WO2011148803A1 - 電力伝送システム - Google Patents
電力伝送システム Download PDFInfo
- Publication number
- WO2011148803A1 WO2011148803A1 PCT/JP2011/061149 JP2011061149W WO2011148803A1 WO 2011148803 A1 WO2011148803 A1 WO 2011148803A1 JP 2011061149 W JP2011061149 W JP 2011061149W WO 2011148803 A1 WO2011148803 A1 WO 2011148803A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power transmission
- power
- device side
- electrode
- passive electrode
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 123
- 230000008878 coupling Effects 0.000 claims description 22
- 238000010168 coupling process Methods 0.000 claims description 22
- 238000005859 coupling reaction Methods 0.000 claims description 22
- 230000005672 electromagnetic field Effects 0.000 abstract description 9
- 230000005855 radiation Effects 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 description 18
- 239000003990 capacitor Substances 0.000 description 10
- 238000009499 grossing Methods 0.000 description 6
- 230000005684 electric field Effects 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/20—Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
- H04B5/22—Capacitive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/05—Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/70—Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/70—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
- H04B5/79—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
Definitions
- the present invention relates to a power transmission system that transmits power in a contactless manner.
- Patent Document 1 is disclosed as a system for transmitting power by capacitive coupling.
- the power transmission system of Patent Document 1 includes a high-frequency high-voltage generation circuit, a power transmission device including a passive electrode and an active electrode, and a power reception device including a high-frequency high-voltage load circuit, a passive electrode and an active electrode. .
- FIG. 1 is a diagram showing a basic configuration of the power transmission system of Patent Document 1.
- the power transmission device includes a high frequency high voltage generation circuit 1, a passive electrode 2, and an active electrode 3.
- the power receiving device includes a high frequency high voltage load circuit 5, a passive electrode 7 and an active electrode 6. Then, when the active electrode 3 of the power transmission device and the active electrode 6 of the power reception device come close to each other through the gap 4, the two electrodes are capacitively coupled to each other.
- FIG. 2 shows an example of instantaneous charges applied to the active electrode and the passive electrode.
- the charges of the active electrode 3 of the power transmission device 100 and the active electrode 6 of the power reception device 200 have opposite polarities, so that the passive electrode 2 of the power transmission device 100 and the passive electrode 7 of the power reception device 200 are reversed.
- Patent Document 1 an attempt is made to stabilize the potential of the passive electrode by increasing the area of the passive electrode. There is no problem if the passive electrode has a sufficiently large shape, but a sufficient effect cannot be obtained depending on the shape of the device.
- an object of the present invention is to provide a power transmission system that suppresses radiation of an unnecessary electromagnetic field from a passive electrode of a power receiving device.
- the power transmission system of the present invention is configured as follows.
- a power transmission device side active electrode, a power transmission device side passive electrode, and a high frequency high voltage generation circuit that applies a high frequency high voltage between the power transmission device side active electrode and the power transmission device side passive electrode, A power transmission device;
- a power receiving device including a load circuit In the high-frequency high-voltage generation circuit, the absolute value of the phase difference between the phase of the potential difference between the active electrode on the power transmission device side and the passive electrode and the phase of the potential difference between the active electrode on the power reception device side and the passive electrode is 0 degree.
- a high voltage having a frequency of less than 90 degrees is generated.
- the potential variation of the power receiving device side passive electrode is the same (same polarity) as the potential variation of the power transmitting device side passive electrode close to the ground potential, so that the potential variation of the power receiving device side passive electrode can be suppressed. . Thereby, the radiation of an unnecessary electromagnetic field can be suppressed without reducing the power efficiency.
- the resonant frequency of the power reception circuit by the passive electrode and the high-frequency high-voltage load circuit is substantially equal, and the frequency of the high voltage applied between the power transmission device-side active electrode and the power transmission device-side passive electrode is: It is a frequency on the high frequency side among the frequencies of two coupling modes generated in a state where the power transmission device and the power reception device are coupled.
- the power transmission device-side passive electrode is substantially equal to the ground potential (the ground / casing potential)
- the potential of the power reception device-side passive electrode is stabilized and radiation of unnecessary electromagnetic fields is effectively suppressed.
- the power transmitting device side passive electrode is made larger than the power transmitting device side active electrode, and if the power receiving device side passive electrode is made larger than the power receiving device side active electrode, the power to the power transmitting device side passive electrode Since the change in potential of the power receiving device side passive electrode is reduced, the potential of the power receiving device side passive electrode is further stabilized, and radiation of unnecessary electromagnetic fields is effectively suppressed.
- the electrodes are arranged so that the power transmission device side passive electrode and the power reception device side passive electrode face each other in the opposed state of the power transmission device side active electrode and the power reception device side active electrode.
- the capacitance generated between the power transmitting device side passive electrode and the power receiving device side passive electrode is increased, the potential fluctuation of the power receiving device side passive electrode is decreased, and the radiation of unnecessary electromagnetic fields is effectively suppressed.
- the resonance frequency of the power transmission circuit can be easily set to a predetermined frequency.
- the resonance frequency of the power receiving circuit can be easily set to a predetermined frequency.
- the potential fluctuation of the power receiving device side passive electrode is controlled, and the radiation of an unnecessary electromagnetic field from the power receiving device side passive electrode can be suppressed.
- FIG. 1 is a diagram illustrating a basic configuration of a power transmission system disclosed in Patent Document 1. As illustrated in FIG. FIG. 2 is a diagram showing an example of instantaneous charges applied to the active electrode and the passive electrode.
- FIG. 3A and FIG. 3B are equivalent circuit diagrams of the power transmission system according to the first embodiment.
- FIG. 4A is a diagram illustrating voltage and current with respect to the equivalent circuit illustrated in FIG.
- FIG. 4B is a diagram showing the configuration of the resonance circuit.
- FIG. 5 is a frequency characteristic diagram regarding the voltage of the passive electrode on the power receiving device side.
- FIG. 6 is a diagram showing the phase difference between the phase of the potential difference between the power transmitting device side active electrode and the passive electrode and the phase of the potential difference between the power receiving device side active electrode and the passive electrode in the power transmission system, and the transmission power of the power transmission system
- FIG. 7 is a diagram showing an example of the instantaneous potential applied to the active electrode and the passive electrode when the frequency of the high frequency high voltage generator 11 is set to the resonance frequency f2 on the high frequency side.
- FIG. 8A is a circuit diagram of a power transmission system in which an LC series resonance circuit is configured in the power transmission device 101 and an LC parallel resonance circuit is configured in the power reception device 202.
- FIG. 8B is a circuit diagram of a power transmission system in which an LC parallel resonance circuit is configured in the power transmission device 102 and an LC parallel resonance circuit is configured in the power reception device 202.
- FIG. 9 is a circuit diagram of a power transmission system in which an LC series resonance circuit is configured in the power transmission device 101, and an LC series resonance circuit and an inductor L3 that is inductively coupled to the inductor L2 are configured in the power reception device 203.
- FIGS. 10A to 10E is a schematic cross-sectional view of a power transmission system according to the third embodiment.
- FIG. 11A and FIG. 11B are diagrams illustrating an example of a resonance frequency setting structure of a resonance circuit in the power transmission device and the power reception device.
- FIG. 12 is a circuit diagram of the power transmission device 110 and the power reception device 210.
- FIG. 3A and FIG. 3B are equivalent circuit diagrams of the power transmission system according to the first embodiment.
- the power transmission device 101 is represented by a high frequency high voltage generator 11, an inductor L1, and a capacitance C1
- the power reception device 201 is composed of a high frequency high voltage load 51, an inductor L2, and a capacitance C2.
- the coupling capacity is represented by Cm.
- the high frequency high voltage generator 11 is an ideal voltage source.
- the high voltage is a voltage having an effective value of 100 V or more.
- the high frequency is a frequency in the range of 100 kHz to several tens of MHz.
- the inductor L1 is an inductance component of the power transmission device 101, for example, an inductance component of a step-up transformer.
- the inductor L2 is an inductance component of the power receiving device 201, and is mainly an inductance component of a step-down transformer, for example.
- the high-frequency high-voltage load 51 is mainly a secondary circuit of a step-down transformer, for example, and is a resistance component.
