WO2014162766A1 - 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法 - Google Patents

無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法 Download PDF

Info

Publication number
WO2014162766A1
WO2014162766A1 PCT/JP2014/052049 JP2014052049W WO2014162766A1 WO 2014162766 A1 WO2014162766 A1 WO 2014162766A1 JP 2014052049 W JP2014052049 W JP 2014052049W WO 2014162766 A1 WO2014162766 A1 WO 2014162766A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
resonator
power supply
resonance frequency
value
Prior art date
Application number
PCT/JP2014/052049
Other languages
English (en)
French (fr)
Inventor
畑中 武蔵
尚 津田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to US14/781,695 priority Critical patent/US20160056638A1/en
Priority to SG11201507821PA priority patent/SG11201507821PA/en
Priority to EP14779175.0A priority patent/EP2985879A4/en
Priority to CN201480019522.4A priority patent/CN105122575A/zh
Priority to KR1020157030743A priority patent/KR20150139549A/ko
Publication of WO2014162766A1 publication Critical patent/WO2014162766A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection

Definitions

  • the present invention relates to a wireless power transmission device capable of adjusting power for wireless power transmission, a method for controlling power supplied to the wireless power transmission device, and a method for manufacturing the wireless power transmission device.
  • a wireless power transmission technology a technology for performing power transmission using resonance and electromagnetic induction between coils included in a power feeding device and a power receiving device (see, for example, Patent Document 1), a resonance included in a power feeding device and a power receiving device.
  • a technique for transmitting power by coupling a magnetic field using a resonance phenomenon (magnetic field resonance state) between devices (coils) see, for example, Patent Document 2.
  • the power received by the power receiving device with respect to the power supplied to the power feeding device in order to reduce the power loss during wireless power transmission. It is required to increase the power transmission efficiency, which is the ratio of
  • the power transmission efficiency is maximized by matching the resonance frequency of the coil included in the power supply device with the resonance frequency of the coil included in the power reception device. It is generally known that the power transmission efficiency can be maximized, and the resonance frequency of the coil included in the power supply device is designed to match the resonance frequency of the coil included in the power reception device. Is common.
  • the capacity of the coils and capacitors of the power supply device and the power reception device is also a parameter that determines the power to be supplied to the power-supplied device such as the rechargeable battery to which the power is supplied, so the capacity of the coils and capacitors can be adjusted. desirable.
  • an object of the present invention is to maintain the power transmission efficiency, while maintaining the power transmission device and the capacity of the coil and capacitor provided in the power receiving device, that is, the resonance frequency of the coil provided in the power feeding device and / or the coil provided in the power receiving device.
  • the wireless power transmission device capable of controlling the power to be supplied by adjusting the resonance frequency of the coil included in the power supply device and / or the resonance frequency of the coil included in the power receiving device.
  • An object of the present invention is to provide a power control method and a method of manufacturing a wireless power transmission device.
  • One of the inventions for solving the above problems is a supply power of a wireless power transmission device that supplies power by changing a magnetic field from a power supply module including a power supply resonator to a power reception module including the power reception resonator.
  • a control method By adjusting a resonance frequency of at least one of the power feeding resonator and the power receiving resonator, an input impedance value of the wireless power transmission device is set to control the supplied power.
  • One of the inventions for solving the above problems is a supply power of a wireless power transmission device that supplies power by changing a magnetic field from a power supply module including a power supply resonator to a power reception module including the power reception resonator.
  • a control method When the resonance frequency of the power supply resonator matches the resonance frequency of the power reception resonator, the value of the transmission characteristic with respect to the drive frequency of the power supplied to the power supply module, or the power supply resonator and the power reception resonance Use the value of the coupling coefficient between the power supply and the reference value to define the power transmission efficiency.
  • the resonance frequency of at least one of the power feeding resonator and the power receiving resonator within a desired range including the reference value, the power supplied by setting the input impedance value of the wireless power transmission device It is characterized by controlling.
  • the value of the transmission characteristic with respect to the driving frequency of the power supplied to the power supply module or the power supply resonance is used as a reference value that defines the power transmission efficiency (the ratio of the power received by the power receiving module to the power supplied to the power supply module).
  • a desired range including the reference value is set so that the resonance frequency of at least one of the power feeding resonator and the power receiving resonator can be changed within the desired range including the reference value. Then, by changing the resonance frequency of at least one of the power feeding resonator and the power receiving resonator, it is possible to adjust the power supplied by setting the input impedance value of the wireless power transmission device while maintaining the power transmission efficiency. it can.
  • One of the inventions for solving the above-described problems is that, in the supply power control method for the wireless power transmission device, at least a power reception resonator and a power reception coil are provided from a power supply module including at least a power supply coil and a power supply resonator. It is characterized in that power is supplied to the power receiving module by a resonance phenomenon.
  • the resonance frequency of the resonator and the resonance frequency of the power receiving resonator are matched, the value of the transmission characteristic with respect to the drive frequency of the power supplied to the power supply module, or between the power supply resonator and the power reception resonator The value of the coupling coefficient between them is used as a reference value that defines power transmission efficiency.
  • a desired range including the reference value is set, and within the desired range including the reference value, the feed resonator And the resonance frequency of at least one of the power receiving resonators can be changed. Then, by changing the resonance frequency of at least one of the power feeding resonator and the power receiving resonator, it is possible to adjust the power supplied by setting the input impedance value of the wireless power transmission device while maintaining the power transmission efficiency. it can.
  • the value of the transmission characteristic relative to the drive frequency of the power supplied to the power supply module is the power supply module and the power reception module.
  • Variable parameters configuring the power supply module and the power reception module are set so as to have a bimodal characteristic having peaks in a drive frequency band lower than the resonance frequency and a drive frequency band higher than the resonance frequency.
  • the resonance frequency of the power feeding resonator is adjusted based on the characteristic that the value of the input impedance of the wireless power transmission device decreases as the resonance frequency of the power feeding resonator increases.
  • the drive frequency of the power supplied to the power supply module is lower than the resonance frequency in the power supply module and the power reception module after the transmission characteristic value with respect to the drive frequency has a bimodal characteristic.
  • the band corresponding to the peak value of the transmission characteristic appearing in the frequency band it is possible to obtain a characteristic in which the value of the input impedance of the wireless power transmission device decreases as the resonance frequency of the power feeding resonator increases.
  • the value of the input impedance of the wireless power transmission device is set based on the characteristic that the value of the input impedance of the wireless power transmission device decreases as the resonance frequency of the power feeding resonator increases, and the power supplied is adjusted accordingly. be able to.
  • the value of the transmission characteristic relative to the drive frequency of the power supplied to the power supply module is the power supply module and the power reception module.
  • Variable parameters configuring the power supply module and the power reception module are set so as to have a bimodal characteristic having peaks in a drive frequency band lower than the resonance frequency and a drive frequency band higher than the resonance frequency.
  • the resonance frequency of the power receiving resonator is adjusted based on the characteristic that the value of the input impedance of the wireless power transmission device increases as the resonance frequency of the power receiving resonator increases.
  • the drive frequency of the power supplied to the power supply module is lower than the resonance frequency in the power supply module and the power reception module after the transmission characteristic value with respect to the drive frequency has a bimodal characteristic.
  • the band corresponding to the peak value of the transmission characteristic appearing in the frequency band it is possible to obtain a characteristic in which the value of the input impedance of the wireless power transmission device increases as the resonance frequency of the power receiving resonator increases.
  • the value of the input impedance of the wireless power transmission device is set based on the characteristic that the value of the input impedance of the wireless power transmission device decreases as the resonance frequency of the power receiving resonator increases, and the power supplied is adjusted accordingly. be able to.
  • One of the inventions for solving the above-described problems is that, in the method for controlling the supply power of the wireless power transmission apparatus, the value of the transmission characteristic with respect to the drive frequency of the power supplied to the power supply module is Variable parameters configuring the power supply module and the power reception module are set so as to have a bimodal characteristic having peaks in a drive frequency band lower than the resonance frequency and a drive frequency band higher than the resonance frequency.
  • the resonance frequency of the power feeding resonator is adjusted based on the characteristic that the value of the input impedance of the wireless power transmission device increases as the resonance frequency of the power feeding resonator increases.
  • the drive frequency of the power supplied to the power supply module is set to be higher than the resonance frequency in the power supply module and the power reception module after the transmission characteristic value with respect to the drive frequency has a bimodal characteristic.
  • the band corresponding to the peak value of the transmission characteristic appearing in the frequency band it is possible to obtain a characteristic in which the value of the input impedance of the wireless power transmission device increases as the resonance frequency of the power feeding resonator increases.
  • the value of the input impedance of the wireless power transmission device is set based on the characteristic that the value of the input impedance of the wireless power transmission device increases as the resonance frequency of the power feeding resonator increases, and the power supplied is adjusted accordingly. be able to.
  • the value of the transmission characteristic relative to the drive frequency of the power supplied to the power supply module is the power supply module and the power reception module.
  • Variable parameters configuring the power supply module and the power reception module are set so as to have a bimodal characteristic having peaks in a drive frequency band lower than the resonance frequency and a drive frequency band higher than the resonance frequency.
  • the resonance frequency of the power receiving resonator is adjusted based on a characteristic that the value of the input impedance of the wireless power transmission device decreases as the resonance frequency of the power receiving resonator increases.
  • the drive frequency of the power supplied to the power supply module is set to be higher than the resonance frequency in the power supply module and the power reception module after the transmission characteristic value with respect to the drive frequency has a bimodal characteristic.
  • the characteristic of the input impedance of the wireless power transmission device can be reduced as the resonance frequency of the power receiving resonator is increased.
  • the value of the input impedance of the wireless power transmission device is set based on the characteristic that the value of the input impedance of the wireless power transmission device decreases as the resonance frequency of the power receiving resonator increases, and the power supplied is adjusted accordingly. be able to.
  • the power supply resonator and the power reception resonator include a capacitor, and the power supply resonator and the power reception resonator.
  • the resonance frequency of the capacitor is adjusted by changing the capacitance of each capacitor.
  • the resonance frequency of the power feeding resonator and the power receiving resonator can be adjusted by changing the capacitance of the capacitor.
  • one of the inventions for solving the above-described problems is a wireless power transmission apparatus that is adjusted by the supply power control method described above.
  • One of the inventions for solving the above problems is a wireless power transmission device that supplies power by changing a magnetic field from a power supply module including a power supply resonator to a power reception module including a power reception resonator.
  • a manufacturing method comprising: When the resonance frequency of the power supply resonator matches the resonance frequency of the power reception resonator, the value of the transmission characteristic with respect to the drive frequency of the power supplied to the power supply module, or the power supply resonator and the power reception resonance Use the value of the coupling coefficient between the power supply and the reference value to define the power transmission efficiency.
  • the resonance frequency of at least one of the power feeding resonator and the power receiving resonator within a desired range including the reference value, the power supplied by setting the input impedance value of the wireless power transmission device It includes the process of controlling.
  • a wireless power transmission device capable of adjusting the power supplied when wireless power transmission is performed by setting the value of the input impedance of the wireless power transmission device without installing a new device is manufactured. can do. That is, it is possible to manufacture a wireless power transmission device capable of controlling the power to be supplied without increasing the number of parts of the wireless power transmission device.
  • a method for manufacturing a transmission apparatus can be provided.
  • (A) It is a graph of the transmission characteristic "S21" with respect to the resonant frequency which the electric power feeding resonator which concerns on Example 2 has.
  • Embodiments of a wireless power transmission device, a supply power control method, and a method for manufacturing a wireless power transmission device according to the present invention will be described below.
  • the wireless power transmission device 1 includes a power supply module 2 including a power supply coil 21 and a power supply resonator 22, and a power reception module 3 including a power reception coil 31 and a power reception resonator 32.
  • the power supply coil 21 of the power supply module 2 is connected to the AC power supply 6 including an oscillation circuit in which the drive frequency of the power supplied to the power supply module 2 is set to a predetermined value, and the power reception coil 31 of the power reception module 3 receives power.
  • a rechargeable battery 9 is connected via a stabilization circuit 7 that rectifies the AC power that has been generated and a charging circuit 8 that prevents overcharging.
  • the stable circuit 7, the charging circuit 8, and the rechargeable battery 9 that are power supply destinations correspond to the power-supplied device 10.
  • the feeding coil 21 serves to supply power obtained from the AC power source 6 to the feeding resonator 22 by electromagnetic induction.
  • the feeding coil 21 constitutes an RLC circuit including a resistor R 1 , a coil L 1 , and a capacitor C 1 as elements.
  • the coil L 1 portion uses a copper wire (with an insulating coating) and the coil diameter is set to 15 mm ⁇ .
  • the total impedance of the circuit elements constituting the feeding coil 21 is Z 1, and in this embodiment, the RLC including the resistor R 1 , the coil L 1 , and the capacitor C 1 constituting the feeding coil 21 as elements.
  • the total impedance of the circuit (circuit element) is Z 1 .
  • the current flowing through the feeding coil 21 is I 1 .
  • the current I 1 has the same meaning as the input current I in input to the wireless power transmission device 1.
  • the power receiving coil 31 receives the electric power transmitted as magnetic field energy from the power feeding resonator 22 to the power receiving resonator 32 by electromagnetic induction, and plays a role of supplying the power to the rechargeable battery 9 via the stabilization circuit 7 and the charging circuit 8.
  • the power receiving coil 31 constitutes an RLC circuit including a resistor R 4 , a coil L 4 , and a capacitor C 4 as shown in FIG.
  • the coil L 4 portion is set to a coil diameter of 15 mm ⁇ using a copper wire (with an insulating coating).
  • the total impedance of the circuit elements constituting the power receiving coil 31 is Z 4.
  • the RLC including the resistor R 4 , the coil L 4 , and the capacitor C 4 constituting the power receiving coil 31 as elements.
  • the load impedance of the stable circuit 7, the charging circuit 8, and the rechargeable battery 9 (powered device 10) connected to the power receiving coil 31 is Z L.
  • the current flowing through the power receiving coil 31 is I 4 .
  • the total impedance of the power-supplied device 10 is Z L , it may be replaced with R L for convenience.
  • the power feeding resonator 22 constitutes an RLC circuit including a resistor R 2 , a coil L 2 , and a capacitor C 2 as elements.
  • the power receiving resonator 32 constitutes an RLC circuit including a resistor R 3 , a coil L 3 , and a capacitor C 3 as elements.
  • Each of the power feeding resonator 22 and the power receiving resonator 32 becomes a resonance circuit and plays a role of creating a magnetic field resonance state.
  • the magnetic field resonance state means that two or more coils resonate.
  • the total impedance of the circuit elements constituting the feed resonator 22 is Z 2.
  • the resistor R 2 , the coil L 2 , and the capacitor C 2 constituting the feed resonator 22 are elements.
  • Z 2 be the total impedance of the RLC circuit (circuit element).
  • the total impedance of the circuit elements constituting the power receiving resonator 32 is Z 3.
