WO2014123074A1 - 非水二次電池用電解液および非水二次電池、電解液用添加剤 - Google Patents

非水二次電池用電解液および非水二次電池、電解液用添加剤 Download PDF

Info

Publication number
WO2014123074A1
WO2014123074A1 PCT/JP2014/052298 JP2014052298W WO2014123074A1 WO 2014123074 A1 WO2014123074 A1 WO 2014123074A1 JP 2014052298 W JP2014052298 W JP 2014052298W WO 2014123074 A1 WO2014123074 A1 WO 2014123074A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
secondary battery
atom
lithium
Prior art date
Application number
PCT/JP2014/052298
Other languages
English (en)
French (fr)
Inventor
洋平 石地
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014123074A1 publication Critical patent/WO2014123074A1/ja
Priority to US14/791,884 priority Critical patent/US20150311564A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/56Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of lead
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte for a non-aqueous secondary battery, a non-aqueous secondary battery, and an additive for the electrolyte.
  • lithium ion batteries secondary batteries that use the insertion and extraction of lithium in charge and discharge reactions (lithium ion secondary batteries), and secondary batteries that use precipitation and dissolution of lithium.
  • Secondary batteries lithium metal secondary batteries.
  • a lithium ion secondary battery and a lithium metal secondary battery have a problem of overcharging as an inherent problem to be solved. . This may lead to a problem due to a short circuit of the electrode when the secondary battery is fully charged even if the secondary battery is further charged. In particular, it is a problem peculiar to a lithium secondary battery using an organic electrolyte, and a sufficient response has been desired from the viewpoint of ensuring safety in use.
  • Patent Document 1 For the purpose of suppressing or preventing the occurrence of such an overcharged state, several additives to be added to the non-aqueous electrolyte have been proposed. Among them, a representative example is biphenyl disclosed in Patent Document 1 below. Patent Documents 2 and 3 describe attempts to ensure reliability during overcharge by adding an amine compound.
  • an object of the present invention is to provide a non-aqueous secondary battery that can achieve both high overcharge prevention and battery performance deterioration suppression, and a non-aqueous secondary battery electrolyte used therein.
  • An electrolyte solution for a non-aqueous secondary battery containing an electrolyte and an organic boron compound having at least one nitrogen-boron bond or an organic aluminum compound having a nitrogen-aluminum bond in an organic solvent.
  • an electrolyte solution for a non-aqueous secondary battery according to [1] wherein the organoboron compound or organoaluminum compound has a heterocycle having a plurality of heteroatoms selected from nitrogen, oxygen, sulfur, and phosphorus.
  • Het represents a 5- or 6-membered heterocycle having an NN bond.
  • R 1 to R 3 are each independently a halogen atom, amino group, silyl group, alkoxy group, aryloxy group, acyloxy group, heteroaryloxy group, sulfonyloxy group-containing group, alkyl group, aryl group, or R 1 to R 3 may be bonded to each other or condensed to form a ring structure
  • R 4 to R 6 are each independently a hydrogen atom, alkyl group, alkoxy group, halogen atom, acyloxy group, an alkoxycarbonyl group, a cyano group, an amino group, a silyl group, an aryl group or a heteroaryl group
  • R 4 ⁇ R 6 are each may form a bond or condensed ring structure .
  • R 1, ⁇ R 6 may form a ring structure with N or C on the ring.
  • the double bond on the ring may be a single bond .
  • M 1 is carbon .Z 1+ respectively .
  • X 1 and X 2 represents inorganic or organic cation independently representing a boron atom or an aluminum atom Represents an atom or a nitrogen atom, and when X 1 and X 2 are nitrogen atoms, R 5 and R 6 are not present.
  • R 10 to R 13 represent a halogen atom, an alkoxy group, an aryloxy group, an acyloxy group, a heteroaryloxy group, a sulfonyloxy group-containing group, an alkyl group, an aryl group, or a heteroaryl group, each of which A ring structure may be formed by bonding or condensation, and when R 10 to R 13 form a ring, an inorganic element may be interposed to form a ring, and m and n are 0 ⁇ m + n ⁇ . Represents an integer of 3.
  • R 4 to R 6 have the same meanings as in formula (II), and R 7 to R 9 have the same meanings, M 1 and M 2 represent a boron atom or an aluminum atom, Y represents Represents a metal atom other than a boron atom and an aluminum atom, wherein X 1 to X 4 are carbon atoms or nitrogen atoms, and there is no R 5 to R 8 when they are nitrogen atoms.) [10]
  • a nonaqueous secondary battery comprising the positive electrode, the negative electrode, and the electrolyte solution for a nonaqueous secondary battery according to any one of [1] to [12].
  • the positive electrode active material is a transition metal oxide capable of inserting and releasing alkali metal ions.
  • the active material contained in the positive electrode contains a transition metal oxide represented by any of the following formulas (MA) to (MC). Li a M 1 O b (MA) Li c M 2 2 O d (MB) Li e M 3 (PO 4 ) f ...
  • M 1 and M 2 each independently represent one or more elements selected from Co, Ni, Fe, Mn, Cu, and V.
  • M 3 independently represents V, Ti. , Cr, Mn, Fe, Co, Ni, and Cu represent one or more elements selected from the group consisting of M 1 to M 3 , a part of which is the first (Ia) of the periodic table other than lithium.
  • Group element, Group 2 (IIa) element, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P, and B may be substituted.
  • a represents 0 to 1.2
  • b represents 1 to 3
  • c represents 0 to 2
  • d represents 3 to 5
  • e represents 0 to 2
  • f represents 1 to 5.
  • the active material of the positive electrode is lithium cobalt oxide, lithium manganate, lithium nickelate, lithium nickel manganese cobaltate, lithium manganese nickelate, lithium nickel cobaltaluminate, or lithium iron phosphate [13] to [13] [15] The nonaqueous secondary battery according to any one of [15]. [17] The nonaqueous secondary battery according to any one of [13] to [16], wherein lithium titanate (LTO) or (composite) carbon material is used as the active material of the negative electrode. [18] The nonaqueous secondary battery according to any one of [13] to [17], wherein the normal charge positive electrode potential of the battery is 4.25 V (Li / Li + reference) or more.
  • R 1 to R 3 are each independently a halogen atom, amino group, silyl group, alkoxy group, aryloxy group, acyloxy group, heteroaryloxy group, sulfonyloxy group-containing group, alkyl group, aryl group, or R 1 to R 3 may be bonded to each other or condensed to form a ring structure
  • R 4 to R 6 are each independently a hydrogen atom, alkyl group, alkoxy group, halogen atom, acyloxy group, an alkoxycarbonyl group, a cyano group, an amino group, a silyl group, an aryl group or a heteroaryl group
  • R 4 ⁇ R 6 are each may form a bond or condensed ring structure .
  • R 1, ⁇ R 6 may form a ring structure with N or C on the ring.
  • the double bond on the ring may be a single bond .
  • M 1 is carbon .Z 1+ respectively .
  • X 1 and X 2 represents inorganic or organic cation independently representing a boron atom or an aluminum atom Represents an atom or a nitrogen atom, and when X 1 and X 2 are nitrogen atoms, R 5 and R 6 are not present.
  • the electrolyte solution for a non-aqueous secondary battery of the present invention contains an electrolyte and the following specific organic boron compound or organic aluminum compound in an organic solvent.
  • the present invention will be described in detail focusing on the specific organoboron compound or organoaluminum compound.
  • the specific organoboron compound or organoaluminum compound used in the present invention has at least one nitrogen-boron bond or nitrogen-aluminum bond, respectively.
  • the organoboron compound or organoaluminum compound preferably has a heterocycle having a plurality of heteroatoms selected from nitrogen, oxygen, sulfur, and phosphorus.
  • This heterocycle preferably has (i) a heterocycle having a plurality of nitrogen atoms, (ii) a heterocycle having a nitrogen-nitrogen bond, and (iii) a 5-membered heterocycle.
  • the heterocyclic ring which has a pyrazole structure or a triazole structure in a partial structure is preferable.
  • n is an integer equal to or less than the replaceable number, for example, (a) is 4 or less, (b) is 3 or less, and (c) is an integer of 2 or less.
  • the organoboron compound or organoaluminum compound preferably has a structural moiety represented by the following formula (1).
  • M represents a boron atom or an aluminum atom.
  • Het represents a 5- or 6-membered heterocycle with adjacent NN bonds.
  • the preferred range of the heterocycle is the same as described above.
  • the heterocycle and M may further have a substituent. It is preferable that the substituent in the heterocyclic ring has the same meaning as R.
  • the substituent substituted for M is preferably synonymous with R 1 to R 3 . There may be a plurality of these substituents, and they may be bonded to each other or condensed to form a ring. Moreover, it may combine with N or C on the Het ring to form a ring.
  • the NN bond on the Het ring may be a single bond or a double bond.
  • the organoboron compound or organoaluminum compound is more preferably a compound represented by the following formula (I) or (II).
  • R 1 to R 3 each independently represent a halogen atom, an amino group (preferably having 0 to 6 carbon atoms, more preferably 0 to 3), or a silyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms).
  • an alkoxy group preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms
  • an aryloxy group preferably having 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms
  • an acyloxy group having 1 to 12 carbon atoms.
  • a heteroaryloxy group preferably having 1 to 12 carbon atoms, more preferably 2 to 5
  • a sulfonyl group-containing group R—SO 2 —: R represents 1 to 6 carbon atoms.
  • Aryl group carbon Preferably from 6 to 22, it represents a more preferred
  • heteroaryl group is 6 to 14 (preferably from 1 to 12 carbon atoms, more preferably 2 to 5).
  • the heteroaryl group in the said heteroaryloxy group and heteroaryl group is a 5-membered ring or a 6-membered ring, specifically, a pyridyl group, a pyrazyl group, a pyrimidyl group.
  • a pyridazyl group, a pyrazolyl group, an imidazolyl group, a triazolyl group, and a tetrazolyl group are preferable (hereinafter, this preferable heteroaryl group is referred to as Ha).
  • an acyl group means an allylyl group.
  • R 4 to R 6 are each independently a hydrogen atom, an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6), an alkoxy group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6), A halogen atom, an acyloxy group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms), an alkoxycarbonyl group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms), a cyano group, an amino group (having carbon atoms) 0-6 are preferred, 0-3 are more preferred), silyl groups (preferably having 1-12 carbon atoms, more preferred are 1-6), aryl groups (preferably having 6-22 carbon atoms, and more preferably 6-14 are preferred).
  • heteroaryl group preferably having 1 to 12 carbon atoms, more preferably 2 to 5 carbon atoms.
  • R 4 to R 6 may be bonded to each other or condensed to form a ring structure.
  • Preferred examples of the heteroaryl group in the above heteroaryloxy group and heteroaryl group include the examples of the heteroaryl group Ha.
  • R 1 to R 6 may combine with N or C on the ring to form a ring structure.
  • the double bond on the ring may be a single bond.
  • a ring may be formed by interposing an inorganic element Ya (preferably Sn, Zr, Zn, Cu, Mg, Mn, Ni, Co).
  • This inorganic element Ya may have a substituent or a ligand, and examples of the group include R 1 to R 3 .
  • the nitrogen atom involved in this bond is preferably N at the 2-position (where N is between N and X 1 ).
  • the group forming the ring is preferably R 3 or Z 1 .
  • the structure of the compound when R 4 to R 6 are bonded to N or C on the ring is preferably the following formula (Ia) or (IIa).
  • ⁇ M 1 M 1 represents a boron atom or an aluminum atom.
  • ⁇ Z 1+ Z 1+ represents an inorganic or organic cation.
  • Z 1+ include onium salts and ammonium salts of organic hetero rings such as pyrazole, imidazole, pyridine, thiazole and triazole, inorganic cations (Na + , K + , Li + ) and the like.
  • the M 1 -Z 1+ bond in the formula (II) is not limited to those having an ionic bond at that portion, such as when the following organic pyrazaball compound is formed, and is stabilized as a molecular structure. It means that the state is sufficient.
  • X 1 and X 2 each independently represent a carbon atom or a nitrogen atom.
  • R 5 and R 6 are absent.
  • R 1 to R 5 , M 1 and Z 1 are as defined in formulas (I) and (II).
  • R 61 has the same meaning as R 6 .
  • R 61 has the same meaning as R 6 .
  • the formula (II) is preferably represented by the following formula (III) or (IV).
  • R 10 to R 13 are a halogen atom, an alkoxy group (preferably 1 to 12 carbon atoms, more preferably 1 to 6), an aryloxy group (preferably 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms).
  • An acyloxy group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms), a heteroaryloxy group (preferably having 1 to 12 carbon atoms, more preferably 2 to 5 carbon atoms), a sulfonyloxy group-containing group (R-SO 2- :
  • R is an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms, an alkyl group (1 to 12 carbon atoms) Preferably 1 to 6), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 14), or a heteroaryl group (preferably 1 to 12 carbon atoms, more preferably 2 to 5 carbon atoms).
  • the And may each form a bond or fused ring structure.
  • Preferred examples of the heteroaryl group in the above heteroaryloxy group and heteroaryl group include the examples of the
  • n m and n represent an integer satisfying 0 ⁇ m + n ⁇ 3.
  • n and n are 2 or more, the 2 or more substituents defined therein may be different from each other.
  • R 4 to R 9 have the same meaning as in formula (II), and R 7 to R 9 have the same meaning.
  • M 1 and M 2 M 1 and M 2 represent a boron atom or an aluminum atom.
  • ⁇ Y Y represents a metal atom other than a boron atom and an aluminum atom.
  • Preferred examples of Y include monovalent to pentavalent ones, and more preferred examples include the metal atoms mentioned as the inorganic element Ya.
  • X 1 to X 4 are carbon atoms or nitrogen atoms, and there is no R 5 to R 8 when they are nitrogen atoms.
  • the formula (III) is preferably represented by the following formula (V) or (VI). (Wherein R 4 to R 13 and X 1 to X 4 have the same meanings as in formula (III).)
  • organoboron compound or organoaluminum compound includes the following compounds, but the present invention is not construed as being limited thereto.
  • Ph represents a phenyl group.
  • the binding force between the substituent and N is high and the stability as a compound is optimized.
  • the NM (boron or aluminum) bond of the compound of the present invention is difficult to dissociate in the electrolyte and has high deterioration resistance.
  • the deterioration resistance and the overcharge prevention property which are incompatible with each other are satisfied.
  • the specific organoboron compound or organoaluminum compound can be synthesized with reference to Journal of American Chemical Society 89, 19, 4948-4952.
  • the amount of the organoboron compound or organoaluminum compound added is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, still more preferably 0.1% by mass or more, particularly preferably 0.5% in the total electrolyte solution. It is at least mass%.
  • the upper limit is preferably 10% by mass or less, more preferably 7% by mass or less, further preferably 5% by mass or less, and particularly preferably 3% by mass or less.
  • the exemplified compound may have an arbitrary substituent T.
  • substituent T include the following.
  • An alkyl group preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl A group preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like
  • a cycloalkyl group preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopent
  • the compound or substituent / linking group contains an alkyl group / alkylene group, alkenyl group / alkenylene group, etc.
  • these may be cyclic or chain-like, and may be linear or branched, and substituted as described above. It may be substituted or unsubstituted.
  • an aryl group, a heterocyclic group, etc. may be monocyclic or condensed and may be similarly substituted or unsubstituted.
  • the organic solvent used in the present invention is preferably an aprotic organic solvent, and more preferably an aprotic organic solvent having 2 to 10 carbon atoms.
  • the organic solvent is preferably a compound having an ether group, a carbonyl group, an ester group, or a carbonate group.
  • the said compound may have a substituent and the said substituent T is mentioned as the example.
  • organic solvent examples include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2- Methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate , Methyl isobutyrate, methyl trimethylacetate, ethyl trimethylacetate, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionit
  • ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate is preferable.
  • a high viscosity (high dielectric constant) solvent such as ethylene carbonate or propylene carbonate (for example, ratio A combination of a dielectric constant ⁇ ⁇ 30) and a low viscosity solvent such as dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate (for example, viscosity ⁇ 1 mPa ⁇ s) is more preferable. This is because the dissociation property of the electrolyte salt and the ion mobility are improved.
  • the organic solvent used in the present invention is not limited to the above examples.
  • the electrolytic solution of the present invention preferably contains various functional additives.
  • Examples of the function manifested by this additive include improved flame retardancy, improved cycle characteristics, and improved capacity characteristics.
  • Examples of functional additives that are preferably applied to the electrolyte of the present invention are shown below.
  • aromatic compounds include biphenyl compounds and alkyl-substituted benzene compounds.
  • the biphenyl compound has a partial structure in which two benzene rings are bonded by a single bond, and the benzene ring may have a substituent, and preferred substituents are alkyl groups having 1 to 4 carbon atoms (for example, Methyl, ethyl, propyl, t-butyl, etc.) and aryl groups having 6 to 10 carbon atoms (eg, phenyl, naphthyl, etc.).
  • biphenyl compound examples include biphenyl, o-terphenyl, m-terphenyl, p-terphenyl, 4-methylbiphenyl, 4-ethylbiphenyl, and 4-tert-butylbiphenyl.
  • the alkyl-substituted benzene compound is preferably a benzene compound substituted with an alkyl group having 1 to 10 carbon atoms, and specific examples include cyclohexylbenzene, t-amylbenzene, and t-butylbenzene.
  • the halogen atom contained in the halogen-containing compound is preferably a fluorine atom, a chlorine atom, or a bromine atom, and more preferably a fluorine atom.
  • the number of halogen atoms is preferably 1 to 6, more preferably 1 to 3.
  • the halogen-containing compound is preferably a carbonate compound substituted with a fluorine atom, a polyether compound having a fluorine atom, or a fluorine-substituted aromatic compound.
  • the halogen-substituted carbonate compound may be either linear or cyclic.
  • a cyclic carbonate compound having a high coordination property of an electrolyte salt for example, lithium ion
  • a 5-membered cyclic carbonate compound is particularly preferable.
  • Preferred specific examples of the halogen-substituted carbonate compound are shown below. Among these, compounds of Bex1 to Bex4 are particularly preferable, and Bex1 is particularly preferable.
  • the polymerizable compound is preferably a compound having a carbon-carbon double bond, and is selected from carbonate compounds having a double bond such as vinylene carbonate and vinyl ethylene carbonate, acrylate groups, methacrylate groups, cyanoacrylate groups, and ⁇ CF 3 acrylate groups.
  • a compound having a group and a compound having a styryl group are preferable, and a carbonate compound having a double bond or a compound having two or more polymerizable groups in the molecule is more preferable.
  • a phosphorus containing compound As a phosphorus containing compound, a phosphate ester compound and a phosphazene compound are preferable.
  • the phosphate ester compound include trimethyl phosphate, triethyl phosphate, triphenyl phosphate, and tribenzyl phosphate.
  • a compound represented by the following formula (D2) or (D3) is also preferable.
  • R D4 to R D11 each represent a monovalent substituent.
  • the monovalent substituents an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an amino group, a halogen atom such as fluorine, chlorine or bromine is preferable.
