WO2014132480A1 - 無線電力伝送装置、無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法、及び、無線電力伝送装置の製造方法 - Google Patents

無線電力伝送装置、無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法、及び、無線電力伝送装置の製造方法 Download PDF

Info

Publication number
WO2014132480A1
WO2014132480A1 PCT/JP2013/077565 JP2013077565W WO2014132480A1 WO 2014132480 A1 WO2014132480 A1 WO 2014132480A1 JP 2013077565 W JP2013077565 W JP 2013077565W WO 2014132480 A1 WO2014132480 A1 WO 2014132480A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
value
coil
resonator
input impedance
Prior art date
Application number
PCT/JP2013/077565
Other languages
English (en)
French (fr)
Inventor
畑中 武蔵
尚 津田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to SG11201506812XA priority Critical patent/SG11201506812XA/en
Priority to EP13876518.5A priority patent/EP2985860A4/en
Priority to US14/771,412 priority patent/US20160006265A1/en
Priority to KR1020157024934A priority patent/KR20150122170A/ko
Priority to CN201380074086.6A priority patent/CN105009408A/zh
Publication of WO2014132480A1 publication Critical patent/WO2014132480A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection

Definitions

  • the present invention relates to a wireless power transmission device, a method for adjusting load fluctuation responsiveness of input impedance in the wireless power transmission device, and a method for manufacturing the wireless power transmission device.
  • a technique of performing power transmission using electromagnetic induction between coils see, for example, Patent Document 1
  • a resonance phenomenon between resonators (coils) included in a power feeding apparatus and a power receiving apparatus A technique for performing power transmission by coupling magnetic fields using a magnetic field resonance state (see, for example, Patent Document 2).
  • a constant current constant voltage charging method is known as a method for charging a rechargeable battery (for example, a lithium ion secondary battery). And when charging the lithium ion secondary battery by the constant current constant voltage charging method by the wireless power transmission device that performs the wireless power transmission, the current value supplied when shifting from the constant current charging to the constant voltage charging Is attenuated, and the value of the load impedance of the powered device including the rechargeable battery (including the rechargeable battery, the stable circuit, the charging circuit, etc.) increases.
  • the input impedance of the entire wireless power transmission device including the power-supplied device also increases.
  • the amount of change in the input impedance corresponding to the increase in the load impedance value of the power-supplied device can be increased, It is possible to reduce the amount of power consumed at the time.
  • the load fluctuation responsiveness which is the amount of change in the value of the input impedance of the wireless power transmission device with respect to the unit change amount of the load impedance of the powered device. It is required to do.
  • an object of the present invention is to adjust the load fluctuation responsiveness by adjusting the coupling coefficient between the coils provided in the power feeding device and the power receiving device in the wireless power transmission device without adding new equipment, Accordingly, an object of the present invention is to provide a method for adjusting load fluctuation response of input impedance in a wireless power transmission apparatus capable of controlling the amount of supplied power.
  • One of the inventions for solving the above problems is that the input impedance of the wireless power transmission apparatus that supplies power by changing the magnetic field from the power supply module to the power reception module to which the power-supplied device that consumes power is connected.
  • a method for adjusting load fluctuation responsiveness wherein each of the power supply module and the power reception module has at least one coil, and the value of a coupling coefficient between the adjacent coils is adjusted, whereby the power supplied device
  • the load fluctuation responsiveness which is the amount of change in the value of the input impedance of the wireless power transmission device with respect to the unit amount of change in the load impedance is adjusted.
  • the load fluctuation responsiveness which is a quantity, can be adjusted by changing the value of the coupling coefficient between the coils of the power supply module and the power receiving module.
  • the load fluctuation responsiveness is reduced by changing the value of the coupling coefficient between the coils, the amount of change in the value of the input impedance of the wireless power transmission device with respect to the change in the load impedance in the power-supplied device can be reduced. Can be small.
  • the load fluctuation responsiveness is increased by changing the value of the coupling coefficient between the coils, the amount of change in the value of the input impedance of the wireless power transmission device with respect to the change of the load impedance in the power-supplied device is increased. be able to. If the load fluctuation response can be increased, the value of the input impedance of the wireless power transmission device can be changed following the change of the load impedance in the power-supplied device, and the power supplied at that time is reduced. be able to. On the other hand, if the load fluctuation responsiveness can be reduced, the input impedance value of the wireless power transmission device can be maintained even if the load impedance of the power-supplied device changes, and the power supplied at that time can be maintained.
  • One of the inventions for solving the above problems is a power receiving module having at least a power receiving resonator and a power receiving coil and connected to a power-supplied device that consumes power from a power feeding module including at least a power feeding coil and a power feeding resonator.
  • the load fluctuation responsiveness is adjusted. It is characterized by adjusting.
  • the coupling coefficient k 12 between the power supply coil and the power supply resonator, the power supply resonator and the power reception resonator Adjusting the load fluctuation responsiveness of the input impedance in the wireless power transmission device by adjusting the coupling coefficient k 23 between the power receiving resonator and the coupling coefficient k 34 between the power receiving resonator and the power receiving coil. it can.
  • One of the inventions for solving the above problems is a method for adjusting load fluctuation response of input impedance in the wireless power transmission device, wherein the values of the coupling coefficients k 12 , k 23 , k 34 are respectively At least one of a distance between the power feeding coil and the power feeding resonator, a distance between the power feeding resonator and the power receiving resonator, and a distance between the power receiving resonator and the power receiving coil is changed. It is characterized by being adjusted.
  • the value of the coupling coefficient k 12 can be changed by changing the distance between the feeding coil and the feeding resonator, and the distance between the feeding resonator and the power receiving resonator is changed.
  • the value of the coupling coefficient k 23 can be varied, by varying the distance between the receiving resonator and the receiving coil, it is possible to change the value of the coupling coefficient k 34.
  • the distance between the power feeding coil and the power feeding resonator, the distance between the power feeding resonator and the power receiving resonator, and the distance between the power receiving resonator and the power receiving coil are physically changed. With a simple operation, the value of the coupling coefficient between the coils can be changed.
  • One of the inventions for solving the above-described problem is a method for adjusting load fluctuation response of input impedance in the wireless power transmission device, and a distance between the power feeding resonator and the power receiving resonator, and
  • the load fluctuation responsiveness decreases as the distance between the power feeding coil and the power feeding resonator decreases.
  • the value of the coupling coefficient k 12 between the vessel increases, the as the value of the coupling coefficient k 12 becomes larger, is adjusted based on the load fluctuation responsive increases characteristics of the input impedance in the wireless power transmission apparatus It is characterized by that.
  • the distance between the power feeding resonator and the power receiving resonator and the distance between the power receiving resonator and the power receiving coil are fixed, the distance between the power feeding coil and the power feeding resonator is shortened.
  • the load fluctuation response of the input impedance in the wireless power transmission device is increased. Can be high.
  • the value of the coupling coefficient k 12 between the feeding coil and the feeding resonator is reduced, decreasing the value of the coupling coefficient k 12 that
  • the load fluctuation response of the input impedance in the wireless power transmission device can be reduced. If the load fluctuation responsiveness can be increased, the amount of change in the input impedance value of the wireless power transmission device with respect to the change in the load impedance in the power-supplied device can be increased. Following the change, the value of the input impedance of the wireless power transmission apparatus can be greatly changed, and the power supplied at that time can be reduced.
  • the load fluctuation responsiveness can be reduced, the amount of change in the value of the input impedance of the wireless power transmission device with respect to the change in the load impedance in the power-supplied device can be reduced. Even if it changes, the value of the input impedance of the wireless power transmission device can be maintained, and the power supplied at that time can be maintained.
  • One of the inventions for solving the above-mentioned problem is a method for adjusting the load fluctuation response of the input impedance in the wireless power transmission device, the distance between the feeding coil and the feeding resonator, and the
  • the load fluctuation responsiveness increases as the distance between the power receiving resonator and the power receiving coil decreases.
  • the value of the coupling coefficient k 34 between the coil and the coil is increased, and is adjusted based on the characteristic that the load fluctuation response of the input impedance in the wireless power transmission device increases as the value of the coupling coefficient k 34 increases. It is characterized by that.
  • the distance between the power feeding coil and the power feeding resonator and the distance between the power feeding resonator and the power receiving resonator is fixed, the distance between the power receiving resonator and the power receiving coil is shortened.
  • the value of the coupling coefficient k 34 between the power receiving resonator and the power receiving coil and increasing the value of the coupling coefficient k 34 the load fluctuation response of the input impedance in the wireless power transmission device is increased. Can be high.
  • the value of the coupling coefficient k 34 between the power receiving resonator and the power receiving coil is decreased, and the value of the coupling coefficient k 34 is decreased.
  • the load fluctuation response of the input impedance in the wireless power transmission device can be reduced. If the load fluctuation responsiveness can be increased, the amount of change in the input impedance value of the wireless power transmission device with respect to the change in the load impedance in the power-supplied device can be increased. Following the change, the value of the input impedance of the wireless power transmission apparatus can be greatly changed, and the power supplied at that time can be reduced. On the other hand, if the load fluctuation responsiveness can be reduced, the amount of change in the value of the input impedance of the wireless power transmission device with respect to the change in the load impedance in the power-supplied device can be reduced. Even if it changes, the value of the input impedance of the wireless power transmission device can be maintained, and the power supplied at that time can be maintained.
  • One of the inventions for solving the above problem is a method for adjusting load fluctuation response of input impedance in the wireless power transmission device, wherein a value of transmission characteristics with respect to a driving frequency of power supplied to the power supply module is
  • the drive frequency of power supplied to the power supply module is set to have a peak in a drive frequency band lower than a resonance frequency and a drive frequency band higher than the resonance frequency in the power supply module and the power reception module. It is a band corresponding to the peak value of the transmission characteristics appearing in the driving frequency band lower than the frequency.
  • the value of the transmission characteristic with respect to the drive frequency of the power supplied to the power supply module has peaks in the drive frequency band lower than the resonance frequency and the drive frequency band higher than the resonance frequency in the power supply module and the power reception module, respectively.
  • a magnetic field space having a magnetic field strength smaller than the magnetic field strength other than the outer peripheral side of the module can be formed. Thereby, by storing a circuit or the like that is not affected by the magnetic field in the formed magnetic field space, the space can be effectively used, and the wireless power transmission device itself can be reduced in size.
  • One of the inventions for solving the above problem is a method for adjusting load fluctuation response of input impedance in the wireless power transmission device, wherein a value of transmission characteristics with respect to a driving frequency of power supplied to the power supply module is
  • the drive frequency of power supplied to the power supply module is set to have a peak in a drive frequency band lower than a resonance frequency and a drive frequency band higher than the resonance frequency in the power supply module and the power reception module. It is a band corresponding to the peak value of the transmission characteristic that appears in the drive frequency band higher than the frequency.
  • the value of the transmission characteristic with respect to the drive frequency of the power supplied to the power supply module has peaks in the drive frequency band lower than the resonance frequency and the drive frequency band higher than the resonance frequency in the power supply module and the power reception module, respectively.
  • a magnetic field space having a magnetic field strength smaller than the magnetic field strength other than the inner peripheral side of the module and the power receiving module can be formed.
  • One of the inventions for solving the above-described problems is a wireless power transmission apparatus that is adjusted by the method for adjusting load fluctuation response of input impedance described above.
  • adjustment of load fluctuation response of input impedance in the wireless power transmission device can be realized without providing a new device. That is, it is possible to adjust the load fluctuation response of the input impedance in the wireless power transmission device without increasing the number of parts of the wireless power transmission device.
  • One of the inventions for solving the above problems is a method of manufacturing a wireless power transmission device that supplies power by changing a magnetic field from a power supply module to a power reception module connected to a power-supplied device that consumes power.
  • the power supply module and the power receiving module are each provided with at least one coil, and by adjusting the value of the coupling coefficient between the adjacent coils, the unit change amount of the load impedance of the power-supplied device.
  • the method includes a step of adjusting a load fluctuation responsiveness that is a change amount of an input impedance value of the wireless power transmission device.
  • the above method it is possible to manufacture a wireless power transmission device that can adjust the load fluctuation response of the input impedance in the wireless power transmission device without providing a new device. That is, it is possible to manufacture a wireless power transmission device that can adjust the load fluctuation response of the input impedance in the wireless power transmission device without increasing the number of components of the wireless power transmission device.
  • Wireless power transmission apparatus capable of adjusting load fluctuation responsiveness by adjusting a coupling coefficient between coils provided in a power feeding apparatus and a power receiving apparatus in the wireless power transmission apparatus and thereby controlling the amount of power supplied. It is possible to provide a method for adjusting the load fluctuation response of the input impedance at.
  • FIG. 6 is a flowchart illustrating a method for designing a wireless headset and a charger including a wireless power transmission device.
  • Embodiments of a wireless power transmission device, a method for adjusting load fluctuation responsiveness of input impedance in the wireless power transmission device, and a method for manufacturing the wireless power transmission device according to the present invention will be described below. First, the wireless power transmission device 1 used in the present embodiment will be described.
  • the wireless power transmission device 1 includes a power supply module 2 including a power supply coil 21 and a power supply resonator 22, and a power reception module 3 including a power reception coil 31 and a power reception resonator 32.
  • the power supply coil 21 of the power supply module 2 is connected to the AC power supply 6 including an oscillation circuit in which the drive frequency of the power supplied to the power supply module 2 is set to a predetermined value, and the power reception coil 31 of the power reception module 3 receives power.
  • a lithium ion secondary battery 9 is connected through a stabilization circuit 7 that rectifies the AC power that has been generated and a charging circuit 8 that prevents overcharging.
  • the stable circuit 7, the charging circuit 8, and the lithium ion secondary battery 9 correspond to a power-supplied device.
  • the feeding coil 21 serves to supply power obtained from the AC power source 6 to the feeding resonator 22 by electromagnetic induction.
  • the feeding coil 21 constitutes an RLC circuit including a resistor R 1 , a coil L 1 , and a capacitor C 1 as elements.
  • the coil L 1 portion is formed by winding a copper wire (with an insulating coating) once and setting the coil diameter to 96 mm ⁇ .
  • the total impedance of the circuit elements constituting the feeding coil 21 is Z 1, and in this embodiment, the RLC including the resistor R 1 , the coil L 1 , and the capacitor C 1 constituting the feeding coil 21 as elements.
  • the total impedance of the circuit (circuit element) is Z 1 .
  • the power receiving coil 31 has a function of receiving electric power transmitted as magnetic field energy from the power feeding resonator 22 to the power receiving resonator 32 by electromagnetic induction, and supplying the power to the lithium ion secondary battery 9 through the stabilization circuit 7 and the charging circuit 8. Fulfill.
  • the power receiving coil 31 constitutes an RLC circuit including a resistor R 4 , a coil L 4 , and a capacitor C 4 as shown in FIG.
  • the coil L 4 portion is set to a coil diameter of 96 mm ⁇ by winding a copper wire (with an insulating coating) once.
  • the total impedance of the circuit elements constituting the power receiving coil 31 is Z 4.
  • the RLC including the resistor R 4 , the coil L 4 , and the capacitor C 4 constituting the power receiving coil 31 as elements.
  • the total impedance of the circuit (circuit element) is Z 4 .
  • the load impedance of the stabilization circuit 7, the charging circuit 8, and the lithium ion secondary battery 9 connected to the power receiving coil 31 is Z l, and the resistor R l is used for convenience when measuring the load impedance Z l. Replaced.
  • the power feeding resonator 22 constitutes an RLC circuit including a resistor R 2 , a coil L 2 , and a capacitor C 2 as elements.
  • the power receiving resonator 32 constitutes an RLC circuit including a resistor R 3 , a coil L 3 , and a capacitor C 3 as elements.
  • Each of the power feeding resonator 22 and the power receiving resonator 32 becomes a resonance circuit and plays a role of creating a magnetic field resonance state.
  • the magnetic field resonance state means that two or more coils are tuned at the resonance frequency.
  • the total impedance of the circuit elements constituting the feed resonator 22 is Z 2.
  • the resistor R 2 , the coil L 2 , and the capacitor C 2 constituting the feed resonator 22 are elements.
  • the total impedance of the RLC circuit (circuit element) is Z 2 .
  • the total impedance of the circuit elements constituting the power receiving resonator 32 is Z 3.
  • the resistor R 3 , the coil L 3 , and the capacitor C 3 constituting the power receiving resonator 32 are elements.
  • the total impedance of the RLC circuit (circuit element) is Z 3 .
  • the resonance circuit in the power feeding resonator 22 and the power receiving resonator 32 if the inductance is L and the capacitor capacity is C, f determined by (Equation 1) becomes the resonance frequency. And the resonant frequency of the power feeding coil 21, the power feeding resonator 22, the power receiving coil 31, and the power receiving resonator 32 in this embodiment is 12.8 MHz.
  • the power supply resonator 22 and the power reception resonator 32 use a solenoid type coil having a coil diameter of 96 mm ⁇ , in which a copper wire (with an insulating coating) is wound four times. Further, the resonance frequencies of the power feeding resonator 22 and the power receiving resonator 32 are matched.
  • the power feeding resonator 22 and the power receiving resonator 32 may be spiral or solenoid type coils as long as the resonators use coils.
  • the distance between the power feeding coil 21 and the power feeding resonator 22 is d12
  • the distance between the power feeding resonator 22 and the power receiving resonator 32 is d23
  • the distance between the power receiving resonator 32 and the power receiving coil 31 Is d34 (see FIG. 1).
