WO2016190095A1 - ワイヤレス給電システム - Google Patents

ワイヤレス給電システム Download PDF

Info

Publication number
WO2016190095A1
WO2016190095A1 PCT/JP2016/063948 JP2016063948W WO2016190095A1 WO 2016190095 A1 WO2016190095 A1 WO 2016190095A1 JP 2016063948 W JP2016063948 W JP 2016063948W WO 2016190095 A1 WO2016190095 A1 WO 2016190095A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power receiving
coil
power transmission
voltage
Prior art date
Application number
PCT/JP2016/063948
Other languages
English (en)
French (fr)
Inventor
細谷達也
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2017520608A priority Critical patent/JP6493526B2/ja
Priority to CN201680029707.2A priority patent/CN107636933B/zh
Publication of WO2016190095A1 publication Critical patent/WO2016190095A1/ja
Priority to US15/821,381 priority patent/US10511194B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a wireless power feeding system in which a power transmitting device and a power receiving device are coupled by electromagnetic resonance coupling to supply power wirelessly.
  • the wireless power feeding system is a system that supplies power from power transmitting devices located at positions distant from each other, for example, a system in which one power transmitting device wirelessly supplies power to a plurality of power receiving devices is also conceivable.
  • the power receiving voltage (load supply voltage) changes for each power receiving device.
  • Power is excessive in the power receiving device. In order to avoid the shortage of electric power, it is necessary to increase the transmission power, which increases the size of the power transmission device. Further, if the received power is consumed wastefully in order to avoid excessive power or the voltage conversion ratio in the power receiving device is increased, it is necessary to consider heat dissipation and the power receiving device is increased in size.
  • An object of the present invention is to solve the above-described problem of upsizing and maintain each wireless power transmission efficiency, while supplying power wirelessly from one power transmission device to a plurality of power reception devices. It is an object of the present invention to provide a wireless power feeding system in which a stable voltage is supplied to a load of a battery.
  • a wireless power feeding system of the present invention includes a power transmission device including a power transmission coil, and a plurality of power reception devices each including a power reception coil,
  • the power transmission device drives a power transmission resonance capacitor that constitutes a power transmission resonance mechanism together with the power transmission coil, and a switching element electrically connected to the power transmission coil at a predetermined operating frequency, and supplies a DC input voltage to the power transmission resonance mechanism.
  • a power transmission AC voltage generation circuit that intermittently gives to the power transmission coil to generate an AC voltage
  • the plurality of power receiving devices each include a power receiving resonant capacitor that constitutes a power receiving resonance mechanism together with the power receiving coil, and a power receiving rectifier circuit that is connected to the power receiving coil and rectifies the AC voltage into a DC output voltage,
  • the electric field energy and magnetic field energy of each of the power transmission resonance mechanism and the power reception resonance mechanism interact to form an electromagnetic field resonance field
  • electromagnetic resonance coupling is configured by magnetic field coupling due to mutual inductance and electric field coupling due to mutual capacitance
  • the power reception rectifier circuit is configured in series with the power reception resonance mechanism, and is configured to supply magnetic field energy of the power reception resonance mechanism to a load
  • the plurality of power receiving devices include a first power receiving device having a load having a first equivalent resistance value in which a frequency characteristic of a voltage gain, which is
  • a second power receiving device having a load having a second equivalent resistance value whose equivalent resistance value is larger than the first equivalent resistance value, wherein the frequency characteristics of the voltage gain are unimodal.
  • the first power receiving device is configured by setting a coupling coefficient between the power receiving coil of the first power receiving device and the power transmission coil, and the frequency of the maximum value on the high frequency side of the two maximum values in the first power receiving device and the first power receiving device.
  • the voltage gain is determined by the positional relationship with the operating frequency
  • the second power receiving device is determined so that a frequency at which the voltage gain becomes maximum matches the operating frequency
  • the second power receiving device is set by setting a coupling coefficient between the power receiving coil of the second power receiving device and the power transmitting coil.
  • the voltage gain in the device is defined, It is characterized by that.
  • the wireless power transmission efficiency is increased and each power receiving A stable voltage is supplied to the load of the device.
  • the wireless power feeding system of the present invention includes a power transmission device including a power transmission coil, and a plurality of power reception devices each including a power reception coil,
  • the power transmission device drives a power transmission resonance capacitor that constitutes a power transmission resonance mechanism together with the power transmission coil, and a switching element electrically connected to the power transmission coil at a predetermined operating frequency, and supplies a DC input voltage to the power transmission resonance mechanism.
  • a power transmission AC voltage generation circuit that intermittently gives to the power transmission coil to generate an AC voltage
  • the plurality of power receiving devices each include a power receiving resonant capacitor that constitutes a power receiving resonance mechanism together with the power receiving coil, and a power receiving rectifier circuit that is connected to the power receiving coil and rectifies the AC voltage into a DC output voltage, The electric field energy and magnetic field energy of each of the power transmission resonance mechanism and the power reception resonance mechanism interact to form an electromagnetic field resonance field, Between the power transmission coil and the power reception coil, electromagnetic resonance coupling is configured by magnetic field coupling due to mutual inductance and electric field coupling due to mutual capacitance, In a wireless power feeding system that wirelessly supplies power from the power transmitting device to the power receiving device, The power reception rectifier circuit is configured in parallel with the power reception resonance mechanism, and is configured to supply electric field energy of the power reception resonance mechanism to a load,
  • the plurality of power receiving devices include a third power receiving load having a third equivalent resistance value in which a frequency characteristic of a voltage gain, which is
  • a fourth power receiving device having a load having a fourth equivalent resistance value whose equivalent resistance value is smaller than the third equivalent resistance value, wherein the frequency characteristic of the voltage gain is unimodal
  • the third power receiving device is configured by setting a coupling coefficient between the power receiving coil of the third power receiving device and the power transmission coil, and the maximum frequency on the high frequency side of the two maximum values in the third power receiving device and the frequency
  • the voltage gain is determined by the positional relationship with the operating frequency
  • the fourth power receiving device is configured such that the voltage in the positional relationship between the frequency at which the voltage gain in the power receiving device becomes maximum and the operating frequency is set by setting a coupling coefficient between the power receiving coil of the fourth power receiving device and the power transmitting coil.
  • the gain was defined, It is characterized by that.
  • a wireless power feeding system of the present invention includes a power transmission device including a power transmission coil, and a plurality of power reception devices each including a power reception coil,
  • the power transmission device drives a power transmission resonance capacitor that constitutes a power transmission resonance mechanism together with the power transmission coil, and a switching element electrically connected to the power transmission coil at a predetermined operating frequency, and supplies a DC input voltage to the power transmission resonance mechanism.
  • a power transmission AC voltage generation circuit that intermittently gives to the power transmission coil to generate an AC voltage
  • the plurality of power receiving devices each include a power receiving resonant capacitor that constitutes a power receiving resonance mechanism together with the power receiving coil, and a power receiving rectifier circuit that is connected to the power receiving coil and rectifies the AC voltage into a DC output voltage,
  • the electric field energy and magnetic field energy of each of the power transmission resonance mechanism and the power reception resonance mechanism interact to form an electromagnetic field resonance field
  • electromagnetic resonance coupling is configured by magnetic field coupling due to mutual inductance and electric field coupling due to mutual capacitance
  • the power reception rectifier circuit is configured in series with the power reception resonance mechanism, and is configured to supply magnetic field energy of the power reception resonance mechanism to a load
  • the plurality of power receiving devices include a first power receiving device having a load having a first equivalent resistance value in which a frequency characteristic of a voltage gain, which is
  • a second power receiving device having a load having a second equivalent resistance value whose equivalent resistance value is larger than the first equivalent resistance value, wherein the frequency characteristics of the voltage gain are unimodal.
  • the frequency of the maximum value on the low frequency side of the two maximum values in the first power receiving device is set by the setting of the coupling coefficient between the power receiving coil of the first power receiving device and the power transmission coil.
  • the voltage gain in the first power receiving device is determined by setting a coupling coefficient between the power receiving coil and the power transmitting coil of the first power receiving device,
  • the second power receiving device is determined so that a frequency at which the voltage gain becomes maximum matches the operating frequency, and the second power receiving device is set by setting a coupling coefficient between the power receiving coil of the second power receiving device and the power transmitting coil.
  • the voltage gain in the device is defined, It is characterized by that.
  • the wireless power feeding system of the present invention includes a power transmission device including a power transmission coil, and a plurality of power reception devices each including a power reception coil,
  • the power transmission device drives a power transmission resonance capacitor that constitutes a power transmission resonance mechanism together with the power transmission coil, and a switching element electrically connected to the power transmission coil at a predetermined operating frequency, and supplies a DC input voltage to the power transmission resonance mechanism.
  • a power transmission AC voltage generation circuit that intermittently gives to the power transmission coil to generate an AC voltage
  • the plurality of power receiving devices each include a power receiving resonant capacitor that constitutes a power receiving resonance mechanism together with the power receiving coil, and a power receiving rectifier circuit that is connected to the power receiving coil and rectifies the AC voltage into a DC output voltage, The electric field energy and magnetic field energy of each of the power transmission resonance mechanism and the power reception resonance mechanism interact to form an electromagnetic field resonance field, Between the power transmission coil and the power reception coil, electromagnetic resonance coupling is configured by magnetic field coupling due to mutual inductance and electric field coupling due to mutual capacitance, In a wireless power feeding system that wirelessly supplies power from the power transmitting device to the power receiving device, The power reception rectifier circuit is configured in parallel with the power reception resonance mechanism, and is configured to supply electric field energy of the power reception resonance mechanism to a load,
  • the plurality of power receiving devices include a third power receiving load having a third equivalent resistance value in which a frequency characteristic of a voltage gain, which is
  • a fourth power receiving device having a load having a fourth equivalent resistance value whose equivalent resistance value is smaller than the third equivalent resistance value, wherein the frequency characteristic of the voltage gain is unimodal
  • the frequency of the maximum value on the low frequency side among the two maximum values in the third power receiving device is set by the setting of the coupling coefficient between the power receiving coil of the third power receiving device and the power transmission coil.
  • the voltage gain in the third power receiving device is determined by setting a coupling coefficient between the power receiving coil and the power transmitting coil of the third power receiving device
  • the fourth power receiving device is configured such that the voltage in the positional relationship between the frequency at which the voltage gain in the power receiving device becomes maximum and the operating frequency is set by setting a coupling coefficient between the power receiving coil of the fourth power receiving device and the power transmitting coil.
  • the gain was defined, It is characterized by that.
  • the coupling coefficient is determined by a difference in size or shape of the power receiving coil with respect to the power transmitting coil. Thereby, the coupling coefficient of a power transmission coil and a power receiving coil can be easily set for every power receiving apparatus.
  • the coupling coefficient is preferably determined by a distance between coils of the power receiving coil with respect to the power transmitting coil.
  • each power receiving apparatus can be used to solve the above-described problem of upsizing and to supply power wirelessly from one power transmitting apparatus to a plurality of power receiving apparatuses while maintaining high wireless power transmission efficiency.
  • a stable voltage is supplied to the load.
  • FIG. 1A and 1B are circuit diagrams of a wireless power feeding system 101 according to the first embodiment.
  • FIG. 2A is a circuit diagram of a multiple resonance circuit including an equivalent electromagnetic resonance coupling composed of an electromagnetic resonance coupling circuit 90 and resonant capacitors Cr and Crs.