  • At least one of the substituents of R D4 to R D11 is preferably a fluorine atom, more preferably a substituent composed of an alkoxy group, an amino group, or a fluorine atom.
  • a compound having —SO 2 —, —SO 3 —, —OS ( ⁇ O) O— bond is preferable, and cyclic sulfur-containing compounds such as propane sultone, propene sultone, ethylene sulfite, and sulfonic acid Esters are preferred.
  • sulfur-containing cyclic compound compounds represented by the following formulas (E1) and (E2) are preferable.
  • X 1 and X 2 each independently represent —O— or —C (Ra) (Rb) —.
  • Ra and Rb each independently represent a hydrogen atom or a substituent.
  • the substituent is preferably an alkyl group having 1 to 8 carbon atoms, a fluorine atom, or an aryl group having 6 to 12 carbon atoms.
  • represents an atomic group necessary for forming a 5- to 6-membered ring.
  • the skeleton of ⁇ may contain a sulfur atom, an oxygen atom, etc. in addition to a carbon atom.
  • may be substituted, and examples of the substituent include a substituent T, preferably an alkyl group, a fluorine atom, and an aryl group.
  • ⁇ Silicon-containing compound (F)> As the silicon-containing compound, a compound represented by the following formula (F1) or (F2) is preferable.
  • R F1 represents an alkyl group, an alkenyl group, an acyl group, an acyloxy group, or an alkoxycarbonyl group.
  • R F2 represents an alkyl group, an alkenyl group, an alkynyl group, or an alkoxy group.
  • a plurality of R F1 and R F2 in one formula may be different or the same.
  • nitrile compound (G) As the nitrile compound, a compound represented by the following formula (G) is preferable.
  • R G1 to R G3 each independently represent a hydrogen atom, an alkyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a cyano group, a carbamoyl group, a sulfonyl group, or a phosphonyl group.
  • examples of the substituent T can be referred to, and among them, a compound in which any one of R G1 to R G3 has a plurality of nitrile groups containing a cyano group is preferable.
  • -Ng represents an integer of 1-8.
  • Specific examples of the compound represented by the formula (G) include acetonitrile, propionitrile, isobutyronitrile, succinonitrile, malononitrile, glutaronitrile, adiponitrile, 2-methylglutanonitrile, hexanetricarbonitrile, propane. Tetracarbonitrile and the like are preferable. Particularly preferred are succinonitrile, malononitrile, glutaronitrile, adiponitrile, 2-methylglutanonitrile, hexanetricarbonitrile, and propanetetracarbonitrile.
  • Metal complex compound (H) As the metal complex compound, a transition metal complex or a rare earth complex is preferable. Of these, complexes represented by any of the following formulas (H-1) to (H-3) are preferred.
  • X H and Y H are a methyl group, an n-butyl group, a bis (trimethylsilyl) amino group, and a thioisocyanate group, respectively, and X H and Y H are condensed to form a cyclic alkenyl group (butadiene group).
  • MH represents a transition element or a rare earth element. Specifically, MH is preferably Fe, Ru, Cr, V, Ta, Mo, Ti, Zr, Hf, Y, La, Ce, Sw, Nd, Lu, Er, Yb, and Gd.
  • n H and n H are integers satisfying 0 ⁇ m H + n H ⁇ 3.
  • n H + m H is preferably 1 or more.
  • the 2 or more groups defined therein may be different from each other.
  • the metal complex compound is also preferably a compound having a partial structure represented by the following formula (H-4).
  • MH represents a transition element or a rare earth element and is synonymous with formulas (H-1) to (H-3).
  • R 1H and R 2H are hydrogen, an alkyl group (preferably having a carbon number of 1 to 6), an alkenyl group (preferably having a carbon number of 2 to 6), an alkynyl group (preferably having a carbon number of 2 to 6), and an aryl group (preferably having a carbon number). Represents a heteroaryl group (preferably having a carbon number of 3 to 6), an alkylsilyl group (preferably having a carbon number of 1 to 6), or a halogen.
  • R 1H and R 2H may be linked to each other.
  • R 1H and R 2H may each be connected to form a ring.
  • Preferable examples of R 1H and R 2H include examples of the substituent T described later.
  • a methyl group, an ethyl group, and a trimethylsilyl group are preferable.
  • q H represents an integer of 1 to 4, preferably an integer of 2 to 4. More preferably, it is 2 or 4. When q H is 2 or more, where a plurality of groups as defined may be the same or different from each other.
  • TMS represents a trimethylsilyl group.
  • the metal complex compound is preferably a compound represented by any of the following formulas.
  • the central metal M h is, Ti, Zr, ZrO, Hf , V, Cr, Fe, Ce is particularly preferred, Ti, Zr, Hf, V , Cr is the most preferred.
  • R 3h , R 5h , R 7h to R 10h represent substituents.
  • an alkyl group, an alkoxy group, an aryl group, an alkenyl group, and a halogen atom are preferable.
  • R 33h , R 55h R 33h and R 55h represent a hydrogen atom or a substituent of R 3h .
  • Y h is preferably an alkyl group having 1 to 6 carbon atoms or a bis (trialkylsilyl) amino group, and more preferably a methyl group or a bis (trimethylsilyl) amino group.
  • ⁇ L h, m h, o h l h , m h , and o h represent an integer of 0 to 3, and an integer of 0 to 2 is preferable.
  • the plurality of structural portions defined therein may be the same as or different from each other.
  • L h is preferably an alkylene group or an arylene group, more preferably a cycloalkylene group having 3 to 6 carbon atoms or an arylene group having 6 to 14 carbon atoms, and further preferably cyclohexylene or phenylene.
  • ⁇ Imide compound (I)> As the imide compound, a sulfonimide compound having a perfluoro group is preferable from the viewpoint of oxidation resistance, and specifically, a perfluorosulfoimide lithium compound may be mentioned. Specific examples of the imide compound include the following structures, and Cex1 and Cex2 are more preferable.
  • the electrolytic solution of the present invention may contain at least one selected from the above, a negative electrode film forming agent, a flame retardant, an overcharge preventing agent and the like.
  • the content ratio of these functional additives in the nonaqueous electrolytic solution is not particularly limited, but is preferably 0.001% by mass to 10% by mass with respect to the whole nonaqueous electrolytic solution.
  • the electrolyte used in the electrolytic solution of the present invention is a metal ion belonging to Group 1 or Group 2 of the periodic table or a salt thereof, and is appropriately selected depending on the intended use of the electrolytic solution.
  • lithium salt, potassium salt, sodium salt, calcium salt, magnesium salt and the like can be mentioned.
  • lithium salt is preferable from the viewpoint of output.
  • a lithium salt may be selected as a metal ion salt.
  • the lithium salt is not particularly limited as long as it is a lithium salt usually used for an electrolyte of a non-aqueous electrolyte solution for a lithium secondary battery. For example, those described below are preferable.
  • Inorganic lithium salts inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; perhalogenates such as LiClO 4 , LiBrO 4 , LiIO 4 ; inorganic chloride salts such as LiAlCl 4 etc.
  • (L-3) Oxalatoborate salt lithium bis (oxalato) borate, lithium difluorooxalatoborate and the like.
  • LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiClO 4 , Li (Rf 1 SO 3 ), LiN (Rf 1 SO 2 ) 2 , LiN (FSO 2 ) 2 , and LiN (Rf 1 SO 2 ) (Rf 2 SO 2 ) 2 is preferred, such as LiPF 6 , LiBF 4 , LiN (Rf 1 SO 2 ) 2 , LiN (FSO 2 ) 2 , and LiN (Rf 1 SO 2 ) (Rf 2 SO 2 ) 2
  • the lithium imide salt is more preferable.
  • Rf 1 and Rf 2 each represent a perfluoroalkyl group.
  • the electrolyte used for electrolyte solution may be used individually by 1 type, or may combine 2 or more types arbitrarily.
  • the content of the electrolyte (metal ions belonging to Group 1 or Group 2 of the periodic table or metal salts thereof) in the electrolytic solution is added in an amount so as to have a preferable salt concentration described in the electrolytic solution preparation method below.
  • the salt concentration is appropriately selected depending on the intended use of the electrolytic solution, but is generally 10% to 50% by mass, more preferably 15% to 30% by mass, based on the total mass of the electrolytic solution.
  • concentration when evaluating as an ion density
  • the electrolyte solution for a non-aqueous secondary battery of the present invention is prepared by a conventional method by dissolving each of the above components in the non-aqueous electrolyte solvent, including an example in which a lithium salt is used as a metal ion salt.
  • non-water means that water is not substantially contained, and a trace amount of water may be contained as long as the effects of the invention are not hindered.
  • the water content is preferably 200 ppm (mass basis) or less, more preferably 100 ppm or less, and even more preferably 20 ppm or less. Although there is no lower limit in particular, it is practical that it is 1 ppm or more considering inevitable mixing.
  • the viscosity of the electrolytic solution of the present invention is not particularly limited, but it is preferably 10 to 0.1 mPa ⁇ s, more preferably 5 to 0.5 mPa ⁇ s at 25 ° C. In the present invention, the viscosity of the electrolytic solution is based on the value measured by the following measuring method unless otherwise specified.
  • the viscosity is a value measured by the following method. 1 mL of a sample is put into a rheometer (CLS 500) and measured using a Steel Cone (both manufactured by TA Instruments) having a diameter of 4 cm / 2 °. The sample is kept warm in advance until the temperature becomes constant at the measurement start temperature, and the measurement starts thereafter. The measurement temperature is 25 ° C.
  • the lithium ion secondary battery 10 of this embodiment includes the electrolyte solution 5 for a non-aqueous secondary battery of the present invention and a positive electrode C capable of inserting and releasing lithium ions (a positive electrode current collector 1 and a positive electrode active material layer 2). And a negative electrode A (negative electrode current collector 3, negative electrode active material layer 4) capable of inserting and releasing lithium ions or dissolving and depositing lithium ions.
  • a separator 9 disposed between the positive electrode and the negative electrode, a current collecting terminal (not shown), an outer case, etc. (Not shown).
  • a protective element may be attached to at least one of the inside of the battery and the outside of the battery.
  • the battery shape to which the lithium secondary battery of the present embodiment is applied is not particularly limited, and examples thereof include a bottomed cylindrical shape, a bottomed square shape, a thin shape, a sheet shape, and a paper shape. Any of these may be used. Further, it may be of a different shape such as a horseshoe shape or a comb shape considering the shape of the system or device to be incorporated. Among them, from the viewpoint of efficiently releasing the heat inside the battery to the outside, a square shape such as a bottomed square shape or a thin shape having at least one surface that is relatively flat and has a large area is preferable.
  • FIG. 2 is an example of a bottomed cylindrical lithium secondary battery 100.
  • This battery is a bottomed cylindrical lithium secondary battery 100 in which a positive electrode sheet 14 and a negative electrode sheet 16 overlapped with a separator 12 are wound and accommodated in an outer can 18.
  • the 2S / T value is preferably 100 or more, and more preferably 200 or more.
  • the lithium secondary battery according to the present embodiment is configured to include the electrolytic solution 5, the positive electrode and negative electrode electrode mixtures C and A, and the separator basic member 9, based on FIG. 1. Hereinafter, each of these members will be described.
  • the nonaqueous secondary battery of the present invention includes at least the electrolyte solution for a nonaqueous battery of the present invention as an electrolytic solution.
  • Electrode mixture The electrode mixture is obtained by applying a dispersion of an active material and a conductive agent, a binder, a filler, etc. on a current collector (electrode substrate).
  • the active material is a positive electrode active material. It is preferable to use a negative electrode mixture in which the positive electrode mixture and the active material are a negative electrode active material.
  • each component in the dispersion (electrode composition) constituting the electrode mixture will be described.
  • a transition metal oxide for the positive electrode active material, and in particular, it has a transition element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu, V). Is preferred. Further, mixed element M b (elements of the first (Ia) group of the metal periodic table other than lithium, elements of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si , P, B, etc.) may be mixed. Examples of the transition metal oxide include specific transition metal oxides including those represented by any of the following formulas (MA) to (MC), or other transition metal oxides such as V 2 O 5 and MnO 2. Is mentioned. As the positive electrode active material, a particulate positive electrode active material may be used. Specifically, a transition metal oxide capable of reversibly inserting and releasing lithium ions can be used, but the specific transition metal oxide is preferably used.
  • the positive electrode active material is preferably a material having a sufficient charge region or a transition metal oxide material capable of inserting and releasing alkali metal ions.
  • a transition metal oxide having a lithium insertion / release potential peak at 3.5 V or more with respect to lithium is preferable, more preferably, the insertion / release potential is 3.8 V or more, and most preferably 4.0 V or more. is there.
  • the charge / discharge potential peak at this time can be specified by preparing a tripolar cell composed of a working electrode, a reference electrode, and a counter electrode, and performing electrochemical measurement (cyclic voltammetry).
  • the configuration of the tripolar cell and the measurement conditions for electrochemical measurement are as follows.
  • ⁇ Configuration of tripolar cell> -Working electrode: Active material electrode prepared on platinum electrode by sol-gel method or sputtering method-Reference electrode: Lithium-Counter electrode: Lithium-Dilution media: EC / EMC 1/2 LiPF 6 1M, manufactured by Kishida Chemical Co., Ltd. ⁇ Measurement Conditions> ⁇ Scanning speed: 1mV / s ⁇ Measurement temperature: 25 °C
  • the transition metal oxides, oxides containing the transition element M a is preferably exemplified.
  • a mixed element M b (preferably Al) or the like may be mixed.
  • the mixing amount is preferably 0 to 30 mol% with respect to the amount of the transition metal. That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
  • M 1 is the same meaning as defined above Ma.
  • a represents 0 to 1.2, and preferably 0.6 to 1.1.
  • b represents 1 to 3 and is preferably 2.
  • a part of M 1 may be substituted with the mixed element M b .
  • the transition metal oxide represented by the formula (MA) typically has a layered rock salt structure.
  • the transition metal oxide is more preferably one represented by the following formulas.
  • g has the same meaning as a.
  • j represents 0.1 to 0.9.
  • i represents 0 to 1; However, 1-ji is 0 or more.
  • k has the same meaning as b.
  • Specific examples of the transition metal compound include LiCoO 2 (lithium cobaltate), LiNi 2 O 2 (lithium nickelate) LiNi 0.85 Co 0.01 Al 0.05 O 2 (nickel cobalt lithium aluminumate [NCA]. ], LiNi 0.33 Co 0.33 Mn 0.33 O 2 (lithium nickel manganese cobaltate [NMC]), LiNi 0.5 Mn 0.5 O 2 (lithium manganese nickelate).
  • the transition metal oxide represented by the formula (MA) partially overlaps, but when represented by changing the notation, those represented by the following are also preferable examples.
  • (I) Li g Ni x Mn y Co z O 2 (x> 0.2, y> 0.2, z ⁇ 0, x + y + z 1) Representative: Li g Ni 1/3 Mn 1/3 Co 1/3 O 2 Li g Ni 1/2 Mn 1/2 O 2
  • (Ii) Li g Ni x Co y Al z O 2 (x> 0.7, y>0.1,0.1>z> 0.05, x + y + z 1) Representative: Li g Ni 0.8 Co 0.15 Al 0.05 O 2
  • M 2 are as defined above Ma.
  • c represents 0 to 2, and preferably 0.6 to 1.5.
  • d represents 3 to 5 and is preferably 4.
  • the transition metal oxide represented by the formula (MB) is more preferably one represented by the following formulas.
  • (MB-1) Li m Mn 2 O n
  • (MB-2) Li m Mn p Al 2-p O n
  • (MB-3) Li m Mn p Ni 2-p O n
  • m is synonymous with c.
  • n is synonymous with d.
  • p represents 0-2.
  • Specific examples of the transition metal compound are LiMn 2 O 4 and LiMn 1.5 Ni 0.5 O 4 .
  • Preferred examples of the transition metal oxide represented by the formula (MB) include those represented by the following.
  • an electrode containing Ni is more preferable from the viewpoint of high capacity and high output.
  • Transition metal oxide represented by formula (MC) As the lithium-containing transition metal oxide, it is also preferable to use a lithium-containing transition metal phosphor oxide, and among them, one represented by the following formula (MC) is also preferable. Li e M 3 (PO 4 ) f ... (MC)
  • e 0 to 2, and preferably 0.5 to 1.5.
  • f represents 1 to 5, and preferably 0.5 to 2.
  • the M 3 represents one or more elements selected from V, Ti, Cr, Mn, Fe, Co, Ni, and Cu.
  • M 3 represents, in addition to the mixing element M b above, Ti, Cr, Zn, Zr, may be substituted by other metals such as Nb.
  • Specific examples include, for example, olivine-type iron phosphates such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and Li 3.
  • Monoclinic Nasicon type vanadium phosphate salts such as V 2 (PO 4 ) 3 (lithium vanadium phosphate) can be mentioned.
  • the a, c, g, m, and e values representing the composition of Li are values that change due to charge and discharge, and are typically evaluated as values in a stable state when Li is contained.
  • the composition of Li is shown as a specific value, but this also varies depending on the operation of the battery.
  • a material capable of maintaining normal use at a positive electrode potential (Li / Li + reference) of 4.25 V or higher for the positive electrode active material it is preferable to use a material capable of maintaining normal use at a positive electrode potential (Li / Li + reference) of 4.25 V or higher for the positive electrode active material.
  • a positive electrode potential Li / Li + reference
  • This potential is also referred to as a normal usable potential.
  • This potential may be simply referred to as a positive electrode potential.
  • the positive electrode potential (usually usable potential) is more preferably 4.3 V or more. Although there is no upper limit in particular, it is practical that it is 5V or less. By setting it as the above range, cycle characteristics and high rate discharge characteristics can be improved.
  • the negative electrode potential is 1.55V.
  • the negative electrode potential is 0.1V. The battery voltage is observed during charging and the positive electrode potential is calculated.
  • the average particle size of the positive electrode active material used is not particularly limited, but is preferably 0.1 ⁇ m to 50 ⁇ m.
  • the specific surface area is not particularly limited, but is preferably 0.01 m 2 / g to 50 m 2 / g by the BET method.
  • the pH of the supernatant when 5 g of the positive electrode active material is dissolved in 100 ml of distilled water is preferably 7 or more and 12 or less.
  • a well-known pulverizer or classifier is used to make the positive electrode active substance have a predetermined particle size.
  • a mortar, a ball mill, a vibration ball mill, a vibration mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill, a sieve, or the like is used.
  • the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the blending amount of the positive electrode active material is not particularly limited, but is preferably 60 to 98% by mass, and 70 to 95% by mass in 100% by mass of the solid component in the dispersion (mixture) for constituting the active material layer. % Is more preferable.
  • Negative electrode active material The negative electrode active material is not particularly limited as long as it can reversibly insert and release lithium ions.
  • the metal composite oxide is not particularly limited as long as it can occlude and release lithium, but it preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics. .
  • the carbonaceous material used as the negative electrode active material is a material substantially made of carbon.
  • Examples thereof include carbonaceous materials obtained by baking various synthetic resins such as artificial pitches such as petroleum pitch, natural graphite, and vapor-grown graphite, and PAN-based resins and furfuryl alcohol resins.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA-based carbon fiber, lignin carbon fiber, glassy carbon fiber, activated carbon fiber, mesophase micro