  • the resistor R 3 , the coil L 3 , and the capacitor C 3 constituting the power receiving resonator 32 are elements.
  • Z 3 be the total impedance of the RLC circuit (circuit element).
  • the current flowing through the power feeding resonator 22 is I 2
  • the current flowing through the power receiving resonator 32 is I 3 .
  • the power supply resonator 22 uses a solenoid type coil having a coil diameter of 15 mm ⁇ made of a copper wire (with an insulating coating).
  • the power receiving resonator 32 uses a solenoid type coil having a coil diameter of 15 mm ⁇ made of a copper wire (with an insulating coating).
  • the power feeding resonator 22 and the power receiving resonator 32 may be spiral or solenoid type coils as long as the resonators use coils.
  • the distance between the power feeding coil 21 and the power feeding resonator 22 is d12
  • the distance between the power feeding resonator 22 and the power receiving resonator 32 is d23
  • the distance between the power receiving resonator 32 and the power receiving coil 31 Is d34 (see FIG. 1).
  • the coupling coefficient between the coil L 1 and the coil L 2 is denoted as k 12
  • the coupling coefficient between the coil L 2 and the coil L 3 is denoted as k 23
  • the coil A coupling coefficient between L 3 and the coil L 4 is expressed as k 34 .
  • Resistance values, inductances, capacitor capacities, and coupling coefficients k 12 , k 23 , k 34 in R 4 , L 4 , C 4 of the RLC circuit of the receiving coil 31 are parameters that can be changed at the design / manufacturing stage, etc. Is preferably set so as to satisfy a relational expression (formula 3) described later.
  • a magnetic field resonance state can be created between the power feeding resonator 22 and the power receiving resonator 32.
  • electric power can be transmitted from the power feeding resonator 22 to the power receiving resonator 32 as magnetic field energy.
  • FIG. 1 a circuit diagram of the wireless power transmission device 1 (including the stabilization circuit 7, the charging circuit 8, and the rechargeable battery 9) configured as described above is shown in the lower diagram of FIG. This illustrates replace the entire wireless power transmission device 1 to one of the input impedance Z in.
  • the voltage V in when it's constant-voltage power supply AC power supply 6 is typically used is kept constant, It can be seen that the value of the current I in needs to be controlled.
  • the current I in can be expressed as (Expression 2) when expressed by a relational expression based on the voltage V in and the input impedance Z in . ... (Formula 2)
  • the configuration of the wireless power transmission device 1 is represented by an equivalent circuit as shown in FIG. Then, from the equivalent circuit of FIG. 2, the input impedance Z in of the wireless power transmission device 1 can be expressed as (Equation 3). ... (Formula 3)
  • the impedances Z 1 , Z 2 , Z 3 , Z 4 , and Z L in the power feeding coil 21, the power feeding resonator 22, the power receiving resonator 32, and the power receiving coil 31 of the wireless power transmission device 1 in the present embodiment are respectively It can be expressed as (Equation 4). ... (Formula 4)
  • R 3 , L 3 , C 3 , resistance values, inductances, capacitor capacities, and coupling coefficients k 12 , k 23 , k 34 in R 4 , L 4 , C 4 of the RLC circuit of the receiving coil 31 are designed and manufactured.
  • modifiable parameters such as the adjusted value of the input impedance Z in of the wireless power transmission device 1 which is derived from relational expression (equation 5), by changing the value of the current I in, the wireless power transmission apparatus It can be seen that the power supplied from 1 to the power-supplied device 10 can be controlled.
  • the wireless power transmission device 1 it is possible to maximize the power transmission efficiency in wireless power transmission by matching the resonance frequency of the power feeding resonator 22 with the resonance frequency of the power receiving resonator 32. It is generally known, and generally, the resonance frequency of the power supply resonator 22 and the resonance frequency of the power reception resonator 32 are matched in order to maximize the power transmission efficiency.
  • the power transmission efficiency refers to the ratio of the power received by the power receiving module 3 to the power supplied to the power supply module 2.
  • the inductance and capacitor capacity of the RLC circuit (resonance circuit) of the power supply resonator 22 and power reception resonance The inductance and the capacitor capacity of the RLC circuit (resonance circuit) included in the device 32 must be set to predetermined values (see Equation 1). This means that when designing the wireless power transmission device 1, the inductance and the capacitor capacity of the RLC circuit (resonance circuit) included in the power feeding resonator 22 and the power receiving resonator 32 are limited.
  • the inductance and the capacitor capacity of the RLC circuit (resonance circuit) included in the power supply resonator 22 and the power reception resonator 32 are parameters that determine power to be supplied to the power-supplied device 10 such as the rechargeable battery 9 that is the power supply destination. It is desirable that the coil inductance and capacitor capacity can be adjusted.
  • the RLC included in the power feeding resonator 22 and the power receiving resonator 32 is maintained while maintaining the power transmission efficiency when the resonance frequency of the power feeding resonator 22 is matched with the resonance frequency of the power receiving resonator 32.
  • the power supply module 2 in the case where the resonance frequency of the power supply resonator 22 and the resonance frequency of the power reception resonator 32 are matched with each other is provided.
  • the value "S21" the transmission characteristics with respect to the driving frequency of the power supplied, or the value of the coupling coefficient k 23 between the feeding resonator 22 and the power-receiving cavity 32, and a reference value defining the power transmission efficiency
  • a desired range including the reference value is set, and the resonance frequency of the power feeding resonator 22 and the power receiving resonator 32 can be changed within the desired range including the reference value.
  • the inductance of the RLC circuit supplying resonator 22 and the power-receiving cavity 32 is provided (resonant circuit), and to allow adjusting the capacitance. Then, by adjusting the resonance frequency of the power feeding resonator 22 and / or the power receiving resonator 32, the value of the input impedance of the wireless power transmission device 1 is adjusted while maintaining the power transmission efficiency, so Control the power supplied.
  • Example 1 In the wireless power transmission device 1 used in Example 1, the values of R 1 , R 2 , R 3 , and R 4 were set to 0.5 ⁇ , 0.5 ⁇ , 0.5 ⁇ , and 0.5 ⁇ , respectively.
  • the values of L 1 , L 2 , L 3 , and L 4 were set to 4.5 ⁇ H, 4.5 ⁇ H, 4.5 ⁇ H, and 4.5 ⁇ H, respectively.
  • the coupling coefficients k 12 and k 34 were set to 0.189 and 0.189, respectively.
  • the resonance frequency in the power feeding resonator 22 was set (fixed) to 1.003 MHz.
  • the wireless power transmission device 1 is connected to a network analyzer (E5061B manufactured by Agilent Technologies in this embodiment) and the resonance frequency of the power receiving resonator 32 is changed, the power feeding resonator 22, the coupling coefficient k 23 between the power receiving resonator 32, the transmission characteristic “S 21” (details will be described later) when the wireless power transmission device 1 is set to the bimodal common-mode resonance mode, and the input impedance Z in ,
  • the transmission characteristic “S21” (details will be described later) and the input impedance Z in when the wireless power transmission device 1 is set to the bimodal anti-phase resonance mode are measured.
  • the transmission characteristic “S21” of the wireless power transmission device 1 with respect to the drive frequency of the power supplied to the wireless power transmission device 1 is measured with a bimodal property.
  • the transmission characteristic “S21” represents a signal measured by connecting the wireless power transmission device 1 to a network analyzer, which is displayed in decibels and means that the power transmission efficiency is higher as the numerical value is larger.
  • the transmission characteristic “S21” of the wireless power transmission device 1 with respect to the driving frequency of the power supplied to the wireless power transmission device 1 is the strength of the degree of coupling (magnetic field coupling) due to the magnetic field between the power feeding resonator 22 and the power receiving resonator 32. Therefore, it is divided into those having a monomodal property and those having a bimodal property.
  • the unimodality means that there is one peak of the transmission characteristic “S21” with respect to the drive frequency, and that peak appears in the resonance frequency band (fo) (see the broken line 51 in FIG. 3).
  • bimodality has two peaks of the transmission characteristic “S21” with respect to the drive frequency, and the two peaks are a drive frequency band (fL) lower than the resonance frequency and a drive frequency band (fH) higher than the resonance frequency. ) (See the solid line 52 in FIG. 3). More specifically, bimodality is defined as a state where the reflection characteristic “S11” measured by connecting the wireless power transmission device 1 to the network analyzer has two peaks. Accordingly, even if the peak of the transmission characteristic “S21” with respect to the driving frequency looks at one glance, if the measured reflection characteristic “S11” has two peaks, it has a bimodal property. Shall.
  • the transmission characteristic “S21” is maximized when the drive frequency is the resonance frequency f 0 (the power transmission efficiency is maximized), as indicated by a broken line 51 in FIG. To do).
  • the transmission characteristic “S21” has a driving frequency band (fL) lower than the resonance frequency fo and the resonance frequency fo. Is also maximized in the high drive frequency band (fH).
  • the maximum value of the transmission characteristic “S21” in the bimodality (the value of the transmission characteristic “S21” at fL or fH). Is a value lower than the maximum value of the transmission characteristic “S21” in unimodality (the value of the transmission characteristic “S21” at f0) (see the graph of FIG. 3).
  • the power supply resonator 22 and the power reception resonator 32 are set.
  • the direction of the current flowing through the power feeding resonator 22 and the direction of the current flowing through the power receiving resonator 32 are the same.
  • the transmission characteristic “S21” (broken line 51) in a general wireless power transmission device for the purpose of maximizing the power transmission efficiency
  • the value of the transmission characteristic “S21” can be set to a relatively high value.
  • a resonance state in which the direction of the current flowing in the coil (power feeding resonator 22) in the power feeding module 2 and the direction of the current flowing in the coil (power receiving resonator 32) in the power receiving module 3 are the same direction is called an in-phase resonance mode. I will decide.
  • the magnetic field generated on the outer peripheral side of the power feeding resonator 22 and the magnetic field generated on the outer peripheral side of the power receiving resonator 32 cancel each other, so that the outer peripheral side of the power feeding resonator 22 and the power receiving resonator 32.
  • the influence of the magnetic field is reduced, and the magnetic field intensity is smaller than the magnetic field strength other than the outer peripheral side of the power feeding resonator 22 and the power receiving resonator 32 (for example, the magnetic field strength on the inner peripheral side of the power feeding resonator 22 and the power receiving resonator 32).
  • a magnetic field space having strength can be formed.
  • the drive frequency of the AC power supplied to the power supply module 2 is set to the frequency fH near the peak on the high frequency side in the bimodality (antiphase resonance mode)
  • the power supply resonator 22 and the power reception resonator 32 are in antiphase.
  • the resonance state occurs, and the direction of the current flowing through the power feeding resonator 22 and the direction of the current flowing through the power receiving resonator 32 are reversed.
  • the transmission characteristic “S21” (broken line 51) in a general wireless power transmission device for the purpose of maximizing the power transmission efficiency
  • the value of the transmission characteristic “S21” can be set to a relatively high value.
  • a resonance state in which the direction of the current flowing in the coil (power feeding resonator 22) in the power feeding module 2 and the direction of the current flowing in the coil (power receiving resonator 32) in the power receiving module 3 are opposite to each other is referred to as an antiphase resonance mode. I will call it.
  • the magnetic field generated on the inner peripheral side of the power feeding resonator 22 and the magnetic field generated on the inner peripheral side of the power receiving resonator 32 cancel each other, so that the power feeding resonator 22 and the power receiving resonator 32 are
  • the magnetic field strength on the inner peripheral side of the power supply resonator 22 and the power receiving resonator 32 other than the inner peripheral side is reduced (for example, the magnetic field strength on the outer peripheral side of the power supply resonator 22 and the power receiving resonator 32).
  • a magnetic field space having a smaller magnetic field strength can be formed.
  • the wireless power transmission device 1 itself can be made compact and the design flexibility can be improved.
  • R 1 , L 1 , C 1 of the RLC circuit of the feeding coil 21 and the feeding resonator 22 are set so that the transmission characteristic “S 21” of the wireless power transmission device 1 has a bimodal nature.
  • the changeable parameters constituting the power supply module 2 and the power reception module 3 such as the capacitor capacity and the coupling coefficients k 12 , k 23 , and k 34 are set.
  • the wireless power transmission device 1 is changed to the bimodal in-phase resonance.
  • type transmission characteristic "S21" when set to mode impedance Z in, measuring the input impedance Z in the transmission characteristic "S21” was measured with setting the wireless power transmission device 1 in the opposite-phase resonance mode of bimodal.
  • the coupling coefficient k 23 is obtained by (Equation 6) when the transmission characteristic “S21” of the wireless power transmission device 1 with respect to the driving frequency of the power supplied to the wireless power transmission device 1 has a bimodal property.
  • the coupling coefficient k 23 is an index representing the strength of coupling between the power feeding resonator 22 and the power receiving resonator 32. ... (Formula 6)
  • Example 1 the measurement results according to Example 1 are shown in FIG. 5A, the wireless power transmission device 1 in the case where the resonance frequency (horizontal axis) of the power receiving resonator 32 is changed after setting the resonance frequency of the power feeding resonator 22 to 1.003 MHz.
  • the transmission characteristic “S21” vertical axis: ⁇
  • the wireless power transmission device 1 is set to the bimodal anti-phase resonance mode.
  • S21 ”(vertical axis: ⁇ mark) was graphed.
  • 5B the wireless power transmission device 1 when the resonance frequency (horizontal axis) of the power receiving resonator 32 is changed after setting the resonance frequency of the power feeding resonator 22 to 1.003 MHz.
  • transmission characteristic “S21” is set to the reference value: common-mode resonance mode
  • the wireless power transmission device 1 is set to the bimodal common-mode resonance mode.
  • the reference value is ⁇ 5.76 dB, which is the value of the transmission characteristic (see S21 (dB) @fL in FIG. 4).
  • a desired transmission characteristic range including a reference value of ⁇ 5.76 dB is set (the desired transmission characteristic value is a value that can be freely set according to the specification of the power-supplied device 10). This sets the allowable power transmission efficiency range.
  • ⁇ 6.10 dB is set as the lower limit value as a value that causes no problem in power transmission efficiency when power is supplied to the rechargeable battery 9.
  • the range of desired transmission characteristics including the reference value is set to ⁇ 6.10 to ⁇ 5.76 dB.
  • the item “S21 (dB) @fL” in FIG. ) the item “S21 (dB) @fL” in FIG. ) ”.
  • the variable range of the resonance frequency of the power receiving resonator 32 is determined in the range of 0.978 to 1.076 MHz.
  • the inductance and capacitor capacity of the RLC circuit (resonance circuit) included in the power receiving resonator 32 can be adjusted within a range where the resonance frequency of the power receiving resonator 32 falls within the range of 0.978 to 1.076 MHz. It can be.
  • the resonance frequency of the power reception resonator 32 is increased. 4
  • ( ⁇ ) @fL” in FIG. 4 and the mark “ ⁇ ” in FIG. 5B indicate that the value of the input impedance Z in of the wireless power transmission device 1 increases. I understand that there is.
  • the power receiving resonance in the range of 0.978 to 1.076 MHz is based on the characteristic that the value of the input impedance Z in of the wireless power transmission device 1 increases.
  • the resonant frequency of the vessel 32 has, by adjusting the value of the input impedance Z in of the wireless power transmission apparatus 1, by changing the value of the current I in, power from the wireless power transmission device 1 to the power supply device 10 It can be seen that the generated power can be controlled.
  • the resonance frequency of the power receiving resonator 32 is set to 1.076 MHz
  • the value of the input impedance Z in of the wireless power transmission device 1 is larger than the value of the current I in .
  • the power supplied from the wireless power transmission device 1 to the power-supplied device 10 can be reduced.
  • the transmission characteristic “S21” is set to the reference value: reversed-phase resonance mode
  • the wireless power transmission device 1 is set to the bimodal anti-phase resonance mode when the resonance frequency of the power supply resonator 22 and the resonance frequency of the power reception resonator 32 are matched at 1.003 MHz.
  • the reference value is ⁇ 8.99 dB, which is the value of the transmission characteristic (see S21 (dB) @fH in FIG. 4).
  • a desired transmission characteristic range including a reference value of ⁇ 8.99 dB is set (this desired transmission characteristic value is a value that can be freely set according to the specification of the power-supplied device 10).
  • ⁇ 9.42 dB is set as the lower limit value as a value that causes no problem in power transmission efficiency when power is supplied to the rechargeable battery 9. Therefore, the range of desired transmission characteristics including the reference value is set to ⁇ 9.42 to ⁇ 8.99 dB.
  • the desired transmission characteristic range including the reference value is set to ⁇ 9.42 to ⁇ 8.99 dB, the item “S21 (dB) @fH” in FIG.
  • the variable range of the resonance frequency of the power receiving resonator 32 is determined in the range of 0.978 to 1.034 MHz.
  • the inductance and capacitor capacity of the RLC circuit (resonance circuit) included in the power receiving resonator 32 can be adjusted within a range where the resonance frequency of the power receiving resonator 32 falls within the range of 0.978 to 1.034 MHz. It can be.
  • the wireless power transmission device 1 is set to the bimodal anti-phase resonance mode, the resonance frequency of the power supply resonator 22 is fixed to 1.003 MHz, and the resonance frequency of the power reception resonator 32 is increased. Then, as indicated by the item “
  • the power receiving resonance in the range of 0.978 to 1.034 MHz is based on the characteristic that the value of the input impedance Z in of the wireless power transmission device 1 decreases.