  • FIG. 2B is an equivalent circuit diagram of the double resonance circuit.
  • FIG. 3 is a voltage / current waveform diagram of each part showing the energy conversion operation of the wireless power feeding system 101 shown in FIGS. 1 (A) and 1 (B).
  • FIG. 4 is an equivalent circuit diagram for explaining how the frequency characteristic of the voltage gain, which is the ratio of the DC output voltage to the DC input voltage, changes depending on the equivalent resistance value of the load.
  • 5A, 5B, and 5C are schematic diagrams illustrating resonance characteristics due to multiple resonance.
  • FIG. 1A and 1B are schematic diagrams illustrating resonance characteristics due to multiple resonance.
  • 8A and 8B are circuit diagrams of the wireless power feeding system 102 according to the second embodiment.
  • 9A, 9B, and 9C are circuit diagrams of the wireless power feeding system 103 according to the third embodiment.
  • FIG. 10 is a circuit diagram of a resonance circuit including an equivalent electromagnetic resonance coupling composed of an electromagnetic resonance coupling circuit and resonance capacitors Cr and Crs in the wireless power feeding system according to the fourth embodiment.
  • FIG. 11A and 11B are examples in which an LC filter circuit is connected to a series resonance circuit of an inductance Ls and a capacitance Crs of a power receiving coil in the wireless power feeding system according to the fifth embodiment.
  • 12A, 12B, and 12C are circuit diagrams of a wireless power feeding system 106 according to the sixth embodiment.
  • FIG. 13A is a circuit diagram of a multiple resonance circuit including an equivalent electromagnetic resonance coupling composed of an electromagnetic resonance coupling circuit 90 and resonant capacitors Cp and Cs.
  • FIG. 13B is an equivalent circuit diagram of the multiple resonance circuit.
  • FIG. 14 is an equivalent circuit diagram for explaining how the frequency characteristic of the voltage gain, which is the ratio of the DC output voltage to the DC input voltage, changes depending on the equivalent resistance value of the load.
  • FIG. 13A is a circuit diagram of a multiple resonance circuit including an equivalent electromagnetic resonance coupling composed of an electromagnetic resonance coupling circuit 90 and resonant capacitors Cp and Cs.
  • FIG. 13B is an equivalent circuit diagram
  • FIG. 17 is a circuit diagram of an electromagnetic resonance coupling circuit portion in the wireless power feeding system according to the seventh embodiment.
  • FIG. 18 is a circuit diagram of an electromagnetic resonance coupling circuit portion in the wireless power feeding system according to the eighth embodiment.
  • FIGS. 19A and 19B are examples in which an LC filter circuit is connected to a parallel resonance circuit of an inductance Ls and a capacitance Crs of a power receiving coil in the wireless power feeding system according to the ninth embodiment.
  • the first embodiment exemplifies a wireless power feeding system in which a power receiving rectifier circuit is configured in series with respect to a power receiving resonance mechanism and magnetic energy of a power receiving coil is supplied to a load.
  • FIGS. 1A and 1B are circuit diagrams of a wireless power feeding system 101 according to the first embodiment.
  • the wireless power supply system 101 includes a power transmission device PSU, a first power reception device PRU1, and a second power reception device PRU2.
  • a pair of one power receiving device PRU1 or PRU2 and one power transmitting device PSU is individually shown.
  • a plurality of power receiving devices including two power receiving devices PRU1 and PRU2 and one power receiving device PSU2 are shown.
  • the power transmission device PSU may exist at the same time. The same applies to other embodiments described later.
  • the wireless power supply system 101 is a system that includes an input power source Vi at the input unit of the power transmission device PSU and supplies a stable DC voltage to the load Ro of the first power reception device PRU1 and the second power reception device PRU2.
  • the distance between the power transmission coil np of the power transmission device PSU and the power reception coil ns1 of the first power reception device PRU1 is dx1
  • the power transmission coil np and the second power reception of the power transmission device PSU is dx2.
  • the power transmission device PSU includes a power transmission resonance mechanism including a power transmission coil np and a power transmission resonance capacitor Cr, and a power transmission AC current generation circuit electrically connected to the power transmission resonance mechanism.
  • the transmission AC current generation circuit is equivalent to a first switch circuit S1 composed of a parallel connection circuit of a switching element Q1, a diode Dds1 and a capacitor Cds1, and equivalently a parallel connection circuit of a switching element Q2, a diode Dds2 and a capacitor Cds2. And a second switch circuit S2.
  • the power transmission device PSU includes a switching control circuit (not shown) that controls the switching elements Q1 and Q2.
  • the switching control circuit generates an AC voltage from the transmission AC voltage generation circuit by alternately turning on / off the switching element Q1 of the first switch circuit S1 and the switching element Q2 of the second switch circuit S2.
  • the switching elements Q1 and Q2 are switching elements having parasitic output capacitances and parasitic diodes such as MOSFETs, and the switch circuits S1 and S2 are connected using the parasitic output capacitances and parasitic diodes. It is composed.
  • the switching control circuit switches the first switching element Q1 and the second switching element Q2 at a predetermined operating frequency, thereby intermittently applying a DC voltage to the power transmission resonance mechanism to generate a resonance current in the power transmission resonance mechanism.
  • the voltage across the first switch circuit S1 and the second switch circuit S2 is set to a half-wave sinusoidal waveform every half cycle.
  • the switching operation is performed at 6.78 MHz or 13.56 MHz which are international ISM (Industrial, “Scientific” and “Medical”) bands.
  • the transmission AC voltage generation circuit constitutes a half bridge circuit including two switch circuits S1 and S2.
  • the power receiving devices PRU1 and PRU2 include a power receiving resonance mechanism RC including power receiving coils ns1 and ns2 and a power receiving resonance capacitor Crs, and a power receiving rectifier circuit RC connected to the power receiving coils ns1 and ns2 to rectify an alternating current generated in the power receiving coils ns1 and ns2. And a smoothing capacitor Co.
  • the switch circuit S3 is composed of a parallel connection circuit of a switching element Q3, a diode Dds3, and a capacitor Cds3.
  • the switch circuit S4 includes a parallel connection circuit of a switching element Q4, a diode Dds4, and a capacitor Cds4.
  • the power receiving devices PRU1 and PRU2 include a switching control circuit (not shown) that controls the switching elements Q3 and Q4.
  • This switching control circuit detects the current flowing through the power receiving coils ns1 and ns2, and alternately turns on and off the switching elements Q3 and Q4 in synchronization with the polarity inversion. As a result, the resonance current flowing through the power receiving resonance mechanism is rectified in synchronization with the change in the direction of current flow, and the current is supplied to the load.
  • FIG. 3 is a voltage / current waveform diagram of each part showing the energy conversion operation of the wireless power feeding system 101 shown in FIGS. 1 (A) and 1 (B). This example shows a switching operation waveform when the switching element performs an optimal zero voltage switching (optimum ZVS) operation.
  • the operation state of the power transmission device PSU can be classified into four states of an ON period, an OFF period, and two commutation periods for each equivalent circuit.
  • the gate-source voltages of the switching elements Q1, Q2 are represented by voltages Vgs1, Vgs2, and the drain-source voltages are represented by voltages Vds1, Vds2.
  • the resonance frequency fr of the double resonance circuit including electromagnetic coupling is designed to be slightly lower than 6.78 MHz or 13.56 MHz, and the reactance is made sufficiently small inductivity.
  • the switching elements Q1 and Q2 perform on / off operations alternately with a short dead time td when both are turned off.
  • the capacitors (parasitic capacitances) Cds1 and Cds2 of the two switching elements Q1 and Q2 are charged and discharged using the delayed current of the resonance current ir to perform commutation.
  • the ZVS operation is realized by turning on the switching elements Q1 and Q2 in the conduction period ta of the parasitic diode after the commutation period tc. The energy conversion operation in each state in one switching cycle is shown below.
  • the switching element Q1 is apparently conductive.
  • the switching element Q1 is a GaN FET
  • a reverse voltage -Vds1 is applied to both ends of the switching element Q1
  • a voltage (Vgd1) is applied between the gate and the drain.
  • Switching element Q1 enters a reverse conduction mode in which the threshold voltage is an offset voltage, and operates like an antiparallel diode.
  • the equivalent diode Dds1 at both ends of the switching element Q1 conducts, and the ZVS operation is performed by turning on the switching element Q1 during this period.
  • a resonance current ir flows through the power transmission coil np, and the capacitor Cr is charged.
  • the diode Dds3 or Dds4 conducts, and the resonance current irs flows in the power receiving coils ns1 and ns2.
  • the capacitor Crs is discharged, the voltage induced in the power receiving coils ns1 and ns2 and the voltage across the capacitor Crs are added, and the voltage (power) is supplied to the load Ro.
  • the diode Dds4 is turned on, the capacitor Crs is charged.
  • the voltage of the capacitor Co is applied to the load Ro and electric power is supplied.
  • the switching element Q1 is turned off, the state 2 is obtained.
  • the switching element Q2 is conducting.
  • a reverse voltage -Vds2 is applied to both ends of the switching element Q2, and a voltage (Vgd2) is applied between the gate and the drain.
  • Switching element Q2 is in a reverse conduction mode in which the threshold voltage is an offset voltage, and operates like an antiparallel diode.
  • the equivalent diode Dds2 at both ends of the switching element Q2 conducts, and the ZVS operation is performed by turning on the switching element Q2 during this period.
  • a resonance current ir flows through the power transmission coil np, and the capacitor Cr is discharged.
  • the diode Dds3 or Dds4 conducts, and the resonance current irs flows in the power receiving coils ns1 and ns2.
  • the capacitor Crs is discharged, and the voltage induced in the power receiving coils ns1 and ns2 and the voltage across the capacitor Crs are added to supply power to the load Ro.
  • the diode Dds4 is turned on, the capacitor Crs is charged. The voltage of the capacitor Co is applied to the load Ro and electric power is supplied.
  • switching element Q2 is turned off, state 4 is entered.
  • the diode Dds3 or Dds4 conducts and current flows in the forward direction.
  • the waveforms of the currents ir and irs are almost sinusoidal due to the resonance phenomenon.
  • an equivalent electromagnetic resonance coupling circuit is configured by the mutual inductance Ml and the mutual capacitance Mc that are equivalently formed between the power transmission coil np and the power reception coils ns1, ns2, and the power transmission resonance mechanism and the power reception
  • the resonance mechanism resonates to form an electromagnetic field resonance field.
  • FIG. 2A is a circuit diagram of a multiple resonance circuit including an equivalent electromagnetic resonance coupling composed of an electromagnetic resonance coupling circuit 90 and resonant capacitors Cr and Crs.
  • FIG. 2B is an equivalent circuit diagram thereof.
  • the inductance Lp is the inductance of the power transmission coil np
  • the inductance Ls is the inductance of the power receiving coil ns1 (, ns2)
  • the inductance Lm is a power transmission by magnetic field resonance coupling between the power transmission coil np and the power receiving coil ns1 (, ns2). It is equivalent mutual inductance.
  • the capacitance Cm is an equivalent mutual capacitance that transmits electric power by electric field resonance coupling between the power transmission coil np and the power reception coil ns1 (, ns2).
  • the capacitance Cp is a parasitic component of the power transmission coil np
  • the capacitances Cs and Cs1 are parasitic components of the power receiving coil ns1 (, ns2).
  • the input current iac in (t) to the electromagnetic resonance coupling circuit can be approximately expressed by the following equation where the amplitude of the resonance current is Iac.
  • iac in (t) Iac sin ( ⁇ st)
  • ⁇ s 2 ⁇ / Ts
  • a sine wave current iac in (t) is applied between the terminals 1-1 ′.
  • a current including each frequency component tends to flow between the terminals 1-1 ′, but the current waveform of a higher-order frequency component whose impedance is increased by the electromagnetic resonance coupling circuit is cut and a resonance operation is performed. Only the resonance current waveform of the switching frequency component mainly flows, and power can be transmitted efficiently.
  • FIG. 4 is an equivalent circuit diagram for explaining how the frequency characteristic of the voltage gain, which is the ratio of the DC output voltage to the DC input voltage, changes depending on the equivalent resistance value of the load.
  • a first resonance circuit is constituted by a resonance capacitor Cr and an inductor ⁇ (Lp ⁇ Lm) + Lm ⁇ .
  • a second resonance circuit is constituted by the resonance capacitor Crs and the inductor ⁇ (Ls ⁇ Lm) + Lm ⁇ .
  • FIGS. 5A, 5B, and 5C are schematic diagrams showing the resonance characteristics due to the double resonance.
  • the horizontal axis represents frequency
  • the vertical axis represents voltage gain, which is the ratio of DC output voltage to DC input voltage.
  • FIG. 5A shows a case where the mutual inductance Lm is ⁇ 0, which is unimodal.
  • FIG. 5C shows characteristics when the mutual inductance Lm is large, and is bimodal.
  • FIG. 5B shows characteristics when the mutual inductance Lm is medium, and it is almost unimodal.
  • the voltage gain which is the ratio of the DC output voltage to the DC input voltage, is bimodal, and when the equivalent resistance value of the load is large, Alternatively, when the coupling coefficient (coupling degree) k is small, the voltage gain is unimodal.
  • FIG. 6 and 7 are diagrams showing frequency characteristics of voltage gain when the coupling coefficient between the power transmission coil np and the power reception coil ns is changed.
  • the frequency characteristics of the voltage gain may be bimodal.