- Capacitances C1, C2, and Cm are capacitances generated by the power transmission device side active electrode, the power transmission device side passive electrode, the power reception device side active electrode, and the power reception device side passive electrode.
- the capacitance component derived from the electric field distribution generated in the three-dimensional structure of each electrode is shown in a simplified manner.
- FIG. 3B represents the capacitive coupling portion of FIG. 3A with four coupling capacitors C1, C2, C3, and C4 for convenience.
- the power transmission circuit of the power transmission device 101 includes the LC resonance circuit
- the power reception circuit of the power reception device 201 includes the LC resonance circuit.
- the resonance frequency at the time of coupling is expressed by the following equation.
- the resonance frequency f1 on the low frequency side and the resonance frequency f2 on the high frequency side are generated.
- the resonance frequency of the resonance circuit is equal and is an intermediate frequency between f1 and f2.
- FIG. 5 is a diagram showing frequency characteristics regarding the voltage of the passive electrode on the power receiving device side.
- FIG. 6 is a diagram showing the phase difference between the phase of the potential difference between the power transmitting device side active electrode and the passive electrode and the phase of the potential difference between the power receiving device side active electrode and the passive electrode in the power transmission system, and the transmission power of the power transmission system FIG.
- the values of the respective elements shown in FIG. 3B are as follows.
- the frequency of the high frequency high voltage generator 11 when the frequency of the high frequency high voltage generator 11 is set to the resonance frequency f2 on the high frequency side, the voltage of the passive electrode on the power receiving device side is lowered. If the frequency of the high frequency high voltage generator 11 is set to the resonance frequency f1 on the low frequency side, the voltage of the passive electrode on the power receiving device side becomes high. If the frequency of the high-frequency high-voltage generator 11 is set to f1, the voltage of the passive electrode on the power receiving device side is reduced to about 1/3.
- the power receiving device can be obtained by setting the resonance frequency f2 on the high-frequency side and the intermediate point (f1 + f2) / 2 between the resonance frequency on the high-frequency side and the low-frequency side.
- the voltage of the passive electrode on the side is reduced to about 1 ⁇ 2.
- the high frequency high voltage generator 1 should not be operated at least near the resonance frequency f1 on the low frequency side. That is, the operation is performed within the frequency range including the resonance frequency f2 on the high frequency side surrounded by a frame in FIG. 6 and the intermediate point (f1 + f2) / 2 between the resonance frequencies on the high frequency side and the low frequency side.
- the frequency range including the resonance frequency f2 on the high frequency side and the midpoint (f1 + f2) / 2 between the resonance frequency on the high frequency side and the low frequency side is the phase of the potential difference between the active electrode on the power transmission device side and the passive electrode.
- This is a frequency range in which the absolute value of the phase difference from the phase of the potential difference between the power receiving device side active electrode and the passive electrode is 0 degree or more and less than 90 degrees.
- the phase of the potential difference between the power transmitting device side active electrode and the passive electrode and the phase of the potential difference between the power receiving device side active electrode and the passive electrode are compared. If the absolute value of the phase difference is 0 degree or more and less than 90 degrees, the voltage of the passive electrode on the power receiving device side can be lowered to about 1/2 to 1/3.
- FIG. 7 shows an example of the instantaneous potential applied to the active electrode and the passive electrode when the frequency of the high frequency high voltage generator 11 is set to the resonance frequency f2 on the high frequency side.
- the charges generated on the active electrode 3 of the power transmission device 101 and the active electrode 6 of the power reception device 201 are the same polarity, and the passive electrode 2 and the power reception device 201 of the power transmission device 101 are the same.
- the charges generated in the passive electrodes 7 are of the same polarity. If the passive electrode 2 of the power transmission device 101 is connected to the ground (that is, if it is the ground potential of the power transmission device), the potential of the passive electrode 2 is zero. Therefore, the potential of the passive electrode 7 of the power receiving device 201 is also approximately 0V. Since the ground of the power transmission device is equal to or approximately equal to the potential of the ground, the potential of the passive electrode of the power receiving device 201 is also approximately equal to the potential of the ground.
- FIG. 8A shows an example in which an LC series resonance circuit is configured in the power transmission device 101 and an LC parallel resonance circuit is configured in the power reception device 202.
- FIG. 8B illustrates an example in which an LC parallel resonance circuit is configured in the power transmission device 102 and an LC parallel resonance circuit is configured in the power reception device 202. Since the two resonance circuits need only be capacitively coupled in this way, the resonance circuits on the power transmission device side and the power reception device side may be either series resonance circuits or parallel resonance circuits. Further, the degree of coupling of capacitive coupling is also arbitrary. As the coupling capacitance Cm increases, the frequency difference between the resonance frequency f1 on the low frequency side and the resonance frequency f2 on the high frequency side increases as shown in the equations (2) and (3), and the degree of coupling increases. It will be.
- FIG. 9 shows an example in which an LC series resonance circuit is configured in the power transmission device 101, and an LC series resonance circuit and an inductor L3 that is inductively coupled to the inductor L2 are configured in the power reception device 203.
- the degree of coupling between the resonance circuit and the load can be determined by the degree of coupling of inductive coupling (transformer coupling) in the power receiving apparatus 203. If this degree of coupling is weakened, the resonance characteristics of the resonance circuit due to load fluctuations can be stabilized.
- FIG. 10A to FIG. 10E is a schematic cross-sectional view of a power transmission system according to the third embodiment.
- the active electrode 3 of the power transmission device 103 and the active electrode 6 of the power reception device 203 face each other, but also the passive electrode 2 of the power transmission device 103 and the passive electrode of the power reception device 203. 7 faces.
- the passive electrode 2 of the power transmission device 104 and the passive electrode 7 of the power reception device 204 are opposed to each other. Near the upper surface of the casing of the power transmission device 104, the power transmission device side active electrode 3 and the power transmission device side passive electrode 2 surrounding the active electrode 3 in an insulated state are formed.
- a high frequency high voltage generation circuit 1 that applies a high frequency high voltage between the active electrode 3 and the passive electrode 2 is provided in the casing of the power transmission device 104.
- the passive electrode 2 is disposed along the inner peripheral surface of the casing. Therefore, the high frequency high voltage generation circuit 1 is covered with the passive electrode 2.
- the casing of the power transmission device 104 is a molded body of plastic such as ABS resin, for example, and the outer surface of the casing is made into an insulating structure by integrally molding the active electrode 3 and the passive electrode 2 inside the casing. Yes.
- the power receiving apparatus side active electrode 6 and the power receiving apparatus side passive electrode 7 surrounding the periphery thereof in an insulated state are formed.
- a load circuit 5 for electric power induced between the active electrode 6 and the passive electrode 7 is provided in the casing of the power receiving device 204.
- the passive electrode 7 is disposed along the inner peripheral surface of the casing. Therefore, the load circuit 5 is covered with the passive electrode 7.
- the casing of the power receiving device 204 is also a plastic molded body such as ABS resin, and the active electrode 6 and the passive electrode 7 are integrally formed inside the casing, so that the outer surface of the casing has an insulating structure. .
- the active electrode 3 of the power transmission device 104 has a circular shape.
- the passive electrode 2 has a circular opening coaxial with the active electrode 3. That is, the passive electrode 2 is arranged at a position surrounding the active electrode 3 in an insulated state from the active electrode 3.
- the active electrode 6 has a circular shape.
- the passive electrode 7 has a circular opening coaxial with the active electrode 6, and the passive electrode 7 is disposed at a position surrounding the active electrode 6 in an insulated state from the active electrode 6.
- the capacitance generated between the power transmission device side passive electrode 2 and the power reception device side passive electrode 7 can be further increased, so that the potential fluctuation of the passive electrodes 2 and 7 can be reduced.
- the opening of the passive electrode 2 on the power transmission device 105 side is made smaller than the example of FIG. 10B, and the active electrode 3 is placed on the surface of the passive electrode 2 (with respect to the passive electrode 7 of the power reception device 205). It is arranged at a position protruding from the opposite surface.
- the opening of the passive electrode 7 on the power transmission device 205 side is made smaller than the example of FIG. 10B, and the active electrode 6 protrudes from the surface of the passive electrode 7 (the surface facing the passive electrode 2 of the power transmission device 105). Placed in position.
