、イオン注入領域13iを脆化させて、この面において、III族窒化物膜13を分割して、III族窒化物膜ドナー基板13DrとIII族窒化物複合基板1とを得た。
 以上のようにして、支持基板と、厚さが110nmのGaN薄膜とが、SiO2膜を介して、貼り合わされた直径75mmのIII族窒化物複合基板1が得られた。
 さらに、上記の工程を繰り返すことにより、同III族窒化物複合基板1を24枚得た。
 [(2) III族窒化物半導体デバイスの作製]
 以下、図22を参照して、参考例に係るIII族窒化物半導体デバイスであるSBD(ショットキーバリアダイオード)を説明する。
 まず、図22(A)に示すように、III族窒化物複合基板1のIII族窒化物膜13側の主面13m上に、MOCVD法により、III族窒化物層20として、厚さ2μmのn+-GaN層28(キャリア濃度が2×1018cm-3)、厚さ7μmのn--GaN層29(キャリア濃度が5×1015cm-3)を、この順序でエピタキシャル成長させることにより、積層III族窒化物複合基板2を得た。
 次に、図22(B)に示すように、積層III族窒化物複合基板2のIII族窒化物層20の最上層であるn--GaN層29上に、電子線蒸着法(以下、EB(Electron Beam)蒸着法とも記す)により、厚さ4nmのNi層と厚さ200nmのAu層とを順次形成し、アニールにより合金化することによってショットキー電極である第1電極30を形成した。なお、このとき、第1電極30の径は200μmとした。さらに、第1電極30上に、EB蒸着法により、厚さ200nmのTi層と、厚さ100nmのPt層と、厚さ1000nmのAu層とを順次形成することによりパッド電極33を形成した。
 また、デバイス支持基板40としてMo基板を準備し、デバイス支持基板40上にEB蒸着法により、厚さ200nmのTi層と、厚さ100nmのPt層と、厚さ1000nmのAu層とを順次形成することによりパッド電極43を形成した。そして、パッド電極43上に、接合金属膜44として、AuSnはんだ膜を形成した。
 次に、パッド電極33に接合金属膜44を貼り合わせることにより、積層基板3を得た。
 次に、図22(C)に示すように、積層基板3から、III族窒化物複合基板1の支持基板11および接合膜12を、フッ化水素酸を用いたエッチングにより除去した。
 次に、図22(D)に示すように、積層基板3から支持基板11および接合膜12が除去されることによって露出したIII族窒化物膜13上に、EB蒸着法により、厚さ20nmのTi層と、厚さ200nmのAl層と、厚さ300nmのAu層とを順次形成し、アニールすることにより、オーミック電極である第2電極50を形成した。また、デバイス支持基板40上に、EB蒸着により、厚さ20nmのTi層と、厚さ300nmのAu層とを順次形成し、アニールすることにより、デバイス支持基板電極45を形成した。こうして、SBDであるIII族窒化物半導体デバイス4が得られた。
 以上のようにして得られたIII族窒化物半導体デバイス4の歩留率は、以下のようにして算出した。すなわち、SBDについて逆方向の電流-電圧特性を測定し、耐電圧が250V以上の基準に適合したものを良品とし、適合しなかったものを不良品として、良品数を、良品数と不良品数との合計で除した値の百分率を歩留率とした。
 以上に説明した方法により、表19に示す厚さ分布を有する接合膜を含むIII族窒化物複合基板、および、それらを用いたIII族窒化物半導体デバイスを作製した。
 これらのIII族窒化物複合基板は、支持基板と、厚さが110nm(すなわち、50nm以上10μm未満)のIII族窒化物膜と、が貼り合わされた直径が75mm(すなわち、75mm以上)の複合基板である。
 接合膜の厚さ分布と、前述の方法により算出したIII族窒化物半導体デバイスの歩留率との関係を表19に示す。
Figure JPOXMLDOC01-appb-T000019
 表19より明らかなように、接合膜の厚さ分布が2%以上40%以下であるIII族窒化物複合基板を用いた半導体デバイス(A2~A6)は、かかる条件を満たさないIII族窒化物複合基板を用いた半導体デバイス(A1およびA7)に比べて、歩留率が良好であった。
 (参考例II-B)
 参考例II-Aと同様にして、表20に示すせん断接合強度および接合面積率で、支持基板とIII族窒化物膜とが接合されたIII族窒化物複合基板、および、それらを用いたIII族窒化物半導体デバイスを作製した。
 これらのIII族窒化物複合基板は、支持基板と、厚さが110nm(すなわち、50nm以上10μm未満)のIII族窒化物膜と、が貼り合わされた直径が75mm(すなわち、75mm以上)の複合基板である。
 せん断接合強度および接合面積率と、前述の方法により算出したIII族窒化物半導体デバイスの歩留率との関係を表20に示す。