  • Examples thereof include spheres, graphite whiskers, and flat graphite.
  • carbonaceous materials can be divided into non-graphitizable carbon materials and graphite-based carbon materials depending on the degree of graphitization.
  • the carbonaceous material preferably has a face spacing, density, and crystallite size described in JP-A-62-222066, JP-A-2-6856, and 3-45473.
  • the carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, or the like is used. You can also.
  • the metal oxide and metal composite oxide which are the negative electrode active materials used in the nonaqueous secondary battery of the present invention, need only contain at least one of them.
  • amorphous oxide is particularly preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used.
  • chalcogenite which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used.
  • amorphous as used herein means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2 ⁇ , and is a crystalline diffraction line. You may have.
  • the strongest intensity of crystalline diffraction lines seen from 2 ° to 40 ° to 70 ° is 100 times the diffraction line intensity at the peak of the broad scattering band seen from 2 ° to 20 °. It is preferable that it is 5 times or less, and it is particularly preferable not to have a crystalline diffraction line.
  • an amorphous oxide of a semi-metal element and a chalcogenide are more preferable, and elements of Groups 13 (IIIB) to 15 (VB) of the periodic table, Particularly preferred are oxides and chalcogenides composed of one kind of Al, Ga, Si, Sn, Ge, Pb, Sb, Bi or a combination of two or more kinds thereof.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 , such as SnSiS 3 may preferably be mentioned. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
  • the average particle size of the negative electrode active material used is preferably 0.1 ⁇ m to 60 ⁇ m.
  • a well-known pulverizer or classifier is used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill or a sieve is preferably used.
  • wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary.
  • classification is preferably performed.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
  • the chemical formula of the compound obtained by the firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method and a mass difference between powders before and after firing as a simple method.
  • ICP inductively coupled plasma
  • the negative electrode active material that can be used in combination with the amorphous oxide negative electrode active material centering on Sn, Si, Ge, a carbon material capable of inserting and extracting lithium ions or lithium metal, lithium
  • Preferred examples include lithium alloys and metals that can be alloyed with lithium.
  • the electrolyte solution of the present invention is preferably combined with a high potential negative electrode (preferably lithium-titanium oxide, a potential of 1.55 V vs. Li metal) and a low potential negative electrode (preferably a carbon material, potential of about 0.1 V vs. Li). Excellent properties are exhibited in any combination with (metal). Further, metal or metal oxide negative electrodes (preferably Si, Si oxide, Si / Si oxide, Sn, Sn oxide, SnB x P y O z , Cu, which can be alloyed with lithium, which are being developed for higher capacity) / Sn and a plurality of these composites), and a battery using a composite of these metals or metal oxides and a carbon material as a negative electrode.
  • a high potential negative electrode preferably lithium-titanium oxide, a potential of 1.55 V vs. Li metal
  • a low potential negative electrode preferably a carbon material, potential of about 0.1 V vs. Li
  • excellent properties are exhibited in any combination with
  • lithium titanate more specifically, lithium-titanium oxide (Li [Li 1/3 Ti 5/3 ] O 4 ) as the negative electrode active material.
  • Li [Li 1/3 Ti 5/3 ] O 4 lithium-titanium oxide
  • any electronic conductive material that does not cause a chemical change in the configured secondary battery may be used, and any known conductive material may be used.
  • natural graphite scale-like graphite, scale-like graphite, earth-like graphite, etc.
  • artificial graphite carbon black, acetylene black, ketjen black, carbon fiber and metal powder (copper, nickel, aluminum, silver (Japanese Patent Laid-Open No. Sho 63-63)) 10148,554), etc.
  • metal fibers or polyphenylene derivatives described in JP-A-59-20971 can be contained as one kind or a mixture thereof.
  • the addition amount of the conductive agent is preferably 1 to 50% by mass, and more preferably 2 to 30% by mass. In the case of carbon or graphite, 2 to 15% by mass is particularly preferable.
  • binders include polysaccharides, thermoplastic resins, and polymers having rubber elasticity. Among them, for example, starch, carboxymethyl cellulose, cellulose, diacetyl cellulose, methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose.
  • Water-soluble such as sodium alginate, polyacrylic acid, sodium polyacrylate, polyvinylphenol, polyvinyl methyl ether, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylonitrile, polyacrylamide, polyhydroxy (meth) acrylate, styrene-maleic acid copolymer Polymer, polyvinyl chloride, polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, vinyl Redene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, polyvinyl acetal resin, methyl methacrylate, 2-ethylhexyl acrylate, etc.
  • EPDM ethylene-propylene-diene terpolymer
  • Binders can be used alone or in combination of two or more.
  • the amount of the binder added is small, the holding power and cohesive force of the electrode mixture are weakened. If the amount is too large, the electrode volume increases and the capacity per electrode unit volume or unit mass decreases. For this reason, the addition amount of the binder is preferably 1 to 30% by mass, and more preferably 2 to 10% by mass.
  • the electrode compound material may contain the filler.
  • the material for forming the filler any fibrous material that does not cause a chemical change in the secondary battery of the present invention can be used.
  • fibrous fillers made of materials such as olefin polymers such as polypropylene and polyethylene, glass, and carbon are used.
  • the addition amount of the filler is not particularly limited, but is preferably 0 to 30% by mass in the dispersion.
  • the positive / negative electrode current collector an electron conductor that does not cause a chemical change in the nonaqueous electrolyte secondary battery of the present invention is used.
  • the current collector of the positive electrode in addition to aluminum, stainless steel, nickel, titanium, etc., the surface of aluminum or stainless steel is preferably treated with carbon, nickel, titanium, or silver. Among them, aluminum and aluminum alloys are preferable. More preferred.
  • the negative electrode current collector aluminum, copper, stainless steel, nickel and titanium are preferable, and aluminum, copper and copper alloy are more preferable.
  • a film sheet shape is usually used, but a net, a punched material, a lath body, a porous body, a foamed body, a molded body of a fiber group, and the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 ⁇ m to 500 ⁇ m.
  • the current collector surface is roughened by surface treatment.
  • An electrode mixture of the lithium secondary battery is formed by a member appropriately selected from these materials.
  • the separator used in the non-aqueous secondary battery of the present invention is particularly a material that has mechanical strength for electrically insulating the positive electrode and the negative electrode, ion permeability, and oxidation / reduction resistance at the contact surface between the positive electrode and the negative electrode.
  • a material a porous polymer material, an inorganic material, an organic-inorganic hybrid material, glass fiber, or the like is used.
  • These separators preferably have a shutdown function for ensuring safety, that is, a function of closing the gap at 80 ° C. or higher to increase resistance and blocking current, and the closing temperature is 90 ° C. or higher and 180 ° C. or lower. It is preferable.
  • the shape of the holes of the separator is usually circular or elliptical, and the size is 0.05 ⁇ m to 30 ⁇ m, preferably 0.1 ⁇ m to 20 ⁇ m. Furthermore, it may be a rod-like or irregular-shaped hole as in the case of making by a stretching method or a phase separation method.
  • the ratio of these gaps, that is, the porosity, is 20% to 90%, preferably 35% to 80%.
  • the polymer material may be a single material such as a cellulose nonwoven fabric, polyethylene, or polypropylene, or may be a material using two or more composite materials. What laminated
  • oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate are used, and those having a particle shape or fiber shape are used.
  • a thin film shape such as a non-woven fabric, a woven fabric, or a microporous film is used.
  • the thin film shape those having a pore diameter of 0.01 ⁇ m to 1 ⁇ m and a thickness of 5 ⁇ m to 50 ⁇ m are preferably used.
  • a separator formed by forming a composite porous layer containing the inorganic particles on the surface layer of the positive electrode and / or the negative electrode using a resin binder can be used.
  • alumina particles having a 90% particle diameter of less than 1 ⁇ m are formed on both surfaces of the positive electrode as a porous layer using a fluororesin binder.
  • the shape of the nonaqueous secondary battery of the present invention can be applied to any shape such as a sheet shape, a square shape, and a cylinder shape.
  • a positive electrode active material or a mixture of negative electrode active materials is mainly used after being applied (coated), dried and compressed on a current collector.
  • FIG. 2 shows an example of a bottomed cylindrical lithium secondary battery 100.
  • This battery is a bottomed cylindrical lithium secondary battery 100 in which a positive electrode sheet 14 and a negative electrode sheet 16 overlapped with a separator 12 are wound and accommodated in an outer can 18.
  • 20 is an insulating plate
  • 22 is a sealing plate
  • 24 is a positive current collector
  • 26 is a gasket
  • 28 is a pressure-sensitive valve element
  • 30 is a current interruption element.
  • each member corresponds to the whole drawing by reference numerals.
  • the negative electrode mixture can be prepared by mixing a negative electrode active material and a binder or filler used as desired in an organic solvent to prepare a slurry or paste negative electrode mixture.
  • the obtained negative electrode mixture is uniformly applied over the entire surface of both surfaces of the metal core as a current collector, and then the organic solvent is removed to form a negative electrode mixture layer.
  • the laminate of the current collector and the negative electrode composite material layer is rolled with a roll press or the like to prepare a predetermined thickness to obtain a negative electrode sheet (electrode sheet).
  • the coating method of each agent, the drying of the coated material, and the method of forming the positive and negative electrodes may be in accordance with conventional methods.
  • a cylindrical battery is taken as an example, but the present invention is not limited to this, for example, after the positive and negative electrode sheets produced by the above method are overlapped via a separator, After processing into a sheet battery as it is, or inserting it into a rectangular can after being folded and electrically connecting the can and the sheet, injecting an electrolyte and sealing the opening using a sealing plate A square battery may be formed.
  • the safety valve can be used as a sealing plate for sealing the opening.
  • the sealing member may be provided with various conventionally known safety elements.
  • a fuse, bimetal, PTC element, or the like is preferably used as the overcurrent prevention element.
  • a method of cutting the battery can a method of cracking the gasket, a method of cracking the sealing plate, or a method of cutting the lead plate can be used.
  • the charger may be provided with a protection circuit incorporating measures against overcharge and overdischarge, or may be connected independently.
  • a metal or alloy having electrical conductivity can be used.
  • metals such as iron, nickel, titanium, chromium, molybdenum, copper, and aluminum, or alloys thereof are preferably used.
  • a known method eg, direct current or alternating current electric welding, laser welding, ultrasonic welding
  • a welding method for the cap, can, sheet, and lead plate can be used as a welding method for the cap, can, sheet, and lead plate.
  • the sealing agent for sealing a conventionally known compound or mixture such as asphalt can be used.
  • the specific compound does not act below the normal charge potential of the battery.
  • the normal charge positive electrode potential (positive electrode potential of the positive electrode active material) of this battery is preferably 4.25 V (Li / Li + reference) or more, and more preferably 4.3 V or more. Although there is no upper limit in particular, it is practical that it is 5V or less. Further, the rate of increase in resistance calculated by impedance measurement is preferably 5 or more, and more preferably 15 or more. There is no particular upper limit, but it is preferably 1000 or less.
  • Measurement method of resistance increase rate As a method for observing the resistance of the battery, there is a method for measuring the AC impedance of the battery. When the frequency is changed from a low frequency to a high frequency and the change in impedance at that time is plotted on a complex plane, the resistance of the battery can be measured by obtaining a graph called “Cole-Cole Plot”. The rate of increase in resistance is obtained from the resistance when overcharged and the resistance when charged at a normal potential.
  • the specific measurement method can refer to those employed in the examples.
  • Normal charging means a state in which charging is performed within the design voltage of the battery.
  • a method is used in which a constant current charge is performed until a set voltage is reached, and then a full charge is performed while the set voltage is maintained.
  • the positive electrode potential during normal charging in the present application represents the positive electrode potential at the set voltage.
  • overcharge refers to a state in which the battery is charged at a voltage exceeding the design voltage of the battery due to some factor.
  • the nonaqueous secondary battery of the present invention can produce a secondary battery with good cycle performance, it is applied to various applications.
  • the application mode for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax machine, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, memory card, portable tape recorder, radio, backup power supply, memory card, etc. It is done.
  • Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (such as pacemakers, hearing aids, and shoulder grinders). Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
  • the application mode of the electrolyte solution for a non-aqueous secondary battery of the present invention is not limited, but high capacity and high rate discharge characteristics are required particularly from the viewpoint of exerting the advantages of safety during overcharge and high rate discharge characteristics. It is preferable to be applied to an application. For example, in power storage facilities and the like that are expected to increase in capacity in the future, high safety is essential, and further compatibility of battery performance is required. In addition, electric vehicles are equipped with high-capacity secondary batteries and are expected to be charged every day at home, and even greater safety is required against overcharging (NEDO Technology Development Organization, Fuel Cell / Hydrogen Technology Development Department, Energy Storage Technology Development Office “NEDO Next-Generation Automotive Storage Battery Technology Development Roadmap 2008” (June 2009)).
  • Example 1 and Comparative Example 1 Preparation of electrolytic solution for battery (1)
  • Component (A) was added to the solvent shown in Table 1 in the amount shown in the table, and the electrolyte LiPF 6 or LiBF 4 was dissolved so as to be 1M.
  • a liquid was prepared. All the prepared electrolyte solutions had a viscosity at 25 ° C. of 5 mPa ⁇ s or less, and the water content measured by the Karl Fischer method (JIS K0113) was 20 ppm or less.
  • the compounds used in the table are as follows.
  • the positive electrode is made of active material: nickel manganese lithium cobaltate (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) 85% by mass, conductive auxiliary agent: carbon black 7% by mass, binder: PVDF 8% by mass,
  • the negative electrode was prepared with 94% by mass of active material: lithium titanate (Li 4 Ti 5 O 12 ), conductive auxiliary agent: 3% by mass of carbon black, and binder: 3% by mass of PVDF.
  • the separator is made of cellulose and has a thickness of 50 ⁇ m.
  • ⁇ Battery initialization> Charged at a constant current of 0.2 C until the battery voltage becomes 2.55 V (positive electrode potential 4.1 V) in a thermostat at 30 ° C., and then charged until the battery voltage reaches a current value of 0.12 mA at a constant voltage of 2.55 V. Went. However, the upper limit of the time was 2 hours. Next, 0.2C constant current discharge was performed until the battery voltage became 1.2V in a 30 degreeC thermostat. This operation was repeated twice. Since the operating potential of the lithium titanate negative electrode is 1.55V, the battery voltage is a value obtained by subtracting 1.55V from the positive electrode potential. The following items were evaluated using the 2032 type battery produced by the above method. The results are shown in Table 1.
  • the resistance increase rate was evaluated as follows. AA: 20 or more A: 15 or more and less than 20 B: 5 or more and less than 15 C: Less than 5
  • the battery after initialization was charged at a constant current of 0.2 C in a 45 ° C. constant temperature bath until the battery voltage reached 2.55 V (positive electrode potential 4.1 V), and then the current value was adjusted to 0.12 mA at a constant voltage of 2.55 V.
  • the battery was charged until However, the upper limit of the time was 2 hours.
  • 4C constant current discharge was performed until the battery voltage reached 1.2V, and the initial discharge capacity (I) at a positive electrode potential of 4.1V was measured.
  • the capacity retention rate is higher when a higher battery voltage (positive electrode potential) is used because the battery capacity can be increased.
  • Test No. A sample starting with “c” is a comparative example, and the others are examples of the present invention.
  • Comp Compound example number Conc * 1:% by mass with respect to the total amount of the electrolytic solution
  • Conc * 2 Volume% relative to the total amount of solvent
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • Example 2 and Comparative Example 2> -Preparation of Electrolytic Solution Compound (A) was dissolved in the 1M-LiPF 6 solution using the solvents shown in Table 2 at the concentrations shown in the table to prepare an electrolytic solution for examples and a comparative example. . All the prepared electrolyte solutions had a viscosity at 25 ° C. of 5 mPa ⁇ s or less.
  • the positive electrode was produced with an active material: lithium manganate (LiMn 2 O 4 ) 85% by mass, conductive auxiliary agent: carbon black 7% by mass, binder: PVDF 8% by mass. Material: 86% by mass of graphite, conductive assistant: 6% by mass of carbon black, binder: 8% by mass of PVDF.
  • the separator was replaced with a polypropylene 25 ⁇ m thickness.
  • the resistance increase rate was evaluated as follows. AA: 20 or more A: 15 or more and less than 20 B: 5 or more and less than 15 C: Less than 5
  • the battery after initialization was charged at a constant current of 0.2 C until the positive electrode potential reached 4.1 V in a thermostatic chamber at 30 ° C., and then charged at a constant voltage of 4.1 V until the current value reached 0.12 mA. However, the upper limit of the time was 2 hours.
  • 4C constant current discharge was performed until the battery voltage reached 2.75V, and the initial 4C discharge capacity (V) at 4.1V was measured.
  • ⁇ 4.1V / 4C discharge capacity after cycle test> This battery was charged at a constant current of 1 C in a thermostat at 30 ° C.
  • Test No. A sample starting with “c” is a comparative example, and the others are examples of the present invention.
  • Comp Compound example number Conc * 1:% by mass with respect to the total amount of the electrolytic solution
  • Conc * 2 Volume% relative to the total amount of solvent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