  • the value of current I in The power supplied from the wireless power transmission apparatus 1 to the power-supplied device 10 can be increased.
  • the coupling coefficient k 23 (between the feeding resonator 22 and the power receiving resonator 32 when the resonance frequency of the power feeding resonator 22 and the resonance frequency of the power receiving resonator 32 are matched at 1.003 MHz.
  • the 0.189 is the value of the coupling reference coefficient k 23) in FIG. 4 as a reference value.
  • a range of a desired coupling coefficient k 23 including a reference value of 0.189 is set (the value of the desired coupling coefficient k 23 is a value that can be freely set according to the specifications of the power-supplied device 10 and the like. ).
  • the range of the desired coupling coefficient k 23 including the reference value is set to 0.187 to 0.194
  • the variable range of the resonance frequency of the power receiving resonator 32 is determined in the range of 0.957 to 1.034 MHz.
  • the inductance and capacitor capacity of the RLC circuit (resonance circuit) included in the power receiving resonator 32 can be adjusted within a range where the resonance frequency of the power receiving resonator 32 falls within the range of 0.957 to 1.034 MHz. It can be.
  • the resonance frequency of the power feeding resonator 22 is fixed to 1.003 MHz, and the resonance frequency of the power receiving resonator 32 is increased, FIG.
  • ( ⁇ ) @fL” and the ⁇ mark in FIG. 5B it can be seen that there is a characteristic that the value of the input impedance Z in of the wireless power transmission device 1 increases. .
  • the power receiving resonance in the range of 0.957 to 1.034 MHz is based on the characteristic that the value of the input impedance Z in of the wireless power transmission device 1 increases.
  • the value of current I in The power supplied from the wireless power transmission device 1 to the power-supplied device 10 can be reduced.
  • FIG. 1 There is a characteristic that the value of the input impedance Z in of the wireless power transmission device 1 becomes small as shown in the item “
  • the resonance frequency receiving resonator 32 has, as described above increases, based on the characteristic value of the input impedance Z in of the wireless power transmission device 1 is reduced, the power receiving resonance in a range of 0.957 ⁇ 1.034MHz by adjusting the resonant frequency of the vessel 32 has, by adjusting the value of the input impedance Z in of the wireless power transmission apparatus 1, by changing the value of the current I in, power from the wireless power transmission device 1 to the power supply device 10 It can be seen that the generated power can be controlled.
  • the value of current I in The power supplied from the wireless power transmission apparatus 1 to the power-supplied device 10 can be increased.
  • the reference value that defines the efficiency is used, which is used as the reference value can be freely selected at the design stage of the wireless power transmission device 1.
  • the wireless power transmission device 1 used in the second embodiment is the same as that used in the first embodiment.
  • the resonance frequency in the power receiving resonator 32 is set (fixed) to 1.003 MHz.
  • the coupling coefficient between the power feeding resonator 22 and the power receiving resonator 32 when the wireless power transmission device 1 is connected to the network analyzer and the resonance frequency of the power feeding resonator 22 is changed.
  • k 23 when the wireless power transmission device 1 is set to the bimodal common-phase resonance mode, the transmission characteristic “S21” and the input impedance Z in , and when the wireless power transmission device 1 is set to the bimodal anti-phase resonance mode The transmission characteristic “S21” and the input impedance Z in are measured.
  • FIG. 7A shows the wireless power when the resonance frequency (horizontal axis) of the power supply resonator 22 is changed after setting (fixing) the resonance frequency of the power reception resonator 32 to 1.003 MHz.
  • Transmission characteristic “S21” vertical axis: ⁇
  • the transmission characteristic “S21” vertical axis: ⁇ mark) was graphed.
  • 7B the wireless power transmission device 1 when the resonance frequency (horizontal axis) of the power feeding resonator 22 is changed after setting the resonance frequency of the power receiving resonator 32 to 1.003 MHz.
  • transmission characteristic “S21” is set to the reference value: common-mode resonance mode
  • transmission characteristics when the wireless power transmission device 1 is set to a bimodal common-mode resonance mode when the resonance frequency of the power supply resonator 22 and the resonance frequency of the power reception resonator 32 are matched at 1.003 MHz.
  • the reference value is ⁇ 5.93 dB, which is the value of S21 (dB) @fL in FIG. 6 and 7A, when the resonance frequency of the power supply resonator 22 and the resonance frequency of the power reception resonator 32 are matched at 1.003 MHz, the value of the transmission characteristic becomes the highest.
  • a desired transmission characteristic range including a reference value of ⁇ 5.93 dB is set (the desired transmission characteristic value is a value that can be freely set according to the specification of the power-supplied device 10).
  • the desired transmission characteristic value is a value that can be freely set according to the specification of the power-supplied device 10).
  • ⁇ 6.34 dB is set as the lower limit value as a value that does not cause a problem in power transmission efficiency when power is supplied to the rechargeable battery 9. Therefore, the range of desired transmission characteristics including the reference value is set to ⁇ 6.34 to ⁇ 5.93 dB.
  • the range of desired transmission characteristics including the reference value is set to ⁇ 6.34 to ⁇ 5.93 dB, the item “S21 (dB) @fL” in FIG.
  • the variable range of the resonance frequency of the power supply resonator 22 is determined to be in the range of 0.957 to 1.056 MHz.
  • the inductance and capacitor capacity of the RLC circuit (resonance circuit) included in the power supply resonator 22 can be adjusted within a range where the resonance frequency of the power supply resonator 22 falls within the range of 0.957 to 1.056 MHz. It can be.
  • the resonance frequency of the power receiving resonator 32 is fixed to 1.003 MHz, and the resonance frequency of the power feeding resonator 22 is increased. 6, and the item “
  • the resonance frequency supplying resonator 22 increases, based on the value decreases characteristic of the input impedance Z in of the wireless power transmission apparatus 1, the feed resonance in a range of 0.957 ⁇ 1.056MHz
  • the resonance frequency of the power supply 22 By adjusting the resonance frequency of the power supply 22, the value of the input impedance Z in of the wireless power transmission device 1 is adjusted, the value of the current I in is changed, and power is supplied from the wireless power transmission device 1 to the power-supplied device 10. It can be seen that the generated power can be controlled.
  • the value of current I in The power supplied from the wireless power transmission apparatus 1 to the power-supplied device 10 can be increased.
  • the transmission characteristic “S21” is set to the reference value: reversed-phase resonance mode
  • the wireless power transmission device 1 is set to the bimodal anti-phase resonance mode when the resonance frequency of the power supply resonator 22 and the resonance frequency of the power reception resonator 32 are matched at 1.003 MHz.
  • the reference value is ⁇ 9.46 dB, which is the value of the transmission characteristic (see S21 (dB) @fH in FIG. 6).
  • a desired transmission characteristic range including a reference value of ⁇ 9.46 dB is set (this desired transmission characteristic value is a value that can be freely set according to the specification of the power-supplied device 10).
  • ⁇ 9.76 dB is set as the lower limit value as a value that causes no problem in power transmission efficiency when power is supplied to the rechargeable battery 9. Therefore, the range of desired transmission characteristics including the reference value is set to ⁇ 9.76 to ⁇ 9.46 dB.
  • the desired transmission characteristic range including the reference value is set to ⁇ 9.76 to ⁇ 9.46 dB, the item “S21 (dB) @fH” in FIG.
  • the variable range of the resonance frequency of the power supply resonator 22 is determined to be in the range of 0.978 to 1.056 MHz.
  • the inductance and capacitor capacity of the RLC circuit (resonance circuit) included in the power supply resonator 22 can be adjusted within a range in which the resonance frequency of the power supply resonator 22 falls within the range of 0.978 to 1.056 MHz. It can be.
  • the wireless power transmission device 1 is set to the bimodal anti-phase resonance mode, the resonance frequency of the power receiving resonator 32 is fixed to 1.003 MHz, and the resonance frequency of the power supply resonator 22 is increased. Then, as indicated by the item “
  • the resonance frequency supplying resonator 22 increases, based on the characteristic value increases the input impedance Z in of the wireless power transmission apparatus 1, the feed resonance in a range of 0.978 ⁇ 1.056MHz
  • the resonance frequency of the power supply 22 the value of the input impedance Z in of the wireless power transmission device 1 is adjusted, the value of the current I in is changed, and power is supplied from the wireless power transmission device 1 to the power-supplied device 10. It can be seen that the generated power can be controlled.
  • the value of current I in The power supplied from the wireless power transmission device 1 to the power-supplied device 10 can be reduced.
  • the coupling coefficient k 23 (If the coupling coefficient k 23 is set to the reference value)
  • the coupling coefficient k 23 (between the feeding resonator 22 and the power receiving resonator 32 when the resonance frequency of the power feeding resonator 22 and the resonance frequency of the power receiving resonator 32 are matched at 1.003 MHz.
  • the 0.188 is the value of the coupling reference coefficient k 23) in FIG. 6 as the reference value.
  • a range of a desired coupling coefficient k 23 including a reference value of 0.188 is set (the desired coupling coefficient k 23 is a value that can be freely set according to the specifications of the power-supplied device 10 and the like. ).
  • the range of the desired coupling coefficient k 23 including the reference value is set to 0.187 to 0.194
  • the variable range of the resonance frequency of the feeding resonator 22 is determined to be in the range of 0.957 to 1.056 MHz.
  • the inductance and capacitor capacity of the RLC circuit (resonance circuit) included in the power supply resonator 22 can be adjusted within a range where the resonance frequency of the power supply resonator 22 falls within the range of 0.957 to 1.056 MHz. It can be.
  • the resonance frequency of the power receiving resonator 32 is fixed to 1.003 MHz, and the resonance frequency of the power feeding resonator 22 is increased, FIG.
  • ( ⁇ ) @fL” and the ⁇ mark in FIG. 7B it can be seen that there is a characteristic that the value of the input impedance Z in of the wireless power transmission device 1 is small. .
  • the resonance frequency supplying resonator 22 increases, based on the value decreases characteristic of the input impedance Z in of the wireless power transmission apparatus 1, the feed resonance in a range of 0.957 ⁇ 1.056MHz
  • the resonance frequency of the power supply 22 By adjusting the resonance frequency of the power supply 22, the value of the input impedance Z in of the wireless power transmission device 1 is adjusted, the value of the current I in is changed, and power is supplied from the wireless power transmission device 1 to the power-supplied device 10. It can be seen that the generated power can be controlled.
  • the value of current I in The power supplied from the wireless power transmission apparatus 1 to the power-supplied device 10 can be increased.
  • FIG. 1 There is a characteristic that the value of the input impedance Z in of the wireless power transmission device 1 becomes large as shown in the item “
  • the resonance frequency supplying resonator 22 increases, based on the characteristic value increases the input impedance Z in of the wireless power transmission apparatus 1, the feed resonance in a range of 0.957 ⁇ 1.056MHz
  • the resonance frequency of the power supply 22 the value of the input impedance Z in of the wireless power transmission device 1 is adjusted, the value of the current I in is changed, and power is supplied from the wireless power transmission device 1 to the power-supplied device 10. It can be seen that the generated power can be controlled.
  • the value of current I in The power supplied from the wireless power transmission device 1 to the power-supplied device 10 can be reduced.
  • the value of the input impedance Z in of the wireless power transmission device 1 is set by changing the resonance frequency of at least one of the power feeding resonator 22 and the power receiving resonator 32.
  • the power to be supplied can be adjusted.
  • the resonance frequency of the power supply resonator 22 and the resonance frequency of the power reception resonator 32 are matched, the value of the transmission characteristic with respect to the drive frequency of the power supplied to the power supply module 2;
  • the value of the coupling coefficient k 23 between the power feeding resonator 22 and the power receiving resonator 32 is used as a reference value that defines the power transmission efficiency, and a desired range including the reference value is set using this reference value as a guide.
  • the resonance frequency of at least one of the power feeding resonator 22 and the power receiving resonator 32 can be changed within a desired range including the reference value.
  • the power supplied by setting the value of the input impedance Z in of the wireless power transmission device 1 while maintaining the power transmission efficiency. can be adjusted.
  • wireless power is supplied from the power supply module 2 including the power supply coil 21 and the power supply resonator 22 to the power reception module 3 including the power reception resonator 32 and the power reception coil 31 by a resonance phenomenon.
  • the value of the transmission characteristic with respect to the driving frequency of the power supplied to the power supply module 2 is used as a reference value that defines the power transmission efficiency, and a desired range including the reference value is set using this reference value as a guide.
  • the resonance frequency of at least one of the power feeding resonator 22 and the power receiving resonator 32 can be changed within a desired range including the reference value. Then, by changing the resonance frequency of at least one of the power feeding resonator 22 and the power receiving resonator 32, the power supplied by setting the value of the input impedance Z in of the wireless power transmission device 1 while maintaining the power transmission efficiency. Can be adjusted.
  • the resonance frequencies of the power feeding resonator 22 and the power receiving resonator 32 can be adjusted by changing the capacitance of the capacitors included in each.
  • the resonance frequencies of the power feeding resonator 22 and the power receiving resonator 32 can be adjusted by changing the inductance of the coils included in each of them.
  • a design method which is one process for manufacturing the wireless power transmission device 1, will be described with reference to FIGS.
  • a wireless headset 200 including an earphone speaker unit 200a and a charger 201 will be described as examples of portable devices on which the wireless power transmission device 1 is mounted (see FIG. 8).
  • the wireless power transmission device 1 designed by this design method includes a power receiving module 3 (a power receiving coil 31 and a power receiving resonator 32) and a power feeding module 2 (a power feeding coil), respectively, in the wireless headset 200 and the charger 201 shown in FIG. 21 is mounted as a feeding resonator 22).
  • the stabilization circuit 7, the charging circuit 8, and the rechargeable battery 9 are shown outside the power receiving module 3, but actually, the solenoid-shaped power receiving coil 31 and the coil of the power receiving resonator 32 are used. It is arranged on the inner circumference side. That is, the wireless headset 200 includes the power receiving module 3, the stabilization circuit 7, the charging circuit 8, and the rechargeable battery 9, and the charger 201 includes the power supply module 2.
  • the power supply coil 21 is used with the AC power supply 6 connected thereto.
  • the amount of power received by the power receiving module 3 is determined from the capacity of the rechargeable battery 9 and the charging current required for charging the rechargeable battery 9 (S1).
  • the distance between the power supply module 2 and the power reception module 3 is determined (S2).
  • the distance d23 between the power feeding resonator 22 and the power receiving resonator 32 is determined in consideration of the shapes and structures of the wireless headset 200 and the charger 201.
  • the coil diameters of the power receiving coil 31 and the power receiving resonator 32 in the power receiving module 3 are determined (S3).
  • the coil diameters of the power feeding coil 21 and the power feeding resonator 22 in the power feeding module 2 are determined (S4).
  • the minimum necessary amount of power supplied to the power supply module 2 is determined ( S5).
  • the design value of the input impedance Zin in the wireless power transmission device 1 is based on the received power amount received by the power receiving module 3, the power transmission efficiency, and the minimum necessary power supply amount to be fed to the power feeding module 2. Determined (S6).
  • the resonance frequency and the like in the resonator 22 and the power receiving resonator 32 are determined (S7).
  • the resonance frequencies of the power feeding resonator 22 and the power receiving resonator 32 are determined according to the procedure described in the first and second embodiments, and the inductance of the RLC circuit (resonance circuit) included in the power feeding resonator 22 and the power receiving resonator 32, and / Or adjusted and determined by the capacitance of the capacitor.
  • the method of manufacturing the wireless power transmission apparatus 1 including the above design method, and, according to the wireless power transmission device 1 manufactured through the above design process, by setting the value of the input impedance Z in of the wireless power transmission device 1
  • the wireless power transmission apparatus 1 capable of controlling the power to be supplied without increasing the number of components of the wireless power transmission device 1 can be manufactured.
  • the wireless headset 200 has been described as an example. However, as long as the device includes a rechargeable battery, a tablet PC, a digital camera, a mobile phone, an earphone music player, a hearing aid, and a sound collector Can also be used.
  • the wireless power transmission device 1 that performs power transmission by coupling a magnetic field using a resonance phenomenon (magnetic field resonance state) between resonators (coils) included in the power supply module 2 and the power reception module 3 is illustrated.
  • the present invention can also be applied to a wireless power transmission device that performs power transmission using resonance and electromagnetic induction between coils included in the power feeding device and the power receiving device.
  • the wireless power transmission device 1 is mounted on a portable electronic device.
  • the usage is not limited to these small devices, and the specification is changed according to the required power amount.
  • it can be mounted on a wireless charging system in a relatively large electric vehicle (EV), a smaller medical wireless gastrocamera, or the like.
  • EV electric vehicle
  • a smaller medical wireless gastrocamera or the like.

Abstract

 電力伝送効率を維持しつつ、給電装置が備えるコイルの共振周波数、及び/又は、受電装置が備えるコイルの共振周波数を調整することにより、供給する電力を制御することができる無線電力伝送装置、供給電力制御方法、及び、無線電力伝送装置の製造方法を提供する。 給電共振器22を備えた給電モジュール2から、受電共振器32を備えた受電モジュール3に対して磁界を変化させて電力を供給する無線電力伝送装置1の供給電力制御方法として、給電共振器22及び受電共振器32の少なくとも一方が有する共振周波数を調整することにより、無線電力伝送装置1の入力インピーダンスZinの値を設定して、被給電機器10に供給する電力を制御する。

Description

無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
 本発明は、無線電力伝送する電力の調整が可能な、無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法に関する。
 近年、ノート型PC、タブレット型PC、デジタルカメラ、携帯電話、携帯ゲーム機、イヤホン型音楽プレイヤー、無線式ヘッドセット、補聴器、レコーダーなど人が携帯しながら使用できる携帯型の電子機器が急速に普及してきている。そして、これらの携帯型の電子機器の多くには充電池が搭載されており、定期的な充電が必要とされる。この電子機器の充電池への充電作業を簡易にするために、給電装置と電子機器に搭載された受電装置との間で無線による電力伝送を利用した給電技術(磁界を変化させて電力伝送を行う無線電力伝送技術)により、充電池を充電する機器が増えつつある。
 例えば、無線電力伝送技術としては、給電装置及び受電装置が備えるコイル間の共振及び電磁誘導を利用して電力伝送を行う技術や(例えば、特許文献1参照)、給電装置及び受電装置が備える共振器(コイル)間の共振現象(磁界共鳴状態)を利用して磁場を結合させることにより電力伝送を行う技術が挙げられる(例えば、特許文献2参照)。
 このような無線電力伝送技術を用いて給電装置及び受電装置を設計する際には、無線電力伝送するときの電力損失を小さくするために、給電装置に供給される電力に対する受電装置が受電する電力の比率である電力伝送効率を高めることが求められる。
 そして、上記のような無線電力伝送技術を用いた給電装置及び受電装置では、給電装置が備えるコイルの共振周波数と、受電装置が備えるコイルの共振周波数と一致させることにより、電力伝送効率の最大化を図れることが一般的に知られており、電力伝送効率の最大化を求めて、給電装置が備えるコイルの共振周波数と、受電装置が備えるコイルの共振周波数とを一致させるように設計されるのが一般的である。
特許第4624768号公報 特開2010-239769号公報
 もっとも、給電装置が備えるコイルの共振周波数と、受電装置が備えるコイルの共振周波数とを一致させるには、給電装置及び受電装置が備えるコイルやコンデンサなどの容量を所定の値に決める必要がある。
 一方で、給電装置及び受電装置が備えるコイルやコンデンサなどの容量は、給電先の充電池などの被給電機器に給電する電力などを決めるパラメータでもあるため、コイルやコンデンサなどの容量は調整できることが望ましい。
 そこで、本発明の目的は、電力伝送効率を維持しつつ、給電装置及び受電装置が備えるコイルやコンデンサなどの容量、即ち、給電装置が備えるコイルの共振周波数、及び/又は、受電装置が備えるコイルの共振周波数を調整可能として、給電装置が備えるコイルの共振周波数、及び/又は、受電装置が備えるコイルの共振周波数を調整することにより、供給する電力を制御することができる無線電力伝送装置、供給電力制御方法、及び、無線電力伝送装置の製造方法を提供することにある。
 上記課題を解決するための発明の一つは、給電共振器を備えた給電モジュールから、受電共振器を備えた受電モジュールに対して磁界を変化させて電力を供給する無線電力伝送装置の供給電力制御方法であって、
 前記給電共振器及び前記受電共振器の少なくとも一方が有する共振周波数を調整することにより、当該無線電力伝送装置の入力インピーダンスの値を設定して前記供給する電力を制御することを特徴としている。
 上記方法によれば、給電共振器及び受電共振器の少なくとも一方が有する共振周波数を変えることによって、無線電力伝送装置の入力インピーダンスの値を設定して供給する電力を調整することができる。
 上記課題を解決するための発明の一つは、給電共振器を備えた給電モジュールから、受電共振器を備えた受電モジュールに対して磁界を変化させて電力を供給する無線電力伝送装置の供給電力制御方法であって、
 前記給電共振器が有する共振周波数及び前記受電共振器が有する共振周波数を一致させた場合における、前記給電モジュールに供給する電力の駆動周波数に対する伝送特性の値、又は、前記給電共振器と前記受電共振器との間の結合係数の値を、電力伝送効率を規定する基準値とし、
 当該基準値を含む所望の範囲で、前記給電共振器及び前記受電共振器の少なくとも一方が有する共振周波数を調整することにより、当該無線電力伝送装置の入力インピーダンスの値を設定して前記供給する電力を制御することを特徴としている。
 上記方法によれば、給電共振器が有する共振周波数、及び、受電共振器が有する共振周波数を一致させた場合における、前記給電モジュールに供給する電力の駆動周波数に対する伝送特性の値、又は、給電共振器と受電共振器との間の結合係数の値を、電力伝送効率(給電モジュールに供給される電力に対する受電モジュールが受電する電力の比率)を規定する基準値とし、この基準値を目安として、基準値を含む所望の範囲を設定して、基準値を含む所望の範囲内で、給電共振器及び受電共振器の少なくとも一方が有する共振周波数を変えられるようにする。そして、給電共振器及び受電共振器の少なくとも一方が有する共振周波数を変えることによって、電力伝送効率を維持しつつ、無線電力伝送装置の入力インピーダンスの値を設定して供給する電力を調整することができる。
 また、上記課題を解決するための発明の一つは、上記無線電力伝送装置の供給電力制御方法において、少なくとも給電コイル及び給電共振器を備えた給電モジュールから、少なくとも受電共振器及び受電コイルを備えた受電モジュールに対して共振現象によって電力を供給することを特徴としている。
 上記方法によれば、給電コイル及び給電共振器を備えた給電モジュールから、受電共振器及び受電コイルを備えた受電モジュールに対して共振現象によって電力を供給する無線電力伝送装置であっても、給電共振器が有する共振周波数、及び、受電共振器が有する共振周波数を一致させた場合における、前記給電モジュールに供給する電力の駆動周波数に対する伝送特性の値、又は、給電共振器と受電共振器との間の結合係数の値を、電力伝送効率を規定する基準値とし、この基準値を目安として、基準値を含む所望の範囲を設定して、基準値を含む所望の範囲内で、給電共振器及び受電共振器の少なくとも一方が有する共振周波数を変えられるようにする。そして、給電共振器及び受電共振器の少なくとも一方が有する共振周波数を変えることによって、電力伝送効率を維持しつつ、無線電力伝送装置の入力インピーダンスの値を設定して供給する電力を調整することができる。
 また、上記課題を解決するための発明の一つは、上記無線電力伝送装置の供給電力制御方法において、前記給電モジュールに供給する電力の駆動周波数に対する伝送特性の値が、前記給電モジュール及び受電モジュールにおける共振周波数よりも低い駆動周波数帯域及び前記共振周波数よりも高い駆動周波数帯域にそれぞれピークを有する双峰性の特性を有するように、前記給電モジュール及び前記受電モジュールを構成する可変可能なパラメータを設定し、前記給電モジュールに供給する電力の前記駆動周波数を、前記給電モジュール及び受電モジュールにおける前記共振周波数よりも低い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域に設定することにより、
 前記給電共振器が有する共振周波数は、前記給電共振器が有する共振周波数が大きくなるにつれて、当該無線電力伝送装置の入力インピーダンスの値が小さくなる特性に基づき調整されることを特徴としている。
 上記方法によれば、駆動周波数に対する伝送特性の値が双峰性の特性を有するようにしたうえで、給電モジュールに供給する電力の駆動周波数を、給電モジュール及び受電モジュールにおける共振周波数よりも低い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域に設定することにより、給電共振器が有する共振周波数を大きくするにつれて、無線電力伝送装置の入力インピーダンスの値が小さくなる特性にすることができる。
 これにより、給電共振器が有する共振周波数が大きくなるにつれて、無線電力伝送装置の入力インピーダンスの値が小さくなる特性に基づき無線電力伝送装置の入力インピーダンスの値を設定し、もって供給する電力を調整することができる。
 また、上記課題を解決するための発明の一つは、上記無線電力伝送装置の供給電力制御方法において、前記給電モジュールに供給する電力の駆動周波数に対する伝送特性の値が、前記給電モジュール及び受電モジュールにおける共振周波数よりも低い駆動周波数帯域及び前記共振周波数よりも高い駆動周波数帯域にそれぞれピークを有する双峰性の特性を有するように、前記給電モジュール及び前記受電モジュールを構成する可変可能なパラメータを設定し、前記給電モジュールに供給する電力の前記駆動周波数を、前記給電モジュール及び受電モジュールにおける前記共振周波数よりも低い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域に設定することにより、
 前記受電共振器が有する共振周波数は、前記受電共振器が有する共振周波数が大きくなるにつれて、当該無線電力伝送装置の入力インピーダンスの値が大きくなる特性に基づき調整されることを特徴としている。
 上記方法によれば、駆動周波数に対する伝送特性の値が双峰性の特性を有するようにしたうえで、給電モジュールに供給する電力の駆動周波数を、給電モジュール及び受電モジュールにおける共振周波数よりも低い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域に設定することにより、受電共振器が有する共振周波数を大きくするにつれて、無線電力伝送装置の入力インピーダンスの値が大きくなる特性にすることができる。
 これにより、受電共振器が有する共振周波数が大きくなるにつれて、無線電力伝送装置の入力インピーダンスの値が小さくなる特性に基づき無線電力伝送装置の入力インピーダンスの値を設定し、もって供給する電力を調整することができる。
 また、上記課題を解決するための発明の一つは、上記無線電力伝送装置の供給電力制御方法において、前記給電モジュールに供給する電力の駆動周波数に対する伝送特性の値が、前記給電モジュール及び受電モジュールにおける共振周波数よりも低い駆動周波数帯域及び前記共振周波数よりも高い駆動周波数帯域にそれぞれピークを有する双峰性の特性を有するように、前記給電モジュール及び前記受電モジュールを構成する可変可能なパラメータを設定し、前記給電モジュールに供給する電力の前記駆動周波数を、前記給電モジュール及び受電モジュールにおける前記共振周波数よりも高い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域に設定することにより、
 前記給電共振器が有する共振周波数は、前記給電共振器が有する共振周波数が大きくなるにつれて、当該無線電力伝送装置の入力インピーダンスの値が大きくなる特性に基づき調整されることを特徴としている。
 上記方法によれば、駆動周波数に対する伝送特性の値が双峰性の特性を有するようにしたうえで、給電モジュールに供給する電力の駆動周波数を、給電モジュール及び受電モジュールにおける共振周波数よりも高い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域に設定することにより、給電共振器が有する共振周波数を大きくするにつれて、無線電力伝送装置の入力インピーダンスの値が大きくなる特性にすることができる。
 これにより、給電共振器が有する共振周波数が大きくなるにつれて、無線電力伝送装置の入力インピーダンスの値が大きくなる特性に基づき無線電力伝送装置の入力インピーダンスの値を設定し、もって供給する電力を調整することができる。
 また、上記課題を解決するための発明の一つは、上記無線電力伝送装置の供給電力制御方法において、前記給電モジュールに供給する電力の駆動周波数に対する伝送特性の値が、前記給電モジュール及び受電モジュールにおける共振周波数よりも低い駆動周波数帯域及び前記共振周波数よりも高い駆動周波数帯域にそれぞれピークを有する双峰性の特性を有するように、前記給電モジュール及び前記受電モジュールを構成する可変可能なパラメータを設定し、前記給電モジュールに供給する電力の前記駆動周波数を、前記給電モジュール及び受電モジュールにおける前記共振周波数よりも高い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域に設定することにより、
 前記受電共振器が有する共振周波数は、前記受電共振器が有する共振周波数が大きくなるにつれて、当該無線電力伝送装置の入力インピーダンスの値が小さくなる特性に基づき調整されることを特徴としている。
 上記方法によれば、駆動周波数に対する伝送特性の値が双峰性の特性を有するようにしたうえで、給電モジュールに供給する電力の駆動周波数を、給電モジュール及び受電モジュールにおける共振周波数よりも高い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域に設定することにより、受電共振器が有する共振周波数を大きくするにつれて、無線電力伝送装置の入力インピーダンスの値が小さくなる特性にすることができる。
 これにより、受電共振器が有する共振周波数が大きくなるにつれて、無線電力伝送装置の入力インピーダンスの値が小さくなる特性に基づき無線電力伝送装置の入力インピーダンスの値を設定し、もって供給する電力を調整することができる。
 また、上記課題を解決するための発明の一つは、上記無線電力伝送装置の供給電力制御方法において、前記給電共振器及び前記受電共振器はコンデンサを備え、前記給電共振器及び前記受電共振器が有する共振周波数は、それぞれの前記コンデンサの容量を変えることにより調整されることを特徴としている。
 上記方法によれば、給電共振器及び受電共振器が有する共振周波数を、コンデンサの容量を変えることにより調整することができる。
 また、上記課題を解決するための発明の一つは、上記に記載の供給電力制御方法により調整されたことを特徴とする無線電力伝送装置である。
 上記構成によれば、無線電力伝送装置の入力インピーダンスの値を設定することによる、無線電力伝送を行う際に供給する電力の調整を、新たな機器を設けずに実現することができる。即ち、無線電力伝送装置の部品点数を増やさずに、給電する電力の制御が可能となる。
 また、上記課題を解決するための発明の一つは、 給電共振器を備えた給電モジュールから、受電共振器を備えた受電モジュールに対して磁界を変化させて電力を供給する無線電力伝送装置の製造方法であって、
 前記給電共振器が有する共振周波数及び前記受電共振器が有する共振周波数を一致させた場合における、前記給電モジュールに供給する電力の駆動周波数に対する伝送特性の値、又は、前記給電共振器と前記受電共振器との間の結合係数の値を、電力伝送効率を規定する基準値とし、
 当該基準値を含む所望の範囲で、前記給電共振器及び前記受電共振器の少なくとも一方が有する共振周波数を調整することにより、当該無線電力伝送装置の入力インピーダンスの値を設定して前記供給する電力を制御する工程を含むことを特徴としている。
 上記方法によれば、無線電力伝送装置の入力インピーダンスの値を設定することによる、無線電力伝送を行う際に供給する電力の調整を、新たな機器を設けずに可能な無線電力伝送装置を製造することができる。即ち、無線電力伝送装置の部品点数を増やさずに、給電する電力の制御が可能な無線電力伝送装置を製造することができる。
 電力伝送効率を維持しつつ、給電装置及び受電装置が備えるコイルやコンデンサなどの容量、即ち、給電装置が備えるコイルの共振周波数、及び/又は、受電装置が備えるコイルの共振周波数を調整可能として、給電装置が備えるコイルの共振周波数、及び/又は、受電装置が備えるコイルの共振周波数を調整することにより、供給する電力を制御することができる無線電力伝送装置、供給電力制御方法、及び、無線電力伝送装置の製造方法を提供することができる。
無線電力伝送装置の概略説明図である。 無線電力伝送装置の等価回路の説明図である。 駆動周波数に対する伝送特性『S21』の関係を示したグラフである。 実施例1に係る測定結果を示す表である。 (A)実施例1に係る受電共振器が有する共振周波数に対する伝送特性『S21』のグラフである。(B)実施例1に係る受電共振器が有する共振周波数に対する入力インピーダンスZinのグラフである。 実施例2に係る測定結果を示す表である。 (A)実施例2に係る給電共振器が有する共振周波数に対する伝送特性『S21』のグラフである。(B)実施例2に係る給電共振器が有する共振周波数に対する入力インピーダンスZinのグラフである。 無線電力伝送装置の製造方法を説明する説明図である。 無線電力伝送装置を含む無線式ヘッドセット及び充電器の設計方法を説明したフローチャートである。
 以下に本発明に係る無線電力伝送装置、供給電力制御方法、及び、無線電力伝送装置の製造方法の実施形態について説明する。
 (実施形態)
 まず、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法を説明する前に、供給電力制御方法又は製造方法によって設計・製造される無線電力伝送装置1について説明する。
 (無線電力伝送装置1の構成)
 無線電力伝送装置1は、図1に示すように、給電コイル21及び給電共振器22を備える給電モジュール2と、受電コイル31及び受電共振器32を備える受電モジュール3とを備えている。そして、給電モジュール2の給電コイル21に、給電モジュール2に供給する電力の駆動周波数を所定の値に設定した発振回路を備えた交流電源6を接続し、受電モジュール3の受電コイル31に、受電された交流電力を整流化する安定回路7及び過充電を防止する充電回路8を介して充電池9を接続している。なお、電力の給電先となる安定回路7、充電回路8、及び、充電池9は、被給電機器10に相当する。
 給電コイル21は、交流電源6から得られた電力を電磁誘導によって給電共振器22に供給する役割を果たす。この給電コイル21は、図2に示すように、抵抗器R1、コイルL1、及び、コンデンサC1を要素とするRLC回路を構成している。なお、コイルL1部分は、銅線材(絶縁被膜付)を使用して、コイル径を15mmφに設定している。また、給電コイル21を構成する回路素子が有する合計のインピーダンスをZ1とし、本実施形態では、給電コイル21を構成する抵抗器R1、コイルL1、及び、コンデンサC1を要素とするRLC回路(回路素子)が有する合計のインピーダンスをZ1としている。また、給電コイル21に流れる電流をI1する。なお、電流I1は、無線電力伝送装置1に入力される入力電流Iinと同義である。
 受電コイル31は、給電共振器22から受電共振器32に磁界エネルギーとして伝送された電力を電磁誘導によって受電し、安定回路7及び充電回路8を介して充電池9に供給する役割を果たす。この受電コイル31は、給電コイル21同様に、図2に示すように、抵抗器R4、コイルL4、及び、コンデンサC4を要素とするRLC回路を構成している。なお、コイルL4部分は、銅線材(絶縁被膜付)を使用して、コイル径15mmφに設定している。また、受電コイル31を構成する回路素子が有する合計のインピーダンスをZ4とし、本実施形態では、受電コイル31を構成する抵抗器R4、コイルL4、及び、コンデンサC4を要素とするRLC回路(回路素子)が有する合計のインピーダンスをZ4とする。また、図2では、受電コイル31に接続された安定回路7、充電回路8及び充電池9(被給電機器10)の負荷インピーダンスをZLとしている。また、受電コイル31に流れる電流をI4する。なお、被給電機器10の合計のインピーダンスをZLとしているが、便宜的にRLと置き換えてもよい。
 給電共振器22は、図2に示すように、抵抗器R2、コイルL2、及び、コンデンサC2を要素とするRLC回路を構成している。また、受電共振器32は、図2に示すように、抵抗器R3、コイルL3、及び、コンデンサC3を要素とするRLC回路を構成している。そして、給電共振器22及び受電共振器32は、それぞれ共振回路となり、磁界共鳴状態を創出する役割を果たす。ここで、磁界共鳴状態(共振現象)とは、2つ以上のコイルが共振することをいう。また、給電共振器22を構成する回路素子が有する合計のインピーダンスをZ2とし、本実施形態では、給電共振器22を構成する、抵抗器R2、コイルL2、及び、コンデンサC2を要素とするRLC回路(回路素子)が有する合計のインピーダンスをZ2とする。また、受電共振器32を構成する回路素子が有する合計のインピーダンスをZ3とし、本実施形態では、受電共振器32を構成する、抵抗器R3、コイルL3、及び、コンデンサC3を要素とするRLC回路(回路素子)が有する合計のインピーダンスをZ3とする。また、給電共振器22に流れる電流をI2とし、受電共振器32に流れる電流をI3とする。
 また、給電共振器22及び受電共振器32における共振回路としてのRLC回路では、インダクタンスをL、コンデンサ容量をCとすると、(式1)によって定まるfが共振周波数となる。
 
Figure JPOXMLDOC01-appb-I000001
       
                        ・・・(式1)
 また、給電共振器22は、銅線材(絶縁被膜付)により構成したコイル径15mmφのソレノイド型のコイルを使用している。また、受電共振器32は、銅線材(絶縁被膜付)により構成したコイル径15mmφのソレノイド型のコイルを使用している。なお、給電共振器22及び受電共振器32は、コイルを使用した共振器であれば、スパイラル型やソレノイド型などのコイルであってもよい。
 また、給電コイル21と給電共振器22との間の距離をd12とし、給電共振器22と受電共振器32との間の距離をd23とし、受電共振器32と受電コイル31との間の距離をd34としている(図1参照)。
 また、図2に示すように、給電コイル21のコイルL1と給電共振器22のコイルL2との間の相互インダクタンスをM12、給電共振器22のコイルL2と受電共振器32のコイルL3との間の相互インダクタンスをM23、受電共振器32のコイルL3と受電コイル31のコイルL4との間の相互インダクタンスをM34としている。また、無線電力伝送装置1において、コイルL1とコイルL2との間の結合係数をk12と表記し、コイルL2とコイルL3との間の結合係数をk23と表記し、コイルL3とコイルL4との間の結合係数をk34と表記する。
 なお、給電コイル21のRLC回路のR1、L1、C1、給電共振器22のRLC回路のR2、L2、C2、受電共振器32のRLC回路のR3、L3、C3、受電コイル31のRLC回路のR4、L4、C4における抵抗値、インダクタンス、コンデンサ容量、及び、結合係数k12、k23、k34は、設計・製造段階等で変更可能なパラメータとして、後述する(式3)の関係式を満たすように設定されていることが望ましい。
 上記無線電力伝送装置1によれば、給電共振器22と受電共振器32とを共振させた場合、給電共振器22と受電共振器32との間に磁界共鳴状態を創出することができる。給電共振器22及び受電共振器32が共振した状態で磁界共鳴状態が創出されると、給電共振器22から受電共振器32に電力を磁界エネルギーとして伝送することができる。
 (供給電力制御方法)
 上記無線電力伝送装置1の構成を踏まえて、無線電力伝送装置1が供給する電力を調整する供給電力制御方法について説明する。
 まず、上記構成による無線電力伝送装置1(安定回路7、充電回路8及び充電池9含む)の回路図を示すと図1の下図のようになる。これは、無線電力伝送装置1全体を一つの入力インピーダンスZinに置き換えて示したものである。これによると、無線電力伝送装置1から被給電機器10に給電される電力を制御するには、交流電源6が一般的に使用される定電圧電源だとすると電圧Vinは一定に保持されるため、電流Iinの値を制御する必要があることがわかる。
 そして、この電流Iinを電圧Vin及び入力インピーダンスZinを踏まえた関係式で表すと(式2)のように示せる。
Figure JPOXMLDOC01-appb-I000002
                      ・・・(式2)
 (式2)より、入力インピーダンスZinの値を大きくすれば、電流Iinの値を小さくすることができ、入力インピーダンスZinの値を小さくすれば、電流Iinの値を大きくすることができることがわかる。
 そこで、無線電力伝送装置1の入力インピーダンスZinをより詳細に表すために、無線電力伝送装置1の構成を等価回路によって表すと図2に示すようになる。そして、図2の等価回路より、無線電力伝送装置1の入力インピーダンスZinは、(式3)のように表記することができる。
 