  • the coupling coefficient between the coil L 1 and the coil L 2 is denoted as k 12
  • the coupling coefficient between the coil L 2 and the coil L 3 is denoted as k 23
  • the coil A coupling coefficient between L 3 and the coil L 4 is expressed as k 34 .
  • Resistance values, inductances, capacitor capacities, and coupling coefficients k 12 , k 23 , k 34 in R 4 , L 4 , C 4 of the RLC circuit of the receiving coil 31 are parameters that can be changed at the design / manufacturing stage, etc. Is preferably set so as to satisfy a relational expression (formula 3) described later.
  • a circuit diagram of the wireless power transmission device 1 (including the stabilization circuit 7, the charging circuit 8, and the lithium ion secondary battery 9) having the above-described configuration is shown in the lower diagram of FIG. This illustrates replace the entire wireless power transmission device 1 to one of the input impedance Z in.
  • the current I in can be expressed as (Expression 2) when expressed by a relational expression based on the voltage V in and the input impedance Z in .
  • the configuration of the wireless power transmission apparatus 1 is represented by an equivalent circuit as shown in FIG.
  • the input impedance Z in of the wireless power transmission device 1 can be expressed as (Equation 3). ... (Formula 3)
  • the impedances Z 1 , Z 2 , Z 3 , Z 4, and Z l in the power feeding coil 21, the power feeding resonator 22, the power receiving resonator 32, and the power receiving coil 31 of the wireless power transmission device 1 in this embodiment are ( It can be expressed as equation 4). ... (Formula 4)
  • the wireless power transmission device 1 when the resonance frequency of the power supply resonator 22 and the power reception resonator 32 are matched, a magnetic field resonance state is created between the power supply resonator 22 and the power reception resonator 32. can do.
  • a magnetic field resonance state is created in a state where the power feeding resonator 22 and the power receiving resonator 32 resonate, electric power can be transmitted from the power feeding resonator 22 to the power receiving resonator 32 as magnetic field energy. Then, the power received by the power receiving resonator 32 is supplied to the lithium ion secondary battery 9 through the power receiving coil 31, the stabilization circuit 7, and the charging circuit 8 to be charged.
  • Adjustment method of load fluctuation response Based on the configuration of the wireless power transmission device 1, a method for adjusting the load fluctuation response of the input impedance Z in in the wireless power transmission device 1 will be described.
  • the lithium ion secondary battery 9 is used as one of the power supplied devices to which power is supplied. And generally, in order to charge the lithium ion secondary battery 9, the constant current constant voltage charging system is used.
  • Charging is performed (CC: constant current).
  • the voltage (V ch ) rises to a predetermined upper limit voltage (4.2 V in this embodiment) while charging with a constant current is being performed.
  • CV constant voltage
  • the current value (I ch ) is attenuated, and charging is completed after a predetermined current value or a predetermined time has elapsed.
  • FIG. 3 as shown in the load fluctuation characteristics of load impedance Z 89 of the charging circuit 8 and the lithium ion secondary battery 9 constituting the power supply device (B), the charging circuit 8 and the lithium ion secondary constituting the power-supplied device
  • the current value (I in ) supplied to the battery 9 is attenuated, the value of the load impedance Z 89 increases in constant voltage charging. That is, the value of the load impedance Z l of the power-supplied device (stable circuit 7, charging circuit 8, lithium ion secondary battery 9) as a whole in this embodiment is increased.
  • the load impedance Z l of the feeding device With increasing the value of the load impedance Z l of the feeding device, so that the rise also input impedance Z in of the entire wireless power transmission device 1 including the power-supplied device.
  • the amount of power consumed during the charge (especially after transition to constant voltage) Can be reduced.
  • it is defined as a load change response to a variation in the value of the input impedance Z in of the wireless power transmission apparatus 1 for a unit change amount of the load impedance Z l of the feeding device.
  • the load fluctuation responsiveness of the input impedance Zin in the wireless power transmission device 1 can be adjusted, the amount of power consumed when charging a lithium ion secondary battery or the like can be reduced.
  • the power-supplied device when a secondary battery that requires constant power charging at the time of charging is adopted, if the load fluctuation responsiveness of the input impedance Zin in the wireless power transmission device 1 can be adjusted small, Even if the load impedance Z l in the power-supplied device changes, the value of the input impedance Z in of the wireless power transmission device 1 can be maintained (a state in which the input impedance Z in does not change so much). It is possible to maintain the supplied power.
  • a device that moves while consuming power directly in the power-supplied device for example, a device that directly drives the device with supplied power without using a secondary battery
  • the input impedance in the wireless power transmission device 1 is used.
  • the input impedance Z in of the wireless power transmission device 1 The value can be maintained. For this reason, it is possible to stably supply power to the power-supplied device, and the operation of the power-supplied device can be stabilized (the operation does not become unstable).
  • the drive frequency of the power supplied to the power supply module 2 is set to the power supply coil 21 and power supply resonator 22 included in the power supply module 2 and the power reception coil 31 and power reception resonator 32 included in the power reception module 3. It is generally known that the power transmission efficiency in wireless power transmission can be maximized by making it coincide with the resonance frequency of the power supply, and the drive frequency is set to the resonance frequency in order to maximize the power transmission efficiency. It is common to do.
  • the power transmission efficiency refers to the ratio of the power received by the power receiving module 3 to the power supplied to the power supply module 2.
  • the main parameters that can be adjusted in the wireless power transmission device 1 include R 1 of the RLC circuit of the feeding coil 21, R 2 of the RLC circuit of the feeding resonator 22, and the receiving resonator. It can be seen that resistance values such as R 3 of the 32 RLC circuit, R 4 of the RLC circuit of the receiving coil 31, and the coupling coefficients k 12 , k 23 , and k 34 remain.
  • the coupling coefficients k 12 , k 23 , k 34 can be used as
  • the coupling coefficients k 12 , k 23 , and k 34 can be used as adjustable parameters in the wireless power transmission device 1.
  • the wireless power transmission device 1 shown in FIG. 2 is connected to the network analyzer 110 (in this embodiment, E5061B manufactured by Agilent Technologies, Inc.), and the input impedance Z in for the coupling coefficient is measured. The value of was measured.
  • measurements were made with a variable resistor 11 (R 1 ) connected in place of the stabilization circuit 7, the charging circuit 8, and the lithium ion secondary battery 9.
  • the transmission characteristic “S21” of the wireless power transmission device 1 with respect to the drive frequency of the power supplied to the wireless power transmission device 1 is measured with a bimodal property.
  • the transmission characteristic “S21” represents a signal measured by connecting the wireless power transmission device 1 to the network analyzer 110, which is displayed in decibels and means that the power transmission efficiency is higher as the numerical value is larger. .
  • the transmission characteristic “S21” of the wireless power transmission device 1 with respect to the drive frequency of the power supplied to the wireless power transmission device 1 is determined by the strength of the magnetic field coupling between the power supply module 2 and the power reception module 3 (magnetic field coupling). It is divided into those having unimodal properties and those having bimodal properties.
  • the unimodality means that there is one peak of the transmission characteristic “S21” with respect to the driving frequency, and that peak appears in the resonance frequency band (f 0 ) (see the broken line 51 in FIG. 4).
  • bimodality has two peaks of the transmission characteristic “S21” with respect to the drive frequency, and the two peaks are a drive frequency band (fL) lower than the resonance frequency and a drive frequency band (fH) higher than the resonance frequency. ) (See the solid line 52 in FIG. 4). More specifically, bimodality is defined as a state in which the reflection characteristic “S11” measured by connecting the wireless power transmission device to the network analyzer 110 has two peaks. Accordingly, even if the peak of the transmission characteristic “S21” with respect to the driving frequency looks at one glance, if the measured reflection characteristic “S11” has two peaks, it has a bimodal property. Shall.
  • the transmission characteristic “S21” is maximized when the driving frequency is the resonance frequency f 0 (the power transmission efficiency is maximized), as indicated by a broken line 51 in FIG. To do).
  • the transmission characteristic “S21” has a drive frequency band (fL) lower than the resonance frequency f 0 and the resonance frequency f. Maximize in a driving frequency band (fH) higher than zero .
  • the maximum value of the transmission characteristic “S21” in the bimodality (the value of the transmission characteristic “S21” at fL or fH). Is a value lower than the maximum value of the transmission characteristic “S21” in unimodality (value of the transmission characteristic “S21” at f 0 ) (see the graph of FIG. 4).
  • the power supply resonator 22 and the power reception resonator 32 are set.
  • the direction of the current flowing through the power feeding resonator 22 and the direction of the current flowing through the power receiving resonator 32 are the same.
  • the transmission characteristic “S21” (broken line 51) in a general wireless power transmission device for the purpose of maximizing the power transmission efficiency
  • the value of the transmission characteristic “S21” can be set to a relatively high value.
  • a resonance state in which the direction of the current flowing in the coil (power feeding resonator 22) in the power feeding module 2 and the direction of the current flowing in the coil (power receiving resonator 32) in the power receiving module 3 are the same direction is called an in-phase resonance mode. I will decide.
  • the magnetic field generated on the outer peripheral side of the power feeding resonator 22 and the magnetic field generated on the outer peripheral side of the power receiving resonator 32 cancel each other, so that the outer peripheral side of the power feeding resonator 22 and the power receiving resonator 32.
  • the influence of the magnetic field is reduced, and the magnetic field intensity is smaller than the magnetic field strength other than the outer peripheral side of the power feeding resonator 22 and the power receiving resonator 32 (for example, the magnetic field strength on the inner peripheral side of the power feeding resonator 22 and the power receiving resonator 32).
  • a magnetic field space having strength can be formed.
  • the drive frequency of the AC power supplied to the power supply module 2 is set to the frequency fH near the peak on the high frequency side in the bimodality (antiphase resonance mode)
  • the power supply resonator 22 and the power reception resonator 32 are in antiphase.
  • the resonance state occurs, and the direction of the current flowing through the power feeding resonator 22 and the direction of the current flowing through the power receiving resonator 32 are reversed.
  • the transmission characteristic “S21” (broken line 51) in a general wireless power transmission device for the purpose of maximizing the power transmission efficiency
  • the value of the transmission characteristic “S21” can be set to a relatively high value.
  • a resonance state in which the direction of the current flowing in the coil (power feeding resonator 22) in the power feeding module 2 and the direction of the current flowing in the coil (power receiving resonator 32) in the power receiving module 3 are opposite to each other is referred to as an antiphase resonance mode. I will call it.
  • the magnetic field generated on the inner peripheral side of the power feeding resonator 22 and the magnetic field generated on the inner peripheral side of the power receiving resonator 32 cancel each other, so that the power feeding resonator 22 and the power receiving resonator 32 are
  • the magnetic field strength on the inner peripheral side of the power supply resonator 22 and the power receiving resonator 32 other than the inner peripheral side is reduced (for example, the magnetic field strength on the outer peripheral side of the power supply resonator 22 and the power receiving resonator 32).
  • a magnetic field space having a smaller magnetic field strength can be formed.
  • the stable circuit 7, the charging circuit 8, the lithium ion secondary battery 9, etc. since the magnetic field space formed by the reversed-phase resonance mode is formed on the inner peripheral side of the power feeding resonator 22 and the power receiving resonator 32, the stable circuit 7, the charging circuit 8, and the lithium ion secondary battery are formed in this space.
  • the feeding coil 21 forms an RL circuit including the resistor R 1 and the coil L 1 (no resonance), and the coil L 1 portion is made of a copper wire.
  • the coil diameter is set to 96 mm ⁇ with one turn (with insulating coating).
  • the power receiving coil 31 constitutes an RL circuit including the resistor R 4 and the coil L 4 (no resonance), and the coil L 4 portion is formed by winding a copper wire (with an insulating coating) once.
  • the coil diameter is set to 96 mm ⁇ .
  • the power supply resonator 22 constitutes an RLC circuit including a resistor R 2 , a coil L 2 , and a capacitor C 2 , and the coil L 2 portion is made of copper wire (with an insulating coating) four times.
  • a solenoid type coil with a coil diameter of 96 mm ⁇ is used.
  • the power receiving resonator 32 constitutes an RLC circuit including a resistor R 3 , a coil L 3 , and a capacitor C 3 , and the coil L 3 portion is formed of a copper wire (with an insulating coating) four times.
  • a solenoid type coil with a coil diameter of 96 mm ⁇ is used.
  • R 1 in the wireless power transmission apparatus 1 to be used for measurement experiment 1 R 2, R 3, R 4 values, respectively, 0.05?, 0.5 .OMEGA, 0.5 .OMEGA, to 0.05?.
  • the values of L 1 , L 2 , L 3 , and L 4 were set to 0.3 ⁇ H, 4 ⁇ H, 4 ⁇ H, and 0.3 ⁇ H, respectively.
  • the resonance frequency in the power feeding resonator 22 and the power receiving resonator 32 is 12.8 MHz.
  • the coupling coefficient k 23 is fixed to 0.10 and the coupling coefficient k 34 is fixed to 0.35, and the value of the variable resistor 11 (R 1 ) is set to four values of 51 ⁇ , 100 ⁇ , 270 ⁇ , and 500 ⁇ .
  • the value of the input impedance Z in of the wireless power transmission device 1 when changed to the value is set to four values of the coupling coefficient k 12 of 0.11, 0.15, 0.22, and 0.35. Measurement was performed (details on the method of adjusting the coupling coefficient will be described later).
  • the measured value when the drive frequency of the alternating current power supplied to the electric power feeding module 2 is set to the frequency fL near the peak of the low frequency side in bimodality is shown in FIG. Shown in
  • the measured value when the drive frequency of the AC power supplied to the power supply module 2 is set to the frequency fH near the peak on the high frequency side in the bimodality is shown in FIG. Shown in
  • the value of the variable resistor 11 (R l ) to four values of 51 ⁇ , 100 ⁇ , 270 ⁇ , and 500 ⁇ , the load fluctuation characteristic of the load impedance Z l in FIG.
  • the wireless power transmission device 1 is increased by increasing the value of the variable resistor 11 (R 1 ) in the order of 51 ⁇ ⁇ 100 ⁇ , ⁇ 270 ⁇ , ⁇ 500 ⁇ .
  • the value of the input impedance Z in of, 79.0 ⁇ , ⁇ 97.1 ⁇ , ⁇ 148.5 ⁇ rose to the degree that ⁇ 183.1 ⁇ .
  • the variable resistor 11 R l
  • the load fluctuation responsiveness which is the amount of change in the value of the input impedance Zin of the wireless power transmission device 1 with respect to the amount of change in the load impedance of the power-supplied device, tends to be high.
  • the load fluctuation response tends to be reduced by reducing the value of the coupling coefficient k 12 to 0.35, ⁇ 0.22, ⁇ 0.15, and ⁇ 0.11.
  • the wireless power transmission device 1 is increased by increasing the value of the variable resistor 11 (R 1 ) in the order of 51 ⁇ ⁇ 100 ⁇ , ⁇ 270 ⁇ , ⁇ 500 ⁇ .
  • the value of the input impedance Z in of, 33.3 ⁇ , ⁇ 50.3 ⁇ , ⁇ 80.6 ⁇ rose to the degree that ⁇ 96.7 ⁇ .
  • variable resistor 11 As described above, the variable resistor 11 (R l ) is increased by increasing the value of the coupling coefficient k 12 as 0.11, ⁇ 0.15, ⁇ 0.22, and ⁇ 0.35 in the anti-phase resonance mode. It can be seen that the load fluctuation responsiveness, which is the amount of change in the value of the input impedance Zin of the wireless power transmission device 1 with respect to the amount of change in (the load impedance of the power-supplied device), tends to increase. On the other hand, it can be seen that the load fluctuation response tends to be reduced by reducing the value of the coupling coefficient k 12 to 0.35, ⁇ 0.22, ⁇ 0.15, and ⁇ 0.11.
  • the feeding coil 21 constitutes an RLC circuit including a resistor R 1 , a coil L 1 , and a capacitor C 1 ( In the coil L 1 portion, a copper wire (with an insulating coating) is wound once and the coil diameter is set to 96 mm ⁇ .
  • the power receiving coil 31 also constitutes an RLC circuit including a resistor R 4 , a coil L 4, and a capacitor C 4 , and the coil L 4 portion is wound once with a copper wire (with an insulating coating).
  • the coil diameter is set to 96 mm ⁇ .
  • R 1 in the wireless power transmission apparatus 1 to be used for measurement experiment 2 R 2, R 3, R 4 values, respectively, 0.05?, 0.5 .OMEGA, 0.5 .OMEGA, to 0.05?.
  • the values of L 1 , L 2 , L 3 , and L 4 were set to 0.3 ⁇ H, 4 ⁇ H, 4 ⁇ H, and 0.3 ⁇ H, respectively.
  • the resonance frequency of the power feeding coil 21, the power feeding resonator 22, the power receiving resonator 32, and the power receiving coil 31 is 12.8 MHz.
  • the coupling coefficient k 23 is fixed at 0.10 and the coupling coefficient k 34 is fixed at 0.35, and the value of the variable resistor 11 (R 1 ) is set to four values of 51 ⁇ , 100 ⁇ , 270 ⁇ , and 500 ⁇ .
  • the value of the input impedance Z in of the wireless power transmission device 1 when changed to the value is set to four values of the coupling coefficient k 12 of 0.11, 0.15, 0.22, and 0.35. Measurement was performed (details on the method of adjusting the coupling coefficient will be described later).
  • FIG. 6A shows measured values when the drive frequency of the AC power supplied to the power supply module 2 is set to the frequency fL near the peak on the low frequency side in the bimodality (in-phase resonance mode: 12.2 MHz).
  • the value of the variable resistor 11 (R l ) is 51 ⁇ ⁇ 100 ⁇ , ⁇ 270 ⁇ , ⁇ 500 ⁇ .
  • the value of the input impedance Z in of the wireless power transmission device 1 increased to 6.5 ⁇ , ⁇ 10.0 ⁇ , ⁇ 17.3 ⁇ , and ⁇ 21.8 ⁇ .
  • the value of the variable resistor 11 (R 1 ) is increased in the order of 51 ⁇ ⁇ 100 ⁇ , ⁇ 270 ⁇ , ⁇ 500 ⁇ so that the wireless power transmission device 1 the value of the input impedance Z in of, 48.8 ⁇ , ⁇ 77.6 ⁇ , ⁇ 136.5 ⁇ , rose to the degree that ⁇ 173.1 ⁇ .
  • the variable resistor 11 R l
  • the load fluctuation responsiveness which is the amount of change in the value of the input impedance Zin of the wireless power transmission device 1 with respect to the amount of change in the load impedance of the power-supplied device, tends to be high.
  • the load fluctuation response tends to be reduced by reducing the value of the coupling coefficient k 12 to 0.35, ⁇ 0.22, ⁇ 0.15, and ⁇ 0.11.
  • the wireless power transmission device 1 is increased by increasing the value of the variable resistor 11 (R 1 ) in the order of 51 ⁇ ⁇ 100 ⁇ , ⁇ 270 ⁇ , ⁇ 500 ⁇ .
  • the value of the input impedance Z in of, 35.9 ⁇ , ⁇ 49.8 ⁇ , ⁇ 79.0 ⁇ rose to the degree that ⁇ 95.9 ⁇ .
  • variable resistor 11 As described above, even in the anti-phase resonance mode, the variable resistor 11 (R l is increased by increasing the value of the coupling coefficient k 12 to 0.11, ⁇ 0.15, ⁇ 0.22, and ⁇ 0.35. ) It can be seen that the load fluctuation responsiveness, which is the amount of change in the value of the input impedance Zin of the wireless power transmission device 1 with respect to the amount of change in (the load impedance of the power-supplied device), tends to increase. On the other hand, it can be seen that the load fluctuation response tends to be reduced by reducing the value of the coupling coefficient k 12 to 0.35, ⁇ 0.22, ⁇ 0.15, and ⁇ 0.11.
  • the wireless power transmission device 1 used for the measurement experiment 3 unlike the measurement experiments 1 and 2, a coil is wound on a plane around the coil portions of the feeding coil 21, the feeding resonator 22, the receiving resonator 32, and the receiving coil 31.
  • the feeding coil 21 constitutes an RLC circuit having a resistor R 1 , a coil L 1 , and a capacitor C 1 (resonance), and the coil L 1 portion is etched by copper foil.
  • a pattern coil with 12 turns and a coil diameter of 35 mm ⁇ is used.
  • the power receiving coil 31 constitutes an RLC circuit including a resistor R 4 , a coil L 4 , and a capacitor C 4 , and the coil L 4 portion is formed by 12 turns formed by etching a copper foil.
  • a pattern coil having a coil diameter of 35 mm ⁇ is used.
  • the feeding resonator 22 constitutes an RLC circuit including a resistor R 2 , a coil L 2 , and a capacitor C 2 , and the coil L 2 portion is formed by 12 turns formed by etching a copper foil.
  • a pattern coil having a coil diameter of 35 mm ⁇ is used.