- Such a structure increases the degree of freedom in the positional relationship between the openings of the passive electrodes 2 and 7 and the active electrodes 3 and 6.
- the active electrode 3 is disposed inside the opening of the passive electrode 2 on the power transmission device 106 side.
- the active electrode 6 is arranged inside the opening of the passive electrode 7 on the power receiving device 206 side.
- Such a structure increases the electric field shielding performance of the active electrodes 3 and 6 by the passive electrodes 2 and 7, and the electric field (leakage electric field) radiated to the outside can be further reduced. Further, since the capacitance generated between the passive electrodes 2 and 7 can be increased, the potential fluctuation of the passive electrodes 2 and 7 can be further reduced.
- the passive electrodes 2 are arranged above and below the active electrode 3 on the power transmission device 107 side.
- the passive electrodes 7 are arranged above and below the power receiving device 207 side active electrode 6.
- the shielding property of the high-frequency high-voltage generation circuit 1 by the passive electrode 2 is enhanced. Further, the shielding performance of the load circuit 5 by the passive electrode 7 is enhanced. Further, since the passive electrodes 2 and 7 are positioned between the active electrodes 3 and 6, the degree of freedom in setting the resonance capacitance C is improved.
- an inductor L1 is connected in series to the high-frequency high-voltage generator 11 of the power transmission device 108, and a capacitor C1 is connected between the active electrode 3 and the passive electrode 2.
- an inductor L2 is connected in series with the high-frequency high-voltage load 51 of the power receiving device 208, and a capacitor C2 is connected between the active electrode 6 and the passive electrode 7.
- the equivalent circuit of this power transmission system is as shown in FIGS. 3 (A) and 3 (B).
- the inductances of the inductors L1 and L2 or the capacitances of the capacitors C1 and C2 may be determined. Note that capacitive components distributed in the electrodes 2, 3, 6, and 7 that contribute to the coupling are also considered as the capacitance of the resonance circuit.
- an inductor L1 is connected in series to the high-frequency high-voltage generator 11 of the power transmission device 109.
- an inductor L2 is connected in series to the high-frequency high-voltage load 51 of the power receiving device 209.
- the resonance frequency of the resonance circuit can be determined without providing the capacitors C1 and C2 as components as shown in FIG.
- FIG. 12 is a circuit diagram of the power transmission device 110 and the power reception device 210.
- the power transmission device 110 includes a high frequency high voltage generator 11 and a step-up transformer T1, and the high frequency high voltage generator 11 is connected to the primary winding of the transformer T1, and the active electrode is connected to the secondary winding of the transformer T1. 3 and the passive electrode 2 are connected.
- the power receiving device 210 includes a load circuit 5 including a rectifying / smoothing circuit 30 and a low voltage circuit unit 29.
- the rectifying and smoothing circuit 30 includes a step-down transformer T2, rectifying diodes D1 and D2, and a smoothing capacitor C.
- One end of the primary winding of the transformer T2 is connected to the active electrode 6, and the other end is connected to the passive electrode 7.
- a full-wave rectifier circuit including rectifier diodes D1 and D2 and a smoothing capacitor C is formed in the secondary winding of the transformer T2.
- the power receiving device 210 constitutes a non-contact charging device
- the low voltage circuit unit 29 includes a control circuit 31 and a secondary battery 32 that operate using the voltage rectified and smoothed by the rectifying and smoothing circuit 30 as a power source.
- the control circuit 31 performs charge control of the secondary battery 32 and charge control and other predetermined circuit operations using the secondary battery 32 as a power source.
- the high frequency high voltage generator 11 generates a high frequency high voltage of, for example, 100 kHz to several tens of MHz. This frequency is a fixed frequency corresponding to the frequency on the high frequency side of the coupling mode already shown.
- Cm coupling capacitors D1, D2 ... rectifier diode f1 ... high frequency side resonance frequency f2 ... low frequency side resonance frequencies L1, L2, L3 ... inductor T1 ... step-up transformer T2 ... step-down transformer 1 ... high frequency high voltage generation circuit 2 ... power transmission device Side passive electrode 3 ... Power transmission device side active electrode 5 ... High frequency high voltage load circuit 6 ... Power reception device side active electrode 7 ... Power reception device side passive electrode 11 ... High frequency high voltage generator 29 ... Low voltage circuit unit 30 ... Rectification Smoothing circuit 31 ... Control circuit 32 ... Secondary battery 51 ... High frequency high voltage load 100-110 ... Power transmission device 200-210 ... Power reception device
