WO2014122822A1 - サーボ制御装置 - Google Patents

サーボ制御装置 Download PDF

Info

Publication number
WO2014122822A1
WO2014122822A1 PCT/JP2013/077803 JP2013077803W WO2014122822A1 WO 2014122822 A1 WO2014122822 A1 WO 2014122822A1 JP 2013077803 W JP2013077803 W JP 2013077803W WO 2014122822 A1 WO2014122822 A1 WO 2014122822A1
Authority
WO
WIPO (PCT)
Prior art keywords
movement state
correction amount
speed
unit
servo control
Prior art date
Application number
PCT/JP2013/077803
Other languages
English (en)
French (fr)
Inventor
弘太朗 長岡
智哉 藤田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014560637A priority Critical patent/JP5875714B2/ja
Priority to CN201380072456.2A priority patent/CN104981749B/zh
Priority to DE112013006613.0T priority patent/DE112013006613B4/de
Priority to US14/650,401 priority patent/US10031507B2/en
Publication of WO2014122822A1 publication Critical patent/WO2014122822A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/402Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for positioning, e.g. centring a tool relative to a hole in the workpiece, additional detection means to correct position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33347Master sends servo address, speed, kind of interpolation to slave
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37589Measure drift of servo during positioning, not disturbing actual position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41154Friction, compensation for friction