  • the equivalent resistance value of the load of the first power receiving device PRU1 shown in FIG. 1A is such that the frequency characteristics of the voltage gain in the state where the first power receiving device PRU1 and the power transmitting device PSU are coupled are bimodal. Small. Further, the equivalent resistance value of the load of the second power receiving device PRU2 shown in FIG. 1B has a unimodal voltage gain frequency characteristic in a state where the second power receiving device PRU2 and the power transmitting device PSU are coupled. Big to the extent.
  • the first power receiving device PRU1 has one frequency at which the voltage gain is maximized by setting the coupling coefficient between the power receiving coil ns1 and the power transmitting coil np (in the example shown in FIG. 6, two frequencies at which the voltage gain is maximized).
  • the voltage gain is determined by the positional relationship between the higher frequency and the operating frequency.
  • the frequency at which the voltage gain becomes maximum is determined near the operating frequency, and the voltage gain is determined by setting the coupling coefficient.
  • the coupling coefficient is determined by the inter-coil distances dx1 and dx2 of the power receiving coils ns1 and ns2 with respect to the power transmitting coil np.
  • the coupling coefficient between the power receiving coil ns1 and the power transmitting coil np of the first power receiving device is the power receiving power of the second power receiving device. It is smaller than the coupling coefficient between the coil ns2 and the power transmission coil np.
  • the coupling coefficient can be set for each power receiving device depending on the distance between the power receiving coil and the power transmitting coil.
  • the first power receiving device having a load with a small equivalent resistance value has a peak on the high frequency side among the bimodal peaks in FIG.
  • the second power receiving device having a load with a large equivalent resistance value has a single peak peak value (voltage gain) shown in FIG.
  • the voltage gain is determined by utilizing the characteristic that varies depending on the coupling coefficient.
  • the first power receiving device having a load with a small equivalent resistance value may have a peak on the low frequency side of the bimodal peak in FIG.
  • the voltage gain may be determined using a characteristic in which the value of (peak) changes depending on the coupling coefficient.
  • Second Embodiment it illustrates about the other setting structure of the coupling coefficient of a power transmission coil and a receiving coil.
  • the wireless power feeding system 102 includes a power transmission device PSU, a first power reception device PRU1, and a second power reception device PRU2.
  • the difference between the radius r1 of the power receiving coil ns1 of the first power receiving device PRU1 and the radius r of the power transmitting coil np is smaller than the difference between the radius r2 of the power receiving coil ns2 of the second power receiving device PRU2 and the radius r of the power transmitting coil np.
  • the larger the difference in diameter between two coils to be coupled the smaller the coupling coefficient between the coils.
  • the distance dx between the power transmission coil np of the power transmission device PSU and the power reception coils ns1 and ns2 of the first and second power reception devices PRU1 and PRU2 is the same. Other configurations are as described in the first embodiment.
  • the coupling coefficient between the power receiving coil and the power transmitting coil may be determined by the difference in the size of the power receiving coil with respect to the power transmitting coil. Therefore, even if the distance between the power transmission coil and the power reception coil is constant, the coupling coefficient can be easily set for each power reception device.
  • FIGS. 9A, 9B, and 9C are circuit diagrams of the wireless power feeding system 103 according to the third embodiment.
  • helical coils are used for the power transmission coil np and the power reception coils ns1 and ns2, and power is fed at the center. Therefore, the helical coil on the power transmission device side has an equivalent inductance Lp and an equivalent capacitance Cr, and constitutes a resonance circuit.
  • the helical coil on the power receiving device side has an inductance Ls and a capacitance Crs, and constitutes a resonance circuit.
  • an electromagnetic resonance coupling circuit is formed between the power transmission coil np and the power reception coils ns1 and ns2.
  • Other configurations are the same as those shown in the first embodiment.
  • the difference between the radius r1 of the power receiving coil ns1 of the first power receiving device PRU1 and the radius r of the power transmitting coil np shown in FIG. 9A is the radius r2 of the power receiving coil ns2 of the second power receiving device PRU2 shown in FIG. And the difference between the radius r of the power transmission coil np.
  • the inter-coil distance between the power receiving coil ns1 and the power transmitting coil np of the first power receiving device PRU1 shown in FIG. 9C is the same as the power receiving coil ns2 and the power transmitting coil np of the second power receiving device PRU2 shown in FIG. 9B. Greater than the distance between coils.
  • the coupling coefficient between the power reception coil and the power transmission coil can be determined by the difference in the coil sizes or the distance between the coils.
  • FIG. 10 is a circuit diagram of a resonance circuit including an equivalent electromagnetic resonance coupling composed of an electromagnetic resonance coupling circuit 90 and resonance capacitors Cr and Crs in the wireless power feeding system according to the fourth embodiment.
  • the power receiving coil includes the capacitor Cs, which is a parasitic component, but the capacitor Cs and the like are not essential as shown in FIG.
  • the series resonance circuit may be configured by connecting the inductance Ls and the capacitance Crs of the power receiving coil in series.
  • FIG. 11A shows an example in which an LC filter circuit is connected to a series resonance circuit of an inductance Ls and a capacitance Crs of a receiving coil.
  • FIG. 11B is a circuit diagram in the case where a capacitance Crs1 is further included in parallel with the power receiving coil in addition to the configuration of FIG. In either case, a power receiving rectifier circuit is connected between the terminals 2-2 '.
  • the LC filter circuit is a low-pass filter or a band-pass filter that passes the operating frequency and blocks higher-order harmonic components than the operating frequency.
  • the harmonic component of the current waveform flowing through the power receiving resonance mechanism is reduced, and EMI (electromagnetic interference) noise is reduced. be able to.
  • EMC electromagnetic compatibility
  • the impedance of the resonance mechanism can be converted by the filter. That is, impedance matching can be achieved. Thereby, the current and voltage suitable for the load can be supplied.
  • a power feeding rectifier circuit is configured in parallel with the power receiving resonance mechanism, and a wireless power feeding system configured to supply electric energy of the power receiving coil to a load will be exemplified.
  • the wireless power feeding system 106 includes a power transmitting device PSU, a third power receiving device PRU3, and a fourth power receiving device PRU4.
  • the wireless power supply system 106 is a system that includes an input power source Vi at the input unit of the power transmission device PSU and supplies a stable DC voltage to the load Ro of the third power reception device PRU3 and the fourth power reception device PRU4.
  • the configuration of the power transmission device PSU is the same as that shown in each of the first to fifth embodiments.
  • the power receiving devices PRU3 and PRU4 are connected to the power receiving resonance mechanism including the power receiving coils ns3 and ns4 and the power receiving resonance capacitor Cs, and the diode Dds3 that is connected to the power receiving coils ns3 and ns4 and rectifies the AC current generated in the power receiving coils ns3 and ns4.
  • a rectifier circuit and a smoothing capacitor Co are provided.
  • FIG. 13A is a circuit diagram of a multiple resonance circuit including an equivalent electromagnetic resonance coupling composed of an electromagnetic resonance coupling circuit 90 and a resonance capacitor Cr.
  • FIG. 13B is an equivalent circuit diagram thereof.
  • the inductance Lp is the inductance of the power transmission coil np
  • the inductance Ls is the inductance of the power receiving coil ns3 (, ns4)
  • the inductance Lm is a magnetic resonance coupling between the power transmission coil np and the power receiving coil ns3 (, ns4).
  • the capacitance Cm is an equivalent mutual capacitance that transmits electric power by electric field resonance coupling between the power transmission coil np and the power reception coil ns3 (, ns4).
  • the capacitance Cp is a parasitic component of the power transmission coil np
  • the capacitances Cs and Cs1 are parasitic components of the power receiving coil ns3 (, ns4).
  • a sine wave current iac in (t) is applied between the terminals 1-1 '.
  • a current including each frequency component tends to flow between the terminals 1-1 ′, but the current waveform of a higher-order frequency component whose impedance is increased by the electromagnetic resonance coupling circuit is cut and a resonance operation is performed. Only the resonance current of the switching frequency component mainly flows, and power can be transmitted efficiently.
  • FIG. 14 is an equivalent circuit diagram for explaining how the frequency characteristic of the voltage gain, which is the ratio of the DC output voltage to the DC input voltage, changes depending on the equivalent resistance value of the load.
  • a first resonance circuit is constituted by a resonance capacitor Cp and an inductor ⁇ (Lp ⁇ Lm) + Lm ⁇ .
  • a second resonance circuit is formed by the resonance capacitor Cs and the inductor ⁇ (Ls ⁇ Lm) + Lm ⁇ .
  • the frequency characteristics of the voltage gain are unimodal or bimodal depending on the mutual inductance Lm. Further, when the equivalent resistance value of the load shown in FIG. 14 is small, double resonance does not occur, so that the single resonance is achieved at the resonance frequency of the first resonance circuit.
  • the voltage gain that is the ratio of the DC output voltage to the DC input voltage becomes bimodal, and when the equivalent resistance value of the load is small, Alternatively, when the coupling coefficient (coupling degree) k is small, the voltage gain is unimodal.
  • FIG. 15 and 16 are diagrams showing frequency characteristics of voltage gain when the coupling coefficient between the power transmission coil np and the power reception coil ns is changed.
  • the frequency characteristics of the voltage gain may be bimodal.
  • the equivalent resistance value of the load of the power receiving device PRU3 shown in FIG. 12A is large to some extent with the frequency characteristics of the voltage gain in a state where the power receiving device PRU3 and the power transmitting device PSU are coupled to each other.
  • the equivalent resistance value of the load of the power receiving device PRU4 shown in FIGS. 12B and 12C is such that the frequency characteristic of the voltage gain in a state where the power receiving device PRU4 and the power transmitting device PSU are coupled is unimodal. small.
  • the third power receiving device PRU3 has one frequency at which the voltage gain is maximized by setting the coupling coefficient between the power receiving coil ns1 and the power transmitting coil np (in the example shown in FIG. 15, two frequencies at which the voltage gain is maximized).
  • the voltage gain is determined by the positional relationship between the higher frequency and the operating frequency.
  • the frequency at which the voltage gain is maximized is determined near the operating frequency, and the voltage gain is determined by setting the coupling coefficient.
  • the coupling coefficient is determined by the inter-coil distances dx and dx4 of the power receiving coils ns3 and ns4 with respect to the power transmitting coil np and the difference between the radius r of the power transmitting coil np and the radius r4 of the power receiving coil ns4.
  • the third power receiving device having a load with a large equivalent resistance value has a peak on the high frequency side among the bimodal peaks in FIG.
  • the fourth power receiving device having a load having a small equivalent resistance value is determined by using the characteristic that the frequency of the peak side) is displaced by the coupling coefficient, and the frequency of the unimodal peak in FIG.
  • the voltage gain is determined by utilizing the characteristic to be.
  • the third power receiving device having a load with a large equivalent resistance value has a peak on the low frequency side of the bimodal peak in FIG. 15 (on the side where the peak frequency is not relatively displaced due to the variation of the coupling coefficient).
  • the voltage gain may be determined using a characteristic in which the value of (peak) changes depending on the coupling coefficient.
  • FIG. 17 is a circuit diagram of an electromagnetic resonance coupling circuit portion in the wireless power feeding system according to the seventh embodiment.
  • capacitors Cr, Crs, and Cs2 are provided in addition to the electromagnetic resonance coupling circuit 90.
  • the voltage value applied to each capacitor or coil can be adjusted. Further, for example, by dividing the voltage with the capacitors Crs and Cs2, it is possible to adjust the power to the load extracted from the capacitor Cs2.
  • FIG. 18 is a circuit diagram of an electromagnetic resonance coupling circuit portion in the wireless power feeding system according to the eighth embodiment.
  • a capacitor Cr is inserted between the inductance Lp of the power transmission coil and the resonance capacitor Cp
  • a capacitor Crs is inserted between the inductance Ls of the power reception coil and the resonance capacitor Cs.
  • FIG. 19A shows an example in which an LC filter circuit is connected to a parallel resonant circuit of an inductance Ls and a capacitance Cs of the receiving coil.
  • FIG. 19B is a circuit diagram in the case of further including a capacitance Crs in series and a capacitance Cs2 in parallel. In either case, a power receiving rectifier circuit is connected between the terminals 2-2 '.
  • the LC filter circuit is a low-pass filter or a band-pass filter that passes the operating frequency and blocks higher-order harmonic components than the operating frequency.
  • the harmonic component of the current waveform flowing through the power receiving resonance mechanism is reduced, and EMI (electromagnetic interference) noise is reduced. be able to.
  • EMC electromagnetic compatibility
  • the impedance of the resonance mechanism can be converted by the filter. That is, impedance matching can be achieved. Thereby, the current and voltage suitable for the load can be supplied.
  • the electromagnetic resonance coupling is configured by the magnetic field coupling by the mutual inductance and the electric field coupling by the mutual capacitance between the power transmission coil and the power receiving coil.
  • the present invention is also applied to the case where the magnetic field coupling is dominant as compared with the case where the magnetic field coupling is mainly configured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