有機溶剤中に、電解質と、少なくとも一つの窒素―ホウ素結合又は窒素―アルミニウム結合を持つ有機ホウ素化合物又は有機アルミニウム化合物とを含有する非水二次電池用電解液、ならびに、少なくとも一つの窒素-ホウ素結合又は窒素-アルミニウム結合を持つ有機ホウ素化合物又は有機アルミニウム化合物からなる電解液用添加剤。

Description

非水二次電池用電解液および非水二次電池、電解液用添加剤
 本発明は、非水二次電池用電解液および非水二次電池、電解液用添加剤に関する。
 昨今、注目を集めているリチウムイオン電池と呼ばれる二次電池は、充放電反応にリチウムの吸蔵および放出を利用する二次電池(リチウムイオン二次電池)と、リチウムの析出および溶解を利用する二次電池(リチウム金属二次電池)とに大別される。これらは、鉛電池やニッケルカドミウム電池と比較して大きなエネルギー密度の充放電を実現する。この特性を利用して、近年、カメラ一体型VTR(video tape recorder)、携帯電話あるいはノートパソコンなどのポータブル電子機器への適用が広く普及している。アプリケーションの一層の拡充に伴い、ポータブル電子機器の電源として、軽量でより高エネルギー密度が得られる二次電池の開発が進められている。さらに昨今では、小型化、長寿命化、高安全化も強く求められている。
 ところで、リチウムイオン二次電池やリチウム金属二次電池(以下、これらを総称して単にリチウム二次電池ということがある。)には、従来、その固有の解決課題として過充電の問題があった。これは、二次電池が満充電の状態に達しているにもかかわらず、さらに充電を続けた場合、電極の短絡による不具合に至ることがある。特に、有機系の電解液を用いるリチウム二次電池に特有の課題であり、使用上の安全確保の観点からも十分な対応が望まれてきた。
 これに対し、通常は電池が装着される電気機器側で対策がとられ、充電回路が組み込まれるなどして、満充電に達すると電気の供給が遮断されるようになっている。しかしながら、極めてまれではあっても、上記の回路に不具合等が生じ、過充電状態に至ることが想定される。このようなときにも、非水電解液に改良が加えられ、過充電を抑制することができれば、より一層の信頼性の向上につなげることができる。
 このような過充電状態の発生を抑制ないし防止する目的で、非水電解液に添加する添加剤がいくつか提案されている。なかでも代表的なものとして、下記特許文献1に開示されたビフェニルを挙げることができる。また、特許文献2、3にはアミン化合物を添加して過充電時の信頼性を確保する試みが記載されている。
特開平07-302614号公報 特開2001-15158号公報 特開2002-50398号公報
 過充電防止剤に求められる性能としては、通常充電電位では動作を阻害せず、過充電時にのみ速やかに効果を発現することが望まれる。従来の過充電防止剤であるビフェニル等は、過充電時のみならず、通常充電時にも若干反応してしまい、充放電を繰り返すと抵抗が上昇し容量劣化が見られる。一方で、昨今、リチウム二次電池のアプリケーションは多様化しその性能も大幅に改良されている。その結果、電池の構造や部材、動作条件は大きく異なってきている。その一例として挙げられるが正極の性能である。特許文献1ではLiCoO(電極電位:4.1V)が正極の活物質とし採用されている。これに対し、LiNiMnO系の正極活物質等が開発され、電極電位が4.25V以上に達するようになってきている。本発明者らの確認によると、このように高電位化した正極の使用条件を含め、特許文献1に提案されたビフェニル等では十分な過充電の防止性と通常使用時の電池の劣化抑制の両立が確保できないことが分かってきた(後記比較例参照)。
 そこで、本発明は、高い過充電防止性と電池性能の劣化抑制性とを両立できる非水二次電池およびこれに用いられる非水二次電池用電解液の提供を目的とする。
 上記の課題は以下の手段によって解決された。
〔1〕有機溶剤中に、電解質と、少なくとも一つの窒素―ホウ素結合を持つ有機ホウ素化合物又は窒素―アルミニウム結合を持つ有機アルミニウム化合物とを含有する非水二次電池用電解液。
〔2〕有機ホウ素化合物又は有機アルミニウム化合物が、窒素、酸素、硫黄、及びリンから選ばれるヘテロ原子を複数持つヘテロ環を有する〔1〕に記載の非水二次電池用電解液。
〔3〕有機ホウ素化合物又は有機アルミニウム化合物が窒素原子を複数持つヘテロ環を有する〔1〕または〔2〕に記載の非水二次電池用電解液。
〔4〕有機ホウ素化合物又は有機アルミニウム化合物が窒素―窒素結合を持つヘテロ環を有する〔1〕~〔3〕のいずれか1項に記載の非水二次電池用電解液。
〔5〕有機ホウ素化合物又は有機アルミニウム化合物が5員のヘテロ環を有する〔1〕~〔4〕のいずれか1項に記載の非水二次電池用電解液。
〔6〕有機ホウ素化合物又は有機アルミニウム化合物がピラゾール又はトリアゾールを構造中に持つヘテロ環を有する〔1〕~〔5〕のいずれか1項に記載の非水二次電池用電解液。
〔7〕有機ホウ素化合物又は有機アルミニウム化合物が下記式(1)で表される構造部位を有する〔1〕~〔6〕のいずれか1項に記載の非水二次電池用電解液。
Figure JPOXMLDOC01-appb-C000006
(式中、Mはホウ素原子又はアルミニウム原子を表す。Hetは、N-N結合を有する5員または6員のヘテロ環を示す。)
〔8〕式(1)で表される構造部位を有する化合物が、下記式(I)又は(II)で表される化合物である〔7〕に記載の非水二次電池用電解液。
Figure JPOXMLDOC01-appb-C000007
(式中、R~Rはそれぞれ独立にハロゲン原子、アミノ基、シリル基、アルコキシ基、アリールオキシ基、アシルオキシ基、ヘテロアリールオキシ基、スルホニルオキシ基含有基、アルキル基、アリール基、またはヘテロアリール基を表す。R~Rはそれぞれが互いに結合もしくは縮合し環構造を形成してもよい。R~Rはそれぞれ独立に水素原子、アルキル基、アルコキシ基、ハロゲン原子、アシルオキシ基、アルコキシカルボニル基、シアノ基、アミノ基、シリル基、アリール基、またはヘテロアリール基である。R~Rはそれぞれが互いに結合もしくは縮合して環構造を形成してもよい。R~Rは環上のNもしくはCと結合して環構造を形成してもよい。このとき、無機元素を介在して環を形成していてもよい。また環上の二重結合は単結合となることがある。Mはホウ素原子又はアルミニウム原子を表す。Z1+は無機又は有機カチオンを表す。XおよびXはそれぞれ独立に炭素原子もしくは窒素原子を表す。XおよびXが窒素原子であるとき、RおよびRはないものとする。)
〔9〕式(II)が下記式(III)または(IV)で表される〔8〕に記載の非水二次電池用電解液。
Figure JPOXMLDOC01-appb-C000008
(式中、R10~R13はハロゲン原子、アルコキシ基、アリールオキシ基、アシルオキシ基、ヘテロアリールオキシ基、スルホニルオキシ基含有基、アルキル基、アリール基、またはヘテロアリール基を表し、それぞれが互いに結合もしくは縮合し環構造を形成してもよい。ここでR10~R13が環を形成するとき、無機元素を介在して環を形成していてもよい。m、nは0≦m+n≦3である整数を表す。R~Rは式(II)と同義であり、R~Rもこれと同義である。MおよびMはホウ素原子またはアルミニウム原子を表す。Yはホウ素原子およびアルミニウム原子以外の金属原子を表す。X~Xは炭素原子もしくは窒素原子であり、窒素原子であるときのR~Rはないものとする。)
〔10〕式(III)が、下記式(V)または(VI)で表される〔1〕~〔9〕に記載の非水二次電池用電解液。
Figure JPOXMLDOC01-appb-C000009
(式中、R~R13、X~Xは式(III)と同義である。)
〔11〕更に、芳香族性化合物、ニトリル化合物、含ハロゲン化合物、イミド化合物、リン含有化合物、硫黄含有化合物、ケイ素含有化合物、遷移金属錯体、希土類金属錯体、及び重合性化合物から選ばれる少なくとも1種の化合物を含む〔1〕~〔10〕のいずれか1項に記載の非水二次電池用電解液。
〔12〕有機ホウ素化合物又は有機アルミニウム化合物を0.001~10質量%で含有する〔1〕~〔11〕のいずれか1項に記載の非水二次電池用電解液。
〔13〕正極、負極、および〔1〕~〔12〕のいずれか1項に記載の非水二次電池用電解液を具備する非水二次電池。
〔14〕正極の活物質が、アルカリ金属イオンを挿入放出可能な遷移金属酸化物である〔13〕に記載の非水二次電池。
〔15〕正極に含まれる活物質が下記式(MA)~(MC)のいずれかで表される遷移金属酸化物を含む〔13〕または〔14〕に記載の非水二次電池。
  Li     ・・・ (MA)
  Li     ・・・ (MB)
  Li(PO ・・・ (MC)
(式中、MおよびMは、それぞれ独立に、Co、Ni、Fe、Mn、Cu、およびVから選択される1種以上の元素を表す。Mは、それぞれ独立に、V、Ti、Cr、Mn、Fe、Co、Ni、およびCuから選択される1種以上の元素を表す。ただし、M~Mは、その一部が、リチウム以外の周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、およびBから選ばれる少なくとも1つにより置換されていてもよい。aは0~1.2を表す。bは1~3を表す。cは0~2を表す。dは3~5を表す。eは0~2を表し、fは1~5を表す。)
〔16〕正極の活物質が、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、ニッケルマンガンコバルト酸リチウム、マンガンニッケル酸リチウム、ニッケルコバルトアルミニウム酸リチウム、またはリン酸鉄リチウムである〔13〕~〔15〕のいずれか1項に記載の非水二次電池。
〔17〕チタン酸リチウム(LTO)または(複合)炭素材料を負極の活物質として用いた〔13〕~〔16〕のいずれか1項に記載の非水二次電池。
〔18〕電池の通常充電正極電位が4.25V(Li/Li基準)以上である〔13〕~〔17〕のいずれか1項に記載の非水二次電池。
〔19〕インピーダンス測定により算出した次式の抵抗上昇率が5以上である〔13〕~〔18〕のいずれか1項に記載の非水二次電池。
  抵抗上昇率=(正極電位5Vまで充電した後の抵抗)
         /(正極電位4.1Vまで充電した後の抵抗)
〔20〕少なくとも一つの窒素-ホウ素結合を持つ有機ホウ素化合物又は窒素-アルミニウム結合を持つ有機アルミニウム化合物からなる電解液用添加剤。
〔21〕有機ホウ素化合物又は有機アルミニウム化合物が下記式(I)又は(II)で表される〔20〕に記載の電解液用添加剤。
Figure JPOXMLDOC01-appb-C000010
(式中、R~Rはそれぞれ独立にハロゲン原子、アミノ基、シリル基、アルコキシ基、アリールオキシ基、アシルオキシ基、ヘテロアリールオキシ基、スルホニルオキシ基含有基、アルキル基、アリール基、またはヘテロアリール基を表す。R~Rはそれぞれが互いに結合もしくは縮合し環構造を形成してもよい。R~Rはそれぞれ独立に水素原子、アルキル基、アルコキシ基、ハロゲン原子、アシルオキシ基、アルコキシカルボニル基、シアノ基、アミノ基、シリル基、アリール基、またはヘテロアリール基である。R~Rはそれぞれが互いに結合もしくは縮合して環構造を形成してもよい。R~Rは環上のNもしくはCと結合して環構造を形成してもよい。このとき、無機元素を介在して環を形成していてもよい。また環上の二重結合は単結合となることがある。Mはホウ素原子又はアルミニウム原子を表す。Z1+は無機又は有機カチオンを表す。XおよびXはそれぞれ独立に炭素原子もしくは窒素原子を表す。XおよびXが窒素原子であるとき、RおよびRはないものとする。)
 本発明の非水二次電池用電解液および非水二次電池によれば、高い過充電防止性と電池性能の劣化抑制性とを両立できる。また、必要により高電位の正極を用いる条件であっても、その高い性能を発揮することができる。
 本発明の上記及び他の特徴及び利点は、下記の記載および添付の図面からより明らかになるであろう。
本発明の好ましい実施形態に係るリチウム二次電池の機構を模式化して示す断面図である。 本発明の好ましい実施形態に係るリチウム二次電池の具体的な構成を示す断面図である。
 本発明の非水二次電池用電解液は、有機溶媒中に、電解質と、下記特定の有機ホウ素化合物又は有機アルミニウム化合物とを含有する。以下、この特定有機ホウ素化合物又は有機アルミニウム化合物を中心に、本発明について詳細に説明する。
<特定有機ホウ素化合物又は有機アルミニウム化合物>
 本発明に用いられる特定有機ホウ素化合物又は有機アルミニウム化合物は、それぞれ、少なくとも一つの窒素―ホウ素結合又は窒素―アルミニウム結合を持つ。前記有機ホウ素化合物又は有機アルミニウム化合物は、窒素、酸素、硫黄、及びリンから選ばれるヘテロ原子を複数持つヘテロ環を有することが好ましい。このへテロ環は、(i)窒素原子を複数持つヘテロ環を有すること、(ii)窒素―窒素結合を持つヘテロ環を有すること、(iii)5員のヘテロ環を有することが好ましい。なかでも、ピラゾール構造又はトリアゾール構造を部分構造に持つヘテロ環が好ましい。
 ここで、前記ヘテロ環として下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000011
 *はホウ素原子又はアルミニウム原子との結合位置を表す。Rは置換基を表し、その好ましいものはR~Rと同義である。nは置換可能数以下の整数であり、例えば、(a)は4以下、(b)は3以下、(c)は2以下の整数である。
 前記有機ホウ素化合物又は有機アルミニウム化合物は下記式(1)で表される構造部位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000012
 式中、Mはホウ素原子又はアルミニウム原子を表す。Hetは、N-N結合が隣接する5員または6員環のヘテロ環を示す。該ヘテロ環の好ましい範囲は前記と同様である。該ヘテロ環及びMはさらに置換基を有していてもよい。ヘテロ環に置換基は前記Rと同義であることが好ましい。Mに置換する置換基はR~Rと同義であることが好ましい。この置換基は複数あってもよく、互いに結合ないし縮合して環を形成していてもよい。また、Het環上のNまたはCと結合して環を形成していてもよい。Het環上のN-N結合は単結合であっても二重結合であってもよい。
 前記有機ホウ素化合物又は有機アルミニウム化合物は下記式(I)又は(II)で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000013
・R~R
 式中、R~Rはそれぞれ独立にハロゲン原子、アミノ基(炭素数0~6が好ましく、0~3がより好ましい)、シリル基(炭素数1~12が好ましく、1~6がより好ましい)、アルコキシ基(炭素数1~12が好ましく、1~6がより好ましい)、アリールオキシ基(炭素数6~22が好ましく、6~14がより好ましい)、アシルオキシ基(炭素数1~12が好ましく、1~6がより好ましい)、ヘテロアリールオキシ基(炭素数1~12が好ましく、2~5がより好ましい)、スルホニル基含有基(R-SO-:Rは炭素数1~6のアルキル基、炭素数6~10のアリール基、炭素数1~6のアルコキシ基、炭素数1~6のアシル基)、アルキル基(炭素数1~12が好ましく、1~6がより好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましい)、またはヘテロアリール基(炭素数1~12が好ましく、2~5がより好ましい)を表す。ここで、上記ヘテロアリールオキシ基およびヘテロアリール基におけるヘテロアリール基の好ましい具体例を挙げると、5員環または6員環であることが好ましく、具体的には、ピリジル基、ピラジル基、ピリミジル基、ピリダジル基、ピラゾリル基、イミダゾリル基、トリアゾリル基、テトラゾリル基が好ましい(以下この好ましいヘテロアリール基をHaと呼ぶ)。
 なお、本明細書においてアシル基はアリロイル基を含む意味である。
・R~R
 R~Rはそれぞれ独立に水素原子、アルキル基(炭素数1~12が好ましく、1~6がより好ましい)、アルコキシ基(炭素数1~12が好ましく、1~6がより好ましい)、ハロゲン原子、アシルオキシ基(炭素数1~12が好ましく、1~6がより好ましい)、アルコキシカルボニル基(炭素数2~12が好ましく、2~6がより好ましい)、シアノ基、アミノ基(炭素数0~6が好ましく、0~3がより好ましい)、シリル基(炭素数1~12が好ましく、1~6がより好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましい)、またはヘテロアリール基(炭素数1~12が好ましく、2~5がより好ましい)である。R~Rはそれぞれが互いに結合もしくは縮合して環構造を形成してもよい。上記ヘテロアリールオキシ基およびヘテロアリール基におけるヘテロアリール基の好ましいものとしては、前記ヘテロアリール基Haの例が挙げられる。
 R~Rは環上のNまたはCと結合して環構造を形成してもよい。このとき環上の二重結合は単結合となることがある。また、無機元素Ya(Sn,Zr,Zn,Cu,Mg,Mn,Ni,Coが好ましい)を介在して環を形成していてもよい。この無機元素Yaは置換基または配位子を有していてもよく、その基としてはR~Rの例が挙げられる。この結合に関与する窒素原子は、2位のN(式中、NとXとの間のN)であることが好ましい。環を形成する基はRもしくはZであることが好ましい。R~Rが環上のNまたはCと結合したときの化合物の構造は下記式(Ia)または(IIa)であることが好ましい。
・M
 Mはホウ素原子又はアルミニウム原子を表す。
・Z1+
