WO2014171163A1 - 無線電力伝送装置、無線電力伝送装置の発熱制御方法、及び、無線電力伝送装置の製造方法 - Google Patents

無線電力伝送装置、無線電力伝送装置の発熱制御方法、及び、無線電力伝送装置の製造方法 Download PDF

Info

Publication number
WO2014171163A1
WO2014171163A1 PCT/JP2014/052067 JP2014052067W WO2014171163A1 WO 2014171163 A1 WO2014171163 A1 WO 2014171163A1 JP 2014052067 W JP2014052067 W JP 2014052067W WO 2014171163 A1 WO2014171163 A1 WO 2014171163A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
transmission device
power transmission
resonator
wireless power
Prior art date
Application number
PCT/JP2014/052067
Other languages
English (en)
French (fr)
Inventor
畑中 武蔵
尚 津田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to SG11201508507YA priority Critical patent/SG11201508507YA/en
Priority to CN201480034211.5A priority patent/CN105308830A/zh
Priority to KR1020157032146A priority patent/KR20150143628A/ko
Priority to EP14785849.2A priority patent/EP2993677A4/en
Priority to US14/785,112 priority patent/US20160079767A1/en
Publication of WO2014171163A1 publication Critical patent/WO2014171163A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices

Definitions

  • the present invention relates to a wireless power transmission device capable of controlling heat generation of the wireless power transmission device, a heat generation control method for the wireless power transmission device, and a method for manufacturing the wireless power transmission device.
  • a technique of performing power transmission using electromagnetic induction between coils see, for example, Patent Document 1
  • a resonance phenomenon between resonators (coils) included in a power feeding apparatus and a power receiving apparatus A technique for performing power transmission by coupling magnetic fields using a magnetic field resonance state (see, for example, Patent Document 2).
  • a constant current constant voltage charging method is known as a method for charging a rechargeable battery (for example, a lithium ion secondary battery). And when charging a lithium ion secondary battery by the constant current constant voltage charging method by the wireless power transmission device that performs the wireless power transmission, it is supplied to the rechargeable battery when the constant current charging is shifted to the constant voltage charging. Current value is attenuated, and the value of the load impedance of the powered device including the rechargeable battery (including the rechargeable battery, the stable circuit, the charging circuit, etc.) increases.
  • the input impedance of the entire wireless power transmission device including the power-supplied device will also fluctuate, but if the amount of change in the input impedance value of the wireless power transmission device with respect to the charging time during constant voltage charging can be increased.
  • the amount of change in the input current value of the wireless power transmission device for a predetermined charging time can be increased to suppress excessive input power when shifting from constant current charging to constant voltage charging, and excessive heat generation of the wireless power transmission device Can be suppressed. That is, in order to suppress excessive heat generation of the wireless power transmission device when shifting from constant current charging to constant voltage charging, a load that is the amount of change in the input impedance value of the wireless power transmission device with respect to the charging time during constant voltage charging It is required that the fluctuation characteristics can be adjusted.
  • the object of the present invention is to adjust the load fluctuation characteristic that is the amount of change in the input impedance value of the wireless power transmission device with respect to the charging time when shifting from constant current charging to constant voltage charging without adding a new device. Accordingly, it is an object of the present invention to provide a heat generation control method and the like that can control the heat generation of the wireless power transmission device.
  • One of the inventions for solving the above problems is that a magnetic field is changed from a power supply module to a power reception module connected to a power-supplied device including a secondary battery that can be charged by a constant current / constant voltage charging method.
  • a heat generation control method for a wireless power transmission device for supplying power By adjusting the value of the coupling coefficient between the coils of the power supply module and the power receiving module, a load variation characteristic that is the amount of change in the input impedance value of the wireless power transmission device with respect to the charging time during the constant voltage charging It is characterized by adjusting.
  • the constant current charging is constant.
  • the load fluctuation characteristic which is the amount of change in the input impedance value of the wireless power transmission device with respect to the charging time when shifting to voltage charging, is adjusted by changing the value of the coupling coefficient between the coils of the power supply module and the power receiving module. be able to.
  • the load fluctuation characteristic is increased, the amount of change in the input impedance value of the wireless power transmission device with respect to the predetermined charging time when shifting from constant current charging to constant voltage charging increases. The amount of change in the input current value of the wireless power transmission device increases.
  • the wireless power transmission device (power feeding module and power receiving module) Excessive heat generation can be suppressed.
  • the load fluctuation characteristic is reduced, the amount of change in the input impedance value of the wireless power transmission device with respect to the predetermined charging time when shifting from constant current charging to constant voltage charging is reduced. The amount of change in the input current value of the wireless power transmission device is reduced. If the amount of change in the input current value of the wireless power transmission device is reduced, the temperature of the wireless power transmission device (power supply module and power reception module) suddenly changes in a short time when shifting from constant current charging to constant voltage charging. Can be suppressed.
  • a power supply module including at least a power supply coil and a power supply resonator, and at least a power reception resonator and a power reception coil are provided, and charging is performed by a constant current / constant voltage charging method.
  • a heat generation control method for a wireless power transmission device that supplies power by a resonance phenomenon to a power receiving module to which a power-supplied device including a rechargeable battery is connected, At least one of a coupling coefficient between the power feeding coil and the power feeding resonator, a coupling coefficient between the power feeding resonator and the power receiving resonator, and a coupling coefficient between the power receiving resonator and the power receiving coil.
  • the constant current charging is performed from the constant current charging.
  • the load variation characteristic which is the amount of change in the input impedance value of the wireless power transmission device with respect to the charging time when the transition to, is performed, the coupling coefficient between the feeding coil and the feeding resonator, and between the feeding resonator and the receiving resonator. Adjustment can be made by changing at least one of the coupling coefficient and the coupling coefficient between the power receiving resonator and the power receiving coil.
  • the load fluctuation characteristic is increased, the amount of change in the input impedance value of the wireless power transmission device with respect to the predetermined charging time when shifting from constant current charging to constant voltage charging increases.
  • the amount of change in the input current value of the wireless power transmission device increases. If the amount of change in the input current value of the wireless power transmission device is increased, excessive input power when shifting from constant current charging to constant voltage charging can be suppressed, and the wireless power transmission device (feeding coil, feeding resonator, Excessive heat generation of the power receiving resonator and the power receiving coil) can be suppressed.
  • the amount of change in the input impedance value of the wireless power transmission device with respect to the predetermined charging time when shifting from constant current charging to constant voltage charging is reduced.
  • the amount of change in the input current value of the wireless power transmission device is reduced. If the amount of change in the input current value of the wireless power transmission device is reduced, a rapid wireless power transmission device (feeding coil, feeding resonator, receiving resonance) in a short time when shifting from constant current charging to constant voltage charging. Temperature change of the battery and the receiving coil) can be suppressed.
  • the load variation characteristic is increased by increasing a coupling coefficient between the feeding coil and the feeding resonator. It is characterized by increasing.
  • the load fluctuation characteristic can be increased by increasing the coupling coefficient between the power supply coil and the power supply resonator.
  • the load variation characteristic is increased by increasing a coupling coefficient between the power-receiving resonator and the power-receiving coil. It is characterized by increasing.
  • the load fluctuation characteristic can be increased by increasing the coupling coefficient between the power receiving resonator and the power receiving coil.
  • One of the inventions for solving the above-described problems is that in the heat generation control method of the wireless power transmission device, the coupling coefficient between the power supply coil and the power supply resonator, the power reception resonator, and the power reception The load variation characteristic is increased by increasing the coupling coefficient with the coil.
  • the load variation characteristic can be increased by increasing the coupling coefficient between the power feeding coil and the power feeding resonator and the coupling coefficient between the power receiving resonator and the power receiving coil.
  • One of the inventions for solving the above-described problems is a method of controlling the heat generation of the wireless power transmission device, wherein the coupling coefficient between the power supply coil and the power supply resonator, the power supply resonator, and the power reception resonator. And the coupling coefficient between the power receiving resonator and the power receiving coil are respectively the distance between the power feeding coil and the power feeding resonator, and the power feeding resonator and the power receiving resonator. And a distance between the power receiving resonator and the power receiving coil are changed.
  • the value of the coupling coefficient between the power supply coil and the power supply resonator can be changed by changing the distance between the power supply coil and the power supply resonator.
  • the coupling coefficient between the power receiving resonator and the power receiving resonator can be changed, and by changing the distance between the power receiving resonator and the power receiving coil.
  • the value of the coupling coefficient between the power receiving resonator and the power receiving coil can be changed.
  • the distance between the power feeding coil and the power feeding resonator, the distance between the power feeding resonator and the power receiving resonator, and the distance between the power receiving resonator and the power receiving coil are physically changed.
  • the value of the coupling coefficient between the coils can be changed. That is, a simple operation of physically changing the distance between the power feeding coil and the power feeding resonator, the distance between the power feeding resonator and the power receiving resonator, and the distance between the power receiving resonator and the power receiving coil.
  • the load variation characteristic can be adjusted.
  • One of the inventions for solving the above problem is that, in the heat generation control method of the wireless power transmission device, the value of the transmission characteristic with respect to the drive frequency of the power supplied to the power supply module is the same in the power supply module and the power reception module.
  • Variable parameters configuring the power feeding module and the power receiving module are set so as to have a bimodal characteristic having peaks in a driving frequency band lower than a resonance frequency and a driving frequency band higher than the resonance frequency, respectively.
  • the driving frequency of the power supplied to the wireless power transmission device set to have the bimodal characteristics is adjusted by setting the wireless power transmission device to have the bimodal characteristics.
  • the increase / decrease tendency of the input impedance value of the wireless power transmission device is adjusted, thereby controlling the heat generation of the wireless power transmission device. Will be able to.
  • the drive frequency of the power supplied to the power supply module is determined from the resonance frequency of the power supply module and the power reception module.
  • the drive frequency of the power supplied to the power supply module corresponds to the band corresponding to the peak value of the transmission characteristics appearing in the drive frequency band lower than the resonance frequency in the power supply module and the power reception module, or the power supply module and the power reception module.
  • the drive frequency of the power supplied to the power supply module is determined from the resonance frequency of the power supply module and the power reception module. Is set to a band corresponding to a valley between the peak value of the transmission characteristic appearing in the low driving frequency band and the peak value of the transmission characteristic appearing in the driving frequency band higher than the resonance frequency, and the wireless at the time of constant voltage charging It is characterized in that the input impedance value of the power transmission device is adjusted so as to maintain or decrease.
  • the drive frequency of the power supplied to the power supply module is set such that the transmission characteristic peak value appears in the drive frequency band lower than the resonance frequency in the power supply module and the power reception module, and the transmission appears in the drive frequency band higher than the resonance frequency.
  • one of the inventions for solving the above problems is a wireless power transmission device that is adjusted by the heat generation control method of the wireless power transmission device.
  • the heat generation control of the wireless power transmission device can be realized by adjusting the value of the coupling coefficient between the coils of the power supply module and the power reception module. That is, heat generation of the wireless power transmission device can be controlled without increasing the number of parts of the wireless power transmission device.
  • One of the inventions for solving the above problems is that the magnetic field is changed from a power supply module to a power reception module to which a power-supplied device including a secondary battery that can be charged by a constant current / constant voltage charging method is connected.
  • a wireless power transmission device that can control the heat generation of the wireless power transmission device by adjusting the value of the coupling coefficient between the coils of the power supply module and the power receiving module. . That is, it is possible to manufacture a wireless power transmission device capable of controlling the heat generation of the wireless power transmission device without increasing the number of parts of the wireless power transmission device.
  • 6 is a graph showing measurement results according to Measurement Experiment 2-3 and Measurement Experiment 2-4.
  • 7 is a graph showing measurement results according to measurement experiment 2-5. It is a measurement result of the surface temperature of the feeding coil according to measurement experiment 2-5. It is a graph which shows the relationship between the distance between coils and a coupling coefficient in wireless power transmission. It is explanatory drawing explaining the manufacturing method of a wireless power transmission apparatus.
  • 6 is a flowchart illustrating a method for designing a wireless headset and a charger including a wireless power transmission device.
  • the wireless power transmission device 1 includes a power supply module 2 including a power supply coil 21 and a power supply resonator 22, and a power reception module 3 including a power reception coil 31 and a power reception resonator 32.
  • the power supply coil 21 of the power supply module 2 is connected to the AC power supply 6 including an oscillation circuit in which the drive frequency of the power supplied to the power supply module 2 is set to a predetermined value, and the power reception coil 31 of the power reception module 3 receives power.
  • a lithium ion secondary battery 9 is connected through a stabilization circuit 7 that rectifies the AC power that has been generated and a charging circuit 8 that prevents overcharging.
  • the stabilization circuit 7, the charging circuit 8, and the lithium ion secondary battery 9 correspond to the power-supplied device 10.
  • the feeding coil 21 serves to supply power obtained from the AC power source 6 to the feeding resonator 22 by electromagnetic induction.
  • the feeding coil 21 constitutes an RLC circuit including a resistor R 1 , a coil L 1 , and a capacitor C 1 as elements.
  • the coil L 1 portion uses a copper wire (with an insulating coating) and the coil diameter is set to 15 mm ⁇ .
  • the total impedance of the circuit elements constituting the feeding coil 21 is Z 1, and in this embodiment, the RLC including the resistor R 1 , the coil L 1 , and the capacitor C 1 constituting the feeding coil 21 as elements.
  • the total impedance of the circuit (circuit element) is Z 1 .
  • the current flowing through the feeding coil 21 is I 1 .
  • the current I 1 has the same meaning as the input current I in input to the wireless power transmission device 1.
  • the power receiving coil 31 has a function of receiving electric power transmitted as magnetic field energy from the power feeding resonator 22 to the power receiving resonator 32 by electromagnetic induction, and supplying the power to the lithium ion secondary battery 9 through the stabilization circuit 7 and the charging circuit 8. Fulfill.
  • the power receiving coil 31 constitutes an RLC circuit including a resistor R 4 , a coil L 4 , and a capacitor C 4 as shown in FIG.
  • the coil L 4 portion is set to a coil diameter of 11 mm ⁇ using a copper wire (with an insulating coating).
  • the total impedance of the circuit elements constituting the power receiving coil 31 is Z 4.
  • the RLC including the resistor R 4 , the coil L 4 , and the capacitor C 4 constituting the power receiving coil 31 as elements.
  • the total impedance of the circuit (circuit element) is Z 4 .
  • the total impedance of the power-supplied device 10 connected to the power receiving coil 31 is Z L.
  • the current flowing through the power receiving coil 31 is I 4 .
  • the total impedance of the power-supplied device 10 is Z L , it may be replaced with R L for convenience.
  • the power feeding resonator 22 constitutes an RLC circuit including a resistor R 2 , a coil L 2 , and a capacitor C 2 as elements.
  • the power receiving resonator 32 constitutes an RLC circuit including a resistor R 3 , a coil L 3 , and a capacitor C 3 as elements.
  • Each of the power feeding resonator 22 and the power receiving resonator 32 becomes a resonance circuit and plays a role of creating a magnetic field resonance state.