 受電整流回路(RC)は、受電共振機構に対して例えば直列に構成される。第1受電装置(PRU1)は等価抵抗値が小さい負荷を有し、直流入力電圧に対する直流出力電圧の比である電圧利得の周波数特性は双峰性であり、第2受電装置(PRU2)は等価抵抗値が大きい負荷を有し、電圧利得の周波数特性は単峰性である。第1受電装置(PRU1)は、受電コイル(ns1)と送電コイル(np)との結合係数の設定により、第1受電装置(PRU1)における電圧利得が極大となる一方の周波数と動作周波数との位置関係で電圧利得が定められ、第2受電装置(PRU2)は、電圧利得が極大となる周波数が動作周波数の近くに定められ、受電コイル(ns2)と送電コイル(np)との結合係数の設定によって電圧利得が定められる。

Description

ワイヤレス給電システム
 本発明は、送電装置と受電装置が電磁界共鳴結合により結合して、ワイヤレスで電力を給電するワイヤレス給電システムに関する。
 近年、ワイヤレス給電の実用化を目指して、システム全体の電力損失を低減する研究開発が活発化している。特に、送電共振機構と受電共振機構によって電磁界共鳴フィールドを形成し、電磁界共鳴結合によりワイヤレス給電を行うシステムでは、高周波磁界を共振器に与える方式とは異なり、電力給電の過程をシンプルにして電力損失を低減できる(特許文献1参照)。
国際公開第2012/101905号
 ワイヤレス給電システムは、互いに離れた位置にある送電装置から受電装置へ電力を供給するシステムであるので、例えば1つの送電装置が複数の受電装置へワイヤレスで電力を供給するシステムも考えられる。
 しかし、発明者は、ワイヤレス給電システムの研究開発によって、1つの送電装置から複数の受電装置へワイヤレスで電力を供給するシステムにおいては、次のような問題が生じることを見出した。
(1)送電装置からみて等価抵抗値が異なる複数の受電装置に対しては、受電装置ごとに受電電圧(負荷供給電圧)が変化してしまう。
(2)受電装置ごとに受電電圧が異なる場合、電圧変換装置を用いて所定電圧に安定化した状態で負荷へ電源電圧を供給する必要があるため、受電装置が大型化する。
(3)受電電圧が所定値よりも低くなる受電装置と受電電圧が所定値よりも高くなる受電装置が混在し、所定値よりも低くなる受電装置では電力が不足し、所定値よりも高くなる受電装置では電力が過剰となる。電力の不足を回避するためには、送電電力を大きくする必要があり、送電装置が大型化する。また、電力の過剰を回避するために受電電力を無駄に消費したり、受電装置での電圧変換比を大きくしたりすると、放熱性等を考慮する必要があり、受電装置が大型化してしまう。
 本発明の目的は、上述の大型化の課題を解消し、且つ、ワイヤレス電力伝送効率を高く維持しつつ、1つの送電装置から複数の受電装置へワイヤレスで電力を供給する場合に、各受電装置の負荷に安定した電圧が供給されるワイヤレス給電システムを提供することにある。
(1)本発明のワイヤレス給電システムは、送電コイルを備える送電装置と、それぞれ受電コイルを備える複数の受電装置とを備え、
 前記送電装置は、前記送電コイルとともに送電共振機構を構成する送電共振キャパシタと、前記送電コイルに電気的に接続されるスイッチング素子を所定の動作周波数で駆動して、直流入力電圧を前記送電共振機構に断続的に与え、前記送電コイルに交流電圧を発生させる送電交流電圧発生回路と、を有し、
 前記複数の受電装置は、前記受電コイルとともに受電共振機構を構成する受電共振キャパシタと、前記受電コイルに接続されて、前記交流電圧を直流出力電圧に整流する受電整流回路と、をそれぞれ有し、
 前記送電共振機構と前記受電共振機構のそれぞれが有する電界エネルギーおよび磁界エネルギーが相互に作用して電磁界共鳴フィールドが形成され、
 前記送電コイルと前記受電コイルとの間で、相互インダクタンスによる磁界結合および相互キャパシタンスによる電界結合によって電磁界共鳴結合が構成され、
 前記送電装置から前記受電装置へワイヤレスで電力を供給するワイヤレス給電システムにおいて、
 前記受電整流回路は、前記受電共振機構に対して直列に構成されて、前記受電共振機構の磁界エネルギーが負荷に供給するように構成され、
 前記複数の受電装置は、前記直流入力電圧に対する前記直流出力電圧の比である電圧利得の周波数特性が2つの極大値を有する双峰性となる、第1等価抵抗値の負荷を有する第1受電装置と、前記電圧利得の周波数特性が単峰性となる、等価抵抗値が前記第1等価抵抗値より大きな第2等価抵抗値の負荷を有する第2受電装置と、を含み、
 前記第1受電装置は、前記第1受電装置の受電コイルと前記送電コイルとの結合係数の設定により、前記第1受電装置における前記2つの極大値のうち高周波数側の極大値の周波数と前記動作周波数との位置関係で前記電圧利得が定められ、
 前記第2受電装置は、前記電圧利得が極大となる周波数が前記動作周波数と一致するように定められ、前記第2受電装置の受電コイルと前記送電コイルとの結合係数の設定によって前記第2受電装置における前記電圧利得が定められた、
ことを特徴とする。
 上記構成により、受電装置の受電整流回路が受電共振機構に対して直列に構成され、受電コイルの磁気エネルギーが負荷に供給するように構成される場合に、ワイヤレス電力伝送効率が高まるとともに、各受電装置の負荷に安定した電圧が供給される。
(2)本発明のワイヤレス給電システムは、送電コイルを備える送電装置と、それぞれ受電コイルを備える複数の受電装置とを備え、
 前記送電装置は、前記送電コイルとともに送電共振機構を構成する送電共振キャパシタと、前記送電コイルに電気的に接続されるスイッチング素子を所定の動作周波数で駆動して、直流入力電圧を前記送電共振機構に断続的に与え、前記送電コイルに交流電圧を発生させる送電交流電圧発生回路と、を有し、
 前記複数の受電装置は、前記受電コイルとともに受電共振機構を構成する受電共振キャパシタと、前記受電コイルに接続されて、前記交流電圧を直流出力電圧に整流する受電整流回路と、をそれぞれ有し、
 前記送電共振機構と前記受電共振機構のそれぞれが有する電界エネルギーおよび磁界エネルギーが相互に作用して電磁界共鳴フィールドが形成され、
 前記送電コイルと前記受電コイルとの間で、相互インダクタンスによる磁界結合および相互キャパシタンスによる電界結合によって電磁界共鳴結合が構成され、
 前記送電装置から前記受電装置へワイヤレスで電力を供給するワイヤレス給電システムにおいて、
 前記受電整流回路は、前記受電共振機構に対して並列に構成されて、前記受電共振機構の電界エネルギーが負荷に供給するように構成され、
 前記複数の受電装置は、前記直流入力電圧に対する前記直流出力電圧の比である電圧利得の周波数特性が2つの極大値を有する双峰性となる、第3等価抵抗値の負荷を有する第3受電装置と、前記電圧利得の周波数特性が単峰性となる、等価抵抗値が前記第3等価抵抗値より小さな第4等価抵抗値の負荷を有する第4受電装置と、を含み、
 前記第3受電装置は、前記第3受電装置の受電コイルと前記送電コイルとの結合係数の設定により、前記第3受電装置における前記2つの極大値のうち高周波数側の極大値の周波数と前記動作周波数との位置関係で前記電圧利得が定められ、
 前記第4受電装置は、前記第4受電装置の受電コイルと前記送電コイルとの結合係数の設定により、前記受電装置における前記電圧利得が極大となる周波数と前記動作周波数との位置関係で前記電圧利得が定められた、
ことを特徴とする。
 上記構成により、受電装置の受電整流回路が受電共振機構に対して並列に構成され、受電コイルの電気エネルギーが負荷に供給するように構成される場合に、ワイヤレス電力伝送効率が高まるとともに、各受電装置の負荷に安定した電圧が供給される。
(3)本発明のワイヤレス給電システムは、送電コイルを備える送電装置と、それぞれ受電コイルを備える複数の受電装置とを備え、
 前記送電装置は、前記送電コイルとともに送電共振機構を構成する送電共振キャパシタと、前記送電コイルに電気的に接続されるスイッチング素子を所定の動作周波数で駆動して、直流入力電圧を前記送電共振機構に断続的に与え、前記送電コイルに交流電圧を発生させる送電交流電圧発生回路と、を有し、
 前記複数の受電装置は、前記受電コイルとともに受電共振機構を構成する受電共振キャパシタと、前記受電コイルに接続されて、前記交流電圧を直流出力電圧に整流する受電整流回路と、をそれぞれ有し、
 前記送電共振機構と前記受電共振機構のそれぞれが有する電界エネルギーおよび磁界エネルギーが相互に作用して電磁界共鳴フィールドが形成され、
 前記送電コイルと前記受電コイルとの間で、相互インダクタンスによる磁界結合および相互キャパシタンスによる電界結合によって電磁界共鳴結合が構成され、
 前記送電装置から前記受電装置へワイヤレスで電力を供給するワイヤレス給電システムにおいて、
 前記受電整流回路は、前記受電共振機構に対して直列に構成されて、前記受電共振機構の磁界エネルギーが負荷に供給するように構成され、
 前記複数の受電装置は、前記直流入力電圧に対する前記直流出力電圧の比である電圧利得の周波数特性が2つの極大値を有する双峰性となる、第1等価抵抗値の負荷を有する第1受電装置と、前記電圧利得の周波数特性が単峰性となる、等価抵抗値が前記第1等価抵抗値より大きな第2等価抵抗値の負荷を有する第2受電装置と、を含み、
 前記第1受電装置は、前記第1受電装置の受電コイルと前記送電コイルとの結合係数の設定により、前記第1受電装置における前記2つの極大値のうち低周波数側の極大値の周波数が前記動作周波数と一致するように定められ、前記第1受電装置の受電コイルと前記送電コイルとの結合係数の設定によって前記第1受電装置における前記電圧利得が定められ、
 前記第2受電装置は、前記電圧利得が極大となる周波数が前記動作周波数と一致するように定められ、前記第2受電装置の受電コイルと前記送電コイルとの結合係数の設定によって前記第2受電装置における前記電圧利得が定められた、
ことを特徴とする。
 上記構成により、受電装置の受電整流回路が受電共振機構に対して並列に構成され、受電コイルの電気エネルギーが負荷に供給するように構成される場合に、ワイヤレス電力伝送効率が高まるとともに、各受電装置の負荷に安定した電圧が供給される。
(4)本発明のワイヤレス給電システムは、送電コイルを備える送電装置と、それぞれ受電コイルを備える複数の受電装置とを備え、
 前記送電装置は、前記送電コイルとともに送電共振機構を構成する送電共振キャパシタと、前記送電コイルに電気的に接続されるスイッチング素子を所定の動作周波数で駆動して、直流入力電圧を前記送電共振機構に断続的に与え、前記送電コイルに交流電圧を発生させる送電交流電圧発生回路と、を有し、
 前記複数の受電装置は、前記受電コイルとともに受電共振機構を構成する受電共振キャパシタと、前記受電コイルに接続されて、前記交流電圧を直流出力電圧に整流する受電整流回路と、をそれぞれ有し、
 前記送電共振機構と前記受電共振機構のそれぞれが有する電界エネルギーおよび磁界エネルギーが相互に作用して電磁界共鳴フィールドが形成され、
 前記送電コイルと前記受電コイルとの間で、相互インダクタンスによる磁界結合および相互キャパシタンスによる電界結合によって電磁界共鳴結合が構成され、
 前記送電装置から前記受電装置へワイヤレスで電力を供給するワイヤレス給電システムにおいて、
 前記受電整流回路は、前記受電共振機構に対して並列に構成されて、前記受電共振機構の電界エネルギーが負荷に供給するように構成され、
 前記複数の受電装置は、前記直流入力電圧に対する前記直流出力電圧の比である電圧利得の周波数特性が2つの極大値を有する双峰性となる、第3等価抵抗値の負荷を有する第3受電装置と、前記電圧利得の周波数特性が単峰性となる、等価抵抗値が前記第3等価抵抗値より小さな第4等価抵抗値の負荷を有する第4受電装置と、を含み、
 前記第3受電装置は、前記第3受電装置の受電コイルと前記送電コイルとの結合係数の設定により、前記第3受電装置における前記2つの極大値のうち低周波数側の極大値の周波数が前記動作周波数と一致するように定められ、前記第3受電装置の受電コイルと前記送電コイルとの結合係数の設定によって前記第3受電装置における前記電圧利得が定められ、
 前記第4受電装置は、前記第4受電装置の受電コイルと前記送電コイルとの結合係数の設定により、前記受電装置における前記電圧利得が極大となる周波数と前記動作周波数との位置関係で前記電圧利得が定められた、
ことを特徴とする。
 上記構成により、受電装置の受電整流回路が受電共振機構に対して並列に構成され、受電コイルの電気エネルギーが負荷に供給するように構成される場合に、ワイヤレス電力伝送効率が高まるとともに、各受電装置の負荷に安定した電圧が供給される。
(5)上記(1)から(4)のいずれかにおいて、前記結合係数は、前記送電コイルに対する前記受電コイルのサイズまたは形状の差によって定められることが好ましい。これにより、送電コイルと受電コイルとの結合係数を受電装置ごとに容易に設定できる。
(6)上記(1)から(4)のいずれかにおいて、前記結合係数は、前記送電コイルに対する前記受電コイルのコイル間距離によって定められることが好ましい。これにより、送電コイルと受電コイルとの結合係数を受電装置ごとに容易に設定できる。
 本発明によれば、上述の大型化の課題を解消し、且つ、ワイヤレス電力伝送効率を高く維持しつつ、1つの送電装置から複数の受電装置へワイヤレスで電力を供給する場合に、各受電装置の負荷に安定した電圧が供給される。
図1(A)(B)は第1の実施形態に係るワイヤレス給電システム101の回路図である。 図2(A)は、電磁界共鳴結合回路90と共振キャパシタCr、Crsで構成される等価的な電磁界共鳴結合を含めた複共振回路の回路図である。図2(B)はその複共振回路の等価回路図である。 図3は、図1(A)(B)に示したワイヤレス給電システム101のエネルギー変換動作について示す、各部の電圧電流波形図である。 図4は、直流入力電圧に対する直流出力電圧の比である電圧利得の周波数特性が、負荷の等価抵抗値の違いによってどのように変化するかを説明するための等価回路図である。 図5(A)(B)(C)は、複共振による共振特性を示す概略図である。 図6は、負荷Roの等価抵抗値=1Ω(小さい値)のときの、電圧利得の周波数特性を示す図である。 図7は、負荷Roの等価抵抗値=100Ω(大きい値)のときの、電圧利得の周波数特性を示す図である。 図8(A)(B)は第2の実施形態に係るワイヤレス給電システム102の回路図である。 図9(A)(B)(C)は第3の実施形態のワイヤレス給電システム103の回路図である。 図10は第4の実施形態に係るワイヤレス給電システムにおいて、電磁界共鳴結合回路と共振キャパシタCr、Crsで構成される等価的な電磁界共鳴結合を含む共振回路の回路図である。 図11(A)(B)は、第5の実施形態に係るワイヤレス給電システムにおける受電コイルのインダクタンスLsとキャパシタンスCrsとの直列共振回路にLCフィルタ回路が接続された例である。 図12(A)(B)(C)は、第6の実施形態に係るワイヤレス給電システム106の回路図である。 図13(A)は、電磁界共鳴結合回路90と共振キャパシタCp、Csで構成される等価的な電磁界共鳴結合を含めた複共振回路の回路図である。図13(B)はその複共振回路の等価回路図である。 図14は、直流入力電圧に対する直流出力電圧の比である電圧利得の周波数特性が、負荷の等価抵抗値の違いによってどのように変化するかを説明するための等価回路図である。 図15は、負荷Roの等価抵抗値=100Ω(大きい値)のときの、電圧利得の周波数特性を示す図である。 図16は、負荷Roの等価抵抗値=1Ω(小さい値)のときの、電圧利得の周波数特性を示す図である。 図17は第7の実施形態に係るワイヤレス給電システムにおける電磁界共鳴結合回路部分の回路図である。 図18は第8の実施形態に係るワイヤレス給電システムにおける電磁界共鳴結合回路部分の回路図である。 図19(A)(B)は、第9の実施形態に係るワイヤレス給電システムにおける受電コイルのインダクタンスLsとキャパシタンスCrsとの並列共振回路にLCフィルタ回路が接続された例である。