 Z1+は無機又は有機カチオンを表す。Z1+の好ましい例としては、ピラゾール、イミダゾール、ピリジン、チアゾール、トリアゾール等有機ヘテロ環のオニウム塩やアンモニウム塩、無機カチオン(Na,K,Li)などが挙げられる。なお、式(II)中のM1--Z1+結合は、下記有機ピラザボール化合物を形成している場合など、その部分でイオン結合しているものに限定されず、分子構造として安定化された状態であればよい意味である。
・X、X
 XおよびXはそれぞれ独立に炭素原子もしくは窒素原子を表す。XおよびXが窒素原子であるとき、RおよびRはないものとする。
Figure JPOXMLDOC01-appb-C000014
 R~R、M、Zは式(I)及び(II)と同義である。R61はRと同義である。R61はRと同義である。
 前記式(II)が下記式(III)または(IV)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000015
・R10~R13
 式中、R10~R13はハロゲン原子、アルコキシ基(炭素数1~12が好ましく、1~6がより好ましい)、アリールオキシ基(炭素数6~22が好ましく、6~14がより好ましい)、アシルオキシ基(炭素数1~12が好ましく、1~6がより好ましい)、ヘテロアリールオキシ基(炭素数1~12が好ましく、2~5がより好ましい)、スルホニルオキシ基含有基(R-SO-:Rは炭素数1~6のアルキル基、炭素数6~10のアリール基、炭素数1~6のアルコキシ基、炭素数1~6のアシル基)、アルキル基(炭素数1~12が好ましく、1~6がより好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましい)、またはヘテロアリール基(炭素数1~12が好ましく、2~5がより好ましい)を表し、それぞれが互いに結合もしくは縮合し環構造を形成してもよい。上記ヘテロアリールオキシ基およびヘテロアリール基におけるヘテロアリール基の好ましいものとしては、前記ヘテロアリール基Haの例が挙げられる。
・m、n
 m、nは0≦m+n≦3である整数を表す。m、nが2以上のとき、そこで規定される2以上の置換基はそれぞれ異なっていてもよい。
・R~R
 R~Rは式(II)と同義であり、R~Rもこれと同義である。
・MおよびM
 MおよびMはホウ素原子またはアルミニウム原子を表す。
・Y
 Yはホウ素原子およびアルミニウム原子以外の金属原子を表す。Yの好ましいものとしては、1~5価のものが挙げられ、より好ましくは、前記無機元素Yaとして挙げた金属原子が挙げられる。
・X~X
 X~Xは炭素原子もしくは窒素原子であり、窒素原子であるときのR~Rはないものとする。
 前記式(III)は、下記式(V)または(VI)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000016
(式中、R~R13、X~Xは式(III)と同義である。)
 上記特定有機ホウ素化合物又は有機アルミニウム化合物としては下記のものが挙げられるが、これにより本発明が限定して解釈されるものではない。式中、Phはフェニル基を表す。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 本発明に係る前記特定有機ホウ素化合物又は有機アルミニウム化合物が、過充電防止性および耐劣化抑制性において優れた性能を発揮する理由については未解明の点を含むが、以下のように推定される。まず、比較のためのピラゾールを添加したときの挙動を例に説明すると、ピラゾールでは、電解液中でその自由水素が解離し、電荷のキャリアとなるLiと結合してしまうことが考えられる。結果として酸化電位を落とすなどの動作上の性能劣化の原因となる。このLiと反応する部分(N位)に置換基を導入することでその点が改善される。さらに、本発明の有機ホウ素化合物又は有機アルミニウム化合物においては、その置換基とNとの結合力が高く、かつ化合物としての安定性が好適化されたものと考えられる。具体的に、本発明の化合物は、そのN-M(ホウ素またはアルミニウム)結合が電解液中で解離しにくく耐劣化性が高く、一方で一度解離したのちには速やかに分解し過充電防止性を発揮する。これらの作用を通じ、両立しがたい耐劣化性と過充電防止性とを満足するものと解される。
 なお、前記特定有機ホウ素化合物又は有機アルミニウム化合は、Journal of American Chemical Society 89,19,4948-4952等を参考に合成することができる。
 有機ホウ素化合物又は有機アルミニウム化合物の添加量は全電解液中0.001質量%以上が好ましく、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上、特に好ましくは0.5質量%以上である。上限は、10質量%以下が好ましく、7質量%以下がより好ましく、5質量%以下がさらに好ましく、3質量%以下が特に好ましい。好適な添加量を選択することで過充電時の安全性と通常使用時の電池特性を両立できる。
 前記例示化合物は任意の置換基Tを有していてもよい。
 置換基Tとしては、下記のものが挙げられる。
 アルキル基(好ましくは炭素原子数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、アリール基(好ましくは炭素原子数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素原子数2~20のヘテロ環基、好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5または6員環のヘテロ環基が好ましく、例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素原子数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、アルコキシカルボニル基(好ましくは炭素原子数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アミノ基(好ましくは炭素原子数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素原子数0~20のスルホンアミド基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(好ましくは炭素原子数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル、ベンゾイル等)、アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、アセチルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素原子数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、スルホンアミド基((好ましくは炭素原子数0~20のスルファモイル基、例えば、メタンスルホンアミド、ベンゼンスルホンアミド、N-メチルメタンスルホンアミド、N-エチルベンゼンスルホンアミド等)、アルキルチオ基(好ましくは炭素原子数1~20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素原子数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、アルキルもしくはアリールスルホニル基(好ましくは炭素原子数1~20のアルキルもしくはアリールスルホニル基、例えば、メチルスルホニル、エチルスルホニル、ベンゼンスルホニル等)、ヒドロキシル基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)であり、より好ましくはアルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基、ヒドロキシル基またはハロゲン原子であり、特に好ましくはアルキル基、アルケニル基、ヘテロ環基、アルコキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基またはヒドロキシル基である。
 また、これらの置換基Tで挙げた各基は、上記の置換基Tがさらに置換していてもよい。
 化合物ないし置換基・連結基等がアルキル基・アルキレン基、アルケニル基・アルケニレン基等を含むとき、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよく、上記のように置換されていても無置換でもよい。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、同様に置換されていても無置換でもよい。
(有機溶媒)
 本発明に用いられる有機溶媒としては、非プロトン性有機溶媒であることが好ましく、なかでも炭素数2~10の非プロトン性有機溶媒であることが好ましい。当該有機溶媒は、エーテル基、カルボニル基、エステル基、またはカーボネート基を有する化合物であることが好ましい。当該化合物は置換基を有していてもよく、その例として前記置換基Tが挙げられる。
 有機溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、γ-ブチロラクトン、γ-バレロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル、トリメチル酢酸エチル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3-メトキシプロピオニトリル、N,N-ジメチルホルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N’-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、燐酸トリメチル、ジメチルスルホキシドあるいはジメチルスルホキシド燐酸などが挙げられる。これらは、一種単独で用いても2種以上を併用してもよい。中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルからなる群のうちの少なくとも1種が好ましく、特に、炭酸エチレンあるいは炭酸プロピレンなどの高粘度(高誘電率)溶媒(例えば、比誘電率ε≧30)と炭酸ジメチル、炭酸エチルメチルあるいは炭酸ジエチルなどの低粘度溶媒(例えば、粘度≦1mPa・s)との組み合わせがより好ましい。電解質塩の解離性およびイオンの移動度が向上するからである。
 しかしながら、本発明に用いられる有機溶媒は、上記例示によって限定されるものではない。
(機能性添加剤)
 本発明の電解液には、各種の機能性添加剤を含有させることが好ましい。この添加剤により発現させる機能としては、例えば、難燃性の向上、サイクル特性の良化、容量特性の改善が挙げられる。以下に、本発明の電解質に適用することが好ましい機能性添加剤の例を示す。
<芳香族性化合物(A)>
 芳香族性化合物としては、ビフェニル化合物、アルキル置換ベンゼン化合物が挙げられる。ビフェニル化合物は2つのベンゼン環が単結合で結合している部分構造を有しており
ベンゼン環は置換基を有してもよく、好ましい置換基は、炭素原子数1~4のアルキル基(例えば、メチル、エチル、プロピル、t-ブチルなど)、炭素原子数6~10のアリール基(例えば、フェニル、ナフチルなど)である。
 ビフェニル化合物としては、具体的に、ビフェニル、o-テルフェニル、m-テルフェニル、p-テルフェニル、4-メチルビフェニル、4-エチルビフェニル、及び4-tert-ブチルビフェニルを挙げることができる。
 アルキル置換ベンゼン化合物は、炭素数1~10のアルキル基で置換されたベンゼン化合物が好ましく、具体的には、シクロヘキシルベンゼン、t-アミルベンゼン、t-ブチルベンゼンを挙げることができる。
<ハロゲン含有化合物(B)>
 ハロゲン含有化合物が有するハロゲン原子としてはフッ素原子、塩素原子、または、臭素原子が好ましく、フッ素原子がより好ましい。ハロゲン原子の数としては1~6個が好ましく、1~3個が更に好ましい。ハロゲン含有化合物としてはフッ素原子で置換されたカーボネート化合物、フッ素原子を有するポリエーテル化合物、フッ素置換芳香族化合物が好ましい。
 ハロゲン置換カーボネート化合物は鎖状、または、環状いずれでもよいが、イオン伝導性の観点から、電解質塩(例えばリチウムイオン)の配位性が高い環状カーボネート化合物が好ましく、5員環環状カーボネート化合物が特に好ましい。
 ハロゲン置換カーボネート化合物の好ましい具体例を以下に示す。この中でもBex1~Bex4の化合物が特に好ましく、Bex1が特に好ましい。
Figure JPOXMLDOC01-appb-C000019
<重合性化合物(C)>
 重合性化合物としては炭素-炭素二重結合を有する化合物が好ましく、ビニレンカーボネート、ビニルエチレンカーボネートなどの二重結合を有するカーボネート化合物、アクリレート基、メタクリレート基、シアノアクリレート基、αCFアクリレート基から選ばれる基を有する化合物、スチリル基を有する化合物が好ましく、二重結合を有するカーボネート化合物、あるいは重合性基を分子内に2つ以上有する化合物が更に好ましい。
<リン含有化合物(D)>
 リン含有化合物としては、リン酸エステル化合物、ホスファゼン化合物が好ましい。リン酸エステル化合物の好ましい例としては、リン酸トリメチル、リン酸トリエチル、リン酸トリフェニル、リン酸トリベンジルなどが挙げられる。リン含有化合物としては、下記式(D2)または(D3)で表される化合物も好ましい。
Figure JPOXMLDOC01-appb-C000020
 式中、RD4~RD11は1価の置換基を表す。1価の置換基の中で好ましくは、アルキル基、アリール基、アルコキシ基、アリールオキシ基、アミノ基、フッ素、塩素、臭素等のハロゲン原子である。RD4~RD11の置換基の少なくとも1つはフッ素原子であることが好ましく、アルコキシ基、アミノ基、フッ素原子からなる置換基がより好ましい。
<硫黄含有化合物(E)>
 含硫黄化合物としては-SO-、-SO-、-OS(=O)O-結合を有する化合物が好ましく、プロパンサルトン、プロペンサルトン、エチレンサルファイトなどの環状含硫黄化合物、スルホン酸エステル類が好ましい。
 含硫黄環状化合物としては、下記式(E1)、(E2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000021
 式中、X、Xはそれぞれ独立に、-O-、-C(Ra)(Rb)-を表す。ここで、Ra、Rbは、それぞれ独立に、水素原子、または置換基を表す。置換基として、好ましくは炭素原子数1~8のアルキル基、フッ素原子、炭素原子数の6~12のアリール基である。αは5~6員環を形成するのに必要な原子群を表す。αの骨格は炭素原子のほか、硫黄原子、酸素原子などを含んでもよい。αは置換されていてもよく、置換基としては置換基Tがあげられ、好ましくはアルキル基、フッ素原子、アリール基である。
Figure JPOXMLDOC01-appb-C000022
<ケイ素含有化合物(F)>
ケイ素含有化合物としては、下記式(F1)または(F2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000023
 RF1はアルキル基、アルケニル基、アシル基、アシルオキシ基、または、アルコキシカルボニル基を表す。
 RF2はアルキル基、アルケニル基、アルキニル基、又はアルコキシ基を表す。
 なお、1つの式に複数あるRF1及びRF2はそれぞれ異なっていても同じであってもよい。
<ニトリル化合物(G)>
 ニトリル化合物としては、下記式(G)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000024
 式中、RG1~RG3はそれぞれ独立に水素原子、アルキル基、アルコキシカルボニル基、アリールオキシカルボニル基、シアノ基、カルバモイル基、スルホニル基、またはホスホニル基を表す。各置換基の好ましいものは、置換基Tの例を参照することができるが、なかでも、RG1~RG3のいずれか一つ以上がシアノ基を含むニトリル基を複数有する化合物が好ましい。
・ngは1~8の整数を表す。
 式(G)で表される化合物の具体例としては、アセトニトリル、プロピオニトリル、イソブチロニトリル、スクシノニトリル、マロノニトリル、グルタロニトリル、アジポニトリル、2メチルグルタノニトリル、ヘキサントリカルボニトリル、プロパンテトラカルボニトリル等が好ましい。特に好ましくは、スクシノニトリル、マロノニトリル、グルタロニトリル、アジポニトリル、2メチルグルタノニトリル、ヘキサントリカルボニトリル、プロパンテトラカルボニトリルである。
<金属錯体化合物(H)>
 金属錯体化合物としては、遷移金属錯体もしくは希土類錯体が好ましい。なかでも、下記式(H-1)~(H-3)のいずれかで表される錯体が好ましい。
Figure JPOXMLDOC01-appb-C000025
 式中、XおよびYは、それぞれ、メチル基、n-ブチル基、ビス(トリメチルシリル)アミノ基、チオイソシアン酸基であり、X,Yが縮環して環状アルケニル基(ブタジエン配位型メタラサイクル)を形成してもよい。式中、Mは遷移元素または希土類元素を表す。具体的にMは、Fe、Ru、Cr、V、Ta、Mo、Ti、Zr、Hf、Y、La、Ce、Sw、Nd、Lu、Er、Yb、Gdであることが好ましい。m,nは0≦m+n≦3を満たす整数である。n+mは1以上であることが好ましい。n、mが2以上であるとき、そこで規定される2以上の基はそれぞれ異なっていてもよい。
 前記金属錯体化合物は下記式(H-4)で表される部分構造を有する化合物も好ましい。
 