  • the power receiving resonator 32 constitutes an RLC circuit including a resistor R 3 , a coil L 3 , and a capacitor C 3 , and the coil L 3 portion is formed by 12 turns formed by etching a copper foil. A pattern coil having a coil diameter of 35 mm ⁇ is used. Then, set R 1 in the wireless power transmission apparatus 1 to be used for measurement experiment 3, R 2, R 3, R 4 values, respectively, 1.8 ⁇ , 1.8 ⁇ , 1.8 ⁇ , the 1.8Omu. The values of L 1 , L 2 , L 3 , and L 4 were set to 2.5 ⁇ H, 2.5 ⁇ H, 2.5 ⁇ H, and 2.5 ⁇ H, respectively. Further, the resonance frequency in the power feeding coil 21, the power feeding resonator 22, the power receiving resonator 32, and the power receiving coil 31 is 8.0 MHz.
  • the coupling coefficient k 23 is fixed to 0.05 and the coupling coefficient k 34 is fixed to 0.08, respectively, and the value of the variable resistor 11 (R 1 ) is set to four values of 51 ⁇ , 100 ⁇ , 270 ⁇ , and 500 ⁇ .
  • the value of the input impedance Z in of the wireless power transmission device 1 is set to four values of the coupling coefficient k 12 of 0.05, 0.06, 0.07, and 0.08. Measurement was made (details on the method of adjusting the coupling coefficient will be described later).
  • FIG. 7A shows the measured values when the drive frequency of the AC power supplied to the power supply module 2 is set to the frequency fL near the peak on the low frequency side in the bimodality (in-phase resonance mode: 7.9 MHz).
  • FIG. 7B shows measured values when the drive frequency of AC power supplied to the power supply module 2 is set to the frequency fH near the peak on the high frequency side in the bimodality (reverse phase resonance mode: 8.2 MHz). Shown in
  • the variable resistor 11 R l
  • the load fluctuation responsiveness which is the amount of change in the value of the input impedance Zin of the wireless power transmission device 1 with respect to the amount of change in the load impedance of the power-supplied device, tends to be high.
  • the load fluctuation responsiveness tends to decrease by decreasing the value of the coupling coefficient k 12 to 0.08, 0.07, 0.06, and 0.05.
  • the variable resistor 11 R l
  • the load fluctuation responsiveness which is the amount of change in the value of the input impedance Zin of the wireless power transmission device 1 with respect to the amount of change in (the load impedance of the power-supplied device)
  • the load fluctuation responsiveness tends to decrease by decreasing the value of the coupling coefficient k 12 to 0.08, 0.07, 0.06, and 0.05.
  • the feeding coil 21 constitutes an RL circuit including the resistor R 1 and the coil L 1 (no resonance).
  • the L 1 portion a copper wire (with an insulating coating) is wound once and the coil diameter is set to 96 mm ⁇ .
  • the power receiving coil 31 constitutes an RL circuit including the resistor R 4 and the coil L 4 (no resonance), and the coil L 4 portion is formed by winding a copper wire (with an insulating coating) once.
  • the coil diameter is set to 96 mm ⁇ .
  • Other configurations are the same as those in the measurement experiment 1.
  • the values of R 1 , R 2 , R 3 , and R 4 in the wireless power transmission device 1 used for the measurement experiment 4 were set to 0.05 ⁇ , 0.5 ⁇ , 0.5 ⁇ , and 0.05 ⁇ , respectively.
  • the values of L 1 , L 2 , L 3 , and L 4 were set to 0.3 ⁇ H, 4 ⁇ H, 4 ⁇ H, and 0.3 ⁇ H, respectively (same as in measurement experiment 1).
  • the resonance frequency in the power feeding resonator 22 and the power receiving resonator 32 is 12.8 MHz.
  • FIG. 8A shows measured values when the drive frequency of the AC power supplied to the power supply module 2 is set to the frequency fL near the peak on the low frequency side in the bimodality (in-phase resonance mode: 12.2 MHz).
  • Shown in 8B shows the measured values when the drive frequency of the AC power supplied to the power supply module 2 is set to the frequency fH near the peak on the high frequency side in the bimodality (reverse phase resonance mode: 13.4 MHz). Shown in
  • the value of the variable resistor 11 (R l ) is 51 ⁇ ⁇ 100 ⁇ , ⁇ 270 ⁇ , ⁇ 500 ⁇ .
  • the value of the input impedance Z in of the wireless power transmission device 1 increased to 202.5 ⁇ , ⁇ 228.2 ⁇ , ⁇ 259.1 ⁇ , and ⁇ 269.2 ⁇ .
  • the value of the variable resistor 11 (R 1 ) is increased in the order of 51 ⁇ ⁇ 100 ⁇ , ⁇ 270 ⁇ , ⁇ 500 ⁇ to increase the wireless power transmission device 1 the value of the input impedance Z in of, 79.0 ⁇ , ⁇ 97.1 ⁇ , ⁇ 148.5 ⁇ , rose to the degree that ⁇ 183.1 ⁇ .
  • variable resistor 11 (R l ) () is increased by increasing the value of the coupling coefficient k 34 to 0.11, ⁇ 0.15, ⁇ 0.22, and ⁇ 0.35.
  • the load fluctuation responsiveness which is the amount of change in the value of the input impedance Zin of the wireless power transmission device 1 with respect to the amount of change in the load impedance of the power-supplied device, tends to be high.
  • the load fluctuation response tends to be reduced by reducing the value of the coupling coefficient k 34 to 0.35, ⁇ 0.22, ⁇ 0.15, and ⁇ 0.11.
  • the value of the variable resistor 11 (R 1 ) is increased in the order of 51 ⁇ ⁇ 100 ⁇ , ⁇ 270 ⁇ , ⁇ 500 ⁇ to increase the wireless power transmission device 1 the value of the input impedance Z in of, 33.3 ⁇ , ⁇ 50.3 ⁇ , ⁇ 80.6 ⁇ , rose to the degree that ⁇ 96.7 ⁇ .
  • variable resistor 11 As described above, the variable resistor 11 (R l ) is increased by increasing the value of the coupling coefficient k 34 to 0.11, ⁇ 0.15, ⁇ 0.22, and ⁇ 0.35 in the antiphase resonance mode. It can be seen that the load fluctuation responsiveness, which is the amount of change in the value of the input impedance Zin of the wireless power transmission device 1 with respect to the amount of change in (the load impedance of the power-supplied device), tends to increase. On the other hand, it can be seen that the load fluctuation response tends to be reduced by reducing the value of the coupling coefficient k 34 to 0.35, ⁇ 0.22, ⁇ 0.15, and ⁇ 0.11.
  • the feeding coil 21 constitutes an RLC circuit including a resistor R 1 , a coil L 1 , and a capacitor C 1 ( In the coil L 1 portion, a copper wire (with an insulating coating) is wound once and the coil diameter is set to 96 mm ⁇ .
  • the power receiving coil 31 also constitutes an RLC circuit including a resistor R 4 , a coil L 4, and a capacitor C 4 , and the coil L 4 portion is wound once with a copper wire (with an insulating coating).
  • the coil diameter is set to 96 mm ⁇ .
  • R 1 in the wireless power transmission apparatus 1 to be used for measurement experiment 5 R 2, R 3, R 4 values, respectively, 0.05?, 0.5 .OMEGA, 0.5 .OMEGA, to 0.05?.
  • the values of L 1 , L 2 , L 3 , and L 4 were set to 0.3 ⁇ H, 4 ⁇ H, 4 ⁇ H, and 0.3 ⁇ H, respectively.
  • the resonance frequency of the power feeding coil 21, the power feeding resonator 22, the power receiving resonator 32, and the power receiving coil 31 is 12.8 MHz.
  • the coupling coefficient k 12 is fixed to 0.35 and the coupling coefficient k 23 is fixed to 0.10, and the value of the variable resistor 11 (R 1 ) is set to four values of 51 ⁇ , 100 ⁇ , 270 ⁇ , and 500 ⁇ .
  • the value of the input impedance Z in of the wireless power transmission device 1 when changed to the value is set to four values of the coupling coefficient k 34 of 0.11, 0.15, 0.22, and 0.35. Measurement was made (details on the method of adjusting the coupling coefficient will be described later).
  • 9A shows the measured values when the drive frequency of the AC power supplied to the power supply module 2 is set to the frequency fL near the peak on the low frequency side in the bimodality (in-phase resonance mode: 12.2 MHz).
  • Shown in 9B shows the measured values when the drive frequency of the AC power supplied to the power supply module 2 is set to the frequency fH near the peak on the high frequency side in the bimodality (reverse phase resonance mode: 13.4 MHz). Shown in
  • the value of the variable resistor 11 (R l ) is 51 ⁇ ⁇ 100 ⁇ , ⁇ 270 ⁇ , ⁇ 500 ⁇ .
  • the value of the input impedance Z in of the wireless power transmission device 1 rose to 170.5 ⁇ , ⁇ 204.9 ⁇ , ⁇ 238.0 ⁇ , ⁇ 246.7 ⁇ , and so on.
  • the value of the coupling coefficient k 34 is set to 0.15, the value of the variable resistor 11 (R 1 ) is increased in the order of 51 ⁇ ⁇ 100 ⁇ , ⁇ 270 ⁇ , ⁇ 500 ⁇ , so that the wireless power transmission device 1 the value of the input impedance Z in of, 134.9 ⁇ , ⁇ 176.5 ⁇ , ⁇ 222.8 ⁇ , rose to the degree that ⁇ 239.7 ⁇ .
  • variable resistor 11 (R l ) () is increased by increasing the value of the coupling coefficient k 34 to 0.11, ⁇ 0.15, ⁇ 0.22, and ⁇ 0.35.
  • the load fluctuation responsiveness which is the amount of change in the value of the input impedance Zin of the wireless power transmission device 1 with respect to the amount of change in the load impedance of the power-supplied device, tends to be high.
  • the load fluctuation response tends to be reduced by reducing the value of the coupling coefficient k 34 to 0.35, ⁇ 0.22, ⁇ 0.15, and ⁇ 0.11.
  • the value of the variable resistor 11 (R 1 ) is increased in the order of 51 ⁇ ⁇ 100 ⁇ , ⁇ 270 ⁇ , ⁇ 500 ⁇ to increase the wireless power transmission device 1 the value of the input impedance Z in of, 35.9 ⁇ , ⁇ 49.8 ⁇ , ⁇ 79.0 ⁇ , rose to the degree that ⁇ 95.9 ⁇ .
  • variable resistor 11 As described above, even in the anti-phase resonance mode, the variable resistor 11 (R l is increased by increasing the value of the coupling coefficient k 34 to 0.11, ⁇ 0.15, ⁇ 0.22, and ⁇ 0.35. ) It can be seen that the load fluctuation responsiveness, which is the amount of change in the value of the input impedance Zin of the wireless power transmission device 1 with respect to the amount of change in (the load impedance of the power-supplied device), tends to increase. On the other hand, it can be seen that the load fluctuation response tends to be reduced by reducing the value of the coupling coefficient k 34 to 0.35, ⁇ 0.22, ⁇ 0.15, and ⁇ 0.11.
  • the wireless power transmission device 1 used for the measurement experiment 6 unlike the measurement experiments 4 and 5, a coil is wound on a plane around the coil portions of the feeding coil 21, the feeding resonator 22, the receiving resonator 32, and the receiving coil 31.
  • the feeding coil 21 constitutes an RLC circuit having a resistor R 1 , a coil L 1 , and a capacitor C 1 (resonance), and the coil L 1 portion is etched by copper foil.
  • a pattern coil with 12 turns and a coil diameter of 35 mm ⁇ is used.
  • the power receiving coil 31 constitutes an RLC circuit including a resistor R 4 , a coil L 4 , and a capacitor C 4 , and the coil L 4 portion is formed by 12 turns formed by etching a copper foil.
  • a pattern coil having a coil diameter of 35 mm ⁇ is used.
  • the feeding resonator 22 constitutes an RLC circuit including a resistor R 2 , a coil L 2 , and a capacitor C 2 , and the coil L 2 portion is formed by 12 turns formed by etching a copper foil.
  • a pattern coil having a coil diameter of 35 mm ⁇ is used.
  • the power receiving resonator 32 constitutes an RLC circuit including a resistor R 3 , a coil L 3 , and a capacitor C 3 , and the coil L 3 portion is formed by 12 turns formed by etching a copper foil. A pattern coil having a coil diameter of 35 mm ⁇ is used. Then, set R 1 in the wireless power transmission apparatus 1 to be used for measurement experiment 6, R 2, R 3, R 4 values, respectively, 1.8 ⁇ , 1.8 ⁇ , 1.8 ⁇ , the 1.8Omu. The values of L 1 , L 2 , L 3 , and L 4 were set to 2.5 ⁇ H, 2.5 ⁇ H, 2.5 ⁇ H, and 2.5 ⁇ H, respectively. Further, the resonance frequency in the power feeding coil 21, the power feeding resonator 22, the power receiving resonator 32, and the power receiving coil 31 is 8.0 MHz.
  • the coupling coefficient k 12 is fixed to 0.08 and the coupling coefficient k 23 is fixed to 0.05, and the value of the variable resistor 11 (R 1 ) is set to four values of 51 ⁇ , 100 ⁇ , 270 ⁇ , and 500 ⁇ .
  • the value of the input impedance Z in of the wireless power transmission device 1 when changed to the value is set to four values of the coupling coefficient k 34 of 0.05, 0.06, 0.07, and 0.08. Measurement was made (details on the method of adjusting the coupling coefficient will be described later).
  • the measured value when the drive frequency of the alternating current power supplied to the electric power feeding module 2 is set to the frequency fL near the peak of the low frequency side in bimodality is shown in FIG. Shown in
  • the measured value when the drive frequency of the AC power supplied to the power supply module 2 is set to the frequency fH near the peak on the high frequency side in the bimodality is shown in FIG. Shown in
  • the value of the variable resistor 11 (R l ) is 51 ⁇ ⁇ 100 ⁇ , ⁇ 270 ⁇ , ⁇ 500 ⁇ .
  • the value of the input impedance Z in of the wireless power transmission device 1 increased to 55.8 ⁇ , ⁇ 59.7 ⁇ , ⁇ 62.6 ⁇ , and ⁇ 63.5 ⁇ .
  • the value of the variable resistor 11 (R 1 ) is increased in the order of 51 ⁇ ⁇ 100 ⁇ , ⁇ 270 ⁇ , ⁇ 500 ⁇ , so that the wireless power transmission device 1 the value of the input impedance Z in of, 45.3 ⁇ , ⁇ 51.4 ⁇ , ⁇ 58.6 ⁇ , rose to the degree that ⁇ 61.0 ⁇ .
  • the value of the variable resistor 11 (R 1 ) is increased in the order of 51 ⁇ ⁇ 100 ⁇ , ⁇ 270 ⁇ , ⁇ 500 ⁇ , so that the wireless power transmission device 1 the value of the input impedance Z in of, 35.9 ⁇ , ⁇ 42.3 ⁇ , ⁇ 49.9 ⁇ , rose to the degree that ⁇ 51.9 ⁇ .
  • the variable resistor 11 R l
  • the load fluctuation responsiveness which is the amount of change in the value of the input impedance Zin of the wireless power transmission device 1 with respect to the amount of change in the load impedance of the power-supplied device, tends to be high.
  • the load fluctuation responsiveness tends to decrease by decreasing the value of the coupling coefficient k 34 to 0.08, ⁇ 0.07, ⁇ 0.06, and ⁇ 0.05.
  • the value of the coupling coefficient k 34 is set to 0.07, the value of the variable resistor 11 (R 1 ) is increased in the order of 51 ⁇ ⁇ 100 ⁇ , ⁇ 270 ⁇ , ⁇ 500 ⁇ , so that the wireless power transmission device 1 the value of the input impedance Z in of, 39.4 ⁇ , ⁇ 41.2 ⁇ , ⁇ 44.6 ⁇ , rose to the degree that ⁇ 45.1 ⁇ .
  • the value of the coupling coefficient k 34 is set to 0.08, the value of the variable resistor 11 (R 1 ) is increased in the order of 51 ⁇ ⁇ 100 ⁇ , ⁇ 270 ⁇ , ⁇ 500 ⁇ , so that the wireless power transmission device 1 the value of the input impedance Z in of, 32.1 ⁇ , ⁇ 34.2 ⁇ , ⁇ 37.8 ⁇ , rose to the degree that ⁇ 38.7 ⁇ .
  • the variable resistor 11 R l
  • the load fluctuation responsiveness which is the amount of change in the value of the input impedance Zin of the wireless power transmission device 1 with respect to the amount of change in (the load impedance of the power-supplied device)
  • the load fluctuation responsiveness tends to decrease by decreasing the value of the coupling coefficient k 34 to 0.08, ⁇ 0.07, ⁇ 0.06, and ⁇ 0.05.
  • a coupling coefficient between adjacent coils for example, coupling
  • the relationship between the distance between the coils and the coupling coefficient k is that the coupling coefficient is reduced when the distance between the coils is reduced (shortened).
  • the value of k tends to increase.
  • the coupling coefficient k 12 between the feeding coil 21 (coil L 1 ) and the feeding resonator 22 (coil L 2 ) By stretching the coupling coefficient k 12 between the feeding coil 21 (coil L 1 ) and the feeding resonator 22 (coil L 2 ), the feeding resonator 22 (coil L 2 ) and the receiving resonator 32 (coil L 3 ). it can lower the coupling coefficient k 23, receiving resonator 32 coupling coefficient k 34 between the (coil L 3) and the power receiving coil 31 (coil L 4) between the.
  • the coupling coefficient k 12 By increasing the distance d12 between the feeding coil 21 and the feeding resonator 22, a smaller value of the coupling coefficient k 12 between the power supply coil 21 and the feeding resonator 22, the coupling coefficient k 12 By reducing the value, the load fluctuation responsiveness of the input impedance Zin in the wireless power transmission device 1 can be reduced.
  • the distance between the power receiving resonator 32 and the power receiving coil 31 is fixed.
  • the distance d34 by increasing the value of the coupling coefficient k 34 between the power-receiving resonator 32 and the receiving coil 31, increasing the value of the coupling coefficient k 34, input in the wireless power transmission device 1 it is possible to increase the load change response of the impedance Z in.
  • the value of the coupling coefficient k 34 between the power receiving resonator 32 and the power receiving coil 31 is decreased, and the coupling coefficient k 34 is reduced.
  • the load fluctuation responsiveness of the input impedance Zin in the wireless power transmission device 1 can be reduced.
  • the amount of change in the value of the input impedance Z in of the wireless power transmission device 1 for example, when the load impedance Z l in the feed device rises, it is possible to greatly increases the value of the input impedance Z in of the wireless power transmission apparatus 1 to follow the increase of the load impedance Z l in the feed device, in which It is possible to reduce the power supplied to the power supply (the power consumption can be reduced).
  • the value of the coupling coefficient between the coils can be changed by a simple operation of physically changing the distance d34. That is, the wireless power transmission device 1 can be performed by a simple operation of physically changing the distance d12 between the power feeding coil 21 and the power feeding resonator 22 or the distance d34 between the power receiving resonator 32 and the power receiving coil 31. it is possible to adjust the load transient response of the input impedance Z in in.
  • the adjustment method of the coupling coefficients k 12 and k 34 is not limited to this, and a method of shifting the central axis of the power feeding resonator 22 and the central axis of the power receiving resonator 32, or a coil surface of the power feeding resonator 22 and power receiving resonance.
  • a method of making an angle on the coil surface of the device 32 a method of changing the capacitance of each element (resistor, capacitor, coil) such as the power feeding coil 21, power feeding resonator 22, power receiving resonator 32, power receiving coil 31, etc.
  • a method of changing the drive frequency of the AC power supplied to 2 is mentioned.
  • a design method which is one process for manufacturing the wireless power transmission device 1, will be described with reference to FIGS.
  • a wireless headset 200 including an earphone speaker unit 200a and a charger 201 will be described as examples of portable devices on which the wireless power transmission device 1 is mounted (see FIG. 12).
  • the wireless power transmission device 1 designed by this design method includes a power receiving module 3 (power receiving coil 31 and power receiving resonator 32) and a power feeding module 2 (power feeding coil), respectively, in the wireless headset 200 and the charger 201 shown in FIG. 21 is mounted as a feeding resonator 22).
  • a power receiving module 3 power receiving coil 31 and power receiving resonator 32
  • a power feeding module 2 power feeding coil
  • FIG. 12 for convenience of explanation, the stabilization circuit 7, the charging circuit 8, and the lithium ion secondary battery 9 are shown outside the power receiving module 3, but actually, a solenoid-shaped power receiving coil 31 and a power receiving resonator are used.
  • 32 is arranged on the inner peripheral side of the coil.
  • the wireless headset 200 is equipped with the power receiving module 3, the stabilization circuit 7, the charging circuit 8 and the lithium ion secondary battery 9, and the charger 201 is equipped with the power feeding module 2,
  • the power supply coil 21 of the module 2 is used with the AC power supply 6 connected thereto.
  • the amount of power received by the power receiving module 3 is determined from the capacity of the lithium ion secondary battery 9 and the charging current required for charging the lithium ion secondary battery 9 (S1). ).
  • the distance between the power supply module 2 and the power reception module 3 is determined (S2).
  • the distance d23 between the power feeding resonator 22 and the power receiving resonator 32 is determined in consideration of the shapes and structures of the wireless headset 200 and the charger 201.
  • the coil diameters of the power receiving coil 31 and the power receiving resonator 32 in the power receiving module 3 are determined (S3).
  • the coil diameters of the power feeding coil 21 and the power feeding resonator 22 in the power feeding module 2 are determined (S4).
  • the minimum necessary amount of power supplied to the power supply module 2 is determined ( S5).
  • the design value of the input impedance Zin in the wireless power transmission device 1 is based on the received power amount received by the power receiving module 3, the power transmission efficiency, and the minimum necessary power supply amount to be fed to the power feeding module 2. Determined (S6).
  • the distance d34 between the two is determined (S7). Specifically, when the distance d23 between the power feeding resonator 22 and the power receiving resonator 32 and the distance d34 between the power receiving resonator 32 and the power receiving coil 31 are fixed, the power feeding coil 21 and the power feeding resonator 22 are fixed.
  • the distance d12 between the, or the adjustment on the basis of the load change response increases characteristics of the input impedance Z in of the wireless power transmission device 1, between the feed coil 21 and the feeding resonator 22
  • the distance d34 between the power receiving resonator 32 and the power receiving coil 31 is shortened.
  • the load fluctuation response of the input impedance Zin in the wireless power transmission device 1 is adjusted.
  • the wireless headset 200 has been described as an example. However, as long as the device includes a rechargeable battery, a tablet PC, a digital camera, a mobile phone, an earphone music player, a hearing aid, and a sound collector Can also be used.
  • the wireless power transmission device 1 that performs power transmission by coupling a magnetic field using a resonance phenomenon (magnetic field resonance state) between resonators (coils) included in the power supply module 2 and the power reception module 3 is illustrated.
  • the present invention is also applicable to the wireless power transmission apparatus 1 that performs power transmission using electromagnetic induction between coils.
  • the wireless power transmission device 1 is mounted on a portable electronic device.
  • the usage is not limited to these small devices, and the specification is changed according to the required power amount.
  • it can be mounted on a wireless charging system in a relatively large electric vehicle (EV), a smaller medical wireless gastrocamera, or the like.
  • EV electric vehicle
  • a smaller medical wireless gastrocamera or the like.