《第1の実施形態》
 第1の実施形態では、受電整流回路が受電共振機構に対して直列に構成され、受電コイルの磁気エネルギーが負荷に供給するように構成されたワイヤレス給電システムについて例示する。
 図1(A)(B)は第1の実施形態に係るワイヤレス給電システム101の回路図である。ワイヤレス給電システム101は送電装置PSU、第1受電装置PRU1および第2受電装置PRU2を含む。図1(A)(B)では、一つの受電装置PRU1またはPRU2と1つの送電装置PSUとの対を個別に表しているが、二つの受電装置PRU1,PRU2を含む複数の受電装置と1つの送電装置PSUとが同時に存在していてもよい。このことは後に示す別の実施形態についても同様である。
 ワイヤレス給電システム101は、送電装置PSUの入力部に入力電源Viを備え、第1受電装置PRU1、第2受電装置PRU2の負荷Roへ安定した直流電圧を給電するシステムである。図1(A)において、送電装置PSUの送電コイルnpと第1受電装置PRU1の受電コイルns1との距離はdx1であり、図1(B)において、送電装置PSUの送電コイルnpと第2受電装置PRU2の受電コイルns2との距離はdx2である。
 送電装置PSUは、送電コイルnpと送電共振キャパシタCrとで構成される送電共振機構と、この送電共振機構に電気的に接続された送電交流電流発生回路とを備える。
 送電交流電流発生回路は、等価的にスイッチング素子Q1、ダイオードDds1およびキャパシタCds1の並列接続回路で構成される第1スイッチ回路S1と、等価的にスイッチング素子Q2、ダイオードDds2およびキャパシタCds2の並列接続回路で構成される第2スイッチ回路S2とを備える。
 また、送電装置PSUはスイッチング素子Q1,Q2を制御する、図外のスイッチング制御回路を備えている。スイッチング制御回路は、第1スイッチ回路S1のスイッチング素子Q1および第2スイッチ回路S2のスイッチング素子Q2を交互にオン/オフすることにより、送電交流電圧発生回路から交流電圧を発生させる。
 本実施形態のワイヤレス給電システム101では、スイッチング素子Q1,Q2はMOSFETなどの、寄生出力容量や寄生ダイオードを有するスイッチング素子であり、この寄生出力容量や寄生ダイオードを利用してスイッチ回路S1、S2を構成している。
 上記スイッチング制御回路は第1スイッチング素子Q1および第2スイッチング素子Q2を所定の動作周波数でスイッチングすることで、直流電圧を送電共振機構に断続的に与えて送電共振機構に共振電流を発生させる。これにより、第1スイッチ回路S1および第2スイッチ回路S2の両端電圧を半周期毎の半波の正弦波状の波形とする。例えば、国際的なISM(Industrial, Scientific and Medical)バンドである6.78MHzや13.56MHzでスイッチング動作させる。
 この例では、送電交流電圧発生回路は2つのスイッチ回路S1,S2を備えたハーフブリッジ回路を構成している。
 受電装置PRU1,PRU2は、受電コイルns1,ns2および受電共振キャパシタCrsを含む受電共振機構と、受電コイルns1,ns2に接続されて、受電コイルns1,ns2に生じる交流電流を整流する受電整流回路RCおよび平滑用キャパシタCoを備えている。
 スイッチ回路S3は、スイッチング素子Q3、ダイオードDds3およびキャパシタCds3の並列接続回路で構成されている。同様に、スイッチ回路S4は、スイッチング素子Q4、ダイオードDds4およびキャパシタCds4の並列接続回路で構成されている。
 また、受電装置PRU1,PRU2は、スイッチング素子Q3,Q4を制御する図外のスイッチング制御回路を備えている。このスイッチング制御回路は受電コイルns1,ns2に流れる電流を検出し、その極性反転に同期してスイッチング素子Q3,Q4を交互にオンオフする。これにより、受電共振機構に流れる共振電流が電流の流れる方向の変化に同期して整流されて、負荷に電流が供給される。
 図3は、図1(A)(B)に示したワイヤレス給電システム101のエネルギー変換動作について示す、各部の電圧電流波形図である。この例は、スイッチング素子が最適ゼロ電圧スイッチング(optimum ZVS)動作を行う場合でのスイッチング動作波形である。
 本動作では、送電装置PSUの動作状態は、等価回路ごとにオン期間、オフ期間、2つの転流期間の4つの状態に区分できる。スイッチング素子Q1,Q2のゲート・ソース間電圧を電圧Vgs1,Vgs2、ドレイン・ソース間電圧を電圧Vds1,Vds2で表す。電磁界結合を含めた複共振回路の共鳴周波数frは、6.78MHzや13.56MHzよりも僅かに低く設計し、リアクタンスは十分小さい誘導性とする。スイッチング素子Q1、Q2は、両方がオフとなる短いデッドタイムtdを挟んで交互にオン/オフ動作を行う。2つのスイッチング素子Q1,Q2がオフとなるデッドタイムtdにおいて、共振電流irの遅れ電流を用いて2つのスイッチング素子Q1,Q2のキャパシタ(寄生容量)Cds1,Cds2を充放電して転流を行う。ZVS動作は、転流期間tcの後、寄生ダイオードの導通期間taにおいてスイッチング素子Q1,Q2をターンオンして実現する。1スイッチング周期における各状態でのエネルギー変換動作を次に示す。
 (1) 状態1 時刻t1~t2
 送電側では、状態1において、スイッチング素子Q1は見かけ上、導通している。例えば、スイッチング素子Q1がGaN FETの場合は、スイッチング素子Q1の両端に逆方向の電圧-Vds1が与えられてゲート・ドレイン間に電圧(Vgd1)が与えられる。スイッチング素子Q1は、しきい値電圧をオフセット電圧とする逆導通モードとなり、逆並列ダイオードのように動作する。スイッチング素子 Q1の両端の等価的なダイオードDds1は導通し、この期間においてスイッチング素子Q1をターンオンすることでZVS動作が行われる。送電コイルnpには共振電流irが流れ、キャパシタCrは充電される。
 受電側では、ダイオードDds3またはDds4は導通し、受電コイルns1,ns2に共振電流irsが流れる。ダイオードDds3が導通する際は、キャパシタCrsは放電し、受電コイルns1,ns2に誘起された電圧とキャパシタCrsの両端電圧とが加算されて、負荷Roに電圧(電力)が供給される。ダイオードDds4が導通する際は、キャパシタCrsは充電される。負荷RoにはキャパシタCoの電圧が印加されて電力が供給される。スイッチング素子Q1がターンオフすると状態2となる。
 (2) 状態2 時刻t2~t3
 送電コイルnpに流れていた共振電流irによりスイッチング素子Q1の両端キャパシタCds1は充電され、スイッチング素子Q2の両端キャパシタCds2は放電される。電圧Vds1が電圧Vi、電圧Vds2が0Vになると状態3となる。
 (3) 状態3 時刻t3~t4
 送電側では、状態3において、スイッチング素子Q2は導通している。例えば、スイッチング素子Q2がGaN FETの場合は、スイッチング素子Q2の両端に逆方向の電圧-Vds2が与えられてゲート・ドレイン間に電圧(Vgd2)が与えられる。スイッチング素子Q2は、しきい値電圧をオフセット電圧とする逆導通モードとなり、逆並列ダイオードのように動作する。スイッチング素子Q2の両端の等価的なダイオードDds2は導通し、この期間においてスイッチング素子Q2をターンオンすることでZVS動作が行われる。送電コイルnpには共振電流irが流れ、キャパシタCrは放電される。
 受電側では、ダイオードDds3またはDds4は導通し、受電コイルns1,ns2に共振電流irsが流れる。ダイオードDds3が導通する際は、キャパシタCrsは放電し、受電コイルns1,ns2に誘起された電圧とキャパシタCrsの両端電圧とが加算されて、負荷Roに電力が供給される。ダイオードDds4が導通する際は、キャパシタCrsは充電される。負荷RoにはキャパシタCoの電圧が印加されて電力が供給される。スイッチング素子Q2がターンオフすると状態4となる。
 (4) 状態4 時刻t4~t1
 送電コイルnpに流れていた共振電流irによりスイッチング素子Q1の両端キャパシタCds1は放電され、スイッチング素子Q2の両端キャパシタCds2は充電される。電圧Vds1が0V、電圧Vds2が電圧Viになると、再び状態1となる。以降、状態1~4を周期的に繰り返す。
 受電回路では、ダイオードDds3またはDds4が導通して順方向に電流が流れる。周期的な定常動作では、電流ir、irsの波形は共鳴現象によりほぼ正弦波となる。
 このようにして、送電コイルnpと受電コイルns1,ns2との間に等価的に形成される相互インダクタンスMlおよび相互キャパシタンスMcで等価的な電磁界共鳴結合回路が構成されて、送電共振機構と受電共振機構とが共鳴し、電磁界共鳴フィールドが形成される。
 図2(A)は、電磁界共鳴結合回路90と共振キャパシタCr、Crsで構成される等価的な電磁界共鳴結合を含めた複共振回路の回路図である。図2(B)はその等価回路図である。ここで、インダクタンスLpは送電コイルnpのインダクタンス、インダクタンスLsは受電コイルns1(,ns2)のインダクタンス、インダクタンスLmは、送電コイルnpと受電コイルns1(,ns2)との磁界共鳴結合により電力を伝送する等価的な相互インダクタンスである。キャパシタンスCmは、送電コイルnpと受電コイルns1(,ns2)との電界共鳴結合により電力を伝送する等価的な相互キャパシタンスである。また、キャパシタンスCpは送電コイルnpの寄生成分であり、キャパシタンスCs,Cs1は受電コイルns1(,ns2)の寄生成分である。
 共鳴現象により、電磁界共鳴結合回路への入力電流iac in (t)は、共振電流の振幅をIacとして、近似的に次式で表すことができる。
 iac in (t) =Iac sin(ωst)
 但し、ωs=2π/Ts
 端子1-1’間には正弦波電流iac in (t)が与えられる。端子1-1’間には各周波数成分を含む電流が流入しようとするが、電磁界共鳴結合回路によってインピーダンスが大きくなる高次の周波数成分の電流波形はカットされ、共鳴動作を行なうことで、主にスイッチング周波数成分の共鳴電流波形のみが流れ、電力を効率良く伝送することができる。
 図4は、直流入力電圧に対する直流出力電圧の比である電圧利得の周波数特性が、負荷の等価抵抗値の違いによってどのように変化するかを説明するための等価回路図である。
 送電交流電圧発生回路ALTのインピーダンスが無視できる程度に小さいものとすると、共振キャパシタCrおよびインダクタ{(Lp-Lm)+Lm}による第1の共振回路が構成される。また、負荷の等価抵抗値が小さいと、共振キャパシタCrsおよびインダクタ{(Ls-Lm)+Lm}による第2の共振回路が構成される。
 このように、二つの共振回路が存在し、相互インダクタンスLmを介して結合するので、複合共振回路が構成され、偶モードと奇モードの共振モードが生じる。
 ここで、送電コイルのインダクタンスと受電コイルのインダクタンスをいずれもLで表し、共振キャパシタCr,CrsをいずれもCで表すと、次の2つの共振周波数f1',f1"が生じる。
 f1'=1/(2π√(L+Lm)C)
 f1"=1/(2π√(L-Lm)C)
 また、送電コイルnpと受電コイルns1(,ns2)との結合による相互インダクタンスLmは、結合係数をkで表すと、
 Lm=k√(Lp・Ls) の関係にある。
 図5(A)(B)(C)は、上記複共振による共振特性を示す概略図である。いずれも横軸は周波数、縦軸は直流入力電圧に対する直流出力電圧の比である電圧利得である。図5(A)は相互インダクタンスLmが≒0のときであり、単峰性となる。図5(C)は相互インダクタンスLmが大きいときの特性であり、双峰性となる。図5(B)は相互インダクタンスLmが中程度であるときの特性であり、ほぼ単峰性である。
 図4に示した負荷の等価抵抗値が大きいときは、複共振は生じないので、上記第1共振回路の共振周波数で共振する、単峰性となる。
 したがって、負荷の等価抵抗値が小さく、且つ結合係数(結合度)kが大きいとき、直流入力電圧に対する直流出力電圧の比である電圧利得は双峰性となり、負荷の等価抵抗値が大きいとき、または、結合係数(結合度)kが小さいとき、電圧利得は単峰性となる。
 図6、図7は、送電コイルnpと受電コイルnsとの結合係数を変化させたときの電圧利得の周波数特性を示す図である。図6は、負荷Roの等価抵抗値=1Ω(小さい値)のときの特性、図7は、負荷Roの等価抵抗値=100Ω(大きい値)のときの特性である。いずれも、結合係数kを0.01から0.65まで5段階に変化させている。
 本実施形態のように、受電整流回路が受電共振機構に対して直列に構成されたワイヤレス給電システムにおいて、負荷の等価抵抗値が小さいとき、図6に表れているように、上述の複合共振が生じて、電圧利得の周波数特性は双峰性となる場合がある。
 そこで、負荷の等価抵抗値が小さい受電装置については、
 (1)受電電力が小さい場合において、結合度を小さくすること(例えばk = 0.65→0.1)により、共鳴周波数を動作周波数6.78MHzに近づける。このことで、受電電力を大きくする。
 (2)受電電力を必要以上に受けとらないようにする場合には、結合度を大きくすること(例えばk = 0.1→0.65)により、共鳴周波数を動作周波数から離す。このことにより、受電電力を小さくする。
 一方、等価抵抗値が大きいときは、図7に表れているように、複合共振は生じなくて、電圧利得の周波数特性は単峰性となる傾向にある。
 そこで、負荷の等価抵抗値が大きい受電装置については、
 (3)受電電力が小さい場合において、結合度を大きくすること(例えばk = 0.2→0.65)により、電圧利得を大きくして受電電力を大きくする。
 (4)受電電力を必要以上に受けとらないようにする場合には、結合度を小さくすること(例えばk = 0.65→0.2)により、電圧利得を小さくして受電電力を小さくする。
 図1(A)に示した第1受電装置PRU1の負荷の等価抵抗値は、第1受電装置PRU1と送電装置PSUが結合している状態での電圧利得の周波数特性が双峰性となる程度に、小さい。また、図1(B)に示す第2受電装置PRU2の負荷の等価抵抗値は、第2受電装置PRU2と送電装置PSUが結合している状態での電圧利得の周波数特性が単峰性となる程度に、大きい。
 そのため、第1受電装置PRU1は、受電コイルns1と送電コイルnpとの結合係数の設定により、電圧利得が極大となる一方の周波数(図6に示す例では、電圧利得が極大となる二つの周波数のうち高い方の周波数)と動作周波数との位置関係で電圧利得が定められる。第2受電装置PRU2は、電圧利得が極大となる周波数が動作周波数の近くに定められ、結合係数の設定によって電圧利得が定められる。
 上記結合係数は、送電コイルnpに対する受電コイルns1,ns2のコイル間距離dx1,dx2によって定められる。図1(A)(B)に示す例では、コイル間距離dx1はコイル間距離dx2より大きいので、第1受電装置の受電コイルns1と送電コイルnpとの結合係数は、第2受電装置の受電コイルns2と送電コイルnpとの結合係数より小さい。
 このように、受電コイルの大きさが一定であっても、受電コイルと送電コイルとの距離によって、結合係数を受電装置ごとに設定できる。
 以上に示した例では、等価抵抗値が小さい負荷を有する第1受電装置が、図6の双峰性ピークのうち高周波数側のピーク(結合係数の変動によってピーク周波数が相対的に大きく変位する側のピーク)の周波数が結合係数によって変位する特性を利用して電圧利得を定め、等価抵抗値が大きい負荷を有する第2受電装置が、図7の単峰性ピークの値(電圧利得)が結合係数によって変化する特性を利用して電圧利得を定めるものであった。この例以外に、等価抵抗値が小さい負荷を有する第1受電装置が、図6の双峰性ピークのうち低周波数側のピーク(結合係数の変動によってピーク周波数が相対的に大きく変位しない側のピーク)の値が結合係数によって変化する特性を利用して電圧利得を定めるようにしてもよい。
《第2の実施形態》
 第2の実施形態では、送電コイルと受電コイルとの結合係数の他の設定構造について例示する。
 図8(A)(B)は第2の実施形態に係るワイヤレス給電システム102の回路図である。ワイヤレス給電システム102は送電装置PSU、第1受電装置PRU1および第2受電装置PRU2を含む。
 第1受電装置PRU1の受電コイルns1の半径r1と送電コイルnpの半径rとの差は、第2受電装置PRU2の受電コイルns2の半径r2と送電コイルnpの半径rとの差より小さい。一般に、結合する2つのコイル同士の径の差が大きいほど、コイル同士の結合係数は小さい。本実施形態では、送電装置PSUの送電コイルnpと第1、第2の受電装置PRU1,PRU2の受電コイルns1,ns2との距離dxは同じである。その他の構成は第1の実施形態で示したとおりである。
 本実施形態のように、受電コイルと送電コイルとの結合係数は、送電コイルに対する受電コイルの大きさの差によって定めてもよい。これにより、送電コイルと受電コイルとの距離が一定であっても、結合係数を受電装置ごとに容易に設定できる。
《第3の実施形態》
 第3の実施形態では、送電コイルと受電コイルの形式が第1、第2の実施形態とは異なる例について示す。
 図9(A)(B)(C)は第3の実施形態のワイヤレス給電システム103の回路図である。この例は、送電コイルnpと受電コイルns1,ns2にヘリカル状のコイルを用い、それぞれ中央で給電している。そのため、送電装置側のヘリカルコイルは等価的インダクタンスLpおよび等価的キャパシタンスCrを有し、共振回路を構成している。同様に、受電装置側のヘリカルコイルはインダクタンスLsおよびキャパシタンスCrsを有し、共振回路を構成している。そして、この二つのヘリカル状コイルは巻回軸がほぼ揃っている(ほぼ同軸)であることにより、送電コイルnpと受電コイルns1,ns2との間に電磁界共鳴結合回路が形成される。その他の構成は第1の実施形態で示したものと同じである。
 このように、送電共振機構と受電共振機構とで、電界エネルギーと磁界エネルギーを相互にやり取りする。
 図9(A)に示す第1受電装置PRU1の受電コイルns1の半径r1と送電コイルnpの半径rとの差は、図9(B)に示す第2受電装置PRU2の受電コイルns2の半径r2と送電コイルnpの半径rとの差より大きい。また、図9(C)に示す第1受電装置PRU1の受電コイルns1と送電コイルnpとのコイル間距離は、図9(B)に示す第2受電装置PRU2の受電コイルns2と送電コイルnpとのコイル間距離より大きい。
 このように、送電コイルおよび受電コイルがヘリカル状のコイルである場合も、コイルのサイズの差またはコイル間距離によって受電コイルと送電コイルとの結合係数を定めることができる。
《第4の実施形態》
 第4の実施形態では、受電共振機構の他の例について示す。
 図10は第4の実施形態に係るワイヤレス給電システムにおいて、電磁界共鳴結合回路90と共振キャパシタCr、Crsで構成される等価的な電磁界共鳴結合を含む共振回路の回路図である。第1~第3の実施形態では、受電コイルは寄生成分であるキャパシタCsを備えたが、図10に示すように、キャパシタCs等は必須ではない。受電コイルのインダクタンスLsとキャパシタンスCrsとが直列接続されて、直列共振回路が構成されていればよい。
《第5の実施形態》
 第5の実施形態では、直列共振回路と受電整流回路との間にフィルタ回路を備える例を示す。
 図11(A)は、受電コイルのインダクタンスLsとキャパシタンスCrsとの直列共振回路にLCフィルタ回路が接続された例である。図11(B)は、図11(A)の構成に加えて、さらに受電コイルと並列にキャパシタンスCrs1を含む場合の回路図である。いずれも、端子2-2′間に受電整流回路が接続される。LCフィルタ回路は動作周波数を通過させ、動作周波数より高次の高調波成分を遮断するローパスフィルタまたはバンドパスフィルタである。
 このように、受電装置の直列共振回路と受電整流回路との間にLCフィルタ回路を備えることにより、受電共振機構に流れる電流波形の高調波成分を低減し、EMI(電磁干渉)ノイズを低減することができる。これにより、他の電子機器とのEMC(電磁両立性)を高めることができる。例えば、無線通信機器などとの混信を抑制できる。また、フィルタにより共振機構のインピーダンスを変換することができる。すなわちインピーダンス整合を図ることができる。これにより、負荷に適した電流と電圧を供給することができる。
《第6の実施形態》
 第6の実施形態では、受電整流回路が受電共振機構に対して並列に構成され、受電コイルの電気エネルギーを負荷に供給するように構成されたワイヤレス給電システムについて例示する。
 図12(A)(B)(C)は、第6の実施形態に係るワイヤレス給電システム106の回路図である。ワイヤレス給電システム106は送電装置PSU、第3受電装置PRU3および第4受電装置PRU4を含む。
 ワイヤレス給電システム106は、送電装置PSUの入力部に入力電源Viを備え、第3受電装置PRU3、第4受電装置PRU4の負荷Roへ安定した直流電圧を給電するシステムである。
 送電装置PSUの構成は、第1~第5の各実施形態で示したものと同じである。
 受電装置PRU3,PRU4は、受電コイルns3,ns4および受電共振キャパシタCsを含む受電共振機構と、受電コイルns3,ns4に接続されて、受電コイルns3,ns4に生じる交流電流を整流するダイオードDds3による受電整流回路および平滑用キャパシタCoを備えている。
 図13(A)は、電磁界共鳴結合回路90と共振キャパシタCrで構成される等価的な電磁界共鳴結合を含めた複共振回路の回路図である。図13(B)はその等価回路図である。ここで、インダクタンスLpは送電コイルnpのインダクタンス、インダクタンスLsは受電コイルns3(,ns4)のインダクタンス、インダクタンスLmは、送電コイルnpと受電コイルns3(,ns4)との磁界共鳴結合により電力を伝送する等価的な相互インダクタンスである。キャパシタンスCmは、送電コイルnpと受電コイルns3(,ns4)との電界共鳴結合により電力を伝送する等価的な相互キャパシタンスである。また、キャパシタンスCpは送電コイルnpの寄生成分であり、キャパシタンスCs,Cs1は受電コイルns3(,ns4)の寄生成分である。
 第1の実施形態で示したとおり、端子1-1’間には正弦波電流iac in (t)が与えられる。端子1-1’間には各周波数成分を含む電流が流入しようとするが、電磁界共鳴結合回路によってインピーダンスが大きくなる高次の周波数成分の電流波形はカットされ、共鳴動作を行なうことで、主にスイッチング周波数成分の共鳴電流のみが流れ、電力を効率良く伝送することができる。
 図14は、直流入力電圧に対する直流出力電圧の比である電圧利得の周波数特性が、負荷の等価抵抗値の違いによってどのように変化するかを説明するための等価回路図である。
 共振キャパシタCpおよびインダクタ{(Lp-Lm)+Lm}による第1の共振回路が構成される。また、負荷の等価抵抗値が大きいと、共振キャパシタCsおよびインダクタ{(Ls-Lm)+Lm}による第2の共振回路が構成される。
 このように、二つの共振回路が存在し、相互インダクタンスLmを介して結合するので、複合共振回路が構成され、偶モードと奇モードの共振モードが生じる。
 ここで、送電コイルのインダクタンスと受電コイルのインダクタンスをいずれもLで表し、共振キャパシタCp,CsをいずれもCで表すと、次の2つの共振周波数が生じる。
 f1'=1/(2π√(L+Lm)C)
 f1"=1/(2π√(L-Lm)C)
 また、送電コイルnpと受電コイルns3,ns4との結合による相互インダクタンスLmは、結合係数をkで表すと、
 Lm=k√(Lp・Ls) の関係にある。
 したがって、第1の実施形態で図5(A)(B)(C)に示した例と同様に、電圧利得の周波数特性は、相互インダクタンスLmに応じて単峰性または双峰性となる。また、図14に示した負荷の等価抵抗値が小さいときは、複共振は生じないので、上記第1共振回路の共振周波数で共振する、単峰性となる。
 したがって、負荷の等価抵抗値が大きく、且つ結合係数(結合度)kが大きいとき、直流入力電圧に対する直流出力電圧の比である電圧利得は双峰性となり、負荷の等価抵抗値が小さいとき、または、結合係数(結合度)kが小さいとき、電圧利得は単峰性となる。
 図15、図16は、送電コイルnpと受電コイルnsとの結合係数を変化させたときの電圧利得の周波数特性を示す図である。図15は、負荷Roの等価抵抗値=100Ω(大きい値)のときの特性、図16は、負荷Roの等価抵抗値=1Ω(小さい値)のときの特性である。いずれも、結合係数kを0.01から0.65まで5段階に変化させている。
 本実施形態のように、受電整流回路が受電共振機構に対して並列に構成されたワイヤレス給電システムにおいて、負荷の等価抵抗値が大きいとき、図15に表れているように、上述の複合共振が生じて、電圧利得の周波数特性は双峰性となる場合がある。
 そこで、負荷の等価抵抗値が大きい受電装置については、
 (1)受電電力が小さい場合において、結合度を小さくすること(例えばk = 0.65→0.2)により、共鳴周波数を動作周波数6.78MHzに近づける。このことで、受電電力を大きくする。
 (2)受電電力を必要以上に受けとらないようにする場合には、結合度を大きくすること(例えばk = 0.2→0.65)により、共鳴周波数を動作周波数から離す。このことにより、受電電力を小さくする。
 一方、等価抵抗値が小さいときは、図16に表れているように、複合共振は生じなくて、電圧利得の周波数特性は単峰性となる。
 そこで、負荷の等価抵抗値が小さい受電装置については、
 (3)受電電力が小さい場合において、結合度を小さくすること(例えばk = 0.65→0.2)により、電圧利得を大きくして受電電力を大きくする。
 (4)受電電力を必要以上に受けとらないようにする場合には、結合度を大きくすること(例えばk = 0.2→0.65)により、電圧利得を小さくして受電電力を小さくする。
 図12(A)に示した受電装置PRU3の負荷の等価抵抗値は、受電装置PRU3と送電装置PSUが結合している状態での電圧利得の周波数特性が双峰性である程度に大きい。また、図12(B)(C)に示す受電装置PRU4の負荷の等価抵抗値は、受電装置PRU4と送電装置PSUが結合している状態での電圧利得の周波数特性が単峰性である程度に小さい。
 そのため、第3受電装置PRU3は、受電コイルns1と送電コイルnpとの結合係数の設定により、電圧利得が極大となる一方の周波数(図15に示す例では、電圧利得が極大となる2つの周波数のうち高い方の周波数)と動作周波数との位置関係で電圧利得が定められる。第4受電装置PRU4は、電圧利得が極大となる周波数が動作周波数の近くに定められ、結合係数の設定によって電圧利得が定められる。
 上記結合係数は、送電コイルnpに対する受電コイルns3,ns4のコイル間距離dx,dx4や、送電コイルnpの半径rと受電コイルns4の半径r4との差によって定められる。
 以上に示した例では、等価抵抗値が大きい負荷を有する第3受電装置が、図15の双峰性ピークのうち高周波数側のピーク(結合係数の変動によってピーク周波数が相対的に大きく変位する側のピーク)の周波数が結合係数によって変位する特性を利用して電圧利得を定め、等価抵抗値が小さい負荷を有する第4受電装置が、図16の単峰性ピークの周波数が結合係数によって変位する特性を利用して電圧利得を定めるものであった。この例以外に、等価抵抗値が大きい負荷を有する第3受電装置が、図15の双峰性ピークのうち低周波数側のピーク(結合係数の変動によってピーク周波数が相対的に大きく変位しない側のピーク)の値が結合係数によって変化する特性を利用して電圧利得を定めるようにしてもよい。
《第7の実施形態》
 第7の実施形態では、受電共振機構の他の例について示す。
 図17は第7の実施形態に係るワイヤレス給電システムにおける電磁界共鳴結合回路部分の回路図である。この例では、電磁界共鳴結合回路90以外にキャパシタCr,Crs,Cs2を有する。キャパシタCr,Crs,Cs2を電子部品で構成することにより各キャパシタまたはコイルに加わる電圧値を調整することができる。さらに、例えばキャパシタCrsとCs2とで分圧することでキャパシタCs2より取り出す負荷への電力を調整することができる。
《第8の実施形態》
 第8の実施形態では、受電共振機構の他の例について示す。
 図18は第8の実施形態に係るワイヤレス給電システムにおける電磁界共鳴結合回路部分の回路図である。この例では、送電コイルのインダクタンスLpと共振キャパシタCpとの間にキャパシタCrが挿入され、受電コイルのインダクタンスLsと共振キャパシタCsとの間にキャパシタCrsが挿入されている。キャパシタCr,Crs,Cs2を電子部品で構成することにより各キャパシタまたはコイルに加わる電圧値を調整することができる。さらに、例えばキャパシタCrsとCsとで分圧することでキャパシタCsより取り出す負荷への電力を調整することができる。
《第9の実施形態》
 第9の実施形態では、並列共振回路と受電整流回路との間にフィルタ回路を備える例を示す。
 図19(A)は、受電コイルのインダクタンスLsとキャパシタンスCsとの並列共振回路にLCフィルタ回路が接続された例である。図19(B)は、直列にキャパシタンスCrs、並列にキャパシタンスCs2をさらに含む場合の回路図である。いずれも、端子2-2′間に受電整流回路が接続される。LCフィルタ回路は動作周波数を通過させ、動作周波数より高次の高調波成分を遮断するローパスフィルタまたはバンドパスフィルタである。
 このように、受電装置の直列共振回路と受電整流回路との間にLCフィルタ回路を備えることにより、受電共振機構に流れる電流波形の高調波成分を低減し、EMI(電磁干渉)ノイズを低減することができる。これにより、他の電子機器とのEMC(電磁両立性)を高めることができる。例えば、無線通信機器などとの混信を抑制できる。また、フィルタにより共振機構のインピーダンスを変換することができる。すなわちインピーダンス整合を図ることができる。これにより、負荷に適した電流と電圧を供給することができる。
 なお、以上に示した各実施形態においては、送電コイルと受電コイルとの間で相互インダクタンスによる磁界結合および相互キャパシタンスによる電界結合によって電磁界共鳴結合が構成されるものと説明したが、電界結合に比べて磁界結合が支配的で、主として磁界結合が構成される場合にも本発明は適用される。
ALT…送電交流電圧発生回路
Cds…寄生容量
Cds1,Cds2…キャパシタ
Cds3,Cds4…キャパシタ
Cm…相互キャパシタンス
Co…平滑用キャパシタ
Cp,Cs…共振キャパシタ
Cr…送電共振キャパシタ
Crs,Cs…受電共振キャパシタ
Cs1,Cs2…キャパシタンス
Dds1,Dds2,Dds3,Dds4…ダイオード
Lm…相互インダクタンス
Lp…送電コイルのインダクタンス
Ls…受電コイルのインダクタンス
Mc…相互キャパシタンス
Ml…相互インダクタンス
np…送電コイル
ns,ns1,ns2,ns3,ns4…受電コイル
PRU1…第1受電装置
PRU2…第2受電装置
PRU3…第3受電装置
PRU4…第4受電装置
PSU…送電装置
Q1…第1スイッチング素子
Q2…第2スイッチング素子
Q3,Q4…スイッチング素子
RC…受電整流回路
Ro…負荷
S1…第1スイッチ回路
S2…第2スイッチ回路
S3,S4…スイッチ回路
90…電磁界共鳴結合回路
101,102,103,106…ワイヤレス給電システム