    M-(NR1H2H)q  ・・・ 式(H-4)
 
 式中、Mは遷移元素または希土類元素を表し、式(H-1)~(H-3)と同義である。
 R1H,R2Hは水素、アルキル基(好ましい炭素数は1~6)、アルケニル基(好ましい炭素数は2~6)、アルキニル基(好ましい炭素数は2~6)、アリール基(好ましい炭素数は6~14)、ヘテロアリール基(好ましい炭素数は3~6)、アルキルシリル基(好ましい炭素数は1~6)、またはハロゲンを表す。R1H,R2Hは互いに連結されていてもよい。R1H,R2Hはそれぞれあるいは連結して環を形成していてもよい。R1H,R2Hの好ましいものとしては、後記置換基Tの例が挙げられる。なかでも、メチル基、エチル基、トリメチルシリル基が好ましい。
 qは1~4の整数を表し、2~4の整数が好ましい。更に好ましくは2または4である。qが2以上のとき、そこで規定される複数の基は互いに同じでも異なっていてもよい。
 前記金属錯体化合物の具体例を下記に挙げる。なお、TMSはトリメチルシリル基を表す。
Figure JPOXMLDOC01-appb-C000026
 金属錯体化合物は、下記式のいずれかで表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000027
・M
 中心金属Mは、Ti、Zr、ZrO、Hf、V、Cr、Fe、Ceが特に好ましく、Ti、Zr、Hf、V、Crが最も好ましい。
・R3h、R5h、R7h~R10h
 これらは置換基を表す。なかでも、アルキル基、アルコキシ基、アリール基、アルケニル基、ハロゲン原子が好ましく、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数6~12のアリール基、炭素数2~6のアルケニル基がより好ましく、メチル、エチル、プロピル、イソプロピル、イソブチル、t-ブチル、パーフルオロメチル、メトキシ、フェニル、エテニルであることが好ましい。
・R33h、R55h
 R33h、R55hは水素原子またはR3hの置換基を表す。
・Y
 Yは、炭素数1~6のアルキル基またはビス(トリアルキルシリル)アミノ基が好ましく、メチル基またはビス(トリメチルシリル)アミノ基がより好ましい。
・l、m、o
 l、m、oは0~3の整数を表し、0~2の整数が好ましい。l、m、oが2以上のとき、そこで規定される複数の構造部は互いに同じであっても、異なっていてもよい。
・L
 Lはアルキレン基、アリーレン基が好ましく、炭素数3~6のシクロアルキレン基、炭素数6~14のアリーレン基がより好ましく、シクロヘキシレン、フェニレンがさらに好ましい。
 以下に特定有機金属化合物の具体例を下記に挙げるが、本発明はこれらに限定して解釈されるものではない。
Figure JPOXMLDOC01-appb-C000028
<イミド化合物(I)>
 イミド化合物としては、耐酸化性の観点よりパーフルオロ基を有するスルホンイミド化合物が好ましく、具体的にはパーフルオロスルホイミドリチウム化合物が挙げられる。
イミド化合物として、具体的には下記の構造が挙げられ、より好ましくはCex1、Cex2である。
Figure JPOXMLDOC01-appb-C000029
 本発明の電解液には、上記のものを始め、負極被膜形成剤、難燃剤、過充電防止剤等から選ばれる少なくとも1種を含有していてもよい。非水電解液中におけるこれら機能性添加剤の含有割合は特に限定はないが、非水電解液全体に対し、それぞれ、0.001質量%~10質量%が好ましい。これらの化合物を添加することにより、過充電による異常時に電池の破裂・発火を抑制したり、高温保存後の容量維持特性やサイクル特性を向上させたりすることができる。
(電解質)
 本発明の電解液に用いる電解質としては周期律表第一族又は第二族に属する金属イオンもしくはその塩であり、電解液の使用目的により適宜選択される。例えば、リチウム塩、カリウム塩、ナトリウム塩、カルシウム塩、マグネシウム塩などが挙げられ、二次電池などに使用される場合には、出力の観点からリチウム塩が好ましい。本発明の電解液をリチウム二次電池用非水系電解液の電解質として用いる場合には、金属イオンの塩としてリチウム塩を選択すればよい。リチウム塩としては、リチウム二次電池用非水系電解液の電解質に通常用いられるリチウム塩であれば特に制限はないが、例えば、以下に述べるものが好ましい。
 (L-1)無機リチウム塩:LiPF、LiBF、LiAsF、LiSbF等の無機フッ化物塩;LiClO、LiBrO、LiIO等の過ハロゲン酸塩;LiAlCl等の無機塩化物塩等。
 (L-2)含フッ素有機リチウム塩:LiCFSO等のパーフルオロアルカンスルホン酸塩;LiN(CFSO、LiN(CFCFSO、LiN(FSO、LiN(CFSO)(CSO)等のパーフルオロアルカンスルホニルイミド塩;LiC(CFSO等のパーフルオロアルカンスルホニルメチド塩;Li[PF(CFCFCF)]、Li[PF(CFCFCF]、Li[PF(CFCFCF]、Li[PF(CFCFCFCF)]、Li[PF(CFCFCFCF]、Li[PF(CFCFCFCF]等のフルオロアルキルフッ化リン酸塩等。
 (L-3)オキサラトボレート塩:リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等。
 これらのなかで、LiPF、LiBF、LiAsF、LiSbF、LiClO、Li(RfSO)、LiN(RfSO、LiN(FSO、及びLiN(RfSO)(RfSOが好ましく、LiPF、LiBF、LiN(RfSO、LiN(FSO、及びLiN(RfSO)(RfSOなどのリチウムイミド塩がさらに好ましい。ここで、Rf、Rfはそれぞれパーフルオロアルキル基を示す。
 なお、電解液に用いる電解質は、1種を単独で使用しても、2種以上を任意に組み合わせてもよい。
 電解液における電解質(周期律表第一族又は第二族に属する金属のイオンもしくはその金属塩)の含有量は、以下に電解液の調製法で述べる好ましい塩濃度となるよう量で添加される。塩濃度は電解液の使用目的により適宜選択されるが、一般的には電解液全質量中10質量%~50質量%であり、さらに好ましくは15質量%~30質量%である。なお、イオンの濃度として評価するときには、その好適に適用される金属との塩換算で算定されればよい。
[電解液の調製方法等]
 本発明の非水二次電池用電解液は、金属イオンの塩としてリチウム塩を用いた例を含め、前記各成分を前記非水電解液溶媒に溶解して、常法により調製される。
 本発明において、「非水」とは水を実質的に含まないことをいい、発明の効果を妨げない範囲で微量の水を含んでいてもよい。良好な特性を得ることを考慮して言うと、水の含有量が200ppm(質量基準)以下であることが好ましく、100ppm以下であることがより好ましく20ppm以下であることが更に好ましい。下限値は特にないが、不可避的な混入を考慮すると、1ppm以上であることが実際的である。本発明の電解液の粘度は特に限定されないが、25℃において、10~0.1mPa・sであることが好ましく、5~0.5mPa・sであることがより好ましい。
 本発明において電解液の粘度は特に断らない限り、以下の測定方法で測定した値によるものとする。
<粘度の測定方法>
 粘度は以下の方法で測定した値を言うこととする。サンプル1mLをレオメーター(CLS 500)に入れ、直径4cm/2°のSteel Cone(共に、TA Instrumennts社製)を用いて測定する。サンプルは予め測定開始温度にて温度が一定となるまで保温しておき、測定はその後に開始する。測定温度は25℃とする。
[二次電池]
 本発明においては前記非水電解液を含有する非水二次電池とすることが好ましい。好ましい実施形態として、リチウムイオン二次電池についてその機構を模式化して示した図1を参照して説明する。本実施形態のリチウムイオン二次電池10は、上記本発明の非水二次電池用電解液5と、リチウムイオンの挿入放出が可能な正極C(正極集電体1,正極活物質層2)と、リチウムイオンの挿入放出又は溶解析出が可能な負極A(負極集電体3,負極活物質層4)とを備える。これら必須の部材に加え、電池が使用される目的、電位の形状などを考慮し、正極と負極の間に配設されるセパレータ9、集電端子(図示せず)、及び外装ケース等(図示せず)を含んで構成されてもよい。必要に応じて、電池の内部及び電池の外部の少なくともいずれかに保護素子を装着してもよい。このような構造とすることにより、電解液5内でリチウムイオンの授受a,bが生じ、充電α、放電βを行うことができ、回路配線7を介して動作機構6を介して運転あるいは蓄電を行うことができる。以下、本発明の好ましい実施形態であるリチウム二次電池の構成について、さらに詳細に説明する。
(電池形状)
 本実施形態のリチウム二次電池が適用される電池形状には、特に制限はなく、例えば、有底筒型形状、有底角型形状、薄型形状、シート形状、及び、ペーパー形状などが挙げられ、これらのいずれであってもよい。また、組み込まれるシステムや機器の形を考慮した馬蹄形や櫛型形状等の異型のものであってもよい。なかもで、電池内部の熱を効率よく外部に放出する観点から、比較的平らで大面積の面を少なくとも一つを有する有底角型形状や薄型形状などの角型形状が好ましい。
 有底筒型形状の電池では、充填される発電素子に対する外表面積が小さくなるので、充電や放電時に内部抵抗による発生するジュール発熱を効率よく外部に逃げる設計にすることが好ましい。また、熱伝導性の高い物質の充填比率を高め、内部での温度分布が小さくなるように設計することが好ましい。図2は、有底筒型形状リチウム二次電池100の例である。この電池は、セパレータ12を介して重ね合わせた正極シート14、負極シート16を巻回して外装缶18内に収納した有底筒型リチウム二次電池100となっている。
 有底角型形状では、一番大きい面の面積S(端子部を除く外形寸法の幅と高さとの積、単位cm)の2倍と電池外形の厚さT(単位cm)との比率2S/Tの値が100以上であることが好ましく、200以上であることが更に好適である。最大面を大きくすることにより高出力かつ大容量の電池であってもサイクル性や高温保存等の特性を向上させるとともに、異常発熱時の放熱効率を上げることができ、後述する「弁作動」や「破裂」という状態になることを抑制することができる。
(電池を構成する部材)
 本実施形態のリチウム二次電池は、図1に基づいて言うと、電解液5、正極及び負極の電極合剤C,A、セパレータの基本部材9を具備して構成される。以下、これらの各部材について述べる。本発明の非水二次電池は、電解液として、少なくとも前記本発明の非水電池用電解液を含む。
(電極合材)
 電極合材は、集電体(電極基材)上に活物質と導電剤、結着剤、フィラーなどの分散物を塗布したものであり、リチウム電池においては、活物質が正極活物質である正極合材と活物質が負極活物質である負極合材が使用されることが好ましい。次に、電極合材を構成する分散物(電極用組成物)中の各成分等について説明する。
・正極活物質
 正極活物質には遷移金属酸化物を用いることが好ましく、中でも、遷移元素M(Co、Ni、Fe、Mn、Cu、Vから選択される1種以上の元素)を有することが好ましい。また、混合元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなど)を混合してもよい。この、遷移金属酸化物として例えば、下記式(MA)~(MC)のいずれかで表されるものを含む特定遷移金属酸化物、あるいはその他の遷移金属酸化物としてV、MnO等が挙げられる。正極活物質には、粒子状の正極活性物質を用いてもよい。具体的に、可逆的にリチウムイオンを挿入・放出できる遷移金属酸化物を用いることができるが、前記特定遷移金属酸化物を用いるのが好ましい。
 正極活物質は十分な充電領域を有する材料またはアルカリ金属イオンを挿入放出可能な遷移金属酸化物材料であることが好ましい。具体的に、対リチウム基準で3.5V以上にリチウム挿入放出電位ピークを有する遷移金属酸化物が好ましく、より好ましくは、挿入放出電位が3.8V以上であり、最も好ましくは4.0V以上である。このときの充放電電位ピークは、動作電極、参照電極、対電極からなる3極式セルを作成し、電気化学測定(サイクリックボルタンメトリー)を行うことにより特定することができる。3極式セルの構成および電気化学測定の測定条件は以下のとおりである。
 <3極式セルの構成>
・作動電極:ゾルゲル法またはスパッタリング法により白金電極上に作成した活物質電極
・参照電極:リチウム
・対電極 :リチウム
・希釈メディア:EC/EMC=1/2 LiPF 1M、キシダ化学社製
 <測定条件>
・走査速度:1mV/s
・測定温度:25℃
 遷移金属酸化物としては、前記遷移元素Mを含む酸化物等が好適に挙げられる。このとき混合元素M(好ましくはAl)などを混合してもよい。混合量としては、遷移金属の量に対して0~30mol%が好ましい。Li/Mのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
〔式(MA)で表される遷移金属酸化物(層状岩塩型構造)〕
 リチウム含有遷移金属酸化物としては中でも下式で表されるものが好ましい。
  Li     ・・・ (MA)
 式中、Mは前記Maと同義である。aは0~1.2を表し、0.6~1.1であることが好ましい。bは1~3を表し、2であることが好ましい。Mの一部は前記混合元素Mで置換されていてもよい。当該式(MA)で表される遷移金属酸化物は典型的には層状岩塩型構造を有する。
 本遷移金属酸化物は下記の各式で表されるものであることがより好ましい。
 (MA-1)  LiCoO
 (MA-2)  LiNiO
 (MA-3)  LiMnO
 (MA-4)  LiCoNi1-j
 (MA-5)  LiNiMn1-j
 (MA-6)  LiCoNiAl1-j-i
 (MA-7)  LiCoNiMn1-j-i
 ここでgは前記aと同義である。jは0.1~0.9を表す。iは0~1を表す。ただし、1-j-iは0以上になる。kは前記bと同義である。当該遷移金属化合物の具体例を示すと、LiCoO(コバルト酸リチウム)、LiNi(ニッケル酸リチウム)LiNi0.85Co0.01Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi0.33Co0.33Mn0.33(ニッケルマンガンコバルト酸リチウム[NMC])、LiNi0.5Mn0.5(マンガンニッケル酸リチウム)である。
 式(MA)で表される遷移金属酸化物は、一部重複するが、表記を変えて示すと、下記で表されるものも好ましい例として挙げられる。
(i)LiNiMnCo(x>0.2,y>0.2,z≧0,x+y+z=1)
 代表的なもの:
   LiNi1/3Mn1/3Co1/3
   LiNi1/2Mn1/2
(ii)LiNiCoAl(x>0.7,y>0.1,0.1>z>0.05,x+y+z=1)
 代表的なもの:
   LiNi0.8Co0.15Al0.05
〔式(MB)で表される遷移金属酸化物(スピネル型構造)〕
 リチウム含有遷移金属酸化物としては中でも下記式(MB)で表されるものも好ましい。
  Li     ・・・ (MB)
 式中、Mは前記Maと同義である。cは0~2を表し、0.6~1.5であることが好ましい。dは3~5を表し、4であることが好ましい。
 式(MB)で表される遷移金属酸化物は下記の各式で表されるものであることがより好ましい。
 (MB-1)  LiMn
 (MB-2)  LiMnAl2-p
 (MB-3)  LiMnNi2-p
 mはcと同義である。nはdと同義である。pは0~2を表す。当該遷移金属化合物の具体例を示すと、LiMn、LiMn1.5Ni0.5である。
 式(MB)で表される遷移金属酸化物はさらに下記で表されるものも好ましい例として挙げられる。
 (a) LiCoMnO
 (b) LiFeMn
 (c) LiCuMn
 (d) LiCrMn
 (e) LiNiMn
 高容量、高出力の観点で上記のうちNiを含む電極が更に好ましい。
〔式(MC)で表される遷移金属酸化物〕
 リチウム含有遷移金属酸化物としてはリチウム含有遷移金属リン酸化物を用いることも好ましく、中でも下記式(MC)で表されるものも好ましい。
  Li(PO ・・・ (MC)
 式中、eは0~2を表し、0.5~1.5であることが好ましい。fは1~5を表し、0.5~2であることが好ましい。
 前記MはV、Ti、Cr、Mn、Fe、Co、Ni、Cuから選択される一種以上の元素を表す。前記Mは、上記の混合元素Mのほか、Ti、Cr、Zn、Zr、Nb等の他の金属で置換していてもよい。具体例としては、例えば、LiFePO、LiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類、Li(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 なお、Liの組成を表す前記a,c,g,m,e値は、充放電により変化する値であり、典型的には、Liを含有したときの安定な状態の値で評価される。前記式(a)~(e)では特定値としてLiの組成を示しているが、これも同様に電池の動作により変化するものである。
 本発明において、正極活物質には4.25V以上の正極電位(Li/Li基準)で通常使用を維持できる材料を用いることが好ましい。ここで通常使用を維持できるとは、その電圧で充電を行ったときでも電極材料が劣化して使用不能になることがないことを意味し、この電位を通常使用可能電位ともいう。この電位を、単に正極電位ということがある。前記正極電位(通常使用可能電位)は4.3V以上であることがより好ましい。上限は特にないが、5V以下であることが実際的である。
上記範囲とすることで、サイクル特性および高レート放電特性を向上することができる。
[電極電位(Li/Li基準)の測定方法]
充電時の正極電位は
 (正極電位)=(負極電位)+(電池電圧)である。負極としてチタン酸リチウムを用いた場合、負極電位は1.55Vとする。負極として黒鉛を用いた場合は負極電位は0.1Vとする。充電時に電池電圧を観測し、正極電位を算出する。
 本発明の非水二次電池において、用いられる正極活物質の平均粒子サイズは特に限定されないが、0.1μm~50μmが好ましい。比表面積としては特に限定されないが、BET法で0.01m/g~50m/gであるのが好ましい。また、正極活物質5gを蒸留水100mlに溶かした時の上澄み液のpHとしては、7以上12以下が好ましい。
 正極活性物質を所定の粒子サイズにするには、良く知られた粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、振動ボールミル、振動ミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミルや篩などが用いられる。前記焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。
 正極活物質の配合量は特に限定されないが、活物質層を構成するための分散物(合剤)中、固形成分100質量%において、60~98質量%であることが好ましく、70~95質量%であることがより好ましい。
・負極活物質
 負極活物質としては、可逆的にリチウムイオンを挿入・放出できるものであれば、特に制限はなく、炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、及び、SnやSi等のリチウムと合金形成可能な金属等が挙げられる。
 これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。なかでも炭素質材料又はリチウム複合酸化物が安全性の点から好ましく用いられる。
 また、金属複合酸化物としては、リチウムを吸蔵、放出可能であれば特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、天然黒鉛、気相成長黒鉛等の人造黒鉛、及びPAN系の樹脂やフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。さらに、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維、活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー、平板状の黒鉛等を挙げることもできる。
 これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素材料と黒鉛系炭素材料に分けることもできる。また炭素質材料は、特開昭62-22066号公報、特開平2-6856号公報、同3-45473号公報に記載される面間隔や密度、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料である必要はなく、特開平5-90844号公報記載の天然黒鉛と人造黒鉛の混合物、特開平6-4516号公報記載の被覆層を有する黒鉛等を用いることもできる。
 本発明の非水二次電池において用いられる負極活物質である金属酸化物及び金属複合酸化物は、これらの少なくとも1種を含んでいればよい。金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、さらに金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°以上70°以下に見られる結晶性の回折線の内最も強い強度が、2θ値で20°以上40°以下に見られるブロードな散乱帯の頂点の回折線強度の100倍以下であるのが好ましく、5倍以下であるのがより好ましく、結晶性の回折線を有さないことが特に好ましい。
 前記非晶質酸化物及びカルコゲナイドからなる化合物群のなかでも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb、Biの一種単独あるいはそれらの2種以上の組み合わせからなる酸化物、及びカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、Sb、Bi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、Sb、SnSiSなどが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。
 本発明の非水二次電池において、用いられる前記負極活物質の平均粒子サイズは、0.1μm~60μmが好ましい。所定の粒子サイズにするには、よく知られた粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミルや篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式、湿式ともに用いることができる。
 前記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。
 本発明において、Sn、Si、Geを中心とする非晶質酸化物負極活物質に併せて用いることができる負極活物質としては、リチウムイオン又はリチウム金属を吸蔵・放出できる炭素材料や、リチウム、リチウム合金、リチウムと合金可能な金属が好適に挙げられる。
 本発明の電解液は好ましい様態として高電位負極(好ましくはリチウム・チタン酸化物、電位1.55V対Li金属)との組合せ、及び低電位負極(好ましくは炭素材料、電位約0.1V対Li金属)との組合せのいずれにおいても優れた特性を発現する。更に高容量化に向けて開発が進んでいるリチウムと合金形成可能な金属または金属酸化物負極(好ましくはSi、酸化Si、Si/酸化Si、Sn、酸化Sn、SnB、Cu/Snおよびこれらのうち複数の複合体)、及びこれらの金属または金属酸化物と炭素材料の複合体を負極とする電池においても好ましく用いることができる。