Abstract

 給電モジュール2から、被給電機器(安定回路7、充電回路8、リチウムイオン二次電池9)が接続された受電モジュール3に対して磁界を変化させて電力を供給する無線電力伝送装置1における入力インピーダンスZinの負荷変動応答性(被給電機器の負荷インピーダンスZlの単位変化量に対する当該無線電力伝送装置の入力インピーダンスの値の変化量)を調整するために、給電コイル21と給電共振器22との間における結合係数k12又は受電共振器32と受電コイル31との間における結合係数k34の値をそれぞれ調整する。

Description

無線電力伝送装置、無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法、及び、無線電力伝送装置の製造方法
 本発明は、無線電力伝送装置、無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法、及び、無線電力伝送装置の製造方法に関する。
 近年、ノート型PC、タブレット型PC、デジタルカメラ、携帯電話、携帯ゲーム機、イヤホン型音楽プレイヤー、無線式ヘッドセット、補聴器、レコーダーなど人が携帯しながら使用できる携帯型の電子機器が急速に普及してきている。そして、これらの携帯型の電子機器の多くには充電池が搭載されており、定期的な充電が必要とされる。この電子機器の充電池への充電作業を簡易にするために、給電装置と電子機器に搭載された受電装置との間で無線による電力伝送を利用した給電技術(磁界を変化させて電力伝送を行う無線電力伝送技術)により、充電池を充電する機器が増えつつある。
 例えば、無線電力伝送技術としては、コイル間の電磁誘導を利用して電力伝送を行う技術や(例えば、特許文献1参照)、給電装置及び受電装置が備える共振器(コイル)間の共振現象(磁界共鳴状態)を利用して磁場を結合させることにより電力伝送を行う技術が挙げられる(例えば、特許文献2参照)。
 また、充電池(例えば、リチウムイオン二次電池など)を充電する方式に関しては、定電流定電圧充電方式が知られている。そして、上記無線による電力伝送を行う無線電力伝送装置によって、リチウムイオン二次電池を定電流定電圧充電方式によって充電する場合、定電流充電から定電圧充電に移行したときに、供給される電流値が減衰し、充電池を含めた被給電機器(充電池、安定回路、充電回路などが含まれる)の負荷インピーダンスの値が上がることになる。
 そうすると、被給電機器を含めた無線電力伝送装置全体の入力インピーダンスも上がることになるが、この被給電機器の負荷インピーダンスの値の上昇に応じた入力インピーダンスの変化量を大きくすることができれば、充電の際に消費される電力量を低減することができる。即ち、充電の際に消費される電力量を低減するために、被給電機器の負荷インピーダンスの単位変化量に対する無線電力伝送装置の入力インピーダンスの値の変化量である負荷変動応答性を調整可能とすることが求められる。
 そして、負荷変動応答性を調整可能とするために、別個にインピーダンス整合器を設けることが考えられる。
特許第4624768号公報 特開2010-239769号公報
 しかしながら、別個にインピーダンス整合器を設けることは、携帯性・コンパクト化・低コスト化が求められる携帯電子機器においては、部品点数が多くなってしまい不都合である。
 換言すれば、無線電力伝送装置(給電装置及び受電装置)に新たな機器を追加せずに、負荷変動応答性を調整することが望ましい。
 そこで、本発明の目的は、新たな機器を追加せずに、無線電力伝送装置における給電装置及び受電装置に設けられたコイル間における結合係数を調整することにより、負荷変動応答性を調整し、もって、供給される電力量を制御することができる無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法等を提供することにある。
 上記課題を解決するための発明の一つは、給電モジュールから、電力を消費する被給電機器が接続された受電モジュールに対して磁界を変化させて電力を供給する無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法であって、前記給電モジュール、及び、受電モジュールはそれぞれ少なくとも1つのコイルを有し、隣接する前記コイル間における結合係数の値をそれぞれ調整することにより、前記被給電機器の負荷インピーダンスの単位変化量に対する当該無線電力伝送装置の入力インピーダンスの値の変化量である負荷変動応答性を調整することを特徴としている。
 上記方法によれば、無線電力伝送装置により電力が供給されている被給電機器における負荷インピーダンスが変化した場合、被給電機器の負荷インピーダンスの単位変化量に対する無線電力伝送装置の入力インピーダンスの値の変化量である負荷変動応答性を、給電モジュール、及び、受電モジュールが備えるコイル間における結合係数の値を変えることにより調整することができる。これにより、例えば、上記コイル間における結合係数の値を変えることにより、負荷変動応答性を小さくすれば、被給電機器における負荷インピーダンスの変化に対する、無線電力伝送装置の入力インピーダンスの値の変化量を小さくすることができる。逆に、上記コイル間における結合係数の値を変えることにより、負荷変動応答性を高くすれば、被給電機器における負荷インピーダンスの変化に対する、無線電力伝送装置の入力インピーダンスの値の変化量を大きくすることができる。
 そして、負荷変動応答性を高くすることができれば、被給電機器における負荷インピーダンスの変化に追随して無線電力伝送装置の入力インピーダンスの値を変えることができ、その際に供給される電力を低減することができる。一方、負荷変動応答性を小さくすることができれば、被給電機器における負荷インピーダンスが変化したとしても、無線電力伝送装置の入力インピーダンスの値を維持することができ、その際に供給される電力を維持することができる。
 更に、無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整を、新たな機器を設けずに実現することができる。即ち、無線電力伝送装置の部品点数を増やさずに、無線電力伝送装置における入力インピーダンスの負荷変動応答性を調整することが可能となる。
 上記課題を解決するための発明の一つは、少なくとも給電コイル及び給電共振器を備えた給電モジュールから、少なくとも受電共振器及び受電コイルを備え、電力を消費する被給電機器が接続された受電モジュールに対して共振現象によって電力を供給する無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法であって、前記給電コイルと前記給電共振器との間における結合係数k12、前記給電共振器と前記受電共振器との間における結合係数k23、及び、前記受電共振器と前記受電コイルとの間における結合係数k34の値の少なくとも1つを調整することにより、前記負荷変動応答性を調整することを特徴としている。
 上記方法によれば、給電モジュールから、受電モジュールに対して共振現象によって電力を供給する無線電力伝送装置に関して、給電コイルと給電共振器との間における結合係数k12、給電共振器と受電共振器との間における結合係数k23、及び、受電共振器と受電コイルとの間における結合係数k34の値を調整することによって、無線電力伝送装置における入力インピーダンスの負荷変動応答性を調整することができる。
 上記課題を解決するための発明の一つは、上記無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法であって、前記各結合係数k12、k23、k34の値は、それぞれ前記給電コイルと前記給電共振器との間の距離、前記給電共振器と前記受電共振器との間の距離、及び、前記受電共振器と前記受電コイルとの間の距離の少なくとも1つを変化させることにより調整されることを特徴としている。
 上記方法によれば、給電コイルと給電共振器との間の距離を変化させることにより、結合係数k12の値を変化させることができ、給電共振器と受電共振器との間の距離を変化させることにより、結合係数k23の値を変化させることができ、受電共振器と受電コイルとの間の距離を変化させることにより、結合係数k34の値を変化させることができる。これによれば、給電コイルと給電共振器との間の距離、給電共振器と受電共振器との間の距離、及び、受電共振器と受電コイルとの間の距離を物理的に変化させるという簡易な作業により、それぞれのコイル間の結合係数の値を変えることができる。即ち、給電コイルと給電共振器との間の距離、給電共振器と受電共振器との間の距離、及び、受電共振器と受電コイルとの間の距離を物理的に変化させるという簡易な作業によって、無線電力伝送装置における入力インピーダンスの負荷変動応答性を調整することができる。
 上記課題を解決するための発明の一つは、上記無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法であって、前記給電共振器と前記受電共振器との間の距離、及び、前記受電共振器と前記受電コイルとの間の距離を固定した場合、前記負荷変動応答性は、前記給電コイルと前記給電共振器との間の距離を短くするにつれて、前記給電コイルと前記給電共振器との間における前記結合係数k12の値が大きくなり、前記結合係数k12の値が大きくなるにつれて、当該無線電力伝送装置における入力インピーダンスの負荷変動応答性が高くなる特性に基づいて調整されることを特徴としている。
 上記方法によれば、給電共振器と受電共振器との間の距離、及び、受電共振器と受電コイルとの間の距離を固定した場合、給電コイルと給電共振器との間の距離を短くすることにより、給電コイルと給電共振器との間における結合係数k12の値を大きくし、結合係数k12の値を大きくすることにより、当該無線電力伝送装置における入力インピーダンスの負荷変動応答性を高くすることができる。逆に、給電コイルと給電共振器との間の距離を長くすることにより、給電コイルと給電共振器との間における結合係数k12の値を小さくし、結合係数k12の値を小さくすることにより、当該無線電力伝送装置における入力インピーダンスの負荷変動応答性を小さくすることができる。
 そして、負荷変動応答性を高くすることができれば、被給電機器における負荷インピーダンスの変化に対する、無線電力伝送装置の入力インピーダンスの値の変化量を大きくすることができるため、被給電機器における負荷インピーダンスの変化に追随して無線電力伝送装置の入力インピーダンスの値を大きく変えることができ、その際に供給される電力を低減することができる。一方、負荷変動応答性を小さくすることができれば、被給電機器における負荷インピーダンスの変化に対する、無線電力伝送装置の入力インピーダンスの値の変化量を小さくすることができるため、被給電機器における負荷インピーダンスが変化したとしても、無線電力伝送装置の入力インピーダンスの値を維持することができ、その際に供給される電力を維持することができる。
 上記課題を解決するための発明の一つは、上記無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法であって、前記給電コイルと前記給電共振器との間の距離、及び、前記給電共振器と前記受電共振器との間の距離を固定した場合、前記負荷変動応答性は、前記受電共振器と前記受電コイルとの間の距離を短くするにつれて、前記受電共振器と前記受電コイルとの間における前記結合係数k34の値が大きくなり、前記結合係数k34の値が大きくなるにつれて、当該無線電力伝送装置における入力インピーダンスの負荷変動応答性が高くなる特性に基づいて調整されることを特徴としている。
 上記方法によれば、給電コイルと給電共振器との間の距離、及び、給電共振器と受電共振器との間の距離を固定した場合、受電共振器と受電コイルとの間の距離を短くすることにより、受電共振器と受電コイルとの間における結合係数k34の値を大きくし、結合係数k34の値を大きくすることにより、当該無線電力伝送装置における入力インピーダンスの負荷変動応答性を高くすることができる。逆に、受電共振器と受電コイルとの間の距離を長くすることにより、受電共振器と受電コイルとの間における結合係数k34の値を小さくし、結合係数k34の値を小さくすることにより、当該無線電力伝送装置における入力インピーダンスの負荷変動応答性を小さくすることができる。
 そして、負荷変動応答性を高くすることができれば、被給電機器における負荷インピーダンスの変化に対する、無線電力伝送装置の入力インピーダンスの値の変化量を大きくすることができるため、被給電機器における負荷インピーダンスの変化に追随して無線電力伝送装置の入力インピーダンスの値を大きく変えることができ、その際に供給される電力を低減することができる。一方、負荷変動応答性を小さくすることができれば、被給電機器における負荷インピーダンスの変化に対する、無線電力伝送装置の入力インピーダンスの値の変化量を小さくすることができるため、被給電機器における負荷インピーダンスが変化したとしても、無線電力伝送装置の入力インピーダンスの値を維持することができ、その際に供給される電力を維持することができる。
 上記課題を解決するための発明の一つは、上記無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法であって、前記給電モジュールに供給する電力の駆動周波数に対する伝送特性の値が、前記給電モジュール及び受電モジュールにおける共振周波数よりも低い駆動周波数帯域及び前記共振周波数よりも高い駆動周波数帯域にそれぞれピークを有するように設定し、前記給電モジュールに供給する電力の前記駆動周波数は、前記共振周波数よりも低い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域であることを特徴としている。
 上記方法によれば、給電モジュールに供給する電力の駆動周波数に対する伝送特性の値が、給電モジュール及び受電モジュールにおける共振周波数よりも低い駆動周波数帯域及び共振周波数よりも高い駆動周波数帯域にそれぞれピークを有するように設定した場合に、給電モジュールに供給する電力の駆動周波数を、共振周波数よりも低い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域の周波数に設定することにより、比較的高い伝送特性を確保することができる。
 また、給電モジュールの外周側に発生する磁界と受電モジュールの外周側に発生する磁界とが打ち消し合うことにより、給電モジュール及び受電モジュールの外周側に、磁界による影響が低減されて、給電モジュール及び受電モジュールの外周側以外の磁界強度よりも小さな磁界強度を有する磁界空間を形成することができる。これにより、形成した磁界空間に、磁界の影響を受けたくない回路等を格納することで、スペースの有効活用ができ、無線電力伝送装置自体の小型化を図ることが可能になる。
 上記課題を解決するための発明の一つは、上記無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法であって、前記給電モジュールに供給する電力の駆動周波数に対する伝送特性の値が、前記給電モジュール及び受電モジュールにおける共振周波数よりも低い駆動周波数帯域及び前記共振周波数よりも高い駆動周波数帯域にそれぞれピークを有するように設定し、前記給電モジュールに供給する電力の前記駆動周波数は、前記共振周波数よりも高い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域であることを特徴としている。
 上記方法によれば、給電モジュールに供給する電力の駆動周波数に対する伝送特性の値が、給電モジュール及び受電モジュールにおける共振周波数よりも低い駆動周波数帯域及び共振周波数よりも高い駆動周波数帯域にそれぞれピークを有するように設定した場合に、給電モジュールに供給する電力の駆動周波数を、共振周波数よりも高い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域の周波数に設定することにより、比較的高い伝送特性を確保することができる。
 また、給電モジュールの内周側に発生する磁界と受電モジュールの内周側に発生する磁界とが打ち消し合うことにより、給電モジュール及び受電モジュールの内周側に、磁界による影響が低減されて、給電モジュール及び受電モジュールの内周側以外の磁界強度よりも小さな磁界強度を有する磁界空間を形成することができる。これにより、形成した磁界空間に、磁界の影響を受けたくない回路等を格納することで、スペースの有効活用ができ、無線電力伝送装置自体の小型化を図ることが可能になる。
 上記課題を解決するための発明の一つは、上記記載の入力インピーダンスの負荷変動応答性の調整方法により調整されたことを特徴とする無線電力伝送装置である。
 上記構成によれば、無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整を、新たな機器を設けずに実現することができる。即ち、無線電力伝送装置の部品点数を増やさずに、無線電力伝送装置における入力インピーダンスの負荷変動応答性を調整することが可能となる。
 上記課題を解決するための発明の一つは、給電モジュールから、電力を消費する被給電機器が接続された受電モジュールに対して磁界を変化させて電力を供給する無線電力伝送装置の製造方法であって、前記給電モジュール、及び、受電モジュールにそれぞれ少なくとも1つのコイルを設け、隣接する前記コイル間における結合係数の値をそれぞれ調整することにより、前記被給電機器の負荷インピーダンスの単位変化量に対する当該無線電力伝送装置の入力インピーダンスの値の変化量である負荷変動応答性を調整する工程を含むことを特徴としている。
 上記方法によれば、無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整を、新たな機器を設けずにできる無線電力伝送装置を製造することができる。即ち、無線電力伝送装置の部品点数を増やさずに、無線電力伝送装置における入力インピーダンスの負荷変動応答性を調整することが可能な無線電力伝送装置を製造することができる。
 無線電力伝送装置における給電装置及び受電装置に設けられたコイル間における結合係数を調整することにより、負荷変動応答性を調整し、もって、供給される電力量を制御することができる無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法等を提供することができる。
無線電力伝送装置の概略説明図である。 無線電力伝送装置の等価回路の説明図である。 リチウムイオン二次電池の充電特性、及び、被給電機器の負荷インピーダンスの負荷変動特性を示すグラフである。 駆動周波数に対する伝送特性『S21』の関係を示した説明図である。 測定実験1に係る測定結果を示すグラフである。 測定実験2に係る測定結果を示すグラフである。 測定実験3に係る測定結果を示すグラフである。 測定実験4に係る測定結果を示すグラフである。 測定実験5に係る測定結果を示すグラフである。 測定実験6に係る測定結果を示すグラフである。 無線電力伝送における、コイル間距離と結合係数との関係を示すグラフである。 無線電力伝送装置の製造方法を説明する説明図である。 無線電力伝送装置を含む無線式ヘッドセット及び充電器の設計方法を説明したフローチャートである。
 (実施形態)
 以下に本発明に係る無線電力伝送装置、無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法、及び、無線電力伝送装置の製造方法の実施形態について説明する。まず、本実施形態で使用する無線電力伝送装置1について説明する。
 (無線電力伝送装置1の構成)
 無線電力伝送装置1は、図1に示すように、給電コイル21及び給電共振器22を備える給電モジュール2と、受電コイル31及び受電共振器32を備える受電モジュール3とを備えている。そして、給電モジュール2の給電コイル21に、給電モジュール2に供給する電力の駆動周波数を所定の値に設定した発振回路を備えた交流電源6を接続し、受電モジュール3の受電コイル31に、受電された交流電力を整流化する安定回路7及び過充電を防止する充電回路8を介してリチウムイオン二次電池9を接続している。なお、本実施形態では、安定回路7、充電回路8、及び、リチウムイオン二次電池9は、被給電機器に相当する。
 給電コイル21は、交流電源6から得られた電力を電磁誘導によって給電共振器22に供給する役割を果たす。この給電コイル21は、図2に示すように、抵抗器R1、コイルL1、及び、コンデンサC1を要素とするRLC回路を構成している。なお、コイルL1部分は、銅線材(絶縁被膜付)を1回巻にして、コイル径を96mmφに設定している。また、給電コイル21を構成する回路素子が有する合計のインピーダンスをZ1とし、本実施形態では、給電コイル21を構成する抵抗器R1、コイルL1、及び、コンデンサC1を要素とするRLC回路(回路素子)が有する合計のインピーダンスをZ1としている。
 受電コイル31は、給電共振器22から受電共振器32に磁界エネルギーとして伝送された電力を電磁誘導によって受電し、安定回路7及び充電回路8を介してリチウムイオン二次電池9に供給する役割を果たす。この受電コイル31は、給電コイル21同様に、図2に示すように、抵抗器R4、コイルL4、及び、コンデンサC4を要素とするRLC回路を構成している。なお、コイルL4部分は、銅線材(絶縁被膜付)を1回巻にして、コイル径96mmφに設定している。また、受電コイル31を構成する回路素子が有する合計のインピーダンスをZ4とし、本実施形態では、受電コイル31を構成する抵抗器R4、コイルL4、及び、コンデンサC4を要素とするRLC回路(回路素子)が有する合計のインピーダンスをZ4としている。また、図2では、受電コイル31に接続された安定回路7、充電回路8及びリチウムイオン二次電池9の負荷インピーダンスをZlとし、当該負荷インピーダンスZl測定時に便宜的に抵抗器Rlに置き換えている。
 給電共振器22は、図2に示すように、抵抗器R2、コイルL2、及び、コンデンサC2を要素とするRLC回路を構成している。また、受電共振器32は、図2に示すように、抵抗器R3、コイルL3、及び、コンデンサC3を要素とするRLC回路を構成している。そして、給電共振器22及び受電共振器32は、それぞれ共振回路となり、磁界共鳴状態を創出する役割を果たす。ここで、磁界共鳴状態(共振現象)とは、2つ以上のコイルが共振周波数において同調することをいう。また、給電共振器22を構成する回路素子が有する合計のインピーダンスをZ2とし、本実施形態では、給電共振器22を構成する、抵抗器R2、コイルL2、及び、コンデンサC2を要素とするRLC回路(回路素子)が有する合計のインピーダンスをZ2としている。また、受電共振器32を構成する回路素子が有する合計のインピーダンスをZ3とし、本実施形態では、受電共振器32を構成する、抵抗器R3、コイルL3、及び、コンデンサC3を要素とするRLC回路(回路素子)が有する合計のインピーダンスをZ3としている。
 また、給電共振器22及び受電共振器32における共振回路としてのRLC回路では、インダクタンスをL、コンデンサ容量をCとすると、(式1)によって定まるfが共振周波数となる。そして、本実施形態における給電コイル21、給電共振器22、受電コイル31、及び、受電共振器32の共振周波数は、12.8MHzとしている。
Figure JPOXMLDOC01-appb-M000001
 また、給電共振器22及び受電共振器32は、銅線材(絶縁被膜付)を4回巻にした、コイル径96mmφのソレノイド型のコイルを使用している。また、給電共振器22及び受電共振器32における共振周波数は一致させている。なお、給電共振器22及び受電共振器32は、コイルを使用した共振器であれば、スパイラル型やソレノイド型などのコイルであってもよい。
 また、給電コイル21と給電共振器22との間の距離をd12とし、給電共振器22と受電共振器32との間の距離をd23とし、受電共振器32と受電コイル31との間の距離をd34としている(図1参照)。
 また、図2に示すように、給電コイル21のコイルL1と給電共振器22のコイルL2との間の相互インダクタンスをM12、給電共振器22のコイルL2と受電共振器32のコイルL3との間の相互インダクタンスをM23、受電共振器32のコイルL3と受電コイル31のコイルL4との間の相互インダクタンスをM34としている。また、無線電力伝送装置1において、コイルL1とコイルL2との間の結合係数をk12と表記し、コイルL2とコイルL3との間の結合係数をk23と表記し、コイルL3とコイルL4との間の結合係数をk34と表記する。
 なお、給電コイル21のRLC回路のR1、L1、C1、給電共振器22のRLC回路のR2、L2、C2、受電共振器32のRLC回路のR3、L3、C3、受電コイル31のRLC回路のR4、L4、C4における抵抗値、インダクタンス、コンデンサ容量、及び、結合係数k12、k23、k34は、設計・製造段階等で変更可能なパラメータとして、後述する(式3)の関係式を満たすように設定されていることが望ましい。
 また、上記構成による無線電力伝送装置1(安定回路7、充電回路8及びリチウムイオン二次電池9含む)の回路図を示すと図1の下図のようになる。これは、無線電力伝送装置1全体を一つの入力インピーダンスZinに置き換えて示したものである。
 そして、この電流Iinを電圧Vin及び入力インピーダンスZinを踏まえた関係式で表すと(式2)のように示せる。
Figure JPOXMLDOC01-appb-M000002
 また、無線電力伝送装置1の入力インピーダンスZinをより詳細に表すために、無線電力伝送装置1の構成を等価回路によって表すと図2に示すようになる。そして、図2の等価回路より、無線電力伝送装置1の入力インピーダンスZinは、(式3)のように表記することができる。
Figure JPOXMLDOC01-appb-M000003
                        ・・・(式3)
 そして、本実施形態における無線電力伝送装置1の給電コイル21、給電共振器22、受電共振器32、及び、受電コイル31におけるインピーダンスZ1、Z2、Z3、Z4、Zlは、それぞれ(式4)のように表記することができる。
Figure JPOXMLDOC01-appb-M000004