Figure JPOXMLDOC01-appb-T000020
 表20より明らかなように、支持基板とIII族窒化物膜とのせん断接合強度が4MPa以上40MPa以下であり、支持基板とIII族窒化物膜との接合面積率が60%以上98%以下であるIII族窒化物複合基板を用いた半導体デバイス(B2~B5、B7およびB8)は、かかる条件を満たさないIII族窒化物複合基板を用いた半導体デバイス(B1、B6およびB9)に比べて、歩留率が良好であった。
 (参考例II-C)
 以下の(i)~(v)以外の条件は、参考例II-Aと同様にして、参考例II-CにかかるIII族窒化物複合基板、および、それらを用いたIII族窒化物半導体デバイスを作製した。
(i)支持基板11として、Al23-SiO2複合酸化物基板(基板全体に対してAl23が82質量%であり、SiO2が18質量%である複合酸化物基板)、ムライト-YSZ、およびムライトから選択される複合酸化物基板を用いたこと
(ii)直径をそれぞれ75mm~150mmの間で変動させたこと
(iii)接合膜12をAP-CVD(常圧-化学気相堆積)法により成長させたこと
(iv)支持基板11側の主面11mの仕上げ研磨の際に作用係数FEが8.5×10-172/s以上1×10-162/s以下の条件で研磨したこと
(v)仕上げ研磨後のIII族窒化物膜13の厚さをそれぞれ100nm~1μmの間で変動させたこと
 なお、参考例II-CにかかるIII族窒化物複合基板の接合膜の厚さ分布はすべて5%(すなわち、2%以上40%以下)とした。
 参考例II-Cに係るIII族窒化物複合基板の構成と、それらを用いたIII族半導体デバイスの歩留率との関係を表21に示す。
Figure JPOXMLDOC01-appb-T000021
 表21中、αIII-N/αSは支持基板の熱膨張係数αSに対するIII族窒化物膜の熱膨張係数αIII-Nの比を示し、tIII-N/tSは支持基板の厚さtSに対するIII族窒化物膜の厚さtIII-Nの比を示している。
 表21より明らかなように、支持基板と、厚さが100nm~1μm(すなわち、50nm以上10μm未満)のIII族窒化物膜と、が貼り合わされた直径が75mm以上のIII族窒化物複合基板であり、接合膜の厚さ分布が5%(すなわち、2%以上40%以下)であるIII族窒化物複合基板のうち、tIII-N/tSが0.0002以上0.02以下である複合基板を用いたIII族窒化物半導体デバイスは特に高い歩留率で製造することができた。
 上記に加えて、αIII-N/αSが0.75以上1.25以下である複合基板には、割れが全く発生しておらず、歩留も良好であった。
 (参考例II-D)
 表22に示す熱伝導率λsを有する支持基板を使用した以外は、参考例II-Aと同様にして、III族窒化物複合基板、および、それらを用いたIII族窒化物半導体デバイスを作製した。
 支持基板の熱伝導率λsとIII族窒化物半導体デバイスの歩留率との関係を表22に示す。
Figure JPOXMLDOC01-appb-T000022
 表22より明らかなように、支持基板と、厚さが100nm~1μm(すなわち、50nm以上10μm未満)のIII族窒化物膜と、が貼り合わされた直径が75mm以上のIII族窒化物複合基板であり、接合膜の厚さ分布が5%(すなわち、2%以上40%以下)であるIII族窒化物複合基板のうち、熱伝導率λSが3W・m-1・K-1以上280W・m-1・K-1以下である複合基板を用いたIII族窒化物半導体デバイスは特に高い歩留率で製造することができた。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 III族窒化物複合基板、1L,1LS 接合基板、2 積層III族窒化物複合基板、3 積層基板、4 III族窒化物半導体デバイス、5D,5Dr 支持体付III族窒化物膜ドナー基板、11 支持基板、11m,11n,12am,12bn,12m,13m,13n,130n 主面、12,14 接合膜、13 III族窒化物膜、13D,13Dr III族窒化物膜ドナー基板、13i イオン注入領域、15 III族窒化物膜ドナー基板支持体、20 III族窒化物層、21 n-GaN層、22 n-In0.05Ga0.95N層、23 活性層、24 p-Al0.09Ga0.91N層、25 p-GaN層、26 GaN層、27 Al0.2Ga0.8N層、28 n+-GaN層、29 n--GaN層、30 第1電極、33,43 パッド電極、40 デバイス支持基板、44 接合金属膜、45,46 デバイス支持基板電極、50 第2電極、60 ソース電極、70 ドレイン電極、80 ゲート電極、130 下地基板、140 保護部材。