 本発明においては、チタン酸リチウム、より具体的にはリチウム・チタン酸化物(Li[Li1/3Ti5/3]O)を負極の活物質として用いることも好ましい。これを負極活物質として用いることにより、本発明の電解液による効果が一段と高まり、一層優れた電池性能を発揮させることができる。
・導電材
 導電材は、構成された二次電池において、化学変化を起こさない電子伝導性材料であれば何を用いてもよく、公知の導電材を任意に用いることができる。通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人工黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維や金属粉(銅、ニッケル、アルミニウム、銀(特開昭63-10148,554号に記載)等)、金属繊維あるいはポリフェニレン誘導体(特開昭59-20,971号に記載)などの導電性材料を1種又はこれらの混合物として含ませることができる。その中でも、黒鉛とアセチレンブラックの併用がとくに好ましい。前記導電剤の添加量としては、1~50質量%が好ましく、2~30質量%がより好ましい。カーボンや黒鉛の場合は、2~15質量%が特に好ましい。
・結着剤
 結着剤としては、多糖類、熱可塑性樹脂及びゴム弾性を有するポリマーなどが挙げられ、その中でも、例えば、でんぷん、カルボキシメチルセルロース、セルロース、ジアセチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、アルギン酸ナトリウム、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリビニルフェノール、ポリビニルメチルエーテル、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリロニトリル、ポリアクリルアミド、ポリヒドロキシ(メタ)アクリレート、スチレン-マレイン酸共重合体等の水溶性ポリマー、ポリビニルクロリド、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフロロエチレン-ヘキサフロロプロピレン共重合体、ビニリデンフロライド-テトラフロロエチレン-ヘキサフロロプロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン-プロピレン-ジエンターポリマー(EPDM)、スルホン化EPDM、ポリビニルアセタール樹脂、メチルメタアクリレート、2-エチルヘキシルアクリレート等の(メタ)アクリル酸エステルを含有する(メタ)アクリル酸エステル共重合体、(メタ)アクリル酸エステル-アクリロニトリル共重合体、ビニルアセテート等のビニルエステルを含有するポリビニルエステル共重合体、スチレン-ブタジエン共重合体、アクリロニトリル-ブタジエン共重合体、ポリブタジエン、ネオプレンゴム、フッ素ゴム、ポリエチレンオキシド、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂等のエマルジョン(ラテックス)あるいはサスペンジョンが好ましく、ポリアクリル酸エステル系のラテックス、カルボキシメチルセルロース、ポリテトラフロロエチレン、ポリフッ化ビニリデンが、より好ましい。
 結着剤は、一種単独又は二種以上を混合して用いることができる。結着剤の添加量が少ないと、電極合剤の保持力・凝集力が弱くなる。多すぎると電極体積が増加し電極単位体積あるいは単位質量あたりの容量が減少する。このような理由で結着剤の添加量は1~30質量%が好ましく、2~10質量%がより好ましい。
・フィラー
 電極合材は、フィラーを含んでいてもよい。フィラーを形成する材料は、本発明の二次電池において、化学変化を起こさない繊維状材料であれば何でも用いることができる。通常、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス、炭素などの材料からなる繊維状のフィラーが用いられる。フィラーの添加量は特に限定されないが、分散物中、0~30質量%が好ましい。
・集電体
 正・負極の集電体としては、本発明の非水電解質二次電池において化学変化を起こさない電子伝導体が用いられる。正極の集電体としては、アルミニウム、ステンレス鋼、ニッケル、チタンなどの他にアルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、その中でも、アルミニウム、アルミニウム合金がより好ましい。
 負極の集電体としては、アルミニウム、銅、ステンレス鋼、ニッケル、チタンが好ましく、アルミニウム、銅、銅合金がより好ましい。
 前記集電体の形状としては、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。前記集電体の厚みとしては、特に限定されないが、1μm~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
 これらの材料から適宜選択した部材によりリチウム二次電池の電極合材が形成される。
(セパレータ)
 本発明の非水二次電池に用いられるセパレータは、正極と負極を電子的に絶縁する機械的強度、イオン透過性、及び正極と負極の接触面で酸化・還元耐性のある材料であれば特に限定されることはない。このような材料として多孔質のポリマー材料や無機材料、有機無機ハイブリッド材料、あるいはガラス繊維などが用いられる。これらセパレータは安全性確保のためのシャットダウン機能、すなわち、80℃以上で隙間を閉塞して抵抗を上げ、電流を遮断する機能を持つことが好ましく、閉塞温度は90℃以上、180℃以下であることが好ましい。
 前記セパレータの孔の形状は、通常は円形や楕円形で、大きさは0.05μm~30μmであり、0.1μm~20μmが好ましい。さらに延伸法、相分離法で作った場合のように、棒状や不定形の孔であってもよい。これらの隙間の占める比率すなわち気孔率は、20%~90%であり、35%~80%が好ましい。
 前記ポリマー材料としては、セルロース不織布、ポリエチレン、ポリプロピレンなどの単一の材料を用いたものでも、2種以上の複合化材料を用いたものであってもよい。孔径、気孔率や孔の閉塞温度などを変えた2種以上の微多孔フィルムを積層したものが、好ましい。
 前記無機物としては、アルミナや二酸化珪素等の酸化物類、窒化アルミや窒化珪素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類が用いられ、粒子形状もしくは繊維形状のものが用いられる。形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01μm~1μm、厚さが5μm~50μmのものが好適に用いられる。前記の独立した薄膜形状以外に、前記無機物の粒子を含有する複合多孔層を樹脂製の結着剤を用いて正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子をフッ素樹脂の結着剤を用いて多孔層として形成させることが挙げられる。
(非水二次電池の作製)
 本発明の非水二次電池の形状としては、既述のように、シート状、角型、シリンダー状などいずれの形にも適用できる。正極活物質や負極活物質の合剤は、集電体の上に、塗布(コート)、乾燥、圧縮されて、主に用いられる。
 以下、図2により、有底筒型形状リチウム二次電池100を例に挙げて、その構成及び作製方法について説明する。有底筒型形状の電池では、充填される発電素子に対する外表面積が小さくなるので、充電や放電時に内部抵抗による発生するジュール発熱を効率よく外部に逃げる設計にすることが好ましい。また、熱伝導性の高い物質の充填比率を高め、内部での温度分布が小さくなるように設計することが好ましい。図2は、有底筒型形状リチウム二次電池100を例である。この電池は、セパレータ12を介して重ね合わせた正極シート14、負極シート16を巻回して外装缶18内に収納した有底筒型リチウム二次電池100となっている。その他、図中の20が絶縁板、22が封口板、24が正極集電、26がガスケット、28が圧力感応弁体、30が電流遮断素子である。なお、拡大した円内の図示は視認性を考慮しハッチングを変えているが、各部材は符号により全体図と対応している。
 負極合剤は、負極活物質と、所望により用いられる結着剤やフィラーなどを有機溶剤に溶解したものを混合して、スラリー状あるいはペースト状の負極合剤を調製することができる。得られた負極合剤を集電体としての金属芯体の両面の全面にわたって均一に塗布し、その後、有機溶剤を除去して負極合材層を形成する。さらに、集電体と負極合材層との積層体をロールプレス機等により圧延して、所定の厚みに調製して負極シート(電極シート)を得る。このとき、各剤の塗布方法や塗布物の乾燥、正・負極の電極の形成方法は定法によればよい。
 本実施形態では、円筒形の電池を例に挙げたが、本発明はこれに制限されず、例えば、前記方法で作製された正・負の電極シートを、セパレータを介して重ね合わせた後、そのままシート状電池に加工するか、或いは、折りまげた後角形缶に挿入して、缶とシートを電気的に接続した後、電解質を注入し、封口板を用いて開口部を封止して角形電池を形成してもよい。
 いずれの実施形態においても、安全弁を開口部を封止するための封口板として用いることができる。また、封口部材には、安全弁の他、従来知られている種々の安全素子を備えつけてもよい。例えば、過電流防止素子として、ヒューズ、バイメタル、PTC素子などが好適に用いられる。
 また、前記安全弁のほかに電池缶の内圧上昇の対策として、電池缶に切込を入れる方法、ガスケット亀裂方法あるいは封口板亀裂方法あるいはリード板との切断方法を利用することができる。また、充電器に過充電や過放電対策を組み込んだ保護回路を具備させるか、あるいは独立に接続させてもよい。
 缶やリード板は、電気伝導性をもつ金属や合金を用いることができる。例えば、鉄、ニッケル、チタン、クロム、モリブデン、銅、アルミニウムなどの金属あるいはそれらの合金が好適に用いられる。
 キャップ、缶、シート、リード板の溶接法は、公知の方法(例、直流又は交流の電気溶接、レーザー溶接、超音波溶接)を用いることができる。封口用シール剤は、アスファルトなどの従来知られている化合物や混合物を用いることができる。
[電極電位及び抵抗上昇率]
 本発明の電解液ないし二次電池においては、前記の特定化合物が電池の通常充電正極電位以下では作用しないことが好ましい。この電池の通常充電正極電位(正極活物質の正極電位)は具体的には4.25V(Li/Li基準)以上であることが好ましく、4.3V以上であることがより好ましい。上限は特にないが、5V以下であることが実際的である。さらには、インピーダンス測定により算出した次式の抵抗上昇率が5以上であることが好ましく、15以上であることがより好ましい。上限は特にないが1000以下であることが好ましい。
[抵抗上昇率の測定方法]
 電池の抵抗を観測する方法としては電池の交流インピーダンスを測定する方法が挙げられる。周波数を低周波から高周波まで変化させ、その際のインピーダンスの変化を複素平面上にプロットすると「コールコール・プロット(Cole-Cole Plot)」と呼ばれるグラフを得ることにより電池の抵抗を測定できる。過充電を行った際の抵抗と通常電位で充電を行った際の抵抗から抵抗上昇率が求められる。具体的な測定方法は実施例で採用したものを参照することができる。
 ここで用語の意味について確認しておくと、通常充電時とは、電池の設計電圧内で充電が行われている状態をいう。例えば一般的に用いられる定電流-定電圧充電法では、設定電圧になるまで定電流充電した後、設定電圧を維持した状態で満充電まで充電する方法が用いられている。本願でいう通常充電時の正極電位とは前記設定電圧における正極電位を表す。一方、過充電時とは、何らかの要因により電池の設計電圧を超えた電圧で充電されている状態をいう。
[非水二次電池の用途]
 本発明の非水二次電池はサイクル性良好な二次電池を作製することができるため、種々の用途に適用される。
 適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
 本発明の非水二次電池用電解液の適用態様は限定されないが、特にその過充電時の安全性と高レート放電特性の利点を発揮する観点から、高容量且つ高レート放電特性が要求されるアプリケーションに適用されることが好ましい。例えば、今後大容量化が予想される蓄電設備等においては高い安全性が必須となりさらに電池性能の両立が要求される。また、電気自動車などは高容量の二次電池を搭載し、家庭で日々充電が行われる用途が想定され、過充電時に対して一層の安全性が求められる(NEDO技術開発機構,燃料電池・水素技術開発部,蓄電技術開発室「NEDO次世代自動車用蓄電池技術開発 ロードマップ2008」(平成21年6月))。また、発進、加速時には高レートでの放電が必要であり、繰返し充放電しても高レート放電容量が劣化しないことが重要になる。本発明によれば、このような使用形態に好適に対応してその優れた効果を発揮することができる。
<実施例1・比較例1>
電池(1)用電解液の調製
 表1に示した溶剤に(A)成分を表中に示した量で添加し、電解質LiPFまたはLiBFを1Mとなるように溶解させ各試験用の電解液を調製した。調製した電解液の25℃における粘度は全て5mPa・s以下、カールフィッシャー法(JISK0113)により測定した水分量は20ppm以下であった。表中に使用した化合物は以下のとおりである。
<電池(1)の作製>
 正極は活物質:ニッケルマンガンコバルト酸リチウム(LiNi1/3Mn1/3Co1/3) 85質量%、導電助剤:カーボンブラック 7質量%、バインダー:PVDF 8質量%で作製し、負極は活物質:チタン酸リチウム(LiTi12) 94質量%、導電助剤:カーボンブラック 3質量%、バインダー:PVDF 3質量%で作製した。セパレータはセルロース製50μm厚である。上記の正負極、セパレータを使用し、各試験用電解液について、2032形コイン電池を作製し、以下の条件で初期化した。
<電池の初期化>
 30℃の恒温槽中電池電圧が2.55V(正極電位4.1V)になるまで0.2C定電流充電した後、電池電圧が2.55V定電圧において電流値が0.12mAになるまで充電を行った。ただし、その時間の上限を2時間とした。次に30℃の恒温槽中、電池電圧が1.2Vになるまで0.2C定電流放電を行った。この操作を2回繰り返した。なお、チタン酸リチウム負極は作動電位が1.55Vであるため、電池電圧は正極電位から1.55Vを引いた値となる。上記の方法で作製した2032形電池を用いて下記項目の評価を行った。結果を表1に示している。
<過充電試験>
 上記の方法で作製した2032形電池を用いて30℃の恒温槽中、通常電位試験として正極電位が4.1Vになるまで定電流2mA(1C)で充電した後、定電圧充電を2時間行い、インピーダンス測定により抵抗を測定した。その後、過充電試験として正極電位が5Vになるまで定電流2mA(1C)で充電した。次いで、定電圧充電を2時間行い、インピーダンス測定により抵抗を測定し、過充電時の抵抗上昇率を下式により算出した。値が大きいほど過充電時の抵抗上昇が大きくすることができ、正極からのリチウムイオンの過放出を抑制できることを表す。
   抵抗上昇率=(5Vでの抵抗/4.1Vでの抵抗)
 過充電試験は抵抗上昇率の結果を下記のように評価した。
   AA:20以上
    A:15以上20未満
    B: 5以上15未満
    C: 5未満
<通常使用時の電池性能劣化試験>
 以下の方法により、通常使用時として表に示した正極電位で使用した際の電池性能の劣化を試験した。
<4.1V放電容量維持率>
<4.1V/初期4C放電容量>
 初期化後の電池を45℃の恒温槽中電池電圧が2.55V(正極電位4.1V)になるまで0.2C定電流充電した後、2.55V定電圧において電流値が0.12mAになるまで充電を行った。ただし、その時間の上限を2時間とした。次に45℃の恒温槽中、電池電圧が1.2Vになるまで4C定電流放電を行い正極電位4.1Vにおける初期放電容量(I)を測定した。
<サイクル試験後の4.1V放電容量>
 この電池を45℃の恒温槽中電池電圧が2.55V(正極電位4.1V)になるまで1C定電流充電した後、2.55V定電圧において電流値が0.12mAになるまで充電を行った。ただし、その時間の上限を2時間とした。次に電池電圧が1.2Vになるまで1C定電流放電を行い、1サイクルとした。これを200サイクルに達するまで繰り返した。その後、初期4C放電容量(I)と同様の測定を行い、サイクル試験後の4C放電容量(II)を測定した。以下の式からサイクル試験前後の放電容量維持率(4.1V)を算出した。値が大きいほど充放電を繰り返しても大電流放電時(4C)の容量劣化が小さいことを表し良好である。
  放電容量維持率(4.1V)=(II)/(I)
<4.3V/4C放電容量維持率>
 充電時の電池電圧を2.7V(正極電位4.3V)とした以外は4.1V/4C放電容量を測定したのと同様の試験を行い、4.3V/初期4C放電容量(III)、及びサイクル試験後の4.3V/4C放電容量(IV)を測定した。以下の式からサイクル試験前後の放電容量維持率(4.3V)を算出した。値が大きいほど充放電を繰り返しても大電流放電時(4C)の容量劣化が小さいことを表し良好である。
   放電容量維持率(4.3V)=(IV)/(III)
 より高い電池電圧(正極電位)用いた際に容量維持率が高いほど、電池容量を増大させることができ好ましい。
 放電容量維持率の結果を下記のように評価した。
  AA:0.9以上
  A:0.8以上0.9未満
  B:0.7以上0.8未満
  C:0.5以上0.7未満
  D:0.5未満
Figure JPOXMLDOC01-appb-T000030
試験No.:cで始まるものは比較例、それ以外は本発明例
Comp:化合物の例示番号
Conc*1:電解液全量に対する質量%
Conc*2:全溶剤量に対する体積%
EC:エチレンカーボネート
EMC:エチルメチルカーボネート
Figure JPOXMLDOC01-appb-C000031
<実施例2・比較例2>
・電解液の調製
 表2に示した溶剤を用いた1M-LiPF溶液に、化合物(A)を表中に記載の濃度で溶解させ実施例用電解液、及び比較例用電解液を調製した。調製した電解液の25℃における粘度は全て5mPa・s以下であった。
・電池(2)の作製
 正極は活物質:マンガン酸リチウム(LiMn) 85質量%、導電助剤:カーボンブラック 7質量%、バインダー:PVDF 8質量%で作製し、負極については、活物質:黒鉛 86質量%、導電助剤:カーボンブラック 6質量%、バインダー:PVDF 8質量%で作製した。セパレータはポリプロピレン製25μm厚に代えた。上記の正負極、セパレータを使用し、各試験No.の電解液について、2032形コイン電池を作製し、下記項目の評価を行った。結果を表2に示している。
<電池の初期化>
 30℃の恒温槽中正極電位が4.1Vになるまで0.2C定電流充電した後、正極電位が4.1V定電圧において電流値が0.12mAになるまで充電を行った。ただし、その時間の上限を2時間とした。次に30℃の恒温槽中、電池電圧が2.75Vになるまで0.2C定電流放電を行った。この操作を2回繰り返した。
 上記の方法で作製した2032形電池を用いて下記項目の評価を行った。結果を表2に示している。
<過充電試験>
 上記の方法で作製した2032形電池を用いて30℃の恒温槽中、通常電位試験として正極電位が4.1Vになるまで定電流2mA(1C)で充電した後、定電圧充電を2時間行い、インピーダンス測定により抵抗を測定した。その後、過充電試験として正極電位が5Vになるまで定電流2mA(1C)で充電した。次いで、定電圧充電を2時間行い、インピーダンス測定により抵抗を測定し、過充電時の抵抗上昇率を下式により算出した。値が大きいほど過充電時の抵抗上昇が大きくすることができ、正極からのリチウムイオンの過放出を抑制できることを表す。
   抵抗上昇率=(5Vでの抵抗/4.1Vでの抵抗)
 過充電試験は抵抗上昇率の結果を下記のように評価した。
   AA:20以上
    A:15以上20未満
    B: 5以上15未満
    C: 5未満
<通常使用時の電池性能劣化試験>
 以下の方法により、通常使用時として表中の正極電位で使用した際の電池性能の劣化を試験した。
<4.1V/4C放電容量維持率>
<4.1V/初期4C放電容量>
 初期化後の電池を30℃の恒温槽中正極電位が4.1Vになるまで0.2C定電流充電した後、4.1V定電圧において電流値が0.12mAになるまで充電を行った。ただし、その時間の上限を2時間とした。次に30℃の恒温槽中、電池電圧が2.75Vになるまで4C定電流放電を行い4.1Vにおける初期4C放電容量(V)を測定した。
<サイクル試験後の4.1V/4C放電容量>
 この電池を30℃の恒温槽中正極電位が4.1Vになるまで1C定電流充電した後、4.1V定電圧において電流値が0.12mAになるまで充電を行った。ただし、その時間の上限を2時間とした。次に電池電圧が2.75Vになるまで1C定電流放電を行い、1サイクルとした。これを300サイクルに達するまで繰り返した。その後、初期4C放電容量(V)と同様の測定を行い、サイクル試験後の4.1V/4C放電容量(VI)を測定した。以下の式からサイクル試験前後の放電容量維持率(4.1V)を算出した。値が大きいほど充放電を繰り返しても大電流放電時(4C)の容量劣化が小さいことを表し良好である。
    放電容量維持率(4.1V)=(VI)/(V)
<4.3V/4C放電容量維持率>
 充電時の正極電位を4.3Vとした以外は4.1V/4C放電容量を測定したのと同様の試験を行い、4.3V/初期4C放電容量(VII)、及びサイクル試験後の4.3V/4C放電容量(VIII)を測定した。以下の式からサイクル試験前後の放電容量維持率(4.3V)を算出した。値が大きいほど充放電を繰り返しても大電流放電時(4C)の容量劣化が小さいことを表し良好である。
   放電容量維持率(4.3V)=(VIII)/(VII)
 放電容量維持率の結果を下記のように評価した。
  AA:0.9以上
  A:0.8以上0.9未満
  B:0.7以上0.8未満
  C:0.5以上0.7未満
  D:0.5未満
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
試験No.:cで始まるものは比較例、それ以外は本発明例
Comp:化合物の例示番号
Conc*1:電解液全量に対する質量%
Conc*2:全溶剤量に対する体積%
 上記実施例の結果より、本発明の電解液によれば、正極を高電位の通常使用条件としたときにも、高い過充電防止性と良好な耐劣化抑制とを発揮し、優れた電池特性を発現することが分かる。
 上記の試験No.101に対して化合物I-1に変え、I-5、I-25~I-28、I-30を用いた以外同様の試験を行った。その結果抵抗上昇率が「A」、放電容量維持率は「B」以上の結果となった。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2013年2月5日に日本国で特許出願された特願2013-020488に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。