                       ・・・(式4)
 次に、(式3)に(式4)を導入すると、(式5)のようになる。
Figure JPOXMLDOC01-appb-M000005
                       ・・・(式5)
 上記無線電力伝送装置1によれば、給電共振器22の共振周波数と受電共振器32の共振周波数とを一致させた場合、給電共振器22と受電共振器32との間に磁界共鳴状態を創出することができる。給電共振器22及び受電共振器32が共振した状態で磁界共鳴状態が創出されると、給電共振器22から受電共振器32に電力を磁界エネルギーとして伝送することができる。そして、受電共振器32で受電された電力が受電コイル31、安定回路7及び充電回路8を介してリチウムイオン二次電池9に給電されて充電される。
 (負荷変動応答性の調整方法)
 上記無線電力伝送装置1の構成を踏まえて、無線電力伝送装置1における入力インピーダンスZinの負荷変動応答性の調整方法について説明する。
 (負荷変動応答性について)
 まず、上記無線電力伝送装置1における入力インピーダンスZinの負荷変動応答性、及び、無線電力伝送装置1における入力インピーダンスZinの負荷変動応答性を調整することができることの有用性について説明する。
 本実施形態では、電力が給電される被給電機器の一つとしてリチウムイオン二次電池9を使用している。そして、一般的に、リチウムイオン二次電池9を充電するには、定電流定電圧充電方式が使用されている。この定電流定電圧充電方式によるリチウムイオン二次電池9の充電では、図3(A)のリチウムイオン二次電池の充電特性に示すように、充電を開始してからしばらくの間は定電流による充電が行われる(CC:コンスタントカレント)。そして、定電流による充電が行われている間に電圧(Vch)が、所定の上限電圧(本実施形態では、4.2V)まで上昇する。電圧が上限電圧まで上昇すると、その上限電圧に保持されたまま定電圧による充電が行われる(CV:コンスタントボルテージ)。定電圧による充電が行われると、電流値(Ich)が減衰していき、所定の電流値、又は、所定時間経過後に充電完了となる。
 そして、無線電力伝送装置1によって、リチウムイオン二次電池9を上記定電流定電圧充電方式によって充電する場合、定電流による充電(CC)から定電圧による充電(CV)に移行したときに、図3(B)の被給電機器を構成する充電回路8及びリチウムイオン二次電池9に係る負荷インピーダンスZ89の負荷変動特性に示すように、被給電機器を構成する充電回路8及びリチウムイオン二次電池9に供給される電流値(Iin)が減衰することによって、定電圧充電においては、負荷インピーダンスZ89の値は上がることになる。即ち、本実施形態における被給電機器(安定回路7、充電回路8、リチウムイオン二次電池9)全体としての負荷インピーダンスZlの値は上がることになる。
 そして、被給電機器の負荷インピーダンスZlの値の上昇に伴い、被給電機器を含めた無線電力伝送装置1全体の入力インピーダンスZinも上がることになる。ここで、被給電機器の負荷インピーダンスZlの値の上昇に応じた入力インピーダンスZinの変化量を大きく調整することができれば、充電の際(特にコンスタントボルテージに移行後)に消費される電力量を低減することができる。なお、被給電機器の負荷インピーダンスZlの単位変化量に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量のことを負荷変動応答性と定義する。
 即ち、無線電力伝送装置1における入力インピーダンスZinの負荷変動応答性を高める調整をすることができれば、リチウムイオン二次電池等の充電の際に消費される電力量を低減することができる。
 なお、被給電機器に関して、充電時に定電力充電が必要とされる二次電池を採用した場合には、無線電力伝送装置1における入力インピーダンスZinの負荷変動応答性を小さく調整することができれば、例え被給電機器における負荷インピーダンスZlが変化したとしても、無線電力伝送装置1の入力インピーダンスZinの値を維持することができるため(入力インピーダンスZinがあまり変化しない状態)、充電の際に供給される電力を維持することが可能となる。
 また、被給電機器に直接電力を消費しながら可動する機器を採用した場合(例えば、二次電池等を介さずに、供給電力で機器を直接駆動させるもの)、無線電力伝送装置1における入力インピーダンスZinの負荷変動応答性を小さく調整することができれば、無線電力伝送における給電の際に、例え被給電機器における負荷インピーダンスZlが変化したとしても、無線電力伝送装置1の入力インピーダンスZinの値を維持することができる。このため、被給電機器に電力を安定して給電することが可能となり、被給電機器の動作を安定(動作が不安定にならない)させることができる。
 (結合係数による負荷変動応答性の調整)
 上記のような無線電力伝送装置1では、給電モジュール2に供給する電力の駆動周波数を、給電モジュール2が備える給電コイル21・給電共振器22及び受電モジュール3が備える受電コイル31・受電共振器32が有する共振周波数と一致させることにより、無線電力伝送における電力伝送効率を最大にすることができることが一般的に知られており、電力伝送効率の最大化を求めて駆動周波数を共振周波数に設定にするのが一般的である。ここで、電力伝送効率とは、給電モジュール2に供給される電力に対する、受電モジュール3が受電する電力の比率のことをいう。
 そうすると、無線電力伝送装置1において、電力伝送効率を最大化するには、駆動周波数と、給電モジュール2及び受電モジュール3の各RLC回路のそれぞれが有する共振周波数とが一致するようなコンデンサやコイルなどの容量条件・共振条件(ωL=1/ωC)を満たすことが求められる。
 具体的に、無線電力伝送装置1において、電力伝送効率を最大にするために共振条件(ωL=1/ωC)を満たした場合における無線電力伝送装置1の入力インピーダンスZinを、(式5)に当てはめてみると、(ωL1-1/ωC1=0)、(ωL2-1/ωC2=0)、(ωL3-1/ωC3=0)、(ωL4-1/ωC4=0)となり、(式6)の関係式になる。
Figure JPOXMLDOC01-appb-M000006
                       ・・・(式6)
 上記関係式(式6)によれば、無線電力伝送装置1において調整可能な主なパラメータとしては、給電コイル21のRLC回路のR1、給電共振器22のRLC回路のR2、受電共振器32のRLC回路のR3、受電コイル31のRLC回路のR4などの抵抗値、及び、結合係数k12、k23、k34が残ることが分かる。
 上記のように、無線電力伝送装置1における電力伝送効率を最大化するために、給電モジュール2に供給する電力の駆動周波数を共振周波数に一致させた場合、無線電力伝送装置1において調整可能なパラメータとして、結合係数k12、k23、k34を使用することができる。
 また、給電モジュール2に供給する電力の駆動周波数を、給電モジュール2が備える給電共振器22及び受電モジュール3が備える受電共振器32が有する共振周波数と一致させない場合にも(ωL≠1/ωC)、無線電力伝送装置1において調整可能なパラメータとして、結合係数k12、k23、k34を使用することができる。
 (結合係数の変化による入力インピーダンスZinの変化)
 次に、結合係数k12、k34を変化させた場合に、無線電力伝送装置1の入力インピーダンスZinがどのような変化をするかを、条件を変えた測定実験1~6により説明する。
 測定実験1~6では、図2に示した無線電力伝送装置1をネットワークアナライザ110(本実施形態では、アジレント・テクノロジー株式会社製のE5061Bを使用)に接続して、結合係数に対する入力インピーダンスZinの値を測定した。なお、測定実験1~6では、安定回路7、充電回路8、及び、リチウムイオン二次電池9の代わりに可変抵抗器11(Rl)を接続して測定した。
 また、本測定実験においては、無線電力伝送装置1に供給する電力の駆動周波数に対する無線電力伝送装置1の伝送特性『S21』が、双峰性の性質を有するもので測定している。
 ここで、伝送特性『S21』とは、ネットワークアナライザ110に無線電力伝送装置1を接続して計測される信号を表しており、デシベル表示され、数値が大きいほど電力伝送効率が高いことを意味する。そして、無線電力伝送装置1に供給する電力の駆動周波数に対する無線電力伝送装置1の伝送特性『S21』は、給電モジュール2及び受電モジュール3の間の磁界による結びつき度合い(磁界結合)の強度により、単峰性の性質を有するものと双峰性の性質を有するものに分かれる。そして、単峰性とは、駆動周波数に対する伝送特性『S21』のピークが一つで、そのピークが共振周波数帯域(f0)において現れるものをいう(図4の破線51参照)。一方、双峰性とは、駆動周波数に対する伝送特性『S21』のピークが二つあり、その二つのピークが共振周波数よりも低い駆動周波数帯域(fL)と共振周波数よりも高い駆動周波数帯域(fH)において現れるものをいう(図4の実線52参照)。更に詳細に双峰性を定義すると、上記ネットワークアナライザ110に無線電力伝送装置を接続して計測される反射特性『S11』が二つのピークを有する状態をいう。従って、駆動周波数に対する伝送特性『S21』のピークが一見して一つに見えたとしても、計測されている反射特性『S11』が二つのピークを有する場合には、双峰性の性質を有するものとする。
 上記単峰性の性質を有する無線電力伝送装置1においては、図4の破線51に示すように、駆動周波数が共振周波数f0で伝送特性『S21』が最大化する(電力伝送効率が最大化する)。
 一方、双峰性の性質を有する無線電力伝送装置1では、図4の実線52に示すように、伝送特性『S21』は、共振周波数f0よりも低い駆動周波数帯域(fL)と共振周波数f0よりも高い駆動周波数帯域(fH)において最大化する。
 なお、一般的に、給電共振器と受電共振器との間の距離が同じであれば、双峰性における伝送特性『S21』の最大値(fL又はfHでの伝送特性『S21』の値)は、単峰性における伝送特性『S21』の最大値(f0での伝送特性『S21』の値)よりも低い値になる(図4のグラフ参照)。
 具体的には、双峰性における低周波側のピーク付近の周波数fLに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(同相共振モード)、給電共振器22及び受電共振器32が同位相で共振状態となり、給電共振器22に流れる電流の向きと受電共振器32に流れる電流の向きとが同じ向きになる。その結果、図4のグラフに示すように、電力伝送効率の最大化を目的にした一般的な無線電力伝送装置における伝送特性『S21』(破線51)には及ばないが、駆動周波数を給電モジュール2が備える給電共振器22及び受電モジュール3が備える受電共振器32が有する共振周波数と一致させない場合でも、伝送特性『S21』の値を比較的高い値にすることができる。ここで、給電モジュール2におけるコイル(給電共振器22)に流れる電流の向きと受電モジュール3におけるコイル(受電共振器32)に流れる電流の向きとが同じ向きとなる共振状態を同相共振モードと呼ぶことにする。
 また、上記同相共振モードでは、給電共振器22の外周側に発生する磁界と受電共振器32の外周側に発生する磁界とが打ち消し合うことにより、給電共振器22及び受電共振器32の外周側に、磁界による影響が低減されて、給電共振器22及び受電共振器32の外周側以外の磁界強度(例えば、給電共振器22及び受電共振器32の内周側の磁界強度)よりも小さな磁界強度を有する磁界空間を形成することができる。そして、この磁界空間に磁界の影響を低減させたい安定回路7や充電回路8やリチウムイオン二次電池9などを収納した場合、安定回路7や充電回路8やリチウムイオン二次電池9などに対して、磁界に起因する渦電流の発生を低減・防止して、発熱による悪影響を抑制することが可能となる。
 一方、双峰性における高周波側のピーク付近の周波数fHに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(逆相共振モード)、給電共振器22及び受電共振器32が逆位相で共振状態となり、給電共振器22に流れる電流の向きと受電共振器32に流れる電流の向きとが逆向きになる。その結果、図4のグラフに示すように、電力伝送効率の最大化を目的にした一般的な無線電力伝送装置における伝送特性『S21』(破線51)には及ばないが、駆動周波数を給電モジュール2が備える給電共振器22及び受電モジュール3が備える受電共振器32が有する共振周波数と一致させない場合でも、伝送特性『S21』の値を比較的高い値にすることができる。ここで、給電モジュール2におけるコイル(給電共振器22)に流れる電流の向きと受電モジュール3におけるコイル(受電共振器32)に流れる電流の向きとが逆向きとなる共振状態を逆相共振モードと呼ぶことにする。
 また、上記逆相共振モードでは、給電共振器22の内周側に発生する磁界と受電共振器32の内周側に発生する磁界とが打ち消し合うことにより、給電共振器22及び受電共振器32の内周側に、磁界による影響が低減されて、給電共振器22及び受電共振器32の内周側以外の磁界強度(例えば、給電共振器22及び受電共振器32の外周側の磁界強度)よりも小さな磁界強度を有する磁界空間を形成することができる。そして、この磁界空間に磁界の影響を低減させたい安定回路7や充電回路8やリチウムイオン二次電池9などを収納した場合、安定回路7や充電回路8やリチウムイオン二次電池9などに対して、磁界に起因する渦電流の発生を低減・防止して、発熱による悪影響を抑制することが可能となる。また、この逆相共振モードにより形成される磁界空間は、給電共振器22及び受電共振器32の内周側に形成されるので、この空間に安定回路7や充電回路8やリチウムイオン二次電池9などの電子部品を組み込むことにより無線電力伝送装置1自体のコンパクト化・設計自由度の向上が実現される。
 (測定実験1:結合係数k12の値を変えた場合のZinの負荷変動応答性)
 測定実験1に使用する無線電力伝送装置1では、給電コイル21は、抵抗器R1、コイルL1を要素とするRL回路を構成しており(共振なし)、コイルL1部分は、銅線材(絶縁被膜付)を1回巻にして、コイル径を96mmφに設定している。同様に、受電コイル31は、抵抗器R4、コイルL4を要素とするRL回路を構成しており(共振なし)、コイルL4部分は、銅線材(絶縁被膜付)を1回巻にして、コイル径を96mmφに設定している。また、給電共振器22は、抵抗器R2、コイルL2、及び、コンデンサC2を要素とするRLC回路を構成しており、コイルL2部分は、銅線材(絶縁被膜付)を4回巻にした、コイル径96mmφのソレノイド型のコイルを使用している。また、受電共振器32は、抵抗器R3、コイルL3、及び、コンデンサC3を要素とするRLC回路を構成しており、コイルL3部分は、銅線材(絶縁被膜付)を4回巻にした、コイル径96mmφのソレノイド型のコイルを使用している。そして、測定実験1に使用する無線電力伝送装置1におけるR1、R2、R3、R4の値をそれぞれ、0.05Ω、0.5Ω、0.5Ω、0.05Ωに設定した。また、L1、L2、L3、L4の値をそれぞれ、0.3μH、4μH、4μH、0.3μHに設定した。また、給電共振器22及び受電共振器32における共振周波数は12.8MHzである。
 測定実験1では、結合係数k23を0.10、結合係数k34を0.35にそれぞれ固定したうえで、可変抵抗器11(Rl)の値を51Ω、100Ω、270Ω、500Ωの4つの値に変えた場合の無線電力伝送装置1の入力インピーダンスZinの値を、結合係数k12の値を0.11、0.15、0.22、0.35の4つの値に設定して測定した(結合係数の調整方法についての詳細は後述する)。そして、双峰性における低周波側のピーク付近の周波数fLに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(同相共振モード:12.2MHz)の測定値を図5(A)に示す。また、双峰性における高周波側のピーク付近の周波数fHに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(逆相共振モード:13.4MHz)の測定値を図5(B)に示す。ここで、可変抵抗器11(Rl)の値を51Ω、100Ω、270Ω、500Ωの4つの値に変えて測定することによって、上述した図3(B)の負荷インピーダンスZlの負荷変動特性に示すように、供給される電流値が減衰することによって、定電圧充電において、被給電機器(安定回路7、充電回路8、リチウムイオン二次電池9)の負荷インピーダンスZlの値が上昇する現象を疑似的に再現している。
 図5(A)の同相共振モードの測定結果より、結合係数k12の値を0.11に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、31.4Ω、→ 33.1Ω、→ 37.8Ω、→ 40.9Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、40.9-31.4=9.5Ωである。
 また、結合係数k12の値を0.15に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、35.9Ω、→ 39.0Ω、→ 48.2Ω、→ 54.5Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、54.5-35.9=18.6Ωである。
 また、結合係数k12の値を0.22に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、47.5Ω、→ 54.8Ω、→ 76.0Ω、→ 90.1Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、90.1-47.5=42.6Ωである。
 また、結合係数k12の値を0.35に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、79.0Ω、→ 97.1Ω、→ 148.5Ω、→ 183.1Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、183.1-79.0=104.1Ωである。
 上記のように、同相共振モードにおいて、結合係数k12の値を0.11、→ 0.15、→ 0.22、→ 0.35と大きくすることにより、可変抵抗器11(Rl)(被給電機器の負荷インピーダンス)の変化量に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量である負荷変動応答性は高くなる傾向にあることが分かる。また、逆に、結合係数k12の値を0.35、→ 0.22、→ 0.15、→ 0.11と小さくすることにより、負荷変動応答性は小さくなる傾向にあることが分かる。
 また、図5(B)の逆相共振モードの測定結果においても同様に、結合係数k12の値を0.11に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、27.5Ω、→ 28.7Ω、→ 30.7Ω、→ 31.8Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、31.8-27.5=4.3Ωである。
 また、結合係数k12の値を0.15に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、28.1Ω、→ 29.4Ω、→ 33.5Ω、→ 35.8Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、35.8-28.1=7.7Ωである。
 また、結合係数k12の値を0.22に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、30.2Ω、→ 32.6Ω、→ 43.0Ω、→ 49.1Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、49.1-30.2=18.9Ωである。
 また、結合係数k12の値を0.35に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、33.3Ω、→ 50.3Ω、→ 80.6Ω、→ 96.7Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、96.7-33.3=63.4Ωである。
 上記のように、逆相共振モードにおいて、結合係数k12の値を0.11、→ 0.15、→ 0.22、→ 0.35と大きくすることにより、可変抵抗器11(Rl)(被給電機器の負荷インピーダンス)の変化量に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量である負荷変動応答性は高くなる傾向にあることが分かる。また、逆に、結合係数k12の値を0.35、→ 0.22、→ 0.15、→ 0.11と小さくすることにより、負荷変動応答性は小さくなる傾向にあることが分かる。
 (測定実験2:結合係数k12の値を変えた場合のZinの負荷変動応答性)
 測定実験2に使用する無線電力伝送装置1では、測定実験1と異なり、給電コイル21は、抵抗器R1、コイルL1、及び、コンデンサC1を要素とするRLC回路を構成しており(共振あり)、コイルL1部分は、銅線材(絶縁被膜付)を1回巻にして、コイル径を96mmφに設定している。同様に、受電コイル31も、抵抗器R4、コイルL4、及び、コンデンサC4を要素とするRLC回路を構成しており、コイルL4部分は、銅線材(絶縁被膜付)を1回巻にして、コイル径を96mmφに設定している。なお、その他の構成は、測定実験1と同様である。そして、測定実験2に使用する無線電力伝送装置1におけるR1、R2、R3、R4の値をそれぞれ、0.05Ω、0.5Ω、0.5Ω、0.05Ωに設定した。また、L1、L2、L3、L4の値をそれぞれ、0.3μH、4μH、4μH、0.3μHに設定した。また、給電コイル21、給電共振器22、受電共振器32、及び、受電コイル31における共振周波数は12.8MHzである。