Claims (14)

  1.  支持基板と、厚さが50nm以上10μm未満のIII族窒化物膜と、が貼り合わされた直径が75mm以上のIII族窒化物複合基板であって、
     前記III族窒化物膜の厚さの平均値mtに対する厚さの標準偏差stの比st/mtが0.01以上0.5以下であり、前記III族窒化物膜の主面の所定の面方位の面に対するオフ角の絶対値の平均値moに対するオフ角の絶対値の標準偏差soの比so/moが0.005以上0.6以下である、III族窒化物複合基板。
  2.  前記III族窒化物膜側の主面の二乗平均平方根粗さの平均値mIII-Nが0.4nm以上10nm以下であり、前記III族窒化物膜側の主面の二乗平均平方根粗さの平均値mIII-Nに対する標準偏差sIII-Nの比sIII-N/mIII-Nが0.008以上0.5以下である請求項1に記載のIII族窒化物複合基板。
  3.  直径Dに対する前記III族窒化物膜側の主面の反りWIII-Nの比WIII-N/Dが-7×10-4以上8×10-4以下である請求項1または請求項2に記載のIII族窒化物複合基板。
  4.  前記支持基板の熱膨張係数αSに対する前記III族窒化物膜の熱膨張係数αIII-Nの比αIII-N/αSが0.75以上1.25以下であり、前記支持基板の厚さtSに対する前記III族窒化物膜の厚さtIII-Nの比tIII-N/tSが1×10-4以上2×10-2以下である請求項1~請求項3のいずれか1項に記載のIII族窒化物複合基板。
  5.  前記III族窒化物膜の主面における不純物金属原子が1×1013原子/cm2以下である請求項1~請求項4のいずれか1項に記載のIII族窒化物複合基板。
  6.  前記支持基板の熱伝導率λSが3W・m-1・K-1以上280W・m-1・K-1以下である請求項1~請求項5のいずれか1項に記載のIII族窒化物複合基板。
  7.  前記支持基板のヤング率ESが150GPa以上500GPa以下である請求項1~請求項6のいずれか1項に記載のIII族窒化物複合基板。
  8.  直径が100mm以上である請求項1~請求項7のいずれか1項に記載のIII族窒化物複合基板。
  9.  請求項1に記載のIII族窒化物複合基板と、前記III族窒化物複合基板の前記III族窒化物膜側の主面上に配置されている少なくとも1層のIII族窒化物層と、を含む積層III族窒化物複合基板。
  10.  請求項1に記載のIII族窒化物複合基板中の前記III族窒化物膜と、前記III族窒化物膜上に配置されている少なくとも1層のIII族窒化物層と、を含むIII族窒化物半導体デバイス。
  11.  請求項1に記載のIII族窒化物複合基板の製造方法であって、
     前記支持基板の主面側に前記III族窒化物膜を配置することにより前記III族窒化物複合基板を形成する工程と、
     前記III族窒化物複合基板を形成する工程の後に、前記III族窒化物複合基板の前記III族窒化物膜側の主面に研磨およびエッチングの少なくともひとつを行なうことにより、前記III族窒化物膜の厚さおよび前記III族窒化物膜の主面の所定の面方位の面に対するオフ角を調整する工程と、を含むIII族窒化物複合基板の製造方法。
  12.  請求項1に記載のIII族窒化物複合基板を準備する工程と、
     前記III族窒化物複合基板の前記III族窒化物膜側の主面上に、少なくとも1層のIII族窒化物層を成長させる工程と、を含むIII族窒化物半導体デバイスの製造方法。
  13.  前記III族窒化物層を成長させる工程の後に、前記III族窒化物複合基板から前記支持基板を除去する工程をさらに含む請求項12に記載のIII族窒化物半導体デバイスの製造方法。
  14.  前記III族窒化物層を成長させる工程の後、前記支持基板を除去する工程の前に、前記III族窒化物層上にさらにデバイス支持基板を貼り合わせる工程をさらに含む請求項13に記載のIII族窒化物半導体デバイスの製造方法。
PCT/JP2013/080550 2013-02-18 2013-11-12 Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法 WO2014125688A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/767,706 US9923063B2 (en) 2013-02-18 2013-11-12 Group III nitride composite substrate and method for manufacturing the same, laminated group III nitride composite substrate, and group III nitride semiconductor device and method for manufacturing the same
CN201380073228.7A CN104995713A (zh) 2013-02-18 2013-11-12 Iii族氮化物复合衬底及其制造方法,层叠的iii族氮化物复合衬底,以及iii族氮化物半导体器件及其制造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013029123A JP6146041B2 (ja) 2013-02-18 2013-02-18 Iii族窒化物複合基板および積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
JP2013-029123 2013-02-18
JP2013029119A JP2014157979A (ja) 2013-02-18 2013-02-18 Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
JP2013-029126 2013-02-18
JP2013029126A JP2014157983A (ja) 2013-02-18 2013-02-18 Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
JP2013-029119 2013-02-18