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Near-Field Transmission Systems (AREA)
Abstract
高周波高電圧発生器(11)の発生する周波数は、電力送電装置(101)の共振回路と電力受電装置(201)の共振回路とが結合した状態で生じる二つの結合モードの周波数のうち高周波側の周波数に定める。そのため、電力送電装置(101)のアクティブ電極(3)と電力受電装置(201)のアクティブ電極(6)の電荷は互いに同極性となり、電力送電装置(101)のパッシブ電極(2)と電力受電装置(201)のパッシブ電極(7)の電位は互いに同極性となる。電力送電装置(101)のパッシブ電極(2)がグランドに接続されていれば、パッシブ電極(2)の電位は0Vである。そのため、電力受電装置(201)のパッシブ電極(7)の電位も略0Vとなる。これにより、電力受電装置のパッシブ電極からの不要電磁界の放射を抑制した電力伝送システムを構成する。
Description
この発明は非接触で電力を伝送する電力伝送システムに関するものである。
容量結合により電力を伝送するシステムとして特許文献1が開示されている。
特許文献1の電力伝送システムは、高周波高電圧発生回路、パッシブ電極及びアクティブ電極を備えた電力送電装置と、高周波高電圧負荷回路、パッシブ電極及びアクティブ電極を備えた電力受電装置とで構成される。
特許文献1の電力伝送システムは、高周波高電圧発生回路、パッシブ電極及びアクティブ電極を備えた電力送電装置と、高周波高電圧負荷回路、パッシブ電極及びアクティブ電極を備えた電力受電装置とで構成される。
図1は特許文献1の電力伝送システムの基本構成を示す図である。電力送電装置には、高周波高電圧発生回路1、パッシブ電極2及びアクティブ電極3を備えている。電力受電装置には、高周波高電圧負荷回路5、パッシブ電極7及びアクティブ電極6を備えている。そして、電力送電装置のアクティブ電極3と電力受電装置のアクティブ電極6とが空隙4を介して近接することにより、この二つの電極同士が容量結合する。
図2は、アクティブ電極とパッシブ電極に掛かる瞬時電荷の例について示している。図2に示すように、電力送電装置100のアクティブ電極3と電力受電装置200のアクティブ電極6の電荷は互いに逆極性になり、電力送電装置100のパッシブ電極2と電力受電装置200のパッシブ電極7の電荷は互いに逆極性になる。
このように、特許文献1に示されている構造の電力伝送システムでは、アクティブ電極3,6間およびパッシブ電極2、7間に生じる電界を利用して電力を伝送するものであるので、パッシブ電極2、7間の容量が小さい場合、すなわちパッシブ電極2,7間の容量結合が弱い場合にパッシブ電極2,7の電位が大きく変動するという問題がある。また、電力受電装置のパッシブ電極7はグランド電位から浮いているので不要電磁界の放射源となり、このパッシブ電極7の電位変動に伴って不要電磁界が輻射されるという問題もある。
特許文献1では、パッシブ電極の面積を大きくすることにより、パッシブ電極の電位を安定させようとしている。パッシブ電極の形状を十分大きくすれば問題はないが、機器の形状によっては十分な効果は得られない。
そこで、この発明の目的は、電力受電装置のパッシブ電極からの不要電磁界の放射を抑制した電力伝送システムを提供することにある。
この発明の電力伝送システムは次のように構成する。
電力送電装置側アクティブ電極、電力送電装置側パッシブ電極、及び前記電力送電装置側アクティブ電極と前記電力送電装置側パッシブ電極との間に高周波の高電圧を印加する高周波高電圧発生回路、を備えた電力送電装置と、
前記電力送電装置側アクティブ電極に対向する電力受電装置側アクティブ電極、電力受電装置側パッシブ電極、及び前記電力受電装置側アクティブ電極と前記電力受電装置側パッシブ電極との間に接続された高周波高電圧負荷回路、を備えた電力受電装置と、を備え、
前記高周波高電圧発生回路は、前記電力送電装置側アクティブ電極とパッシブ電極の間の電位差の位相と電力受電装置側アクティブ電極とパッシブ電極の間の電位差の位相との位相差の絶対値が0度以上90度未満となる周波数の高電圧を発生する。
電力送電装置側アクティブ電極、電力送電装置側パッシブ電極、及び前記電力送電装置側アクティブ電極と前記電力送電装置側パッシブ電極との間に高周波の高電圧を印加する高周波高電圧発生回路、を備えた電力送電装置と、
前記電力送電装置側アクティブ電極に対向する電力受電装置側アクティブ電極、電力受電装置側パッシブ電極、及び前記電力受電装置側アクティブ電極と前記電力受電装置側パッシブ電極との間に接続された高周波高電圧負荷回路、を備えた電力受電装置と、を備え、
前記高周波高電圧発生回路は、前記電力送電装置側アクティブ電極とパッシブ電極の間の電位差の位相と電力受電装置側アクティブ電極とパッシブ電極の間の電位差の位相との位相差の絶対値が0度以上90度未満となる周波数の高電圧を発生する。
この構成により、電力受電装置側パッシブ電極の電位変動が、グランド電位に近い電力送電装置側パッシブ電極の電位変動と同じ(同極性)になるので、電力受電装置側パッシブ電極の電位変動を抑制できる。これにより、電力効率を低下することなく不要電磁界の放射を抑制できる。
具体的には、前記電力送電装置側アクティブ電極、前記電力送電装置側パッシブ電極、及び前記高周波高電圧発生回路による電力送電回路の共振周波数と、前記電力受電装置側アクティブ電極、前記電力受電装置側パッシブ電極、及び前記高周波高電圧負荷回路による電力受電回路の共振周波数とがほぼ等しく、前記電力送電装置側アクティブ電極と前記電力送電装置側パッシブ電極との間に印加される高電圧の周波数は、前記電力送電装置と前記電力受電装置とが結合した状態で生じる二つの結合モードの周波数のうち高周波側の周波数である。
前記電力送電装置側パッシブ電極はグランド電位(大地・筐体の電位)と略等しくすれば、電力受電装置側パッシブ電極の電位は安定化し、不要電磁界の放射が効果的に抑制される。
前記電力送電装置側パッシブ電極を前記電力送電装置側アクティブ電極より大きくすれば、また、前記電力受電装置側パッシブ電極を前記電力受電装置側アクティブ電極より大きくすれば、電力送電装置側パッシブ電極に対する電力受電装置側パッシブ電極の電位の変化が小さくなるので、電力受電装置側パッシブ電極の電位はさらに安定化し、不要電磁界の放射が効果的に抑制される。
前記電力送電装置側アクティブ電極と前記電力受電装置側アクティブ電極との対向状態で、前記電力送電装置側パッシブ電極と前記電力受電装置側パッシブ電極とが対向するように、それらの電極を配置すれば、電力送電装置側パッシブ電極と電力受電装置側パッシブ電極との間に生じる容量が大きくなって、電力受電装置側パッシブ電極の電位変動が小さくなって、不要電磁界の放射が効果的に抑制される。
前記電力送電装置にLC共振回路を備えれば前記電力送電回路の共振周波数を所定の周波数に容易に定めることができる。同様に、前記電力受電装置にLC共振回路を備えれば前記電力受電回路の共振周波数を所定の周波数に容易に定めることができる。
この発明によれば、電力受電装置側パッシブ電極の電位変動が制御されて、電力受電装置側パッシブ電極からの不要電磁界の放射が抑制できる。
《第1の実施形態》
第1の実施形態に係る電力伝送システムの構成を図3~図7を参照して説明する。
図3(A)、図3(B)は、第1の実施形態に係る電力伝送システムの等価回路図である。図3(A)に示すように、電力送電装置101は、高周波高電圧発生器11、インダクタL1及び容量C1で表され、電力受電装置201は、高周波高電圧負荷51、インダクタL2及び容量C2で表される。また、結合容量をCmで表される。
第1の実施形態に係る電力伝送システムの構成を図3~図7を参照して説明する。
図3(A)、図3(B)は、第1の実施形態に係る電力伝送システムの等価回路図である。図3(A)に示すように、電力送電装置101は、高周波高電圧発生器11、インダクタL1及び容量C1で表され、電力受電装置201は、高周波高電圧負荷51、インダクタL2及び容量C2で表される。また、結合容量をCmで表される。
図3(A)において、高周波高電圧発生器11は理想的な電圧源である。本願において、高電圧とは実効値が100V以上の電圧である。また、高周波とは100kHz~数10MHzの範囲の周波数である。インダクタL1は電力送電装置101のインダクタンス成分であり、例えば昇圧トランスのインダクタンス成分である。インダクタL2は電力受電装置201のインダクタンス成分であり、主に例えば降圧トランスのインダクタンス成分である。高周波高電圧負荷51は主に例えば降圧トランスの2次側の回路であり、抵抗成分である。
容量C1,C2,Cmは、電力送電装置側アクティブ電極、電力送電装置側パッシブ電極、電力受電装置側アクティブ電極、及び電力受電装置側パッシブ電極によって生じる容量である。各電極の立体的な構造に生じる電界分布から導出される容量成分を簡略化して示している。
図3(B)は図3(A)の容量結合部分を便宜的に4つの結合容量C1,C2,C3,C4で表現したものである。
このように、電力送電装置101の電力送電回路はLC共振回路を備え、電力受電装置201の電力受電回路はLC共振回路を備える。
このように、電力送電装置101の電力送電回路はLC共振回路を備え、電力受電装置201の電力受電回路はLC共振回路を備える。
図3(A)に示した等価回路の容量結合部の関係式と結合共振回路の共振周波数について、図4(A)、図4(B)を参照して説明する。
図4(A)に示す電圧V1,V2、電流I1,I2、及び容量C1,C2,Cmの関係は次式で表される。
図4(A)に示す電圧V1,V2、電流I1,I2、及び容量C1,C2,Cmの関係は次式で表される。
ここで、簡単化のため、対称回路であるものとし、インダクタL1,L2のインダクタンスをL、容量C1,C2のキャパシタンスをCとすると、結合時の共振周波数は次式で表される。
このように、低周波側の共振周波数f1と高周波側の共振周波数f2とが生じる。因みに、結合容量Cmが0のとき、すなわち、電力送電装置101と電力受電装置201が互いに結合していない単体状態での共振回路の共振周波数は等しく、f1とf2の中間の周波数である。
図5は電力受電装置側のパッシブ電極の電圧についての周波数特性を示す図である。図6は電力伝送システムの、送電装置側アクティブ電極-パッシブ電極間の電位差の位相と受電装置側アクティブ電極-パッシブ電極間の電位差の位相との位相差を示す図、及び電力伝送システムの伝送電力の周波数特性図である。ここで、図3(B)に示した各素子の値は次のとおりである。
L1=50mH、Q=100
L2=50mH、Q=100
C1=10pF
C2=10pF
C3=5pF
C4=10pF
R=20Ω
簡単のためC1,C2,C3,C4は無損失とした。
L2=50mH、Q=100
C1=10pF
C2=10pF
C3=5pF
C4=10pF
R=20Ω
簡単のためC1,C2,C3,C4は無損失とした。