 測定実験2では、結合係数k23を0.10、結合係数k34を0.35にそれぞれ固定したうえで、可変抵抗器11(Rl)の値を51Ω、100Ω、270Ω、500Ωの4つの値に変えた場合の無線電力伝送装置1の入力インピーダンスZinの値を、結合係数k12の値を0.11、0.15、0.22、0.35の4つの値に設定して測定した(結合係数の調整方法についての詳細は後述する)。そして、双峰性における低周波側のピーク付近の周波数fLに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(同相共振モード:12.2MHz)の測定値を図6(A)に示す。また、双峰性における高周波側のピーク付近の周波数fHに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(逆相共振モード:13.4MHz)の測定値を図6(B)に示す。
 図6(A)の同相共振モードの測定結果より、結合係数k12の値を0.11に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、6.5Ω、→ 10.0Ω、→ 17.3Ω、→ 21.8Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、21.8-6.5=15.3Ωである。
 また、結合係数k12の値を0.15に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、11.5Ω、→ 18.1Ω、→ 31.8Ω、→ 40.3Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、40.3-11.5=28.8Ωである。
 また、結合係数k12の値を0.22に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、22.4Ω、→ 35.4Ω、→ 62.2Ω、→ 79.0Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、79.0-22.4=56.6Ωである。
 また、結合係数k12の値を0.35に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、48.8Ω、→ 77.6Ω、→ 136.5Ω、→ 173.1Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、173.1-48.8=124.3Ωである。
 上記のように、同相共振モードにおいて、結合係数k12の値を0.11、→ 0.15、→ 0.22、→ 0.35と大きくすることにより、可変抵抗器11(Rl)(被給電機器の負荷インピーダンス)の変化量に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量である負荷変動応答性は高くなる傾向にあることが分かる。また、逆に、結合係数k12の値を0.35、→ 0.22、→ 0.15、→ 0.11と小さくすることにより、負荷変動応答性は小さくなる傾向にあることが分かる。
 また、図6(B)の逆相共振モードの測定結果においても同様に、結合係数k12の値を0.11に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、5.5Ω、→ 6.9Ω、→ 9.3Ω、→ 10.7Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、10.7-5.5=5.2Ωである。
 また、結合係数k12の値を0.15に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、6.8Ω、→ 9.5Ω、→ 14.9Ω、→ 18.0Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、18.0-6.8=11.2Ωである。
 また、結合係数k12の値を0.22に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、13.6Ω、→ 19.3Ω、→ 31.2Ω、→ 38.1Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、38.1-13.6=24.5Ωである。
 また、結合係数k12の値を0.35に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、35.9Ω、→ 49.8Ω、→ 79.0Ω、→ 95.9Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、95.9-35.9=60.0Ωである。
 上記のように、逆相共振モードにおいても、結合係数k12の値を0.11、→ 0.15、→ 0.22、→ 0.35と大きくすることにより、可変抵抗器11(Rl)(被給電機器の負荷インピーダンス)の変化量に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量である負荷変動応答性は高くなる傾向にあることが分かる。また、逆に、結合係数k12の値を0.35、→ 0.22、→ 0.15、→ 0.11と小さくすることにより、負荷変動応答性は小さくなる傾向にあることが分かる。
 (測定実験3:結合係数k12の値を変えた場合のZinの負荷変動応答性)
 測定実験3に使用する無線電力伝送装置1では、測定実験1、2と異なり、給電コイル21、給電共振器22、受電共振器32、受電コイル31のコイル部分に、平面上にコイルを巻き回して作成したパターンコイルを使用している。具体的には、給電コイル21は、抵抗器R1、コイルL1、及び、コンデンサC1を要素とするRLC回路を構成しており(共振あり)、コイルL1部分は、銅箔のエッチングにより形成した12回巻き、コイル径35mmφのパターンコイルを使用している。同様に、受電コイル31は、抵抗器R4、コイルL4、及び、コンデンサC4を要素とするRLC回路を構成しており、コイルL4部分は、銅箔のエッチングにより形成した12回巻き、コイル径35mmφのパターンコイルを使用している。また、給電共振器22は、抵抗器R2、コイルL2、及び、コンデンサC2を要素とするRLC回路を構成しており、コイルL2部分は、銅箔のエッチングにより形成した12回巻き、コイル径35mmφのパターンコイルを使用している。また、受電共振器32は、抵抗器R3、コイルL3、及び、コンデンサC3を要素とするRLC回路を構成しており、コイルL3部分は、銅箔のエッチングにより形成した12回巻き、コイル径35mmφのパターンコイルを使用している。そして、測定実験3に使用する無線電力伝送装置1におけるR1、R2、R3、R4の値をそれぞれ、1.8Ω、1.8Ω、1.8Ω、1.8Ωに設定した。また、L1、L2、L3、L4の値をそれぞれ、2.5μH、2.5μH、2.5μH、2.5μHに設定した。また、給電コイル21、給電共振器22、受電共振器32、及び、受電コイル31における共振周波数は8.0MHzである。
 測定実験3では、結合係数k23を0.05、結合係数k34を0.08にそれぞれ固定したうえで、可変抵抗器11(Rl)の値を51Ω、100Ω、270Ω、500Ωの4つの値に変えた場合の無線電力伝送装置1の入力インピーダンスZinの値を、結合係数k12の値を0.05、0.06、0.07、0.08の4つの値に設定して測定した(結合係数の調整方法についての詳細は後述する)。そして、双峰性における低周波側のピーク付近の周波数fLに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(同相共振モード:7.9MHz)の測定値を図7(A)に示す。また、双峰性における高周波側のピーク付近の周波数fHに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(逆相共振モード:8.2MHz)の測定値を図7(B)に示す。
 図7(A)の同相共振モードの測定結果より、結合係数k12の値を0.05に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、9.1Ω、→ 10.5Ω、→ 12.3Ω、→ 12.8Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、12.8-9.1=3.7Ωである。
 また、結合係数k12の値を0.06に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、18.0Ω、→ 20.7Ω、→ 24.0Ω、→ 25.4Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、25.4-18.0=7.4Ωである。
 また、結合係数k12の値を0.07に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、29.5Ω、→ 34.1Ω、→ 39.8Ω、→ 41.9Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、41.9-29.5=12.4Ωである。
 また、結合係数k12の値を0.08に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、35.9Ω、→ 42.3Ω、→ 49.9Ω、→ 51.9Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、51.9-35.9=16.0Ωである。
 上記のように、同相共振モードにおいて、結合係数k12の値を0.05、→ 0.06、→ 0.07、→ 0.08と大きくすることにより、可変抵抗器11(Rl)(被給電機器の負荷インピーダンス)の変化量に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量である負荷変動応答性は高くなる傾向にあることが分かる。また、逆に、結合係数k12の値を0.08、→ 0.07、→ 0.06、→ 0.05と小さくすることにより、負荷変動応答性は小さくなる傾向にあることが分かる。
 また、図7(B)の逆相共振モードの測定結果においても同様に、結合係数k12の値を0.05に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、8.7Ω、→ 9.5Ω、→ 10.5Ω、→ 10.8Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、10.8-8.7=2.1Ωである。
 また、結合係数k12の値を0.06に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、14.9Ω、→ 15.8Ω、→ 17.3Ω、→ 18.0Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、18.0-14.9=3.1Ωである。
 また、結合係数k12の値を0.07に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、25.0Ω、→ 26.6Ω、→ 29.4Ω、→ 30.5Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、30.5-25.0=5.5Ωである。
 また、結合係数k12の値を0.08に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、32.1Ω、→ 34.2Ω、→ 37.8Ω、→ 38.7Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、38.7-32.1=6.6Ωである。
 上記のように、逆相共振モードにおいても、結合係数k12の値を0.05、→ 0.06、→ 0.07、→ 0.08と大きくすることにより、可変抵抗器11(Rl)(被給電機器の負荷インピーダンス)の変化量に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量である負荷変動応答性は高くなる傾向にあることが分かる。また、逆に、結合係数k12の値を0.08、→ 0.07、→ 0.06、→ 0.05と小さくすることにより、負荷変動応答性は小さくなる傾向にあることが分かる。
 (測定実験4:結合係数k34の値を変えた場合のZinの負荷変動応答性)
 測定実験4に使用する無線電力伝送装置1では、測定実験1と同様に、給電コイル21は、抵抗器R1、コイルL1を要素とするRL回路を構成しており(共振なし)、コイルL1部分は、銅線材(絶縁被膜付)を1回巻にして、コイル径を96mmφに設定している。同様に、受電コイル31は、抵抗器R4、コイルL4を要素とするRL回路を構成しており(共振なし)、コイルL4部分は、銅線材(絶縁被膜付)を1回巻にして、コイル径を96mmφに設定している。なお、その他の構成も、測定実験1と同様である。また、測定実験4に使用する無線電力伝送装置1におけるR1、R2、R3、R4の値をそれぞれ、0.05Ω、0.5Ω、0.5Ω、0.05Ωに設定した。また、L1、L2、L3、L4の値をそれぞれ、0.3μH、4μH、4μH、0.3μHに設定した(測定実験1と同じ)。また、給電共振器22及び受電共振器32における共振周波数は12.8MHzである。
 測定実験4では、結合係数k12を0.35、結合係数k23を0.10にそれぞれ固定したうえで、可変抵抗器11(Rl)の値を51Ω、100Ω、270Ω、500Ωの4つの値に変えた場合の無線電力伝送装置1の入力インピーダンスZinの値を、結合係数k34の値を0.11、0.15、0.22、0.35の4つの値に設定して測定した(結合係数の調整方法についての詳細は後述する)。そして、双峰性における低周波側のピーク付近の周波数fLに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(同相共振モード:12.2MHz)の測定値を図8(A)に示す。また、双峰性における高周波側のピーク付近の周波数fHに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(逆相共振モード:13.4MHz)の測定値を図8(B)に示す。
 図8(A)の同相共振モードの測定結果より、結合係数k34の値を0.11に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、202.5Ω、→ 228.2Ω、→ 259.1Ω、→ 269.2Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、269.2-202.5=66.7Ωである。
 また、結合係数k34の値を0.15に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、165.8Ω、→ 197.7Ω、→ 242.0Ω、→ 259.3Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、259.3-165.8=93.5Ωである。
 また、結合係数k34の値を0.22に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、127.4Ω、→ 152.8Ω、→ 209.7Ω、→ 230.2Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、230.2-127.4=102.8Ωである。
 また、結合係数k34の値を0.35に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、79.0Ω、→ 97.1Ω、→ 148.5Ω、→ 183.1Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、183.1-79.0=104.1Ωである。
 上記のように、同相共振モードにおいて、結合係数k34の値を0.11、→ 0.15、→ 0.22、→ 0.35と大きくすることにより、可変抵抗器11(Rl)(被給電機器の負荷インピーダンス)の変化量に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量である負荷変動応答性は高くなる傾向にあることが分かる。また、逆に、結合係数k34の値を0.35、→ 0.22、→ 0.15、→ 0.11と小さくすることにより、負荷変動応答性は小さくなる傾向にあることが分かる。
 また、図8(B)の逆相共振モードの測定結果においても同様に、結合係数k34の値を0.11に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、117.1Ω、→ 127.4Ω、→ 138.0Ω、→ 141.3Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、141.3-117.1=24.2Ωである。
 また、結合係数k34の値を0.15に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、96.1Ω、→ 112.8Ω、→ 131.1Ω、→ 137.6Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、137.6-96.1=41.5Ωである。
 また、結合係数k34の値を0.22に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、66.1Ω、→ 86.8Ω、→ 115.0Ω、→ 126.5Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、126.5-66.1=60.4Ωである。
 また、結合係数k34の値を0.35に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、33.3Ω、→ 50.3Ω、→ 80.6Ω、→ 96.7Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、96.7-33.3=63.4Ωである。
 上記のように、逆相共振モードにおいて、結合係数k34の値を0.11、→ 0.15、→ 0.22、→ 0.35と大きくすることにより、可変抵抗器11(Rl)(被給電機器の負荷インピーダンス)の変化量に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量である負荷変動応答性は高くなる傾向にあることが分かる。また、逆に、結合係数k34の値を0.35、→ 0.22、→ 0.15、→ 0.11と小さくすることにより、負荷変動応答性は小さくなる傾向にあることが分かる。
 (測定実験5:結合係数k34の値を変えた場合のZinの負荷変動応答性)
 測定実験5に使用する無線電力伝送装置1では、測定実験4と異なり、給電コイル21は、抵抗器R1、コイルL1、及び、コンデンサC1を要素とするRLC回路を構成しており(共振あり)、コイルL1部分は、銅線材(絶縁被膜付)を1回巻にして、コイル径を96mmφに設定している。同様に、受電コイル31も、抵抗器R4、コイルL4、及び、コンデンサC4を要素とするRLC回路を構成しており、コイルL4部分は、銅線材(絶縁被膜付)を1回巻にして、コイル径を96mmφに設定している。なお、その他の構成は、測定実験4と同様である。そして、測定実験5に使用する無線電力伝送装置1におけるR1、R2、R3、R4の値をそれぞれ、0.05Ω、0.5Ω、0.5Ω、0.05Ωに設定した。また、L1、L2、L3、L4の値をそれぞれ、0.3μH、4μH、4μH、0.3μHに設定した。また、給電コイル21、給電共振器22、受電共振器32、及び、受電コイル31における共振周波数は12.8MHzである。
 測定実験5では、結合係数k12を0.35、結合係数k23を0.10にそれぞれ固定したうえで、可変抵抗器11(Rl)の値を51Ω、100Ω、270Ω、500Ωの4つの値に変えた場合の無線電力伝送装置1の入力インピーダンスZinの値を、結合係数k34の値を0.11、0.15、0.22、0.35の4つの値に設定して測定した(結合係数の調整方法についての詳細は後述する)。そして、双峰性における低周波側のピーク付近の周波数fLに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(同相共振モード:12.2MHz)の測定値を図9(A)に示す。また、双峰性における高周波側のピーク付近の周波数fHに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(逆相共振モード:13.4MHz)の測定値を図9(B)に示す。
 図9(A)の同相共振モードの測定結果より、結合係数k34の値を0.11に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、170.5Ω、→ 204.9Ω、→ 238.0Ω、→ 246.7Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、246.7-170.5=76.2Ωである。
 また、結合係数k34の値を0.15に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、134.9Ω、→ 176.5Ω、→ 222.8Ω、→ 239.7Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、239.7-134.9=104.8Ωである。
 また、結合係数k34の値を0.22に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、94.2Ω、→ 133.4Ω、→ 193.8Ω、→ 216.2Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、216.2-94.2=122.0Ωである。
 また、結合係数k34の値を0.35に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、48.8Ω、→ 77.6Ω、→ 136.5Ω、→ 173.1Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、173.1-48.8=124.3Ωである。
 上記のように、同相共振モードにおいて、結合係数k34の値を0.11、→ 0.15、→ 0.22、→ 0.35と大きくすることにより、可変抵抗器11(Rl)(被給電機器の負荷インピーダンス)の変化量に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量である負荷変動応答性は高くなる傾向にあることが分かる。また、逆に、結合係数k34の値を0.35、→ 0.22、→ 0.15、→ 0.11と小さくすることにより、負荷変動応答性は小さくなる傾向にあることが分かる。
 また、図9(B)の逆相共振モードの測定結果においても同様に、結合係数k34の値を0.11に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、105.5Ω、→ 119.3Ω、→ 130.6Ω、→ 133.9Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、133.9-105.5=28.4Ωである。
 また、結合係数k34の値を0.15に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、86.6Ω、→ 105.2Ω、→ 123.4Ω、→ 129.3Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、129.3-86.6=42.7Ωである。
 また、結合係数k34の値を0.22に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、63.0Ω、→ 83.3Ω、→ 110.9Ω、→ 122.1Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、122.1-63.0=59.1Ωである。
 また、結合係数k34の値を0.35に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、35.9Ω、→ 49.8Ω、→ 79.0Ω、→ 95.9Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、95.9-35.9=60.0Ωである。
 上記のように、逆相共振モードにおいても、結合係数k34の値を0.11、→ 0.15、→ 0.22、→ 0.35と大きくすることにより、可変抵抗器11(Rl)(被給電機器の負荷インピーダンス)の変化量に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量である負荷変動応答性は高くなる傾向にあることが分かる。また、逆に、結合係数k34の値を0.35、→ 0.22、→ 0.15、→ 0.11と小さくすることにより、負荷変動応答性は小さくなる傾向にあることが分かる。
 (測定実験6:結合係数k34の値を変えた場合のZinの負荷変動応答性)
 測定実験6に使用する無線電力伝送装置1では、測定実験4、5と異なり、給電コイル21、給電共振器22、受電共振器32、受電コイル31のコイル部分に、平面上にコイルを巻き回して作成したパターンコイルを使用している。具体的には、給電コイル21は、抵抗器R1、コイルL1、及び、コンデンサC1を要素とするRLC回路を構成しており(共振あり)、コイルL1部分は、銅箔のエッチングにより形成した12回巻き、コイル径35mmφのパターンコイルを使用している。同様に、受電コイル31は、抵抗器R4、コイルL4、及び、コンデンサC4を要素とするRLC回路を構成しており、コイルL4部分は、銅箔のエッチングにより形成した12回巻き、コイル径35mmφのパターンコイルを使用している。また、給電共振器22は、抵抗器R2、コイルL2、及び、コンデンサC2を要素とするRLC回路を構成しており、コイルL2部分は、銅箔のエッチングにより形成した12回巻き、コイル径35mmφのパターンコイルを使用している。また、受電共振器32は、抵抗器R3、コイルL3、及び、コンデンサC3を要素とするRLC回路を構成しており、コイルL3部分は、銅箔のエッチングにより形成した12回巻き、コイル径35mmφのパターンコイルを使用している。そして、測定実験6に使用する無線電力伝送装置1におけるR1、R2、R3、R4の値をそれぞれ、1.8Ω、1.8Ω、1.8Ω、1.8Ωに設定した。また、L1、L2、L3、L4の値をそれぞれ、2.5μH、2.5μH、2.5μH、2.5μHに設定した。また、給電コイル21、給電共振器22、受電共振器32、及び、受電コイル31における共振周波数は8.0MHzである。
 測定実験6では、結合係数k12を0.08、結合係数k23を0.05にそれぞれ固定したうえで、可変抵抗器11(Rl)の値を51Ω、100Ω、270Ω、500Ωの4つの値に変えた場合の無線電力伝送装置1の入力インピーダンスZinの値を、結合係数k34の値を0.05、0.06、0.07、0.08の4つの値に設定して測定した(結合係数の調整方法についての詳細は後述する)。そして、双峰性における低周波側のピーク付近の周波数fLに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(同相共振モード:7.9MHz)の測定値を図10(A)に示す。また、双峰性における高周波側のピーク付近の周波数fHに、給電モジュール2に供給する交流電力の駆動周波数を設定した場合(逆相共振モード:8.2MHz)の測定値を図10(B)に示す。
 図10(A)の同相共振モードの測定結果より、結合係数k34の値を0.05に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、55.8Ω、→ 59.7Ω、→ 62.6Ω、→ 63.5Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、63.5-55.8=7.7Ωである。
 また、結合係数k34の値を0.06に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、50.2Ω、→ 56.1Ω、→ 60.6Ω、→ 62.0Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、62.0-50.2=11.8Ωである。
 また、結合係数k34の値を0.07に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、45.3Ω、→ 51.4Ω、→ 58.6Ω、→ 61.0Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、61.0-45.3=15.7Ωである。
 また、結合係数k34の値を0.08に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、35.9Ω、→ 42.3Ω、→ 49.9Ω、→ 51.9Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、51.9-35.9=16.0Ωである。
 上記のように、同相共振モードにおいて、結合係数k34の値を0.05、→ 0.06、→ 0.07、→ 0.08と大きくすることにより、可変抵抗器11(Rl)(被給電機器の負荷インピーダンス)の変化量に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量である負荷変動応答性は高くなる傾向にあることが分かる。また、逆に、結合係数k34の値を0.08、→ 0.07、→ 0.06、→ 0.05と小さくすることにより、負荷変動応答性は小さくなる傾向にあることが分かる。
 また、図10(B)の逆相共振モードの測定結果においても同様に、結合係数k34の値を0.05に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、43.9Ω、→ 45.6Ω、→ 46.8Ω、→ 47.1Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、47.1-43.9=3.2Ωである。
 また、結合係数k34の値を0.06に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、41.0Ω、→ 43.7Ω、→ 45.7Ω、→ 46.2Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、46.2-41.0=5.2Ωである。
 また、結合係数k34の値を0.07に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、39.4Ω、→ 41.2Ω、→ 44.6Ω、→ 45.1Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、45.1-39.4=5.7Ωである。
 また、結合係数k34の値を0.08に設定した場合、可変抵抗器11(Rl)の値を51Ω→ 100Ω、→ 270Ω、→ 500Ωの順に大きくしていくと、無線電力伝送装置1の入力インピーダンスZinの値は、32.1Ω、→ 34.2Ω、→ 37.8Ω、→ 38.7Ωという具合に上昇した。この場合、可変抵抗器11(Rl)の値が51Ωから500Ωに上昇した場合の入力インピーダンスZinの変化量は、38.7-32.1=6.6Ωである。
 上記のように、逆相共振モードにおいても、結合係数k34の値を0.05、→ 0.06、→ 0.07、→ 0.08と大きくすることにより、可変抵抗器11(Rl)(被給電機器の負荷インピーダンス)の変化量に対する無線電力伝送装置1の入力インピーダンスZinの値の変化量である負荷変動応答性は高くなる傾向にあることが分かる。また、逆に、結合係数k34の値を0.08、→ 0.07、→ 0.06、→ 0.05と小さくすることにより、負荷変動応答性は小さくなる傾向にあることが分かる。
 上記測定実験1~6によれば、給電コイル21、給電共振器22、受電共振器32、及び、受電コイル31を備えた無線電力伝送装置1において、隣接するコイル間における結合係数、例えば、結合係数k12の値、または、結合係数k34の値を大きくすることにより負荷変動応答性を高くすることができ、結合係数k12の値、または、結合係数k34の値を小さくすることにより負荷変動応答性を小さくすることができることが分かる。
 (結合係数の調整方法)
 次に、無線電力伝送装置1における入力インピーダンスZinの負荷変動応答性を調整するためのパラメータである結合係数k12、及び、k34の調整方法について説明する。
 一般的に、図11に示すように、無線電力伝送において、コイルとコイルとの間の距離と結合係数kとの関係は、コイルとコイルとの間の距離を縮める(短くする)と結合係数kの値が高くなる傾向がある。これを本実施形態に係る無線電力伝送装置1に当てはめると、給電コイル21と給電共振器22との間の距離d12、給電共振器22と受電共振器32との間の距離d23、受電共振器32と受電コイル31との間の距離d34をそれぞれ縮めることによって、給電コイル21(コイルL1)と給電共振器22(コイルL2)との間の結合係数k12、給電共振器22(コイルL2)と受電共振器32(コイルL3)との間の結合係数k23、受電共振器32(コイルL3)と受電コイル31(コイルL4)との間の結合係数k34を高めることができる。逆に、給電コイル21と給電共振器22との間の距離d12、給電共振器22と受電共振器32との間の距離d23、受電共振器32と受電コイル31との間の距離d34をそれぞれ伸ばすことによって、給電コイル21(コイルL1)と給電共振器22(コイルL2)との間の結合係数k12、給電共振器22(コイルL2)と受電共振器32(コイルL3)との間の結合係数k23、受電共振器32(コイルL3)と受電コイル31(コイルL4)との間の結合係数k34を低めることができる。
 上記結合係数の調整方法、及び、結合係数の変化による入力インピーダンスZinの変化の測定実験より、給電共振器22と受電共振器32との間の距離d23、及び、受電共振器32と受電コイル31との間の距離d34を固定した場合、給電コイル21と給電共振器22との間の距離d12を短くすることにより、給電コイル21と給電共振器22との間における結合係数k12の値を大きくし、結合係数k12の値を大きくすることにより、無線電力伝送装置1における入力インピーダンスZinの負荷変動応答性を高くすることができる。逆に、給電コイル21と給電共振器22との間の距離d12を長くすることにより、給電コイル21と給電共振器22との間における結合係数k12の値を小さくし、結合係数k12の値を小さくすることにより、無線電力伝送装置1における入力インピーダンスZinの負荷変動応答性を小さくすることができる。
 また、給電コイル21と給電共振器22との間の距離d12、及び、給電共振器22と受電共振器32との間の距離d23を固定した場合、受電共振器32と受電コイル31との間の距離d34を短くすることにより、受電共振器32と受電コイル31との間における結合係数k34の値を大きくし、結合係数k34の値を大きくすることにより、無線電力伝送装置1における入力インピーダンスZinの負荷変動応答性を高くすることができる。逆に、受電共振器32と受電コイル31との間の距離d34を長くすることにより、受電共振器32と受電コイル31との間における結合係数k34の値を小さくし、結合係数k34の値を小さくすることにより、無線電力伝送装置1における入力インピーダンスZinの負荷変動応答性を小さくすることができる。
 そして、負荷変動応答性を高くすることができれば、被給電機器における負荷インピーダンスZlの変化に対する、無線電力伝送装置1の入力インピーダンスZinの値の変化量を大きくすることができるため、例えば、被給電機器における負荷インピーダンスZlが上昇した際には、被給電機器における負荷インピーダンスZlの上昇に追随して無線電力伝送装置1の入力インピーダンスZinの値を大きく上げることができ、その際に供給される電力を低減することができる(消費電力量を低減することができる)。一方、負荷変動応答性を小さくすることができれば、被給電機器における負荷インピーダンスZlの変化に対する、無線電力伝送装置1の入力インピーダンスZinの値の変化量を小さくすることができるため、被給電機器における負荷インピーダンスZlが変化したとしても、無線電力伝送装置1の入力インピーダンスZinの値を維持することができ、その際に供給される電力を維持することができる。
 また、上記では、給電コイル21と給電共振器22との間の距離d12、給電共振器22と受電共振器32との間の距離d23、及び、受電共振器32と受電コイル31との間の距離d34を物理的に変化させるという簡易な作業により、それぞれのコイル間の結合係数の値を変えることができる。即ち、給電コイル21と給電共振器22との間の距離d12、又は、受電共振器32と受電コイル31との間の距離d34を物理的に変化させるという簡易な作業によって、無線電力伝送装置1における入力インピーダンスZinの負荷変動応答性を調整することが可能となる。
 更に、上記方法によれば、無線電力伝送装置1における入力インピーダンスZinの負荷変動応答性の調整を、インピーダンス調整器などの新たな機器を設けずに実現することができる。即ち、無線電力伝送装置1の部品点数を増やさずに、無線電力伝送装置1における入力インピーダンスZinの負荷変動応答性を調整することが可能となる。
 なお、上記では、無線電力伝送装置1における入力インピーダンスZinの負荷変動応答性を調整する結合係数k12、k34の調整方法として、給電コイル21と給電共振器22との間の距離d12、及び、受電共振器32と受電コイル31との間の距離d34をそれぞれ変化させる方法を例示して説明した。しかし、結合係数k12、k34の調整方法としては、これに限らず、給電共振器22の中心軸と受電共振器32の中心軸をずらす方法や、給電共振器22のコイル面と受電共振器32のコイル面に角度をつける方法や、給電コイル21・給電共振器22や受電共振器32・受電コイル31などの各素子(抵抗、コンデンサ、コイル)の容量を変化させる方法や、給電モジュール2に供給する交流電力の駆動周波数を変える方法などが挙げられる。
 (製造方法)
 次に、無線電力伝送装置1を製造する一工程である、設計方法(設計工程)について、図12及び図13を参照して説明する。本説明では、無線電力伝送装置1を搭載する携帯機器としてイヤホンスピーカ部200aを備えた無線式ヘッドセット200、及び、充電器201を例にして説明する(図12参照)。
 本設計方法で設計される無線電力伝送装置1は、図12に示す無線式ヘッドセット200及び充電器201に、それぞれ受電モジュール3(受電コイル31・受電共振器32)及び給電モジュール2(給電コイル21・給電共振器22)として搭載されている。また、図12では、説明の都合上、安定回路7、充電回路8及びリチウムイオン二次電池9を受電モジュール3の外に記載しているが、実際は、ソレノイド状の受電コイル31及び受電共振器32のコイル内周側に配置されている。即ち、無線式ヘッドセット200には、受電モジュール3、安定回路7、充電回路8及びリチウムイオン二次電池9が搭載されており、充電器201には、給電モジュール2が搭載されており、給電モジュール2の給電コイル21に交流電源6が接続された状態で使用される。
 (設計方法)
 まず、図13に示すように、リチウムイオン二次電池9の容量、及び、リチウムイオン二次電池9の充電に必要とされる充電電流から、受電モジュール3が受電する受電電力量が決まる(S1)。
 次に、給電モジュール2と受電モジュール3との間の距離を決定する(S2)。これは、受電モジュール3を内蔵した無線式ヘッドセット200を、給電モジュール2を内蔵した充電器201に載置した際の給電共振器22と受電共振器32との間の距離d23であり、使用形態としては充電中の状態である。より詳細には、給電共振器22と受電共振器32との間の距離d23は、無線式ヘッドセット200と充電器201の形状・構造を考慮して決定される。
 また、無線式ヘッドセット200の大きさ・形状・構造を踏まえて、受電モジュール3における受電コイル31及び受電共振器32のコイル径が決定される(S3)。
 また、充電器201の大きさ・形状・構造を踏まえて、給電モジュール2における給電コイル21及び給電共振器22のコイル径が決定される(S4)。
 上記S2~S4の手順を経ることにより、無線電力伝送装置1の給電共振器22(コイルL2)と受電共振器32(コイルL3)との間の結合係数k23と、電力伝送効率が決まることになる。
 上記S1で決定した受電モジュール3が受電する受電電力量、及び、S2~S4の手順を経て決定された電力伝送効率より、給電モジュール2に給電する必要最低限の給電電力量が決定される(S5)。
 そして、上記受電モジュール3が受電する受電電力量、電力伝送効率、及び、給電モジュール2に給電する必要最低限の給電電力量を踏まえて、無線電力伝送装置1における入力インピーダンスZinの設計値が決まる(S6)。
 そして、S6で決定された入力インピーダンスZin及び入力インピーダンスZinの負荷変動応答性を有するように、給電コイル21と給電共振器22との間の距離d12、及び、受電共振器32と受電コイル31との間の距離d34が決められる(S7)。具体的には、給電共振器22と受電共振器32との間の距離d23、及び、受電共振器32と受電コイル31との間の距離d34を固定した場合、給電コイル21と給電共振器22との間の距離d12を短くすることにより、無線電力伝送装置1の入力インピーダンスZinの負荷変動応答性が高くなる特性に基づき調整をしたり、給電コイル21と給電共振器22との間の距離d12、及び、給電共振器22と受電共振器32との間の距離d23を固定した場合、受電共振器32と受電コイル31との間の距離d34を短くすることにより、無線電力伝送装置1の入力インピーダンスZinの負荷変動応答性が高くなる特性に基づき調整をしたりすることにより、S6で決定された入力インピーダンスZin及び入力インピーダンスZinの負荷変動応答性になるような、給電コイル21と給電共振器22との間の距離d12、及び、受電共振器32と受電コイル31との間の距離d34が決定される。
 上記設計方法を含む無線電力伝送装置1の製造方法、及び、上記設計工程を経て製造された無線電力伝送装置1によれば、無線電力伝送装置1における入力インピーダンスZinの負荷変動応答性の調整を、新たな機器を設けずにできる無線電力伝送装置1を製造することができる。即ち、無線電力伝送装置1の部品点数を増やさずに、無線電力伝送装置1における入力インピーダンスZinの負荷変動応答性を調整することが可能となる。
 (その他の実施形態)
 上記製造方法の説明では、無線式ヘッドセット200を例示して説明したが、充電池を備えた機器であれば、タブレット型PC、デジタルカメラ、携帯電話、イヤホン型音楽プレイヤー、補聴器、集音器などにも使用することができる。
 また、上記説明では、給電モジュール2及び受電モジュール3が備える共振器(コイル)間の共振現象(磁界共鳴状態)を利用して磁場を結合させることにより電力伝送を行う無線電力伝送装置1を例示して説明したが、コイル間の電磁誘導を利用して電力伝送を行う無線電力伝送装置1においても適用可能である。
 また、上記説明では、無線電力伝送装置1を携帯型の電子機器に搭載した場合を想定して説明したが、用途はこれら小型なものに限らず、必要電力量に合わせて仕様を変更することにより、例えば、比較的大型な電気自動車(EV)における無線充電システムや、より小型な医療用の無線式胃カメラなどにも搭載することができる。
 以上の詳細な説明では、本発明をより容易に理解できるように、特徴的部分を中心に説明したが、本発明は、以上の詳細な説明に記載する実施形態・実施例に限定されず、その他の実施形態・実施例にも適用することができ、その適用範囲は可能な限り広く解釈されるべきである。また、本明細書において用いた用語及び語法は、本発明を的確に説明するために用いたものであり、本発明の解釈を制限するために用いたものではない。また、当業者であれば、本明細書に記載された発明の概念から、本発明の概念に含まれる他の構成、システム、方法等を推考することは容易であると思われる。従って、請求の範囲の記載は、本発明の技術的思想を逸脱しない範囲で均等な構成を含むものであるとみなされるべきである。また、本発明の目的及び本発明の効果を充分に理解するために、すでに開示されている文献等を充分に参酌することが望まれる。
 1 無線電力伝送装置
 2 給電モジュール
 3 受電モジュール
 6 交流電源
 7 安定回路
 8 充電回路
 9 リチウムイオン二次電池
21 給電コイル
22 給電共振器
31 受電コイル
32 受電共振器
200 無線式ヘッドセット
201 充電器