Publications (1)

Publication Number Publication Date
WO2014125688A1 true WO2014125688A1 (ja) 2014-08-21

Family

ID=51353707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080550 WO2014125688A1 (ja) 2013-02-18 2013-11-12 Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法

Country Status (4)

Country Link
US (1) US9923063B2 (ja)
CN (1) CN104995713A (ja)
TW (1) TWI600178B (ja)
WO (1) WO2014125688A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9312165B2 (en) 2013-02-08 2016-04-12 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
US9917004B2 (en) 2012-10-12 2018-03-13 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
WO2024201649A1 (ja) * 2023-03-27 2024-10-03 三菱電機株式会社 半導体デバイスの製造方法および接合ウェハ

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109643645B (zh) 2016-08-31 2023-02-28 国立研究开发法人科学技术振兴机构 化合物半导体及其制造方法以及氮化物半导体
US10249786B2 (en) * 2016-11-29 2019-04-02 Palo Alto Research Center Incorporated Thin film and substrate-removed group III-nitride based devices and method
KR102680861B1 (ko) * 2016-12-15 2024-07-03 삼성전자주식회사 질화 갈륨 기판의 제조 방법
FR3062398B1 (fr) * 2017-02-02 2021-07-30 Soitec Silicon On Insulator Procede de fabrication d'un substrat pour la croissance d'un film bidimensionnel de structure cristalline hexagonale
TWI732122B (zh) 2017-06-01 2021-07-01 國立硏究開發法人科學技術振興機構 化合物半導體及其製造方法
CN111164733B (zh) * 2017-07-20 2024-03-19 斯维甘公司 用于高电子迁移率晶体管的异质结构及其生产方法
FR3073082B1 (fr) * 2017-10-31 2019-10-11 Soitec Procede de fabrication d'un film sur un support presentant une surface non plane
US10741666B2 (en) * 2018-11-19 2020-08-11 Vanguard International Semiconductor Corporation High electron mobility transistor and method for forming the same
US20200407873A1 (en) * 2019-06-13 2020-12-31 Alliance For Sustainable Energy, Llc Nitrogen-enabled high growth rates in hydride vapor phase epitaxy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303138A (ja) * 2008-06-12 2008-12-18 Sumitomo Electric Ind Ltd GaN単結晶基板、窒化物系半導体エピタキシャル基板、及び、窒化物系半導体素子
JP2010269970A (ja) * 2009-05-21 2010-12-02 Hitachi Cable Ltd 窒化物半導体基板
WO2011093481A1 (ja) * 2010-02-01 2011-08-04 Jx日鉱日石金属株式会社 窒化物系化合物半導体基板の製造方法及び窒化物系化合物半導体自立基板
JP2012230969A (ja) * 2011-04-25 2012-11-22 Sumitomo Electric Ind Ltd GaN系半導体デバイスの製造方法