図5に表れているように、高周波高電圧発生器11の周波数を高周波側の共振周波数f2にすれば、電力受電装置側のパッシブ電極の電圧が低くなる。仮に、高周波高電圧発生器11の周波数を低周波側の共振周波数f1にすれば、電力受電装置側のパッシブ電極の電圧は高くなる。高周波高電圧発生器11の周波数をf1にした場合に比べてf2にすれば電力受電装置側のパッシブ電極の電圧は1/3程度にまで低くなる。
また、高周波高電圧発生器11の周波数をf1にした場合に比べて高周波側の共振周波数f2と高周波側と低周波側の共振周波数の中間点(f1+f2)/2の周波数にすれば電力受電装置側のパッシブ電極の電圧は1/2程度にまで低くなる。
そこで、高周波高電圧発生器1は少なくとも低周波側の共振周波数f1近傍で動作させないようにする。すなわち、図6に枠で囲まれている高周波側の共振周波数f2と高周波側と低周波側の共振周波数の中間点(f1+f2)/2とを含む周波数範囲内で動作させるようにする。
図5から明らかなように、高周波高電圧発生器11の周波数をf1にした場合に比べて、この周波数範囲内の周波数にすれば、電力受電装置側のパッシブ電極の電圧を1/2~1/3程度にまで低くすることができる。
図6から、高周波側の共振周波数f2と高周波側と低周波側の共振周波数の中間点(f1+f2)/2とを含む周波数範囲は、送電装置側アクティブ電極とパッシブ電極の間の電位差の位相と受電装置側アクティブ電極とパッシブ電極の間の電位差の位相との位相差の絶対値が0度以上、90度未満となる周波数範囲である。
したがって、高周波高電圧発生器11の周波数をf1にした場合に比べて送電装置側アクティブ電極とパッシブ電極の間の電位差の位相と受電装置側アクティブ電極とパッシブ電極の間の電位差の位相との位相差の絶対値が0度以上、90度未満とすれば電力受電装置側のパッシブ電極の電圧は1/2~1/3程度にまで低くすることができる。
図7は、高周波高電圧発生器11の周波数を高周波側の共振周波数f2に設定したときのアクティブ電極とパッシブ電極に掛かる瞬時電位の例について示している。この図7に示すように、電力送電装置101のアクティブ電極3と電力受電装置201のアクティブ電極6に発生する電荷は互いに同極性の電荷となり、電力送電装置101のパッシブ電極2と電力受電装置201のパッシブ電極7に発生する電荷は互いに同極性の電荷となる。電力送電装置101のパッシブ電極2はグランドに接続されていれば(すなわち電力送電装置のグランド電位であれば)、パッシブ電極2の電位は0である。そのため、電力受電装置201のパッシブ電極7の電位も略0Vとなる。電力送電装置のグランドは大地グランドの電位に等しいか、ほぼ等しいので、電力受電装置201のパッシブ電極の電位は大地グランドの電位にもほぼ等しいことになる。
《第2の実施形態》
第2の実施形態では、電力送電装置と電力受電装置の共振回路の幾つかの構成例を示す。
図8(A)は、電力送電装置101にLC直列共振回路を構成し、電力受電装置202にLC並列共振回路を構成した例である。図8(B)は、電力送電装置102にLC並列共振回路を構成し、電力受電装置202にLC並列共振回路を構成した例である。このように、二つの共振回路を容量結合させればよいので、電力送電装置側と電力受電装置側のそれぞれの共振回路が直列共振回路であっても並列共振回路であってもよい。また、容量結合の結合度についても任意である。結合容量Cmが大きくなる程、(2)式及び(3)式で示したように、低周波側の共振周波数f1と高周波側の共振周波数f2との周波数差が広くなり、結合度が増大することになる。
第2の実施形態では、電力送電装置と電力受電装置の共振回路の幾つかの構成例を示す。
図8(A)は、電力送電装置101にLC直列共振回路を構成し、電力受電装置202にLC並列共振回路を構成した例である。図8(B)は、電力送電装置102にLC並列共振回路を構成し、電力受電装置202にLC並列共振回路を構成した例である。このように、二つの共振回路を容量結合させればよいので、電力送電装置側と電力受電装置側のそれぞれの共振回路が直列共振回路であっても並列共振回路であってもよい。また、容量結合の結合度についても任意である。結合容量Cmが大きくなる程、(2)式及び(3)式で示したように、低周波側の共振周波数f1と高周波側の共振周波数f2との周波数差が広くなり、結合度が増大することになる。
図9は、電力送電装置101にLC直列共振回路を構成し、電力受電装置203にLC直列共振回路と、インダクタL2と誘導結合するインダクタL3を構成した例である。このように、電力受電装置203内の誘導結合(トランス結合)の結合度によって共振回路と負荷との結合度を定めることができる。この結合度を弱くすれば、負荷変動による共振回路の共振特性を安定化できる。
《第3の実施形態》
第3の実施形態では、電力送電装置と電力受電装置の電極の構造について幾つかの例を示す。
図10(A)~図10(E)のそれぞれは、第3の実施形態に係る電力伝送システムの模式的な断面図である。図10(A)の例では、電力送電装置103のアクティブ電極3と電力受電装置203のアクティブ電極6とが対向するだけでなく、電力送電装置103のパッシブ電極2と電力受電装置203のパッシブ電極7とが対向する。
第3の実施形態では、電力送電装置と電力受電装置の電極の構造について幾つかの例を示す。
図10(A)~図10(E)のそれぞれは、第3の実施形態に係る電力伝送システムの模式的な断面図である。図10(A)の例では、電力送電装置103のアクティブ電極3と電力受電装置203のアクティブ電極6とが対向するだけでなく、電力送電装置103のパッシブ電極2と電力受電装置203のパッシブ電極7とが対向する。
図10(B)の例では、電力送電装置104のパッシブ電極2と電力受電装置204のパッシブ電極7とが対向する。電力送電装置104の筐体の上面付近には、電力送電装置側アクティブ電極3と、このアクティブ電極3の周囲を絶縁状態で取り囲む電力送電装置側パッシブ電極2とが形成されている。また、電力送電装置104の筐体内に、アクティブ電極3とパッシブ電極2との間に高周波の高電圧を印加する高周波高電圧発生回路1が設けられている。パッシブ電極2は筐体の内周面に沿って配置されている。したがって、高周波高電圧発生回路1はパッシブ電極2で覆われている。
電力送電装置104の筐体は、例えばABS樹脂などのプラスチックの成形体であり、筐体の内部にアクティブ電極3及びパッシブ電極2を一体成形することによって、筐体の外表面を絶縁構造にしている。
電力受電装置204の筐体の下面付近には、電力受電装置側アクティブ電極6と、その周囲を絶縁状態で取り囲む電力受電装置側パッシブ電極7が形成されている。また、電力受電装置204の筐体内には、アクティブ電極6とパッシブ電極7との間に誘起される電力の負荷回路5が設けられている。この例ではパッシブ電極7は筐体の内周面に沿って配置されている。したがって、負荷回路5はパッシブ電極7で覆われている。
電力受電装置204の筐体も例えばABS樹脂などのプラスチックの成形体であり、筐体の内部にアクティブ電極6及びパッシブ電極7を一体成形することによって、筐体の外表面を絶縁構造にしている。
電力送電装置104のアクティブ電極3は円形状である。パッシブ電極2には、アクティブ電極3と同軸の円形の開口部を備えている。すなわち、アクティブ電極3から絶縁状態でアクティブ電極3を取り囲む位置にパッシブ電極2が配置されている。電力受電装置204についても、アクティブ電極6は円形状である。パッシブ電極7には、アクティブ電極6と同軸の円形の開口部を備えていて、アクティブ電極6から絶縁状態でアクティブ電極6を取り囲む位置にパッシブ電極7が配置されている。
このような構造により、電力送電装置側パッシブ電極2と電力受電装置側パッシブ電極7との間に生じる容量をより大きくできるので、パッシブ電極2,7の電位変動を低減できる。
図10(C)の例では、電力送電装置105側パッシブ電極2の開口を図10(B)の例より小さくし、アクティブ電極3をパッシブ電極2の面(電力受電装置205のパッシブ電極7に対する対向面)より突出した位置に配置している。同様に、電力送電装置205側パッシブ電極7の開口を図10(B)の例より小さくし、アクティブ電極6をパッシブ電極7の面(電力送電装置105のパッシブ電極2に対する対向面)より突出した位置に配置している。
このような構造により、パッシブ電極2,7の開口とアクティブ電極3,6との位置関係の自由度が高くなる。
図10(D)の例では、電力送電装置106側パッシブ電極2の開口部より内側にアクティブ電極3を配置している。同様に、電力受電装置206側パッシブ電極7の開口部より内側にアクティブ電極6を配置している。
このような構造により、パッシブ電極2,7によるアクティブ電極3,6の電界シールド性が高まり、外部へ放射される電界(漏洩電界)がより低減できる。また、パッシブ電極2,7間に生じる容量をより大きくできるのでパッシブ電極2,7の電位変動をより低減できる。
図10(E)の例では、電力送電装置107側アクティブ電極3の上下にパッシブ電極2を配置している。同様に、電力受電装置207側アクティブ電極6の上下にパッシブ電極7を配置している。
このような構造により、パッシブ電極2による高周波高電圧発生回路1のシールド性が高まる。また、パッシブ電極7による負荷回路5のシールド性が高まる。また、アクティブ電極3、6間にパッシブ電極2、7を位置させているので共振容量Cの設定自由度が向上する。
《第4の実施形態》
第4の実施形態では、電力送電装置及び電力受電装置における共振回路の共振周波数の設定構造の例を示す。
図11(A)の例では、電力送電装置108の高周波高電圧発生器11に対して直列にインダクタL1を接続し、アクティブ電極3とパッシブ電極2との間にコンデンサC1を接続している。また、電力受電装置208の高周波高電圧負荷51に対して直列にインダクタL2を接続し、アクティブ電極6とパッシブ電極7との間にコンデンサC2を接続している。
第4の実施形態では、電力送電装置及び電力受電装置における共振回路の共振周波数の設定構造の例を示す。
図11(A)の例では、電力送電装置108の高周波高電圧発生器11に対して直列にインダクタL1を接続し、アクティブ電極3とパッシブ電極2との間にコンデンサC1を接続している。また、電力受電装置208の高周波高電圧負荷51に対して直列にインダクタL2を接続し、アクティブ電極6とパッシブ電極7との間にコンデンサC2を接続している。
この電力伝送システムの等価回路は図3(A)、図3(B)に示したとおりである。電力送電装置108における共振回路の共振周波数を所定の周波数に定めるために、インダクタL1,L2のインダクタンス又はコンデンサC1,C2のキャパシタンスを定めればよい。なお、結合に寄与する電極2,3,6,7に分布する容量成分も共振回路の容量として考慮する。
図11(B)の例では、電力送電装置109の高周波高電圧発生器11に対して直列にインダクタL1を接続している。また、電力受電装置209の高周波高電圧負荷51に対して直列にインダクタL2を接続している。このように、電力送電装置のパッシブ電極2と電力受電装置のパッシブ電極7とが対面して結合する場合には、アクティブ電極とパッシブ電極との間に生じる浮遊容量が比較的大きいので、この浮遊容量を利用すれば、図11(A)に示したような部品としてのコンデンサC1,C2を備えなくても共振回路の共振周波数を定めることができる。
《第5の実施形態》
第5の実施形態では、電力送電装置内の高周波高電圧発生回路の具体的な構成例、及び電力受電装置内の高周波高電圧負荷回路の具体的な構成例を示す。図12は電力送電装置110及び電力受電装置210の回路図である。