                                                                        

Claims (11)

  1.  給電モジュールから、電力を消費する被給電機器が接続された受電モジュールに対して磁界を変化させて電力を供給する無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法であって、
     前記給電モジュール、及び、受電モジュールはそれぞれ少なくとも1つのコイルを有し、
     隣接する前記コイル間における結合係数の値をそれぞれ調整することにより、前記被給電機器の負荷インピーダンスの単位変化量に対する当該無線電力伝送装置の入力インピーダンスの値の変化量である負荷変動応答性を調整することを特徴とする無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法。
  2.  少なくとも給電コイル及び給電共振器を備えた給電モジュールから、少なくとも受電共振器及び受電コイルを備え、電力を消費する被給電機器が接続された受電モジュールに対して共振現象によって電力を供給する無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法であって、
     前記給電コイルと前記給電共振器との間における結合係数k12、前記給電共振器と前記受電共振器との間における結合係数k23、及び、前記受電共振器と前記受電コイルとの間における結合係数k34の値の少なくとも1つを調整することにより、前記負荷変動応答性を調整することを特徴とする請求項1に記載の無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法。
  3.  前記各結合係数k12、k23、k34の値は、それぞれ前記給電コイルと前記給電共振器との間の距離、前記給電共振器と前記受電共振器との間の距離、及び、前記受電共振器と前記受電コイルとの間の距離の少なくとも1つを変化させることにより調整されることを特徴とする請求項2に記載の無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法。
  4.  前記給電共振器と前記受電共振器との間の距離、及び、前記受電共振器と前記受電コイルとの間の距離を固定した場合、
     前記負荷変動応答性は、
     前記給電コイルと前記給電共振器との間の距離を短くするにつれて、前記給電コイルと前記給電共振器との間における前記結合係数k12の値が大きくなり、前記結合係数k12の値が大きくなるにつれて、当該無線電力伝送装置における入力インピーダンスの負荷変動応答性が高くなる特性に基づいて調整されることを特徴とする請求項3に記載の無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法。
  5.  前記給電コイルと前記給電共振器との間の距離、及び、前記給電共振器と前記受電共振器との間の距離を固定した場合、
     前記負荷変動応答性は、
     前記受電共振器と前記受電コイルとの間の距離を短くするにつれて、前記受電共振器と前記受電コイルとの間における前記結合係数k34の値が大きくなり、前記結合係数k34の値が大きくなるにつれて、当該無線電力伝送装置における入力インピーダンスの負荷変動応答性が高くなる特性に基づいて調整されることを特徴とする請求項3に記載の無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法。
  6.  前記給電モジュールに供給する電力の駆動周波数に対する伝送特性の値が、前記給電モジュール及び受電モジュールにおける共振周波数よりも低い駆動周波数帯域及び前記共振周波数よりも高い駆動周波数帯域にそれぞれピークを有するように設定し、
     前記給電モジュールに供給する電力の前記駆動周波数は、前記共振周波数よりも低い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域であることを特徴とする請求項2~5の何れかに記載の無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法。
  7.  前記給電モジュールに供給する電力の駆動周波数に対する伝送特性の値が、前記給電モジュール及び受電モジュールにおける共振周波数よりも低い駆動周波数帯域及び前記共振周波数よりも高い駆動周波数帯域にそれぞれピークを有するように設定し、
     前記給電モジュールに供給する電力の前記駆動周波数は、前記共振周波数よりも高い駆動周波数帯域に現れる伝送特性のピーク値に対応する帯域であることを特徴とする請求項2~5の何れかに記載の無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法。
  8.  請求項1~5のいずれかに記載の入力インピーダンスの負荷変動応答性の調整方法により調整されたことを特徴とする無線電力伝送装置。
  9.  請求項6に記載の入力インピーダンスの負荷変動応答性の調整方法により調整されたことを特徴とする無線電力伝送装置。
  10.  請求項7に記載の入力インピーダンスの負荷変動応答性の調整方法により調整されたことを特徴とする無線電力伝送装置。
  11.  給電モジュールから、電力を消費する被給電機器が接続された受電モジュールに対して磁界を変化させて電力を供給する無線電力伝送装置の製造方法であって、
     前記給電モジュール、及び、受電モジュールにそれぞれ少なくとも1つのコイルを設け、
     隣接する前記コイル間における結合係数の値をそれぞれ調整することにより、前記被給電機器の負荷インピーダンスの単位変化量に対する当該無線電力伝送装置の入力インピーダンスの値の変化量である負荷変動応答性を調整する工程を含むことを特徴とする無線電力伝送装置の製造方法。
PCT/JP2013/077565 2013-02-28 2013-10-10 無線電力伝送装置、無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法、及び、無線電力伝送装置の製造方法 WO2014132480A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11201506812XA SG11201506812XA (en) 2013-02-28 2013-10-10 Wireless power transmission device, method for adjusting load fluctuation response of input impedance in wireless power transmission device, and method for manufacturing wireless power transmission device
EP13876518.5A EP2985860A4 (en) 2013-02-28 2013-10-10 WIRELESS POWER TRANSMISSION DEVICE, METHOD FOR SETTING THE LOAD TUNING RESPONSE OF AN INPUT IMPEDANCE IN A WIRELESS POWER TRANSMISSION DEVICE AND METHOD FOR PRODUCING A WIRELESS POWER TRANSMISSION DEVICE
US14/771,412 US20160006265A1 (en) 2013-02-28 2013-10-10 Wireless power transmission device, method for adjusting load fluctuation response of input impedance in wireless power transmission device, and method for manufacturing wireless power transmission device
KR1020157024934A KR20150122170A (ko) 2013-02-28 2013-10-10 무선 전력 전송 장치, 무선 전력 전송 장치에서의 입력 임피던스의 부하 변동 응답성의 조정 방법, 및 무선 전력 전송 장치의 제조 방법
CN201380074086.6A CN105009408A (zh) 2013-02-28 2013-10-10 无线电力传输装置、无线电力传输装置中的输入阻抗的负荷变动响应性的调整方法以及无线电力传输装置的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-039795 2013-02-28
JP2013039795A JP2014168358A (ja) 2013-02-28 2013-02-28 無線電力伝送装置、無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法、及び、無線電力伝送装置の製造方法

Publications (1)

Publication Number Publication Date
WO2014132480A1 true WO2014132480A1 (ja) 2014-09-04

Family

ID=51427774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077565 WO2014132480A1 (ja) 2013-02-28 2013-10-10 無線電力伝送装置、無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法、及び、無線電力伝送装置の製造方法

Country Status (8)

Country Link
US (1) US20160006265A1 (ja)
EP (1) EP2985860A4 (ja)
JP (1) JP2014168358A (ja)
KR (1) KR20150122170A (ja)
CN (1) CN105009408A (ja)
SG (1) SG11201506812XA (ja)
TW (1) TW201436413A (ja)
WO (1) WO2014132480A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108806416A (zh) * 2018-08-06 2018-11-13 南京科技职业学院 机械波波动实验及教学演示仪

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015133834A (ja) * 2014-01-14 2015-07-23 日東電工株式会社 無線電力伝送装置及びその製造方法
JP2017034940A (ja) * 2015-08-05 2017-02-09 株式会社フジクラ 非接触電力伝送システム、非接触電力伝送システムのアンテナ設計方法、および非接触電力伝送方法
CN106936224B (zh) * 2015-12-31 2020-08-25 比亚迪股份有限公司 无线充电方法和装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206495A (ja) * 1990-11-30 1992-07-28 Matsushita Electric Ind Co Ltd 高周波加熱装置
JPH0654454A (ja) * 1992-07-28 1994-02-25 Matsushita Electric Works Ltd 誘導充電器
JP2002101578A (ja) * 2000-09-26 2002-04-05 Matsushita Electric Works Ltd 非接触電力伝達装置
JP2010239769A (ja) 2009-03-31 2010-10-21 Fujitsu Ltd 無線電力供給システム
JP4624768B2 (ja) 2004-11-29 2011-02-02 オリンパス株式会社 被検体内導入装置および被検体内導入システム
WO2011065732A2 (en) * 2009-11-30 2011-06-03 Samsung Electronics Co., Ltd. Wireless power transceiver and wireless power system
WO2011148803A1 (ja) * 2010-05-28 2011-12-01 株式会社村田製作所 電力伝送システム
JP2012182980A (ja) * 2011-03-01 2012-09-20 Tdk Corp ワイヤレス受電装置、ワイヤレス電力伝送システムおよび電力制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4849142B2 (ja) * 2009-02-27 2012-01-11 ソニー株式会社 電力供給装置および電力伝送システム
JP2011050140A (ja) * 2009-08-26 2011-03-10 Sony Corp 非接触給電装置、非接触受電装置、非接触給電方法、非接触受電方法および非接触給電システム
EP2536002A4 (en) * 2010-02-10 2017-03-29 Fujitsu Limited Resonance frequency control method, power transmission device, and power reception device for magnetic-resonant-coupling type power transmission system
US8970070B2 (en) * 2010-07-02 2015-03-03 Panasonic Intellectual Property Management Co., Ltd. Wireless power transmission system
JP5677875B2 (ja) * 2011-03-16 2015-02-25 日立マクセル株式会社 非接触電力伝送システム
JP5490046B2 (ja) * 2011-03-22 2014-05-14 株式会社東芝 伝送装置
US20120267961A1 (en) * 2011-04-21 2012-10-25 Advantest Corporation Wireless power supply apparatus
US9099885B2 (en) * 2011-06-17 2015-08-04 Semiconductor Energy Laboratory Co., Ltd. Wireless power feeding system
EP3435389A1 (en) * 2011-08-04 2019-01-30 WiTricity Corporation Tunable wireless power architectures

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206495A (ja) * 1990-11-30 1992-07-28 Matsushita Electric Ind Co Ltd 高周波加熱装置
JPH0654454A (ja) * 1992-07-28 1994-02-25 Matsushita Electric Works Ltd 誘導充電器
JP2002101578A (ja) * 2000-09-26 2002-04-05 Matsushita Electric Works Ltd 非接触電力伝達装置
JP4624768B2 (ja) 2004-11-29 2011-02-02 オリンパス株式会社 被検体内導入装置および被検体内導入システム
JP2010239769A (ja) 2009-03-31 2010-10-21 Fujitsu Ltd 無線電力供給システム
WO2011065732A2 (en) * 2009-11-30 2011-06-03 Samsung Electronics Co., Ltd. Wireless power transceiver and wireless power system
WO2011148803A1 (ja) * 2010-05-28 2011-12-01 株式会社村田製作所 電力伝送システム
JP2012182980A (ja) * 2011-03-01 2012-09-20 Tdk Corp ワイヤレス受電装置、ワイヤレス電力伝送システムおよび電力制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2985860A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108806416A (zh) * 2018-08-06 2018-11-13 南京科技职业学院 机械波波动实验及教学演示仪
CN108806416B (zh) * 2018-08-06 2023-12-12 南京科技职业学院 机械波波动实验及教学演示仪

Also Published As

Publication number Publication date
KR20150122170A (ko) 2015-10-30
EP2985860A1 (en) 2016-02-17
TW201436413A (zh) 2014-09-16
US20160006265A1 (en) 2016-01-07
EP2985860A4 (en) 2016-09-28
CN105009408A (zh) 2015-10-28
SG11201506812XA (en) 2015-09-29
JP2014168358A (ja) 2014-09-11

Similar Documents

Publication Publication Date Title
JP6169380B2 (ja) 無線電力伝送装置、無線電力伝送装置の発熱制御方法、及び、無線電力伝送装置の製造方法
WO2014171163A1 (ja) 無線電力伝送装置、無線電力伝送装置の発熱制御方法、及び、無線電力伝送装置の製造方法
JP6199058B2 (ja) 無線電力伝送によって電力供給される被給電機器の受電電圧制御方法、当該受電電圧制御方法によって調整された無線電力伝送装置、及び、その無線電力伝送装置の製造方法
JP5639693B1 (ja) 無線電力伝送装置及び無線電力伝送装置の供給電力制御方法
WO2014162766A1 (ja) 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
WO2015056539A1 (ja) 磁界空間を形成可能な無線電力伝送装置及びその形成方法
WO2014132479A1 (ja) 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
JP5622901B1 (ja) 無線電力伝送装置及び無線電力伝送装置の供給電力制御方法
WO2015108030A1 (ja) 無線電力伝送装置及びその製造方法
WO2014199830A1 (ja) 無線電力伝送装置及び無線電力伝送装置の電力供給方法
WO2014199827A1 (ja) 無線電力伝送に用いる給電モジュール及び給電モジュールの電力供給方法
WO2014132480A1 (ja) 無線電力伝送装置、無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法、及び、無線電力伝送装置の製造方法
WO2014125675A1 (ja) 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14771412

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157024934

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013876518

Country of ref document: EP