Family Cites Families (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406123A (en) 1992-06-11 1995-04-11 Engineering Research Ctr., North Carolina State Univ. Single crystal titanium nitride epitaxial on silicon
JPH09219540A (ja) 1996-02-07 1997-08-19 Rikagaku Kenkyusho GaN薄膜の形成方法
CN100344004C (zh) 1997-10-30 2007-10-17 住友电气工业株式会社 GaN单晶衬底及其制造方法
TW417315B (en) 1998-06-18 2001-01-01 Sumitomo Electric Industries GaN single crystal substrate and its manufacture method of the same
US6521514B1 (en) 1999-11-17 2003-02-18 North Carolina State University Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on sapphire substrates
WO2002013245A1 (en) 2000-08-04 2002-02-14 The Regents Of The University Of California Method of controlling stress in gallium nitride films deposited on substrates
US6673149B1 (en) 2000-09-06 2004-01-06 Matsushita Electric Industrial Co., Ltd Production of low defect, crack-free epitaxial films on a thermally and/or lattice mismatched substrate
US6391748B1 (en) 2000-10-03 2002-05-21 Texas Tech University Method of epitaxial growth of high quality nitride layers on silicon substrates
JP2002222771A (ja) 2000-11-21 2002-08-09 Ngk Insulators Ltd Iii族窒化物膜の製造方法、iii族窒化物膜の製造用下地膜、及びその下地膜の製造方法
US6649287B2 (en) 2000-12-14 2003-11-18 Nitronex Corporation Gallium nitride materials and methods
JP2002319545A (ja) 2001-04-20 2002-10-31 Mitsubishi Cable Ind Ltd GaN系結晶の製造方法および結晶成長用基材
JP2003165798A (ja) 2001-11-28 2003-06-10 Hitachi Cable Ltd 窒化ガリウム単結晶基板の製造方法、窒化ガリウム単結晶のエピタキシャル成長自立基板、及びその上に形成したデバイス素子
US6812471B2 (en) 2002-03-13 2004-11-02 Applied Materials, Inc. Method of surface texturizing
US7786503B2 (en) 2002-12-27 2010-08-31 Momentive Performance Materials Inc. Gallium nitride crystals and wafers and method of making
KR20040078211A (ko) 2003-03-03 2004-09-10 엘지전자 주식회사 질화갈륨 기판 제조 방법
KR100550491B1 (ko) * 2003-05-06 2006-02-09 스미토모덴키고교가부시키가이샤 질화물 반도체 기판 및 질화물 반도체 기판의 가공 방법
JP3760997B2 (ja) 2003-05-21 2006-03-29 サンケン電気株式会社 半導体基体
US7803717B2 (en) 2003-10-23 2010-09-28 North Carolina State University Growth and integration of epitaxial gallium nitride films with silicon-based devices
US7323256B2 (en) 2003-11-13 2008-01-29 Cree, Inc. Large area, uniformly low dislocation density GaN substrate and process for making the same
JP5194334B2 (ja) 2004-05-18 2013-05-08 住友電気工業株式会社 Iii族窒化物半導体デバイスの製造方法
JP4622720B2 (ja) * 2004-07-21 2011-02-02 日亜化学工業株式会社 窒化物半導体ウエハ又は窒化物半導体素子の製造方法
TWI375994B (en) 2004-09-01 2012-11-01 Sumitomo Electric Industries Epitaxial substrate and semiconductor element
JP2006193348A (ja) 2005-01-11 2006-07-27 Sumitomo Electric Ind Ltd Iii族窒化物半導体基板およびその製造方法
JP2006210660A (ja) 2005-01-28 2006-08-10 Hitachi Cable Ltd 半導体基板の製造方法
JP4432827B2 (ja) 2005-04-26 2010-03-17 住友電気工業株式会社 Iii族窒化物半導体素子およびエピタキシャル基板
US20060267043A1 (en) 2005-05-27 2006-11-30 Emerson David T Deep ultraviolet light emitting devices and methods of fabricating deep ultraviolet light emitting devices
US7405430B2 (en) 2005-06-10 2008-07-29 Cree, Inc. Highly uniform group III nitride epitaxial layers on 100 millimeter diameter silicon carbide substrates
JP4529846B2 (ja) 2005-09-06 2010-08-25 日立電線株式会社 Iii−v族窒化物系半導体基板及びその製造方法
JP4720441B2 (ja) 2005-11-02 2011-07-13 日立電線株式会社 青色発光ダイオード用GaN基板
US7777217B2 (en) 2005-12-12 2010-08-17 Kyma Technologies, Inc. Inclusion-free uniform semi-insulating group III nitride substrate and methods for making same
JP2008010835A (ja) * 2006-05-31 2008-01-17 Sumitomo Electric Ind Ltd 窒化物結晶の表面処理方法、窒化物結晶基板、エピタキシャル層付窒化物結晶基板および半導体デバイス、ならびにエピタキシャル層付窒化物結晶基板および半導体デバイスの製造方法
JP5003033B2 (ja) 2006-06-30 2012-08-15 住友電気工業株式会社 GaN薄膜貼り合わせ基板およびその製造方法、ならびにGaN系半導体デバイスおよびその製造方法
US7755103B2 (en) * 2006-08-03 2010-07-13 Sumitomo Electric Industries, Ltd. Nitride gallium semiconductor substrate and nitride semiconductor epitaxial substrate
FR2910179B1 (fr) 2006-12-19 2009-03-13 Commissariat Energie Atomique PROCEDE DE FABRICATION DE COUCHES MINCES DE GaN PAR IMPLANTATION ET RECYCLAGE D'UN SUBSTRAT DE DEPART
JP2008166646A (ja) 2007-01-04 2008-07-17 Covalent Materials Corp 半導体基板の製造方法
KR101137909B1 (ko) 2007-01-10 2012-05-03 삼성코닝정밀소재 주식회사 질화갈륨 기판 및 그 제조 방법
JP4259591B2 (ja) * 2007-01-16 2009-04-30 住友電気工業株式会社 Iii族窒化物結晶の製造方法、iii族窒化物結晶基板およびiii族窒化物半導体デバイス
JP4458116B2 (ja) 2007-05-30 2010-04-28 住友電気工業株式会社 エピタキシャル層成長用iii族窒化物半導体層貼り合わせ基板および半導体デバイス
US20090278233A1 (en) 2007-07-26 2009-11-12 Pinnington Thomas Henry Bonded intermediate substrate and method of making same
US20090048659A1 (en) 2007-08-17 2009-02-19 Boston Scientific Scimed, Inc. Medical devices having sol-gel derived ceramic regions with molded submicron surface features
JP5018423B2 (ja) 2007-11-20 2012-09-05 住友電気工業株式会社 Iii族窒化物半導体結晶基板および半導体デバイス
CN101874286B (zh) 2007-11-27 2012-07-25 纳米晶公司 通过纳米或微米颗粒膜生长的超低位错密度的第三族-氮化物半导体衬底及其制备方法
KR101137911B1 (ko) 2007-12-18 2012-05-03 삼성코닝정밀소재 주식회사 질화갈륨 기판의 제조 방법
KR101144846B1 (ko) 2007-12-18 2012-05-16 삼성코닝정밀소재 주식회사 질화갈륨 웨이퍼 제조 방법
JP4519196B2 (ja) 2008-11-27 2010-08-04 Dowaエレクトロニクス株式会社 電子デバイス用エピタキシャル基板およびその製造方法
JP2010165927A (ja) 2009-01-16 2010-07-29 Sumitomo Electric Ind Ltd 発光素子用基板
JP2010192872A (ja) 2009-01-23 2010-09-02 Sumitomo Electric Ind Ltd 半導体基板の製造方法、半導体デバイスの製造方法、半導体基板および半導体デバイス
JP5407385B2 (ja) 2009-02-06 2014-02-05 住友電気工業株式会社 複合基板、エピタキシャル基板、半導体デバイス及び複合基板の製造方法
FR2942911B1 (fr) 2009-03-09 2011-05-13 Soitec Silicon On Insulator Procede de realisation d'une heterostructure avec adaptation locale de coefficient de dilatation thermique
JP2010232609A (ja) 2009-03-30 2010-10-14 Hitachi Cable Ltd Iii族窒化物半導体複合基板、iii族窒化物半導体基板、及びiii族窒化物半導体複合基板の製造方法
JP5491065B2 (ja) 2009-04-30 2014-05-14 住友電気工業株式会社 ウエハ生産物を作製する方法、及び窒化ガリウム系半導体光素子を作製する方法
JP2009182341A (ja) 2009-05-07 2009-08-13 Sumitomo Electric Ind Ltd GaN基板の保存方法、保存された基板ならびに半導体デバイスおよびその製造方法
JP2011061084A (ja) 2009-09-11 2011-03-24 Sumitomo Electric Ind Ltd 貼り合わせ基板の製造方法
US20110101502A1 (en) 2009-11-05 2011-05-05 Fairfield Crystal Technology, Llc Composite wafers and substrates for iii-nitride epitaxy and devices and methods therefor
JP5866088B2 (ja) 2009-11-24 2016-02-17 株式会社半導体エネルギー研究所 Soi基板の作製方法
FR2953328B1 (fr) 2009-12-01 2012-03-30 S O I Tec Silicon On Insulator Tech Heterostructure pour composants electroniques de puissance, composants optoelectroniques ou photovoltaiques
EP2660883B1 (en) 2009-12-09 2019-03-27 LG Innotek Co., Ltd. Light emitting device, light emitting device manufacturing method, light emitting package, and lighting system