第5の実施形態では、電力送電装置内の高周波高電圧発生回路の具体的な構成例、及び電力受電装置内の高周波高電圧負荷回路の具体的な構成例を示す。図12は電力送電装置110及び電力受電装置210の回路図である。
電力送電装置110には、高周波高電圧発生器11と昇圧トランスT1を備えていて、トランスT1の1次巻線に高周波高電圧発生器11を接続し、トランスT1の2次巻線にアクティブ電極3及びパッシブ電極2を接続している。
電力受電装置210には、整流平滑回路30及び低電圧回路部29から成る負荷回路5を備えている。整流平滑回路30は、降圧トランスT2、整流ダイオードD1,D2及び平滑コンデンサCを備えている。トランスT2の1次巻線の一端はアクティブ電極6に接続され、他端はパッシブ電極7に接続されている。トランスT2の2次巻線には整流ダイオードD1,D2及び平滑コンデンサCによる全波整流回路が構成されている。
この例では電力受電装置210は非接触充電装置を構成していて、低電圧回路部29は、整流平滑回路30によって整流平滑された電圧を電源にして動作する制御回路31及び二次電池32を備えている。制御回路31は二次電池32の充電制御及び二次電池32を電源にして充電制御及びその他の所定の回路動作を行う。
定電圧回路部29に接続される機器をさらに備えてもよいが、図12においては機器を図示していない。
高周波高電圧発生器11は例えば100kHz~数10MHzの高周波高電圧を発生する。この周波数は既に示した結合モードの高周波側の周波数に相当する固定の周波数である。
Cm…結合容量
D1,D2…整流ダイオード
f1…高周波側共振周波数
f2…低周波側共振周波数
L1,L2,L3…インダクタ
T1…昇圧トランス
T2…降圧トランス
1…高周波高電圧発生回路
2…電力送電装置側パッシブ電極
3…電力送電装置側アクティブ電極
5…高周波高電圧負荷回路
6…電力受電装置側アクティブ電極
7…電力受電装置側パッシブ電極
11…高周波高電圧発生器
29…低電圧回路部
30…整流平滑回路
31…制御回路
32…二次電池
51…高周波高電圧負荷
100~110…電力送電装置
200~210…電力受電装置
D1,D2…整流ダイオード
f1…高周波側共振周波数
f2…低周波側共振周波数
L1,L2,L3…インダクタ
T1…昇圧トランス
T2…降圧トランス
1…高周波高電圧発生回路
2…電力送電装置側パッシブ電極
3…電力送電装置側アクティブ電極
5…高周波高電圧負荷回路
6…電力受電装置側アクティブ電極
7…電力受電装置側パッシブ電極
11…高周波高電圧発生器
29…低電圧回路部
30…整流平滑回路
31…制御回路
32…二次電池
51…高周波高電圧負荷
100~110…電力送電装置
200~210…電力受電装置
Claims (7)
- 電力送電装置側アクティブ電極、電力送電装置側パッシブ電極、及び前記電力送電装置側アクティブ電極と前記電力送電装置側パッシブ電極との間に高周波の高電圧を印加する高周波高電圧発生回路、を備えた電力送電装置と、
前記電力送電装置側アクティブ電極に対向する電力受電装置側アクティブ電極、電力受電装置側パッシブ電極、及び前記電力受電装置側アクティブ電極と前記電力受電装置側パッシブ電極との間に接続された高周波高電圧負荷回路、を備えた電力受電装置と、を備え、
前記高周波高電圧発生回路は、前記電力送電装置側アクティブ電極とパッシブ電極の間の電位差の位相と電力受電装置側アクティブ電極とパッシブ電極の間の電位差の位相との位相差の絶対値が0度以上90度未満となる周波数の高電圧を発生する、電力伝送システム。 - 前記電力送電装置側アクティブ電極、前記電力送電装置側パッシブ電極、及び前記高周波高電圧発生回路による電力送電回路の共振周波数と、前記電力受電装置側アクティブ電極、前記電力受電装置側パッシブ電極、及び前記高周波高電圧負荷回路による電力受電回路の共振周波数とがほぼ等しく、前記電力送電装置側アクティブ電極と前記電力送電装置側パッシブ電極との間に印加される高電圧の周波数は、前記電力送電装置と前記電力受電装置とが結合した状態で生じる二つの結合モードの周波数のうち高周波側の周波数である、請求項1に記載の電力伝送システム。
- 前記電力送電装置側パッシブ電極は、グランド電位と略等しい、請求項1又は2に記載の電力伝送システム。
- 前記電力送電装置側パッシブ電極は前記電力送電装置側アクティブ電極より大きい、請求項1乃至3の何れかに記載の電力伝送システム。
- 前記電力受電装置側パッシブ電極は前記電力受電装置側アクティブ電極より大きい、請求項1乃至4の何れかに記載の電力伝送システム。
- 前記電力送電装置側アクティブ電極と前記電力受電装置側アクティブ電極との対向状態で、前記電力送電装置側パッシブ電極と前記電力受電装置側パッシブ電極とが対向する、請求項1乃至5の何れかに記載の電力伝送システム。
- 前記電力送電装置および前記電力受電装置の双方は、LC共振回路を備える、請求項1乃至6の何れかに記載の電力伝送システム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11786502.2A EP2579426B1 (en) | 2010-05-28 | 2011-05-16 | Power transmission system |
JP2012517220A JP5348322B2 (ja) | 2010-05-28 | 2011-05-16 | 電力伝送システム |
CN201180008810.6A CN102754306B (zh) | 2010-05-28 | 2011-05-16 | 功率传输系统 |
US13/569,277 US9461477B2 (en) | 2010-05-28 | 2012-08-08 | Power transfer system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010122227 | 2010-05-28 | ||
JP2010-122227 | 2010-05-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/569,277 Continuation US9461477B2 (en) | 2010-05-28 | 2012-08-08 | Power transfer system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011148803A1 true WO2011148803A1 (ja) | 2011-12-01 |
Family
ID=45003794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/061149 WO2011148803A1 (ja) | 2010-05-28 | 2011-05-16 | 電力伝送システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US9461477B2 (ja) |
EP (1) | EP2579426B1 (ja) |
JP (1) | JP5348322B2 (ja) |
CN (1) | CN102754306B (ja) |
WO (1) | WO2011148803A1 (ja) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013140665A1 (ja) * | 2012-03-23 | 2013-09-26 | 株式会社 村田製作所 | 送電装置、受電装置および非接触電力伝送システム |
WO2014064975A1 (ja) * | 2012-10-26 | 2014-05-01 | 株式会社村田製作所 | ワイヤレス受電装置、ワイヤレス送電装置、及びワイヤレス電力伝送システム |
WO2014119194A1 (ja) * | 2013-01-31 | 2014-08-07 | 古河電気工業株式会社 | 無線電力伝送システム |
JP2014150155A (ja) * | 2013-01-31 | 2014-08-21 | Furukawa Electric Co Ltd:The | 無線電力伝送システム |
WO2014132480A1 (ja) * | 2013-02-28 | 2014-09-04 | 日東電工株式会社 | 無線電力伝送装置、無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法、及び、無線電力伝送装置の製造方法 |
JP2014183622A (ja) * | 2013-03-18 | 2014-09-29 | Showa Denko Kk | ワイヤレス給電方法及びワイヤレス給電システム |
GB2499914B (en) * | 2010-12-24 | 2016-09-21 | Murata Manufacturing Co | Wireless power transmission system, power transmitting device, and power receiving device |
JP2016538810A (ja) * | 2013-10-09 | 2016-12-08 | フィリップス ライティング ホールディング ビー ヴィ | 負荷を容量的に駆動するシステム |
US9831917B2 (en) | 2012-03-26 | 2017-11-28 | Murata Manufacturing Co., Ltd. | Electric field coupling type wireless electric power transmitting system and electric power receiving apparatus included in the same |
US9948144B2 (en) | 2012-03-26 | 2018-04-17 | Murata Manufacturing Co., Ltd. | Power transmission system and power transmission device used for power transmission system |
US10033217B2 (en) | 2012-10-17 | 2018-07-24 | Murata Manufacturing Co., Ltd. | Wireless power receiver device, wireless power transmitter device, and wireless power transceiver device |
US10191119B2 (en) | 2013-06-06 | 2019-01-29 | Murata Manufacturing Co., Ltd. | Inspecting apparatus and inspecting method for noncontact power transfer system |
EP2806532B1 (en) * | 2012-01-18 | 2020-06-17 | Furukawa Electric Co., Ltd. | Wireless power transmission system, power transmission device, and power reception device |