Definitions

  • the present invention relates to a servo control device that drives a machine device such as a machine tool by servo control.
  • a servo control device that drives a machine device such as a machine tool generates a drive command to a motor that drives the tool or table by feedback control so that the position of the tool or table provided in the machine follows the command value.
  • a motor for driving a tool or a table there are a case where a rotary motor is used and a case where a linear motor is used.
  • the drive command is a torque command when a rotary motor is used, and a thrust command when a linear motor is used. In this specification, a case where a rotary motor is used will be described.
  • trajectory control that drives a mechanical system in a mechanical device so that a tool position with respect to a workpiece (workpiece) accurately follows a commanded path (command trajectory)
  • trajectory control or contour motion control It is precisely performed using a control device and a servo control device attached thereto.
  • the mechanical system in the machine device to be controlled has a plurality of shafts, and each motor constituting the shaft is driven and controlled using a servo control device.
  • the servo controller has a function of predicting and correcting errors (particularly trajectory errors) caused by disturbances in addition to feedback control. Yes.
  • the direction of movement of the feed shaft is reversed, the direction in which the friction acts is also reversed, so that the influence appears remarkably in the locus error.
  • Patent Document 1 conventionally, when the position command direction is reversed, a change in the friction torque generated before and after the movement direction of the feed drive mechanism is reversed is estimated and estimated. A method of adding a change in the friction torque to the torque command is implemented.
  • the first problem is that the correction is made at the timing when the speed command value sign is reversed, but when the movement stops in the same direction, the correction is not performed. This means that an error occurs in the trajectory.
  • the present invention has been made in view of the above, and an object thereof is to obtain a servo control device capable of reducing a tracking error caused by friction.
  • the present invention comprises a servo control unit that calculates a drive command for causing a feedback position from a driving motor to follow a command position, and in the servo control device that drives the motor according to the drive command,
  • a moving state determining unit that simulates a motor response to determine whether the motor speed is positive, negative, or zero, and outputs the determination result as a moving state, and the determined moving state changes
  • a correction amount selection unit that selects a correction amount according to the change pattern of the movement state at a timing to perform the correction drive command by adding the correction amount output by the correction amount selection unit to the drive command calculated by the servo control unit
  • an adding unit that uses the corrected drive command as a drive command for the motor instead of the drive command calculated by the servo control unit.
  • the present invention it is possible to correct the amount of friction even when stopping once during movement in the same direction. Further, even when stopping once before reversal, the correction can be performed with an appropriate correction amount in consideration of the friction at the time of stopping. Therefore, there is an effect that a servo control device capable of reducing a tracking error caused by friction can be obtained.
  • FIG. 1 is a block diagram showing a configuration of a servo control device according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration example of the servo control unit illustrated in FIG. 1.
  • FIG. 3 is a block diagram illustrating a configuration example of the movement state determination unit illustrated in FIG. 1.
  • FIG. 4 is a diagram for explaining the tracking error reduction operation according to the first embodiment.
  • FIG. 5 is a block diagram showing the configuration of the servo control apparatus according to the second embodiment of the present invention.
  • FIG. 6 is a block diagram illustrating a configuration example of the movement state determination unit illustrated in FIG.
  • FIG. 7 is a diagram for explaining the tracking error reduction operation according to the second embodiment.
  • FIG. 8 is a side view showing an example of a mechanical system in the mechanical device that is the control target of the servo control device shown in FIGS. 1 and 5.
  • FIG. 1 is a block diagram showing a configuration of a servo control apparatus according to Embodiment 1 of the present invention.
  • a motor 2 that is a direct control target of the servo control device 1a according to the first embodiment is a rotary motor in this specification, and either or both of a position detector and a speed detector are attached. It has been.
  • the feedback position a input from the motor 2 to the servo control device 1a is a detection value of the position detector or an integral value of the detection value of the speed detector.
  • FIG. 8 is a side view showing an example of a mechanical system in the mechanical device that is the control target of the servo control device shown in the first embodiment (FIG. 1) and the second embodiment (FIG. 5) described later.
  • the motor 2 is incorporated in a mechanical system as shown in FIG.
  • a position detector 81 is attached to the motor 2.
  • the position detector 81 is a rotary encoder or the like, and outputs the detected motor position as the feedback position a described above.
  • a ball screw 82 having a predetermined length is connected to or formed on the rotating shaft of the motor 2.
  • a movable part including a nut 83, a table 84, and a linear guide 85 is assembled to the ball screw 82.
  • the nut 83 is fixed to the back surface of the table 84, and converts the rotation of the ball screw 82 into a linear motion.
  • the linear guide 85 supports the table 84 and restricts the movement direction of the table 84.
  • the position directly detected by the position detector 81 is the rotation angle of the motor 2, and this angle is multiplied by a ball screw lead that is a table moving distance per rotation of the motor to obtain an angle 2 ⁇ [rad] of the rotation of the motor.
  • a ball screw lead that is a table moving distance per rotation of the motor to obtain an angle 2 ⁇ [rad] of the rotation of the motor.
  • the servo control device 1 a includes a servo control unit 3, a movement state determination unit 4 a, a correction amount selection unit 5 a, and an addition unit 6 as a configuration that reduces the tracking error caused by friction. Yes.
  • the servo control unit 3 receives the command position b from a controller (not shown) and the rotational position of the motor 2 detected by the position detector 81 as a feedback position a.
  • the servo control unit 3 performs servo control so that the feedback position a follows the command position b, for example, with the configuration shown in FIG.
  • the motor 2 is directly driven according to a torque command c calculated as a result of servo control by the servo control unit 3.
  • the addition unit 6 is provided, and the torque command c calculated as a result of the servo control by the servo control unit 3 becomes one input of the addition unit 6.
  • the moving state determination unit 4a determines whether the moving speed of the motor 2 is positive, zero, or negative from a command position b input from a controller (not shown), for example, with the configuration shown in FIG.