Claims (6)

  1.  送電コイルを備える送電装置と、それぞれ受電コイルを備える複数の受電装置とを備え、
     前記送電装置は、前記送電コイルとともに送電共振機構を構成する送電共振キャパシタと、前記送電コイルに電気的に接続されるスイッチング素子を所定の動作周波数で駆動して、直流入力電圧を前記送電共振機構に断続的に与え、前記送電コイルに交流電圧を発生させる送電交流電圧発生回路と、を有し、
     前記複数の受電装置は、前記受電コイルとともに受電共振機構を構成する受電共振キャパシタと、前記受電コイルに接続されて、前記交流電圧を直流出力電圧に整流する受電整流回路と、をそれぞれ有し、
     前記送電共振機構と前記受電共振機構のそれぞれが有する電界エネルギーおよび磁界エネルギーが相互に作用して電磁界共鳴フィールドが形成され、
     前記送電コイルと前記受電コイルとの間で、相互インダクタンスによる磁界結合および相互キャパシタンスによる電界結合によって電磁界共鳴結合が構成され、
     前記送電装置から前記受電装置へワイヤレスで電力を供給するワイヤレス給電システムにおいて、
     前記受電整流回路は、前記受電共振機構に対して直列に構成されて、前記受電共振機構の磁界エネルギーが負荷に供給するように構成され、
     前記複数の受電装置は、前記直流入力電圧に対する前記直流出力電圧の比である電圧利得の周波数特性が2つの極大値を有する双峰性となる、第1等価抵抗値の負荷を有する第1受電装置と、前記電圧利得の周波数特性が単峰性となる、等価抵抗値が前記第1等価抵抗値より大きな第2等価抵抗値の負荷を有する第2受電装置と、を含み、
     前記第1受電装置は、前記第1受電装置の受電コイルと前記送電コイルとの結合係数の設定により、前記第1受電装置における前記2つの極大値のうち高周波数側の極大値の周波数と前記動作周波数との位置関係で前記電圧利得が定められ、
     前記第2受電装置は、前記電圧利得が極大となる周波数が前記動作周波数と一致するように定められ、前記第2受電装置の受電コイルと前記送電コイルとの結合係数の設定によって前記第2受電装置における前記電圧利得が定められた、
    ことを特徴とするワイヤレス給電システム。
  2.  送電コイルを備える送電装置と、それぞれ受電コイルを備える複数の受電装置とを備え、
     前記送電装置は、前記送電コイルとともに送電共振機構を構成する送電共振キャパシタと、前記送電コイルに電気的に接続されるスイッチング素子を所定の動作周波数で駆動して、直流入力電圧を前記送電共振機構に断続的に与え、前記送電コイルに交流電圧を発生させる送電交流電圧発生回路と、を有し、
     前記複数の受電装置は、前記受電コイルとともに受電共振機構を構成する受電共振キャパシタと、前記受電コイルに接続されて、前記交流電圧を直流出力電圧に整流する受電整流回路と、をそれぞれ有し、
     前記送電共振機構と前記受電共振機構のそれぞれが有する電界エネルギーおよび磁界エネルギーが相互に作用して電磁界共鳴フィールドが形成され、
     前記送電コイルと前記受電コイルとの間で、相互インダクタンスによる磁界結合および相互キャパシタンスによる電界結合によって電磁界共鳴結合が構成され、
     前記送電装置から前記受電装置へワイヤレスで電力を供給するワイヤレス給電システムにおいて、
     前記受電整流回路は、前記受電共振機構に対して並列に構成されて、前記受電共振機構の電界エネルギーが負荷に供給するように構成され、
     前記複数の受電装置は、前記直流入力電圧に対する前記直流出力電圧の比である電圧利得の周波数特性が2つの極大値を有する双峰性となる、第3等価抵抗値の負荷を有する第3受電装置と、前記電圧利得の周波数特性が単峰性となる、等価抵抗値が前記第3等価抵抗値より小さな第4等価抵抗値の負荷を有する第4受電装置と、を含み、
     前記第3受電装置は、前記第3受電装置の受電コイルと前記送電コイルとの結合係数の設定により、前記第3受電装置における前記2つの極大値のうち高周波数側の極大値の周波数と前記動作周波数との位置関係で前記電圧利得が定められ、
     前記第4受電装置は、前記第4受電装置の受電コイルと前記送電コイルとの結合係数の設定により、前記受電装置における前記電圧利得が極大となる周波数と前記動作周波数との位置関係で前記電圧利得が定められた、
    ことを特徴とするワイヤレス給電システム。
  3.  送電コイルを備える送電装置と、それぞれ受電コイルを備える複数の受電装置とを備え、
     前記送電装置は、前記送電コイルとともに送電共振機構を構成する送電共振キャパシタと、前記送電コイルに電気的に接続されるスイッチング素子を所定の動作周波数で駆動して、直流入力電圧を前記送電共振機構に断続的に与え、前記送電コイルに交流電圧を発生させる送電交流電圧発生回路と、を有し、
     前記複数の受電装置は、前記受電コイルとともに受電共振機構を構成する受電共振キャパシタと、前記受電コイルに接続されて、前記交流電圧を直流出力電圧に整流する受電整流回路と、をそれぞれ有し、
     前記送電共振機構と前記受電共振機構のそれぞれが有する電界エネルギーおよび磁界エネルギーが相互に作用して電磁界共鳴フィールドが形成され、
     前記送電コイルと前記受電コイルとの間で、相互インダクタンスによる磁界結合および相互キャパシタンスによる電界結合によって電磁界共鳴結合が構成され、
     前記送電装置から前記受電装置へワイヤレスで電力を供給するワイヤレス給電システムにおいて、
     前記受電整流回路は、前記受電共振機構に対して直列に構成されて、前記受電共振機構の磁界エネルギーが負荷に供給するように構成され、
     前記複数の受電装置は、前記直流入力電圧に対する前記直流出力電圧の比である電圧利得の周波数特性が2つの極大値を有する双峰性となる、第1等価抵抗値の負荷を有する第1受電装置と、前記電圧利得の周波数特性が単峰性となる、等価抵抗値が前記第1等価抵抗値より大きな第2等価抵抗値の負荷を有する第2受電装置と、を含み、
     前記第1受電装置は、前記第1受電装置の受電コイルと前記送電コイルとの結合係数の設定により、前記第1受電装置における前記2つの極大値のうち低周波数側の極大値の周波数が前記動作周波数と一致するように定められ、前記第1受電装置の受電コイルと前記送電コイルとの結合係数の設定によって前記第1受電装置における前記電圧利得が定められ、
     前記第2受電装置は、前記電圧利得が極大となる周波数が前記動作周波数と一致するように定められ、前記第2受電装置の受電コイルと前記送電コイルとの結合係数の設定によって前記第2受電装置における前記電圧利得が定められた、
    ことを特徴とするワイヤレス給電システム。
  4.  送電コイルを備える送電装置と、それぞれ受電コイルを備える複数の受電装置とを備え、
     前記送電装置は、前記送電コイルとともに送電共振機構を構成する送電共振キャパシタと、前記送電コイルに電気的に接続されるスイッチング素子を所定の動作周波数で駆動して、直流入力電圧を前記送電共振機構に断続的に与え、前記送電コイルに交流電圧を発生させる送電交流電圧発生回路と、を有し、
     前記複数の受電装置は、前記受電コイルとともに受電共振機構を構成する受電共振キャパシタと、前記受電コイルに接続されて、前記交流電圧を直流出力電圧に整流する受電整流回路と、をそれぞれ有し、
     前記送電共振機構と前記受電共振機構のそれぞれが有する電界エネルギーおよび磁界エネルギーが相互に作用して電磁界共鳴フィールドが形成され、
     前記送電コイルと前記受電コイルとの間で、相互インダクタンスによる磁界結合および相互キャパシタンスによる電界結合によって電磁界共鳴結合が構成され、
     前記送電装置から前記受電装置へワイヤレスで電力を供給するワイヤレス給電システムにおいて、
     前記受電整流回路は、前記受電共振機構に対して並列に構成されて、前記受電共振機構の電界エネルギーが負荷に供給するように構成され、
     前記複数の受電装置は、前記直流入力電圧に対する前記直流出力電圧の比である電圧利得の周波数特性が2つの極大値を有する双峰性となる、第3等価抵抗値の負荷を有する第3受電装置と、前記電圧利得の周波数特性が単峰性となる、等価抵抗値が前記第3等価抵抗値より小さな第4等価抵抗値の負荷を有する第4受電装置と、を含み、
     前記第3受電装置は、前記第3受電装置の受電コイルと前記送電コイルとの結合係数の設定により、前記第3受電装置における前記2つの極大値のうち低周波数側の極大値の周波数が前記動作周波数と一致するように定められ、前記第3受電装置の受電コイルと前記送電コイルとの結合係数の設定によって前記第3受電装置における前記電圧利得が定められ、
     前記第4受電装置は、前記第4受電装置の受電コイルと前記送電コイルとの結合係数の設定により、前記受電装置における前記電圧利得が極大となる周波数と前記動作周波数との位置関係で前記電圧利得が定められた、
    ことを特徴とするワイヤレス給電システム。
  5.  前記結合係数は、前記送電コイルに対する前記受電コイルのサイズまたは形状の差によって定められる、請求項1から4のいずれかに記載のワイヤレス給電システム。
  6.  前記結合係数は、前記送電コイルに対する前記受電コイルのコイル間距離によって定められる、請求項1から4のいずれかに記載のワイヤレス給電システム。
PCT/JP2016/063948 2015-05-25 2016-05-11 ワイヤレス給電システム WO2016190095A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017520608A JP6493526B2 (ja) 2015-05-25 2016-05-11 ワイヤレス給電システムおよびワイヤレス給電方法
CN201680029707.2A CN107636933B (zh) 2015-05-25 2016-05-11 无线供电系统
US15/821,381 US10511194B2 (en) 2015-05-25 2017-11-22 Wireless power transfer system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015105330 2015-05-25
JP2015-105330 2015-05-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/821,381 Continuation US10511194B2 (en) 2015-05-25 2017-11-22 Wireless power transfer system