JP2022501992A (ja) * | 2018-09-21 | 2022-01-06 | ソレース・パワー・インコーポレイテッド | ワイヤレス電力伝達システムおよびその方法 |
WO2024111120A1 (ja) * | 2022-11-25 | 2024-05-30 | 日本電信電話株式会社 | 電界共振アンテナ、電力伝送装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6168500B2 (ja) * | 2012-04-10 | 2017-07-26 | パナソニックIpマネジメント株式会社 | 無線電力伝送装置、送電装置、および受電装置 |
JP6080158B2 (ja) * | 2013-01-31 | 2017-02-15 | 古河電気工業株式会社 | 無線電力伝送システム |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2875649A1 (fr) * | 2004-09-21 | 2006-03-24 | Henri Bondar | Dispositif de transport a distance par influence de l'energie electrique sans fil ni terre comme conducteur de l iaison |
WO2007107642A1 (fr) * | 2006-03-21 | 2007-09-27 | Tmms Co., Ltd. | Dispositif de transport de l’energie par influence partielle a travers un milieu dielectrique |
WO2009024731A2 (fr) * | 2007-08-17 | 2009-02-26 | Tmms Co., Ltd. | Procede et dispositif de transport, distribution et gestion de l'energie electrique par couplage longitudinal a distance en champ proche entre dipoles electriques |
US20090302690A1 (en) * | 2008-06-09 | 2009-12-10 | Fumio Kubono | Transmission System, Power Supplying Apparatus, Power Receiving Apparatus, and Transmission Method |
WO2010150317A1 (en) * | 2009-06-25 | 2010-12-29 | Murata Manufacturing Co., Ltd. | Power transfer system and noncontact charging device |
WO2010150316A1 (en) * | 2009-06-25 | 2010-12-29 | Murata Manufacturing Co., Ltd. | Power transfer system and noncontact charging device |
WO2010150318A1 (en) * | 2009-06-25 | 2010-12-29 | Murata Manufacturing Co., Ltd. | Power transfer system and noncontact charging device |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE878971C (de) * | 1941-08-16 | 1953-04-23 | Philips Nv | UEberlagerungsempfaenger mit selbsttaetiger Frequenzregelung |
BR9610948A (pt) * | 1995-10-11 | 1999-01-12 | Motorola Inc | Etiqueta eletrônica acionada à distância e excitador/leitor associado e processo correlato |
US6865409B2 (en) * | 2001-11-07 | 2005-03-08 | Kinesense, Inc. | Surface electromyographic electrode assembly |
US6859050B2 (en) * | 2002-05-31 | 2005-02-22 | Agilent Technologies, Inc. | High frequency contactless heating with temperature and/or conductivity monitoring |
JP2005079786A (ja) * | 2003-08-29 | 2005-03-24 | Sony Corp | 電力伝送システム,電力供給装置,電力受電装置,信号伝送システム,信号送信装置,および,信号受信装置。 |
JP2009291014A (ja) * | 2008-05-29 | 2009-12-10 | Chugoku Electric Power Co Inc:The | 電源装置 |
JP5433225B2 (ja) | 2008-12-24 | 2014-03-05 | 学校法人東京理科大学 | インクジェット用インク |
JP5135204B2 (ja) * | 2008-12-26 | 2013-02-06 | 株式会社日立製作所 | 非接触電力伝送システム、および該非接触電力伝送システムにおける負荷装置 |
JP2010193598A (ja) * | 2009-02-17 | 2010-09-02 | Nippon Soken Inc | 非接触給電設備および非接触給電システム |
JP5415780B2 (ja) * | 2009-02-20 | 2014-02-12 | 健一 原川 | 電力供給システム、及びそのための可動体と固定体 |
JP2010213554A (ja) | 2009-03-12 | 2010-09-24 | Takenaka Komuten Co Ltd | 電力供給システム |
CN102341992B (zh) * | 2009-03-17 | 2014-07-09 | 三菱电机株式会社 | 远程控制装置 |
JP5577896B2 (ja) * | 2009-10-07 | 2014-08-27 | Tdk株式会社 | ワイヤレス給電装置およびワイヤレス電力伝送システム |
JP5677875B2 (ja) * | 2011-03-16 | 2015-02-25 | 日立マクセル株式会社 | 非接触電力伝送システム |
-
2011
- 2011-05-16 EP EP11786502.2A patent/EP2579426B1/en active Active
- 2011-05-16 CN CN201180008810.6A patent/CN102754306B/zh active Active
- 2011-05-16 WO PCT/JP2011/061149 patent/WO2011148803A1/ja active Application Filing
- 2011-05-16 JP JP2012517220A patent/JP5348322B2/ja active Active
-
2012
- 2012-08-08 US US13/569,277 patent/US9461477B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2875649A1 (fr) * | 2004-09-21 | 2006-03-24 | Henri Bondar | Dispositif de transport a distance par influence de l'energie electrique sans fil ni terre comme conducteur de l iaison |
WO2007107642A1 (fr) * | 2006-03-21 | 2007-09-27 | Tmms Co., Ltd. | Dispositif de transport de l’energie par influence partielle a travers un milieu dielectrique |
JP2009531009A (ja) | 2006-03-21 | 2009-08-27 | Tmms株式会社 | 誘電性媒質を介した部分的インフルエンスによるエネルギー搬送装置 |
WO2009024731A2 (fr) * | 2007-08-17 | 2009-02-26 | Tmms Co., Ltd. | Procede et dispositif de transport, distribution et gestion de l'energie electrique par couplage longitudinal a distance en champ proche entre dipoles electriques |
US20090302690A1 (en) * | 2008-06-09 | 2009-12-10 | Fumio Kubono | Transmission System, Power Supplying Apparatus, Power Receiving Apparatus, and Transmission Method |
WO2010150317A1 (en) * | 2009-06-25 | 2010-12-29 | Murata Manufacturing Co., Ltd. | Power transfer system and noncontact charging device |
WO2010150316A1 (en) * | 2009-06-25 | 2010-12-29 | Murata Manufacturing Co., Ltd. | Power transfer system and noncontact charging device |
WO2010150318A1 (en) * | 2009-06-25 | 2010-12-29 | Murata Manufacturing Co., Ltd. | Power transfer system and noncontact charging device |
Non-Patent Citations (1)
Title |
---|
See also references of EP2579426A4 |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2499914B (en) * | 2010-12-24 | 2016-09-21 | Murata Manufacturing Co | Wireless power transmission system, power transmitting device, and power receiving device |
