WO2011093481A1 - 窒化物系化合物半導体基板の製造方法及び窒化物系化合物半導体自立基板 - Google Patents

窒化物系化合物半導体基板の製造方法及び窒化物系化合物半導体自立基板 Download PDF

Info

Publication number
WO2011093481A1
WO2011093481A1 PCT/JP2011/051855 JP2011051855W WO2011093481A1 WO 2011093481 A1 WO2011093481 A1 WO 2011093481A1 JP 2011051855 W JP2011051855 W JP 2011051855W WO 2011093481 A1 WO2011093481 A1 WO 2011093481A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound semiconductor
substrate
nitride
hcl
protective layer
Prior art date
Application number
PCT/JP2011/051855
Other languages
English (en)
French (fr)
Inventor
理 森岡
操 ▲高▼草木
充 三上
孝幸 清水
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to JP2011527080A priority Critical patent/JPWO2011093481A1/ja
Priority to CN2011800005067A priority patent/CN102245814A/zh
Priority to US13/515,861 priority patent/US20120256297A1/en
Publication of WO2011093481A1 publication Critical patent/WO2011093481A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to a method for producing a nitride compound semiconductor substrate using a HVPE method and a nitride compound semiconductor free-standing substrate, and more particularly to a growth condition for growing a low-temperature protective layer.
  • a semiconductor device for example, an electronic device or an optical device obtained by epitaxially growing a nitride compound semiconductor such as GaN (hereinafter referred to as a GaN-based semiconductor) on a substrate.
  • a substrate mainly made of sapphire or SiC is used.
  • these substrate materials have a large lattice mismatch with a GaN-based semiconductor, when a GaN-based semiconductor is epitaxially grown on the substrate, distortion occurs due to strain. Crystal defects will occur. And the crystal defect which arose in the epitaxial layer becomes a factor which reduces the characteristic of a semiconductor device. Therefore, various growth methods have been tried to solve the problems caused by such lattice mismatch.
  • Patent Document 1 proposes to use an NdGaO 3 substrate (hereinafter referred to as an NGO substrate) whose pseudo lattice constant is close to that of a GaN-based semiconductor.
  • an NGO substrate whose pseudo lattice constant is close to that of a GaN-based semiconductor.
  • a technique is disclosed in which a GaN thick film is grown on an NGO substrate by hydride vapor phase epitaxy (HVPE) to produce a GaN free-standing substrate (a substrate composed only of GaN).
  • HVPE hydride vapor phase epitaxy
  • the length of the NGO a-axis and the lattice constant in the [11-20] direction of GaN are almost the same, so the problem caused by the lattice mismatch described above can be solved.
  • the device characteristics can be improved by using the GaN free-standing substrate as a semiconductor device substrate.
  • the growth of the GaN thick film layer is generally performed at a growth temperature of about 1000 ° C., but when the NGO substrate is exposed to the source gas at a high temperature of about 1000 ° C., the GaN thick film layer changes in quality. The crystal quality of the will deteriorate. Therefore, a technique for protecting the NGO substrate by growing a GaN thin film layer called a low-temperature protective layer on the NGO substrate at around 600 ° C. before growing the GaN thick film layer (for example, Patent Documents 1 and 2). .
  • JP 2003-257854 A Japanese Unexamined Patent Publication No. 2000-4045
  • the GaN thick film layer was grown at 1000 ° C.
  • stress was applied to the GaN thick film layer due to the difference in thermal expansion coefficient between GaN and NGO, and the GaN thick film layer warped.
  • the in-plane off-angle variation increases.
  • the variation in the in-plane off angle becomes large. If the variation in the off angle within the surface of the GaN free-standing substrate becomes large, there is a possibility that desired characteristics (for example, the emission wavelength of the light emitting element) cannot be obtained in a semiconductor device using the substrate.
  • the present invention provides a nitride-based compound semiconductor substrate that can prevent a nitride-based compound semiconductor layer from warping and can grow a nitride-based compound semiconductor layer with small in-plane off-angle variation with good reproducibility. It is an object of the present invention to provide a nitride-based compound semiconductor substrate suitable for manufacturing methods and semiconductor devices.
  • HVPE hydride vapor phase epitaxy
  • the supply partial pressure of HCl is 3.07 ⁇ 10 ⁇ 3 to 8.71 ⁇ in the first step. 10 ⁇ 3 atm, and the supply partial pressure of NH 3 is 6.58 ⁇ 10 ⁇ 2 atm.
  • the supply partial pressure of HCl is set to 4.37 ⁇ 10 ⁇ 3 to 6.55 ⁇ in the first step. It is characterized by 10 ⁇ 3 atm.
  • the supply partial pressure of HCl is 2.19 ⁇ 10 ⁇ 3 atm, and NH 3
  • the supply partial pressure is 7.39 ⁇ 10 ⁇ 2 to 1.54 ⁇ 10 ⁇ 1 atm.
  • the supply partial pressure of NH 3 is set to 8.76 ⁇ 10 ⁇ 2 to 1.23. It is characterized by ⁇ 10 ⁇ 1 atm.
  • the invention according to claim 6 is a nitride compound semiconductor obtained by separating the thick film layer from the nitride compound semiconductor substrate produced by the production method according to any one of claims 1 to 5.
  • a self-supporting board, The variation of the off angle with respect to the [11-20] direction and the [1-100] direction in the plane is 1 ° or less, respectively.
  • a low-temperature protective layer made of GaN is grown before the GaN thick film layer is grown.
  • This low-temperature protective layer is provided to prevent the NGO substrate from reacting with NH 3 and the like at the growth temperature (800 to 1200 ° C.) of the GaN thick film layer, but the growth conditions have been studied separately. Absent. Therefore, the present inventors investigated how the GaN thick film layer warps and the variation of the off-angle with respect to a specific direction in the plane changes depending on the growth conditions of the low-temperature protective layer.
  • the properties of the low-temperature protective layer when grown by changing the supply amount of either the group III source gas HCl or the group V source gas NH 3 are as follows. Examined. Note that an NGO substrate was used as the substrate, the growth temperature was 600 ° C., and the growth time was 7.5 min. Specifically, the supply amount of HCl is constant at a supply partial pressure: 2.19 ⁇ 10 ⁇ 3 atm, and the supply amount of NH 3 is set at a supply partial pressure: 5.70 ⁇ 10 ⁇ 2 to 1.54 ⁇ 10 ⁇ . The low temperature protective layer was grown by changing at 1 atm.
  • the supply amount of NH 3 is constant at a supply partial pressure: 6.58 ⁇ 10 ⁇ 2 atm
  • the supply amount of HCl is set at a supply partial pressure: 3.07 ⁇ 10 ⁇ 3 to 8.71 ⁇ 10 ⁇ 3 atm.
  • the low temperature protective layer was grown by changing. As a result, when the supply amount of the source gas is changed, the full width at half maximum, the film thickness, and the surface form of the low-temperature protective layer change due to the X-ray diffraction. It was seen (see FIGS. 1 and 2).
  • a GaN thick film layer was grown on the low-temperature protective layer thus grown, and the off angles with respect to the [1-100] direction and the [11-20] direction in the GaN thick film layer were measured.
  • a total of 5 points that is, one point in the plane of the GaN thick film layer and four points located on the peripheral edge on the orthogonal axis passing through the center point, were measured points.
  • the variation of the off angle was calculated by (maximum value ⁇ minimum value) / 2.
  • the off-angle variation tended to increase as the film thickness increased (see FIGS. 3 and 4). Further, when the film thickness of the low temperature protective layer is 50 to 58 nm, the variation in the off angle is 1.0 ° or less, and when the low temperature protective layer is grown under the conventional growth conditions (the film thickness of the low temperature protective layer is 50 nm). It was clearly better than the weak case. On the other hand, when the low temperature protective layer is grown by changing the supply amount of HCl, the variation in the off-angle decreases as the film thickness increases up to 90 nm, and the film thickness becomes 90 nm. As the film thickness increased, the off-angle variation tended to increase (see FIGS. 5 and 6). Further, when the film thickness of the low-temperature protective layer is 50 to 95 nm, the variation in off-angle is 1.0 ° or less, which is clearly better than the case where the low-temperature protective layer is grown under the conventional growth conditions.
  • the variation in the off-angle of the GaN thick film layer grown thereon can be improved by growing the low-temperature protective layer with a film thickness within a predetermined range.
  • the supply amount of NH 3 is increased to increase the film thickness of the low-temperature protection layer
  • the supply amount of HCl is increased to increase the film thickness of the low-temperature protection layer
  • the GaN thick film layer is turned off.
  • the supply amount of NH 3 is excessively increased, the NGO substrate is adversely affected by NH 3 during the growth of the low-temperature protective layer, and the properties of the low-temperature protective layer, and thus the GaN thick film layer.
  • the present invention for defining the range of the film thickness of the low-temperature protective layer capable of reducing the variation in the off angle in the GaN thick film layer and the supply amount of the source gas (ratio of the supply amount of NH 3 and the supply amount of HCl) was completed. .
  • a nitride-based compound semiconductor thick film layer with low warpage and small in-plane variation in off-angle with good reproducibility it is possible to grow a nitride-based compound semiconductor thick film layer with low warpage and small in-plane variation in off-angle with good reproducibility, and suitable for manufacturing a semiconductor device.
  • a self-supporting substrate can be obtained.
  • NH 3 is a graph showing the relationship between the variation in off-angle with respect to the [1-100] direction of the low temperature protective layer having a thickness and a GaN thick film layer when varying the feed rate.
  • NH 3 is a graph showing the relationship between the variation in off-angle with respect to the [11-20] direction of the low temperature protective layer having a thickness and a GaN thick film layer when varying the feed rate.
  • GaN substrate by epitaxially growing GaN, which is a GaN-based semiconductor, on an NGO substrate made of a rare earth perovskite
  • chloride gas (GaCl) generated from group III metal Ga and HCl is reacted with NH 3 to epitaxially grow a GaN layer on the substrate.
  • the NGO substrate is placed in the HVPE apparatus, and the temperature is raised until the substrate temperature reaches the first growth temperature (400 to 800 ° C.). Then, GaCl, which is a Group III material generated from Ga metal and HCl, and NH 3, which is a Group V material, are supplied onto the NGO substrate, and a low-temperature protective layer made of GaN is formed to a thickness of 40 to 100 nm. .
  • the supply amount of NH 3 is preferably set so that the supply partial pressure is 1.23 ⁇ 10 ⁇ 1 atm or less.
  • the growth conditions (growth temperature, growth time, source gas supply amount) of the GaN thick film layer are not particularly limited, and for example, general GaN growth conditions can be applied.
  • a GaN substrate in which a low-temperature protective layer and a GaN thick film layer are formed on an NGO substrate is obtained.