Claims (21)

  1.  有機溶剤中に、電解質と、少なくとも一つの窒素―ホウ素結合を持つ有機ホウ素化合物又は窒素―アルミニウム結合を持つ有機アルミニウム化合物とを含有する非水二次電池用電解液。
  2.  前記有機ホウ素化合物又は有機アルミニウム化合物が、窒素、酸素、硫黄、及びリンから選ばれるヘテロ原子を複数持つヘテロ環を有する請求項1に記載の非水二次電池用電解液。
  3.  前記有機ホウ素化合物又は有機アルミニウム化合物が窒素原子を複数持つヘテロ環を有する請求項1または2に記載の非水二次電池用電解液。
  4.  前記有機ホウ素化合物又は有機アルミニウム化合物が窒素―窒素結合を持つヘテロ環を有する請求項1~3のいずれか1項に記載の非水二次電池用電解液。
  5.  前記有機ホウ素化合物又は有機アルミニウム化合物が5員のヘテロ環を有する請求項1~4のいずれか1項に記載の非水二次電池用電解液。
  6.  前記有機ホウ素化合物又は有機アルミニウム化合物がピラゾール又はトリアゾールを構造中に持つヘテロ環を有する請求項1~5のいずれか1項に記載の非水二次電池用電解液。
  7.  前記有機ホウ素化合物又は有機アルミニウム化合物が下記式(1)で表される構造部位を有する請求項1~6のいずれか1項に記載の非水二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Mはホウ素原子又はアルミニウム原子を表す。Hetは、N-N結合を有する5員または6員のヘテロ環を示す。)
  8.  前記式(1)で表される構造部位を有する化合物が、下記式(I)又は(II)で表される化合物である請求項7に記載の非水二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R~Rはそれぞれ独立にハロゲン原子、アミノ基、シリル基、アルコキシ基、アリールオキシ基、アシルオキシ基、ヘテロアリールオキシ基、スルホニルオキシ基含有基、アルキル基、アリール基、またはヘテロアリール基を表す。R~Rはそれぞれが互いに結合もしくは縮合し環構造を形成してもよい。R~Rはそれぞれ独立に水素原子、アルキル基、アルコキシ基、ハロゲン原子、アシルオキシ基、アルコキシカルボニル基、シアノ基、アミノ基、シリル基、アリール基、またはヘテロアリール基である。R~Rはそれぞれが互いに結合もしくは縮合して環構造を形成してもよい。R~Rは環上のNもしくはCと結合して環構造を形成してもよい。このとき、無機元素を介在して環を形成していてもよい。また環上の二重結合は単結合となることがある。Mはホウ素原子又はアルミニウム原子を表す。Z1+は無機又は有機カチオンを表す。XおよびXはそれぞれ独立に炭素原子もしくは窒素原子を表す。XおよびXが窒素原子であるとき、RおよびRはないものとする。)
  9.  前記式(II)が下記式(III)または(IV)で表される請求項8に記載の非水二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R10~R13はハロゲン原子、アルコキシ基、アリールオキシ基、アシルオキシ基、ヘテロアリールオキシ基、スルホニルオキシ基含有基、アルキル基、アリール基、またはヘテロアリール基を表し、それぞれが互いに結合もしくは縮合し環構造を形成してもよい。m、nは0≦m+n≦3である整数を表す。R~Rは式(II)と同義であり、R~Rもこれと同義である。MおよびMはホウ素原子またはアルミニウム原子を表す。Yはホウ素原子およびアルミニウム原子以外の金属原子を表す。X~Xは炭素原子もしくは窒素原子であり、窒素原子であるときのR~Rはないものとする。)
  10.  前記式(III)が、下記式(V)または(VI)で表される請求項9に記載の非水二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000004
    (式中、R~R13、X~Xは式(III)と同義である。)
  11.  更に、芳香族性化合物(A)、ハロゲン含有化合物(B)、及び重合性化合物(C)、リン含有化合物(D)、硫黄含有化合物(E)、ケイ素含有化合物(F)、ニトリル化合物(G)、金属錯体化合物(H)、イミド化合物(I)から選ばれる少なくとも1種の化合物を含む請求項1~10のいずれか1項に記載の非水二次電池用電解液。
  12.  前記有機ホウ素化合物又は有機アルミニウム化合物を0.001~10質量%で含有する請求項1~11のいずれか1項に記載の非水二次電池用電解液。
  13.  正極、負極、および請求項1~12のいずれか1項に記載の非水二次電池用電解液を具備する非水二次電池。
  14.  前記正極の活物質が、アルカリ金属イオンを挿入放出可能な遷移金属酸化物である請求項13に記載の非水二次電池。
  15.  前記正極に含まれる活物質が下記式(MA)~(MC)のいずれかで表される遷移金属酸化物を含む請求項13または14に記載の非水二次電池。
      Li     ・・・ (MA)
      Li     ・・・ (MB)
      Li(PO ・・・ (MC)
    (式中、MおよびMは、それぞれ独立に、Co、Ni、Fe、Mn、Cu、およびVから選択される1種以上の元素を表す。Mは、それぞれ独立に、V、Ti、Cr、Mn、Fe、Co、Ni、およびCuから選択される1種以上の元素を表す。ただし、M~Mは、その一部が、リチウム以外の周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、およびBから選ばれる少なくとも1つにより置換されていてもよい。aは0~1.2を表す。bは1~3を表す。cは0~2を表す。dは3~5を表す。eは0~2を表し、fは1~5を表す。)
  16.  前記正極の活物質が、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、ニッケルマンガンコバルト酸リチウム、マンガンニッケル酸リチウム、ニッケルコバルトアルミニウム酸リチウム、またはリン酸鉄リチウムである請求項13~15のいずれか1項に記載の非水二次電池。
  17.  チタン酸リチウム(LTO)または(複合)炭素材料を前記負極の活物質として用いた請求項13~16のいずれか1項に記載の非水二次電池。
  18.  電池の通常充電正極電位が4.25V(Li/Li基準)以上である請求項13~17のいずれか1項に記載の非水二次電池。
  19.  インピーダンス測定により算出した次式の抵抗上昇率が5以上である請求項13~18のいずれか1項に記載の非水二次電池。
      抵抗上昇率=(正極電位5Vまで充電した後の抵抗)
             /(正極電位4.1Vまで充電した後の抵抗)
  20.  少なくとも一つの窒素-ホウ素結合を持つ有機ホウ素化合物又は窒素-アルミニウム結合を持つ有機アルミニウム化合物からなる電解液用添加剤。
  21.  前記有機ホウ素化合物又は有機アルミニウム化合物が下記式(I)又は(II)で表される請求項20に記載の電解液用添加剤。
    Figure JPOXMLDOC01-appb-C000005
    (式中、R~Rはそれぞれ独立にハロゲン原子、アミノ基、シリル基、アルコキシ基、アリールオキシ基、アシルオキシ基、ヘテロアリールオキシ基、スルホニルオキシ基含有基、アルキル基、アリール基、またはヘテロアリール基を表す。R~Rはそれぞれが互いに結合もしくは縮合し環構造を形成してもよい。R~Rはそれぞれ独立に水素原子、アルキル基、アルコキシ基、ハロゲン原子、アシルオキシ基、アルコキシカルボニル基、シアノ基、アミノ基、シリル基、アリール基、またはヘテロアリール基である。R~Rはそれぞれが互いに結合もしくは縮合して環構造を形成してもよい。R~Rは環上のNもしくはCと結合して環構造を形成してもよい。このとき、無機元素を介在して環を形成していてもよい。また環上の二重結合は単結合となることがある。Mはホウ素原子又はアルミニウム原子を表す。Z1+は無機又は有機カチオンを表す。XおよびXはそれぞれ独立に炭素原子もしくは窒素原子を表す。XおよびXが窒素原子であるとき、RおよびRはないものとする。)
PCT/JP2014/052298 2013-02-05 2014-01-31 非水二次電池用電解液および非水二次電池、電解液用添加剤 WO2014123074A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/791,884 US20150311564A1 (en) 2013-02-05 2015-07-06 Electrolytic solution for non-aqueous secondary cell, non-aqueous secondary cell, and additive for electrolytic solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-020488 2013-02-05
JP2013020488A JP6071600B2 (ja) 2013-02-05 2013-02-05 非水二次電池用電解液および非水二次電池、電解液用添加剤

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/791,884 Continuation US20150311564A1 (en) 2013-02-05 2015-07-06 Electrolytic solution for non-aqueous secondary cell, non-aqueous secondary cell, and additive for electrolytic solution

Publications (1)

Publication Number Publication Date
WO2014123074A1 true WO2014123074A1 (ja) 2014-08-14

Family

ID=51299670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052298 WO2014123074A1 (ja) 2013-02-05 2014-01-31 非水二次電池用電解液および非水二次電池、電解液用添加剤

Country Status (3)

Country Link
US (1) US20150311564A1 (ja)
JP (1) JP6071600B2 (ja)
WO (1) WO2014123074A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112290088A (zh) * 2019-07-23 2021-01-29 张家港市国泰华荣化工新材料有限公司 一种非水电解液及锂离子电池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101752864B1 (ko) * 2014-09-04 2017-06-30 주식회사 엘지화학 리튬이차전지 및 이를 포함하는 전지모듈
EP3353844B1 (en) 2015-03-27 2022-05-11 Mason K. Harrup All-inorganic solvents for electrolytes
JP6541035B2 (ja) * 2015-12-25 2019-07-10 住友金属鉱山株式会社 非水系電解質コイン型電池を用いた電池特性評価方法と、非水系電解質二次電池用正極活物質の電池特性評価方法
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US10978752B2 (en) 2018-03-19 2021-04-13 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle
US20210344045A1 (en) * 2019-06-28 2021-11-04 Asahi Kasei Kabushiki Kaisha Nonaqueous Electrolyte Solution and Nonaqueous Secondary Battery
CN111129587B (zh) * 2019-12-20 2021-12-03 杉杉新材料(衢州)有限公司 一种锂离子电池用非水电解液及其锂离子电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143746A (ja) * 1999-11-12 2001-05-25 Denso Corp 電池用電解液および非水電解液二次電池
JP2009238945A (ja) * 2008-03-26 2009-10-15 Kaneka Corp エネルギー貯蔵デバイス
JP2009290116A (ja) * 2008-05-30 2009-12-10 Kaneka Corp エネルギー貯蔵デバイス
WO2009157261A1 (ja) * 2008-06-25 2009-12-30 シャープ株式会社 難燃剤含有非水系二次電池
WO2013137331A1 (ja) * 2012-03-15 2013-09-19 富士フイルム株式会社 非水二次電池用電解液及び二次電池
WO2013172319A1 (ja) * 2012-05-18 2013-11-21 富士フイルム株式会社 非水二次電池用電解液および非水二次電池
WO2013183673A1 (ja) * 2012-06-08 2013-12-12 富士フイルム株式会社 非水電解液二次電池および非水電解液

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1255422A4 (en) * 2000-01-13 2006-11-29 Matsushita Electric Ind Co Ltd ELECTRODE BODY, THIN FILM ELECTROLUMINESCENT DEVICE COMPRISING THE ELECTRODE BODY, MANUFACTURING METHOD, AND DISPLAY AND ILLUMINATOR COMPRISING THE THIN FILM LIGHT EMITTING DEVICE
JP2007087737A (ja) * 2005-09-21 2007-04-05 Hamamatsu Kagaku Gijutsu Kenkyu Shinkokai リチウムイオン導電性材料及びリチウム二次電池
JP5217400B2 (ja) * 2007-06-28 2013-06-19 三菱化学株式会社 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP2011187232A (ja) * 2010-03-05 2011-09-22 Sony Corp リチウム二次電池、リチウム二次電池用電解液、電動工具、電気自動車および電力貯蔵システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143746A (ja) * 1999-11-12 2001-05-25 Denso Corp 電池用電解液および非水電解液二次電池
JP2009238945A (ja) * 2008-03-26 2009-10-15 Kaneka Corp エネルギー貯蔵デバイス
JP2009290116A (ja) * 2008-05-30 2009-12-10 Kaneka Corp エネルギー貯蔵デバイス
WO2009157261A1 (ja) * 2008-06-25 2009-12-30 シャープ株式会社 難燃剤含有非水系二次電池
WO2013137331A1 (ja) * 2012-03-15 2013-09-19 富士フイルム株式会社 非水二次電池用電解液及び二次電池
WO2013172319A1 (ja) * 2012-05-18 2013-11-21 富士フイルム株式会社 非水二次電池用電解液および非水二次電池
WO2013183673A1 (ja) * 2012-06-08 2013-12-12 富士フイルム株式会社 非水電解液二次電池および非水電解液

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112290088A (zh) * 2019-07-23 2021-01-29 张家港市国泰华荣化工新材料有限公司 一种非水电解液及锂离子电池

Also Published As

Publication number Publication date
US20150311564A1 (en) 2015-10-29
JP6071600B2 (ja) 2017-02-01
JP2014154247A (ja) 2014-08-25

Similar Documents

Publication Publication Date Title
JP5992345B2 (ja) 非水二次電池および非水二次電池用電解液
JP6071600B2 (ja) 非水二次電池用電解液および非水二次電池、電解液用添加剤
JP2014127354A (ja) 非水二次電池用電解液および非水二次電池、電解液用添加剤
JP6154145B2 (ja) 非水二次電池用電解液および非水二次電池
JP6047458B2 (ja) 非水二次電池
WO2013172319A1 (ja) 非水二次電池用電解液および非水二次電池
WO2015016187A1 (ja) 非水二次電池用電解液および非水二次電池
JP6376709B2 (ja) 非水二次電池用電解液および非水二次電池、これらに用いられる添加剤
WO2015016189A1 (ja) 非水二次電池用電解液および非水二次電池
WO2015016188A1 (ja) 非水電解液および非水二次電池
JP2015018667A (ja) 非水二次電池用電解液、非水二次電池及び非水電解液用添加剤
JP2014235986A (ja) 非水二次電池用電解液および非水二次電池
JP6588965B2 (ja) 電解液および非水二次電池
WO2014157533A1 (ja) 非水二次電池および非水二次電池用電解液
JP2016201308A (ja) 非水電解液および非水二次電池
JP2014013719A (ja) 非水二次電池用電解液及び二次電池
JPWO2018135395A1 (ja) 非水二次電池用電解液、非水二次電池及び金属錯体
JP2014063668A (ja) 非水二次電池用電解液及び二次電池
JP6150987B2 (ja) 非水二次電池用電解液及び二次電池
JP6391028B2 (ja) 電解液、リチウムイオン電池およびリチウムイオンキャパシタ
WO2014157534A1 (ja) 非水二次電池用電解液、非水二次電池及び非水電解液用添加剤
JP2014220053A (ja) 非水二次電池および非水二次電池用電解液
JP2014192146A (ja) 非水二次電池および非水二次電池用電解液
WO2014156428A1 (ja) 非水二次電池用電解液及び非水二次電池
WO2016006404A1 (ja) 非水二次電池用電解液および非水二次電池、これらに用いられる添加剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14749535

Country of ref document: EP

Kind code of ref document: A1