Figure JPOXMLDOC01-appb-I000003
                         ・・・(式3)
 そして、本実施形態における無線電力伝送装置1の給電コイル21、給電共振器22、受電共振器32、及び、受電コイル31におけるインピーダンスZ1、Z2、Z3、Z4、ZLは、それぞれ(式4)のように表記することができる。
Figure JPOXMLDOC01-appb-I000004
                       ・・・(式4)
 次に、(式3)に(式4)を導入すると、(式5)のようになる。
Figure JPOXMLDOC01-appb-I000005
                       ・・・(式5)
 そうすると、上記(式5)における、給電コイル21のRLC回路のR1、L1、C1、給電共振器22のRLC回路のR2、L2、C2、受電共振器32のRLC回路のR3、L3、C3、受電コイル31のRLC回路のR4、L4、C4における抵抗値、インダクタンス、コンデンサ容量、及び、結合係数k12、k23、k34を設計・製造段階等で変更可能なパラメータとして、上記(式5)の関係式から導出される無線電力伝送装置1の入力インピーダンスZinの値を調整して、電流Iinの値を変えて、無線電力伝送装置1から被給電機器10に給電される電力を制御することができることがわかる。
 上記のような無線電力伝送装置1では、給電共振器22が有する共振周波数と、受電共振器32が有する共振周波数とを一致させることにより、無線電力伝送における電力伝送効率の最大化を図れることが一般的に知られており、電力伝送効率の最大化を求めて給電共振器22が有する共振周波数と受電共振器32が有する共振周波数とを一致させるのが一般的である。ここで、電力伝送効率とは、給電モジュール2に供給される電力に対する、受電モジュール3が受電する電力の比率のことをいう。
 そうすると、給電共振器22が有する共振周波数と、受電共振器32が有する共振周波数とを一致させるために、給電共振器22が有するRLC回路(共振回路)のインダクタンス、及び、コンデンサ容量と、受電共振器32が有するRLC回路(共振回路)のインダクタンス、及び、コンデンサ容量とを所定の値に設定しなければならなくなる(式1参照)。これは、無線電力伝送装置1を設計するにあたり、給電共振器22及び受電共振器32が備えるRLC回路(共振回路)のインダクタンス、及び、コンデンサ容量が制限されてしまうことを意味する。また、給電共振器22及び受電共振器32が備えるRLC回路(共振回路)のインダクタンス、及び、コンデンサ容量は、給電先の充電池9などの被給電機器10に給電する電力を決めるパラメータでもあるため、コイルのインダクタンスやコンデンサ容量は調整できることが望ましい。
 (共振周波数による電力制御)
 本実施形態では、給電共振器22が有する共振周波数と、受電共振器32が有する共振周波数とを一致させた場合の電力伝送効率を維持しつつ、給電共振器22及び受電共振器32が備えるRLC回路(共振回路)のインダクタンス、及び、コンデンサ容量を調整可能とするために、給電共振器22が有する共振周波数と、受電共振器32が有する共振周波数とを一致させた場合における、給電モジュール2に供給する電力の駆動周波数に対する伝送特性の値『S21』、又は、給電共振器22と受電共振器32との間の結合係数k23の値を、電力伝送効率を規定する基準値とし、更に、当該基準値を含む所望の範囲を設定し、当該基準値を含む所望の範囲内で、給電共振器22及び受電共振器32が有する共振周波数を変更可能とすることにより、給電共振器22及び受電共振器32が備えるRLC回路(共振回路)のインダクタンス、及び、コンデンサ容量を調整可能にする。そして、給電共振器22及び/又は受電共振器32が有する共振周波数を調整することにより、電力伝送効率を維持しつつ、無線電力伝送装置1の入力インピーダンスの値を調整して被給電機器10に供給する電力を制御する。
 以下に、受電共振器32が有する共振周波数を変えた場合における被給電機器10に供給する電力の制御方法を実施例1、また、給電共振器22が有する共振周波数を変えた場合における被給電機器10に供給する電力の制御方法を実施例2として説明する。
 (実施例1)
 実施例1で使用する無線電力伝送装置1は、R1、R2、R3、R4の値をそれぞれ、0.5Ω、0.5Ω、0.5Ω、0.5Ωに設定した。また、L1、L2、L3、L4の値をそれぞれ、4.5μH、4.5μH、4.5μH、4.5μHに設定した。また、結合係数k12、k34をそれぞれ、0.189、0.189に設定した。また、給電共振器22における共振周波数を1.003MHzに設定(固定)した。そして、上記無線電力伝送装置1をネットワークアナライザ(本実施形態では、アジレント・テクノロジー株式会社製のE5061Bを使用)に接続して、受電共振器32が有する共振周波数を変えた場合における、給電共振器22と受電共振器32との間の結合係数k23、無線電力伝送装置1を双峰性の同相共振モードに設定したときの伝送特性『S21』(詳細は後述する)と入力インピーダンスZin、無線電力伝送装置1を双峰性の逆相共振モードに設定したときの伝送特性『S21』(詳細は後述する)と入力インピーダンスZinを測定する。
 また、本測定実験においては、無線電力伝送装置1に供給する電力の駆動周波数に対する無線電力伝送装置1の伝送特性『S21』が、双峰性の性質を有するもので測定している。
 ここで、伝送特性『S21』とは、ネットワークアナライザに無線電力伝送装置1を接続して計測される信号を表しており、デシベル表示され、数値が大きいほど電力伝送効率が高いことを意味する。そして、無線電力伝送装置1に供給する電力の駆動周波数に対する無線電力伝送装置1の伝送特性『S21』は、給電共振器22及び受電共振器32の間の磁界による結びつき度合い(磁界結合)の強度により、単峰性の性質を有するものと双峰性の性質を有するものに分かれる。そして、単峰性とは、駆動周波数に対する伝送特性『S21』のピークが一つで、そのピークが共振周波数帯域(fo)において現れるものをいう(図3の破線51参照)。一方、双峰性とは、駆動周波数に対する伝送特性『S21』のピークが二つあり、その二つのピークが共振周波数よりも低い駆動周波数帯域(fL)と共振周波数よりも高い駆動周波数帯域(fH)において現れるものをいう(図3の実線52参照)。更に詳細に双峰性を定義すると、上記ネットワークアナライザに無線電力伝送装置1を接続して計測される反射特性『S11』が二つのピークを有する状態をいう。従って、駆動周波数に対する伝送特性『S21』のピークが一見して一つに見えたとしても、計測されている反射特性『S11』が二つのピークを有する場合には、双峰性の性質を有するものとする。
 上記単峰性の性質を有する無線電力伝送装置1においては、図3の破線51に示すように、駆動周波数が共振周波数f0で伝送特性『S21』が最大化する(電力伝送効率が最大化する)。
 一方、双峰性の性質を有する無線電力伝送装置1では、図3の実線52に示すように、伝送特性『S21』は、共振周波数foよりも低い駆動周波数帯域(fL)と共振周波数foよりも高い駆動周波数帯域(fH)において最大化する。
 なお、一般的に、給電共振器と受電共振器との間の距離が同じであれば、双峰性における伝送特性『S21』の最大値(fL又はfHでの伝送特性『S21』の値)は、単峰性における伝送特性『S21』の最大値(f0での伝送特性『S21』の値)よりも低い値になる(図3のグラフ参照)。
 具体的には、双峰性における低周波側のピーク付近の周波数fLに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(同相共振モード)、給電共振器22及び受電共振器32が同位相で共振状態となり、給電共振器22に流れる電流の向きと受電共振器32に流れる電流の向きとが同じ向きになる。その結果、図3のグラフに示すように、電力伝送効率の最大化を目的にした一般的な無線電力伝送装置における伝送特性『S21』(破線51)には及ばないが、駆動周波数を給電モジュール2が備える給電共振器22及び受電モジュール3が備える受電共振器32が有する共振周波数と一致させない場合でも、伝送特性『S21』の値を比較的高い値にすることができる。ここで、給電モジュール2におけるコイル(給電共振器22)に流れる電流の向きと受電モジュール3におけるコイル(受電共振器32)に流れる電流の向きとが同じ向きとなる共振状態を同相共振モードと呼ぶことにする。
 また、上記同相共振モードでは、給電共振器22の外周側に発生する磁界と受電共振器32の外周側に発生する磁界とが打ち消し合うことにより、給電共振器22及び受電共振器32の外周側に、磁界による影響が低減されて、給電共振器22及び受電共振器32の外周側以外の磁界強度(例えば、給電共振器22及び受電共振器32の内周側の磁界強度)よりも小さな磁界強度を有する磁界空間を形成することができる。そして、この磁界空間に磁界の影響を低減させたい安定回路7や充電回路8や充電池9などを収納した場合、安定回路7や充電回路8や充電池9などに対して、磁界に起因する渦電流の発生を低減・防止して、発熱による悪影響を抑制することが可能となる。
 一方、双峰性における高周波側のピーク付近の周波数fHに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(逆相共振モード)、給電共振器22及び受電共振器32が逆位相で共振状態となり、給電共振器22に流れる電流の向きと受電共振器32に流れる電流の向きとが逆向きになる。その結果、図3のグラフに示すように、電力伝送効率の最大化を目的にした一般的な無線電力伝送装置における伝送特性『S21』(破線51)には及ばないが、駆動周波数を給電モジュール2が備える給電共振器22及び受電モジュール3が備える受電共振器32が有する共振周波数と一致させない場合でも、伝送特性『S21』の値を比較的高い値にすることができる。ここで、給電モジュール2におけるコイル(給電共振器22)に流れる電流の向きと受電モジュール3におけるコイル(受電共振器32)に流れる電流の向きとが逆向きとなる共振状態を逆相共振モードと呼ぶことにする。
 また、上記逆相共振モードでは、給電共振器22の内周側に発生する磁界と受電共振器32の内周側に発生する磁界とが打ち消し合うことにより、給電共振器22及び受電共振器32の内周側に、磁界による影響が低減されて、給電共振器22及び受電共振器32の内周側以外の磁界強度(例えば、給電共振器22及び受電共振器32の外周側の磁界強度)よりも小さな磁界強度を有する磁界空間を形成することができる。そして、この磁界空間に磁界の影響を低減させたい安定回路7や充電回路8や充電池9などを収納した場合、安定回路7や充電回路8や充電池9などに対して、磁界に起因する渦電流の発生を低減・防止して、発熱による悪影響を抑制することが可能となる。また、この逆相共振モードにより形成される磁界空間は、給電共振器22及び受電共振器32の内周側に形成されるので、この空間に安定回路7や充電回路8や充電池9などの電子部品を組み込むことにより無線電力伝送装置1自体のコンパクト化・設計自由度の向上が実現される。
 なお、本実施例では、無線電力伝送装置1の伝送特性『S21』が双峰性の性質を有するように、給電コイル21のRLC回路のR1、L1、C1、給電共振器22のRLC回路のR2、L2、C2、受電共振器32のRLC回路のR3、L3、C3、受電コイル31のRLC回路のR4、L4、C4における抵抗値、インダクタンス、コンデンサ容量、及び、結合係数k12、k23、k34などの給電モジュール2及び受電モジュール3を構成する変更可能なパラメータを設定している。
 上記のようにして、給電共振器22が有する共振周波数を1.003MHzに設定したうえで、受電共振器32が有する共振周波数を変えた場合における、無線電力伝送装置1を双峰性の同相共振モードに設定したときの伝送特性『S21』と入力インピーダンスZin、無線電力伝送装置1を双峰性の逆相共振モードに設定したときの伝送特性『S21』と入力インピーダンスZinを測定する。また、結合係数k23は、無線電力伝送装置1に供給する電力の駆動周波数に対する無線電力伝送装置1の伝送特性『S21』が、双峰性の性質を有する場合、(式6)によって求められる。なお、結合係数k23は、給電共振器22と受電共振器32との結合の強さを表す指標である。
Figure JPOXMLDOC01-appb-I000006
                       ・・・(式6)
 以上を踏まえて、実施例1に係る測定結果を図4に示す。また、図5(A)に、給電共振器22が有する共振周波数を1.003MHzに設定したうえで、受電共振器32が有する共振周波数(横軸)を変えた場合における、無線電力伝送装置1を双峰性の同相共振モードに設定したときの伝送特性『S21』(縦軸:◆印)、及び、無線電力伝送装置1を双峰性の逆相共振モードに設定したときの伝送特性『S21』(縦軸:■印)をグラフ化した。また、図5(B)に、給電共振器22が有する共振周波数を1.003MHzに設定したうえで、受電共振器32が有する共振周波数(横軸)を変えた場合における、無線電力伝送装置1を双峰性の同相共振モードに設定したときの入力インピーダンスZin(縦軸:◆印)、及び、無線電力伝送装置1を双峰性の逆相共振モードに設定したときの入力インピーダンスZin(縦軸:■印)をグラフ化した。
 (伝送特性『S21』を基準値に設定した場合:同相共振モード)
 まず、伝送特性『S21』を基準値に設定し、同相共振モードにした場合について説明する。まず、給電共振器22が有する共振周波数、及び、受電共振器32が有する共振周波数を1.003MHzで一致させた場合における、無線電力伝送装置1を双峰性の同相共振モードに設定したときの伝送特性(図4のS21(dB)@fL参照)の値である-5.76dBを基準値とする。なお、図4及び図5(A)から、給電共振器22が有する共振周波数、及び、受電共振器32が有する共振周波数を1.003MHzで一致させた場合に、伝送特性の値が最も高くなり、電力伝送効率が最も良くなることが分かる。
 次に、-5.76dBの基準値を含む所望の伝送特性の範囲を設定する(この所望の伝送特性の値は、被給電機器10の仕様等により自由に設定可能な値である)。これは、許容する電力伝送効率の範囲を設定することになる。本実施形態では、充電池9に給電する際の電力伝送効率に問題ない値として、-6.10dBを下限値とする。よって、基準値を含む所望の伝送特性の範囲は、-6.10~-5.76dBに設定される。
 そして、基準値を含む所望の伝送特性の範囲が、-6.10~-5.76dBに設定されると、図4の「S21(dB)@fL」の項目と、「受電共振器(MHz)」の項目を参照して、受電共振器32の共振周波数の可変範囲は、0.978~1.076MHzの範囲に決定されることになる。これにより、受電共振器32が有する共振周波数が、0.978~1.076MHzの範囲内に納まる範囲で、受電共振器32が備えるRLC回路(共振回路)のインダクタンス、及び、コンデンサ容量を調整可能とすることができる。
 また、上記のように無線電力伝送装置1を双峰性の同相共振モードに設定し、給電共振器22における共振周波数を1.003MHzに固定したうえで、受電共振器32の共振周波数を大きくすると、図4の「|Zin|(Ω)@fL」の項目、及び、図5(B)の◆印に示すように、無線電力伝送装置1の入力インピーダンスZinの値が大きくなる特性があることが分かる。
 従って、上記のように受電共振器32が有する共振周波数が大きくなるにつれて、無線電力伝送装置1の入力インピーダンスZinの値が大きくなる特性に基づき、0.978~1.076MHzの範囲で受電共振器32が有する共振周波数を調整することにより、無線電力伝送装置1の入力インピーダンスZinの値を調整して、電流Iinの値を変えて、無線電力伝送装置1から被給電機器10に給電される電力を制御することができることがわかる。例えば、受電共振器32が有する共振周波数を0.978MHzにした場合よりも1.076MHzにした場合の方が、無線電力伝送装置1の入力インピーダンスZinの値は大きくなり、電流Iinの値は小さくなり、無線電力伝送装置1から被給電機器10に給電される電力を小さくすることができる。
 (伝送特性『S21』を基準値に設定した場合:逆相共振モード)
 次に、伝送特性『S21』を基準値に設定し、逆相共振モードにした場合について説明する。まず、給電共振器22が有する共振周波数、及び、受電共振器32が有する共振周波数を1.003MHzで一致させた場合における、無線電力伝送装置1を双峰性の逆相共振モードに設定したときの伝送特性(図4のS21(dB)@fH参照)の値である-8.99dBを基準値とする。
 次に、-8.99dBの基準値を含む所望の伝送特性の範囲を設定する(この所望の伝送特性の値は、被給電機器10の仕様等により自由に設定可能な値である)。これは、許容する電力伝送効率の範囲を設定することになる。本実施形態では、例えば、充電池9に給電する際の電力伝送効率に問題ない値として、-9.42dBを下限値とする。よって、基準値を含む所望の伝送特性の範囲は、-9.42~-8.99dBに設定される。
 そして、基準値を含む所望の伝送特性の範囲が、-9.42~-8.99dBに設定されると、図4の「S21(dB)@fH」の項目と、「受電共振器(MHz)」の項目を参照して、受電共振器32の共振周波数の可変範囲は、0.978~1.034MHzの範囲に決定されることになる。これにより、受電共振器32が有する共振周波数が、0.978~1.034MHzの範囲内に納まる範囲で、受電共振器32が備えるRLC回路(共振回路)のインダクタンス、及び、コンデンサ容量を調整可能とすることができる。
 また、上記のように無線電力伝送装置1を双峰性の逆相共振モードに設定し、給電共振器22における共振周波数を1.003MHzに固定したうえで、受電共振器32の共振周波数を大きくすると、図4の「|Zin|(Ω)@fH」の項目、及び、図5(B)の■印に示すように、無線電力伝送装置1の入力インピーダンスZinの値が小さくなる特性があることが分かる。
 従って、上記のように受電共振器32が有する共振周波数が大きくなるにつれて、無線電力伝送装置1の入力インピーダンスZinの値が小さくなる特性に基づき、0.978~1.034MHzの範囲で受電共振器32が有する共振周波数を調整することにより、無線電力伝送装置1の入力インピーダンスZinの値を調整して、電流Iinの値を変えて、無線電力伝送装置1から被給電機器10に給電される電力を制御することができることがわかる。例えば、受電共振器32が有する共振周波数を0.978MHzにした場合よりも1.034MHzにした場合の方が、無線電力伝送装置1の入力インピーダンスZinの値は小さくなり、電流Iinの値は大きくなり、無線電力伝送装置1から被給電機器10に給電される電力を大きくすることができる。
 (結合係数k23を基準値に設定した場合)
 次に、結合係数k23を基準値に設定した場合について説明する。まず、給電共振器22が有する共振周波数、及び、受電共振器32が有する共振周波数を1.003MHzで一致させた場合における、給電共振器22と受電共振器32との間の結合係数k23(図4の結合係数k23参照)の値である0.189を基準値とする。
 次に、0.189の基準値を含む所望の結合係数k23の範囲を設定する(この所望の結合係数k23の値は、被給電機器10の仕様等により自由に設定可能な値である)。これは、許容する電力伝送効率の範囲を設定することになる。本実施形態では、充電池9に給電する際の電力伝送効率に問題ない値として、基準値を含む所望の結合係数k23の範囲を、0.187を下限値とし、0.194を上限値とする。
 そして、基準値を含む所望の結合係数k23の範囲が、0.187~0.194に設定されると、図4の「結合係数k23」の項目と、「受電共振器(MHz)」の項目を参照して、受電共振器32の共振周波数の可変範囲は、0.957~1.034MHzの範囲に決定されることになる。これにより、受電共振器32が有する共振周波数が、0.957~1.034MHzの範囲内に納まる範囲で、受電共振器32が備えるRLC回路(共振回路)のインダクタンス、及び、コンデンサ容量を調整可能とすることができる。
 また、無線電力伝送装置1を双峰性の同相共振モードに設定し、給電共振器22における共振周波数を1.003MHzに固定したうえで、受電共振器32の共振周波数を大きくすると、図4の「|Zin|(Ω)@fL」の項目、及び、図5(B)の◆印に示すように、無線電力伝送装置1の入力インピーダンスZinの値が大きくなる特性があることが分かる。
 従って、上記のように受電共振器32が有する共振周波数が大きくなるにつれて、無線電力伝送装置1の入力インピーダンスZinの値が大きくなる特性に基づき、0.957~1.034MHzの範囲で受電共振器32が有する共振周波数を調整することにより、無線電力伝送装置1の入力インピーダンスZinの値を調整して、電流Iinの値を変えて、無線電力伝送装置1から被給電機器10に給電される電力を制御することができることがわかる。例えば、受電共振器32が有する共振周波数を0.957MHzにした場合よりも1.034MHzにした場合の方が、無線電力伝送装置1の入力インピーダンスZinの値は大きくなり、電流Iinの値は小さくなり、無線電力伝送装置1から被給電機器10に給電される電力を小さくすることができる。
 一方、無線電力伝送装置1を双峰性の逆相共振モードに設定し、給電共振器22における共振周波数を1.003MHzに固定したうえで、受電共振器32の共振周波数を大きくすると、図4の「|Zin|(Ω)@fH」の項目、及び、図5(B)の■印に示すように、無線電力伝送装置1の入力インピーダンスZinの値が小さくなる特性があることが分かる。
 従って、上記のように受電共振器32が有する共振周波数が大きくなるにつれて、無線電力伝送装置1の入力インピーダンスZinの値が小さくなる特性に基づき、0.957~1.034MHzの範囲で受電共振器32が有する共振周波数を調整することにより、無線電力伝送装置1の入力インピーダンスZinの値を調整して、電流Iinの値を変えて、無線電力伝送装置1から被給電機器10に給電される電力を制御することができることがわかる。例えば、受電共振器32が有する共振周波数を0.957MHzにした場合よりも1.034MHzにした場合の方が、無線電力伝送装置1の入力インピーダンスZinの値は小さくなり、電流Iinの値は大きくなり、無線電力伝送装置1から被給電機器10に給電される電力を大きくすることができる。
 なお、上記のように給電モジュール2に供給する電力の駆動周波数に対する伝送特性の値『S21』、又は、給電共振器22と受電共振器32との間の結合係数k23の値を、電力伝送効率を規定する基準値としているが、どちらを基準値とするかは、無線電力伝送装置1の設計段階で自由に選択できるものである。
 (実施例2)
 本実施例2で使用する無線電力伝送装置1は、実施例1で使用したものと同じである。本実施例2では、受電共振器32における共振周波数を1.003MHzに設定(固定)した。そして、実施例1同様に、無線電力伝送装置1をネットワークアナライザに接続して、給電共振器22が有する共振周波数を変えた場合における、給電共振器22と受電共振器32との間の結合係数k23、無線電力伝送装置1を双峰性の同相共振モードに設定したときの伝送特性『S21』と入力インピーダンスZin、無線電力伝送装置1を双峰性の逆相共振モードに設定したときの伝送特性『S21』と入力インピーダンスZinを測定する。
 実施例2に係る測定結果を図6に示す。また、図7(A)に、受電共振器32が有する共振周波数を1.003MHzに設定(固定)したうえで、給電共振器22が有する共振周波数(横軸)を変えた場合における、無線電力伝送装置1を双峰性の同相共振モードに設定したときの伝送特性『S21』(縦軸:◆印)、及び、無線電力伝送装置1を双峰性の逆相共振モードに設定したときの伝送特性『S21』(縦軸:■印)をグラフ化した。また、図7(B)に、受電共振器32が有する共振周波数を1.003MHzに設定したうえで、給電共振器22が有する共振周波数(横軸)を変えた場合における、無線電力伝送装置1を双峰性の同相共振モードに設定したときの入力インピーダンスZin(縦軸:◆印)、及び、無線電力伝送装置1を双峰性の逆相共振モードに設定したときの入力インピーダンスZin(縦軸:■印)をグラフ化した。
 (伝送特性『S21』を基準値に設定した場合:同相共振モード)
 まず、伝送特性『S21』を基準値に設定し、同相共振モードにした場合について説明する。給電共振器22が有する共振周波数、及び、受電共振器32が有する共振周波数を1.003MHzで一致させた場合における、無線電力伝送装置1を双峰性の同相共振モードに設定したときの伝送特性(図6のS21(dB)@fL参照)の値である-5.93dBを基準値とする。なお、図6及び図7(A)から、給電共振器22が有する共振周波数、及び、受電共振器32が有する共振周波数を1.003MHzで一致させた場合に、伝送特性の値が最も高くなり、電力伝送効率が最も良くなることが分かる。
 次に、-5.93dBの基準値を含む所望の伝送特性の範囲を設定する(この所望の伝送特性の値は、被給電機器10の仕様等により自由に設定可能な値である)。これは、許容する電力伝送効率の範囲を設定することになる。本実施形態では、充電池9に給電する際の電力伝送効率に問題ない値として、-6.34dBを下限値とする。よって、基準値を含む所望の伝送特性の範囲は、-6.34~-5.93dBに設定される。
 そして、基準値を含む所望の伝送特性の範囲が、-6.34~-5.93dBに設定されると、図6の「S21(dB)@fL」の項目と、「給電共振器(MHz)」の項目を参照して、給電共振器22の共振周波数の可変範囲は、0.957~1.056MHzの範囲に決定されることになる。これにより、給電共振器22が有する共振周波数が、0.957~1.056MHzの範囲内に納まる範囲で、給電共振器22が備えるRLC回路(共振回路)のインダクタンス、及び、コンデンサ容量を調整可能とすることができる。
 また、上記のように無線電力伝送装置1を双峰性の同相共振モードに設定し、受電共振器32における共振周波数を1.003MHzに固定したうえで、給電共振器22の共振周波数を大きくすると、図6の「|Zin|(Ω)@fL」の項目、及び、図7(B)の◆印に示すように、無線電力伝送装置1の入力インピーダンスZinの値が小さくなる特性があることが分かる。
 従って、上記のように給電共振器22が有する共振周波数が大きくなるにつれて、無線電力伝送装置1の入力インピーダンスZinの値が小さくなる特性に基づき、0.957~1.056MHzの範囲で給電共振器22が有する共振周波数を調整することにより、無線電力伝送装置1の入力インピーダンスZinの値を調整して、電流Iinの値を変えて、無線電力伝送装置1から被給電機器10に給電される電力を制御することができることがわかる。例えば、給電共振器22が有する共振周波数を0.957MHzにした場合よりも1.056MHzにした場合の方が、無線電力伝送装置1の入力インピーダンスZinの値は小さくなり、電流Iinの値は大きくなり、無線電力伝送装置1から被給電機器10に給電される電力を大きくすることができる。
 (伝送特性『S21』を基準値に設定した場合:逆相共振モード)
 次に、伝送特性『S21』を基準値に設定し、逆相共振モードにした場合について説明する。まず、給電共振器22が有する共振周波数、及び、受電共振器32が有する共振周波数を1.003MHzで一致させた場合における、無線電力伝送装置1を双峰性の逆相共振モードに設定したときの伝送特性(図6のS21(dB)@fH参照)の値である-9.46dBを基準値とする。
 次に、-9.46dBの基準値を含む所望の伝送特性の範囲を設定する(この所望の伝送特性の値は、被給電機器10の仕様等により自由に設定可能な値である)。これは、許容する電力伝送効率の範囲を設定することになる。本実施形態では、例えば、充電池9に給電する際の電力伝送効率に問題ない値として、-9.76dBを下限値とする。よって、基準値を含む所望の伝送特性の範囲は、-9.76~-9.46dBに設定される。
 そして、基準値を含む所望の伝送特性の範囲が、-9.76~-9.46dBに設定されると、図6の「S21(dB)@fH」の項目と、「給電共振器(MHz)」の項目を参照して、給電共振器22の共振周波数の可変範囲は、0.978~1.056MHzの範囲に決定されることになる。これにより、給電共振器22が有する共振周波数が、0.978~1.056MHzの範囲内に納まる範囲で、給電共振器22が備えるRLC回路(共振回路)のインダクタンス、及び、コンデンサ容量を調整可能とすることができる。
 また、上記のように無線電力伝送装置1を双峰性の逆相共振モードに設定し、受電共振器32における共振周波数を1.003MHzに固定したうえで、給電共振器22の共振周波数を大きくすると、図6の「|Zin|(Ω)@fH」の項目、及び、図7(B)の■印に示すように、無線電力伝送装置1の入力インピーダンスZinの値が大きくなる特性があることが分かる。
 従って、上記のように給電共振器22が有する共振周波数が大きくなるにつれて、無線電力伝送装置1の入力インピーダンスZinの値が大きくなる特性に基づき、0.978~1.056MHzの範囲で給電共振器22が有する共振周波数を調整することにより、無線電力伝送装置1の入力インピーダンスZinの値を調整して、電流Iinの値を変えて、無線電力伝送装置1から被給電機器10に給電される電力を制御することができることがわかる。例えば、給電共振器22が有する共振周波数を0.978MHzにした場合よりも1.056MHzにした場合の方が、無線電力伝送装置1の入力インピーダンスZinの値は大きくなり、電流Iinの値は小さくなり、無線電力伝送装置1から被給電機器10に給電される電力を小さくすることができる。
 (結合係数k23を基準値に設定した場合)
 次に、結合係数k23を基準値に設定した場合について説明する。まず、給電共振器22が有する共振周波数、及び、受電共振器32が有する共振周波数を1.003MHzで一致させた場合における、給電共振器22と受電共振器32との間の結合係数k23(図6の結合係数k23参照)の値である0.188を基準値とする。
 次に、0.188の基準値を含む所望の結合係数k23の範囲を設定する(この所望の結合係数k23の値は、被給電機器10の仕様等により自由に設定可能な値である)。これは、許容する電力伝送効率の範囲を設定することになる。本実施形態では、充電池9に給電する際の電力伝送効率に問題ない値として、基準値を含む所望の結合係数k23の範囲を、0.187を下限値とし、0.194を上限値とする。
 そして、基準値を含む所望の結合係数k23の範囲が、0.187~0.194に設定されると、図6の「結合係数k23」の項目と、「給電共振器(MHz)」の項目を参照して、給電共振器22の共振周波数の可変範囲は、0.957~1.056MHzの範囲に決定されることになる。これにより、給電共振器22が有する共振周波数が、0.957~1.056MHzの範囲内に納まる範囲で、給電共振器22が備えるRLC回路(共振回路)のインダクタンス、及び、コンデンサ容量を調整可能とすることができる。
 また、無線電力伝送装置1を双峰性の同相共振モードに設定し、受電共振器32における共振周波数を1.003MHzに固定したうえで、給電共振器22の共振周波数を大きくすると、図6の「|Zin|(Ω)@fL」の項目、及び、図7(B)の◆印に示すように、無線電力伝送装置1の入力インピーダンスZinの値が小さくなる特性があることが分かる。
 従って、上記のように給電共振器22が有する共振周波数が大きくなるにつれて、無線電力伝送装置1の入力インピーダンスZinの値が小さくなる特性に基づき、0.957~1.056MHzの範囲で給電共振器22が有する共振周波数を調整することにより、無線電力伝送装置1の入力インピーダンスZinの値を調整して、電流Iinの値を変えて、無線電力伝送装置1から被給電機器10に給電される電力を制御することができることがわかる。例えば、給電共振器22が有する共振周波数を0.957MHzにした場合よりも1.056MHzにした場合の方が、無線電力伝送装置1の入力インピーダンスZinの値は小さくなり、電流Iinの値は大きくなり、無線電力伝送装置1から被給電機器10に給電される電力を大きくすることができる。
 一方、無線電力伝送装置1を双峰性の逆相共振モードに設定し、受電共振器32における共振周波数を1.003MHzに固定したうえで、給電共振器22の共振周波数を大きくすると、図6の「|Zin|(Ω)@fH」の項目、及び、図7(B)の■印に示すように、無線電力伝送装置1の入力インピーダンスZinの値が大きくなる特性があることが分かる。
 従って、上記のように給電共振器22が有する共振周波数が大きくなるにつれて、無線電力伝送装置1の入力インピーダンスZinの値が大きくなる特性に基づき、0.957~1.056MHzの範囲で給電共振器22が有する共振周波数を調整することにより、無線電力伝送装置1の入力インピーダンスZinの値を調整して、電流Iinの値を変えて、無線電力伝送装置1から被給電機器10に給電される電力を制御することができることがわかる。例えば、給電共振器22が有する共振周波数を0.957MHzにした場合よりも1.056MHzにした場合の方が、無線電力伝送装置1の入力インピーダンスZinの値は大きくなり、電流Iinの値は小さくなり、無線電力伝送装置1から被給電機器10に給電される電力を小さくすることができる。
 以上に説明したように、上記方法によれば、給電共振器22及び受電共振器32の少なくとも一方が有する共振周波数を変えることによって、無線電力伝送装置1の入力インピーダンスZinの値を設定して供給する電力を調整することができる。
 また、上記方法によれば、給電共振器22が有する共振周波数、及び、受電共振器32が有する共振周波数を一致させた場合における、給電モジュール2に供給する電力の駆動周波数に対する伝送特性の値、又は、給電共振器22と受電共振器32との間の結合係数k23の値を、電力伝送効率を規定する基準値とし、この基準値を目安として、基準値を含む所望の範囲を設定して、基準値を含む所望の範囲内で、給電共振器22及び受電共振器32の少なくとも一方が有する共振周波数を変えられるようにすることができる。そして、給電共振器22及び受電共振器32の少なくとも一方が有する共振周波数を変えることによって、電力伝送効率を維持しつつ、無線電力伝送装置1の入力インピーダンスZinの値を設定して供給する電力を調整することができる。
 また、上記方法によれば、給電コイル21及び給電共振器22を備えた給電モジュール2から、受電共振器32及び受電コイル31を備えた受電モジュール3に対して共振現象によって電力を供給する無線電力伝送装置1であっても、給電共振器22が有する共振周波数、及び、受電共振器32が有する共振周波数を一致させた場合における、給電モジュール2に供給する電力の駆動周波数に対する伝送特性の値、又は、給電共振器22と受電共振器32との間の結合係数k23の値を、電力伝送効率を規定する基準値とし、この基準値を目安として、基準値を含む所望の範囲を設定して、基準値を含む所望の範囲内で、給電共振器22及び受電共振器32の少なくとも一方が有する共振周波数を変えられるようにすることができる。そして、給電共振器22及び受電共振器32の少なくとも一方が有する共振周波数を変えることによって、電力伝送効率を維持しつつ、無線電力伝送装置1の入力インピーダンスZinの値を設定して供給する電力を調整することができる。
 また、上記方法によれば、給電共振器22及び受電共振器32が有する共振周波数は、それぞれが備えるコンデンサの容量を変えることにより調整することができる。
 なお、給電共振器22及び受電共振器32が有する共振周波数は、それぞれが備えるコイルのインダクタンスを変えることにより調整することも可能である。
 (製造方法)
 次に、無線電力伝送装置1を製造する一工程である、設計方法(設計工程)について、図8及び図9を参照して説明する。本説明では、無線電力伝送装置1を搭載する携帯機器としてイヤホンスピーカ部200aを備えた無線式ヘッドセット200、及び、充電器201を例にして説明する(図8参照)。
 本設計方法で設計される無線電力伝送装置1は、図8に示す無線式ヘッドセット200及び充電器201に、それぞれ受電モジュール3(受電コイル31・受電共振器32)及び給電モジュール2(給電コイル21・給電共振器22)として搭載されている。また、図8では、説明の都合上、安定回路7、充電回路8及び充電池9を受電モジュール3の外に記載しているが、実際は、ソレノイド状の受電コイル31及び受電共振器32のコイル内周側に配置されている。即ち、無線式ヘッドセット200には、受電モジュール3、安定回路7、充電回路8及び充電池9が搭載されており、充電器201には、給電モジュール2が搭載されており、給電モジュール2の給電コイル21に交流電源6が接続された状態で使用される。
 (設計方法)
 まず、図9に示すように、充電池9の容量、及び、充電池9の充電に必要とされる充電電流から、受電モジュール3が受電する受電電力量が決まる(S1)。
 次に、給電モジュール2と受電モジュール3との間の距離を決定する(S2)。これは、受電モジュール3を内蔵した無線式ヘッドセット200を、給電モジュール2を内蔵した充電器201に載置した際の給電共振器22と受電共振器32との間の距離d23であり、使用形態としては充電中の状態である。より詳細には、給電共振器22と受電共振器32との間の距離d23は、無線式ヘッドセット200と充電器201の形状・構造を考慮して決定される。
 また、無線式ヘッドセット200の大きさ・形状・構造を踏まえて、受電モジュール3における受電コイル31及び受電共振器32のコイル径が決定される(S3)。
 また、充電器201の大きさ・形状・構造を踏まえて、給電モジュール2における給電コイル21及び給電共振器22のコイル径が決定される(S4)。
 上記S2~S4の手順を経ることにより、無線電力伝送装置1の給電共振器22(コイルL2)と受電共振器32(コイルL3)との間の結合係数k23と、電力伝送効率が決まることになる。
 上記S1で決定した受電モジュール3が受電する受電電力量、及び、S2~S4の手順を経て決定された電力伝送効率より、給電モジュール2に給電する必要最低限の給電電力量が決定される(S5)。
 そして、上記受電モジュール3が受電する受電電力量、電力伝送効率、及び、給電モジュール2に給電する必要最低限の給電電力量を踏まえて、無線電力伝送装置1における入力インピーダンスZinの設計値が決まる(S6)。
 そして、S6で決定された入力インピーダンスZinの設計値になるように、給電コイル21と給電共振器22との間の距離d12、受電共振器32と受電コイル31との間の距離d34、給電共振器22・受電共振器32における共振周波数などが決められる(S7)。なお、給電共振器22・受電共振器32における共振周波数は、実施例1及び実施例2で説明した手順により、給電共振器22及び受電共振器32が備えるRLC回路(共振回路)のインダクタンス、及び/又は、コンデンサ容量によって調整され決定される。
 上記設計方法を含む無線電力伝送装置1の製造方法、及び、上記設計工程を経て製造された無線電力伝送装置1によれば、無線電力伝送装置1の入力インピーダンスZinの値を設定することによる、無線電力伝送を行う際に供給する電力の調整を、新たな機器を設けずにできる無線電力伝送装置1を製造することができる。即ち、無線電力伝送装置1の部品点数を増やさずに、給電する電力の制御が可能な無線電力伝送装置1を製造することができる。
 (その他の実施形態)
 上記製造方法の説明では、無線式ヘッドセット200を例示して説明したが、充電池を備えた機器であれば、タブレット型PC、デジタルカメラ、携帯電話、イヤホン型音楽プレイヤー、補聴器、集音器などにも使用することができる。
 また、上記説明では、給電モジュール2及び受電モジュール3が備える共振器(コイル)間の共振現象(磁界共鳴状態)を利用して磁場を結合させることにより電力伝送を行う無線電力伝送装置1を例示して説明したが、給電装置及び受電装置が備えるコイル間の共振及び電磁誘導を利用して電力伝送を行う無線電力伝送装置においても適用可能である。
 また、上記説明では、無線電力伝送装置1を携帯型の電子機器に搭載した場合を想定して説明したが、用途はこれら小型なものに限らず、必要電力量に合わせて仕様を変更することにより、例えば、比較的大型な電気自動車(EV)における無線充電システムや、より小型な医療用の無線式胃カメラなどにも搭載することができる。
 以上の詳細な説明では、本発明をより容易に理解できるように、特徴的部分を中心に説明したが、本発明は、以上の詳細な説明に記載する実施形態・実施例に限定されず、その他の実施形態・実施例にも適用することができ、その適用範囲は可能な限り広く解釈されるべきである。また、本明細書において用いた用語及び語法は、本発明を的確に説明するために用いたものであり、本発明の解釈を制限するために用いたものではない。また、当業者であれば、本明細書に記載された発明の概念から、本発明の概念に含まれる他の構成、システム、方法等を推考することは容易であると思われる。従って、請求の範囲の記載は、本発明の技術的思想を逸脱しない範囲で均等な構成を含むものであるとみなされるべきである。また、本発明の目的及び本発明の効果を充分に理解するために、すでに開示されている文献等を充分に参酌することが望まれる。
 1 無線電力伝送装置
 2 給電モジュール
 3 受電モジュール
 6 交流電源
 7 安定回路
 8 充電回路
 9 充電池
10 被給電機器
21 給電コイル
22 給電共振器
31 受電コイル
32 受電共振器
200 無線式ヘッドセット
201 充電器