  • the magnetic field resonance state means that two or more coils resonate at the resonance frequency.
  • the total impedance of the circuit elements constituting the feed resonator 22 is Z 2.
  • the resistor R 2 , the coil L 2 , and the capacitor C 2 constituting the feed resonator 22 are elements.
  • the total impedance of the RLC circuit (circuit element) is Z 2 .
  • the total impedance of the circuit elements constituting the power receiving resonator 32 is Z 3.
  • the resistor R 3 , the coil L 3 , and the capacitor C 3 constituting the power receiving resonator 32 are elements.
  • the total impedance of the RLC circuit (circuit element) is Z 3 .
  • the current flowing through the power feeding resonator 22 is I 2
  • the current flowing through the power receiving resonator 32 is I 3 .
  • the resonance frequency of the power feeding coil 21, the power feeding resonator 22, the power receiving coil 31, and the power receiving resonator 32 in the present embodiment is 970 kHz. ... (Formula 1)
  • the power supply resonator 22 uses a solenoid type coil having a coil diameter of 15 mm ⁇ made of a copper wire (with an insulating coating).
  • the power receiving resonator 32 uses a solenoid type coil having a coil diameter of 11 mm ⁇ made of a copper wire (with an insulating coating). Further, the resonance frequencies of the power feeding resonator 22 and the power receiving resonator 32 are matched.
  • the power feeding resonator 22 and the power receiving resonator 32 may be spiral or solenoid type coils as long as the resonators use coils.
  • the distance between the power feeding coil 21 and the power feeding resonator 22 is d12
  • the distance between the power feeding resonator 22 and the power receiving resonator 32 is d23
  • the distance between the power receiving resonator 32 and the power receiving coil 31 Is d34 (see FIG. 1).
  • the coupling coefficient between the coil L 1 and the coil L 2 is denoted as k 12
  • the coupling coefficient between the coil L 2 and the coil L 3 is denoted as k 23
  • the coil A coupling coefficient between L 3 and the coil L 4 is expressed as k 34 .
  • Resistance values, inductances, capacitor capacities, and coupling coefficients k 12 , k 23 , k 34 in R 4 , L 4 , C 4 of the RLC circuit of the receiving coil 31 are parameters that can be changed at the design / manufacturing stage, etc. Is preferably set so as to satisfy a relational expression (formula 4) described later.
  • a circuit diagram of the wireless power transmission device 1 (including the stabilization circuit 7, the charging circuit 8, and the lithium ion secondary battery 9) having the above-described configuration is shown in the lower diagram of FIG. This is shown by replacing the entire wireless power transmission device 1 with one input impedance Z in , the voltage applied to the wireless power transmission device 1 is the voltage V in , and the current input to the wireless power transmission device 1 is I in .
  • the configuration of the wireless power transmission apparatus 1 is represented by an equivalent circuit as shown in FIG. From the equivalent circuit of FIG. 2, the input impedance Z in of the wireless power transmission device 1 can be expressed as (Equation 2). ... (Formula 2)
  • the impedances Z 1 , Z 2 , Z 3 , Z 4 , and Z L in the power feeding coil 21, the power feeding resonator 22, the power receiving resonator 32, and the power receiving coil 31 of the wireless power transmission device 1 in the present embodiment are respectively It can be expressed as (Equation 3). ... (Formula 3)
  • the wireless power transmission device 1 when the resonance frequency of the power supply resonator 22 and the power reception resonator 32 are matched, a magnetic field resonance state is created between the power supply resonator 22 and the power reception resonator 32. can do.
  • a magnetic field resonance state is created in a state where the power feeding resonator 22 and the power receiving resonator 32 resonate, electric power can be transmitted from the power feeding resonator 22 to the power receiving resonator 32 as magnetic field energy. Then, the power received by the power receiving resonator 32 is supplied to the lithium ion secondary battery 9 through the power receiving coil 31, the stabilization circuit 7, and the charging circuit 8 to be charged.
  • a lithium ion secondary battery 9 is used as one of the power-supplied devices 10 to which power is supplied. And generally, in order to charge the lithium ion secondary battery 9, the constant current constant voltage charging system is used. In the charging of the lithium ion secondary battery 9 by this constant current constant voltage charging method, as shown in the charging characteristics of the lithium ion secondary battery 9 in FIG. The battery 9 is charged with a constant current (I ch ) (CC: constant current). Then, the voltage (V ch ) applied to the lithium ion secondary battery 9 while charging with a constant current is increased to a predetermined upper limit voltage (4.2 V in this embodiment).
  • I ch constant current
  • V ch voltage
  • the generated energy J generated in the wireless power transmission device 1 is increased, the life of the electronic components constituting the wireless power transmission device 1 is shortened. Therefore, the thermal energy J generated in the wireless power transmission device 1 is reduced. Is required to be suppressed.
  • Equation 7 if the value of the input impedance Z in at the time of constant voltage charging can be increased, the value of the input current I in to the wireless power transmission device 1 also becomes smaller (see Equation 6).
  • the amount of heat generated by the wireless power transmission device 1 thermal energy J generated in the wireless power transmission device 1) when the charging (CC) is changed to charging by a constant voltage (CV) is suppressed, and the temperature of the wireless power transmission device 1 is reduced. It can be seen that the rise can be suppressed.
  • the wireless power transmission device 1 with respect to a predetermined charging time if the load fluctuation characteristic that is the amount of change in the value of the input impedance Zin of the wireless power transmission device 1 with respect to the charging time during constant voltage charging (CV) can be increased, the wireless power transmission device 1 with respect to a predetermined charging time. It can be seen that the amount of change in the input current Iin can be increased to suppress excessive input power when shifting from constant current charging to constant voltage charging, and excessive heat generation of the wireless power transmission device 1 can be suppressed. . On the contrary, if the load fluctuation characteristic that is the amount of change in the value of the input impedance Zin of the wireless power transmission device 1 with respect to the charging time during constant voltage charging (CV) can be reduced, the wireless power transmission device for a predetermined charging time. It can be seen that the amount of change in the input current Iin of 1 can be reduced to suppress a rapid temperature change of the wireless power transmission device 1 in a short time.
  • C 4 changeable parameters constituting the power supply module 2 and the power reception module 3 such as a resistance value, an inductance, a capacitor capacity, and coupling coefficients k 12 , k 23 , and k 34 are set.
  • the transmission characteristic “S21” of the wireless power transmission device 1 with respect to the driving frequency of the power supplied to the wireless power transmission device 1 is made to have a bimodal property, and the power supplied to the wireless power transmission device 1 is By adjusting the drive frequency, an increase / decrease tendency of the input impedance value of the wireless power transmission device 1 during constant voltage charging is set, and the amount of heat generated by the wireless power transmission device 1 is suppressed.
  • the feeding coil 21 configures an RLC circuit including the resistor R 1 , the coil L 1 , and the capacitor C 1 as elements. In one portion, the coil diameter is set to 15 mm ⁇ .
  • the power receiving coil 31 constitutes an RLC circuit including the resistor R 4 , the coil L 4 , and the capacitor C 4 as elements, and the coil diameter of the coil L 4 is set to 11 mm ⁇ .
  • the feeding resonator 22 constitutes an RLC circuit including a resistor R 2 , a coil L 2 , and a capacitor C 2 , and the coil L 2 portion uses a solenoid type coil having a coil diameter of 15 mm ⁇ . is doing.
  • the power receiving resonator 32 constitutes an RLC circuit including a resistor R 3 , a coil L 3 , and a capacitor C 3.
  • the coil L 3 portion uses a solenoid type coil having a coil diameter of 11 mm ⁇ . is doing. Then, the values of R 1 , R 2 , R 3 , and R 4 in the wireless power transmission device 1 used for the measurement experiments 1-1 to 1-3 are 0.65 ⁇ , 0.65 ⁇ , 2.47 ⁇ , 2. Set to 0 ⁇ .
  • the values of L 1 , L 2 , L 3 , and L 4 were set to 3.1 ⁇ H, 3.1 ⁇ H, 18.4 ⁇ H, and 12.5 ⁇ H, respectively.
  • the coupling coefficients k 12 , k 23 , and k 34 were set to 0.46, 0.20, and 0.52, respectively.
  • the resonance frequency in the power feeding resonator 22 and the power receiving resonator 32 is 970 kHz.
  • the wireless power transmission device 1 is set to have a bimodal property, and the drive frequency of the AC power supplied to the power supply module 2 is set to the common mode described later.
  • the lithium ion secondary battery 9 is charged (powered) in place of the three states (see FIGS. 4 and 5) of the resonance mode (fL), the anti-phase resonance mode (fH), and the resonance frequency (f0).
  • Current I in and input impedance Z in are measured.
  • the current I in with respect to the charging time (Charging Time (min)) when the input voltage V in 5 V from the AC power source 6 to the wireless power transmission device 1 and to measure the input impedance Z in.
  • the transmission characteristic “S21” of the wireless power transmission device 1 with respect to the drive frequency of the power supplied to the wireless power transmission device 1 is measured with a bimodal property.
  • the transmission characteristic “S21” represents a signal measured by connecting a network analyzer (such as E5061B manufactured by Agilent Technologies) to the wireless power transmission device 1, and is displayed in decibels. It means that power transmission efficiency is high.
  • the transmission characteristic “S21” of the wireless power transmission device 1 with respect to the drive frequency of the power supplied to the wireless power transmission device 1 is determined by the strength of the magnetic field coupling between the power supply module 2 and the power reception module 3 (magnetic field coupling). It is divided into those having unimodal properties and those having bimodal properties.
  • the unimodality means that there is one peak of the transmission characteristic “S21” with respect to the drive frequency, and that peak appears in the resonance frequency band (f0) (see the broken line 51 in FIG. 4).
  • bimodality has two peaks of the transmission characteristic “S21” with respect to the drive frequency, and the two peaks are a drive frequency band (fL) lower than the resonance frequency and a drive frequency band (fH) higher than the resonance frequency. ) (See the solid line 52 in FIG. 4). More specifically, bimodality is defined as a state where the reflection characteristic “S11” measured by connecting the wireless power transmission device 1 to the network analyzer has two peaks.
  • the power transmission efficiency refers to the ratio of the power received by the power receiving module 3 to the power supplied to the power supply module 2.
  • the transmission characteristic “S21” is maximized when the drive frequency is the resonance frequency f0 (the power transmission efficiency is maximized) as shown by the broken line 51 in FIG. ).
  • the transmission characteristic “S21” has a driving frequency band (fL) lower than the resonance frequency f0 and the resonance frequency f0. Is also maximized in the high drive frequency band (fH).
  • the maximum value of the transmission characteristic “S21” in the bimodality (the value of the transmission characteristic “S21” at fL or fH). Is a value lower than the maximum value of the transmission characteristic “S21” in the unimodality (the value of the transmission characteristic “S21” at f0) (see the graph of FIG. 4).
  • the power supply resonator 22 and the power reception resonator 32 are set.
  • the direction of the current flowing through the power feeding resonator 22 and the direction of the current flowing through the power receiving resonator 32 are the same.
  • the transmission characteristic “S21” (broken line 51) in a general wireless power transmission device for the purpose of maximizing the power transmission efficiency
  • the value of the transmission characteristic “S21” can be set to a relatively high value.
  • a resonance state in which the direction of the current flowing in the coil (power feeding resonator 22) in the power feeding module 2 and the direction of the current flowing in the coil (power receiving resonator 32) in the power receiving module 3 are the same direction is called an in-phase resonance mode. I will decide.
  • the magnetic field generated on the outer peripheral side of the power feeding resonator 22 and the magnetic field generated on the outer peripheral side of the power receiving resonator 32 cancel each other, so that the outer peripheral side of the power feeding resonator 22 and the power receiving resonator 32.
  • the influence of the magnetic field is reduced, and the magnetic field intensity is smaller than the magnetic field strength other than the outer peripheral side of the power feeding resonator 22 and the power receiving resonator 32 (for example, the magnetic field strength on the inner peripheral side of the power feeding resonator 22 and the power receiving resonator 32).
  • a magnetic field space having strength can be formed.
  • the drive frequency of the AC power supplied to the power supply module 2 is set to the frequency fH near the peak on the high frequency side in the bimodality (antiphase resonance mode)
  • the power supply resonator 22 and the power reception resonator 32 are in antiphase.
  • the resonance state occurs, and the direction of the current flowing through the power feeding resonator 22 and the direction of the current flowing through the power receiving resonator 32 are reversed.
  • the transmission characteristic “S21” (broken line 51) in a general wireless power transmission device for the purpose of maximizing the power transmission efficiency
  • the value of the transmission characteristic “S21” can be set to a relatively high value.
  • a resonance state in which the direction of the current flowing in the coil (power feeding resonator 22) in the power feeding module 2 and the direction of the current flowing in the coil (power receiving resonator 32) in the power receiving module 3 are opposite to each other is referred to as an antiphase resonance mode. I will call it.
  • the magnetic field generated on the inner peripheral side of the power feeding resonator 22 and the magnetic field generated on the inner peripheral side of the power receiving resonator 32 cancel each other, so that the power feeding resonator 22 and the power receiving resonator 32 are
  • the magnetic field strength on the inner peripheral side of the power supply resonator 22 and the power receiving resonator 32 other than the inner peripheral side is reduced (for example, the magnetic field strength on the outer peripheral side of the power supply resonator 22 and the power receiving resonator 32).
  • a magnetic field space having a smaller magnetic field strength can be formed.
  • the stable circuit 7, the charging circuit 8, the lithium ion secondary battery 9, etc. since the magnetic field space formed by the reversed-phase resonance mode is formed on the inner peripheral side of the power feeding resonator 22 and the power receiving resonator 32, the stable circuit 7, the charging circuit 8, and the lithium ion secondary battery are formed in this space.
  • the transmission characteristic “S21” of the wireless power transmission device 1 with respect to the driving frequency of the power supplied to the wireless power transmission device 1 has a bimodal property as described above, the AC power supplied to the power supply module 2 is reduced.
  • the drive frequency is set to the in-phase resonance mode (fL) or the anti-phase resonance mode (fH), as shown in FIG. 5, the power transmission efficiency is maintained at a high value and the wireless power transmission device 1 it is possible to maximize the value of the input impedance Z in (see solid line 55).
  • the driving frequency of the AC power to the power-supplying module 2 is set to the resonance frequency (f0), as shown in FIG. 5, possible to minimize the value of the input impedance Z in of the wireless power transmission device 1 (See solid line 55).
  • the driving frequency of the AC power supplied to the power supply module 2 is set to 3 of the in-phase resonance mode (fL), the anti-phase resonance mode (fH), and the resonance frequency (f0).
  • the current I in and the input impedance Z in when the lithium ion secondary battery 9 is charged (powered) are measured.
  • Measurement experiment 1-1 When the drive frequency is set to the in-phase resonance mode
  • the charging time Charging Time (min)
  • input current to I in and to measure the input impedance Z in, the results are shown in Figure 6.
  • input voltage V in is a 5V (constant).
  • the transmission characteristic “S21” of the wireless power transmission device 1 with respect to the drive frequency of the power supplied to the wireless power transmission device 1 is set to have a bimodal property
  • the drive frequency of the AC power supplied to the power supply module 2 is set to the frequency fL near the low frequency side peak in FIG. 5
  • the input after shifting from charging with constant current (CC) to charging with constant voltage (CV) the value of the impedance Z in can be on the increase.
  • CV constant voltage charging
  • Measurement experiment 1-2 When the drive frequency is set to the anti-phase resonance mode
  • input voltage V in is a 5V (constant).
  • the transmission characteristic “S21” of the wireless power transmission device 1 with respect to the drive frequency of the power supplied to the wireless power transmission device 1 is set to have a bimodal property
  • the drive frequency of the AC power supplied to the power supply module 2 is set to the frequency fH near the peak on the high frequency side in FIG. 5
  • the value of Z in can be increased.
  • Measurement experiment 1-3 When the drive frequency is set to the resonance frequency
  • the input current I in and the input impedance Z in are measured, and the measurement results are shown in FIG.
  • input voltage V in is a 5V (constant).
  • the transmission characteristic “S21” of the wireless power transmission device 1 with respect to the drive frequency of the power supplied to the wireless power transmission device 1 is set to have a bimodal property, the resonance frequency f0 in, if you set the driving frequency of the AC power to the power-supplying module 2, the value of the input impedance Z in of the shifts from charging with a constant current (CC) charging by the constant voltage (CV) It can be a decreasing trend.
  • the drive frequency of the AC power supplied to the power supply module 2 is set between the in-phase resonance mode fL and the resonance frequency f0 or between the resonance frequency f0 and the anti-phase resonance mode fH. is set to a predetermined value between the can also maintain the value of the input impedance Z in of the wireless power transmission apparatus 1 during the constant voltage charging at a constant value.
  • the drive frequency of the power supplied to the power supply module 2 is set to a band corresponding to the peak value (fL) of the transmission characteristic that appears in the drive frequency band lower than the resonance frequency (f0) in the power supply module 2 and the power reception module 3. It is thereby possible value of the input impedance Z in of the wireless power transmission apparatus 1 during the constant voltage charging is adjusted to be on the rise.