KR101420232B1 (ko) 2010-08-20 2014-07-21 서강대학교산학협력단 홀을 가지는 다공성 박막 및 그의 제조 방법
JP2012116741A (ja) 2010-11-12 2012-06-21 Sumitomo Electric Ind Ltd Iii族窒化物複合基板
FR2967813B1 (fr) 2010-11-18 2013-10-04 Soitec Silicon On Insulator Procédé de réalisation d'une structure a couche métallique enterrée
JP5681937B2 (ja) 2010-11-25 2015-03-11 株式会社パウデック 半導体素子およびその製造方法
US9024310B2 (en) 2011-01-12 2015-05-05 Tsinghua University Epitaxial structure
JP2012156253A (ja) 2011-01-25 2012-08-16 Sumitomo Electric Ind Ltd 窒化物半導体素子の製造方法
CN102157638A (zh) 2011-01-31 2011-08-17 杭州士兰明芯科技有限公司 一种用于GaN外延生长的衬底制备方法
US9082948B2 (en) 2011-02-03 2015-07-14 Soitec Methods of fabricating semiconductor structures using thermal spray processes, and semiconductor structures fabricated using such methods
JP2012243792A (ja) 2011-05-16 2012-12-10 Sumitomo Electric Ind Ltd GaN薄膜貼り合わせ基板およびその製造方法、ならびにGaN系高電子移動度トランジスタおよびその製造方法
US9284656B2 (en) 2011-06-06 2016-03-15 International Business Machines Corporation Use of metal phosphorus in metallization of photovoltaic devices and method of fabricating same
US8906727B2 (en) 2011-06-16 2014-12-09 Varian Semiconductor Equipment Associates, Inc. Heteroepitaxial growth using ion implantation
CN105755534B (zh) 2011-08-05 2019-01-08 住友电气工业株式会社 衬底、半导体器件及其制造方法
US20130082274A1 (en) 2011-09-29 2013-04-04 Bridgelux, Inc. Light emitting devices having dislocation density maintaining buffer layers
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
CN103367556B (zh) 2012-03-28 2016-01-20 清华大学 外延衬底
US9917004B2 (en) 2012-10-12 2018-03-13 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
US9136337B2 (en) 2012-10-12 2015-09-15 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, laminated group III nitride composite substrate, and group III nitride semiconductor device and method for manufacturing the same
JP6322890B2 (ja) 2013-02-18 2018-05-16 住友電気工業株式会社 Iii族窒化物複合基板およびその製造方法、ならびにiii族窒化物半導体デバイスの製造方法
US9337274B2 (en) 2013-05-15 2016-05-10 Globalfoundries Inc. Formation of large scale single crystalline graphene
WO2015053127A1 (ja) 2013-10-10 2015-04-16 住友電気工業株式会社 Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303138A (ja) * 2008-06-12 2008-12-18 Sumitomo Electric Ind Ltd GaN単結晶基板、窒化物系半導体エピタキシャル基板、及び、窒化物系半導体素子
JP2010269970A (ja) * 2009-05-21 2010-12-02 Hitachi Cable Ltd 窒化物半導体基板
WO2011093481A1 (ja) * 2010-02-01 2011-08-04 Jx日鉱日石金属株式会社 窒化物系化合物半導体基板の製造方法及び窒化物系化合物半導体自立基板
JP2012230969A (ja) * 2011-04-25 2012-11-22 Sumitomo Electric Ind Ltd GaN系半導体デバイスの製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9917004B2 (en) 2012-10-12 2018-03-13 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
US10600676B2 (en) 2012-10-12 2020-03-24 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
US11094537B2 (en) 2012-10-12 2021-08-17 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
US9312165B2 (en) 2013-02-08 2016-04-12 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
US10186451B2 (en) 2013-02-08 2019-01-22 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
WO2024201649A1 (ja) * 2023-03-27 2024-10-03 三菱電機株式会社 半導体デバイスの製造方法および接合ウェハ