US9698629B2 (en) | 2010-12-24 | 2017-07-04 | Murata Manufacturing Co., Ltd. | Wireless power transmission system, power transmitting device, and power receiving device |
EP2806532B1 (en) * | 2012-01-18 | 2020-06-17 | Furukawa Electric Co., Ltd. | Wireless power transmission system, power transmission device, and power reception device |
JP5729626B2 (ja) * | 2012-03-23 | 2015-06-03 | 株式会社村田製作所 | 送電装置、受電装置および非接触電力伝送システム |
CN104115367A (zh) * | 2012-03-23 | 2014-10-22 | 株式会社村田制作所 | 送电装置、受电装置以及非接触电力传输系统 |
US9806764B2 (en) | 2012-03-23 | 2017-10-31 | Murata Manufacturing Co., Ltd. | Power transmitting apparatus, power receiving apparatus, and non-contact power transmission system |
WO2013140665A1 (ja) * | 2012-03-23 | 2013-09-26 | 株式会社 村田製作所 | 送電装置、受電装置および非接触電力伝送システム |
US9948144B2 (en) | 2012-03-26 | 2018-04-17 | Murata Manufacturing Co., Ltd. | Power transmission system and power transmission device used for power transmission system |
GB2515221B (en) * | 2012-03-26 | 2018-01-24 | Murata Manufacturing Co | Electric field coupling type wireless electric power transmitting system and electric power receiving apparatus included in the same |
US9831917B2 (en) | 2012-03-26 | 2017-11-28 | Murata Manufacturing Co., Ltd. | Electric field coupling type wireless electric power transmitting system and electric power receiving apparatus included in the same |
US10033217B2 (en) | 2012-10-17 | 2018-07-24 | Murata Manufacturing Co., Ltd. | Wireless power receiver device, wireless power transmitter device, and wireless power transceiver device |
JP5664837B2 (ja) * | 2012-10-26 | 2015-02-04 | 株式会社村田製作所 | ワイヤレス受電装置、ワイヤレス送電装置、及びワイヤレス電力伝送システム |
WO2014064975A1 (ja) * | 2012-10-26 | 2014-05-01 | 株式会社村田製作所 | ワイヤレス受電装置、ワイヤレス送電装置、及びワイヤレス電力伝送システム |
US10075021B2 (en) | 2013-01-31 | 2018-09-11 | Furukawa Electric Co., Ltd. | Wireless power transmission system for transmitting alternating-current power wirelessly |
JP2014150155A (ja) * | 2013-01-31 | 2014-08-21 | Furukawa Electric Co Ltd:The | 無線電力伝送システム |
WO2014119194A1 (ja) * | 2013-01-31 | 2014-08-07 | 古河電気工業株式会社 | 無線電力伝送システム |
JP2014168358A (ja) * | 2013-02-28 | 2014-09-11 | Nitto Denko Corp | 無線電力伝送装置、無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法、及び、無線電力伝送装置の製造方法 |
WO2014132480A1 (ja) * | 2013-02-28 | 2014-09-04 | 日東電工株式会社 | 無線電力伝送装置、無線電力伝送装置における入力インピーダンスの負荷変動応答性の調整方法、及び、無線電力伝送装置の製造方法 |
JP2014183622A (ja) * | 2013-03-18 | 2014-09-29 | Showa Denko Kk | ワイヤレス給電方法及びワイヤレス給電システム |
US10191119B2 (en) | 2013-06-06 | 2019-01-29 | Murata Manufacturing Co., Ltd. | Inspecting apparatus and inspecting method for noncontact power transfer system |
JP2016538810A (ja) * | 2013-10-09 | 2016-12-08 | フィリップス ライティング ホールディング ビー ヴィ | 負荷を容量的に駆動するシステム |
JP2022501992A (ja) * | 2018-09-21 | 2022-01-06 | ソレース・パワー・インコーポレイテッド | ワイヤレス電力伝達システムおよびその方法 |
JP7439065B2 (ja) | 2018-09-21 | 2024-02-27 | ソレース・パワー・インコーポレイテッド | ワイヤレス電力伝達システムおよびその方法 |
WO2024111120A1 (ja) * | 2022-11-25 | 2024-05-30 | 日本電信電話株式会社 | 電界共振アンテナ、電力伝送装置 |
Also Published As
Publication number | Publication date |
---|---|
US9461477B2 (en) | 2016-10-04 |
JP5348322B2 (ja) | 2013-11-20 |
CN102754306B (zh) | 2014-12-24 |
US20120299392A1 (en) | 2012-11-29 |
CN102754306A (zh) | 2012-10-24 |
EP2579426A1 (en) | 2013-04-10 |
EP2579426A4 (en) | 2017-12-20 |
JPWO2011148803A1 (ja) | 2013-07-25 |
EP2579426B1 (en) | 2019-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5348322B2 (ja) | 電力伝送システム | |
Chatterjee et al. | Design optimisation for an efficient wireless power transfer system for electric vehicles | |
JP5035477B1 (ja) | 電力伝送システム及び非接触充電装置 | |
US9876362B2 (en) | Power transfer system | |
Liu et al. | Coupling study of a rotary capacitive power transfer system | |
JP5354030B2 (ja) | 電力伝送システム及び非接触充電装置 | |
JP5299578B2 (ja) | 電力送電装置及び電力伝送システム | |
US9960638B2 (en) | Wireless power transmission system | |
KR101604172B1 (ko) | 전계 결합형 무선 충전장치 | |
US10432022B2 (en) | Wireless power transmission system and power transmission apparatus | |
Chang et al. | 30 W capacitive wireless power transfer system with 5.8 pF coupling capacitance | |
KR20130016191A (ko) | 전력 전송 장치, 전력 수신 장치, 및 전력 전송 시스템 | |
US20170324281A1 (en) | Wireless power trnsfer device | |
US10608478B2 (en) | Power transmission system | |
CN106961165B (zh) | 无线电能传输电路、无线电能发射端和无线电能接收端 | |
US20140009002A1 (en) | Power transmission system and power receiving apparatus | |
US9030053B2 (en) | Device for collecting energy wirelessly | |
JP2019126202A (ja) | Lc回路ユニット、ワイヤレス送電装置、ワイヤレス受電装置、及びワイヤレス電力伝送システム | |
JP6040510B2 (ja) | 電力伝送システム | |
Kazi et al. | Frequency and efficiency analysis of inductively coupled wireless power transmission system | |
US9601928B2 (en) | Device for collecting energy wirelessly | |
JP2016010168A (ja) | 共振器及び無線給電システム | |
JP2012257374A (ja) | 非接触電力伝送装置 | |
JP6085817B2 (ja) | 電力伝送システム | |
JP7287402B2 (ja) | ワイヤレス給電システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180008810.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11786502 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012517220 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011786502 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |