WO2014125675A1 - 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法 - Google Patents

無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法 Download PDF

Info

Publication number
WO2014125675A1
WO2014125675A1 PCT/JP2013/077564 JP2013077564W WO2014125675A1 WO 2014125675 A1 WO2014125675 A1 WO 2014125675A1 JP 2013077564 W JP2013077564 W JP 2013077564W WO 2014125675 A1 WO2014125675 A1 WO 2014125675A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
coil
resonator
transmission device
power supply
Prior art date
Application number
PCT/JP2013/077564
Other languages
English (en)
French (fr)
Inventor
畑中 武蔵
尚 津田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020157022360A priority Critical patent/KR20150107867A/ko
Priority to EP13874989.0A priority patent/EP2958212B1/en
Priority to CN201380072873.7A priority patent/CN104995816A/zh
Priority to SG11201506272UA priority patent/SG11201506272UA/en
Priority to US14/767,016 priority patent/US20150380949A1/en
Publication of WO2014125675A1 publication Critical patent/WO2014125675A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling

Definitions

  • the present invention relates to a wireless power transmission device, a method for controlling supply power of the wireless power transmission device, and a method for manufacturing the wireless power transmission device, which can increase design flexibility.
  • a technique of performing power transmission using electromagnetic induction between coils see, for example, Patent Document 1
  • a resonance phenomenon between resonators (coils) included in a power feeding apparatus and a power receiving apparatus A technique for performing power transmission by coupling magnetic fields using a magnetic field resonance state (see, for example, Patent Document 2).
  • an impedance matching device in the power receiving device or the like.
  • an automatic matching unit 12 and an automatic matching unit 23 are provided as means corresponding to the impedance matching unit.
  • the input impedance is controlled (see FIG. 1 of Patent Document 3).
  • the LC resonant circuits in the power feeding device and the power receiving device must be configured to maximize power transmission efficiency.
  • the capacitance of the LC resonance circuit such as a capacitor and a coil cannot be freely changed as a parameter for controlling the input impedance.
  • the fact that the capacitors such as capacitors and coils of the LC resonance circuit cannot be set freely in order to control the input impedance means that the degree of freedom in designing portable electronic devices that require portability, compactness, and low cost is required. Means low.
  • an object of the present invention is to set the value of the input impedance by freely adjusting the value including the capacitance of the power supply device and the power receiving device for performing wireless power transmission, including capacitors and coils.
  • An object of the present invention is to provide a wireless power transmission device capable of controlling the power (current) to be supplied, a supply power control method, and a method for manufacturing the wireless power transmission device.
  • each element of the plurality of circuit elements constituting the power supply module and the power reception module by supplying the drive frequency of the power supplied to the power supply module at a value that does not become the resonance frequency in the power supply module and the power reception module, each element of the plurality of circuit elements constituting the power supply module and the power reception module.
  • the value can be freely changed as a parameter for changing the input impedance Z in of the wireless power transmission device. Then, by changing the parameters, respectively, it is possible to adjust the power supplied to adjust the input impedance Z in of the wireless power transmission device.
  • One of the inventions for solving the above problem is that power is supplied from a power supply module including at least a power supply coil and a power supply resonator to a power reception module including at least a power reception resonator and a power reception coil by a resonance phenomenon.
  • a power supply control method for a wireless power transmission device Driving frequency of the power supplied to the power supply module, fed by the value not be the resonance frequency of the feeding module and the power receiving module, constitutes the feeding coil, the impedance of the total with the respective circuit element including a coil L 1 Z 1 represents the total impedance of each circuit element including the coil L 2 that constitutes the feeding resonator, and Z 2 represents the total impedance of each circuit element that includes the coil L 3 that constitutes the power receiving resonator.
  • Z 3 , Z 4 represents the total impedance of each circuit element constituting the power receiving coil, including coil L 4 , Z l represents the total load impedance of the device fed from the power receiving coil, and coil L of the power feeding coil 1 and the mutual inductance between the coil L 2 of the feeding resonator M 12, the feeding resonator coil L 2 and the power receiving co
  • the supply power control of the wireless power transmission device that supplies power by the resonance phenomenon from the power supply module including at least the power supply coil and the power supply resonator to the power reception module including at least the power reception resonator and the power reception coil.
  • the parameters respectively so as to satisfy the above relationship
  • it is possible to adjust the power supplied by controlling the input impedance Z in.
  • it will be freely set the element values of the plurality of circuit elements constituting the power supply module and the power receiving module as parameters, increasing the design flexibility of the wireless power transmission apparatus
  • portability, compactness, and cost reduction of the wireless power transmission device itself can be realized.
  • One of the inventions for solving the above problems is a method for controlling the supply power of the wireless power transmission device, wherein each element value of a plurality of circuit elements constituting the power supply module and the power reception module, and By driving the mutual inductance as a parameter and changing each of the parameters, the transmission characteristic value of the power supplied to the power supply module with respect to the drive frequency is a drive frequency band lower than the resonance frequency and a drive higher than the resonance frequency. It is characterized by setting so that each frequency band has a peak.
  • the value of the transmission characteristic with respect to the drive frequency of the power supplied to the power supply module has peaks in the drive frequency band lower than the resonance frequency and the drive frequency band higher than the resonance frequency (the bimodal nature described later). To have).
  • the wireless power transmission device having the bimodal nature has a type in which one peak of the transmission characteristic value with respect to the drive frequency of the power supplied to the power supply module appears in the resonance frequency band (single- compared to having the property), it is possible to increase the variable range of the input impedance Z in.
  • variable range of the input impedance Z in is element values of a plurality of circuit elements constituting the power supply module and the power receiving module, and a mutual inductance as a parameter, the nature of the unimodal Compared to existing settings, it is possible to make a wide range of settings, further improving the design flexibility of the wireless power transmission device, and realizing the portability, compactness, and cost reduction of the wireless power transmission device itself. .
  • One of the inventions for solving the above-mentioned problems is a method for controlling the supply power of the wireless power transmission device, wherein the drive frequency of power supplied to the power supply module is lower than the resonance frequency. It is a band corresponding to the peak value of the transmission characteristic appearing in FIG.
  • the transmission characteristic has a bimodal property
  • the transmission characteristic has a unimodal property
  • the transmission frequency is inferior to that in which the drive frequency is matched to the resonance frequency, but a somewhat high transmission characteristic is obtained.
  • the magnetic field generated on the outer peripheral side of the power supply module and the magnetic field generated on the outer peripheral side of the power receiving module cancel each other, thereby reducing the influence of the magnetic field on the outer peripheral side of the power feeding module and the power receiving module.
  • a magnetic field space having a magnetic field strength smaller than the magnetic field strength other than the outer peripheral side of the module can be formed. Thereby, by storing a circuit or the like that is not affected by the magnetic field in the formed magnetic field space, the space can be effectively used, and the wireless power transmission device itself can be reduced in size.
  • One of the inventions for solving the above problems is a method for controlling the power supply of the wireless power transmission device, wherein the drive frequency of the power supplied to the power supply module is higher than the resonance frequency. It is a band corresponding to the peak value of the transmission characteristic appearing in FIG.
  • the transmission characteristic has a bimodal property
  • the transmission characteristic has a unimodal property
  • the transmission frequency is inferior to that in which the drive frequency is matched to the resonance frequency, but a somewhat high transmission characteristic is obtained.
  • the magnetic field generated on the inner peripheral side of the power supply module and the magnetic field generated on the inner peripheral side of the power receiving module cancel each other, thereby reducing the influence of the magnetic field on the inner peripheral side of the power supply module and the power receiving module.
  • a magnetic field space having a magnetic field strength smaller than the magnetic field strength other than the inner peripheral side of the module and the power receiving module can be formed. Thereby, by storing a circuit or the like that is not affected by the magnetic field in the formed magnetic field space, the space can be effectively used, and the wireless power transmission device itself can be reduced in size.
  • a wireless power transmission device adjusted by the above-described supply power control method may be used.
  • each element value of a plurality of circuit elements constituting the power feeding module and the power receiving module can be freely set as a parameter.
  • the freedom degree of design of a wireless power transmission device can be increased, and portability, compactness, and cost reduction of the wireless power transmission device itself can be realized.
  • a power supply module including at least one of a power supply coil and a power supply resonator is changed from a power supply module including at least one of the power reception resonator and the power reception coil.
  • a method of manufacturing a wireless power transmission device that supplies power by changing a magnetic field and supplying a drive frequency of power to be supplied at a value that does not become a resonance frequency in the power supply module and the power reception module. and each element value of the plurality of circuit elements constituting the power receiving module as parameters, by changing the parameters, respectively, to control the input impedance Z in of the wireless power transmission device, the wireless power transmission device can be supplied And a design process for adjusting the power.
  • each element value of a plurality of circuit elements constituting the power feeding module and the power receiving module is freely set as a parameter, and the design flexibility of the wireless power transmission device is increased, A wireless power transmission device excellent in portability, compactness, and cost reduction can be manufactured.
  • the value of input impedance is set by freely adjusting its value including the capacity of capacitors and coils provided in the power feeding device and power receiving device that perform wireless power transmission, and the power (current) to be supplied is set accordingly.
  • a wireless power transmission device that can be controlled, a supply power control method, and a method for manufacturing the wireless power transmission device can be provided.
  • FIG. It is a table
  • Embodiments of a wireless power transmission device, a supply power control method, and a method for manufacturing a wireless power transmission device according to the present invention will be described below.
  • the wireless power transmission device 1 includes a power supply module 2 including a power supply coil 21 and a power supply resonator 22, and a power reception module 3 including a power reception coil 31 and a power reception resonator 32.
  • the power supply coil 21 of the power supply module 2 is connected to the AC power supply 6 including an oscillation circuit in which the drive frequency of the power supplied to the power supply module 2 is set to a predetermined value, and the power reception coil 31 of the power reception module 3 receives power.
  • a rechargeable battery 9 is connected via a stabilization circuit 7 that rectifies the AC power that has been generated and a charging circuit 8 that prevents overcharging.
  • the feeding coil 21 serves to supply power obtained from the AC power source 6 to the feeding resonator 22 by electromagnetic induction.
  • the feeding coil 21 constitutes an RLC circuit including a resistor R 1 , a coil L 1 , and a capacitor C 1 as elements.
  • the coil L 1 portion is formed by winding a copper wire (with an insulating coating) once and setting the coil diameter to 96 mm ⁇ .
  • the total impedance of the circuit elements constituting the feeding coil 21 is Z 1, and in this embodiment, the RLC including the resistor R 1 , the coil L 1 , and the capacitor C 1 constituting the feeding coil 21 as elements. Let Z 1 be the total impedance of the circuit (circuit element).
  • the power receiving coil 31 receives the electric power transmitted as magnetic field energy from the power feeding resonator 22 to the power receiving resonator 32 by electromagnetic induction, and plays a role of supplying the power to the rechargeable battery 9 via the stabilization circuit 7 and the charging circuit 8.
  • the power receiving coil 31 constitutes an RLC circuit including a resistor R 4 , a coil L 4 , and a capacitor C 4 as shown in FIG.
  • the coil L 4 portion is set to a coil diameter of 96 mm ⁇ by winding a copper wire (with an insulating coating) once.
  • the total impedance of the circuit elements constituting the power receiving coil 31 is Z 4.
  • the RLC including the resistor R 4 , the coil L 4 , and the capacitor C 4 constituting the power receiving coil 31 as elements.
  • a resistor R l for convenience (that is, the resistor R l of the resistor R l .
  • the value is a total value of load resistances of devices connected to the wireless power transmission device 1).
  • ballast circuit 7, the charging circuit 8 and the battery 9 devices that are powered from the power receiving coil 31 to the load impedance of the sum of the Z l.
  • the power feeding resonator 22 constitutes an RLC circuit including a resistor R 2 , a coil L 2 , and a capacitor C 2 as elements.
  • the power receiving resonator 32 constitutes an RLC circuit including a resistor R 3 , a coil L 3 , and a capacitor C 3 as elements.
  • Each of the power feeding resonator 22 and the power receiving resonator 32 becomes a resonance circuit and plays a role of creating a magnetic field resonance state.
  • the magnetic field resonance state means that two or more coils are tuned at the resonance frequency.
  • the total impedance of the circuit elements constituting the feed resonator 22 is Z 2.
  • the resistor R 2 , the coil L 2 , and the capacitor C 2 constituting the feed resonator 22 are elements.
  • Z 2 be the total impedance of the RLC circuit (circuit element).
  • the total impedance of the circuit elements constituting the power receiving resonator 32 is Z 3.
  • the resistor R 3 , the coil L 3 , and the capacitor C 3 constituting the power receiving resonator 32 are elements.
  • Z 3 be the total impedance of the RLC circuit (circuit element).
  • the resonance circuit in the power feeding resonator 22 and the power receiving resonator 32 if the inductance is L and the capacitor capacity is C, f determined by (Equation 1) becomes the resonance frequency. And the resonant frequency of the power feeding coil 21, the power feeding resonator 22, the power receiving coil 31, and the power receiving resonator 32 in this embodiment is 12.8 MHz.
  • the power supply resonator 22 and the power reception resonator 32 use a solenoid type coil having a coil diameter of 96 mm ⁇ , in which a copper wire (with an insulating coating) is wound four times. Further, the resonance frequencies of the power feeding resonator 22 and the power receiving resonator 32 are matched.
  • the power feeding resonator 22 and the power receiving resonator 32 may be spiral or solenoid type coils as long as the resonators use coils.
  • the distance between the power feeding coil 21 and the power feeding resonator 22 is d12
  • the distance between the power feeding resonator 22 and the power receiving resonator 32 is d23
  • the distance between the power receiving resonator 32 and the power receiving coil 31 Is d34 (see FIG. 1).
  • the coupling coefficient between the coil L 1 and the coil L 2 is denoted as k 12
  • the coupling coefficient between the coil L 2 and the coil L 3 is denoted as k 23
  • the coil A coupling coefficient between L 3 and the coil L 4 is expressed as k 34 .
  • Resistance values, inductances, capacitor capacities, and coupling coefficients k 12 , k 23 , k 34 in R 4 , L 4 , C 4 of the RLC circuit of the receiving coil 31 are parameters that can be changed at the design / manufacturing stage, etc. Is set so as to satisfy the relational expression (Expression 3) described later (details will be described later).
  • the wireless power transmission device 1 when the resonance frequency of the power supply resonator 22 and the power reception resonator 32 are matched, a magnetic field resonance state is created between the power supply resonator 22 and the power reception resonator 32. can do.
  • a magnetic field resonance state is created in a state where the power feeding resonator 22 and the power receiving resonator 32 resonate, electric power can be transmitted from the power feeding resonator 22 to the power receiving resonator 32 as magnetic field energy.
  • FIG. 1 a circuit diagram of the wireless power transmission device 1 (including the stabilization circuit 7, the charging circuit 8, and the rechargeable battery 9) configured as described above is shown in the lower diagram of FIG. This illustrates replace the entire wireless power transmission device 1 to one of the input impedance Z in.
  • the wireless power to control the power output from the transmission device 1, since the AC power supply 6 When it constant voltage power supply that is commonly used voltage V in is kept constant, the value of current I in It is understood that it is necessary to control.
  • the current I in can be expressed as (Expression 2) when expressed by a relational expression based on the voltage V in and the input impedance Z in .
  • the value of the current I in is within an appropriate current range (I in (MIN) to I in as shown in FIG. (MAX) ).
  • the reason why the current I in is required to be supplied at a value within the appropriate current range is that if the current supplied to the rechargeable battery 9 is smaller than the value of I in (MIN) , the current becomes small, and the characteristics of the rechargeable battery 9
  • the current supplied to the rechargeable battery 9 is larger than the value of I in (MAX) , an overcurrent occurs, and the stabilizing circuit 7, the charging circuit 8 and the rechargeable battery 9 generate heat. There is a possibility that the lifetime may be shortened.
  • the configuration of the wireless power transmission device 1 is represented by an equivalent circuit as shown in FIG. From the equivalent circuit of FIG. 3, the input impedance Z in of the wireless power transmission device 1 can be expressed as (Equation 3). ... (Formula 3)
  • the impedances Z 1 , Z 2 , Z 3 , Z 4 , and Z l in the power feeding coil 21, the power feeding resonator 22, the power receiving resonator 32, and the power receiving coil 31 of the wireless power transmission device 1 in the present embodiment are respectively It can be expressed as (Equation 4). ... (Formula 4)
  • Resistance values, inductances, capacitor capacities, and coupling coefficients k 12 , k 23 , and k 34 in R 4 , L 4 , and C 4 of the RLC circuit of the receiving coil 31 are parameters that can be changed at the design / manufacturing stage, etc.
  • the value of the input impedance Z in of the wireless power transmission device 1 derived from the relational expression (Equation 5) can be adjusted so as to fall within the range of Z in (MIN) to Z in (MAX) .
  • the drive frequency of the power supplied to the power supply module 2 is set to the power supply coil 21 and power supply resonator 22 included in the power supply module 2 and the power reception coil 31 and power reception resonator included in the power reception module 3. It is generally known that the power transmission efficiency in wireless power transmission can be maximized by making it coincide with the resonance frequency of 32, and the drive frequency is set to the resonance frequency in order to maximize the power transmission efficiency. It is common to make it.
  • the power transmission efficiency refers to the ratio of the power received by the power receiving module 3 to the power supplied to the power supply module 2.
  • the parameters are R 1 of the RLC circuit of the feeding coil 21, R 2 of the RLC circuit of the feeding resonator 22, R 3 of the RLC circuit of the receiving resonator 32, R 4 of the RLC circuit of the receiving coil 31, etc. It can also be seen that there are only coupling coefficients k 12 , k 23 , and k 34 .
  • capacity such as a circuit of a capacitor and coils will be determined in advance, thus mainly become uncontrollable the value of the input impedance Z in only by the resistance value of each RLC circuits. This means that the capacity of such capacitors and a coil of the RLC circuit, the design freedom of not free to modify the parameters that control the input impedance Z in the wireless power transmission apparatus 1 becomes lower.
  • the drive frequency of the power supplied to the power supply module 2 is the resonance frequency of the power supply resonator 22 included in the power supply module 2 and the power reception resonator 32 included in the power reception module 3.
  • the value of the input impedance Z in are adjusted within the range of Z in (MIN) to Z in (MAX) , R 1 , L 1 , C 1 of the feeding coil 21 as parameters, and R 2 , L 2 , C 2 of the feeding resonator 22 as parameters. , R 3 , L 3 , C 3 of the power receiving resonator 32, resistance values such as R 4 , L 4 , C 4 of the power receiving coil 31, inductance, capacitor capacity, and coupling coefficients k 12 , k 23 , k 34 .
  • the wireless power transmission device 1 it is possible to appropriately arrange the wireless power transmission device 1 according to the volume, shape, and total weight of the wireless power transmission device 1 and to increase the design flexibility of the wireless power transmission device 1. . That is, in the wireless power transmission device 1, there are more parameter elements for adjusting the value of the input impedance Z in than the conventional one that maximizes the power transmission efficiency, and the input impedance of the wireless power transmission device 1 is increased. Fine control of the value of Z in becomes possible.
  • R 4 , L 4 , C 4, and other resistance values, inductances, capacitor capacities, and coupling coefficients k 12 , k 23 , and k 34 are changed in a balanced manner and are derived by (Equation 3).
  • Equation 3 Equation 3
  • the drive frequency of the power supplied to the power supply module 2 is set to the resonance frequency in the power supply module 2 (power supply coil 21 / power supply resonator 22) and power reception module 3 (power reception coil 31 / power reception resonator 32).
  • each element value of the circuit elements constituting the power feeding module 2 and the power receiving module 3 (R 1 , L 1 , C 1 of the power feeding coil 21, R 2 , L 2 of the power feeding resonator 22) , C 2 , R 3 , L 3 , C 3 of the power receiving resonator 32, resistance values such as R 4 , L 4 , C 4 of the power receiving coil 31, inductance, capacitor capacity, and coupling coefficients k 12 , k 23 , k 34 ) can be freely changed as a parameter for changing the input impedance Z in of the wireless power transmission device 1.
  • the wireless power transmission device 1 By varying the parameters, respectively so as to satisfy the above relationship, it is possible to adjust the power supplied by controlling the input impedance Z in of the wireless power transmission device 1.
  • the input impedance Z in will be freely set the element values of the circuit elements constituting the power supply module 2 and the power receiving module 3 as a parameter, the degree of freedom in the design of the wireless power transmission device 1
  • the wireless power transmission device 1 itself can be made portable, compact, and low in cost.
  • the wireless power transmission apparatus 1 which is adjusted by the power supply control method, in order to control the input impedance Z in, feed module 2 and the element values of the circuit elements constituting the receiving module 3 (feeding coil 21 R 1 , L 1 , C 1 , R 2 , L 2 , C 2 of the feed resonator 22, R 3 , L 3 , C 3 of the power receiving resonator 32, R 4 , L 4 , C 4 of the power receiving coil 31.
  • the resistance value, the inductance, the capacitor capacity, and the coupling coefficients k 12 , k 23 , k 34 ) can be freely set as parameters. Thereby, the design flexibility of the wireless power transmission device 1 can be increased, and the portability, compactness, and cost reduction of the wireless power transmission device 1 itself can be realized.
  • the transmission characteristic “S21” represents a signal measured by connecting the wireless power transmission device 1 to the network analyzer 110 (in this embodiment, E5061B manufactured by Agilent Technologies, Inc.), It is displayed in decibels, and the larger the value, the higher the power transmission efficiency.
  • the transmission characteristic “S21” of the wireless power transmission device 1 with respect to the drive frequency of the power supplied to the wireless power transmission device 1 depends on the strength of the magnetic field coupling between the power supply module 2 and the power reception module 3 (magnetic field coupling). It is divided into those having the nature of nature and those having the nature of bimodality. This unimodality means that there is one peak of the transmission characteristic “S21” with respect to the drive frequency, and that peak appears in the resonance frequency band (f 0 ) (see the broken line 51 in FIG. 4).
  • bimodality has two peaks of the transmission characteristic “S21” with respect to the drive frequency, and the two peaks are a drive frequency band (fL) lower than the resonance frequency and a drive frequency band (fH) higher than the resonance frequency. ) (See the solid line 52 in FIG. 4). More specifically, bimodality is defined as a state in which the reflection characteristic “S11” measured by connecting the wireless power transmission device to the network analyzer 110 has two peaks. Accordingly, even if the peak of the transmission characteristic “S21” with respect to the driving frequency looks at one glance, if the measured reflection characteristic “S11” has two peaks, it has a bimodal property. Shall.
  • the transmission characteristic “S21” is maximized when the driving frequency is the resonance frequency f 0 (the power transmission efficiency is maximized), as indicated by a broken line 51 in FIG. To do).
  • the transmission characteristic “S21” has a drive frequency band (fL) lower than the resonance frequency f 0 and the resonance frequency f. Maximize in a driving frequency band (fH) higher than zero .
  • the transmission characteristic “S21” in the wireless power transmission device is designed (set) to have a unimodal property, and is driven. It is used so that the transmission characteristic “S21” is maximized at the resonance frequency f 0 .
  • the power supply resonator 22 and the power reception resonator 32 are set.
  • the direction of the current flowing through the power feeding resonator 22 and the direction of the current flowing through the power receiving resonator 32 are the same.
  • the transmission characteristic “S21” (broken line 51) in a general wireless power transmission device for the purpose of maximizing the power transmission efficiency
  • the value of the transmission characteristic “S21” can be set to a relatively high value.
  • a resonance state in which the direction of the current flowing in the coil (power feeding resonator 22) in the power feeding module 2 and the direction of the current flowing in the coil (power receiving resonator 32) in the power receiving module 3 are the same direction is called an in-phase resonance mode. I will decide.
  • the magnetic field generated on the outer peripheral side of the power feeding resonator 22 and the magnetic field generated on the outer peripheral side of the power receiving resonator 32 cancel each other, so that the outer peripheral side of the power feeding resonator 22 and the power receiving resonator 32.
  • the influence of the magnetic field is reduced, and the magnetic field intensity is smaller than the magnetic field strength other than the outer peripheral side of the power feeding resonator 22 and the power receiving resonator 32 (for example, the magnetic field strength on the inner peripheral side of the power feeding resonator 22 and the power receiving resonator 32).
  • a magnetic field space having strength can be formed.
  • the drive frequency of the AC power supplied to the power supply module 2 is set to the frequency fH near the peak on the high frequency side in the bimodality (antiphase resonance mode)
  • the power supply resonator 22 and the power reception resonator 32 are in antiphase.
  • the resonance state occurs, and the direction of the current flowing through the power feeding resonator 22 and the direction of the current flowing through the power receiving resonator 32 are reversed.
  • the transmission characteristic “S21” (broken line 51) in a general wireless power transmission device for the purpose of maximizing the power transmission efficiency
  • the value of the transmission characteristic “S21” can be set to a relatively high value.
  • a resonance state in which the direction of the current flowing in the coil (power feeding resonator 22) in the power feeding module 2 and the direction of the current flowing in the coil (power receiving resonator 32) in the power receiving module 3 are opposite to each other is referred to as an antiphase resonance mode. I will call it.
  • the magnetic field generated on the inner peripheral side of the power feeding resonator 22 and the magnetic field generated on the inner peripheral side of the power receiving resonator 32 cancel each other, so that the power feeding resonator 22 and the power receiving resonator 32 are
  • the magnetic field strength on the inner peripheral side of the power supply resonator 22 and the power receiving resonator 32 other than the inner peripheral side is reduced (for example, the magnetic field strength on the outer peripheral side of the power supply resonator 22 and the power receiving resonator 32).
  • a magnetic field space having a smaller magnetic field strength can be formed.
  • the wireless power transmission device 1 itself can be made compact and the design flexibility can be improved.
  • the input impedance Z in of the wireless power transmission device 1 when the transmission characteristic “S21” of the wireless power transmission device 1 has a unimodal property was measured.
  • the output terminal 111 of the network analyzer 110 is connected to the feeding coil 21, and the input of the network analyzer 110 is connected to the receiving coil 31.
  • the terminal 112 supplying power at a predetermined drive frequency to the power supply module 2, and supplying power as magnetic field energy from the power supply resonator 22 to the power reception resonator 32 by a resonance phenomenon, transmission characteristics “S21” and to measure the input impedance Z in.
  • the distance d23 between the power feeding resonator 22 and the power receiving resonator 32 is fixed to 48 mm, the distance d12 between the power feeding coil 21 and the power feeding resonator 22, and the power receiving coil 31 and the power receiving resonator 32
  • the distance d34 between is changed and measured.
  • the transmission characteristic “S21” and the input impedance Z in are measured by matching the drive frequency to the resonance frequency at which the value of the transmission characteristic “S21” is a peak (maximum).
  • the transmission characteristic “S21” of the wireless power transmission device 1 is obtained by changing the strength of the magnetic field coupling between the power supply module 2 and the power receiving module 3 (magnetic field coupling). It can have a property or a bimodal property.
  • the distance d23 between the power feeding resonator 22 and the power receiving resonator 32 is fixed, and the distance between the power feeding coil 21 and the power feeding resonator 22 in the power feeding module 2 is fixed.
  • the combination of d12 and the distance d34 between the power receiving coil 31 and the power receiving resonator 32 in the power receiving module 3 is performed by changing various combinations.
  • the transmission characteristic “S21” has a unimodal property, while the distance d12 between the feeding coil 21 and the feeding resonator 22 and the receiving coil When the distance d34 between 31 and the power receiving resonator 32 is set to a value larger than 4 mm, the transmission characteristic “S21” has a bimodal property.
  • the measurement result in the case of unimodality is shown in FIG. From the measurement result of FIG. 6, the transmission characteristic “S21” has a unimodal property, and the distances d12 and d34 at which the value of the transmission characteristic “S21” can take a value of ⁇ 3 dB or more are shown.
  • Comparative Examples 2 to 6 correspond. When the range in which the input impedance Z in in Comparative Examples 2 to 6 can be taken is seen, it can be seen that the range is 66.6 (Comparative Example 6) to 186.1 ⁇ (Comparative Example 2).
  • the transmission characteristic “S21” of the wireless power transmission device 1 has a unimodal characteristic
  • the value of the transmission characteristic “S21” is set to a value of ⁇ 3 dB or more
  • the value of the input impedance Z in is set to , 66.6 to 186.1 ⁇
  • the condition that the value of the transmission characteristic “S21” is equal to or greater than ⁇ 3 dB is that the power transmission efficiency of the wireless power transmission apparatus is significantly reduced when the value is less than ⁇ 3 dB. . Therefore, it is a design matter that the value of the transmission characteristic “S21” is ⁇ 3 dB, which can be changed depending on the usage form.
  • the input impedance Z in of the wireless power transmission device 1 when the transmission characteristic “S21” of the wireless power transmission device 1 has a bimodal property was measured.
  • the measurement method is the same as that of the unimodal measurement method.
  • the distance d23 between the power feeding resonator 22 and the power receiving resonator 32 is fixed to 48 mm
  • the distance d12 between the power feeding coil 21 and the power feeding resonator 22, and the power receiving coil 31 and the power receiving resonator 32 Measurements were made with various combinations of the distance d34 between them.
  • the distance d12 and the distance d34 are changed to take values larger than 4 mm so as to have a bimodal nature.
  • the transmission characteristic “S21” and the input impedance Z in are the low frequency side frequency fL (in-phase resonance mode) and the high frequency side frequency fH (reverse phase resonance) at which the value of the transmission characteristic “S21” reaches a peak (maximum).
  • the measurement result in the case of bimodality is shown in FIG. From the measurement result of FIG. 7, the transmission characteristic “S21” has a bimodal property, and the distance d12 and the distance d34 that the transmission characteristic “S21” can take a value of ⁇ 3 dB or more are shown.
  • the frequencies fL on the low frequency side of Examples 1 to 4, 6, and 7 (in-phase resonance mode) and the frequency fH on the high frequency side of Examples 1, 2, 6, and 7 (reverse phase resonance mode). Is applicable.
  • the transmission characteristic “S21” has a single-peak property
  • the value of the transmission characteristic “S21” is set to a value of ⁇ 3 dB or more
  • the value of the input impedance Z in is set to 66. Adjustment can be made within a range of 6 to 186.1 ⁇ (variable range).
  • the transmission characteristic “S21” has a bimodal property
  • the value of the transmission characteristic “S21” is set to a value of ⁇ 3 dB or more
  • the value of the input impedance Z in is set to 12.98 to 149. It can be adjusted within the range of 81 ⁇ (variable range).
  • the wireless power transmission device 1 set so that the transmission characteristic “S21” has a bimodal property is the wireless power transmission device set so that the transmission characteristic “S21” has a unimodal property. It can be seen that the variable range of the input impedance Z in can be made wider than 1.
  • a predetermined transmission characteristic “S21” is measured.
  • the predetermined transmission characteristic “S21” was measured in the case of ⁇ 2.2 dB and ⁇ 2.8 dB as an example.
  • the unimodality includes Comparative Example 3 as shown in FIG.
  • Examples of the characteristics include Examples 8 to 12 as shown in FIG.
  • the transmission characteristic “S21” of the wireless power transmission device 1 has a bimodal property
  • the predetermined transmission characteristic “S21” is set (in the present embodiment, it is set to approximately ⁇ 2.2 dB). It can be seen that the input impedance Z in of the wireless power transmission device 1 in the range of 15) can range from 15.51 (Example 12) to 129.79 ⁇ (Example 8).
  • the unimodality includes Comparative Example 2 as shown in FIG. In terms of sex, Examples 13 to 17 are given as shown in FIG.
  • the transmission characteristic “S21” of the wireless power transmission apparatus 1 has a bimodal property
  • the predetermined transmission characteristic “S21” is set (in this embodiment, it is set to approximately ⁇ 2.8 dB). It can be seen that the input impedance Z in of the wireless power transmission device 1 in FIG. 9 can range from 12.98 (Example 17) to 129.38 ⁇ (Example 13).
  • the wireless power transmission device 1 set so that the transmission characteristic “S21” has a bimodal property is obtained.
  • S21 than the wireless power transmission apparatus 1 which is set to have the properties of unimodal, it can be seen that it is possible to increase the variable range of the input impedance Z in.
  • the wireless power transmission device 101 in the case where the transmission characteristic “S21” of the wireless power transmission device 1 having the circuit configuration shown in FIG. 3 has a unimodal property and a bimodal property.
  • the measurement experiment 1 related to the variable range of the input impedance Z in has been described.
  • the wireless power transmission device 101 whose circuit configuration is changed with respect to the wireless power transmission device 1 is used. And measure.
  • the wireless power transmission device 101 includes a power feeding coil 121 obtained by removing the capacitor C 1 from the power feeding coil 21 in the wireless power transmission device 1, and a power receiving coil 31 of the wireless power transmission device 1.
  • the power receiving coil 131 except for the capacitor C 4 is provided, and the rest has the same configuration as the wireless power transmission device 1.
  • Measurement experiment 2 A description will be given of a measurement experiment 2 regarding a variable range of the input impedance Z in of the wireless power transmission device 101 when the transmission characteristic “S21” of the wireless power transmission device 101 has a unimodal property and a bimodal property. To do.
  • the input impedance Z in of the wireless power transmission device 101 when the transmission characteristic “S21” of the wireless power transmission device 101 has a unimodal property was measured.
  • the output terminal 111 of the network analyzer 110 is connected to the feeding coil 121
  • the input terminal 112 of the network analyzer 110 is connected to the power receiving coil 131
  • the distance d23 between the power feeding resonator 22 and the power receiving resonator 32 is fixed to 48 mm, the distance d12 between the power feeding coil 121 and the power feeding resonator 22, and the power receiving coil 131 and the power receiving resonator 32
  • the distance d34 between is changed and measured.
  • the transmission characteristic “S21” and the input impedance Z in are measured by matching the drive frequency to the resonance frequency at which the value of the transmission characteristic “S21” is a peak (maximum).
  • the measurement result in the case of unimodality is shown in FIG. From the measurement result of FIG. 10, the transmission characteristic “S21” has a unimodal property, and the distance d12 and the distance d34 that the transmission characteristic “S21” can take a value of ⁇ 3 dB or more are shown.
  • Comparative Examples 2 to 6 correspond. When the range in which the input impedance Z in in Comparative Examples 2 to 6 can be taken is seen, it can be seen that the range is 68.9 (Comparative Example 6) to 180.7 ⁇ (Comparative Example 2).
  • the transmission characteristic “S21” of the wireless power transmission apparatus 101 has a unimodal property, if the value of the transmission characteristic “S21” is set to a value of ⁇ 3 dB or more, the value of the input impedance Z in is set to , 68.9 to 180.7 ⁇ can be adjusted.
  • the input impedance Z in of the wireless power transmission device 101 when the transmission characteristic “S21” of the wireless power transmission device 101 has a bimodal property was measured.
  • the measurement method is the same as that of the unimodal measurement method.
  • the distance d23 between the power feeding resonator 22 and the power receiving resonator 32 is fixed to 48 mm
  • the distance d12 between the power feeding coil 121 and the power feeding resonator 22, and the power receiving coil 131 and the power receiving resonator 32 Measurements were made with various combinations of the distance d34 between them.
  • the distance d12 and the distance d34 are changed to take values larger than 4 mm so as to have a bimodal nature.
  • the transmission characteristic “S21” and the input impedance Z in are the low frequency side frequency fL (in-phase resonance mode) and the high frequency side frequency fH (reverse phase resonance) at which the value of the transmission characteristic “S21” reaches a peak (maximum) the combined driving frequency mode) to measure the transmission characteristic "S21” and the input impedance Z in at the low frequency side of the frequency fL (frequency of the in-phase resonance mode) and the high-frequency side fH (antiphase resonance mode).
  • the transmission characteristic “S21” has a bimodal nature, and the main values of the distances d12 and d34 at which the value of the transmission characteristic “S21” can take a value of ⁇ 3 dB or more.
  • the frequencies fL (in-phase resonance mode) on the low frequency side of Examples 1 to 4 and 6 to 8 and the frequency fH (antiphase resonance mode) on the high frequency side of Examples 1, 2, 7, and 8 are listed. Is applicable.
  • the range that Z in can take it can be seen that it is in the range of 19.47 (fH of Example 7) to 182.30 ⁇ (fL of Example 8). That is, when the transmission characteristic “S21” of the wireless power transmission apparatus 101 has a bimodal property, if the value of the transmission characteristic “S21” is set to a value of ⁇ 3 dB or more, the value of the input impedance Z in is set to , 19.47 to 182.30 ⁇ can be adjusted.
  • the transmission characteristic “S21” has a unimodal property
  • the value of the transmission characteristic “S21” is set to a value of ⁇ 3 dB or more
  • the value of the input impedance Z in is 68. It can be adjusted within the range of 9 to 180.7 ⁇ (variable range).
  • the transmission characteristic “S21” has a bimodal nature
  • the value of the transmission characteristic “S21” is set to a value of ⁇ 3 dB or more
  • the value of the input impedance Z in is set to 19.47 to 182. It can be adjusted within the range of 30 ⁇ (variable range).
  • the wireless power transmission apparatus 101 in which the transmission characteristic “S21” is set to have a bimodal property is the same as the wireless power transmission apparatus 101 in which the transmission characteristic “S21” is set to have a unimodal characteristic. than 101, it is understood that it is possible to increase the variable range of the input impedance Z in.
  • the predetermined transmission characteristic “S21” is measured.
  • the predetermined transmission characteristic “S21” was measured for the case of ⁇ 2.0 dB and ⁇ 2.7 dB as an example.
  • the transmission characteristic “S21” of the wireless power transmission apparatus 101 has a bimodal property
  • the predetermined transmission characteristic “S21” when set (in this embodiment, it is set to approximately ⁇ 2.0 dB). It can be seen that the input impedance Z in of the wireless power transmission apparatus 101 of FIG. 4 can be in the range of 38.50 (Example 15) to 167.52 ⁇ (Example 9).
  • the unimodality includes the comparative example 2 as shown in FIG. In terms of sex, Examples 16 to 20 are given as shown in FIG.
  • the transmission characteristic “S21” of the wireless power transmission apparatus 101 has a bimodal property
  • the predetermined transmission characteristic “S21” is set (in this embodiment, it is set to approximately ⁇ 2.7 dB). It can be seen that the input impedance Z in of the wireless power transmission apparatus 101 in FIG. 9 can range from 19.47 (Example 20) to 102.14 ⁇ (Example 16).
  • the wireless power transmission apparatus 101 that is set so that the transmission characteristic “S21” has a bimodal property is the transmission characteristic “S21”. S21 "than the wireless power transmission apparatus 101 set to have the properties of unimodal, it can be seen that it is possible to increase the variable range of the input impedance Z in.
  • the value of the transmission characteristics with respect to the driving frequency of the power supplied to the power supply module 2 a lower driving frequency band than the resonance frequency (f 0) (fL) and the resonance frequency (f 0)
  • the wireless power transmission device having a peak in the higher driving frequency band (fH) (bimodal) has a peak of the value of the transmission characteristic “S21” with respect to the driving frequency of the power supplied to the power supply module 2 in the resonance frequency band ( compared to one appearing (unimodal) wireless power transmission apparatus in f 0), it is possible to increase the variable range of the input impedance Z in.
  • variable range of the input impedance Z in can be widened because each element value of a plurality of circuit elements constituting the power supply module 2 and the power reception module 3 and mutual inductance are used as parameters.
  • a wide range of settings can be set compared to settings that have properties, and the design flexibility of the wireless power transmission device can be further increased to realize portability, compactness, and cost reduction of the wireless power transmission device itself. Will be able to.
  • the drive frequency of the power supplied to the power supply module 2 is set to a band corresponding to the peak value of the transmission characteristic “S21” appearing in the drive frequency band (fL) lower than the resonance frequency. Even when the transmission characteristic “S21” has a bimodal property, the transmission characteristic “S21” has a single peak property, but when the drive frequency is adjusted to the resonance frequency, it is inferior to some extent. “S21” can be secured.
  • the magnetic field generated on the outer peripheral side of the power supply module 2 and the magnetic field generated on the outer peripheral side of the power receiving module 3 cancel each other, thereby reducing the influence of the magnetic field on the outer peripheral side of the power feeding module 2 and the power receiving module 3.
  • a magnetic field space having a magnetic field strength smaller than the magnetic field strength other than the outer peripheral side of the power supply module 2 and the power receiving module 3 can be formed. Accordingly, by storing a circuit (such as the stabilization circuit 7, the charging circuit 8, and the rechargeable battery 9) that is not affected by the magnetic field in the formed magnetic field space, the space can be effectively used, and the wireless power transmission device 1 It becomes possible to reduce the size of itself.
  • a circuit such as the stabilization circuit 7, the charging circuit 8, and the rechargeable battery 9
  • the drive frequency of the power supplied to the power supply module 2 is set to a band corresponding to the peak value of the transmission characteristic “S21” appearing in the drive frequency band (fH) higher than the resonance frequency. Even when the transmission characteristic “S21” has a bimodal property, the transmission characteristic “S21” has a single peak property, but when the drive frequency is adjusted to the resonance frequency, it is inferior to some extent. “S21” can be secured. Further, the magnetic field generated on the inner peripheral side of the power feeding module 2 and the magnetic field generated on the inner peripheral side of the power receiving module 3 cancel each other, thereby reducing the influence of the magnetic field on the inner peripheral side of the power feeding module 2 and the power receiving module 3.
  • a magnetic field space having a magnetic field strength smaller than the magnetic field strengths other than the inner peripheral side of the power supply module 2 and the power receiving module 3 can be formed. Accordingly, by storing a circuit (such as the stabilization circuit 7, the charging circuit 8, and the rechargeable battery 9) that is not affected by the magnetic field in the formed magnetic field space, the space can be effectively used, and the wireless power transmission device 1 It becomes possible to reduce the size of itself.
  • a circuit such as the stabilization circuit 7, the charging circuit 8, and the rechargeable battery 9
  • a design method which is one process for manufacturing the wireless power transmission device 1, will be described with reference to FIGS.
  • a wireless headset 200 including an earphone speaker unit 201a and a charger 201 will be described as examples of portable devices on which the wireless power transmission device 1 is mounted (see FIG. 13).
  • the wireless power transmission device 1 designed by this design method includes a power receiving module 3 (power receiving coil 31 and power receiving resonator 32) and a power feeding module 2 (power feeding coil), respectively, in the wireless headset 200 and the charger 201 shown in FIG. 21 is mounted as a feeding resonator 22).
  • the stabilization circuit 7, the charging circuit 8, and the rechargeable battery 9 are illustrated outside the power receiving module 3, but actually, the solenoidal power receiving coil 31 and the coil of the power receiving resonator 32 are used. It is arranged on the inner circumference side. That is, the wireless headset 200 includes the power receiving module 3, the stabilization circuit 7, the charging circuit 8, and the rechargeable battery 9, and the charger 201 includes the power supply module 2.
  • the power supply coil 21 is used with the AC power supply 6 connected thereto.
  • the amount of power received by the power receiving module 3 is determined from the capacity of the rechargeable battery 9 and the charging current required for charging the rechargeable battery 9 (S1).
  • the distance between the power supply module 2 and the power reception module 3 is determined (S2). This is a distance between the power supply module 2 and the power reception module 3 when the wireless headset 200 including the power reception module 3 is placed on the charger 201 including the power supply module 2.
  • the battery is being charged.
  • the distance between the power supply module 2 and the power reception module 3 is determined in consideration of the shape and structure of the wireless headset 200 and the charger 201.
  • the coil diameters of the power receiving coil 31 and the power receiving resonator 32 in the power receiving module 3 are determined (S3).
  • the coil diameters of the power feeding coil 21 and the power feeding resonator 22 in the power feeding module 2 are determined (S4).
  • the coupling coefficient between the power feeding resonator 22 (coil L 2 ) and the power receiving resonator 32 (coil L 3 ) of the wireless power transmission device 1 is k 23, and the power transmission efficiency Will be decided.
  • the minimum necessary amount of power supplied to the power supply module 2 is determined ( S5).
  • the design value of the input impedance Zin in the wireless power transmission device 1 is based on the received power amount received by the power receiving module 3, the power transmission efficiency, and the minimum necessary power supply amount to be fed to the power feeding module 2. Determined (S6).
  • the degree of freedom in designing the wireless power transmission device 1 in order to control the input impedance Z in, and freely set the element values of the circuit elements constituting the power supply module 2 and the power receiving module 3 as a parameter, the degree of freedom in designing the wireless power transmission device 1
  • the wireless power transmission device 1 excellent in portability, compactness, and cost reduction can be manufactured.
  • the wireless headset 200 has been described as an example. However, as long as the device includes a rechargeable battery, a tablet PC, a digital camera, a mobile phone, an earphone music player, a hearing aid, and a sound collector Can also be used.
  • the wireless power transmission device 1 that performs power transmission by coupling a magnetic field using a resonance phenomenon (magnetic field resonance state) between resonators (coils) included in the power supply module 2 and the power reception module 3 is illustrated.
  • the present invention is also applicable to the wireless power transmission apparatus 1 that performs power transmission using electromagnetic induction between coils.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 給電コイル21及び給電共振器22を備えた給電モジュール2から、受電共振器32及び受電コイル31を備えた受電モジュール3に対して磁界を変化させて電力を供給する無線電力伝送装置1の供給電力制御方法として、給電モジュール2に供給する電力の駆動周波数が給電モジュール2及び受電モジュール3における共振周波数とはならない値で供給し、給電モジュール2及び受電モジュール3を構成する回路素子の各素子値をパラメータとして、パラメータをそれぞれ変えることにより、無線電力伝送装置1の入力インピーダンスZinを設定して供給する電力を調整する。

Description

無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
 本発明は、設計自由度を高めることができる、無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法に関する。
 近年、ノート型PC、タブレット型PC、デジタルカメラ、携帯電話、携帯ゲーム機、イヤホン型音楽プレイヤー、無線式ヘッドセット、補聴器、レコーダーなど人が携帯しながら使用できる携帯型の電子機器が急速に普及してきている。そして、これらの携帯型の電子機器の多くには充電池が搭載されており、定期的な充電が必要とされる。この電子機器の充電池への充電作業を簡易にするために、給電装置と電子機器に搭載された受電装置との間で無線による電力伝送を利用した給電技術(磁界を変化させて電力伝送を行う無線電力伝送技術)により、充電池を充電する機器が増えつつある。
 例えば、無線電力伝送技術としては、コイル間の電磁誘導を利用して電力伝送を行う技術や(例えば、特許文献1参照)、給電装置及び受電装置が備える共振器(コイル)間の共振現象(磁界共鳴状態)を利用して磁場を結合させることにより電力伝送を行う技術が挙げられる(例えば、特許文献2参照)。
 このような無線電力伝送技術を使用することにより安定的に充電池を充電するには、充電池に供給される電力(電流)を所定の範囲内の値で供給することが求められる。その理由としては、充電池に供給される電力(電流)が所定の範囲内の値より小さいと小電力(小電流)となり、充電池の特性により充電ができなくなってしまうこと、一方で、充電池に供給される電力(電流)が所定の範囲内の値より大きいと過電流となり、充電池や充電回路が発熱し充電池や充電回路の寿命を縮めてしまうおそれがあることが挙げられる。
 上記要求に答えるために、無線電力伝送を行う給電装置及び受電装置における入力インピーダンスを制御することにより、充電池に供給される電力(電流)を所定の範囲内の値にコントロールすることが考えられる。
 そして、無線電力伝送を行う給電装置及び受電装置における入力インピーダンスを制御するために、別個にインピーダンス整合器を受電装置等に設けることが考えられる。例えば、特許文献3に記載された非接触給電システムでは、上記インピーダンス整合器に相当する手段として自動整合器12、及び、自動整合器23(インピーダンス調整手段)を設けることにより、非接触給電システムにおける入力インピーダンスを制御している(特許文献3の図1参照)。
 しかしながら、インピーダンス整合器を新たに設けることは、携帯性・コンパクト化・低コスト化が求められる携帯電子機器においては、部品点数が多くなってしまい不都合である。
 そこで、無線電力伝送を行う給電装置及び受電装置に設けられた抵抗器やコンデンサやコイルなどの容量を調整することにより、入力インピーダンスを制御することが考えられる。
特許第4624768号公報 特開2010-239769号公報 特開2011-050140号公報 特開2012-182975号公報
 もっとも、特許文献3の背景技術(段落[0008]~[0010]参照)、特許文献4のワイヤレス電力伝送システムの明細書中にも記載されているように、給電装置に供給する電力の駆動周波数に、給電装置及び受電装置が備える共振器が有する共振周波数を一致させる(若しくは、駆動周波数を、給電装置及び受電装置が備える共振器が有する共振周波数に一致させる)ことにより、ワイヤレス給電における電力伝送効率を最大とすることができることが一般的に知られており(特許文献4の段落[0013]参照)、電力伝送効率の最大化を求めてこのような設定にするのが一般的である。そして、このような給電装置及び受電装置における共振器は、それぞれLC共振回路を含む構成にされているため、電力伝送効率を最大にするには、給電装置及び受電装置におけるLC共振回路はそれぞれの共振周波数が駆動周波数に一致するような値(コンデンサやコイルなどの容量:共振条件 ωL=1/ωC)に必然的に決定されてしまう(特許文献4の段落[0027]参照)。
 このように、ワイヤレス給電における電力伝送効率を最大化するために、給電装置に供給する電力の駆動周波数を共振周波数と一致させることが一般的であるが、LC共振回路のコンデンサやコイルなどの容量が予め決まってしまい、LC共振回路のコンデンサやコイルなどの容量を、入力インピーダンスを制御するパラメータとして自由に変更できなくなってしまう。即ち、入力インピーダンスを制御するために、LC共振回路のコンデンサやコイルなどの容量を自由に設定できないことは、携帯性・コンパクト化・低コスト化が求められる携帯型の電子機器の設計に対する自由度が低いことを意味する。
 そこで、本発明の目的は、無線電力伝送を行う給電装置及び受電装置に設けられたコンデンサやコイルなどの容量も含めてその値を自由に調整することにより、入力インピーダンスの値を設定し、もって、供給する電力(電流)を制御することができる無線電力伝送装置、供給電力制御方法、及び、無線電力伝送装置の製造方法を提供することにある。
 上記課題を解決するための発明の一つは、給電コイル及び給電共振器の少なくとも1つを備えた給電モジュールから、受電共振器及び受電コイルの少なくとも1つを備えた受電モジュールに対して磁界を変化させて電力を供給する無線電力伝送装置の供給電力制御方法であって、前記給電モジュールに供給する電力の駆動周波数が、前記給電モジュール及び前記受電モジュールにおける共振周波数とはならない値で供給し、前記給電モジュール及び前記受電モジュールを構成する複数の回路素子の各素子値をパラメータとして、当該パラメータをそれぞれ変えることにより、当該無線電力伝送装置の入力インピーダンスZinを設定して供給する電力を調整することを特徴としている。
 上記方法によれば、給電モジュールに供給する電力の駆動周波数を、給電モジュール及び受電モジュールにおける共振周波数とはならない値で供給することにより、給電モジュール及び受電モジュールを構成する複数の回路素子の各素子値を、当該無線電力伝送装置の入力インピーダンスZinを変えるパラメータとして自由に変更することができる。そして、当該パラメータをそれぞれ変えることにより、無線電力伝送装置の入力インピーダンスZinを設定して供給する電力を調整することができる。このように、入力インピーダンスZinを制御するために、給電モジュール及び受電モジュールを構成する複数の回路素子の各素子値をパラメータとして自由に設定できることになり、無線電力伝送装置の設計自由度を高めて、無線電力伝送装置自体の携帯性・コンパクト化・低コスト化を実現することができる。
 また、上記課題を解決するための発明の一つは、少なくとも給電コイル及び給電共振器を備えた給電モジュールから、少なくとも受電共振器及び受電コイルを備えた受電モジュールに対して共振現象によって電力を供給する無線電力伝送装置の供給電力制御方法であって、
 前記給電モジュールに供給する電力の駆動周波数が、前記給電モジュール及び受電モジュールにおける共振周波数とはならない値で供給し、前記給電コイルを構成する、コイルL1を含む各回路素子が有する合計のインピーダンスをZ1、前記給電共振器を構成する、コイルL2を含む各回路素子が有する合計のインピーダンスをZ2、前記受電共振器を構成する、コイルL3を含む各回路素子が有する合計のインピーダンスをZ3、前記受電コイルを構成する、コイルL4を含む各回路素子が有する合計のインピーダンスをZ4、前記受電コイルから給電される機器の合計の負荷インピーダンスをZl、前記給電コイルのコイルL1と前記給電共振器のコイルL2との間の相互インダクタンスをM12、前記給電共振器のコイルL2と前記受電共振器のコイルL3との間の相互インダクタンスをM23、前記受電共振器のコイルL3と前記受電コイルのコイルL4との間の相互インダクタンスをM34、とし、
 前記給電コイル、前記給電共振器、前記受電共振器、及び、前記受電コイルを構成する複数の回路素子の各素子値、及び、前記相互インダクタンスをパラメータとして、当該パラメータをそれぞれ変えることにより、下記関係式により導出される当該無線電力伝送装置の入力インピーダンスZinを制御して供給する電力を調整することを特徴としている。
Figure JPOXMLDOC01-appb-M000002
 上記方法によれば、少なくとも給電コイル及び給電共振器を備えた給電モジュールから、少なくとも受電共振器及び受電コイルを備えた受電モジュールに対して共振現象によって電力を供給する無線電力伝送装置の供給電力制御方法に関して、上記関係式を満たすようにパラメータをそれぞれ変えることにより、入力インピーダンスZinを制御して供給する電力を調整することができる。このように、入力インピーダンスZinを制御するために、給電モジュール及び受電モジュールを構成する複数の回路素子の各素子値をパラメータとして自由に設定できることになり、無線電力伝送装置の設計自由度を高めて、無線電力伝送装置自体の携帯性・コンパクト化・低コスト化を実現することができる。
 また、上記課題を解決するための発明の一つは、上記無線電力伝送装置の供給電力制御方法であって、前記給電モジュール及び前記受電モジュールを構成する複数の回路素子の各素子値、及び、前記相互インダクタンスをパラメータとして、当該パラメータをそれぞれ変えることにより、前記給電モジュールに供給する電力の前記駆動周波数に対する伝送特性の値が、前記共振周波数よりも低い駆動周波数帯域及び前記共振周波数よりも高い駆動周波数帯域にそれぞれピークを有するように設定することを特徴としている。
 上記方法によって、給電モジュールに供給する電力の駆動周波数に対する伝送特性の値を、共振周波数よりも低い駆動周波数帯域及び共振周波数よりも高い駆動周波数帯域にそれぞれピークを有する(後述する双峰性の性質を有する)ように設定する。これにより、双峰性の性質を有した無線電力伝送装置は、給電モジュールに供給する電力の駆動周波数に対する伝送特性の値のピークが、共振周波数帯域において一つ現れるタイプ(後述する単峰性の性質を有する)に比べて、入力インピーダンスZinの可変範囲を広くすることができる。そして、入力インピーダンスZinの可変範囲を広くすることができるということは、給電モジュール及び受電モジュールを構成する複数の回路素子の各素子値、及び、相互インダクタンスをパラメータとして、単峰性の性質を有する設定に比べて、幅広く設定することができるようになり、無線電力伝送装置の設計自由度をより高めて、無線電力伝送装置自体の携帯性・コンパクト化・低コスト化を実現することができる。
 また、上記課題を解決するための発明の一つは、上記無線電力伝送装置の供給電力制御方法であって、前記給電モジュールに供給する電力の駆動周波数は、前記共振周波数よりも低い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域であることを特徴としている。
 上記方法によれば、伝送特性が双峰性の性質を有する場合でも、伝送特性が単峰性の性質を有する場合に駆動周波数を共振周波数に合わせたものには劣るものの、ある程度高い伝送特性を確保することができる。
 また、給電モジュールの外周側に発生する磁界と受電モジュールの外周側に発生する磁界とが打ち消し合うことにより、給電モジュール及び受電モジュールの外周側に、磁界による影響が低減されて、給電モジュール及び受電モジュールの外周側以外の磁界強度よりも小さな磁界強度を有する磁界空間を形成することができる。これにより、形成した磁界空間に、磁界の影響を受けたくない回路等を格納することで、スペースの有効活用ができ、無線電力伝送装置自体の小型化を図ることが可能になる。
 また、上記課題を解決するための発明の一つは、上記無線電力伝送装置の供給電力制御方法であって、前記給電モジュールに供給する電力の駆動周波数は、前記共振周波数よりも高い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域であることを特徴としている。
 上記方法によれば、伝送特性が双峰性の性質を有する場合でも、伝送特性が単峰性の性質を有する場合に駆動周波数を共振周波数に合わせたものには劣るものの、ある程度高い伝送特性を確保することができる。
 また、給電モジュールの内周側に発生する磁界と受電モジュールの内周側に発生する磁界とが打ち消し合うことにより、給電モジュール及び受電モジュールの内周側に、磁界による影響が低減されて、給電モジュール及び受電モジュールの内周側以外の磁界強度よりも小さな磁界強度を有する磁界空間を形成することができる。これにより、形成した磁界空間に、磁界の影響を受けたくない回路等を格納することで、スペースの有効活用ができ、無線電力伝送装置自体の小型化を図ることが可能になる。
 また、上記課題を解決するための発明の一つとして、上記供給電力制御方法により調整されたことを特徴とする無線電力伝送装置であってもよい。
 上記構成によれば、入力インピーダンスを制御するために、給電モジュール及び受電モジュールを構成する複数の回路素子の各素子値をパラメータとして自由に設定することができる。これにより、無線電力伝送装置の設計自由度を高めて、無線電力伝送装置自体の携帯性・コンパクト化・低コスト化を実現することができる。
 また、上記課題を解決するための発明の一つは、給電コイル及び給電共振器の少なくとも1つを備えた給電モジュールから、受電共振器及び受電コイルの少なくとも1つを備えた受電モジュールに対して供給する電力の駆動周波数が、前記給電モジュール及び受電モジュールにおける共振周波数とはならない値で供給し、且つ、磁界を変化させて電力を供給する無線電力伝送装置の製造方法であって、前記給電モジュール及び前記受電モジュールを構成する複数の回路素子の各素子値をパラメータとして、当該パラメータをそれぞれ変えることにより、当該無線電力伝送装置の入力インピーダンスZinを制御して、当該無線電力伝送装置が供給可能な電力を調整する設計工程を含むことを特徴とする。
 上記方法によれば、入力インピーダンスを制御するために、給電モジュール及び受電モジュールを構成する複数の回路素子の各素子値をパラメータとして自由に設定し、無線電力伝送装置の設計自由度を高めて、携帯性・コンパクト化・低コスト化に優れた無線電力伝送装置を製造することができる。
 無線電力伝送を行う給電装置及び受電装置に設けられたコンデンサやコイルなどの容量も含めてその値を自由に調整することにより、入力インピーダンスの値を設定し、もって、供給する電力(電流)を制御することができる無線電力伝送装置、供給電力制御方法、及び、無線電力伝送装置の製造方法を提供することができる。
無線電力伝送装置の概略説明図である。 適正電流範囲の説明図である。 無線電力伝送装置の等価回路の説明図である。 駆動周波数に対する伝送特性『S21』の関係を示した説明図である。 測定実験1に使用する無線電力伝送装置の概略説明図である。 測定実験1の比較例に係る伝送特性『S21』が単峰性の性質を有する場合の入力インピーダンスZinの可変範囲の測定結果を示す表である。 測定実験1の実施例に係る伝送特性『S21』が双峰性の性質を有する場合の入力インピーダンスZinの可変範囲の測定結果を示す表である。 測定実験1において伝送特性『S21』が双峰性の性質を有する場合の無線電力伝送装置の入力インピーダンスZin測定において、伝送特性『S21』を-2.2dBに設定した場合及び-2.8dBに設定した場合の入力インピーダンスZinの可変範囲の測定結果を示す表である。 測定実験2に使用する無線電力伝送装置の等価回路の説明図である。 測定実験2の比較例に係る伝送特性『S21』が単峰性の性質を有する場合の入力インピーダンスZinの可変範囲の測定結果を示す表である。 測定実験2の実施例に係る伝送特性『S21』が双峰性の性質を有する場合の入力インピーダンスZinの可変範囲の測定結果を示す表である。 測定実験2において伝送特性『S21』が双峰性の性質を有する場合の無線電力伝送装置の入力インピーダンスZin測定において、伝送特性『S21』を-2.0dBに設定した場合及び-2.7dBに設定した場合の入力インピーダンスZinの可変範囲の測定結果を示す表である。 無線電力伝送装置の製造方法を説明する説明図である。 無線電力伝送装置を含む無線式ヘッドセット及び充電器の設計方法を説明したフローチャートである。
 以下に本発明に係る無線電力伝送装置、供給電力制御方法、及び、無線電力伝送装置の製造方法の実施形態について説明する。
 (実施形態)
 まず、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法を説明する前に、供給電力制御方法又は製造方法によって設計・製造される無線電力伝送装置1について説明する。
 (無線電力伝送装置1の構成)
 無線電力伝送装置1は、図1に示すように、給電コイル21及び給電共振器22を備える給電モジュール2と、受電コイル31及び受電共振器32を備える受電モジュール3とを備えている。そして、給電モジュール2の給電コイル21に、給電モジュール2に供給する電力の駆動周波数を所定の値に設定した発振回路を備えた交流電源6を接続し、受電モジュール3の受電コイル31に、受電された交流電力を整流化する安定回路7及び過充電を防止する充電回路8を介して充電池9を接続している。
 給電コイル21は、交流電源6から得られた電力を電磁誘導によって給電共振器22に供給する役割を果たす。この給電コイル21は、図3に示すように、抵抗器R1、コイルL1、及び、コンデンサC1を要素とするRLC回路を構成している。なお、コイルL1部分は、銅線材(絶縁被膜付)を1回巻にして、コイル径を96mmφに設定している。また、給電コイル21を構成する回路素子が有する合計のインピーダンスをZ1とし、本実施形態では、給電コイル21を構成する抵抗器R1、コイルL1、及び、コンデンサC1を要素とするRLC回路(回路素子)が有する合計のインピーダンスをZ1とする。
 受電コイル31は、給電共振器22から受電共振器32に磁界エネルギーとして伝送された電力を電磁誘導によって受電し、安定回路7及び充電回路8を介して充電池9に供給する役割を果たす。この受電コイル31は、給電コイル21同様に、図3に示すように、抵抗器R4、コイルL4、及び、コンデンサC4を要素とするRLC回路を構成している。なお、コイルL4部分は、銅線材(絶縁被膜付)を1回巻にして、コイル径96mmφに設定している。また、受電コイル31を構成する回路素子が有する合計のインピーダンスをZ4とし、本実施形態では、受電コイル31を構成する抵抗器R4、コイルL4、及び、コンデンサC4を要素とするRLC回路(回路素子)が有する合計のインピーダンスをZ4とする。また、図3では、受電コイル31に接続された安定回路7、充電回路8及び充電池9の各負荷抵抗を合わせたものを便宜的に抵抗器Rlとしている(即ち、抵抗器Rlの値は、無線電力伝送装置1に接続される機器の負荷抵抗の総合値である)。そして、受電コイル31から給電される機器(本実施形態では、安定回路7、充電回路8及び充電池9)の合計の負荷インピーダンスをZlとする。
 給電共振器22は、図3に示すように、抵抗器R2、コイルL2、及び、コンデンサC2を要素とするRLC回路を構成している。また、受電共振器32は、図3に示すように、抵抗器R3、コイルL3、及び、コンデンサC3を要素とするRLC回路を構成している。そして、給電共振器22及び受電共振器32は、それぞれ共振回路となり、磁界共鳴状態を創出する役割を果たす。ここで、磁界共鳴状態(共振現象)とは、2つ以上のコイルが共振周波数において同調することをいう。また、給電共振器22を構成する回路素子が有する合計のインピーダンスをZ2とし、本実施形態では、給電共振器22を構成する、抵抗器R2、コイルL2、及び、コンデンサC2を要素とするRLC回路(回路素子)が有する合計のインピーダンスをZ2とする。また、受電共振器32を構成する回路素子が有する合計のインピーダンスをZ3とし、本実施形態では、受電共振器32を構成する、抵抗器R3、コイルL3、及び、コンデンサC3を要素とするRLC回路(回路素子)が有する合計のインピーダンスをZ3とする。
 また、給電共振器22及び受電共振器32における共振回路としてのRLC回路では、インダクタンスをL、コンデンサ容量をCとすると、(式1)によって定まるfが共振周波数となる。そして、本実施形態における給電コイル21、給電共振器22、受電コイル31、及び、受電共振器32の共振周波数は、12.8MHzとしている。
Figure JPOXMLDOC01-appb-M000003
 また、給電共振器22及び受電共振器32は、銅線材(絶縁被膜付)を4回巻にした、コイル径96mmφのソレノイド型のコイルを使用している。また、給電共振器22及び受電共振器32における共振周波数は一致させている。なお、給電共振器22及び受電共振器32は、コイルを使用した共振器であれば、スパイラル型やソレノイド型などのコイルであってもよい。
 また、給電コイル21と給電共振器22との間の距離をd12とし、給電共振器22と受電共振器32との間の距離をd23とし、受電共振器32と受電コイル31との間の距離をd34としている(図1参照)。
 また、図3に示すように、給電コイル21のコイルL1と給電共振器22のコイルL2との間の相互インダクタンスをM12、給電共振器22のコイルL2と受電共振器32のコイルL3との間の相互インダクタンスをM23、受電共振器32のコイルL3と受電コイル31のコイルL4との間の相互インダクタンスをM34としている。また、無線電力伝送装置1において、コイルL1とコイルL2との間の結合係数をk12と表記し、コイルL2とコイルL3との間の結合係数をk23と表記し、コイルL3とコイルL4との間の結合係数をk34と表記する。
 また、給電コイル21のRLC回路のR1、L1、C1、給電共振器22のRLC回路のR2、L2、C2、受電共振器32のRLC回路のR3、L3、C3、受電コイル31のRLC回路のR4、L4、C4における抵抗値、インダクタンス、コンデンサ容量、及び、結合係数k12、k23、k34は、設計・製造段階等で変更可能なパラメータとして、後述する(式3)の関係式を満たすように設定されている(詳細は後述する)。
 上記無線電力伝送装置1によれば、給電共振器22の共振周波数と受電共振器32の共振周波数とを一致させた場合、給電共振器22と受電共振器32との間に磁界共鳴状態を創出することができる。給電共振器22及び受電共振器32が共振した状態で磁界共鳴状態が創出されると、給電共振器22から受電共振器32に電力を磁界エネルギーとして伝送することができる。
 (供給電力制御方法)
 上記無線電力伝送装置1の構成を踏まえて、無線電力伝送装置1が供給する電力を調整する供給電力制御方法について説明する。
 まず、上記構成による無線電力伝送装置1(安定回路7、充電回路8及び充電池9含む)の回路図を示すと図1の下図のようになる。これは、無線電力伝送装置1全体を一つの入力インピーダンスZinに置き換えて示したものである。これによると、無線電力伝送装置1から出力される電力を制御するには、交流電源6が一般的に使用される定電圧電源だとすると電圧Vinは一定に保持されるため、電流Iinの値を制御する必要があることがわかる。
 そして、この電流Iinを電圧Vin及び入力インピーダンスZinを踏まえた関係式で表すと(式2)のように示せる。
Figure JPOXMLDOC01-appb-M000004
 ここで、本実施形態に係る無線電力伝送装置1から充電池9に電力を供給するに際して、電流Iinの値は、図2に示すように適正電流範囲内(Iin(MIN)~Iin(MAX))にあることが求められる。電流Iinが適正電流範囲内の値で供給されることが求められる理由としては、充電池9に供給される電流がIin(MIN)の値より小さいと小電流となり、充電池9の特性により充電ができなくなってしまうこと、一方で、充電池9に供給される電流がIin(MAX)の値より大きいと過電流となり、安定回路7、充電回路8及び充電池9が発熱し、寿命を縮めてしまうおそれがあることが挙げられる。
 上記理由から電流Iinの値を、適正電流範囲内(Iin(MIN)~Iin(MAX))に制御するためには、図2に示すように、入力インピーダンスZinの値をZin(MIN)~Zin(MAX)の範囲内に調整する必要がある。即ち、(式2)より、入力インピーダンスZinの値を大きくすれば、電流Iinの値を小さくすることができ、入力インピーダンスZinの値を小さくすれば、電流Iinの値を大きくすることができる。
 そこで、無線電力伝送装置1の入力インピーダンスZinをより詳細に表すために、無線電力伝送装置1の構成を等価回路によって表すと図3に示すようになる。そして、図3の等価回路より、無線電力伝送装置1の入力インピーダンスZinは、(式3)のように表記することができる。
Figure JPOXMLDOC01-appb-M000005
                        ・・・(式3)
 そして、本実施形態における無線電力伝送装置1の給電コイル21、給電共振器22、受電共振器32、及び、受電コイル31におけるインピーダンスZ1、Z2、Z3、Z4、Zlは、それぞれ(式4)のように表記することができる。
Figure JPOXMLDOC01-appb-M000006



                       ・・・(式4)
 次に、(式3)に(式4)を導入すると、(式5)のようになる。
Figure JPOXMLDOC01-appb-M000007
                       ・・・(式5)
 そして、給電コイル21のRLC回路のR1、L1、C1、給電共振器22のRLC回路のR2、L2、C2、受電共振器32のRLC回路のR3、L3、C3、受電コイル31のRLC回路のR4、L4、C4における抵抗値、インダクタンス、コンデンサ容量、及び、結合係数k12、k23、k34を設計・製造段階等で変更可能なパラメータとして、上記(式5)の関係式から導出される無線電力伝送装置1の入力インピーダンスZinの値がZin(MIN)~Zin(MAX)の範囲内に納まるように調整することができる。
 もっとも、上記のような無線電力伝送装置では、給電モジュール2に供給する電力の駆動周波数を、給電モジュール2が備える給電コイル21・給電共振器22及び受電モジュール3が備える受電コイル31・受電共振器32が有する共振周波数と一致させることにより、無線電力伝送における電力伝送効率を最大にすることができることが一般的に知られており、電力伝送効率の最大化を求めて駆動周波数を共振周波数に設定にするのが一般的である。ここで、電力伝送効率とは、給電モジュール2に供給される電力に対する、受電モジュール3が受電する電力の比率のことをいう。
 そうすると、無線電力伝送装置1において、電力伝送効率を最大化するには、駆動周波数と、給電モジュール2及び受電モジュール3の各RLC回路のそれぞれが有する共振周波数とが一致するようなコンデンサやコイルなどの容量条件・共振条件(ωL=1/ωC)を満たすことが求められる。
 具体的に、無線電力伝送装置1において、電力伝送効率を最大にするために共振条件(ωL=1/ωC)を満たした場合における無線電力伝送装置1の入力インピーダンスZinを、(式5)に当てはめてみると、(ωL1-1/ωC1=0)、(ωL2-1/ωC2=0)、(ωL3-1/ωC3=0)、(ωL4-1/ωC4=0)となり、(式6)の関係式になる。
Figure JPOXMLDOC01-appb-M000008
                       ・・・(式6)
 上記関係式(式6)によれば、無線電力伝送装置1の入力インピーダンスZinの値をZin(MIN)~Zin(MAX)の範囲内に納まるように調整するために変更可能な主なパラメータは、給電コイル21のRLC回路のR1、給電共振器22のRLC回路のR2、受電共振器32のRLC回路のR3、受電コイル31のRLC回路のR4などの抵抗値、及び、結合係数k12、k23、k34しかないことが分かる。
 上記のように、無線電力伝送装置1における電力伝送効率を最大化するために、給電モジュール2に供給する電力の駆動周波数を共振周波数に一致させた場合、給電モジュール2及び受電モジュール3の各RLC回路のコンデンサやコイルなどの容量が予め決まってしまい、主に各RLC回路の抵抗値でしか入力インピーダンスZinの値を制御できなくなってしまう。これは、RLC回路のコンデンサやコイルなどの容量を、入力インピーダンスZinを制御するパラメータとして自由に変更できず無線電力伝送装置1の設計的自由度が低くなってしまうことを意味している。
 一方、本実施形態に係る無線電力伝送装置1では、給電モジュール2に供給する電力の駆動周波数を、給電モジュール2が備える給電共振器22及び受電モジュール3が備える受電共振器32が有する共振周波数と一致させないことにより(ωL≠1/ωC)、入力インピーダンスZinを制御するためのパラメータとして、給電コイル21のRLC回路のR1、L1、C1、給電共振器22のRLC回路のR2、L2、C2、受電共振器32のRLC回路のR3、L3、C3、受電コイル31のRLC回路のR4、L4、C4などの抵抗値、インダクタンス、コンデンサ容量、及び、結合係数k12、k23、k34を変更可能に使用することができる。
 これにより、無線電力伝送装置1を構成する際に、適正電流範囲内(Iin(MIN)~Iin(MAX))にIinの値を制御することを目的として、入力インピーダンスZinの値をZin(MIN)~Zin(MAX)の範囲内に調整するために、パラメータとしての給電コイル21のR1、L1、C1、給電共振器22のR2、L2、C2、受電共振器32のR3、L3、C3、受電コイル31のR4、L4、C4などの抵抗値、インダクタンス、コンデンサ容量や、結合係数k12、k23、k34を相互にバランスをとって変えることができるので、無線電力伝送装置1の容積・形状・総重量に合わせて適切な配置が可能となり無線電力伝送装置1の設計的自由度を高めることができるようになる。即ち、無線電力伝送装置1において、電力伝送効率を最大化することが一般的な従来のものよりも、入力インピーダンスZinの値を調整するパラメータ要素が多くなり、無線電力伝送装置1の入力インピーダンスZinの値のきめ細やかな制御が可能となる。
 上記より、パラメータとしての給電コイル21のR1、L1、C1、給電共振器22のR2、L2、C2、受電共振器32のR3、L3、C3、受電コイル31のR4、L4、C4などの抵抗値、インダクタンス、コンデンサ容量、及び、結合係数k12、k23、k34を相互にバランスをとって変えることにより、(式3)により導出される入力インピーダンスZinを制御して、無線電力伝送装置1が供給する電力を調整することが可能な供給電力制御方法を実現することができる。
 したがって、上記方法によれば、給電モジュール2に供給する電力の駆動周波数を、給電モジュール2(給電コイル21・給電共振器22)及び受電モジュール3(受電コイル31・受電共振器32)における共振周波数とはならない値で供給することにより、給電モジュール2及び受電モジュール3を構成する回路素子の各素子値(給電コイル21のR1、L1、C1、給電共振器22のR2、L2、C2、受電共振器32のR3、L3、C3、受電コイル31のR4、L4、C4などの抵抗値、インダクタンス、コンデンサ容量、及び、結合係数k12、k23、k34)を、無線電力伝送装置1の入力インピーダンスZinを変えるパラメータとして自由に変更することができる。そして、上記関係式を満たすようにパラメータをそれぞれ変えることにより、無線電力伝送装置1の入力インピーダンスZinを制御して供給する電力を調整することができる。このように、入力インピーダンスZinを制御するために、給電モジュール2及び受電モジュール3を構成する回路素子の各素子値をパラメータとして自由に設定できることになり、無線電力伝送装置1の設計自由度を高めて、無線電力伝送装置1自体の携帯性・コンパクト化・低コスト化を実現することができる。
 また、上記供給電力制御方法により調整された無線電力伝送装置1によれば、入力インピーダンスZinを制御するために、給電モジュール2及び受電モジュール3を構成する回路素子の各素子値(給電コイル21のR1、L1、C1、給電共振器22のR2、L2、C2、受電共振器32のR3、L3、C3、受電コイル31のR4、L4、C4などの抵抗値、インダクタンス、コンデンサ容量、及び、結合係数k12、k23、k34)をパラメータとして自由に設定することができる。これにより、無線電力伝送装置1の設計自由度を高めて、無線電力伝送装置1自体の携帯性・コンパクト化・低コスト化を実現することができる。
(伝送特性が単峰性及び双峰性を有する場合の入力インピーダンスZinの可変範囲)
 次に、無線電力伝送装置1が有する伝送特性『S21』が単峰性の性質を有する場合(後述)と、双峰性の性質を有する場合(後述)における入力インピーダンスZinの可変範囲について説明する。ここで、伝送特性『S21』とは、ネットワークアナライザ110(本実施形態では、アジレント・テクノロジー株式会社製のE5061Bを使用)に無線電力伝送装置1を接続して計測される信号を表しており、デシベル表示され、数値が大きいほど電力伝送効率が高いことを意味する。
 無線電力伝送装置1に供給する電力の駆動周波数に対する無線電力伝送装置1の伝送特性『S21』は、給電モジュール2及び受電モジュール3の間の磁界による結びつき度合い(磁界結合)の強度により、単峰性の性質を有するものと双峰性の性質を有するものに分かれる。この単峰性とは、駆動周波数に対する伝送特性『S21』のピークが一つで、そのピークが共振周波数帯域(f0)において現れるものをいう(図4の破線51参照)。一方、双峰性とは、駆動周波数に対する伝送特性『S21』のピークが二つあり、その二つのピークが共振周波数よりも低い駆動周波数帯域(fL)と共振周波数よりも高い駆動周波数帯域(fH)において現れるものをいう(図4の実線52参照)。更に詳細に双峰性を定義すると、上記ネットワークアナライザ110に無線電力伝送装置を接続して計測される反射特性『S11』が二つのピークを有する状態をいう。従って、駆動周波数に対する伝送特性『S21』のピークが一見して一つに見えたとしても、計測されている反射特性『S11』が二つのピークを有する場合には、双峰性の性質を有するものとする。
 上記単峰性の性質を有する無線電力伝送装置1においては、図4の破線51に示すように、駆動周波数が共振周波数f0で伝送特性『S21』が最大化する(電力伝送効率が最大化する)。
 一方、双峰性の性質を有する無線電力伝送装置1では、図4の実線52に示すように、伝送特性『S21』は、共振周波数f0よりも低い駆動周波数帯域(fL)と共振周波数f0よりも高い駆動周波数帯域(fH)において最大化する。
 なお、一般的に、給電共振器と受電共振器との間の距離が同じであれば、双峰性における伝送特性『S21』の最大値(fL又はfHでの伝送特性『S21』の値)は、単峰性における伝送特性『S21』の最大値(f0での伝送特性『S21』の値)よりも低い値になる(図4のグラフ参照)。ゆえに、電力の伝送効率の最大化を目的にした一般的な無線電力伝送装置においては、無線電力伝送装置における伝送特性『S21』が単峰性の性質を有するように設計(設定)され、駆動周波数が共振周波数f0で伝送特性『S21』が最大化するように使用されている。
 具体的には、双峰性における低周波側のピーク付近の周波数fLに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(同相共振モード)、給電共振器22及び受電共振器32が同位相で共振状態となり、給電共振器22に流れる電流の向きと受電共振器32に流れる電流の向きとが同じ向きになる。その結果、図4のグラフに示すように、電力伝送効率の最大化を目的にした一般的な無線電力伝送装置における伝送特性『S21』(破線51)には及ばないが、駆動周波数を給電モジュール2が備える給電共振器22及び受電モジュール3が備える受電共振器32が有する共振周波数と一致させない場合でも、伝送特性『S21』の値を比較的高い値にすることができる。ここで、給電モジュール2におけるコイル(給電共振器22)に流れる電流の向きと受電モジュール3におけるコイル(受電共振器32)に流れる電流の向きとが同じ向きとなる共振状態を同相共振モードと呼ぶことにする。
 また、上記同相共振モードでは、給電共振器22の外周側に発生する磁界と受電共振器32の外周側に発生する磁界とが打ち消し合うことにより、給電共振器22及び受電共振器32の外周側に、磁界による影響が低減されて、給電共振器22及び受電共振器32の外周側以外の磁界強度(例えば、給電共振器22及び受電共振器32の内周側の磁界強度)よりも小さな磁界強度を有する磁界空間を形成することができる。そして、この磁界空間に磁界の影響を低減させたい安定回路7や充電回路8や充電池9などを収納した場合、安定回路7や充電回路8や充電池9などに対して、磁界に起因する渦電流の発生を低減・防止して、発熱による悪影響を抑制することが可能となる。
 一方、双峰性における高周波側のピーク付近の周波数fHに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(逆相共振モード)、給電共振器22及び受電共振器32が逆位相で共振状態となり、給電共振器22に流れる電流の向きと受電共振器32に流れる電流の向きとが逆向きになる。その結果、図4のグラフに示すように、電力伝送効率の最大化を目的にした一般的な無線電力伝送装置における伝送特性『S21』(破線51)には及ばないが、駆動周波数を給電モジュール2が備える給電共振器22及び受電モジュール3が備える受電共振器32が有する共振周波数と一致させない場合でも、伝送特性『S21』の値を比較的高い値にすることができる。ここで、給電モジュール2におけるコイル(給電共振器22)に流れる電流の向きと受電モジュール3におけるコイル(受電共振器32)に流れる電流の向きとが逆向きとなる共振状態を逆相共振モードと呼ぶことにする。
 また、上記逆相共振モードでは、給電共振器22の内周側に発生する磁界と受電共振器32の内周側に発生する磁界とが打ち消し合うことにより、給電共振器22及び受電共振器32の内周側に、磁界による影響が低減されて、給電共振器22及び受電共振器32の内周側以外の磁界強度(例えば、給電共振器22及び受電共振器32の外周側の磁界強度)よりも小さな磁界強度を有する磁界空間を形成することができる。そして、この磁界空間に磁界の影響を低減させたい安定回路7や充電回路8や充電池9などを収納した場合、安定回路7や充電回路8や充電池9などに対して、磁界に起因する渦電流の発生を低減・防止して、発熱による悪影響を抑制することが可能となる。また、この逆相共振モードにより形成される磁界空間は、給電共振器22及び受電共振器32の内周側に形成されるので、この空間に安定回路7や充電回路8や充電池9などの電子部品を組み込むことにより無線電力伝送装置1自体のコンパクト化・設計自由度の向上が実現される。
 (測定実験1)
 次に、上記概念及び関係を踏まえて、無線電力伝送装置1が有する伝送特性『S21』が単峰性の性質を有する場合と双峰性の性質を有する場合における無線電力伝送装置1の入力インピーダンスZinの可変範囲に関する測定実験1について説明する。
 (単峰性の測定)
 まず、比較対象として、無線電力伝送装置1が有する伝送特性『S21』が単峰性の性質を有する場合の無線電力伝送装置1の入力インピーダンスZinを測定した。具体的には、無線電力伝送装置1(図3参照)において、図5に示すように、給電コイル21にネットワークアナライザ110の出力端子111を接続し、受電コイル31には、ネットワークアナライザ110の入力端子112を接続して、給電モジュール2に所定の駆動周波数の電力を供給して、給電共振器22から受電共振器32に共振現象により電力を磁界エネルギーとして供給することによって伝送特性『S21』及び入力インピーダンスZinを測定する。この際、給電共振器22と受電共振器32との間の距離d23を48mmに固定し、給電コイル21と給電共振器22との間の距離d12、及び、受電コイル31と受電共振器32との間の距離d34を変えて測定する。また、伝送特性『S21』及び入力インピーダンスZinは、伝送特性『S21』の値がピーク(最大)となる共振周波数に駆動周波数を合わせて測定している。
 ここで、上記のように、無線電力伝送装置1の伝送特性『S21』は、給電モジュール2及び受電モジュール3の間の磁界による結びつき度合い(磁界結合)の強度を変えることにより、単峰性の性質を有するもの又は双峰性の性質を有するものにすることができる。本実施例では、この磁界結合を変化させるために、給電共振器22と受電共振器32との間の距離d23を固定したうえで、給電モジュール2における給電コイル21と給電共振器22との距離d12、及び、受電モジュール3における受電コイル31と受電共振器32との距離d34の組み合わせを色々とを変えることにより行う。そして、給電共振器22と受電共振器32との間の距離d23を48mmに固定した場合、給電コイル21と給電共振器22との間の距離d12、及び、受電コイル31と受電共振器32との間の距離d34を4mm以下の値にすると伝送特性『S21』が単峰性の性質を有することになり、一方、給電コイル21と給電共振器22との間の距離d12、及び、受電コイル31と受電共振器32との間の距離d34を4mmより大きい値にすると伝送特性『S21』が双峰性の性質を有することになる。
 なお、給電モジュール2及び受電モジュール3の間の磁界による結びつき度合い(磁界結合)の強度を変える手段としては、その他に、給電モジュール2に供給する電力量を変化させることや、給電共振器22及び受電共振器32の各素子(コンデンサ、コイル)の容量やインダクタンスを変化させることや、給電モジュール2に供給する電力の周波数を変えることなどの方法が挙げられる。
 単峰性の場合における測定結果を図6に示す。図6の測定結果から、伝送特性『S21』が単峰性の性質を有し、且つ、伝送特性『S21』の値が-3dB以上の値を取りうる距離d12及び距離d34の距離の主な組み合わせを挙げると、比較例2~6が該当する。そして、比較例2~6における入力インピーダンスZinが取り得る範囲を見ると、66.6(比較例6)~186.1Ω(比較例2)の範囲であることが分かる。即ち、無線電力伝送装置1が有する伝送特性『S21』が単峰性の性質を有する場合に、伝送特性『S21』の値を-3dB以上の値にするならば、入力インピーダンスZinの値を、66.6~186.1Ωの範囲で調整することができることを意味している。なお、上記で伝送特性『S21』の値が-3dB以上の値であることを条件としているのは、-3dB未満であると、無線電力伝送装置の送電効率が著しく低下してしまうためである。故に、伝送特性『S21』の値を-3dBとしているのは設計事項であり、使用形態により変更可能な値である。
 (双峰性の測定)
 次に、本実施例として、無線電力伝送装置1が有する伝送特性『S21』が双峰性の性質を有する場合の無線電力伝送装置1の入力インピーダンスZinを測定した。測定方法としては、上記単峰性の測定方法の場合と同じである。ただし、給電共振器22と受電共振器32との間の距離d23を48mmに固定し、給電コイル21と給電共振器22との間の距離d12、及び、受電コイル31と受電共振器32との間の距離d34の組み合わせを色々と変えて測定した。ただし、双峰性の性質を有するように、距離d12及び距離d34は、4mmより大きい値を取るように変えている。また、伝送特性『S21』及び入力インピーダンスZinは、伝送特性『S21』の値がピーク(最大)となる、低周波側の周波数fL(同相共振モード)及び高周波側の周波数fH(逆相共振モード)に駆動周波数を合わせて、低周波側の周波数fL(同相共振モード)及び高周波側の周波数fH(逆相共振モード)における伝送特性『S21』及び入力インピーダンスZinを測定した。
 双峰性の場合における測定結果を図7に示す。図7の測定結果から、伝送特性『S21』が双峰性の性質を有し、且つ、伝送特性『S21』の値が-3dB以上の値を取りうる距離d12及び距離d34の距離の主な組み合わせを挙げると、実施例1~4、6、7の低周波側の周波数fL(同相共振モード)、及び、実施例1、2、6、7の高周波側の周波数fH(逆相共振モード)が該当する。そして、実施例1~4、6、7の低周波側の周波数fL(同相共振モード)、及び、実施例1、2、6、7の高周波側の周波数fH(逆相共振モード)における入力インピーダンスZinが取りうる範囲を見ると、12.98(実施例6のfH)~149.81Ω(実施例7のfL)の範囲であることが分かる。即ち、無線電力伝送装置1が有する伝送特性『S21』が双峰性の性質を有する場合に、伝送特性『S21』の値を-3dB以上の値にするならば、入力インピーダンスZinの値を、12.98~149.81Ωの範囲で調整することができることを意味している。
 上記測定結果によれば、伝送特性『S21』が単峰性の性質を有する場合、伝送特性『S21』の値を-3dB以上の値にするならば、入力インピーダンスZinの値を、66.6~186.1Ωの範囲(可変範囲)で調整することができる。一方、伝送特性『S21』が双峰性の性質を有する場合に、伝送特性『S21』の値を-3dB以上の値にするならば、入力インピーダンスZinの値を、12.98~149.81Ωの範囲(可変範囲)で調整することができる。これによれば、伝送特性『S21』が双峰性の性質を有するように設定した無線電力伝送装置1は、伝送特性『S21』が単峰性の性質を有するように設定した無線電力伝送装置1よりも、入力インピーダンスZinの可変範囲を広くすることができることが分かる。
 (所定の伝送特性『S21』に設定した場合の入力インピーダンスZinの可変範囲)
 次に、上記無線電力伝送装置1が有する伝送特性『S21』が単峰性及び双峰性の性質を有する場合の無線電力伝送装置1の入力インピーダンスZin測定において、所定の伝送特性『S21』に設定した場合の入力インピーダンスZinの可変範囲を測定する。なお、本比較例・実施例では、所定の伝送特性『S21』として、例示的に-2.2dBとした場合と、-2.8dBとした場合について測定した。
 (所定の伝送特性『S21』を-2.2dBとした場合)
 まず、伝送特性『S21』が、およそ-2.2dBの値を示す距離d12及び距離d34の組み合わせを挙げると、単峰性では、図6に示すように、比較例3が挙げられ、双峰性では、図8(A)に示すように、実施例8~12が挙げられる。
 比較例3では、d12=1mm、d23=48mm、d34=1mmの場合に、S21が-2.25dBで160.9Ωを示した。そして、単峰性では、比較例3以外に、伝送特性『S21』がおよそ-2.2dBの値を示す距離d12及び距離d34の組み合わせはあるが、その場合、入力インピーダンスZinはおよそ同じ値を示した。即ち、無線電力伝送装置1が有する伝送特性『S21』が単峰性の性質を有する場合、所定の伝送特性『S21』に設定した場合(本比較例では、およそ-2.2dBに設定)の無線電力伝送装置1の入力インピーダンスZinは、およそ160.9Ωにほぼ決まってしまうことが分かる。
 一方、図8(A)に示すように、実施例8では、同相共振モード(fL)で、d12=5mm、d23=48mm、d34=18mmの場合に、S21が-2.08dBで129.79Ωを示した。また、実施例9では、同相共振モード(fL)で、d12=10mm、d23=48mm、d34=22mmの場合に、S21が-2.25dBで94.30Ωを示した。また、実施例10では、同相共振モード(fL)で、d12=25mm、d23=48mm、d34=25mmの場合に、S21が-2.46dBで33.30Ωを示した。また、実施例11では、同相共振モード(fL)で、d12=24mm、d23=48mm、d34=10mmの場合に、S21が-2.26dBで16.47Ωを示した。また、実施例12では、同相共振モード(fL)で、d12=20mm、d23=48mm、d34=5mmの場合に、S21が-2.20dBで15.51Ωを示した。このように、無線電力伝送装置1が有する伝送特性『S21』が双峰性の性質を有する場合、所定の伝送特性『S21』に設定した場合(本実施例では、およそ-2.2dBに設定)の無線電力伝送装置1の入力インピーダンスZinは、15.51(実施例12)~129.79Ω(実施例8)の範囲を取り得ることが分かる。
 (所定の伝送特性『S21』を-2.8dBとした場合)
 まず、伝送特性『S21』が、およそ-2.8dBの値を示す距離d12及び距離d34の組み合わせを挙げると、単峰性では、図6に示すように、比較例2が挙げられ、双峰性では、図8(B)に示すように、実施例13~17が挙げられる。
 比較例2では、d12=1mm、d23=48mm、d34=0mmの場合に、S21が-2.74dBで186.1Ωを示した。そして、単峰性では、比較例2以外に、伝送特性『S21』がおよそ-2.8dBの値を示す距離d12及び距離d34の組み合わせはあるが、その場合、入力インピーダンスZinはおよそ同じ値を示した。即ち、無線電力伝送装置1が有する伝送特性『S21』が単峰性の性質を有する場合、所定の伝送特性『S21』に設定した場合(本比較例では、およそ-2.8dBに設定)の無線電力伝送装置1の入力インピーダンスZinは、およそ186.1Ωにほぼ決まってしまうことが分かる。
 一方、図8(B)に示すように、実施例13では、逆相共振モード(fH)で、d12=5mm、d23=48mm、d34=25mmの場合に、S21が-2.93dBで129.38Ωを示した。また、実施例14では、逆相共振モード(fH)で、d12=10mm、d23=48mm、d34=25mmの場合に、S21が-2.96dBで72.66Ωを示した。また、実施例15では、逆相共振モード(fH)で、d12=15mm、d23=48mm、d34=22mmの場合に、S21が-2.58dBで39.70Ωを示した。また、実施例16では、逆相共振モード(fH)で、d12=20mm、d23=48mm、d34=10mmの場合に、S21が-2.83dBで14.65Ωを示した。また、実施例17では、逆相共振モード(fH)で、d12=20mm、d23=48mm、d34=5mmの場合に、S21が-2.77dBで12.98Ωを示した。このように、無線電力伝送装置1が有する伝送特性『S21』が双峰性の性質を有する場合、所定の伝送特性『S21』に設定した場合(本実施例では、およそ-2.8dBに設定)の無線電力伝送装置1の入力インピーダンスZinは、12.98(実施例17)~129.38Ω(実施例13)の範囲を取り得ることが分かる。
 上記測定結果によれば、伝送特性『S21』の値を所定の値に設定した場合、伝送特性『S21』が双峰性の性質を有するように設定した無線電力伝送装置1は、伝送特性『S21』が単峰性の性質を有するように設定した無線電力伝送装置1よりも、入力インピーダンスZinの可変範囲を広くすることができることが分かる。
 (測定実験2)
 上記測定実験1では、図3に示す回路構成の無線電力伝送装置1が有する伝送特性『S21』が単峰性の性質を有する場合と双峰性の性質を有する場合における無線電力伝送装置1の入力インピーダンスZinの可変範囲に関する測定実験1について説明したが、本測定実験2では、図9に示すように、無線電力伝送装置1に対してその回路構成を変えた無線電力伝送装置101を使用して測定する。具体的には、無線電力伝送装置101は、図9に示すように、無線電力伝送装置1における給電コイル21からコンデンサC1を除いた給電コイル121、及び、無線電力伝送装置1の受電コイル31からコンデンサC4を除いた受電コイル131を備え、その他は無線電力伝送装置1と同じ構成をしている。
 (測定実験2)
 無線電力伝送装置101が有する伝送特性『S21』が単峰性の性質を有する場合と双峰性の性質を有する場合における無線電力伝送装置101の入力インピーダンスZinの可変範囲に関する測定実験2について説明する。
 (単峰性の測定)
 まず、測定実験1同様に、比較対象として、無線電力伝送装置101が有する伝送特性『S21』が単峰性の性質を有する場合の無線電力伝送装置101の入力インピーダンスZinを測定した。具体的には、無線電力伝送装置101(図9参照)において、給電コイル121にネットワークアナライザ110の出力端子111を接続し、受電コイル131には、ネットワークアナライザ110の入力端子112を接続して、給電モジュール2に所定の駆動周波数の電力を供給して、給電共振器22から受電共振器32に共振現象により電力を磁界エネルギーとして供給することによって伝送特性『S21』及び入力インピーダンスZinを測定する。この際、給電共振器22と受電共振器32との間の距離d23を48mmに固定し、給電コイル121と給電共振器22との間の距離d12、及び、受電コイル131と受電共振器32との間の距離d34を変えて測定する。また、伝送特性『S21』及び入力インピーダンスZinは、伝送特性『S21』の値がピーク(最大)となる共振周波数に駆動周波数を合わせて測定している。
 単峰性の場合における測定結果を図10に示す。図10の測定結果から、伝送特性『S21』が単峰性の性質を有し、且つ、伝送特性『S21』の値が-3dB以上の値を取りうる距離d12及び距離d34の距離の主な組み合わせを挙げると、比較例2~6が該当する。そして、比較例2~6における入力インピーダンスZinが取りうる範囲を見ると、68.9(比較例6)~180.7Ω(比較例2)の範囲であることが分かる。即ち、無線電力伝送装置101が有する伝送特性『S21』が単峰性の性質を有する場合に、伝送特性『S21』の値を-3dB以上の値にするならば、入力インピーダンスZinの値を、68.9~180.7Ωの範囲で調整することができることを意味している。
 (双峰性の測定)
 次に、本実施例として、無線電力伝送装置101が有する伝送特性『S21』が双峰性の性質を有する場合の無線電力伝送装置101の入力インピーダンスZinを測定した。測定方法としては、上記単峰性の測定方法の場合と同じである。ただし、給電共振器22と受電共振器32との間の距離d23を48mmに固定し、給電コイル121と給電共振器22との間の距離d12、及び、受電コイル131と受電共振器32との間の距離d34の組み合わせを色々と変えて測定した。ただし、双峰性の性質を有するように、距離d12及び距離d34は、4mmより大きい値を取るように変えている。また、伝送特性『S21』及び入力インピーダンスZinは、伝送特性『S21』の値がピーク(最大)となる、低周波側の周波数fL(同相共振モード)及び高周波側の周波数fH(逆相共振モード)に駆動周波数を合わせて、低周波側の周波数fL(同相共振モード)及び高周波側の周波数fH(逆相共振モード)における伝送特性『S21』及び入力インピーダンスZinを測定した。
 双峰性の場合における測定結果を図11に示す。図11の測定結果から、伝送特性『S21』が双峰性の性質を有し、且つ、伝送特性『S21』の値が-3dB以上の値を取りうる距離d12及び距離d34の距離の主な組み合わせを挙げると、実施例1~4、6~8の低周波側の周波数fL(同相共振モード)、及び、実施例1、2、7、8の高周波側の周波数fH(逆相共振モード)が該当する。そして、実施例1~4、6~8の低周波側の周波数fL(同相共振モード)、及び、実施例1、2、7、8の高周波側の周波数fH(逆相共振モード)における入力インピーダンスZinが取りうる範囲を見ると、19.47(実施例7のfH)~182.30Ω(実施例8のfL)の範囲であることが分かる。即ち、無線電力伝送装置101が有する伝送特性『S21』が双峰性の性質を有する場合に、伝送特性『S21』の値を-3dB以上の値にするならば、入力インピーダンスZinの値を、19.47~182.30Ωの範囲で調整することができることを意味している。
 上記測定結果によれば、伝送特性『S21』が単峰性の性質を有する場合、伝送特性『S21』の値を-3dB以上の値にするならば、入力インピーダンスZinの値を、68.9~180.7Ωの範囲(可変範囲)で調整することができる。一方、伝送特性『S21』が双峰性の性質を有する場合に、伝送特性『S21』の値を-3dB以上の値にするならば、入力インピーダンスZinの値を、19.47~182.30Ωの範囲(可変範囲)で調整することができる。これによれば、伝送特性『S21』が双峰性の性質を有するように設定した無線電力伝送装置101は、伝送特性『S21』が単峰性の性質を有するように設定した無線電力伝送装置101よりも、入力インピーダンスZinの可変範囲を広くすることができることが分かる。
 (所定の伝送特性『S21』に設定した場合の入力インピーダンスZinの可変範囲)
 次に、上記無線電力伝送装置101が有する伝送特性『S21』が単峰性及び双峰性の性質を有する場合の無線電力伝送装置101の入力インピーダンスZin測定において、所定の伝送特性『S21』に設定した場合の入力インピーダンスZinの可変範囲を測定する。なお、本比較例・実施例では、所定の伝送特性『S21』として、例示的に-2.0dBとした場合と、-2.7dBとした場合について測定した。
 (所定の伝送特性『S21』を-2.0dBとした場合)
 まず、伝送特性『S21』が、およそ-2.0dBの値を示す距離d12及び距離d34の組み合わせを挙げると、単峰性では、図10に示すように、比較例3が挙げられ、双峰性では、図12(A)に示すように、実施例9~15が挙げられる。
 比較例3では、d12=2mm、d23=48mm、d34=2mmの場合に、S21が-1.90dBで134.0Ωを示した。そして、単峰性では、比較例3以外に、伝送特性『S21』がおよそ-2.0dBの値を示す距離d12及び距離d34の組み合わせはあるが、その場合、入力インピーダンスZinはおよそ同じ値を示した。即ち、無線電力伝送装置1が有する伝送特性『S21』が単峰性の性質を有する場合、所定の伝送特性『S21』に設定した場合(本比較例では、およそ-2.0dBに設定)の無線電力伝送装置1の入力インピーダンスZinは、およそ134.0Ωにほぼ決まってしまうことが分かる。
 一方、図12(A)に示すように、実施例9では、同相共振モード(fL)で、d12=5mm、d23=48mm、d34=19mmの場合に、S21が-2.09dBで167.52Ωを示した。また、実施例10では、同相共振モード(fL)で、d12=10mm、d23=48mm、d34=20mmの場合に、S21が-2.01dBで107.95Ωを示した。また、実施例11では、同相共振モード(fL)で、d12=15mm、d23=48mm、d34=20mmの場合に、S21が-1.95dBで76.62Ωを示した。また、実施例12では、同相共振モード(fL)で、d12=20mm、d23=48mm、d34=20mmの場合に、S21が-2.11dBで55.59Ωを示した。また、実施例13では、同相共振モード(fL)で、d12=22mm、d23=48mm、d34=15mmの場合に、S21が-2.00dBで44.96Ωを示した。また、実施例14では、同相共振モード(fL)で、d12=22mm、d23=48mm、d34=10mmの場合に、S21が-2.00dBで40.05Ωを示した。また、実施例15では、同相共振モード(fL)で、d12=20mm、d23=48mm、d34=5mmの場合に、S21が-1.96dBで38.50Ωを示した。このように、無線電力伝送装置101が有する伝送特性『S21』が双峰性の性質を有する場合、所定の伝送特性『S21』に設定した場合(本実施例では、およそ-2.0dBに設定)の無線電力伝送装置101の入力インピーダンスZinは、38.50(実施例15)~167.52Ω(実施例9)の範囲を取り得ることが分かる。
 (所定の伝送特性『S21』を-2.7dBとした場合)
 まず、伝送特性『S21』が、およそ-2.7dBの値を示す距離d12及び距離d34の組み合わせを挙げると、単峰性では、図10に示すように、比較例2が挙げられ、双峰性では、図12(B)に示すように、実施例16~20が挙げられる。
 比較例2では、d12=0mm、d23=48mm、d34=2mmの場合に、S21が-2.70dBで180.7Ωを示した。そして、単峰性では、比較例2以外に、伝送特性『S21』がおよそ-2.7dBの値を示す距離d12及び距離d34の組み合わせはあるが、その場合、入力インピーダンスZinはおよそ同じ値を示した。即ち、無線電力伝送装置1が有する伝送特性『S21』が単峰性の性質を有する場合、所定の伝送特性『S21』に設定した場合(本比較例では、およそ-2.7dBに設定)の無線電力伝送装置1の入力インピーダンスZinは、およそ180.7Ωにほぼ決まってしまうことが分かる。
 一方、図12(B)に示すように、実施例16では、逆相共振モード(fH)で、d12=5mm、d23=48mm、d34=19mmの場合に、S21が-2.69dBで102.14Ωを示した。また、実施例17では、逆相共振モード(fH)で、d12=10mm、d23=48mm、d34=20mmの場合に、S21が-2.65dBで59.29Ωを示した。また、実施例18では、逆相共振モード(fH)で、d12=15mm、d23=48mm、d34=20mmの場合に、S21が-2.90dBで42.35Ωを示した。また、実施例19では、逆相共振モード(fH)で、d12=16mm、d23=48mm、d34=15mmの場合に、S21が-2.66dBで24.34Ωを示した。また、実施例20では、逆相共振モード(fH)で、d12=15mm、d23=48mm、d34=5mmの場合に、S21が-2.72dBで19.47Ωを示した。このように、無線電力伝送装置101が有する伝送特性『S21』が双峰性の性質を有する場合、所定の伝送特性『S21』に設定した場合(本実施例では、およそ-2.7dBに設定)の無線電力伝送装置101の入力インピーダンスZinは、19.47(実施例20)~102.14Ω(実施例16)の範囲を取り得ることが分かる。
 上記測定結果によれば、伝送特性『S21』の値を所定の値に設定した場合、伝送特性『S21』が双峰性の性質を有するように設定した無線電力伝送装置101は、伝送特性『S21』が単峰性の性質を有するように設定した無線電力伝送装置101よりも、入力インピーダンスZinの可変範囲を広くすることができることが分かる。
 上記測定実験1及び測定実験2より、給電モジュール2に供給する電力の駆動周波数に対する伝送特性の値を、共振周波数(f0)よりも低い駆動周波数帯域(fL)及び共振周波数(f0)よりも高い駆動周波数帯域(fH)にそれぞれピークを有する(双峰性)無線電力伝送装置は、給電モジュール2に供給する電力の駆動周波数に対する伝送特性『S21』の値のピークが、共振周波数帯域(f0)において一つ現れる(単峰性)無線電力伝送装置に比べて、入力インピーダンスZinの可変範囲を広くすることができる。そして、入力インピーダンスZinの可変範囲を広くすることができるということは、給電モジュール2及び受電モジュール3を構成する複数の回路素子の各素子値、及び、相互インダクタンスをパラメータとして、単峰性の性質を有する設定に比べて、幅広く設定することができるようになり、無線電力伝送装置の設計自由度をより高めて、無線電力伝送装置自体の携帯性・コンパクト化・低コスト化を実現することができるようになる。
 また、上記方法によれば、給電モジュール2に供給する電力の駆動周波数を、共振周波数よりも低い駆動周波数帯域(fL)に現れる伝送特性『S21』のピーク値に対応する帯域に設定することにより、伝送特性『S21』が双峰性の性質を有する場合でも、伝送特性『S21』が単峰性の性質を有する場合に駆動周波数を共振周波数に合わせた場合には劣るものの、ある程度高い伝送特性『S21』を確保することができる。また、給電モジュール2の外周側に発生する磁界と受電モジュール3の外周側に発生する磁界とが打ち消し合うことにより、給電モジュール2及び受電モジュール3の外周側に、磁界による影響が低減されて、給電モジュール2及び受電モジュール3の外周側以外の磁界強度よりも小さな磁界強度を有する磁界空間を形成することができる。これにより、形成した磁界空間に、磁界の影響を受けたくない回路(安定回路7、充電回路8、充電池9など)等を格納することで、スペースの有効活用ができ、無線電力伝送装置1自体の小型化を図ることが可能になる。
 また、上記方法によれば、給電モジュール2に供給する電力の駆動周波数を、共振周波数よりも高い駆動周波数帯域(fH)に現れる伝送特性『S21』のピーク値に対応する帯域に設定することにより、伝送特性『S21』が双峰性の性質を有する場合でも、伝送特性『S21』が単峰性の性質を有する場合に駆動周波数を共振周波数に合わせた場合には劣るものの、ある程度高い伝送特性『S21』を確保することができる。また、給電モジュール2の内周側に発生する磁界と受電モジュール3の内周側に発生する磁界とが打ち消し合うことにより、給電モジュール2及び受電モジュール3の内周側に、磁界による影響が低減されて、給電モジュール2及び受電モジュール3の内周側以外の磁界強度よりも小さな磁界強度を有する磁界空間を形成することができる。これにより、形成した磁界空間に、磁界の影響を受けたくない回路(安定回路7、充電回路8、充電池9など)等を格納することで、スペースの有効活用ができ、無線電力伝送装置1自体の小型化を図ることが可能になる。
 (製造方法)
 次に、無線電力伝送装置1を製造する一工程である、設計方法(設計工程)について、図13及び図14を参照して説明する。本説明では、無線電力伝送装置1を搭載する携帯機器としてイヤホンスピーカ部201aを備えた無線式ヘッドセット200、及び、充電器201を例にして説明する(図13参照)。
 本設計方法で設計される無線電力伝送装置1は、図13に示す無線式ヘッドセット200及び充電器201に、それぞれ受電モジュール3(受電コイル31・受電共振器32)及び給電モジュール2(給電コイル21・給電共振器22)として搭載されている。また、図13では、説明の都合上、安定回路7、充電回路8及び充電池9を受電モジュール3の外に記載しているが、実際は、ソレノイド状の受電コイル31及び受電共振器32のコイル内周側に配置されている。即ち、無線式ヘッドセット200には、受電モジュール3、安定回路7、充電回路8及び充電池9が搭載されており、充電器201には、給電モジュール2が搭載されており、給電モジュール2の給電コイル21に交流電源6が接続された状態で使用される。
 (設計方法)
 まず、図14に示すように、充電池9の容量、及び、充電池9の充電に必要とされる充電電流から、受電モジュール3が受電する受電電力量が決まる(S1)。
 次に、給電モジュール2と受電モジュール3との間の距離を決定する(S2)。これは、受電モジュール3を内蔵した無線式ヘッドセット200を、給電モジュール2を内蔵した充電器201に載置した際の給電モジュール2と受電モジュール3との間の距離であり、使用形態としては充電中の状態である。具体的には、給電モジュール2と受電モジュール3との間の距離は、無線式ヘッドセット200と充電器201の形状・構造を考慮して決定される。
 また、無線式ヘッドセット200の大きさ・形状・構造を踏まえて、受電モジュール3における受電コイル31及び受電共振器32のコイル径が決定される(S3)。
 また、充電器201の大きさ・形状・構造を踏まえて、給電モジュール2における給電コイル21及び給電共振器22のコイル径が決定される(S4)。
 上記S2~S4の手順を経ることにより、無線電力伝送装置1の給電共振器22(コイルL2)と受電共振器32(コイルL3)との間の結合係数をk23と、電力伝送効率が決まることになる。
 上記S1で決定した受電モジュール3が受電する受電電力量、及び、S2~S4の手順を経て決定された電力伝送効率より、給電モジュール2に給電する必要最低限の給電電力量が決定される(S5)。
 そして、上記受電モジュール3が受電する受電電力量、電力伝送効率、及び、給電モジュール2に給電する必要最低限の給電電力量を踏まえて、無線電力伝送装置1における入力インピーダンスZinの設計値が決まる(S6)。
 そして、S6で決定された入力インピーダンスZinの設計値を上述した(式3)に当てはめて、この(式3)を満たすように、回路素子としての給電コイル21のRLC回路のR1、L1、C1、給電共振器22のRLC回路のR2、L2、C2、受電共振器32のRLC回路のR3、L3、C3、受電コイル31のRLC回路のR4、L4、C4における抵抗値、インダクタンス、コンデンサ容量、及び、結合係数k12、k34をパラメータとして調整し決定する(S7)。
 上記製造方法によれば、入力インピーダンスZinを制御するために、給電モジュール2及び受電モジュール3を構成する回路素子の各素子値をパラメータとして自由に設定し、無線電力伝送装置1の設計自由度を高めて、携帯性・コンパクト化・低コスト化に優れた無線電力伝送装置1を製造することができる。
 (その他の実施形態)
 上記製造方法の説明では、無線式ヘッドセット200を例示して説明したが、充電池を備えた機器であれば、タブレット型PC、デジタルカメラ、携帯電話、イヤホン型音楽プレイヤー、補聴器、集音器などにも使用することができる。
 また、上記説明では、給電モジュール2及び受電モジュール3が備える共振器(コイル)間の共振現象(磁界共鳴状態)を利用して磁場を結合させることにより電力伝送を行う無線電力伝送装置1を例示して説明したが、コイル間の電磁誘導を利用して電力伝送を行う無線電力伝送装置1においても適用可能である。
 以上の詳細な説明では、本発明をより容易に理解できるように、特徴的部分を中心に説明したが、本発明は、以上の詳細な説明に記載する実施形態・実施例に限定されず、その他の実施形態・実施例にも適用することができ、その適用範囲は可能な限り広く解釈されるべきである。また、本明細書において用いた用語及び語法は、本発明を的確に説明するために用いたものであり、本発明の解釈を制限するために用いたものではない。また、当業者であれば、本明細書に記載された発明の概念から、本発明の概念に含まれる他の構成、システム、方法等を推考することは容易であると思われる。従って、請求の範囲の記載は、本発明の技術的思想を逸脱しない範囲で均等な構成を含むものであるとみなされるべきである。また、本発明の目的及び本発明の効果を充分に理解するために、すでに開示されている文献等を充分に参酌することが望まれる。
 1 無線電力伝送装置
 2 給電モジュール
 3 受電モジュール
 6 交流電源
 7 安定回路
 8 充電回路
 9 充電池
21 給電コイル
22 給電共振器
31 受電コイル
32 受電共振器
200 無線式ヘッドセット
201 充電器







                                                                        

Claims (7)

  1.  給電コイル及び給電共振器の少なくとも1つを備えた給電モジュールから、受電共振器及び受電コイルの少なくとも1つを備えた受電モジュールに対して磁界を変化させて電力を供給する無線電力伝送装置の供給電力制御方法であって、
     前記給電モジュールに供給する電力の駆動周波数が、前記給電モジュール及び前記受電モジュールにおける共振周波数とはならない値で供給し、
     前記給電モジュール及び前記受電モジュールを構成する複数の回路素子の各素子値をパラメータとして、当該パラメータをそれぞれ変えることにより、当該無線電力伝送装置の入力インピーダンスZinを設定して供給する電力を調整することを特徴とする無線電力伝送装置の供給電力制御方法。
  2.  少なくとも給電コイル及び給電共振器を備えた給電モジュールから、少なくとも受電共振器及び受電コイルを備えた受電モジュールに対して共振現象によって電力を供給する無線電力伝送装置の供給電力制御方法であって、
     前記給電モジュールに供給する電力の駆動周波数が、前記給電モジュール及び受電モジュールにおける共振周波数とはならない値で供給し、
     前記給電コイルを構成する、コイルL1を含む各回路素子が有する合計のインピーダンスをZ1
     前記給電共振器を構成する、コイルL2を含む各回路素子が有する合計のインピーダンスをZ2
     前記受電共振器を構成する、コイルL3を含む各回路素子が有する合計のインピーダンスをZ3
     前記受電コイルを構成する、コイルL4を含む各回路素子が有する合計のインピーダンスをZ4
     前記受電コイルから給電される機器の合計の負荷インピーダンスをZl
     前記給電コイルのコイルL1と前記給電共振器のコイルL2との間の相互インダクタンスをM12
     前記給電共振器のコイルL2と前記受電共振器のコイルL3との間の相互インダクタンスをM23
     前記受電共振器のコイルL3と前記受電コイルのコイルL4との間の相互インダクタンスをM34
    とし、
     前記給電コイル、前記給電共振器、前記受電共振器、及び、前記受電コイルを構成する複数の回路素子の各素子値、及び、前記相互インダクタンスをパラメータとして、
     当該パラメータをそれぞれ変えることにより、下記関係式により導出される当該無線電力伝送装置の入力インピーダンスZinを制御して供給する電力を調整することを特徴とする請求項1に記載の無線電力伝送装置の供給電力制御方法。
    Figure JPOXMLDOC01-appb-M000001
  3.  前記給電モジュール及び前記受電モジュールを構成する複数の回路素子の各素子値、及び、前記相互インダクタンスをパラメータとして、当該パラメータをそれぞれ変えることにより、前記給電モジュールに供給する電力の前記駆動周波数に対する伝送特性の値が、前記共振周波数よりも低い駆動周波数帯域及び前記共振周波数よりも高い駆動周波数帯域にそれぞれピークを有するように設定することを特徴とする請求項2に記載の無線電力伝送装置の供給電力制御方法。
  4.  前記給電モジュールに供給する電力の駆動周波数は、前記共振周波数よりも低い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域であることを特徴とする請求項3に記載の無線電力伝送装置の供給電力制御方法。
  5.  前記給電モジュールに供給する電力の駆動周波数は、前記共振周波数よりも高い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域であることを特徴とする請求項3に記載の無線電力伝送装置の供給電力制御方法。
  6.  請求項1~5のいずれかに記載の供給電力制御方法により調整されたことを特徴とする無線電力伝送装置。
  7.  給電コイル及び給電共振器の少なくとも1つを備えた給電モジュールから、受電共振器及び受電コイルの少なくとも1つを備えた受電モジュールに対して供給する電力の駆動周波数が、前記給電モジュール及び受電モジュールにおける共振周波数とはならない値で供給し、且つ、磁界を変化させて電力を供給する無線電力伝送装置の製造方法であって、
     前記給電モジュール及び前記受電モジュールを構成する複数の回路素子の各素子値をパラメータとして、当該パラメータをそれぞれ変えることにより、当該無線電力伝送装置の入力インピーダンスZinを制御して、当該無線電力伝送装置が供給可能な電力を調整する設計工程を含むことを特徴とする無線電力伝送装置の製造方法。
PCT/JP2013/077564 2013-02-12 2013-10-10 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法 WO2014125675A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157022360A KR20150107867A (ko) 2013-02-12 2013-10-10 무선 전력 전송 장치, 무선 전력 전송 장치의 공급 전력 제어 방법 및 무선 전력 전송 장치의 제조 방법
EP13874989.0A EP2958212B1 (en) 2013-02-12 2013-10-10 Wireless power transmission device, supply power control method for wireless power transmission device, and method for manufacturing wireless power transmission device
CN201380072873.7A CN104995816A (zh) 2013-02-12 2013-10-10 无线电力传输装置、无线电力传输装置的供给电力控制方法以及无线电力传输装置的制造方法
SG11201506272UA SG11201506272UA (en) 2013-02-12 2013-10-10 Wireless power transmission device, supply power control method for wireless power transmission device, and method for manufacturing wireless power transmission device
US14/767,016 US20150380949A1 (en) 2013-02-12 2013-10-10 Wireless power transmission device, supply power control method for wireless power transmission device, and method for manufacturing wireless power transmission device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-024636 2013-02-12
JP2013024636A JP2014155375A (ja) 2013-02-12 2013-02-12 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法

Publications (1)

Publication Number Publication Date
WO2014125675A1 true WO2014125675A1 (ja) 2014-08-21

Family

ID=51353694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077564 WO2014125675A1 (ja) 2013-02-12 2013-10-10 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法

Country Status (8)

Country Link
US (1) US20150380949A1 (ja)
EP (1) EP2958212B1 (ja)
JP (1) JP2014155375A (ja)
KR (1) KR20150107867A (ja)
CN (1) CN104995816A (ja)
SG (1) SG11201506272UA (ja)
TW (1) TW201433040A (ja)
WO (1) WO2014125675A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190095A1 (ja) * 2015-05-25 2016-12-01 株式会社村田製作所 ワイヤレス給電システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014168359A (ja) * 2013-02-28 2014-09-11 Nitto Denko Corp 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
JP2015146722A (ja) * 2014-01-06 2015-08-13 日東電工株式会社 無線電力伝送装置
US10714960B2 (en) * 2015-12-22 2020-07-14 Intel Corporation Uniform wireless charging device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008206233A (ja) * 2007-02-16 2008-09-04 Seiko Epson Corp 送電制御装置、受電制御装置、無接点電力伝送システム、送電装置、受電装置および電子機器
JP2010239769A (ja) 2009-03-31 2010-10-21 Fujitsu Ltd 無線電力供給システム
JP4624768B2 (ja) 2004-11-29 2011-02-02 オリンパス株式会社 被検体内導入装置および被検体内導入システム
JP2011050140A (ja) 2009-08-26 2011-03-10 Sony Corp 非接触給電装置、非接触受電装置、非接触給電方法、非接触受電方法および非接触給電システム
WO2011065732A2 (en) * 2009-11-30 2011-06-03 Samsung Electronics Co., Ltd. Wireless power transceiver and wireless power system
JP2011120450A (ja) * 2009-10-30 2011-06-16 Tdk Corp ワイヤレス給電装置、ワイヤレス電力伝送システムおよびそれらを利用したテーブルと卓上ランプ
JP2012182980A (ja) * 2011-03-01 2012-09-20 Tdk Corp ワイヤレス受電装置、ワイヤレス電力伝送システムおよび電力制御装置
JP2012182975A (ja) 2011-03-01 2012-09-20 Tdk Corp ワイヤレス給電装置およびワイヤレス電力伝送システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125198A (ja) * 2006-11-09 2008-05-29 Ishida Co Ltd 非接触給電装置
AU2008339681A1 (en) * 2007-12-21 2009-07-02 Access Business Group International Llc Inductive power transfer
US8729735B2 (en) * 2009-11-30 2014-05-20 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
US20120146424A1 (en) * 2010-12-14 2012-06-14 Takashi Urano Wireless power feeder and wireless power transmission system
JP5730587B2 (ja) * 2011-01-05 2015-06-10 昭和飛行機工業株式会社 磁界共鳴方式の非接触給電装置
JP2013017254A (ja) * 2011-06-30 2013-01-24 Equos Research Co Ltd 電力伝送システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4624768B2 (ja) 2004-11-29 2011-02-02 オリンパス株式会社 被検体内導入装置および被検体内導入システム
JP2008206233A (ja) * 2007-02-16 2008-09-04 Seiko Epson Corp 送電制御装置、受電制御装置、無接点電力伝送システム、送電装置、受電装置および電子機器
JP2010239769A (ja) 2009-03-31 2010-10-21 Fujitsu Ltd 無線電力供給システム
JP2011050140A (ja) 2009-08-26 2011-03-10 Sony Corp 非接触給電装置、非接触受電装置、非接触給電方法、非接触受電方法および非接触給電システム
JP2011120450A (ja) * 2009-10-30 2011-06-16 Tdk Corp ワイヤレス給電装置、ワイヤレス電力伝送システムおよびそれらを利用したテーブルと卓上ランプ
WO2011065732A2 (en) * 2009-11-30 2011-06-03 Samsung Electronics Co., Ltd. Wireless power transceiver and wireless power system
JP2012182980A (ja) * 2011-03-01 2012-09-20 Tdk Corp ワイヤレス受電装置、ワイヤレス電力伝送システムおよび電力制御装置
JP2012182975A (ja) 2011-03-01 2012-09-20 Tdk Corp ワイヤレス給電装置およびワイヤレス電力伝送システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2958212A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190095A1 (ja) * 2015-05-25 2016-12-01 株式会社村田製作所 ワイヤレス給電システム
JPWO2016190095A1 (ja) * 2015-05-25 2017-12-21 株式会社村田製作所 ワイヤレス給電システム
CN107636933A (zh) * 2015-05-25 2018-01-26 株式会社村田制作所 无线供电系统
US10511194B2 (en) 2015-05-25 2019-12-17 Murata Manufacturing Co,. Ltd. Wireless power transfer system
CN107636933B (zh) * 2015-05-25 2020-06-26 株式会社村田制作所 无线供电系统

Also Published As

Publication number Publication date
TW201433040A (zh) 2014-08-16
US20150380949A1 (en) 2015-12-31
EP2958212A4 (en) 2016-04-20
EP2958212A1 (en) 2015-12-23
JP2014155375A (ja) 2014-08-25
KR20150107867A (ko) 2015-09-23
EP2958212B1 (en) 2017-08-30
SG11201506272UA (en) 2015-09-29
CN104995816A (zh) 2015-10-21

Similar Documents

Publication Publication Date Title
WO2014171163A1 (ja) 無線電力伝送装置、無線電力伝送装置の発熱制御方法、及び、無線電力伝送装置の製造方法
JP6169380B2 (ja) 無線電力伝送装置、無線電力伝送装置の発熱制御方法、及び、無線電力伝送装置の製造方法
WO2014162766A1 (ja) 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
JP6199058B2 (ja) 無線電力伝送によって電力供給される被給電機器の受電電圧制御方法、当該受電電圧制御方法によって調整された無線電力伝送装置、及び、その無線電力伝送装置の製造方法
JP5639693B1 (ja) 無線電力伝送装置及び無線電力伝送装置の供給電力制御方法
JP6144176B2 (ja) 磁界空間を形成可能な無線電力伝送装置及びその形成方法
WO2014132479A1 (ja) 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
WO2015108030A1 (ja) 無線電力伝送装置及びその製造方法
JP5622901B1 (ja) 無線電力伝送装置及び無線電力伝送装置の供給電力制御方法
WO2014125675A1 (ja) 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
WO2014132480A1 (ja) 無線電力伝送装置、無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法、及び、無線電力伝送装置の製造方法
WO2014199830A1 (ja) 無線電力伝送装置及び無線電力伝送装置の電力供給方法
WO2014199827A1 (ja) 無線電力伝送に用いる給電モジュール及び給電モジュールの電力供給方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874989

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14767016

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157022360

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013874989

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013874989

Country of ref document: EP