Publications (1)

Publication Number Publication Date
WO2016190095A1 true WO2016190095A1 (ja) 2016-12-01

Family

ID=57392709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063948 WO2016190095A1 (ja) 2015-05-25 2016-05-11 ワイヤレス給電システム

Country Status (4)

Country Link
US (1) US10511194B2 (ja)
JP (1) JP6493526B2 (ja)
CN (1) CN107636933B (ja)
WO (1) WO2016190095A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020061889A (ja) * 2018-10-11 2020-04-16 豊田合成株式会社 送電装置、受電装置、および無線給電システム
CN114530949A (zh) * 2022-01-20 2022-05-24 荣耀终端有限公司 一种无线充电的发射端、充电底座及系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7031448B2 (ja) * 2018-03-30 2022-03-08 Tdk株式会社 ワイヤレス送電装置、及びワイヤレス電力伝送システム
JP7021007B2 (ja) * 2018-05-31 2022-02-16 株式会社Soken 非接触受電装置
CN114825565B (zh) * 2022-04-19 2024-04-19 湖北工业大学 一种电动汽车动态无线充电系统的发射单元设计方法
CN117616663A (zh) * 2022-06-20 2024-02-27 北京小米移动软件有限公司 无线接收电路及其配置方法、电子设备、可读存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125675A1 (ja) * 2013-02-12 2014-08-21 日東電工株式会社 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
WO2015040650A1 (ja) * 2013-09-17 2015-03-26 パナソニックIpマネジメント株式会社 非接触電力伝送装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142748A (ja) * 2010-01-07 2011-07-21 Sony Corp ワイヤレス給電システム
JP5489888B2 (ja) * 2010-07-05 2014-05-14 キヤノン株式会社 画像形成装置
KR101439495B1 (ko) * 2011-01-26 2014-09-11 가부시키가이샤 무라타 세이사쿠쇼 스위칭 전원장치
JP2013055835A (ja) * 2011-09-06 2013-03-21 Sony Corp 給電装置、電子機器および給電システム
JP6219285B2 (ja) * 2011-09-07 2017-10-25 ソラス パワー インコーポレイテッドSolace Power Inc. 電界を用いたワイヤレス電力送信システムおよび電力送信方法
JP5010061B1 (ja) * 2011-09-21 2012-08-29 パイオニア株式会社 非接触電力送電装置、非接触電力受電装置、及び非接触給電システム
WO2013089289A1 (ko) * 2011-12-13 2013-06-20 엘지전자 주식회사 무선 전력 전송 신호 변조 방법
US8933589B2 (en) * 2012-02-07 2015-01-13 The Gillette Company Wireless power transfer using separately tunable resonators
JP2014030288A (ja) * 2012-07-31 2014-02-13 Sony Corp 給電装置および給電システム
JP2014168365A (ja) * 2013-02-28 2014-09-11 Renesas Electronics Corp ワイヤレス給電システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125675A1 (ja) * 2013-02-12 2014-08-21 日東電工株式会社 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
WO2015040650A1 (ja) * 2013-09-17 2015-03-26 パナソニックIpマネジメント株式会社 非接触電力伝送装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020061889A (ja) * 2018-10-11 2020-04-16 豊田合成株式会社 送電装置、受電装置、および無線給電システム
JP7043007B2 (ja) 2018-10-11 2022-03-29 豊田合成株式会社 送電装置、受電装置、および無線給電システム
CN114530949A (zh) * 2022-01-20 2022-05-24 荣耀终端有限公司 一种无线充电的发射端、充电底座及系统
CN114530949B (zh) * 2022-01-20 2023-01-20 荣耀终端有限公司 一种无线充电的发射端、充电底座及系统

Also Published As

Publication number Publication date
JPWO2016190095A1 (ja) 2017-12-21
JP6493526B2 (ja) 2019-04-03
US10511194B2 (en) 2019-12-17
US20180083491A1 (en) 2018-03-22
CN107636933B (zh) 2020-06-26
CN107636933A (zh) 2018-01-26

Similar Documents

Publication Publication Date Title
JP6601538B2 (ja) ワイヤレス給電装置
JP6493526B2 (ja) ワイヤレス給電システムおよびワイヤレス給電方法
JP6115626B2 (ja) ワイヤレス給電装置
JP6202222B2 (ja) ワイヤレス給電システム
JP5804073B2 (ja) スイッチング電源装置
KR101685371B1 (ko) 전력 전송 시스템
JP5817835B2 (ja) スイッチング電源装置
WO2012101907A1 (ja) 電力伝送システム
JP6202221B2 (ja) ワイヤレス給電装置
JP2018170819A (ja) ワイヤレス送電装置およびワイヤレス電力伝送システム
JP6188820B2 (ja) 高周波電源用整流回路
WO2015097801A1 (ja) 高周波電源用整流回路
JPWO2015097803A1 (ja) 高周波電源用整流回路
JP2018509876A (ja) 誘導電力受信機
JPWO2015097802A1 (ja) 高周波電源用整流回路
KR20140060865A (ko) 무선 전력 송신 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799803

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520608

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799803

Country of ref document: EP

Kind code of ref document: A1