Claims (10)

  1.  給電共振器を備えた給電モジュールから、受電共振器を備えた受電モジュールに対して磁界を変化させて電力を供給する無線電力伝送装置の供給電力制御方法であって、
     前記給電共振器及び前記受電共振器の少なくとも一方が有する共振周波数を調整することにより、当該無線電力伝送装置の入力インピーダンスの値を設定して前記供給する電力を制御することを特徴とする無線電力伝送装置の供給電力制御方法。
  2.  給電共振器を備えた給電モジュールから、受電共振器を備えた受電モジュールに対して磁界を変化させて電力を供給する無線電力伝送装置の供給電力制御方法であって、
     前記給電共振器が有する共振周波数及び前記受電共振器が有する共振周波数を一致させた場合における、前記給電モジュールに供給する電力の駆動周波数に対する伝送特性の値、又は、前記給電共振器と前記受電共振器との間の結合係数の値を、電力伝送効率を規定する基準値とし、
     当該基準値を含む所望の範囲で、前記給電共振器及び前記受電共振器の少なくとも一方が有する共振周波数を調整することにより、当該無線電力伝送装置の入力インピーダンスの値を設定して前記供給する電力を制御することを特徴とする請求項1に記載の無線電力伝送装置の供給電力制御方法。
  3.  少なくとも給電コイル及び給電共振器を備えた給電モジュールから、少なくとも受電共振器及び受電コイルを備えた受電モジュールに対して共振現象によって電力を供給することを特徴とする請求項1又は2に記載の無線電力伝送装置の供給電力制御方法。
  4.  前記給電モジュールに供給する電力の駆動周波数に対する伝送特性の値が、前記給電モジュール及び受電モジュールにおける共振周波数よりも低い駆動周波数帯域及び前記共振周波数よりも高い駆動周波数帯域にそれぞれピークを有する双峰性の特性を有するように、前記給電モジュール及び前記受電モジュールを構成する可変可能なパラメータを設定し、前記給電モジュールに供給する電力の前記駆動周波数を、前記給電モジュール及び受電モジュールにおける前記共振周波数よりも低い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域に設定することにより、
     前記給電共振器が有する共振周波数は、前記給電共振器が有する共振周波数が大きくなるにつれて、当該無線電力伝送装置の入力インピーダンスの値が小さくなる特性に基づき調整されることを特徴とする請求項3に記載の無線電力伝送装置の供給電力制御方法。
  5.  前記給電モジュールに供給する電力の駆動周波数に対する伝送特性の値が、前記給電モジュール及び受電モジュールにおける共振周波数よりも低い駆動周波数帯域及び前記共振周波数よりも高い駆動周波数帯域にそれぞれピークを有する双峰性の特性を有するように、前記給電モジュール及び前記受電モジュールを構成する可変可能なパラメータを設定し、前記給電モジュールに供給する電力の前記駆動周波数を、前記給電モジュール及び受電モジュールにおける前記共振周波数よりも低い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域に設定することにより、
     前記受電共振器が有する共振周波数は、前記受電共振器が有する共振周波数が大きくなるにつれて、当該無線電力伝送装置の入力インピーダンスの値が大きくなる特性に基づき調整されることを特徴とする請求項3に記載の無線電力伝送装置の供給電力制御方法。
  6.  前記給電モジュールに供給する電力の駆動周波数に対する伝送特性の値が、前記給電モジュール及び受電モジュールにおける共振周波数よりも低い駆動周波数帯域及び前記共振周波数よりも高い駆動周波数帯域にそれぞれピークを有する双峰性の特性を有するように、前記給電モジュール及び前記受電モジュールを構成する可変可能なパラメータを設定し、前記給電モジュールに供給する電力の前記駆動周波数を、前記給電モジュール及び受電モジュールにおける前記共振周波数よりも高い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域に設定することにより、
     前記給電共振器が有する共振周波数は、前記給電共振器が有する共振周波数が大きくなるにつれて、当該無線電力伝送装置の入力インピーダンスの値が大きくなる特性に基づき調整されることを特徴とする請求項3に記載の無線電力伝送装置の供給電力制御方法。
  7.  前記給電モジュールに供給する電力の駆動周波数に対する伝送特性の値が、前記給電モジュール及び受電モジュールにおける共振周波数よりも低い駆動周波数帯域及び前記共振周波数よりも高い駆動周波数帯域にそれぞれピークを有する双峰性の特性を有するように、前記給電モジュール及び前記受電モジュールを構成する可変可能なパラメータを設定し、前記給電モジュールに供給する電力の前記駆動周波数を、前記給電モジュール及び受電モジュールにおける前記共振周波数よりも高い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域に設定することにより、
     前記受電共振器が有する共振周波数は、前記受電共振器が有する共振周波数が大きくなるにつれて、当該無線電力伝送装置の入力インピーダンスの値が小さくなる特性に基づき調整されることを特徴とする請求項3に記載の無線電力伝送装置の供給電力制御方法。
  8.  前記給電共振器及び前記受電共振器はコンデンサを備え、
     前記給電共振器及び前記受電共振器が有する共振周波数は、それぞれの前記コンデンサの容量を変えることにより調整されることを特徴とする請求項1~7の何れかに記載の無線電力伝送装置の供給電力制御方法。
  9.  請求項1~8の何れかに記載の供給電力制御方法により調整されたことを特徴とする無線電力伝送装置。
  10.  給電共振器を備えた給電モジュールから、受電共振器を備えた受電モジュールに対して磁界を変化させて電力を供給する無線電力伝送装置の製造方法であって、
     前記給電共振器が有する共振周波数及び前記受電共振器が有する共振周波数を一致させた場合における、前記給電モジュールに供給する電力の駆動周波数に対する伝送特性の値、又は、前記給電共振器と前記受電共振器との間の結合係数の値を、電力伝送効率を規定する基準値とし、
     当該基準値を含む所望の範囲で、前記給電共振器及び前記受電共振器の少なくとも一方が有する共振周波数を調整することにより、当該無線電力伝送装置の入力インピーダンスの値を設定して前記供給する電力を制御する工程を含むことを特徴とする無線電力伝送装置の製造方法。
PCT/JP2014/052049 2013-04-01 2014-01-30 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法 WO2014162766A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/781,695 US20160056638A1 (en) 2013-04-01 2014-01-30 Wireless power transfer device, supplied-power control method for wireless power transfer device, and wireless-power-transfer-device manufacturing method
SG11201507821PA SG11201507821PA (en) 2013-04-01 2014-01-30 Wireless power transfer device, supplied-power control method for wireless power transfer device, and wireless-power-transfer-device manufacturing method
EP14779175.0A EP2985879A4 (en) 2013-04-01 2014-01-30 WIRELESS POWER TRANSMISSION DEVICE, POWER SUPPLY PROCESS FOR A WIRELESS ENERGY TRANSMISSION DEVICE, AND METHOD FOR MANUFACTURING A WIRELESS POWER TRANSMISSION DEVICE
CN201480019522.4A CN105122575A (zh) 2013-04-01 2014-01-30 无线电力传输装置、无线电力传输装置的供给电力控制方法以及无线电力传输装置的制造方法
KR1020157030743A KR20150139549A (ko) 2013-04-01 2014-01-30 무선 전력 전송 장치, 무선 전력 전송 장치의 공급 전력 제어 방법 및 무선 전력 전송 장치의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013076255A JP2014204469A (ja) 2013-04-01 2013-04-01 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
JP2013-076255 2013-04-01

Publications (1)

Publication Number Publication Date
WO2014162766A1 true WO2014162766A1 (ja) 2014-10-09

Family

ID=51658071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052049 WO2014162766A1 (ja) 2013-04-01 2014-01-30 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法

Country Status (8)

Country Link
US (1) US20160056638A1 (ja)
EP (1) EP2985879A4 (ja)
JP (1) JP2014204469A (ja)
KR (1) KR20150139549A (ja)
CN (1) CN105122575A (ja)
SG (1) SG11201507821PA (ja)
TW (1) TWI572110B (ja)
WO (1) WO2014162766A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3282559A4 (en) * 2015-04-06 2018-03-21 Panasonic Intellectual Property Management Co., Ltd. Non-contact power supply device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2894757B1 (en) * 2012-09-05 2018-06-06 Renesas Electronics Corporation Non-contact charging device, and non-contact power supply system using same
CN106329738A (zh) * 2016-09-22 2017-01-11 武汉大学 基于磁共振无线输电的固有频率调谐装置及控制方法
US10355532B2 (en) * 2016-11-02 2019-07-16 Apple Inc. Inductive power transfer
KR101986362B1 (ko) * 2017-09-20 2019-06-05 한국철도기술연구원 고주파 전원 전달 장치
EP3648299A1 (de) * 2018-10-31 2020-05-06 Hilti Aktiengesellschaft Resonanter schwingkreis zum übertragen von elektrischer energie
KR20220021093A (ko) * 2020-08-13 2022-02-22 삼성전자주식회사 복수 개의 공진기들을 포함하는 무선 전력 송신 장치 및 그 동작 방법
KR20240018976A (ko) * 2022-08-03 2024-02-14 주식회사 반프 최적 전력전송을 위한 무선전력 전송 시스템 및 그 시스템의 최적 공진주파수 제어방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239769A (ja) 2009-03-31 2010-10-21 Fujitsu Ltd 無線電力供給システム
JP4624768B2 (ja) 2004-11-29 2011-02-02 オリンパス株式会社 被検体内導入装置および被検体内導入システム
JP2012135127A (ja) * 2010-12-22 2012-07-12 Panasonic Corp 無線電力伝送システム、それに用いられる送電機器および受電機器、ならびに無線電力伝送方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7212414B2 (en) * 1999-06-21 2007-05-01 Access Business Group International, Llc Adaptive inductive power supply
US8629650B2 (en) * 2008-05-13 2014-01-14 Qualcomm Incorporated Wireless power transfer using multiple transmit antennas
US8461719B2 (en) * 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer systems
US8338991B2 (en) * 2009-03-20 2012-12-25 Qualcomm Incorporated Adaptive impedance tuning in wireless power transmission
JP2011050140A (ja) * 2009-08-26 2011-03-10 Sony Corp 非接触給電装置、非接触受電装置、非接触給電方法、非接触受電方法および非接触給電システム
JP5664018B2 (ja) * 2009-10-30 2015-02-04 Tdk株式会社 ワイヤレス給電装置、ワイヤレス電力伝送システムおよびそれらを利用したテーブルと卓上ランプ
JP2011151989A (ja) * 2010-01-22 2011-08-04 Sony Corp ワイヤレス給電装置およびワイヤレス給電システム
JP5211088B2 (ja) * 2010-02-12 2013-06-12 トヨタ自動車株式会社 給電装置および車両給電システム
KR101854420B1 (ko) * 2010-11-26 2018-05-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 급전 장치 및 이 급전 장치를 구비하는 비접촉 급전 시스템
JP5725843B2 (ja) * 2010-12-21 2015-05-27 矢崎総業株式会社 給電システム
JP2012143117A (ja) * 2011-01-06 2012-07-26 Toyota Industries Corp 非接触電力伝送装置
US20120200150A1 (en) * 2011-02-08 2012-08-09 Tdk Corporation Wireless power transmission system
WO2012111085A1 (ja) * 2011-02-15 2012-08-23 トヨタ自動車株式会社 非接触受電装置およびそれを搭載した車両、非接触給電設備、非接触受電装置の制御方法、ならびに非接触給電設備の制御方法
US8742627B2 (en) * 2011-03-01 2014-06-03 Tdk Corporation Wireless power feeder
US9356449B2 (en) * 2011-03-01 2016-05-31 Tdk Corporation Wireless power receiver, wireless power transmission system, and power controller
JP6035711B2 (ja) * 2011-07-21 2016-11-30 ソニー株式会社 検知装置、受電装置、送電装置、非接触電力伝送システム及び検知方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4624768B2 (ja) 2004-11-29 2011-02-02 オリンパス株式会社 被検体内導入装置および被検体内導入システム
JP2010239769A (ja) 2009-03-31 2010-10-21 Fujitsu Ltd 無線電力供給システム
JP2012135127A (ja) * 2010-12-22 2012-07-12 Panasonic Corp 無線電力伝送システム、それに用いられる送電機器および受電機器、ならびに無線電力伝送方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2985879A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3282559A4 (en) * 2015-04-06 2018-03-21 Panasonic Intellectual Property Management Co., Ltd. Non-contact power supply device

Also Published As

Publication number Publication date
KR20150139549A (ko) 2015-12-11
CN105122575A (zh) 2015-12-02
TWI572110B (zh) 2017-02-21
EP2985879A4 (en) 2016-12-21
SG11201507821PA (en) 2015-10-29
EP2985879A1 (en) 2016-02-17
JP2014204469A (ja) 2014-10-27
US20160056638A1 (en) 2016-02-25
TW201503526A (zh) 2015-01-16

Similar Documents

Publication Publication Date Title
WO2014162766A1 (ja) 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
JP6169380B2 (ja) 無線電力伝送装置、無線電力伝送装置の発熱制御方法、及び、無線電力伝送装置の製造方法
WO2014171163A1 (ja) 無線電力伝送装置、無線電力伝送装置の発熱制御方法、及び、無線電力伝送装置の製造方法
JP6199058B2 (ja) 無線電力伝送によって電力供給される被給電機器の受電電圧制御方法、当該受電電圧制御方法によって調整された無線電力伝送装置、及び、その無線電力伝送装置の製造方法
JP5639693B1 (ja) 無線電力伝送装置及び無線電力伝送装置の供給電力制御方法
JP6144176B2 (ja) 磁界空間を形成可能な無線電力伝送装置及びその形成方法
WO2014132479A1 (ja) 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
JP5622901B1 (ja) 無線電力伝送装置及び無線電力伝送装置の供給電力制御方法
WO2015108030A1 (ja) 無線電力伝送装置及びその製造方法
WO2014199830A1 (ja) 無線電力伝送装置及び無線電力伝送装置の電力供給方法
WO2014199827A1 (ja) 無線電力伝送に用いる給電モジュール及び給電モジュールの電力供給方法
WO2014125675A1 (ja) 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
WO2014132480A1 (ja) 無線電力伝送装置、無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法、及び、無線電力伝送装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14781695

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157030743

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014779175

Country of ref document: EP