  • the input current I in of the wireless power transmission apparatus 1 during the constant voltage charging it is possible to reduce heat generation of the wireless power transmission device 1 has.
  • the drive frequency of the power supplied to the power supply module 2 is set to a band corresponding to the peak value (fH) of the transmission characteristic that appears in the drive frequency band higher than the resonance frequency (f0) in the power supply module 2 and the power reception module 3. It is thereby possible value of the input impedance Z in of the wireless power transmission apparatus 1 during the constant voltage charging is adjusted to be on the rise.
  • the input current I in of the wireless power transmission apparatus 1 during the constant voltage charging it is possible to reduce heat generation of the wireless power transmission device 1 has.
  • the drive frequency of the power supplied to the power supply module 2 is determined from the peak value (fL) and the resonance frequency (f0) of the transmission characteristics that appear in the drive frequency band lower than the resonance frequency (f0) in the power supply module 2 and the power reception module 3.
  • the band corresponding to the valley between the peak value of the transmission characteristics also appear in high driving frequency bands (fH) the wireless power value of the input impedance Z in of the transmission device 1 is maintained or at constant voltage charging It can be adjusted so that it tends to decrease.
  • the load fluctuation characteristic is the amount of change in the value of the input impedance Zin of the wireless power transmission device 1 with respect to the charging time during constant voltage charging.
  • This load fluctuation characteristic is obtained when the X axis is at constant voltage charging (CV charging time in) in the case of the input impedance Z in value in the Y-axis (see the input impedance Z in of FIG. 6), a predetermined amount of change in the X-axis (predetermined amount of change in the Y-axis with respect to [Delta] X) ([Delta] Y) Yes, meaning slope (note that load fluctuation characteristics are evaluated as absolute values).
  • the load variation characteristic increases, the amount of change in the value of the input impedance Zin of the wireless power transmission device 1 with respect to the charging time during constant voltage charging increases and the slope becomes steep. That is, by increasing the load fluctuation characteristic, can be reduced in a short period of time the input current I in is input to the wireless power transmission device 1, definitive from the constant current charging (CC) when the transition to the constant voltage charging (CV) Excessive input power can be suppressed, and excessive heat generation of the wireless power transmission device 1 can be suppressed with quick response.
  • the load variation characteristics are adjusted by changing the coupling coefficients k 12 , k 23 , and k 34 . Then, how the load variation characteristics are changed by changing the coupling coefficients k 12 , k 23 , and k 34 will be described with reference to measurement experiments 2-1 to 2-5.
  • the wireless power transmission device 1 is set to have a bimodal property, and the drive frequency of the AC power supplied to the power supply module 2 is set to the negative phase resonance mode (fH). Is set.
  • the coupling coefficients k 23 and k 34 are respectively fixed to 0.20 and 0.52, and then the coupling coefficient k 12 is set to 0.3 and the coupling coefficient k 12 is set to 0.46.
  • the input impedance Z in when the lithium ion secondary battery 9 is charged (powered) is measured.
  • the wireless power transmission device 1 used in the measurement experiment 2-2 is the same as that in the measurement experiment 2-1.
  • the power feeding resonator 22 and the power receiving resonator 32 have the driving frequency of the AC power supplied to the power feeding module 2 after setting the wireless power transmission device 1 to the bimodal nature.
  • the resonance frequency (f0) is set.
  • the coupling coefficients k 23 and k 34 are respectively fixed to 0.20 and 0.52, and then the coupling coefficient k 12 is set to 0.3 and the coupling coefficient k 12 is set to 0.46.
  • the input impedance Z in when the lithium ion secondary battery 9 is charged (powered) is measured.
  • charging with a constant current (CC) is performed by setting the drive frequency of the AC power supplied to the power supply module 2 to the resonance frequency (f0) of the power supply resonator 22 and the power reception resonator 32.
  • value of the input impedance Z in of the proceeds to the charging by the constant voltage (CV) is set to be on the decline from.
  • the slope which is the amount of change in the value of the input impedance Zin of the wireless power transmission device 1 with respect to the charging time during constant voltage charging, is negative ( ⁇ ), but as described above, the load fluctuation characteristic is an absolute value. Therefore, in the case of the measurement experiment 2-2, it is evaluated that the load fluctuation characteristic is large.
  • the wireless power transmission device 1 used in the measurement experiment 2-3 is the same as that in the measurement experiment 2-1.
  • the wireless power transmission device 1 is set to the bimodal nature, and the drive frequency of the AC power supplied to the power supply module 2 is set to the anti-phase resonance mode (fH).
  • the coupling coefficients k 12 and k 23 are fixed to 0.46 and 0.20, respectively, and the coupling coefficient k 34 is set to 0.25, and the coupling coefficient k 34 is set to 0.52.
  • the input impedance Z in when the lithium ion secondary battery 9 is charged (powered) is measured.
  • the wireless power transmission device 1 used in the measurement experiment 2-4 is the same as the measurement experiment 2-1.
  • the power feeding resonator 22 and the power receiving resonator 32 have the driving frequency of the AC power supplied to the power feeding module 2 after setting the wireless power transmission device 1 to the bimodal nature.
  • the resonance frequency (f0) is set.
  • the coupling coefficients k 12 and k 23 are fixed to 0.46 and 0.20, respectively, and the coupling coefficient k 34 is set to 0.25, and the coupling coefficient k 34 is set to 0.52.
  • the input impedance Z in when the lithium ion secondary battery 9 is charged (powered) is measured.
  • the drive frequency of the AC power supplied to the power supply module 2 is set to the resonance frequency (f0) of the power supply resonator 22 and the power reception resonator 32. by, so that the value of the input impedance Z in of the shifts from charging with a constant current (CC) charging by the constant voltage (CV) is decreasing.
  • the values of R 1 , R 2 , R 3 , and R 4 in the wireless power transmission device 1 used in measurement experiment 2-5 were set to 0.7 ⁇ , 0.7 ⁇ , 2.5 ⁇ , and 2.0 ⁇ , respectively.
  • the values of L 1 , L 2 , L 3 , and L 4 were set to 3.1 ⁇ H, 3.1 ⁇ H, 18.4 ⁇ H, and 12.5 ⁇ H, respectively.
  • the values of C 1 , C 2 , C 3 , and C 4 were set to 8.7 nF, 8.7 nF, 1.5 nF, and 2.3 nF, respectively.
  • the resonance frequency in the power feeding resonator 22 and the power receiving resonator 32 is 970 kHz.
  • the coupling coefficient k 12 is set to 0.46 and the coupling coefficient k 34 is set to 0.52, the coupling coefficient k 12 is set to 0.38 and the coupling coefficient k 34 is set to 0.37. It can be seen that the load variation characteristic is larger.
  • the coupling coefficient k 12 is set to 0.38 and the coupling coefficient k 34 is set to 0.37, the charging time at the constant voltage charging is obtained.
  • the amount of change in the input current I in of the wireless power transmission device 1 with respect to is about 0.050 A (0.170 A-0.120 A), whereas the coupling coefficient k 12 is 0.46 and the coupling coefficient k
  • 34 is set to 0.52
  • the amount of change in the input current Iin of the wireless power transmission device 1 with respect to the charging time during constant voltage charging is approximately 0.058 A (0.164 A-0.106 A).
  • the coupling coefficient k 12 is set to 0.46 and the coupling coefficient k 34 is set to 0.52, the coupling coefficient k 12 is set to 0.38 and the coupling coefficient k 34 is set to 0.37. It can be seen that the amount of change in the input current Iin of the wireless power transmission device 1 with respect to the charging time during voltage charging is larger.
  • FIG. 12 shows the measured values and a graph of the measured values.
  • the constant current charging (CC) is changed to the constant voltage charging (CV).
  • the surface temperature of the feeding coil 21 at the time of the transition is about 39.4 ° C., and when about 40 minutes have elapsed since the transition to constant voltage charging (CV) (charging time) 80 minutes), the surface temperature of the feeding coil 21 was about 39.2 ° C. That is, the surface temperature of the feeding coil 21 was only lowered by 0.2 ° C. (39.4-39.2 ° C.).
  • the coupling coefficient k 12 is set to 0.46 and the coupling coefficient k 34 is set to 0.52
  • the transition from constant current charging (CC) to constant voltage charging (CV) Is approximately 39.1 ° C.
  • the surface temperature of the feeding coil 21 is approximately 37 when approximately 40 minutes have elapsed since the transition to constant voltage charging (CV) (charging time 80 minutes). It was 6 ° C. That is, the surface temperature of the feeding coil 21 was lowered by 1.5 ° C. (39.1-37.6 ° C.).
  • the relationship between the distance between the coils and the coupling coefficient k tends to increase the value of the coupling coefficient k when the distance between the coils is shortened (shortened). is there.
  • the distance d12 between the power feeding coil 21 and the power feeding resonator 22, the distance d23 between the power feeding resonator 22 and the power receiving resonator 32, and the power receiving resonator are applied to the wireless power transmission device 1 according to the present embodiment, the distance d12 between the power feeding coil 21 and the power feeding resonator 22, the distance d23 between the power feeding resonator 22 and the power receiving resonator 32, and the power receiving resonator.
  • the coupling coefficient k 12 between the feeding coil 21 (coil L 1 ) and the feeding resonator 22 (coil L 2 ) By stretching the coupling coefficient k 12 between the feeding coil 21 (coil L 1 ) and the feeding resonator 22 (coil L 2 ), the feeding resonator 22 (coil L 2 ) and the receiving resonator 32 (coil L 3 ). it can lower the coupling coefficient k 23, receiving resonator 32 coupling coefficient k 34 between the (coil L 3) and the power receiving coil 31 (coil L 4) between the.
  • the distance d34 between the power supply coil 31 and the power receiving coil 31 is fixed, the coupling coefficient between the power supply coil 21 and the power supply resonator 22 is reduced by shortening the distance d12 between the power supply coil 21 and the power supply resonator 22.
  • the coupling coefficient k 12 By increasing the distance d12 between the feeding coil 21 and the feeding resonator 22, a smaller value of the coupling coefficient k 12 between the power supply coil 21 and the feeding resonator 22, the coupling coefficient k 12 By reducing the value, the load fluctuation characteristic can be reduced.
  • the distance between the power receiving resonator 32 and the power receiving coil 31 is fixed.
  • the value of the coupling coefficient k 34 between the power-receiving resonator 32 and the receiving coil 31 is increased, by increasing the value of the coupling coefficient k 34, increasing the load fluctuation characteristics Can do.
  • the value of the coupling coefficient k 34 between the power receiving resonator 32 and the power receiving coil 31 is decreased, and the coupling coefficient k 34 is reduced.
  • the load fluctuation characteristic can be reduced.
  • the distance d23 between the power feeding resonator 22 and the power receiving resonator 32 is fixed, the distance d12 between the power feeding coil 21 and the power feeding resonator 22 and between the power receiving resonator 32 and the power receiving coil 31 are fixed. , The coupling coefficient k 12 between the feeding coil 21 and the feeding resonator 22 and the coupling coefficient k 34 between the receiving resonator 32 and the receiving coil 31 are increased. The load fluctuation characteristics can be increased by increasing the values of the coupling coefficient k 12 and the coupling coefficient k 34 .
  • the power supply coil 21 and the power supply resonator 22 can be increased.
  • the constant current charging is performed.
  • the load fluctuation characteristic which is the amount of change in the value of the input impedance Zin of the wireless power transmission device 1 with respect to the charging time when shifting from (CC) to constant voltage charging (CV) is expressed by the feeding coil 21 and the feeding resonator 22.
  • coupling coefficient k 12 between the coupling coefficient k 23 between the feeding resonator 22 and the power-receiving cavity 32, and, by changing at least one of the coupling coefficient k 34 between the power-receiving resonator 32 and the receiving coil 31 Can be adjusted.
  • the amount of change in the value of the input impedance Zin of the wireless power transmission device 1 with respect to a predetermined charging time when shifting from constant current charging (CC) to constant voltage charging (CV) is increased. Therefore, the amount of change in the value of the input current I in of the wireless power transmission device 1 with respect to a predetermined charging time increases.
  • the amount of change in the value of the input current Iin of the wireless power transmission device 1 with respect to a predetermined charging time is reduced. Then, if the amount of change in the value of the input current I in of the wireless power transmission device 1 is reduced, the wireless power transmission device is abrupt in a short time when shifting from constant current charging (CC) to constant voltage charging (CV). 1 (power feeding coil 21, power feeding resonator 22, power receiving resonator 32, power receiving coil 31) can be suppressed.
  • CC constant current charging
  • CV constant voltage charging
  • the load variation characteristic can be increased by increasing the coupling coefficient k 12 between the power supply coil 21 and the power supply resonator 22.
  • the load variation characteristic can be increased by increasing the coupling coefficient k 34 between the power receiving resonator 32 and the power receiving coil 31.
  • the value of the coupling coefficient k 12 between the power supply coil 21 and the power supply resonator 22 can be changed by changing the distance d12 between the power supply coil 21 and the power supply resonator 22.
  • the distance d23 between the feeding resonator 22 and the power-receiving cavity 32 it is possible to change the value of the coupling coefficient k 23 between the feeding resonator 22 and the power-receiving cavity 32, the power receiving resonance
  • the value of the coupling coefficient k 34 between the power receiving resonator 32 and the power receiving coil 31 can be changed.
  • the value of the coupling coefficient between the coils can be changed by a simple operation of physically changing the distance d34. That is, the load variation characteristic can be adjusted by a simple operation of physically changing the distance between the coils.
  • a design method which is one process for manufacturing the wireless power transmission device 1, will be described with reference to FIGS.
  • a wireless headset 200 including an earphone speaker unit 200a and a charger 201 will be described as examples of portable devices on which the wireless power transmission device 1 is mounted (see FIG. 14).
  • the wireless power transmission device 1 designed by this design method includes a power receiving module 3 (a power receiving coil 31 and a power receiving resonator 32) and a power feeding module 2 (a power feeding coil), respectively, in the wireless headset 200 and the charger 201 shown in FIG. 21 is mounted as a feeding resonator 22).
  • the stabilizing circuit 7, the charging circuit 8, and the lithium ion secondary battery 9 are shown outside the power receiving module 3.
  • 32 is arranged on the inner peripheral side of the coil. That is, the wireless headset 200 is equipped with the power receiving module 3, the stabilization circuit 7, the charging circuit 8 and the lithium ion secondary battery 9, and the charger 201 is equipped with the power feeding module 2,
  • the power supply coil 21 of the module 2 is used with the AC power supply 6 connected thereto.
  • the amount of power received by the power receiving module 3 is determined from the capacity of the lithium ion secondary battery 9 and the charging current required for charging the lithium ion secondary battery 9 (S1). ).
  • the distance between the power supply module 2 and the power reception module 3 is determined (S2).
  • the distance d23 between the power feeding resonator 22 and the power receiving resonator 32 is determined in consideration of the shapes and structures of the wireless headset 200 and the charger 201.
  • the coil diameters of the power receiving coil 31 and the power receiving resonator 32 in the power receiving module 3 are determined (S3).
  • the coil diameters of the power feeding coil 21 and the power feeding resonator 22 in the power feeding module 2 are determined (S4).
  • the minimum necessary amount of power supplied to the power supply module 2 is determined ( S5).
  • the design value of the input impedance Z in of the wireless power transmission device 1 is determined based on the amount of received power received by the power receiving module 3, the power transmission efficiency, and the minimum necessary amount of power fed to the power feeding module 2.
  • the range is determined (S6).
  • the range of design values in which the transmission characteristic “S21” of the wireless power transmission device 1 with respect to the drive frequency of the power supplied to the wireless power transmission device 1 has the above-described bimodal nature is determined (S7).
  • parameters relating to the power feeding coil 21 and the power feeding resonator 22, and the power receiving resonator 32 and the power receiving coil 31 include R 1 , L 1 and C 1 of the RLC circuit of the power feeding coil 21, and the RLC circuit of the power feeding resonator 22.
  • the heat generation control of the wireless power transmission device 1 is adjusted by adjusting the value of the coupling coefficient between the coils of the power supply module 2 and the power reception module 3.
  • the wireless power transmission device 1 that can be realized can be manufactured. That is, the wireless power transmission device 1 that can control the heat generation of the wireless power transmission device 1 without increasing the number of components of the wireless power transmission device 1 can be manufactured.
  • the wireless headset 200 has been described as an example. However, if the device includes a secondary battery, a tablet PC, a digital camera, a mobile phone, an earphone music player, a hearing aid, a sound collection device It can also be used for containers.
  • the wireless power transmission device 1 that performs power transmission by coupling a magnetic field using a resonance phenomenon (magnetic field resonance state) between resonators (coils) included in the power supply module 2 and the power reception module 3 is illustrated.
  • the present invention is also applicable to the wireless power transmission apparatus 1 that performs power transmission using electromagnetic induction between coils.
  • the wireless power transmission device 1 is mounted on a portable electronic device.
  • the usage is not limited to these small devices, and the specification is changed according to the required power amount.
  • it can be mounted on a wireless charging system in a relatively large electric vehicle (EV), a smaller medical wireless gastrocamera, or the like.
  • EV electric vehicle
  • a smaller medical wireless gastrocamera or the like.

Abstract

 給電モジュール2から、定電流・定電圧充電方式により充電可能なリチウムイオン二次電池9を含む被給電機器10が接続された受電モジュール3に対して磁界を変化させて電力を供給する無線電力伝送装置1の発熱制御方法に関して、給電モジュール2、及び、受電モジュール3が有するコイル間における結合係数の値を調整することにより、定電圧充電時における充電時間に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量である負荷変動特性を調整し、無線電力伝送装置の発熱を制御できるようにする。

Description

無線電力伝送装置、無線電力伝送装置の発熱制御方法、及び、無線電力伝送装置の製造方法
 本発明は、無線電力伝送装置の発熱を制御可能な、無線電力伝送装置、無線電力伝送装置の発熱制御方法、及び、無線電力伝送装置の製造方法に関する。
 近年、ノート型PC、タブレット型PC、デジタルカメラ、携帯電話、携帯ゲーム機、イヤホン型音楽プレイヤー、無線式ヘッドセット、補聴器、レコーダーなど人が携帯しながら使用できる携帯型の電子機器が急速に普及してきている。そして、これらの携帯型の電子機器の多くには充電池が搭載されており、定期的な充電が必要とされる。この電子機器の充電池への充電作業を簡易にするために、給電装置と電子機器に搭載された受電装置との間で無線による電力伝送を利用した給電技術(磁界を変化させて電力伝送を行う無線電力伝送技術)により、充電池を充電する機器が増えつつある。
 例えば、無線電力伝送技術としては、コイル間の電磁誘導を利用して電力伝送を行う技術や(例えば、特許文献1参照)、給電装置及び受電装置が備える共振器(コイル)間の共振現象(磁界共鳴状態)を利用して磁場を結合させることにより電力伝送を行う技術が挙げられる(例えば、特許文献2参照)。
 また、充電池(例えば、リチウムイオン二次電池など)を充電する方式に関しては、定電流定電圧充電方式が知られている。そして、上記無線による電力伝送を行う無線電力伝送装置によって、リチウムイオン二次電池を定電流定電圧充電方式によって充電する場合、定電流充電から定電圧充電に移行したときに、充電池に供給される電流値が減衰し、充電池を含めた被給電機器(充電池、安定回路、充電回路などが含まれる)の負荷インピーダンスの値が上がることになる。
 そうすると、被給電機器を含めた無線電力伝送装置全体の入力インピーダンスも変動することになるが、この定電圧充電時における充電時間に対する無線電力伝送装置の入力インピーダンス値の変化量を大きくすることができれば、所定の充電時間に対する無線電力伝送装置の入力電流値の変化量を大きくして、定電流充電から定電圧充電に移行した際における過剰な入力電力を抑制でき、無線電力伝送装置の過剰な発熱を抑制することができる。即ち、定電流充電から定電圧充電に移行した際の無線電力伝送装置の過剰な発熱を抑制するために、定電圧充電時における充電時間に対する無線電力伝送装置の入力インピーダンス値の変化量である負荷変動特性を調整可能とすることが求められる。
 この点、負荷変動特性を調整可能とするために、別個にインピーダンス整合器を設けることが考えられる。
特許第4624768号公報 特開2010-239769号公報
 しかしながら、別個にインピーダンス整合器を設けることは、携帯性・コンパクト化・低コスト化が求められる携帯電子機器においては、部品点数が多くなってしまい不都合である。
 換言すれば、無線電力伝送装置(給電装置及び受電装置)に新たな機器を追加せずに、負荷変動特性を調整することが望ましい。
 そこで、本発明の目的は、新たな機器を追加せずに、定電流充電から定電圧充電に移行した際の充電時間に対する無線電力伝送装置の入力インピーダンス値の変化量である負荷変動特性を調整し、もって無線電力伝送装置の発熱を制御できるようにした発熱制御方法等を提供することにある。
 上記課題を解決するための発明の一つは、給電モジュールから、定電流・定電圧充電方式により充電可能な二次電池を含む被給電機器が接続された受電モジュールに対して磁界を変化させて電力を供給する無線電力伝送装置の発熱制御方法であって、
 前記給電モジュール、及び、前記受電モジュールが有するコイル間における結合係数の値を調整することにより、前記定電圧充電時における充電時間に対する当該無線電力伝送装置の入力インピーダンス値の変化量である負荷変動特性を調整することを特徴としている。
 上記方法によれば、磁界を変化させて電力を供給する無線電力伝送装置を使用して、定電流・定電圧充電方式により充電可能な二次電池に充電を行う場合に、定電流充電から定電圧充電に移行した際における充電時間に対する無線電力伝送装置の入力インピーダンス値の変化量である負荷変動特性を、給電モジュール、及び、受電モジュールが有するコイル間における結合係数の値を変えることにより調整することができる。
 これにより、負荷変動特性を大きくすれば、定電流充電から定電圧充電に移行した際における所定の充電時間に対する無線電力伝送装置の入力インピーダンス値の変化量が大きくなるため、前記所定の充電時間に対する無線電力伝送装置の入力電流値の変化量が大きくなる。そして、無線電力伝送装置の入力電流値の変化量を大きくすれば、定電流充電から定電圧充電に移行した際における過剰な入力電力を抑制でき、無線電力伝送装置(給電モジュール及び受電モジュール)の過剰な発熱を抑制することができる。
 逆に、負荷変動特性を小さくすれば、定電流充電から定電圧充電に移行した際における所定の充電時間に対する無線電力伝送装置の入力インピーダンス値の変化量が小さくなるため、前記所定の充電時間に対する無線電力伝送装置の入力電流値の変化量が小さくなる。そして、無線電力伝送装置の入力電流値の変化量を小さくすれば、定電流充電から定電圧充電に移行した際における短時間での急な無線電力伝送装置(給電モジュール及び受電モジュール)の温度変化を抑制することができる。
 また、上記課題を解決するための発明の一つは、少なくとも給電コイル及び給電共振器を備えた給電モジュールから、少なくとも受電共振器及び受電コイルを備え、且つ、定電流・定電圧充電方式により充電可能な二次電池を含む被給電機器が接続された受電モジュールに対して共振現象によって電力を供給する無線電力伝送装置の発熱制御方法であって、
 前記給電コイルと前記給電共振器との間の結合係数、前記給電共振器と前記受電共振器との間の結合係数、及び、前記受電共振器と前記受電コイルとの間の結合係数の少なくとも一つを調整することにより、前記定電圧充電時における充電時間に対する当該無線電力伝送装置の入力インピーダンス値の変化量である負荷変動特性を調整することを特徴としている。
 上記方法によれば、共振現象によって電力を供給する無線電力伝送装置を使用して、定電流・定電圧充電方式により充電可能な二次電池に充電を行う場合に、定電流充電から定電圧充電に移行した際における充電時間に対する無線電力伝送装置の入力インピーダンス値の変化量である負荷変動特性を、給電コイルと給電共振器との間の結合係数、給電共振器と受電共振器との間の結合係数、及び、受電共振器と受電コイルとの間の結合係数の少なくとも一つを変えることにより調整することができる。
 これにより、負荷変動特性を大きくすれば、定電流充電から定電圧充電に移行した際における所定の充電時間に対する無線電力伝送装置の入力インピーダンス値の変化量が大きくなるため、前記所定の充電時間に対する無線電力伝送装置の入力電流値の変化量が大きくなる。そして、無線電力伝送装置の入力電流値の変化量を大きくすれば、定電流充電から定電圧充電に移行した際における過剰な入力電力を抑制でき、無線電力伝送装置(給電コイル、給電共振器、受電共振器、受電コイル)の過剰な発熱を抑制することができる。
 逆に、負荷変動特性を小さくすれば、定電流充電から定電圧充電に移行した際における所定の充電時間に対する無線電力伝送装置の入力インピーダンス値の変化量が小さくなるため、前記所定の充電時間に対する無線電力伝送装置の入力電流値の変化量が小さくなる。そして、無線電力伝送装置の入力電流値の変化量を小さくすれば、定電流充電から定電圧充電に移行した際における短時間での急な無線電力伝送装置(給電コイル、給電共振器、受電共振器、受電コイル)の温度変化を抑制することができる。
 また、上記課題を解決するための発明の一つは、上記無線電力伝送装置の発熱制御方法において、前記給電コイルと前記給電共振器との間の結合係数を大きくすることにより、前記負荷変動特性を大きくすることを特徴としている。
 上記方法によれば、給電コイルと給電共振器との間の結合係数を大きくすることにより、負荷変動特性を大きくすることができる。
 また、上記課題を解決するための発明の一つは、上記無線電力伝送装置の発熱制御方法において、前記受電共振器と前記受電コイルとの間の結合係数を大きくすることにより、前記負荷変動特性を大きくすることを特徴としている。
 上記方法によれば、受電共振器と受電コイルとの間の結合係数を大きくすることにより、負荷変動特性を大きくすることができる。
 また、上記課題を解決するための発明の一つは、上記無線電力伝送装置の発熱制御方法において、前記給電コイルと前記給電共振器との間の結合係数、及び、前記受電共振器と前記受電コイルとの間の結合係数を大きくすることにより、前記負荷変動特性を大きくすることを特徴としている。
 上記方法によれば、給電コイルと給電共振器との間の結合係数、及び、受電共振器と受電コイルとの間の結合係数を大きくすることにより、負荷変動特性を大きくすることができる。
 また、上記課題を解決するための発明の一つは、上記無線電力伝送装置の発熱制御方法において、前記給電コイルと前記給電共振器との間の結合係数、前記給電共振器と前記受電共振器との間の結合係数、前記受電共振器と前記受電コイルとの間の結合係数の値は、それぞれ前記給電コイルと前記給電共振器との間の距離、前記給電共振器と前記受電共振器との間の距離、前記受電共振器と前記受電コイルとの間の距離を変化させることにより調整されることを特徴としている。
 上記方法によれば、給電コイルと給電共振器との間の距離を変化させることにより、給電コイルと給電共振器との間の結合係数の値を変化させることができ、給電共振器と受電共振器との間の距離を変化させることにより、給電共振器と受電共振器との間の結合係数の値を変化させることができ、受電共振器と受電コイルとの間の距離を変化させることにより、受電共振器と受電コイルとの間の結合係数の値を変化させることができる。これによれば、給電コイルと給電共振器との間の距離、給電共振器と受電共振器との間の距離、及び、受電共振器と受電コイルとの間の距離を物理的に変化させるという簡易な作業により、それぞれのコイル間の結合係数の値を変えることができる。即ち、給電コイルと給電共振器との間の距離、給電共振器と受電共振器との間の距離、及び、受電共振器と受電コイルとの間の距離を物理的に変化させるという簡易な作業によって、負荷変動特性を調整することができる。
 また、上記課題を解決するための発明の一つは、上記無線電力伝送装置の発熱制御方法において、前記給電モジュールに供給する電力の駆動周波数に対する伝送特性の値が、前記給電モジュール及び受電モジュールにおける共振周波数よりも低い駆動周波数帯域及び前記共振周波数よりも高い駆動周波数帯域にそれぞれピークを有する双峰性の特性を有するように、前記給電モジュール及び前記受電モジュールを構成する可変可能なパラメータを設定することにより、
 前記駆動周波数を調整することによって、前記定電圧充電時における当該無線電力伝送装置の入力インピーダンス値の増減傾向を調整できるようにしたことを特徴としている。
 上記方法によれば、無線電力伝送装置を双峰性の特性を有するように設定することで、双峰性の特性を有するように設定された無線電力伝送装置に供給する電力の駆動周波数を調整することによって、定電圧充電時における当該無線電力伝送装置の入力インピーダンス値の増減傾向を設定して当該無線電力伝送装置の入力電流の増減傾向を調整し、もって無線電力伝送装置の発熱の制御をすることができるようになる。
 また、上記課題を解決するための発明の一つは、上記無線電力伝送装置の発熱制御方法において、前記給電モジュールに供給する電力の前記駆動周波数を、前記給電モジュール及び受電モジュールにおける前記共振周波数よりも低い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域、又は、前記給電モジュール及び受電モジュールにおける前記共振周波数よりも高い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域に設定し、前記定電圧充電時における当該無線電力伝送装置の入力インピーダンス値が増加傾向になるように調整することを特徴としている。
 上記方法によれば、給電モジュールに供給する電力の駆動周波数を、給電モジュール及び受電モジュールにおける共振周波数よりも低い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域、又は、給電モジュール及び受電モジュールにおける共振周波数よりも高い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域に設定することにより、定電圧充電時における無線電力伝送装置の入力インピーダンス値が増加傾向になるように調整することができる。これにより、定電圧充電時における当該無線電力伝送装置の入力電流を低減させて、もって無線電力伝送装置の発熱を低減させることができる。
 また、上記課題を解決するための発明の一つは、上記無線電力伝送装置の発熱制御方法において、前記給電モジュールに供給する電力の前記駆動周波数を、前記給電モジュール及び受電モジュールにおける前記共振周波数よりも低い駆動周波数帯域に現れる伝送特性のピーク値と前記共振周波数よりも高い駆動周波数帯域に現れる伝送特性のピーク値との間の谷間に対応する帯域に設定し、前記定電圧充電時における当該無線電力伝送装置の入力インピーダンス値が維持又は低下傾向になるように調整することを特徴としている。
 上記方法によれば、給電モジュールに供給する電力の駆動周波数を、給電モジュール及び受電モジュールにおける共振周波数よりも低い駆動周波数帯域に現れる伝送特性のピーク値と共振周波数よりも高い駆動周波数帯域に現れる伝送特性のピーク値との間の谷間に対応する帯域に設定することにより、定電圧充電時における当該無線電力伝送装置の入力インピーダンス値が維持又は低下傾向になるように調整することができる。これにより、定電圧充電時における当該無線電力伝送装置の入力電流を維持又は増加させることができる。
 また、上記課題を解決するための発明の一つは、上記無線電力伝送装置の発熱制御方法により調整されたことを特徴とする無線電力伝送装置である。
 上記構成によれば、無線電力伝送装置の発熱の制御を、給電モジュール、及び、受電モジュールが有するコイル間における結合係数の値を調整することにより実現することができる。即ち、無線電力伝送装置の部品点数を増やさずに、無線電力伝送装置の発熱の制御が可能となる。
 また、上記課題を解決するための発明の一つは、給電モジュールから、定電流・定電圧充電方式により充電可能な二次電池を含む被給電機器が接続された受電モジュールに対して磁界を変化させて電力を供給する無線電力伝送装置の製造方法であって、
 前記給電モジュール、及び、前記受電モジュールが有するコイル間における結合係数の値を調整することにより、前記定電圧充電時における充電時間に対する当該無線電力伝送装置の入力インピーダンス値の変化量である負荷変動特性を調整する工程を含むことを特徴としている。
 上記方法によれば、無線電力伝送装置の発熱の制御を、給電モジュール、及び、受電モジュールが有するコイル間における結合係数の値を調整することにより実現可能な無線電力伝送装置を製造することができる。即ち、無線電力伝送装置の部品点数を増やさずに、無線電力伝送装置の発熱の制御が可能な無線電力伝送装置を製造することができる。
 新たな機器を追加せずに、定電流充電から定電圧充電に移行した際の充電時間に対する無線電力伝送装置の入力インピーダンス値の変化量である負荷変動特性を調整し、もって無線電力伝送装置の発熱を制御できるようにした発熱制御方法等を提供することができる。
無線電力伝送装置の概略説明図である。 無線電力伝送装置の等価回路の説明図である。 リチウムイオン二次電池の充電特性を示すグラフである。 駆動周波数に対する伝送特性『S21』の関係を示した説明図である。 駆動周波数に対する入力インピーダンスZinの関係を示したグラフである。 測定実験1-1に係る測定結果を示すグラフである。 測定実験1-2に係る測定結果を示すグラフである。 測定実験1-3に係る測定結果を示すグラフである。 測定実験2-1及び測定実験2-2に係る測定結果を示すグラフである。 測定実験2-3及び測定実験2-4に係る測定結果を示すグラフである。 測定実験2-5に係る測定結果を示すグラフである。 測定実験2-5に係る給電コイルの表面温度の測定結果である。 無線電力伝送における、コイル間距離と結合係数との関係を示すグラフである。 無線電力伝送装置の製造方法を説明する説明図である。 無線電力伝送装置を含む無線式ヘッドセット及び充電器の設計方法を説明したフローチャートである。
 (実施形態)
 以下に本発明に係る無線電力伝送装置、無線電力伝送装置の発熱制御方法、及び、無線電力伝送装置の製造方法の実施形態について説明する。まず、本実施形態で使用する無線電力伝送装置1について説明する。
 (無線電力伝送装置1の構成)
 無線電力伝送装置1は、図1に示すように、給電コイル21及び給電共振器22を備える給電モジュール2と、受電コイル31及び受電共振器32を備える受電モジュール3とを備えている。そして、給電モジュール2の給電コイル21に、給電モジュール2に供給する電力の駆動周波数を所定の値に設定した発振回路を備えた交流電源6を接続し、受電モジュール3の受電コイル31に、受電された交流電力を整流化する安定回路7及び過充電を防止する充電回路8を介してリチウムイオン二次電池9を接続している。なお、本実施形態では、安定回路7、充電回路8、及び、リチウムイオン二次電池9は、被給電機器10に相当する。
 給電コイル21は、交流電源6から得られた電力を電磁誘導によって給電共振器22に供給する役割を果たす。この給電コイル21は、図2に示すように、抵抗器R1、コイルL1、及び、コンデンサC1を要素とするRLC回路を構成している。なお、コイルL1部分は、銅線材(絶縁被膜付)を使用して、コイル径を15mmφに設定している。また、給電コイル21を構成する回路素子が有する合計のインピーダンスをZ1とし、本実施形態では、給電コイル21を構成する抵抗器R1、コイルL1、及び、コンデンサC1を要素とするRLC回路(回路素子)が有する合計のインピーダンスをZ1としている。また、給電コイル21に流れる電流をI1する。なお、電流I1は、無線電力伝送装置1に入力される入力電流Iinと同義である。
 受電コイル31は、給電共振器22から受電共振器32に磁界エネルギーとして伝送された電力を電磁誘導によって受電し、安定回路7及び充電回路8を介してリチウムイオン二次電池9に供給する役割を果たす。この受電コイル31は、給電コイル21同様に、図2に示すように、抵抗器R4、コイルL4、及び、コンデンサC4を要素とするRLC回路を構成している。なお、コイルL4部分は、銅線材(絶縁被膜付)を使用して、コイル径11mmφに設定している。また、受電コイル31を構成する回路素子が有する合計のインピーダンスをZ4とし、本実施形態では、受電コイル31を構成する抵抗器R4、コイルL4、及び、コンデンサC4を要素とするRLC回路(回路素子)が有する合計のインピーダンスをZ4としている。また、受電コイル31に接続された被給電機器10の合計のインピーダンスをZLとしている。また、受電コイル31に流れる電流をI4としている。なお、被給電機器10の合計のインピーダンスをZLとしているが、便宜的にRLと置き換えてもよい。
 給電共振器22は、図2に示すように、抵抗器R2、コイルL2、及び、コンデンサC2を要素とするRLC回路を構成している。また、受電共振器32は、図2に示すように、抵抗器R3、コイルL3、及び、コンデンサC3を要素とするRLC回路を構成している。そして、給電共振器22及び受電共振器32は、それぞれ共振回路となり、磁界共鳴状態を創出する役割を果たす。ここで、磁界共鳴状態(共振現象)とは、2つ以上のコイルが共振周波数において共振することをいう。また、給電共振器22を構成する回路素子が有する合計のインピーダンスをZ2とし、本実施形態では、給電共振器22を構成する、抵抗器R2、コイルL2、及び、コンデンサC2を要素とするRLC回路(回路素子)が有する合計のインピーダンスをZ2としている。また、受電共振器32を構成する回路素子が有する合計のインピーダンスをZ3とし、本実施形態では、受電共振器32を構成する、抵抗器R3、コイルL3、及び、コンデンサC3を要素とするRLC回路(回路素子)が有する合計のインピーダンスをZ3としている。また、給電共振器22に流れる電流をI2とし、受電共振器32に流れる電流をI3とする。
 また、給電共振器22及び受電共振器32における共振回路としてのRLC回路では、インダクタンスをL、コンデンサ容量をCとすると、(式1)によって定まるfが共振周波数となる。そして、本実施形態における給電コイル21、給電共振器22、受電コイル31、及び、受電共振器32の共振周波数は、970kMHzとしている。
 
Figure JPOXMLDOC01-appb-I000001
       
                        ・・・(式1)
 また、給電共振器22は、銅線材(絶縁被膜付)により構成したコイル径15mmφのソレノイド型のコイルを使用している。また、受電共振器32は、銅線材(絶縁被膜付)により構成したコイル径11mmφのソレノイド型のコイルを使用している。また、給電共振器22及び受電共振器32における共振周波数は一致させている。なお、給電共振器22及び受電共振器32は、コイルを使用した共振器であれば、スパイラル型やソレノイド型などのコイルであってもよい。
 また、給電コイル21と給電共振器22との間の距離をd12とし、給電共振器22と受電共振器32との間の距離をd23とし、受電共振器32と受電コイル31との間の距離をd34としている(図1参照)。
 また、図2に示すように、給電コイル21のコイルL1と給電共振器22のコイルL2との間の相互インダクタンスをM12、給電共振器22のコイルL2と受電共振器32のコイルL3との間の相互インダクタンスをM23、受電共振器32のコイルL3と受電コイル31のコイルL4との間の相互インダクタンスをM34としている。また、無線電力伝送装置1において、コイルL1とコイルL2との間の結合係数をk12と表記し、コイルL2とコイルL3との間の結合係数をk23と表記し、コイルL3とコイルL4との間の結合係数をk34と表記している。
 なお、給電コイル21のRLC回路のR1、L1、C1、給電共振器22のRLC回路のR2、L2、C2、受電共振器32のRLC回路のR3、L3、C3、受電コイル31のRLC回路のR4、L4、C4における抵抗値、インダクタンス、コンデンサ容量、及び、結合係数k12、k23、k34は、設計・製造段階等で変更可能なパラメータとして、後述する(式4)の関係式を満たすように設定されていることが望ましい。
 なお、上記構成による無線電力伝送装置1(安定回路7、充電回路8及びリチウムイオン二次電池9含む)の回路図を示すと図1の下図のようになる。これは、無線電力伝送装置1全体を一つの入力インピーダンスZinに置き換えて示したものであり、無線電力伝送装置1に印加する電圧を電圧Vin、無線電力伝送装置1に入力する電流をIinとしている。
 更に、無線電力伝送装置1の入力インピーダンスZinをより詳細に表すために、無線電力伝送装置1の構成を等価回路によって表すと図2に示すようになる。そして、図2の等価回路より、無線電力伝送装置1の入力インピーダンスZinは、(式2)のように表記することができる。
Figure JPOXMLDOC01-appb-I000002
                        ・・・(式2)
 そして、本実施形態における無線電力伝送装置1の給電コイル21、給電共振器22、受電共振器32、及び、受電コイル31におけるインピーダンスZ1、Z2、Z3、Z4、ZLは、それぞれ(式3)のように表記することができる。
Figure JPOXMLDOC01-appb-I000003



                       ・・・(式3)
 次に、(式2)に(式3)を導入すると、(式4)のようになる。
Figure JPOXMLDOC01-appb-I000004
                       ・・・(式4)
 上記無線電力伝送装置1によれば、給電共振器22の共振周波数と受電共振器32の共振周波数とを一致させた場合、給電共振器22と受電共振器32との間に磁界共鳴状態を創出することができる。給電共振器22及び受電共振器32が共振した状態で磁界共鳴状態が創出されると、給電共振器22から受電共振器32に電力を磁界エネルギーとして伝送することができる。そして、受電共振器32で受電された電力が受電コイル31、安定回路7及び充電回路8を介してリチウムイオン二次電池9に給電されて充電される。
 (無線電力伝送装置の発熱制御方法)
 上記無線電力伝送装置1の構成を踏まえて、無線電力伝送装置1の発熱制御方法について説明する。
 まず、本実施形態に係る無線電力伝送装置1を使用した電力の給電先であるリチウムイオン二次電池9の充電時における充電特性を踏まえた、無線電力伝送装置1の温度上昇のメカニズム、及び、その対処方法について説明する。
 本実施形態では、電力が給電される被給電機器10の一つとしてリチウムイオン二次電池9を使用している。そして、一般的に、リチウムイオン二次電池9を充電するには、定電流定電圧充電方式が使用されている。この定電流定電圧充電方式によるリチウムイオン二次電池9の充電では、図3のリチウムイオン二次電池9の充電特性に示すように、充電を開始してからしばらくの間は、リチウムイオン二次電池9に対して定電流(Ich)による充電が行われる(CC:コンスタントカレント)。そして、定電流による充電が行われている間にリチウムイオン二次電池9に印加される電圧(Vch)が、所定の上限電圧(本実施形態では、4.2V)まで上昇する。電圧(Vch)が上限電圧まで上昇すると、その上限電圧に保持されたまま定電圧による充電が行われる(CV:コンスタントボルテージ)。定電圧(CV)による充電が行われると、リチウムイオン二次電池9に入力される電流値(Ich)が減衰していき、所定の電流値、又は、所定時間経過後に充電完了となる。
 そして、リチウムイオン二次電池9に入力される電流値(Ich)が減衰するのに伴い、リチウムイオン二次電池9を含めた被給電機器10の負荷インピーダンスの値が上がることになる。
 そうすると、被給電機器10を含めた無線電力伝送装置1全体の入力インピーダンスZinも変動することになる。
 ここで、無線電力伝送装置1で発生する熱エネルギーJ(発熱量)は、無線電力伝送装置1に電圧Vinを加え、電流Iinをt秒(sec)流したとすれば、(式5)より求められる(ジュールの法則)。
Figure JPOXMLDOC01-appb-I000005
                       ・・・(式5)
 そして、電流Iinを電圧Vin及び入力インピーダンスZinを踏まえた関係式で表すと(式6)のように示せる(図1参照)。
Figure JPOXMLDOC01-appb-I000006
                       ・・・(式6)
 そして、本実施形態のように、交流電源6によって無線電力伝送装置1に印加する電圧Vinが一定に保持されるため(本実施形態では実効値5V)、(式5)に(式6)を代入すれば、(式7)の関係式で表せる。
Figure JPOXMLDOC01-appb-I000007
                       ・・・(式7)
 そして、無線電力伝送装置1で発生する発エネルギーJが大きくなれば、無線電力伝送装置1を構成する電子部品の寿命を縮めることになってしまため、無線電力伝送装置1で発生する熱エネルギーJを抑制することが求められる。
 上記(式7)より、定電圧充電時の入力インピーダンスZinの値を大きくすることができれば、無線電力伝送装置1に対する入力電流Iinの値も小さくなるため(式6参照)、定電流による充電(CC)から定電圧による充電(CV)に移行した際の無線電力伝送装置1の発熱量(無線電力伝送装置1で発生する熱エネルギーJ)を抑制し、無線電力伝送装置1の温度の上昇を抑制することが可能となることが分かる。
 更に、定電圧充電時(CV)における充電時間に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量である負荷変動特性を大きくすることができれば、所定の充電時間に対する無線電力伝送装置1の入力電流Iinの変化量を大きくして、定電流充電から定電圧充電に移行した際における過剰な入力電力を抑制でき、無線電力伝送装置1の過剰な発熱を抑制することができることが分かる。
 逆に、定電圧充電時(CV)における充電時間に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量である負荷変動特性を小さくすることができれば、所定の充電時間に対する無線電力伝送装置1の入力電流Iinの変化量を小さくして、短時間での急な無線電力伝送装置1の温度変化を抑制することができることが分かる。
 (定電圧充電時の入力インピーダンスZinの増減傾向の設定)
 本実施形態では、無線電力伝送装置1を使用して、リチウムイオン二次電池9に定電流定電圧充電を行う場合、定電圧充電時(CV)の入力インピーダンスZinの値を大きくするために、後述する無線電力伝送装置1に供給する電力の駆動周波数に対する無線電力伝送装置1の伝送特性『S21』が双峰性の性質を有するように、給電コイル21のRLC回路のR1、L1、C1、給電共振器22のRLC回路のR2、L2、C2、受電共振器32のRLC回路のR3、L3、C3、受電コイル31のRLC回路のR4、L4、C4における抵抗値、インダクタンス、コンデンサ容量、及び、結合係数k12、k23、k34などの給電モジュール2及び受電モジュール3を構成する変更可能なパラメータを設定する。そして、無線電力伝送装置1に供給する電力の駆動周波数に対する無線電力伝送装置1の伝送特性『S21』を双峰性の性質を有するようにしたうえで、無線電力伝送装置1に供給する電力の駆動周波数を調整することによって、定電圧充電時における無線電力伝送装置1の入力インピーダンス値の増減傾向を設定し、無線電力伝送装置1の発熱量を抑制する。
 (測定実験1-1~1-3)
 上記無線電力伝送装置1に供給する電力の駆動周波数に対する無線電力伝送装置1の伝送特性『S21』を双峰性の性質を有するように設定した場合に、無線電力伝送装置1に供給する電力の駆動周波数を調整することによって、定電圧充電時における無線電力伝送装置1の入力インピーダンス値がどのような増減傾向を示すのかを、測定実験1-1~1-3により説明する。
 測定実験1-1~1-3で使用する無線電力伝送装置1では、給電コイル21は、抵抗器R1、コイルL1、コンデンサC1を要素とするRLC回路を構成しており、コイルL1部分は、コイル径を15mmφに設定している。同様に、受電コイル31は、抵抗器R4、コイルL4、コンデンサC4を要素とするRLC回路を構成しており、コイルL4部分は、コイル径を11mmφに設定している。また、給電共振器22は、抵抗器R2、コイルL2、及び、コンデンサC2を要素とするRLC回路を構成しており、コイルL2部分は、コイル径15mmφのソレノイド型のコイルを使用している。また、受電共振器32は、抵抗器R3、コイルL3、及び、コンデンサC3を要素とするRLC回路を構成しており、コイルL3部分は、コイル径11mmφのソレノイド型のコイルを使用している。そして、測定実験1-1~1-3に使用する無線電力伝送装置1におけるR1、R2、R3、R4の値をそれぞれ、0.65Ω、0.65Ω、2.47Ω、2.0Ωに設定した。また、L1、L2、L3、L4の値をそれぞれ、3.1μH、3.1μH、18.4μH、12.5μHに設定した。また、結合係数k12、k23、k34をそれぞれ、0.46、0.20、0.52に設定した。また、給電共振器22及び受電共振器32における共振周波数は970kHzである。
 そして、測定実験1-1~1-3では、上記構成により、無線電力伝送装置1を双峰性の性質に設定したうえで、給電モジュール2に供給する交流電力の駆動周波数を、後述する同相共振モード(fL)、逆相共振モード(fH)、及び、共振周波数(f0)の3つの状態(図4、図5参照)に変えて、リチウムイオン二次電池9に充電(給電)を行った際の電流Iin、及び入力インピーダンスZinを測定する。なお、測定実験1-1~1-3では、無線電力伝送装置1への交流電源6からの入力電圧Vin=5Vのときの充電時間(Charging Time(min))に対する電流Iin、及び、入力インピーダンスZinを測定する。
 (双峰性の性質)
 ここで、本測定実験においては、無線電力伝送装置1に供給する電力の駆動周波数に対する無線電力伝送装置1の伝送特性『S21』が、双峰性の性質を有するもので測定している。そして、伝送特性『S21』とは、ネットワークアナライザ(アジレント・テクノロジー株式会社製のE5061Bなど)を無線電力伝送装置1に接続して計測される信号を表しており、デシベル表示され、数値が大きいほど電力伝送効率が高いことを意味する。そして、無線電力伝送装置1に供給する電力の駆動周波数に対する無線電力伝送装置1の伝送特性『S21』は、給電モジュール2及び受電モジュール3の間の磁界による結びつき度合い(磁界結合)の強度により、単峰性の性質を有するものと双峰性の性質を有するものに分かれる。そして、単峰性とは、駆動周波数に対する伝送特性『S21』のピークが一つで、そのピークが共振周波数帯域(f0)において現れるものをいう(図4の破線51参照)。一方、双峰性とは、駆動周波数に対する伝送特性『S21』のピークが二つあり、その二つのピークが共振周波数よりも低い駆動周波数帯域(fL)と共振周波数よりも高い駆動周波数帯域(fH)において現れるものをいう(図4の実線52参照)。更に詳細に双峰性を定義すると、上記ネットワークアナライザに無線電力伝送装置1を接続して計測される反射特性『S11』が二つのピークを有する状態をいう。従って、駆動周波数に対する伝送特性『S21』のピークが一見して一つに見えたとしても、計測されている反射特性『S11』が二つのピークを有する場合には、双峰性の性質を有するものとする。なお、電力伝送効率とは、給電モジュール2に供給される電力に対する、受電モジュール3が受電する電力の比率のことをいう。
 上記単峰性の性質を有する無線電力伝送装置1においては、図4の破線51に示すように、駆動周波数が共振周波数f0で伝送特性『S21』が最大化する(電力伝送効率が最大化する)。
 一方、双峰性の性質を有する無線電力伝送装置1では、図4の実線52に示すように、伝送特性『S21』は、共振周波数f0よりも低い駆動周波数帯域(fL)と共振周波数f0よりも高い駆動周波数帯域(fH)において最大化する。
 なお、一般的に、給電共振器と受電共振器との間の距離が同じであれば、双峰性における伝送特性『S21』の最大値(fL又はfHでの伝送特性『S21』の値)は、単峰性における伝送特性『S21』の最大値(f0での伝送特性『S21』の値)よりも低い値になる(図4のグラフ参照)。
 具体的には、双峰性における低周波側のピーク付近の周波数fLに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(同相共振モード)、給電共振器22及び受電共振器32が同位相で共振状態となり、給電共振器22に流れる電流の向きと受電共振器32に流れる電流の向きとが同じ向きになる。その結果、図4のグラフに示すように、電力伝送効率の最大化を目的にした一般的な無線電力伝送装置における伝送特性『S21』(破線51)には及ばないが、駆動周波数を給電モジュール2が備える給電共振器22及び受電モジュール3が備える受電共振器32が有する共振周波数と一致させない場合でも、伝送特性『S21』の値を比較的高い値にすることができる。ここで、給電モジュール2におけるコイル(給電共振器22)に流れる電流の向きと受電モジュール3におけるコイル(受電共振器32)に流れる電流の向きとが同じ向きとなる共振状態を同相共振モードと呼ぶことにする。
 また、上記同相共振モードでは、給電共振器22の外周側に発生する磁界と受電共振器32の外周側に発生する磁界とが打ち消し合うことにより、給電共振器22及び受電共振器32の外周側に、磁界による影響が低減されて、給電共振器22及び受電共振器32の外周側以外の磁界強度(例えば、給電共振器22及び受電共振器32の内周側の磁界強度)よりも小さな磁界強度を有する磁界空間を形成することができる。そして、この磁界空間に磁界の影響を低減させたい安定回路7や充電回路8やリチウムイオン二次電池9などを収納した場合、安定回路7や充電回路8やリチウムイオン二次電池9などに対して、磁界に起因する渦電流の発生を低減・防止して、発熱による悪影響を抑制することが可能となる。
 一方、双峰性における高周波側のピーク付近の周波数fHに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(逆相共振モード)、給電共振器22及び受電共振器32が逆位相で共振状態となり、給電共振器22に流れる電流の向きと受電共振器32に流れる電流の向きとが逆向きになる。その結果、図4のグラフに示すように、電力伝送効率の最大化を目的にした一般的な無線電力伝送装置における伝送特性『S21』(破線51)には及ばないが、駆動周波数を給電モジュール2が備える給電共振器22及び受電モジュール3が備える受電共振器32が有する共振周波数と一致させない場合でも、伝送特性『S21』の値を比較的高い値にすることができる。ここで、給電モジュール2におけるコイル(給電共振器22)に流れる電流の向きと受電モジュール3におけるコイル(受電共振器32)に流れる電流の向きとが逆向きとなる共振状態を逆相共振モードと呼ぶことにする。
 また、上記逆相共振モードでは、給電共振器22の内周側に発生する磁界と受電共振器32の内周側に発生する磁界とが打ち消し合うことにより、給電共振器22及び受電共振器32の内周側に、磁界による影響が低減されて、給電共振器22及び受電共振器32の内周側以外の磁界強度(例えば、給電共振器22及び受電共振器32の外周側の磁界強度)よりも小さな磁界強度を有する磁界空間を形成することができる。そして、この磁界空間に磁界の影響を低減させたい安定回路7や充電回路8やリチウムイオン二次電池9などを収納した場合、安定回路7や充電回路8やリチウムイオン二次電池9などに対して、磁界に起因する渦電流の発生を低減・防止して、発熱による悪影響を抑制することが可能となる。また、この逆相共振モードにより形成される磁界空間は、給電共振器22及び受電共振器32の内周側に形成されるので、この空間に安定回路7や充電回路8やリチウムイオン二次電池9などの電子部品を組み込むことにより無線電力伝送装置1自体のコンパクト化・設計自由度の向上が実現される。
 また、上記のように無線電力伝送装置1に供給する電力の駆動周波数に対する無線電力伝送装置1の伝送特性『S21』が、双峰性の性質を有する場合、給電モジュール2に供給する交流電力の駆動周波数を同相共振モード(fL)、又は、逆相共振モード(fH)に設定した際に、図5に示すように、電力伝送効率を高い値に維持した状態で、無線電力伝送装置1の入力インピーダンスZinの値の最大化を図ることができる(実線55参照)。また、給電モジュール2に供給する交流電力の駆動周波数を共振周波数(f0)に設定した際に、図5に示すように、無線電力伝送装置1の入力インピーダンスZinの値の最小化を図ることができる(実線55参照)。そして、本測定実験1-1~1-3では、給電モジュール2に供給する交流電力の駆動周波数を同相共振モード(fL)、逆相共振モード(fH)、及び、共振周波数(f0)の3つの状態で、リチウムイオン二次電池9に充電(給電)を行った際の電流Iin、及び入力インピーダンスZinを測定している。
 なお、本実施形態では、無線電力伝送装置1に供給する電力の駆動周波数に対する無線電力伝送装置1の伝送特性『S21』が双峰性の性質を有するものであれば、給電コイル21のRLC回路のR1、L1、C1、給電共振器22のRLC回路のR2、L2、C2、受電共振器32のRLC回路のR3、L3、C3、受電コイル31のRLC回路のR4、L4、C4における抵抗値、インダクタンス、コンデンサ容量、及び、結合係数k12、k23、k34などの給電モジュール2及び受電モジュール3を構成する変更可能なパラメータの設定・組み合わせは設計事項であり自由に設定することができる。
 (測定実験1-1:駆動周波数を同相共振モードに設定した場合)
 測定実験1-1では、双峰性における低周波側のピーク付近の周波数fLに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(同相共振モード:fL=870kHz)の充電時間(Charging Time(min))に対する入力電流Iin、及び、入力インピーダンスZinを測定し、その測定結果を図6に示す。なお、入力電圧Vinは5V(一定)である。
 図6の測定結果より、定電流による充電(CC)から定電圧による充電(CV)に移行してからの入力インピーダンスZinの値が増加傾向になっているのが分かる。そして、入力インピーダンスZinの値が増加傾向になるのに伴い、入力電流Iinの値が減少傾向になっているのが分かる(式6参照)。
 上記測定実験1-1より、無線電力伝送装置1に供給する電力の駆動周波数に対する無線電力伝送装置1の伝送特性『S21』を双峰性の性質を有するように設定したうえで、双峰性における低周波側のピーク付近の周波数fLに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合、定電流による充電(CC)から定電圧による充電(CV)に移行してからの入力インピーダンスZinの値を増加傾向にすることができる。これにより、定電圧充電時(CV)における無線電力伝送装置1の入力電流Iinを低減させて、もって無線電力伝送装置1の発熱を低減させることができることが分かる。
 (測定実験1-2:駆動周波数を逆相共振モードに設定した場合)
 測定実験1-2では、双峰性における高周波側のピーク付近の周波数fHに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(逆相共振モード:fH=1070kHz)の充電時間(Charging Time(min))に対する入力電流Iin、及び、入力インピーダンスZinを測定し、その測定結果を図7に示す。なお、入力電圧Vinは5V(一定)である。
 図7の測定結果より、定電流による充電(CC)から定電圧による充電(CV)に移行してからの入力インピーダンスZinの値が増加傾向になっているのが分かる。そして、入力インピーダンスZinの値が増加傾向になるのに伴い、入力電流Iinの値が減少傾向になっているのが分かる(式6参照)。
 上記測定実験1-2より、無線電力伝送装置1に供給する電力の駆動周波数に対する無線電力伝送装置1の伝送特性『S21』を双峰性の性質を有するように設定したうえで、双峰性における高周波側のピーク付近の周波数fHに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合、定電流による充電(CC)から定電圧による充電(CV)に移行してからの入力インピーダンスZinの値を増加傾向にすることができる。これにより、定電圧充電時(CV)における無線電力伝送装置1の入力電流Iinを低減させて、もって無線電力伝送装置1の発熱を低減させることができることが分かる。
 (測定実験1-3:駆動周波数を共振周波数に設定した場合)
 測定実験1-3では、双峰性における共振周波数f0に、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(共振周波数:f0=970kHz)の充電時間(Charging Time(min))に対する入力電流Iin、及び、入力インピーダンスZinを測定し、その測定結果を図8に示す。なお、入力電圧Vinは5V(一定)である。
 図8の測定結果より、定電流による充電(CC)から定電圧による充電(CV)に移行してからの入力インピーダンスZinの値が減少傾向になっているのが分かる。そして、入力インピーダンスZinの値が減少傾向になるのに伴い、入力電流Iinの値が増加傾向になっているのが分かる(式6参照)。
 上記測定実験1-3より、無線電力伝送装置1に供給する電力の駆動周波数に対する無線電力伝送装置1の伝送特性『S21』を双峰性の性質を有するように設定したうえで、双峰性における共振周波数f0に、給電モジュール2に供給する交流電力の駆動周波数を設定した場合、定電流による充電(CC)から定電圧による充電(CV)に移行してからの入力インピーダンスZinの値を減少傾向にすることができる。
 上記測定実験1-1~1-3より、無線電力伝送装置1に供給する電力の駆動周波数に対する無線電力伝送装置1の伝送特性『S21』を双峰性の性質を有するように設定したうえで、給電モジュール2に供給する交流電力の駆動周波数を調整することにより、定電圧充電時における無線電力伝送装置1の入力インピーダンスZinの値の増減傾向を設定するとともに、無線電力伝送装置1の入力電流Iinの増減傾向を調整し、もって無線電力伝送装置1の発熱の制御をすることができることが分かる。なお、上記測定実験1-1~1-3から、給電モジュール2に供給する交流電力の駆動周波数を、同相共振モードfLと共振周波数f0との間、又は、共振周波数f0と逆相共振モードfHとの間における所定の値に設定すれば、定電圧充電時における無線電力伝送装置1の入力インピーダンスZinの値を一定の値に維持することもできる。
 更に、給電モジュール2に供給する電力の駆動周波数を、給電モジュール2及び受電モジュール3における共振周波数(f0)よりも低い駆動周波数帯域に現れる伝送特性のピーク値(fL)に対応する帯域に設定することにより、定電圧充電時における無線電力伝送装置1の入力インピーダンスZinの値が増加傾向になるように調整することができる。これにより、定電圧充電時における無線電力伝送装置1の入力電流Iinを低減させて、もって無線電力伝送装置1の発熱を低減させることができる。
 また、給電モジュール2に供給する電力の駆動周波数を、給電モジュール2及び受電モジュール3における共振周波数(f0)よりも高い駆動周波数帯域に現れる伝送特性のピーク値(fH)に対応する帯域に設定することにより、定電圧充電時における無線電力伝送装置1の入力インピーダンスZinの値が増加傾向になるように調整することができる。これにより、定電圧充電時における無線電力伝送装置1の入力電流Iinを低減させて、もって無線電力伝送装置1の発熱を低減させることができる。
 また、給電モジュール2に供給する電力の駆動周波数を、給電モジュール2及び受電モジュール3における共振周波数(f0)よりも低い駆動周波数帯域に現れる伝送特性のピーク値(fL)と共振周波数(f0)よりも高い駆動周波数帯域に現れる伝送特性のピーク値(fH)との間の谷間に対応する帯域に設定することにより、定電圧充電時における無線電力伝送装置1の入力インピーダンスZinの値が維持又は低下傾向になるように調整することができる。これにより、定電圧充電時における無線電力伝送装置1の入力電流Iinを維持又は増加させることができる。
 (負荷変動特性の設定)
 次に、例えば、上記測定実験1-1のように定電圧充電時(CV)における無線電力伝送装置1の入力インピーダンス値の増減傾向を増加傾向に設定した場合、定電圧充電時(CV)における充電時間に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量である負荷変動特性を大きくすることができれば、所定の充電時間に対する無線電力伝送装置1の入力電流Iinの変化量を大きくして、定電流充電から定電圧充電に移行した際における過剰な入力電力を抑制でき、無線電力伝送装置1の過剰な発熱を、即応性を持って抑制することができる。
 ここで、負荷変動特性とは、定電圧充電時における充電時間に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量であり、この負荷変動特性は、X軸を定電圧充電時(CV)における充電時間、Y軸を入力インピーダンスZin値とした場合における(図6の入力インピーダンスZin参照)、X軸の所定の変化量(ΔX)に対するY軸の所定の変化量(ΔY)であり、傾きを意味する(なお、負荷変動特性は、絶対値で評価する)。従って、負荷変動特性が大きくなると、定電圧充電時における充電時間に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量が大きくなり、傾きが急になる。即ち、負荷変動特性を大きくすると、無線電力伝送装置1に入力される入力電流Iinを短時間で低減することができ、定電流充電(CC)から定電圧充電(CV)に移行した際における過剰な入力電力を抑制でき、無線電力伝送装置1の過剰な発熱を、即応性を持って抑制することが可能となる。
 (結合係数による負荷変動特性の調整)
 本実施形態では、結合係数k12、k23、k34、を変えることにより、上記負荷変動特性を調整する。そして、結合係数k12、k23、k34、をどのように変えることにより、負荷変動特性がどのように変わるのかを、測定実験2-1~2-5により説明する。
 (測定実験2-1)
 測定実験2-1で使用する無線電力伝送装置1におけるR1、R2、R3、R4の値をそれぞれ、0.65Ω、0.65Ω、2.47Ω、2.0Ωに設定した。また、L1、L2、L3、L4の値をそれぞれ、3.1μH、3.1μH、18.4μH、12.5μHに設定した。また、給電共振器22及び受電共振器32における共振周波数は970kHzである。
 そして、測定実験2-1では、上記構成により、無線電力伝送装置1を双峰性の性質に設定したうえで、給電モジュール2に供給する交流電力の駆動周波数を、逆相共振モード(fH)に設定している。そして、結合係数k23、k34をそれぞれ、0.20、0.52に固定したうえで、結合係数k12を0.3にした場合と、結合係数k12を0.46にした場合における、リチウムイオン二次電池9に充電(給電)を行った際の入力インピーダンスZinを測定する。なお、測定実験2-1では、無線電力伝送装置1への交流電源6からの入力電圧Vin=5Vのときの充電時間(Charging Time(min))に対する入力インピーダンスZinを測定する。
 図9の測定実験2-1の測定結果より、結合係数k12を0.3にした場合は、定電圧充電時(CV)における充電時間に対する入力インピーダンスZinの値の変化量はおよそ10Ωであるのに対して、結合係数k12を0.46にした場合は、定電圧充電時(CV)における充電時間に対する入力インピーダンスZinの値の変化量はおよそ20Ωである。従って、結合係数k12を0.3にした場合よりも、結合係数k12を0.46にした場合の方が、負荷変動特性が大きいことが分かる。
 (測定実験2-2)
 測定実験2-2で使用する無線電力伝送装置1は、測定実験2-1と同じものである。そして、測定実験2-2では、無線電力伝送装置1を双峰性の性質に設定したうえで、給電モジュール2に供給する交流電力の駆動周波数を、給電共振器22及び受電共振器32が有する共振周波数(f0)に設定している。そして、結合係数k23、k34をそれぞれ、0.20、0.52に固定したうえで、結合係数k12を0.3にした場合と、結合係数k12を0.46にした場合における、リチウムイオン二次電池9に充電(給電)を行った際の入力インピーダンスZinを測定する。なお、測定実験2-2では、給電モジュール2に供給する交流電力の駆動周波数を、給電共振器22及び受電共振器32が有する共振周波数(f0)に設定することにより、定電流による充電(CC)から定電圧による充電(CV)に移行してからの入力インピーダンスZinの値が減少傾向になるようにしている。
 図9の測定実験2-2の測定結果より、結合係数k12を0.3にした場合は、定電圧充電時(CV)における充電時間に対する入力インピーダンスZinの値の変化量はおよそ3Ωであるのに対して、結合係数k12を0.46にした場合は、定電圧充電時(CV)における充電時間に対する入力インピーダンスZinの値の変化量はおよそ6Ωである。従って、結合係数k12を0.3にした場合よりも、結合係数k12を0.46にした場合の方が、負荷変動特性が大きいことが分かる。なお、この場合の定電圧充電時における充電時間に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量である傾きはマイナス(-)であるが、上述したように負荷変動特性を絶対値で評価するため、測定実験2-2の場合も負荷変動特性が大きいと評価する。
 (測定実験2-3)
 測定実験2-3で使用する無線電力伝送装置1は、測定実験2-1と同じものである。そして、測定実験2-2では、無線電力伝送装置1を双峰性の性質に設定したうえで、給電モジュール2に供給する交流電力の駆動周波数を、逆相共振モード(fH)に設定している。そして、結合係数k12、k23をそれぞれ、0.46、0.20に固定したうえで、結合係数k34を0.25にした場合と、結合係数k34を0.52にした場合における、リチウムイオン二次電池9に充電(給電)を行った際の入力インピーダンスZinを測定する。
 図10の測定実験2-3の測定結果より、結合係数k34を0.25にした場合は、定電圧充電時(CV)における充電時間に対する入力インピーダンスZinの値の変化量はおよそ15Ωであるのに対して、結合係数k34を0.52にした場合は、定電圧充電時(CV)における充電時間に対する入力インピーダンスZinの値の変化量はおよそ20Ωである。従って、結合係数k34を0.25にした場合よりも、結合係数k34を0.52にした場合の方が、負荷変動特性が大きいことが分かる。
 (測定実験2-4)
 測定実験2-4で使用する無線電力伝送装置1は、測定実験2-1と同じものである。そして、測定実験2-4では、無線電力伝送装置1を双峰性の性質に設定したうえで、給電モジュール2に供給する交流電力の駆動周波数を、給電共振器22及び受電共振器32が有する共振周波数(f0)に設定している。そして、結合係数k12、k23をそれぞれ、0.46、0.20に固定したうえで、結合係数k34を0.25にした場合と、結合係数k34を0.52にした場合における、リチウムイオン二次電池9に充電(給電)を行った際の入力インピーダンスZinを測定する。なお、測定実験2-4では、測定実験2-2同様に、給電モジュール2に供給する交流電力の駆動周波数を、給電共振器22及び受電共振器32が有する共振周波数(f0)に設定することにより、定電流による充電(CC)から定電圧による充電(CV)に移行してからの入力インピーダンスZinの値が減少傾向になるようにしている。
 図10の測定実験2-4の測定結果より、結合係数k34を0.25にした場合は、定電圧充電時(CV)における充電時間に対する入力インピーダンスZinの値の変化量はおよそ1.5Ωであるのに対して、結合係数k34を0.52にした場合は、定電圧充電時(CV)における充電時間に対する入力インピーダンスZinの値の変化量はおよそ6Ωである。従って、結合係数k34を0.25にした場合よりも、結合係数k34を0.52にした場合の方が、負荷変動特性が大きいことが分かる。
 (測定実験2-5)
 測定実験2-5で使用する無線電力伝送装置1におけるR1、R2、R3、R4の値をそれぞれ、0.7Ω、0.7Ω、2.5Ω、2.0Ωに設定した。また、L1、L2、L3、L4の値をそれぞれ、3.1μH、3.1μH、18.4μH、12.5μHに設定した。また、C1、C2、C3、C4の値をそれぞれ、8.7nF、8.7nF、1.5nF、2.3nFに設定した。また、給電共振器22及び受電共振器32における共振周波数は970kHzである。
 そして、測定実験2-5では、上記構成により、無線電力伝送装置1を双峰性の性質に設定したうえで、給電モジュール2に供給する交流電力の駆動周波数を、逆相共振モード(fH)に設定している。そして、結合係数k23を、0.20に固定したうえで、結合係数k12を0.38、及び、結合係数k34を0.37にした場合と、結合係数k12を0.46、及び、結合係数k34を0.52にした場合における、リチウムイオン二次電池9に充電(給電)を行った際の入力インピーダンスZin、及び、入力電流Iin(I1)を測定する。なお、測定実験2-5でも、無線電力伝送装置1への交流電源6からの入力電圧Vin=5Vのときの充電時間(Charging Time(min))に対する入力インピーダンスZin、及び、入力電流Iinを測定する。
 図11の測定実験2-5の入力インピーダンスZinの測定結果より、結合係数k12を0.38、及び、結合係数k34を0.37にした場合は、定電圧充電時(CV)における充電時間に対する入力インピーダンスZinの値の変化量はおよそ12Ω(41Ω-29Ω)であるのに対して、結合係数k12を0.46、及び、結合係数k34を0.52にした場合は、定電圧充電時(CV)における充電時間に対する入力インピーダンスZinの値の変化量はおよそ17Ω(47Ω-30Ω)である。従って、結合係数k12を0.38、及び、結合係数k34を0.37にした場合よりも、結合係数k12を0.46、及び、結合係数k34を0.52にした場合の方が、負荷変動特性が大きいことが分かる。
 また、図11の測定実験2-5の入力電流Iinの測定結果より、結合係数k12を0.38、及び、結合係数k34を0.37にした場合、定電圧充電時における充電時間に対する無線電力伝送装置1の入力電流Iinの変化量は、およそ0.050A(0.170A-0.120A)であるのに対して、結合係数k12を0.46、及び、結合係数k34を0.52にした場合は、定電圧充電時における充電時間に対する無線電力伝送装置1の入力電流Iinの変化量は、およそ0.058A(0.164A-0.106A)である。従って、結合係数k12を0.38、及び、結合係数k34を0.37にした場合よりも、結合係数k12を0.46、及び、結合係数k34を0.52にした場合の方が、電圧充電時における充電時間に対する無線電力伝送装置1の入力電流Iinの変化量は大きいことが分かる。
 更に、本測定実験2-5では、結合係数k12を0.38、結合係数k34を0.37にした場合と、結合係数k12を0.46、結合係数k34を0.52にした場合における、定電流定電圧充電時の給電コイル21の表面温度を測定した。その測定値、及び、測定値をグラフ化したものを図12に示す。
 図12の給電コイル21の表面温度の測定結果によると、結合係数k12を0.38、結合係数k34を0.37にした場合、定電流充電(CC)から定電圧充電(CV)に移行したあたり(充電時間30分と40分の間)における給電コイル21の表面温度は約39.4℃であり、定電圧充電(CV)に移行してから約40分経過したとき(充電時間80分)の給電コイル21の表面温度は約39.2℃であった。即ち、給電コイル21の表面温度は、0.2℃(39.4-39.2℃)下がっただけであった。
 一方、結合係数k12を0.46、結合係数k34を0.52にした場合、定電流充電(CC)から定電圧充電(CV)に移行したあたり(充電時間30分と40分の間)における給電コイル21の表面温度は約39.1℃であり、定電圧充電(CV)に移行してから約40分経過したとき(充電時間80分)の給電コイル21の表面温度は約37.6℃であった。即ち、給電コイル21の表面温度は、1.5℃(39.1-37.6℃)も下がっていた。
 このように結合係数k12及び結合係数k34の値を大きく設定すると、負荷変動特性が大きくなり、充電時間に対する無線電力伝送装置1の入力電流Iinの変化量も大きくなり、定電流充電(CC)から定電圧充電(CV)に移行した際における過剰な入力電力を抑制でき、無線電力伝送装置1(本測定実験2-5では、給電コイル21)の発熱をより抑制することができることが分かる。
 (結合係数の調整方法)
 次に、上記負荷変動特性を調整するためのパラメータである結合係数の調整方法について説明する。
 図13に示すように、無線電力伝送において、コイル間の距離と結合係数kとの関係は、コイルとコイルとの間の距離を縮める(短くする)と結合係数kの値が高くなる傾向がある。これを本実施形態に係る無線電力伝送装置1に当てはめると、給電コイル21と給電共振器22との間の距離d12、給電共振器22と受電共振器32との間の距離d23、受電共振器32と受電コイル31との間の距離d34をそれぞれ縮めることによって、給電コイル21(コイルL1)と給電共振器22(コイルL2)との間の結合係数k12、給電共振器22(コイルL2)と受電共振器32(コイルL3)との間の結合係数k23、受電共振器32(コイルL3)と受電コイル31(コイルL4)との間の結合係数k34を高めることができる。逆に、給電コイル21と給電共振器22との間の距離d12、給電共振器22と受電共振器32との間の距離d23、受電共振器32と受電コイル31との間の距離d34をそれぞれ伸ばすことによって、給電コイル21(コイルL1)と給電共振器22(コイルL2)との間の結合係数k12、給電共振器22(コイルL2)と受電共振器32(コイルL3)との間の結合係数k23、受電共振器32(コイルL3)と受電コイル31(コイルL4)との間の結合係数k34を低めることができる。
 上記結合係数の調整方法、及び、結合係数による負荷変動特性の調整の測定実験2-1~2-5より、給電共振器22と受電共振器32との間の距離d23、及び、受電共振器32と受電コイル31との間の距離d34を固定した場合、給電コイル21と給電共振器22との間の距離d12を短くすることにより、給電コイル21と給電共振器22との間における結合係数k12の値を大きくし、結合係数k12の値を大きくすることにより、負荷変動特性を大きくすることができる。逆に、給電コイル21と給電共振器22との間の距離d12を長くすることにより、給電コイル21と給電共振器22との間における結合係数k12の値を小さくし、結合係数k12の値を小さくすることにより、負荷変動特性を小さくすることができる。
 また、給電コイル21と給電共振器22との間の距離d12、及び、給電共振器22と受電共振器32との間の距離d23を固定した場合、受電共振器32と受電コイル31との間の距離d34を短くすることにより、受電共振器32と受電コイル31との間における結合係数k34の値を大きくし、結合係数k34の値を大きくすることにより、負荷変動特性を大きくすることができる。逆に、受電共振器32と受電コイル31との間の距離d34を長くすることにより、受電共振器32と受電コイル31との間における結合係数k34の値を小さくし、結合係数k34の値を小さくすることにより、負荷変動特性を小さくすることができる。
 また、給電共振器22と受電共振器32との間の距離d23を固定した場合、給電コイル21と給電共振器22との間の距離d12、及び、受電共振器32と受電コイル31との間の距離d34を短くすることにより、給電コイル21と給電共振器22との間における結合係数k12の値、及び、受電共振器32と受電コイル31との間における結合係数k34の値を大きくし、結合係数k12及び結合係数k34の値を大きくすることにより、負荷変動特性を大きくすることができる。逆に、給電コイル21と給電共振器22との間の距離d12、及び、受電共振器32と受電コイル31との間の距離d34を長くすることにより、給電コイル21と給電共振器22との間における結合係数k12の値、及び、受電共振器32と受電コイル31との間における結合係数k34の値を小さくし、結合係数k12及び結合係数k34の値を小さくすることにより、負荷変動特性を小さくすることができる。
 上記方法によれば、共振現象によって電力を供給する無線電力伝送装置1を使用して、定電流・定電圧充電方式により充電可能なリチウムイオン二次電池9に充電を行う場合に、定電流充電(CC)から定電圧充電(CV)に移行した際における充電時間に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量である負荷変動特性を、給電コイル21と給電共振器22との間の結合係数k12、給電共振器22と受電共振器32との間の結合係数k23、及び、受電共振器32と受電コイル31との間の結合係数k34の少なくとも一つを変えることにより調整することができる。これにより、負荷変動特性を大きくすれば、定電流充電(CC)から定電圧充電(CV)に移行した際における所定の充電時間に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量が大きくなるため、所定の充電時間に対する無線電力伝送装置1の入力電流Iinの値の変化量が大きくなる。そして、無線電力伝送装置1の入力電流Iinの値の変化量を大きくすれば、定電流充電(CC)から定電圧充電(CV)に移行した際における過剰な入力電力を抑制でき、無線電力伝送装置1(給電コイル21、給電共振器22、受電共振器32、受電コイル31)の過剰な発熱を抑制することができる。
 逆に、負荷変動特性を小さくすれば、定電流充電(CC)から定電圧充電(CV)に移行した際における所定の充電時間に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量が小さくなるため、所定の充電時間に対する無線電力伝送装置1の入力電流Iinの値の変化量が小さくなる。そして、無線電力伝送装置1の入力電流Iinの値の変化量を小さくすれば、定電流充電(CC)から定電圧充電(CV)に移行した際における短時間での急な無線電力伝送装置1(給電コイル21、給電共振器22、受電共振器32、受電コイル31)の温度変化を抑制することができる。
 また、上記方法によれば、給電コイル21と給電共振器22との間の結合係数k12を大きくすることにより、負荷変動特性を大きくすることができる。
 また、上記方法によれば、受電共振器32と受電コイル31との間の結合係数k34を大きくすることにより、負荷変動特性を大きくすることができる。
 また、上記方法によれば、給電コイル21と給電共振器22との間の結合係数k12、及び、受電共振器32と受電コイル31との間の結合係数k34を大きくすることにより、負荷変動特性を大きくすることができる。
 上記方法によれば、給電コイル21と給電共振器22との間の距離d12を変化させることにより、給電コイル21と給電共振器22との間の結合係数k12の値を変化させることができ、給電共振器22と受電共振器32との間の距離d23を変化させることにより、給電共振器22と受電共振器32との間の結合係数k23の値を変化させることができ、受電共振器32と受電コイル31との間の距離d34を変化させることにより、受電共振器32と受電コイル31との間の結合係数k34の値を変化させることができる。これによれば、給電コイル21と給電共振器22との間の距離d12、給電共振器22と受電共振器32との間の距離d23、及び、受電共振器32と受電コイル31との間の距離d34を物理的に変化させるという簡易な作業により、それぞれのコイル間の結合係数の値を変えることができる。即ち、コイル間の距離を物理的に変化させるという簡易な作業によって、負荷変動特性を調整することができる。
 (製造方法)
 次に、無線電力伝送装置1を製造する一工程である、設計方法(設計工程)について、図14及び図15を参照して説明する。本説明では、無線電力伝送装置1を搭載する携帯機器としてイヤホンスピーカ部200aを備えた無線式ヘッドセット200、及び、充電器201を例にして説明する(図14参照)。
 本設計方法で設計される無線電力伝送装置1は、図14に示す無線式ヘッドセット200及び充電器201に、それぞれ受電モジュール3(受電コイル31・受電共振器32)及び給電モジュール2(給電コイル21・給電共振器22)として搭載されている。また、図14では、説明の都合上、安定回路7、充電回路8及びリチウムイオン二次電池9を受電モジュール3の外に記載しているが、実際は、受電コイル31及びソレノイド状の受電共振器32のコイル内周側に配置されている。即ち、無線式ヘッドセット200には、受電モジュール3、安定回路7、充電回路8及びリチウムイオン二次電池9が搭載されており、充電器201には、給電モジュール2が搭載されており、給電モジュール2の給電コイル21に交流電源6が接続された状態で使用される。
 (設計方法)
 まず、図15に示すように、リチウムイオン二次電池9の容量、及び、リチウムイオン二次電池9の充電に必要とされる充電電流から、受電モジュール3が受電する受電電力量が決まる(S1)。
 次に、給電モジュール2と受電モジュール3との間の距離を決定する(S2)。これは、受電モジュール3を内蔵した無線式ヘッドセット200を、給電モジュール2を内蔵した充電器201に載置した際の給電共振器22と受電共振器32との間の距離d23であり、使用形態としては充電中の状態である。より詳細には、給電共振器22と受電共振器32との間の距離d23は、無線式ヘッドセット200と充電器201の形状・構造を考慮して決定される。
 また、無線式ヘッドセット200の大きさ・形状・構造を踏まえて、受電モジュール3における受電コイル31及び受電共振器32のコイル径が決定される(S3)。
 また、充電器201の大きさ・形状・構造を踏まえて、給電モジュール2における給電コイル21及び給電共振器22のコイル径が決定される(S4)。
 上記S2~S4の手順を経ることにより、無線電力伝送装置1の給電共振器22(コイルL2)と受電共振器32(コイルL3)との間の結合係数k23と、電力伝送効率が決まることになる。
 上記S1で決定した受電モジュール3が受電する受電電力量、及び、S2~S4の手順を経て決定された電力伝送効率より、給電モジュール2に給電する必要最低限の給電電力量が決定される(S5)。
 そして、上記受電モジュール3が受電する受電電力量、電力伝送効率、及び、給電モジュール2に給電する必要最低限の給電電力量を踏まえて、無線電力伝送装置1における入力インピーダンスZinの設計値の範囲が決まる(S6)。
 また、無線電力伝送装置1に供給する電力の駆動周波数に対する無線電力伝送装置1の伝送特性『S21』が上述した双峰性の性質を有する設計値の範囲が決まる(S7)。
 そして、S6及びS7で決定された入力インピーダンスZin、双峰性の性質を有する設計値、及び、所望の負荷変動特性を満たすように給電コイル21と給電共振器22、及び、受電共振器32と受電コイル31に関する最終的なパラメータを決定する(S8)。ここで、給電コイル21と給電共振器22、及び、受電共振器32と受電コイル31に関するパラメータとしては、給電コイル21のRLC回路のR1、L1、C1、給電共振器22のRLC回路のR2、L2、C2、受電共振器32のRLC回路のR3、L3、C3、受電コイル31のRLC回路のR4、L4、C4における抵抗値、インダクタンス、コンデンサ容量や、結合係数k12、k23、k34や、更には、給電コイル21と給電共振器22との間の距離d12、受電共振器32と受電コイル31との間の距離d34などが挙げられる。
 上記設計方法を含む無線電力伝送装置1の製造方法によれば、無線電力伝送装置1の発熱の制御を、給電モジュール2、及び、受電モジュール3が有するコイル間における結合係数の値を調整することにより実現可能な無線電力伝送装置1を製造することができる。即ち、無線電力伝送装置1の部品点数を増やさずに、無線電力伝送装置1の発熱の制御が可能な無線電力伝送装置1を製造することができる。
 (その他の実施形態)
 上記製造方法の説明では、無線式ヘッドセット200を例示して説明したが、二次電池を備えた機器であれば、タブレット型PC、デジタルカメラ、携帯電話、イヤホン型音楽プレイヤー、補聴器、集音器などにも使用することができる。
 また、上記説明では、給電モジュール2及び受電モジュール3が備える共振器(コイル)間の共振現象(磁界共鳴状態)を利用して磁場を結合させることにより電力伝送を行う無線電力伝送装置1を例示して説明したが、コイル間の電磁誘導を利用して電力伝送を行う無線電力伝送装置1においても適用可能である。
 また、上記説明では、無線電力伝送装置1を携帯型の電子機器に搭載した場合を想定して説明したが、用途はこれら小型なものに限らず、必要電力量に合わせて仕様を変更することにより、例えば、比較的大型な電気自動車(EV)における無線充電システムや、より小型な医療用の無線式胃カメラなどにも搭載することができる。
 以上の詳細な説明では、本発明をより容易に理解できるように、特徴的部分を中心に説明したが、本発明は、以上の詳細な説明に記載する実施形態・実施例に限定されず、その他の実施形態・実施例にも適用することができ、その適用範囲は可能な限り広く解釈されるべきである。また、本明細書において用いた用語及び語法は、本発明を的確に説明するために用いたものであり、本発明の解釈を制限するために用いたものではない。また、当業者であれば、本明細書に記載された発明の概念から、本発明の概念に含まれる他の構成、システム、方法等を推考することは容易であると思われる。従って、請求の範囲の記載は、本発明の技術的思想を逸脱しない範囲で均等な構成を含むものであるとみなされるべきである。また、本発明の目的及び本発明の効果を充分に理解するために、すでに開示されている文献等を充分に参酌することが望まれる。
 1 無線電力伝送装置
 2 給電モジュール
 3 受電モジュール
 6 交流電源
 7 安定回路
 8 充電回路
 9 リチウムイオン二次電池
10 被給電機器
21 給電コイル
22 給電共振器
31 受電コイル
32 受電共振器
200 無線式ヘッドセット
201 充電器

Claims (11)

  1.  給電モジュールから、定電流・定電圧充電方式により充電可能な二次電池を含む被給電機器が接続された受電モジュールに対して磁界を変化させて電力を供給する無線電力伝送装置の発熱制御方法であって、
     前記給電モジュール、及び、前記受電モジュールが有するコイル間における結合係数の値を調整することにより、前記定電圧充電時における充電時間に対する当該無線電力伝送装置の入力インピーダンス値の変化量である負荷変動特性を調整することを特徴とする無線電力伝送装置の発熱制御方法。
  2.  少なくとも給電コイル及び給電共振器を備えた給電モジュールから、少なくとも受電共振器及び受電コイルを備え、且つ、定電流・定電圧充電方式により充電可能な二次電池を含む被給電機器が接続された受電モジュールに対して共振現象によって電力を供給する無線電力伝送装置の発熱制御方法であって、
     前記給電コイルと前記給電共振器との間の結合係数、前記給電共振器と前記受電共振器との間の結合係数、及び、前記受電共振器と前記受電コイルとの間の結合係数の少なくとも一つを調整することにより、前記定電圧充電時における充電時間に対する当該無線電力伝送装置の入力インピーダンス値の変化量である負荷変動特性を調整することを特徴とする請求項1に記載の無線電力伝送装置の発熱制御方法。
  3.  前記給電コイルと前記給電共振器との間の結合係数を大きくすることにより、前記負荷変動特性を大きくすることを特徴とする請求項2に記載の無線電力伝送装置の発熱制御方法。
  4.  前記受電共振器と前記受電コイルとの間の結合係数を大きくすることにより、前記負荷変動特性を大きくすることを特徴とする請求項2に記載の無線電力伝送装置の発熱制御方法。
  5.  前記給電コイルと前記給電共振器との間の結合係数、及び、前記受電共振器と前記受電コイルとの間の結合係数を大きくすることにより、前記負荷変動特性を大きくすることを特徴とする請求項2に記載の無線電力伝送装置の発熱制御方法。
  6.  前記給電コイルと前記給電共振器との間の結合係数、前記給電共振器と前記受電共振器との間の結合係数、前記受電共振器と前記受電コイルとの間の結合係数の値は、それぞれ前記給電コイルと前記給電共振器との間の距離、前記給電共振器と前記受電共振器との間の距離、前記受電共振器と前記受電コイルとの間の距離を変化させることにより調整されることを特徴とする請求項2~5の何れかに記載の無線電力伝送装置の発熱制御方法。
  7.  前記給電モジュールに供給する電力の駆動周波数に対する伝送特性の値が、前記給電モジュール及び受電モジュールにおける共振周波数よりも低い駆動周波数帯域及び前記共振周波数よりも高い駆動周波数帯域にそれぞれピークを有する双峰性の特性を有するように、前記給電モジュール及び前記受電モジュールを構成する可変可能なパラメータを設定することにより、
     前記駆動周波数を調整することによって、前記定電圧充電時における当該無線電力伝送装置の入力インピーダンス値の増減傾向を調整できるようにしたことを特徴とする請求項1~6の何れかに記載の無線電力伝送装置の発熱制御方法。
  8.  前記給電モジュールに供給する電力の前記駆動周波数を、前記給電モジュール及び受電モジュールにおける前記共振周波数よりも低い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域、又は、前記給電モジュール及び受電モジュールにおける前記共振周波数よりも高い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域に設定し、前記定電圧充電時における当該無線電力伝送装置の入力インピーダンス値が増加傾向になるように調整することを特徴とする請求項7に記載の無線電力伝送装置の発熱制御方法。
  9.  前記給電モジュールに供給する電力の前記駆動周波数を、前記給電モジュール及び受電モジュールにおける前記共振周波数よりも低い駆動周波数帯域に現れる伝送特性のピーク値と前記共振周波数よりも高い駆動周波数帯域に現れる伝送特性のピーク値との間の谷間に対応する帯域に設定し、前記定電圧充電時における当該無線電力伝送装置の入力インピーダンス値が維持又は低下傾向になるように調整することを特徴とする請求項7に記載の無線電力伝送装置の発熱制御方法。
  10.  請求項1~9のいずれかに記載の発熱制御方法により調整されたことを特徴とする無線電力伝送装置。
  11.  給電モジュールから、定電流・定電圧充電方式により充電可能な二次電池を含む被給電機器が接続された受電モジュールに対して磁界を変化させて電力を供給する無線電力伝送装置の製造方法であって、
     前記給電モジュール、及び、前記受電モジュールが有するコイル間における結合係数の値を調整することにより、前記定電圧充電時における充電時間に対する当該無線電力伝送装置の入力インピーダンス値の変化量である負荷変動特性を調整する工程を含むことを特徴とする無線電力伝送装置の製造方法。
PCT/JP2014/052067 2013-04-16 2014-01-30 無線電力伝送装置、無線電力伝送装置の発熱制御方法、及び、無線電力伝送装置の製造方法 WO2014171163A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11201508507YA SG11201508507YA (en) 2013-04-16 2014-01-30 Wireless power transmission device, heat generation control method for wireless power transmission device, and production method for wireless power transmission device
CN201480034211.5A CN105308830A (zh) 2013-04-16 2014-01-30 无线电力传输装置、无线电力传输装置的发热控制方法以及无线电力传输装置的制造方法
KR1020157032146A KR20150143628A (ko) 2013-04-16 2014-01-30 무선 전력 전송 장치, 무선 전력 전송 장치의 발열 제어 방법 및 무선 전력 전송 장치의 제조 방법
EP14785849.2A EP2993677A4 (en) 2013-04-16 2014-01-30 Wireless power transmission device, heat generation control method for wireless power transmission device, and production method for wireless power transmission device
US14/785,112 US20160079767A1 (en) 2013-04-16 2014-01-30 Wireless power transmission device, heat generation control method for wireless power transmission device, and production method for wireless power transmission device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013085784A JP2014209813A (ja) 2013-04-16 2013-04-16 無線電力伝送装置、無線電力伝送装置の発熱制御方法、及び、無線電力伝送装置の製造方法
JP2013-085784 2013-04-16

Publications (1)

Publication Number Publication Date
WO2014171163A1 true WO2014171163A1 (ja) 2014-10-23

Family

ID=51731124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052067 WO2014171163A1 (ja) 2013-04-16 2014-01-30 無線電力伝送装置、無線電力伝送装置の発熱制御方法、及び、無線電力伝送装置の製造方法

Country Status (8)

Country Link
US (1) US20160079767A1 (ja)
EP (1) EP2993677A4 (ja)
JP (1) JP2014209813A (ja)
KR (1) KR20150143628A (ja)
CN (1) CN105308830A (ja)
SG (1) SG11201508507YA (ja)
TW (1) TWI572111B (ja)
WO (1) WO2014171163A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106523538A (zh) * 2016-11-28 2017-03-22 顺德职业技术学院 无线供电及传输的重载联轴器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6160083B2 (ja) * 2013-01-08 2017-07-12 株式会社Ihi 異物検知装置
JP2014168359A (ja) * 2013-02-28 2014-09-11 Nitto Denko Corp 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
JP2015146722A (ja) * 2014-01-06 2015-08-13 日東電工株式会社 無線電力伝送装置
TWI618327B (zh) * 2015-06-10 2018-03-11 台灣東電化股份有限公司 無線充電系統發熱抑制方法及其裝置
JP6819951B2 (ja) * 2016-08-15 2021-01-27 菊地 秀雄 無線電力伝送システム
JP6538628B2 (ja) * 2016-09-05 2019-07-03 株式会社東芝 フィルタ回路及びワイヤレス電力伝送システム
US10483802B2 (en) * 2017-03-14 2019-11-19 Texas Instruments Incorporated Peak voltage detection in a differentially driven wireless resonant transmitter
DE102017207416A1 (de) 2017-05-03 2018-11-08 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung, system und verfahren zum laden eines energiespeichers sowie fahrzeug
KR20190089154A (ko) * 2018-01-18 2019-07-30 동지대학교 무선 전력 전송 시스템 및 그 전송 방법
CN112848935B (zh) * 2021-04-01 2023-04-25 南京信息工程大学 一种电动汽车大功率高效率无线充电自适应实现方法
WO2023287139A1 (ko) * 2021-07-13 2023-01-19 엘지전자 주식회사 무선 전력 전송 시스템에 로우 커플링 파워 프로파일(low-coupling power profile)로의 전환 방법 및 장치
WO2023075087A1 (ko) * 2021-10-28 2023-05-04 삼성전자 주식회사 유선 충전기와 연결된 상태에서 무선 충전 회로의 전력 공급 효율을 높일 수 있는 전자 장치 및 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315209A (ja) * 2001-04-09 2002-10-25 Terumo Corp 植え込み型充電式医療装置用充電器及びシステム
JP2010503368A (ja) * 2006-09-01 2010-01-28 パワーキャスト コーポレイション ハイブリッドパワー取り出しおよび方法
JP2010239769A (ja) 2009-03-31 2010-10-21 Fujitsu Ltd 無線電力供給システム
JP4624768B2 (ja) 2004-11-29 2011-02-02 オリンパス株式会社 被検体内導入装置および被検体内導入システム
JP2012105503A (ja) * 2010-11-12 2012-05-31 Nissan Motor Co Ltd 非接触給電装置
WO2012086625A1 (ja) * 2010-12-21 2012-06-28 矢崎総業株式会社 給電システム
JP2012147659A (ja) * 2010-12-24 2012-08-02 Semiconductor Energy Lab Co Ltd 給電装置および給電装置を備えた非接触給電システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000287375A (ja) * 1999-03-29 2000-10-13 Japan Storage Battery Co Ltd 二次電池の充電回路
US7521890B2 (en) * 2005-12-27 2009-04-21 Power Science Inc. System and method for selective transfer of radio frequency power
JP5481091B2 (ja) * 2009-04-14 2014-04-23 富士通テン株式会社 無線電力伝送装置および無線電力伝送方法
KR101730824B1 (ko) * 2009-11-30 2017-04-27 삼성전자주식회사 무선 전력 트랜시버 및 무선 전력 시스템
JP2012065484A (ja) * 2010-09-17 2012-03-29 Tamura Seisakusho Co Ltd 非接触電力伝送装置
US9356449B2 (en) * 2011-03-01 2016-05-31 Tdk Corporation Wireless power receiver, wireless power transmission system, and power controller
WO2012169014A1 (ja) * 2011-06-07 2012-12-13 パイオニア株式会社 インピーダンス整合装置、制御方法
JP5710759B2 (ja) * 2011-06-07 2015-04-30 パイオニア株式会社 インピーダンス整合装置、制御方法
US9099885B2 (en) * 2011-06-17 2015-08-04 Semiconductor Energy Laboratory Co., Ltd. Wireless power feeding system
US9196419B2 (en) * 2011-11-29 2015-11-24 Panasonic Intellectual Property Management Co., Ltd. Wireless electric power transmission apparatus
JP6169380B2 (ja) * 2013-03-19 2017-07-26 日東電工株式会社 無線電力伝送装置、無線電力伝送装置の発熱制御方法、及び、無線電力伝送装置の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315209A (ja) * 2001-04-09 2002-10-25 Terumo Corp 植え込み型充電式医療装置用充電器及びシステム
JP4624768B2 (ja) 2004-11-29 2011-02-02 オリンパス株式会社 被検体内導入装置および被検体内導入システム
JP2010503368A (ja) * 2006-09-01 2010-01-28 パワーキャスト コーポレイション ハイブリッドパワー取り出しおよび方法
JP2010239769A (ja) 2009-03-31 2010-10-21 Fujitsu Ltd 無線電力供給システム
JP2012105503A (ja) * 2010-11-12 2012-05-31 Nissan Motor Co Ltd 非接触給電装置
WO2012086625A1 (ja) * 2010-12-21 2012-06-28 矢崎総業株式会社 給電システム
JP2012147659A (ja) * 2010-12-24 2012-08-02 Semiconductor Energy Lab Co Ltd 給電装置および給電装置を備えた非接触給電システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2993677A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106523538A (zh) * 2016-11-28 2017-03-22 顺德职业技术学院 无线供电及传输的重载联轴器
CN106523538B (zh) * 2016-11-28 2023-05-16 顺德职业技术学院 无线供电及传输的重载联轴器

Also Published As

Publication number Publication date
CN105308830A (zh) 2016-02-03
SG11201508507YA (en) 2015-11-27
JP2014209813A (ja) 2014-11-06
TW201503527A (zh) 2015-01-16
EP2993677A1 (en) 2016-03-09
US20160079767A1 (en) 2016-03-17
EP2993677A4 (en) 2017-01-11
KR20150143628A (ko) 2015-12-23
TWI572111B (zh) 2017-02-21

Similar Documents

Publication Publication Date Title
WO2014171163A1 (ja) 無線電力伝送装置、無線電力伝送装置の発熱制御方法、及び、無線電力伝送装置の製造方法
JP6169380B2 (ja) 無線電力伝送装置、無線電力伝送装置の発熱制御方法、及び、無線電力伝送装置の製造方法
JP5639693B1 (ja) 無線電力伝送装置及び無線電力伝送装置の供給電力制御方法
JP6199058B2 (ja) 無線電力伝送によって電力供給される被給電機器の受電電圧制御方法、当該受電電圧制御方法によって調整された無線電力伝送装置、及び、その無線電力伝送装置の製造方法
WO2014162766A1 (ja) 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
WO2014132479A1 (ja) 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
WO2015108030A1 (ja) 無線電力伝送装置及びその製造方法
JP5622901B1 (ja) 無線電力伝送装置及び無線電力伝送装置の供給電力制御方法
WO2014199827A1 (ja) 無線電力伝送に用いる給電モジュール及び給電モジュールの電力供給方法
WO2014199830A1 (ja) 無線電力伝送装置及び無線電力伝送装置の電力供給方法
WO2014125675A1 (ja) 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
WO2014132480A1 (ja) 無線電力伝送装置、無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法、及び、無線電力伝送装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480034211.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785849

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014785849

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014785849

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14785112

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157032146

Country of ref document: KR

Kind code of ref document: A