  • the GaN thick film layer in the GaN substrate does not warp, and variation in off-angle with respect to the in-plane [1-100] direction and [11-20] direction is 1 ° or less.
  • the off-angles with respect to the in-plane [1-100] direction and [11-20] direction Variation of 1 ° or less. Therefore, by using this GaN free-standing substrate as a substrate for manufacturing a semiconductor device, a semiconductor device having desired characteristics can be realized.
  • Example 1 In Example 1, the supply partial pressure of NH 3 is 6.58 ⁇ 10 ⁇ 2 atm and the supply partial pressure of HCl is 3.07 ⁇ 10 ⁇ 3 to 8.71 ⁇ 10 ⁇ 3 atm, that is, HCl.
  • the raw material gas was supplied so that the supply ratio III / V of NH 3 was 0.046 to 0.13, and a low-temperature protective layer made of GaN was grown. At this time, the growth temperature was 600 ° C., and the growth time was constant at 7.5 min.
  • the film thickness of the formed low-temperature protective layer was increased from 50 to 90 nm as the HCl supply amount (supply partial pressure) increased.
  • the source gas was supplied so that the supply partial pressure of HCl was 1.06 ⁇ 10 ⁇ 2 atm and the supply partial pressure of NH 3 was 5.00 ⁇ 10 ⁇ 2 atm, and 2500 ⁇ m A GaN thick film layer was formed.
  • the growth temperature was 1000 ° C., and the growth time was 8 hours.
  • the warpage was clearly smaller than in the case of the comparative example described later.
  • the variation of the off angle was 1 ° or less, It was good.
  • the film thickness of the low-temperature protective layer is 60 to 90 nm, and the in-plane thickness of the GaN thick film layer is increased.
  • the variation in off-angle was 0.3 ° or less.
  • Example 2 In Example 2, the supply partial pressure of HCl is 2.19 ⁇ 10 ⁇ 3 atm and the supply partial pressure of NH 3 is 7.39 ⁇ 10 ⁇ 2 to 1.23 ⁇ 10 ⁇ 1 atm, that is, HCl.
  • the source gas was supplied so that the supply ratio III / V of NH 3 was 0.017 to 0.029, and a low-temperature protective layer made of GaN was grown. At this time, the growth temperature was 600 ° C., and the growth time was constant at 7.5 min.
  • the film thickness of the formed low-temperature protective layer increased with an increase in NH 3 supply amount (supply partial pressure), and was 50 to 58 nm. On this low-temperature protective layer, a GaN thick film layer was grown in the same manner as in Example 1.
  • the warpage was clearly smaller than in the case of the comparative example described later.
  • the variation of the off angle was 1 ° or less, It was good.
  • the film thickness of the low-temperature protective layer is 52 to 53 nm, and the in-plane of the GaN thick film layer The variation in the off-angle was 0.3 ° or less.
  • Comparative Example 1 In Comparative Example 1, the supply partial pressure of HCl is 2.19 ⁇ 10 ⁇ 3 atm and the supply partial pressure of NH 3 is 6.58 ⁇ 10 ⁇ 2 atm, that is, the supply ratio of HCl and NH 3 is III / A source gas was supplied so that V was 0.033, and a low-temperature protective layer made of GaN was grown. At this time, the growth temperature was 600 ° C. and the growth time was 7.5 min. The film thickness of the formed low-temperature protective layer was 47 nm. On this low-temperature protective layer, a GaN thick film layer was grown in the same manner as in Examples 1 and 2.
  • the curvature return was observed visually, the clear curvature return was confirmed. Further, when the off angles with respect to the [1-100] direction and the [11-20] direction were measured at five points in the plane in the GaN thick film layer, the variation of the off angle with respect to the [1-100] direction was 1.32. The off-angle variation with respect to the [11-20] direction was 1.58 °. Also in a GaN free-standing substrate manufactured by removing the NGO substrate from the GaN substrate by an appropriate method, separating the GaN thick film layer, and polishing the GaN thick film crystal, the [1-100] direction and the [11] The variation of the off angle relative to the ⁇ 20] direction was greater than 1 °.
  • Comparative Example 2 In Comparative Example 2, the supply partial pressure of HCl is 2.19 ⁇ 10 ⁇ 3 atm and the supply partial pressure of NH 3 is 1.54 ⁇ 10 ⁇ 1 atm, that is, the supply ratio of HCl and NH 3 is III / A source gas was supplied so that V was 0.014, and a low-temperature protective layer made of GaN was grown. At this time, the growth temperature was 600 ° C. and the growth time was 7.5 min. The film thickness of the formed low-temperature protective layer was 58.7 nm. On this low-temperature protective layer, a GaN thick film layer was grown in the same manner as in Examples 1 and 2.
  • the curvature return was observed visually, the clear curvature return was confirmed. Further, when the off angles with respect to the [1-100] direction and the [11-20] direction were measured at five points in the plane of the GaN thick film layer, the variation of the off angle with respect to the [1-100] direction was 1.18. The off-angle variation with respect to the [11-20] direction was 1.31 °. Also in a GaN free-standing substrate manufactured by removing the NGO substrate from the GaN substrate by an appropriate method, separating the GaN thick film layer, and polishing the GaN thick film crystal, the [1-100] direction and the [11] The variation of the off angle relative to the ⁇ 20] direction was greater than 1 °.
  • a GaN free-standing substrate suitable for manufacturing a semiconductor device can be obtained by separating a GaN thick film layer from the GaN substrate obtained in the embodiment and polishing it to prepare a GaN free-standing substrate.
  • the nitride-based compound semiconductor is a compound semiconductor represented by In x Ga y Al 1-xy N (0 ⁇ x + y ⁇ 1, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1),
  • In x Ga y Al 1-xy N there are GaN, InGaN, AlGaN, InGaAlN, and the like.

Abstract

 窒化物系化合物半導体層に反りが生じるのを防止でき、面内のオフ角のばらつきが小さな窒化物系化合物半導体層を再現性よく成長させることができる技術を提供する。 HVPE法を利用した窒化物系化合物半導体基板の製造方法において、希土類ペロブスカイト基板上に第1成長温度で低温保護層を形成し(第1工程)、この低温保護層上に第1成長温度より高い第2成長温度で窒化物系化合物半導体からなる厚膜層を形成する(第2工程)。第1工程では、HClとNHの供給比III/Vが0.016~0.13となるようにHCl及びNHの供給量を調整し、50~90nmの膜厚で低温保護層を形成する。

Description

窒化物系化合物半導体基板の製造方法及び窒化物系化合物半導体自立基板
 本発明は、HVPE法を利用した窒化物系化合物半導体基板の製造方法及び窒化物系化合物半導体自立基板に関し、特に、低温保護層を成長させるときの成長条件に関する。
 従来、基板上にGaN等の窒化物系化合物半導体(以下、GaN系半導体)をエピタキシャル成長させてなる半導体デバイス(例えば、電子デバイスや光デバイス)が知られている。この半導体デバイスには、主にサファイアやSiCなどからなる基板が用いられるが、これらの基板材料はGaN系半導体との格子不整合が大きいため、この上にGaN系半導体をエピタキシャル成長させると、歪みによる結晶欠陥が発生してしまう。そして、エピタキシャル層に生じた結晶欠陥は、半導体デバイスの特性を低下させる要因となる。そこで、このような格子不整合に起因する問題を解決するために様々な成長方法が試みられている。
 例えば特許文献1では、擬似的な格子定数がGaN系半導体に近いNdGaO3基板(以下、NGO基板)を用いることが提案されている。具体的には、ハイドライド気相成長法(HVPE:Hydride Vapor Phase Epitaxy)によりNGO基板上にGaN厚膜を成長させ、GaN自立基板(GaNのみで構成された基板)を作製する技術が開示されている。NGO基板の(011)面では、NGOのa軸の長さとGaNの[11-20]方向の格子定数がほぼ一致するので、上述した格子不整合に起因する問題を解決できる。そして、GaN自立基板を半導体デバイス用基板とすることで、デバイス特性の向上を図ることができる。
 また、GaN厚膜層の成長は一般的には1000℃付近の成長温度で行われるが、NGO基板が1000℃付近の高温下で原料ガスに曝されると変質してしまい、GaN厚膜層の結晶品質が低下してしまう。そのため、GaN厚膜層を成長させる前に600℃付近でNGO基板上に低温保護層と呼ばれるGaN薄膜層を成長させ、NGO基板を保護する技術が提案されている(例えば特許文献1,2)。
特開2003-257854号公報 特開2000-4045号公報
 しかしながら、1000℃でGaN厚膜層を成長させた後、室温まで温度を下げていくと、GaNとNGOの熱膨張係数の差によってGaN厚膜層に応力が加わり、GaN厚膜層が反った状態となり、面内のオフ角のばらつきが大きくなる。また、反った状態のGaN厚膜層をNGO基板と分離して、このGaN厚膜結晶から切り出したGaN自立基板においても、面内のオフ角のばらつきが大きくなってしまう。そして、GaN自立基板の面内のオフ角のばらつきが大きくなると、その基板を用いた半導体デバイスにおいて、所望の特性(例えば、発光素子の発光波長)が得られなくなる虞がある。
 本発明は、窒化物系化合物半導体層に反りが生じるのを防止でき、面内のオフ角のばらつきが小さな窒化物系化合物半導体層を再現性よく成長させることができる窒化物系化合物半導体基板の製造方法、及び半導体デバイスの作製に好適な窒化物系化合物半導体基板を提供することを目的とする。
 請求項1に記載の発明は、上記目的を達成するためになされたもので、
 ハイドライド気相成長法(HVPE:Hydride Vapor Phase Epitaxy)を利用して、III族金属とHClから生成された塩化物ガスとNHを反応させて基板上に窒化物系化合物半導体をエピタキシャル成長させる窒化物系化合物半導体基板の製造方法であって、
 希土類ペロブスカイト基板上に第1成長温度で低温保護層を形成する第1工程と、
 前記低温保護層上に前記第1成長温度より高い第2成長温度で窒化物系化合物半導体からなる厚膜層を形成する第2工程と、を有し、
 前記第1工程では、HClとNHの供給比III/Vが0.016~0.13となるようにHCl及びNHの供給量を調整し、50~90nmの膜厚で前記低温保護層を形成することを特徴とする窒化物系化合物半導体基板の製造方法。
 請求項2に記載の発明は、請求項1に記載の窒化物系化合物半導体基板の製造方法において、前記第1工程では、HClの供給分圧を3.07×10-3~8.71×10-3atmとし、NHの供給分圧を6.58×10-2atmとすることを特徴とする。
 請求項3に記載の発明は、請求項2に記載の窒化物系化合物半導体基板の製造方法において、前記第1工程では、HClの供給分圧を4.37×10-3~6.55×10-3atmとすることを特徴とする。
 請求項4に記載の発明は、請求項1に記載の窒化物系化合物半導体基板の製造方法において、前記第1工程では、HClの供給分圧を2.19×10-3atmとし、NHの供給分圧を7.39×10-2~1.54×10-1atmとすることを特徴とする。
 請求項5に記載の発明は、請求項4に記載の窒化物系化合物半導体基板の製造方法において、前記第1工程では、NHの供給分圧を8.76×10-2~1.23×10-1atmとすることを特徴とする。
 請求項6に記載の発明は、請求項1から5のいずれか一項に記載の製造方法によって製造された窒化物系化合物半導体基板から前記厚膜層を分離して得られる窒化物系化合物半導体自立基板であって、
 面内における[11-20]方向及び[1-100]方向に対するオフ角のばらつきが、それぞれ1°以下であることを特徴とする。
 以下に、本発明を完成するに至った経緯について説明する。
 上述したように、HVPE法を利用してGaN自立基板を製造する場合、GaN厚膜層を成長させる前にGaNからなる低温保護層を成長させるようにしている。この低温保護層は、GaN厚膜層の成長温度(800~1200℃)でNGO基板がNH等と反応して変質するのを防止するために設けられるが、成長条件については別段検討されていない。そこで本発明者等は、低温保護層の成長条件によって、GaN厚膜層の反り返りや面内における特定方向に対するオフ角のばらつきがどのように変化するかを調査した。
 まず、従来の成長条件を基準にして、III族原料ガスであるHCl又はV族原料ガスであるNHのいずれか一方の供給量を変化させて成長させたときの、低温保護層の性状を調べた。なお、基板にはNGO基板を用い、成長温度は600℃、成長時間は7.5minとした。具体的には、HClの供給量を供給分圧:2.19×10-3atmで一定とし、NHの供給量を供給分圧:5.70×10-2~1.54×10-1atmで変化させて低温保護層を成長させた。また、NHの供給量を供給分圧:6.58×10-2atmで一定とし、HClの供給量を供給分圧:3.07×10-3~8.71×10-3atmで変化させて低温保護層を成長させた。
 その結果、原料ガスの供給量を変化させると、低温保護層のX線回折による半値幅、膜厚、表面形態が変化し、このうち低温保護層の膜厚と原料ガスの供給量に相関が見られた(図1,2参照)。
 さらに、このようにして成長させた低温保護層の上にGaN厚膜層を成長させ、GaN厚膜層における[1-100]方向及び[11-20]方向に対するオフ角を測定した。ここで、GaN厚膜層の面内の中心1点及び中心点を通る直交軸上の周縁部に位置する4点の計5点を測定点とした。そして、5箇所の測定点におけるオフ角について、(最大値-最小値)/2によりオフ角のばらつきを算出した。
 その結果、NHの供給量を変化させて低温保護層を成長させた場合には、低温保護層の膜厚が55nmまでは膜厚が厚くなるに伴いオフ角のばらつきが小さくなり、膜厚が55nmを超えると膜厚が厚くなるに伴いオフ角のばらつきが大きくなる傾向が見られた(図3,4参照)。また、低温保護層の膜厚が50~58nmのときには、オフ角のばらつきが1.0°以下であり、従来の成長条件で低温保護層を成長させた場合(低温保護層の膜厚が50nm弱の場合)よりも明らかに良好であった。
 一方、HClの供給量を変化させて低温保護層を成長させた場合には、低温保護層の膜厚が90nmまでは膜厚が厚くなるに伴いオフ角のばらつきが小さくなり、膜厚が90nmを超えると膜厚が厚くなるに伴いオフ角のばらつきが大きくなる傾向が見られた(図5,6参照)。また、低温保護層の膜厚が50~95nmのときには、オフ角のばらつきが1.0°以下であり、従来の成長条件で低温保護層を成長させた場合よりも明らかに良好であった。
 これより、低温保護層を所定範囲の膜厚で成長させることで、その上に成長させるGaN厚膜層のオフ角のばらつきを改善できるとの知見を得た。また、NHの供給量を増加させて低温保護層の膜厚を厚くした場合と、HClの供給量を増加させて低温保護層の膜厚を厚くした場合とで、GaN厚膜層のオフ角のばらつきが小さくなる範囲が異なることから、NHの供給量を増加しすぎると、低温保護層の成長時にNGO基板がNHから悪影響を受け、低温保護層の性状、ひいてはGaN厚膜層におけるオフ角のばらつきに影響するのではないかと考えた。
 そして、GaN厚膜層におけるオフ角のばらつきを低減できる低温保護層の膜厚の範囲及び原料ガスの供給量(NHの供給量とHClの供給量の比)を規定する本発明を完成した。
 本発明によれば、反りが少なく、面内のオフ角のばらつきが小さな窒化物系化合物半導体の厚膜層を再現性よく成長させることができ、半導体デバイスの作製に好適な窒化物系化合物半導体自立基板を得ることができる。
低温保護層成長時のNH供給量と低温保護層の膜厚の関係について示す図である。 低温保護層成長時のHCl供給量と低温保護層の膜厚の関係について示す図である。 NH供給量を変化させたときの低温保護層の膜厚とGaN厚膜層の[1-100]方向に対するオフ角のばらつきの関係について示す図である。 NH供給量を変化させたときの低温保護層の膜厚とGaN厚膜層の[11-20]方向に対するオフ角のばらつきの関係について示す図である。 HCl供給量を変化させたときの低温保護層の膜厚とGaN厚膜層の[1-100]方向に対するオフ角のばらつきの関係について示す図である。 HCl供給量を変化させたときの低温保護層の膜厚とGaN厚膜層の[11-20]方向に対するオフ角のばらつきの関係について示す図である。
 以下、本発明の実施形態について詳細に説明する。
 本実施形態では、希土類ペロブスカイトからなるNGO基板上に、GaN系半導体であるGaNをエピタキシャル成長させ、GaN基板を製造する方法について説明する。HVPE法では、III族金属であるGaとHClから生成された塩化物ガス(GaCl)とNHを反応させて、基板上にGaN層をエピタキシャル成長させる。
 まず、NGO基板をHVPE装置内に配置し、基板温度が第1成長温度(400~800℃)となるまで昇温する。そして、GaメタルとHClから生成されたIII族原料となるGaClと、V族原料となるNHを、NGO基板上に供給し、GaNからなる低温保護層を40~100nmの膜厚で形成する。
 このとき、NHによりNGO基板が変質しないように、HClとNHの供給比III/Vが0.016~0.13となるように原料ガスの供給量を調整する。また、NHの供給量は供給分圧が1.23×10-1atm以下となるようにするのが望ましい。
 次に、基板温度が第2成長温度(950~1050℃)となるまで昇温する。そして、低温保護層上に原料ガスを供給し、GaN厚膜層を形成する。このGaN厚膜層の成長条件(成長温度、成長時間、原料ガスの供給量)は特に制限されず、例えば一般的なGaNの成長条件を適用できる。
 以上のようにして、NGO基板上に低温保護層及びGaN厚膜層が形成されたGaN基板が得られる。GaN基板におけるGaN厚膜層は、反り返りがなく、面内の[1-100]方向及び[11-20]方向に対するオフ角のばらつきが1°以下となる。また、室温まで冷却した後、適当な方法によりNGO基板を除去し、研磨加工して得られたGaN自立基板においても、面内の[1-100]方向及び[11-20]方向に対するオフ角のばらつきが1°以下となる。したがって、このGaN自立基板を半導体デバイス製造用の基板として用いることで、所望の特性を有する半導体デバイスを実現できる。
[実施例1]
 実施例1では、NHの供給分圧が6.58×10-2atm、HClの供給分圧が3.07×10-3~8.71×10-3atmとなるように、すなわちHClとNHの供給比III/Vが0.046~0.13となるように原料ガスを供給し、GaNからなる低温保護層を成長させた。このとき、成長温度は600℃とし、成長時間は7.5minで一定とした。形成された低温保護層の膜厚は、HCl供給量(供給分圧)の増加に伴い厚くなり、50~90nmであった。
 この低温保護層の上に、HClの供給分圧が1.06×10-2atm、NHの供給分圧が5.00×10-2atmとなるように原料ガスを供給し、2500μmのGaN厚膜層を形成した。このとき、成長温度は1000℃とし、成長時間は8時間とした。
 得られたGaN厚膜層について、目視により反り返りを観察したところ、後述の比較例の場合よりも明らかに反り返りが小さかった。
 また、GaN厚膜層において、面内の5点で[1-100]方向及び[11-20]方向に対するオフ角を測定したところ、いずれの場合もオフ角のばらつきは1°以下であり、良好であった。特に、HClの供給分圧を4.37×10-3~6.55×10-3atmとした場合には、低温保護層の膜厚が60~90nmとなり、GaN厚膜層の面内のオフ角のばらつきは0.3°以下となった。
 また、GaN基板から適当な方法によりNGO基板を除去してGaN厚膜層を分離し、このGaN厚膜結晶を研磨加工して作製したGaN自立基板においても、[1-100]方向及び[11-20]方向に対するオフ角のばらつきは0.3°以下であった。
[実施例2]
 実施例2では、HClの供給分圧が2.19×10-3atm、NHの供給分圧が7.39×10-2~1.23×10-1atmとなるように、すなわちHClとNHの供給比III/Vが0.017~0.029となるように原料ガスを供給し、GaNからなる低温保護層を成長させた。このとき、成長温度は600℃とし、成長時間は7.5minで一定とした。形成された低温保護層の膜厚は、NH供給量(供給分圧)の増加に伴い厚くなり、50~58nmであった。この低温保護層の上に、実施例1と同様にしてGaN厚膜層を成長させた。
 得られたGaN厚膜層について、目視により反り返りを観察したところ、後述の比較例の場合よりも明らかに反り返りが小さかった。
 また、GaN厚膜層において、面内の5点で[1-100]方向及び[11-20]方向に対するオフ角を測定したところ、いずれの場合もオフ角のばらつきは1°以下であり、良好であった。特に、NHの供給分圧を8.58×10-2~1.05×10-1atmとした場合には、低温保護層の膜厚が52~53nmとなり、GaN厚膜層の面内のオフ角のばらつきは0.3°以下となった。
 また、GaN基板から適当な方法によりNGO基板を除去してGaN厚膜層を分離し、このGaN厚膜結晶を研磨加工して作製したGaN自立基板においても、[1-100]方向及び[11-20]方向に対するオフ角のばらつきは0.3°以下であった。
[比較例1]
 比較例1では、HClの供給分圧が2.19×10-3atm、NHの供給分圧が6.58×10-2atmとなるように、すなわちHClとNHの供給比III/Vが0.033となるように原料ガスを供給し、GaNからなる低温保護層を成長させた。このとき、成長温度は600℃とし、成長時間は7.5minとした。形成された低温保護層の膜厚は47nmであった。この低温保護層の上に、実施例1,2と同様にしてGaN厚膜層を成長させた。
 得られたGaN厚膜層について、目視により反り返りを観察したところ、明らかな反り返りが確認された。
 また、GaN厚膜層において、面内の5点で[1-100]方向及び[11-20]方向に対するオフ角を測定したところ、[1-100]方向に対するオフ角のばらつきは1.32°で、[11-20]方向に対するオフ角のばらつきは1.58°であった。
 また、GaN基板から適当な方法によりNGO基板を除去してGaN厚膜層を分離し、このGaN厚膜結晶を研磨加工して作製したGaN自立基板においても、[1-100]方向及び[11-20]方向に対するオフ角のばらつきは1°より大きかった。
[比較例2]
 比較例2では、HClの供給分圧が2.19×10-3atm、NHの供給分圧が1.54×10-1atmとなるように、すなわちHClとNHの供給比III/Vが0.014となるように原料ガスを供給し、GaNからなる低温保護層を成長させた。このとき、成長温度は600℃とし、成長時間は7.5minとした。形成された低温保護層の膜厚は58.7nmであった。この低温保護層の上に、実施例1,2と同様にしてGaN厚膜層を成長させた。
 得られたGaN厚膜層について、目視により反り返りを観察したところ、明らかな反り返りが確認された。
 また、GaN厚膜層において、面内の5点で[1-100]方向及び[11-20]方向に対するオフ角を測定したところ、[1-100]方向に対するオフ角のばらつきは1.18°で、[11-20]方向に対するオフ角のばらつきは1.31°であった。
 また、GaN基板から適当な方法によりNGO基板を除去してGaN厚膜層を分離し、このGaN厚膜結晶を研磨加工して作製したGaN自立基板においても、[1-100]方向及び[11-20]方向に対するオフ角のばらつきは1°より大きかった。
 上述したように、本実施形態によれば、低温保護層の成長条件の一つである原料ガスの供給量を変え、低温保護層の性状(膜厚)を変化させることで、反りが少なく、面内のオフ角のばらつきが小さな窒化物系化合物半導体の厚膜層を再現性よく成長させることができる。
 また、実施形態で得られたGaN基板からGaN厚膜層を分離し、研磨加工してGaN自立基板を作製することで、半導体デバイスの作製に好適なGaN自立基板を得ることができる。
 以上、本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
 上記実施形態ではGaN自立基板の製造について説明したが、HVPE法を利用して基板上に窒化物系化合物半導体層を成長させ、窒化物系化合物半導体基板を製造する場合にも本発明を適用することができる。ここで、窒化物系化合物半導体とは、InGaAl1-x-yN(0≦x+y≦1,0≦x≦1,0≦y≦1)で表される化合物半導体であり、例えば、GaN、InGaN、AlGaN,InGaAlN等がある。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

Claims (6)

  1.  ハイドライド気相成長法(HVPE:Hydride Vapor Phase Epitaxy)を利用して、III族金属とHClから生成された塩化物ガスとNHを反応させて基板上に窒化物系化合物半導体をエピタキシャル成長させる窒化物系化合物半導体基板の製造方法であって、
     希土類ペロブスカイト基板上に第1成長温度で低温保護層を形成する第1工程と、
     前記低温保護層上に前記第1成長温度より高い第2成長温度で窒化物系化合物半導体からなる厚膜層を形成する第2工程と、を有し、
     前記第1工程では、HClとNHの供給比III/Vが0.016~0.13となるようにHCl及びNHの供給量を調整し、50~90nmの膜厚で前記低温保護層を形成することを特徴とする窒化物系化合物半導体基板の製造方法。
  2.  前記第1工程では、HClの供給分圧を3.07×10-3~8.71×10-3atmとし、NHの供給分圧を6.58×10-2atmとすることを特徴とする請求項1に記載の窒化物系化合物半導体基板の製造方法。
  3.  前記第1工程では、HClの供給分圧を4.37×10-3~6.55×10-3atmとすることを特徴とする請求項2に記載の窒化物系化合物半導体基板の製造方法。
  4.  前記第1工程では、HClの供給分圧を2.19×10-3atmとし、NHの供給分圧を7.39×10-2~1.23×10-1atmとすることを特徴とする請求項1に記載の窒化物系化合物半導体基板の製造方法。
  5.  前記第1工程では、NHの供給分圧を8.76×10-2~1.23×10-1atmとすることを特徴とする請求項4に記載の窒化物系化合物半導体基板の製造方法。
  6.  請求項1から5のいずれか一項に記載の製造方法によって製造された窒化物系化合物半導体基板から前記厚膜層を分離して得られる窒化物系化合物半導体自立基板であって、
     面内における[11-20]方向及び[1-100]方向に対するオフ角のばらつきが、それぞれ1°以下であることを特徴とする窒化物系化合物半導体自立基板。
PCT/JP2011/051855 2010-02-01 2011-01-31 窒化物系化合物半導体基板の製造方法及び窒化物系化合物半導体自立基板 WO2011093481A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011527080A JPWO2011093481A1 (ja) 2010-02-01 2011-01-31 窒化物系化合物半導体基板の製造方法及び窒化物系化合物半導体自立基板
CN2011800005067A CN102245814A (zh) 2010-02-01 2011-01-31 氮化物系化合物半导体基板的制造方法及氮化物系化合物半导体自支撑基板
US13/515,861 US20120256297A1 (en) 2010-02-01 2011-01-31 Method for producing nitride compound semiconductor substrate, and nitride compound semiconductor free-standing substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-019900 2010-02-01
JP2010019900 2010-02-01

Publications (1)

Publication Number Publication Date
WO2011093481A1 true WO2011093481A1 (ja) 2011-08-04

Family

ID=44319458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051855 WO2011093481A1 (ja) 2010-02-01 2011-01-31 窒化物系化合物半導体基板の製造方法及び窒化物系化合物半導体自立基板

Country Status (6)

Country Link
US (1) US20120256297A1 (ja)
JP (1) JPWO2011093481A1 (ja)
KR (1) KR20110099103A (ja)
CN (1) CN102245814A (ja)
TW (1) TW201202489A (ja)
WO (1) WO2011093481A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013183149A (ja) * 2012-03-05 2013-09-12 Hitachi Cable Ltd 窒化ガリウム系半導体エピタキシャルウェハ及びその製造方法
JP2014131005A (ja) * 2012-10-12 2014-07-10 Sumitomo Electric Ind Ltd Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
WO2014125688A1 (ja) * 2013-02-18 2014-08-21 住友電気工業株式会社 Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
JP2014157979A (ja) * 2013-02-18 2014-08-28 Sumitomo Electric Ind Ltd Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
JP2014157983A (ja) * 2013-02-18 2014-08-28 Sumitomo Electric Ind Ltd Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
JP2014157980A (ja) * 2013-02-18 2014-08-28 Sumitomo Electric Ind Ltd Iii族窒化物複合基板および積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
WO2015053127A1 (ja) * 2013-10-10 2015-04-16 住友電気工業株式会社 Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
WO2015133443A1 (ja) * 2014-03-03 2015-09-11 国立大学法人大阪大学 Iii族窒化物結晶の製造方法およびiii族窒化物結晶製造装置
US9136337B2 (en) 2012-10-12 2015-09-15 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, laminated group III nitride composite substrate, and group III nitride semiconductor device and method for manufacturing the same
US9312165B2 (en) 2013-02-08 2016-04-12 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
US9917004B2 (en) 2012-10-12 2018-03-13 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105047534B (zh) * 2015-06-30 2018-03-30 聚灿光电科技股份有限公司 P型GaN层及LED外延结构的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235805A (ja) * 2004-02-17 2005-09-02 Nikko Materials Co Ltd GaN系化合物半導体結晶の製造方法及びGaN系化合物半導体結晶
WO2008035632A1 (fr) * 2006-09-20 2008-03-27 Nippon Mining & Metals Co., Ltd. PROCÉDÉ DE FABRICATION D'UN MONOCRISTAL DE GaN, SUBSTRAT DE MATRICE DE FILM MINCE DE GaN ET APPAREIL DE CROISSANCE DE MONOCRISTAL DE GaN
WO2008126532A1 (ja) * 2007-03-14 2008-10-23 Nippon Mining & Metals Co., Ltd. エピタキシャル成長用基板および窒化物系化合物半導体単結晶の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4150527B2 (ja) * 2002-02-27 2008-09-17 日鉱金属株式会社 結晶の製造方法
JP4691911B2 (ja) * 2004-06-11 2011-06-01 日立電線株式会社 Iii−v族窒化物系半導体自立基板の製造方法
US7777217B2 (en) * 2005-12-12 2010-08-17 Kyma Technologies, Inc. Inclusion-free uniform semi-insulating group III nitride substrate and methods for making same
DE112008000279T5 (de) * 2007-01-31 2010-04-01 Sumitomo Chemical Co. Ltd. Verfahren zur Herstellung von Gruppe III-V-Verbindungshalbleitern
JP5051455B2 (ja) * 2008-01-16 2012-10-17 日立電線株式会社 エピタキシャル成長用窒化物半導体基板の製造方法
JP4952616B2 (ja) * 2008-03-04 2012-06-13 日立電線株式会社 窒化物半導体基板の製造方法
JP2009238772A (ja) * 2008-03-25 2009-10-15 Sumitomo Electric Ind Ltd エピタキシャル基板及びエピタキシャル基板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235805A (ja) * 2004-02-17 2005-09-02 Nikko Materials Co Ltd GaN系化合物半導体結晶の製造方法及びGaN系化合物半導体結晶
WO2008035632A1 (fr) * 2006-09-20 2008-03-27 Nippon Mining & Metals Co., Ltd. PROCÉDÉ DE FABRICATION D'UN MONOCRISTAL DE GaN, SUBSTRAT DE MATRICE DE FILM MINCE DE GaN ET APPAREIL DE CROISSANCE DE MONOCRISTAL DE GaN
WO2008126532A1 (ja) * 2007-03-14 2008-10-23 Nippon Mining & Metals Co., Ltd. エピタキシャル成長用基板および窒化物系化合物半導体単結晶の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AKIHIRO WAKAHARA ET AL.: "Hydride Vapor Phase Epitaxy of GaN on NdGa03 Substrate and Realization of Freestanding GaN Wafers with 2-inch Scale", JPN.J.APPL.PHYS., vol. 39, no. 4B, April 2000 (2000-04-01), pages 2399 - 2401 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013183149A (ja) * 2012-03-05 2013-09-12 Hitachi Cable Ltd 窒化ガリウム系半導体エピタキシャルウェハ及びその製造方法
US9136337B2 (en) 2012-10-12 2015-09-15 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, laminated group III nitride composite substrate, and group III nitride semiconductor device and method for manufacturing the same
JP2014131005A (ja) * 2012-10-12 2014-07-10 Sumitomo Electric Ind Ltd Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
US11094537B2 (en) 2012-10-12 2021-08-17 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
US10600676B2 (en) 2012-10-12 2020-03-24 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
US9917004B2 (en) 2012-10-12 2018-03-13 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
US10186451B2 (en) 2013-02-08 2019-01-22 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
US9312165B2 (en) 2013-02-08 2016-04-12 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
JP2014157983A (ja) * 2013-02-18 2014-08-28 Sumitomo Electric Ind Ltd Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
US9923063B2 (en) 2013-02-18 2018-03-20 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, laminated group III nitride composite substrate, and group III nitride semiconductor device and method for manufacturing the same
JP2014157980A (ja) * 2013-02-18 2014-08-28 Sumitomo Electric Ind Ltd Iii族窒化物複合基板および積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
JP2014157979A (ja) * 2013-02-18 2014-08-28 Sumitomo Electric Ind Ltd Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
WO2014125688A1 (ja) * 2013-02-18 2014-08-21 住友電気工業株式会社 Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
WO2015053127A1 (ja) * 2013-10-10 2015-04-16 住友電気工業株式会社 Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
WO2015133443A1 (ja) * 2014-03-03 2015-09-11 国立大学法人大阪大学 Iii族窒化物結晶の製造方法およびiii族窒化物結晶製造装置
JP6019542B2 (ja) * 2014-03-03 2016-11-02 国立大学法人大阪大学 Iii族窒化物結晶の製造方法およびiii族窒化物結晶製造装置
US10202710B2 (en) 2014-03-03 2019-02-12 Osaka University Process for producing group III nitride crystal and apparatus for producing group III nitride crystal

Also Published As

Publication number Publication date
JPWO2011093481A1 (ja) 2013-06-06
TW201202489A (en) 2012-01-16
KR20110099103A (ko) 2011-09-06
CN102245814A (zh) 2011-11-16
US20120256297A1 (en) 2012-10-11

Similar Documents

Publication Publication Date Title
WO2011093481A1 (ja) 窒化物系化合物半導体基板の製造方法及び窒化物系化合物半導体自立基板
US10883191B2 (en) Method for producing III-N templates and the reprocessing thereof and III-N template
JP5317398B2 (ja) 格子パラメータを変化させる元素を含有する窒化ガリウムデバイス基板
US6756246B2 (en) Method for fabricating III-V group compound semiconductor
TWI490918B (zh) 半極性氮化(鋁,銦,鎵,硼)之改良成長方法
JP4696935B2 (ja) Iii−v族窒化物系半導体基板及びiii−v族窒化物系発光素子
US20070138505A1 (en) Low defect group III nitride films useful for electronic and optoelectronic devices and methods for making the same
JP5645887B2 (ja) 半極性窒化物を備え、窒化物核生成層又はバッファ層に特徴を有するデバイス構造
JP4691911B2 (ja) Iii−v族窒化物系半導体自立基板の製造方法
US20130168833A1 (en) METHOD FOR ENHANCING GROWTH OF SEMIPOLAR (Al,In,Ga,B)N VIA METALORGANIC CHEMICAL VAPOR DEPOSITION
JP2005320237A (ja) 非極性a面窒化物半導体単結晶基板およびその製造方法
JP2007070154A (ja) Iii−v族窒化物系半導体基板及びその製造方法
US9896780B2 (en) Method for pretreatment of base substrate and method for manufacturing layered body using pretreated base substrate
JP2006290677A (ja) 窒化物系化合物半導体結晶の製造方法及び窒化物系化合物半導体基板の製造方法
JP2010168273A (ja) Iii族窒化物半導体の製造方法、およびテンプレート基板
JP6404655B2 (ja) AlNテンプレート基板およびその製造方法
JP2005306680A (ja) 半導体基板、自立基板及びそれらの製造方法、並びに基板の研磨方法
US7740823B2 (en) Method of growing III group nitride single crystal and III group nitride single crystal manufactured by using the same
JP2006279025A (ja) 非極性a面窒化ガリウム単結晶の製造方法
JP5120285B2 (ja) Iii−v族窒化物系半導体自立基板の製造方法
WO2023037896A1 (ja) ScAlMgO4基板を用いたMBE法による窒化物半導体自立基板の作成方法
WO2015198492A1 (ja) エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ
KR20030077435A (ko) Ⅲ족 내지 ⅴ족 화합물 반도체의 제조방법
JP2005518092A (ja) 適切な基板上における炭化ケイ素又は第iii族元素窒化物の層の製造方法
JP2011216548A (ja) GaN系半導体エピタキシャル基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000506.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20117013472

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011527080

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737190

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13515861

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11737190

Country of ref document: EP

Kind code of ref document: A1