Also Published As

Publication number Publication date
US20150380496A1 (en) 2015-12-31
TW201434173A (zh) 2014-09-01
CN104995713A (zh) 2015-10-21
TWI600178B (zh) 2017-09-21
US9923063B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
US11094537B2 (en) Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
WO2014125688A1 (ja) Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
US9136337B2 (en) Group III nitride composite substrate and method for manufacturing the same, laminated group III nitride composite substrate, and group III nitride semiconductor device and method for manufacturing the same
JP5407385B2 (ja) 複合基板、エピタキシャル基板、半導体デバイス及び複合基板の製造方法
JP4277826B2 (ja) 窒化物結晶、窒化物結晶基板、エピ層付窒化物結晶基板、ならびに半導体デバイスおよびその製造方法
US9312340B2 (en) Group III nitride composite substrate and method for manufacturing the same, laminated group III nitride composite substrate, and group III nitride semiconductor device and method for manufacturing the same
JP6232853B2 (ja) Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
JP6146042B2 (ja) Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
WO2015053127A1 (ja) Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
JP5682651B2 (ja) 半導体デバイス及びその製造方法
JP2014157983A (ja) Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
JP6248395B2 (ja) Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
JP2014157979A (ja) Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
JP2009124160A (ja) 窒化物結晶およびエピ層付窒化物結晶基板の製造方法
JP6146041B2 (ja) Iii族窒化物複合基板および積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
JP2011222778A (ja) 積層体の製造方法、iii族窒化物単結晶自立基板の製造方法、および、積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875077

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14767706

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875077

Country of ref document: EP

Kind code of ref document: A1