  • the movement state d is output to the correction amount selection unit 5a.
  • the correction amount selection unit 5a selects the torque correction amount e in accordance with the movement state d input from the movement state determination unit 4a and uses it as the other input of the addition unit 6.
  • the addition unit 6 adds the torque correction amount e selected by the correction amount selection unit 5a to the torque command c calculated by the servo control unit 3, and uses the added torque command f as an output of the servo control device 1a. .
  • the correction amount selection unit 5a outputs the corresponding torque correction amount e at the timing when the movement state d, which is the output of the movement state determination unit 4a, changes from positive to negative or from negative to positive.
  • the value of the torque correction amount e is calculated based on a model of the friction torque generated in the motor 2 when the moving direction is reversed.
  • This model may generate a constant friction torque in the direction opposite to the moving direction, for example, Coulomb friction.
  • 1 shows an example in which the adding unit 6 is provided and the obtained torque correction amount e is added to the torque command c.
  • a speed control unit in the servo control unit 3 is provided instead of adding to the torque command. You may make it add to an integral term in (refer FIG. 2).
  • the correction amount selection unit 5a outputs the torque correction amount e at the timing when the movement state d, which is the output of the movement state determination unit 4a, changes from zero speed to other than zero speed (that is, positive or negative).
  • the value of the torque correction amount e at this time is calculated based on a model of the friction torque generated in the motor 2 at the start of the reversal of the moving direction.
  • the servo control unit 3 includes addition / subtraction units 30 and 32, a position control unit 31, a differential operation unit 33, and a speed control unit 34.
  • the addition / subtraction unit 30 obtains a deviation (position deviation) between the command position b and the feedback position a, and outputs the deviation to the position control unit 31.
  • position control processing such as proportional control is performed so as to reduce the position deviation input from the addition / subtraction unit 30, and a speed command for reducing the position deviation is output.
  • the differential calculation unit 33 differentiates the feedback position a to obtain the actual speed.
  • differential processing is replaced with differential processing in a discrete time system. That is, a value obtained by dividing the difference between the current feedback position and the feedback position one sample before by the control processing period is used as an approximate differential value.
  • the addition / subtraction unit 32 obtains a deviation (speed deviation) between the speed command obtained by the position control unit 31 and the actual speed obtained by the differential operation unit 33 and outputs the deviation to the speed control unit 34.
  • the speed controller 34 performs speed control processing such as proportional / integral control so as to reduce the speed deviation input from the adder / subtractor 32, and outputs a torque command c.
  • the servo control unit 3 controls the feedback position a to follow the command position b by performing the feedback control so as to suppress the position deviation with the difference between the command position b and the feedback position a as the position deviation. can do.
  • the movement state determination unit 4a includes a position control simulation unit 41, a motor simulation unit 42, and a model speed code determination unit 43a.
  • the position control simulation unit 41 performs proportional control so that a deviation (position deviation) between a command position b input from a controller (not shown) and a model position g output from a motor simulation unit 42 described later becomes small.
  • the model speed h which is a command to reduce the position deviation, is output.
  • the model speed h is input to the motor simulation unit 42 and the model speed code determination unit 43a.
  • the motor simulation unit 42 performs a calculation that simulates the characteristics of the motor 2 using the model speed h, and outputs the calculation result as a model position g. Specifically, the motor simulation unit 42 integrates the model speed h once as an operation for simulating the characteristics of the motor 2 and outputs the integration value as the model position g.
  • the model position g corresponds to the feedback position a shown in FIGS. 1 and 2, and the model speed h corresponds to the speed command output by the position control unit 31 described above. That is, the position control simulation unit 41 has the same inputs and outputs as the position control unit 31 described above, and performs the same arithmetic processing as the position control unit 31 inside.
  • the model speed code determination unit 43a determines whether the sign of the model speed h is positive, zero, or negative, and outputs the determination result as a movement state d.
  • a speed threshold and a time threshold are set in advance, and a state in which the absolute value of the model speed h is equal to or lower than the speed threshold is determined. Defined as zero.
  • a positive constant such as a minimum resolution of speed and a sampling period is set in advance for the speed threshold and the time threshold, respectively.
  • the moving state determination unit 4a can stably determine the moving state d by simulating the response of the motor 2 and performing the speed sign determination for the model position that is the simulated response. .
  • FIG. 4 shows the relationship between the position x and the friction torque f when the motor is driven.
  • states (1) to (7) show examples of change patterns of the moving state of the motor 2.
  • the friction torque is generated in the direction opposite to the moving direction, and the magnitude thereof is constant in the case of Coulomb friction.
  • a friction torque of ⁇ f is generated when moving in the positive direction
  • a friction torque of + f is generated when moving in the negative direction. It is shown that the friction torque inside becomes zero.
  • the correction amount selection unit 5a sets the torque correction amount e according to the pattern in which the movement state d output from the movement state determination unit 4a changes.
  • the torque correction amount e is an amount that cancels the change in the friction torque when the moving state d changes.
  • the torque correction amount e for each movement state change pattern is set in advance as a parameter.
  • the torque correction amount e is set to ⁇ 2f, which is an amount that cancels the difference between the two.
  • the friction torque changes from + f to ⁇ f, and therefore the torque correction amount e is set to + 2f.
  • the torque correction amount e is set to ⁇ f that cancels the difference between the two.
  • the friction torque changes from 0 to ⁇ f, and therefore the torque correction amount e is set to + f.
  • the movement state changes from zero to positive in the state (1) to the state (2) and from the state (3) to the state (4).
  • the torque correction amount e + f is selected.
  • the torque correction amount e is selected to be ⁇ 2f.
  • the torque correction amount e is selected as -f.
  • the torque command output to the motor is corrected even when it is temporarily stopped during movement in the same direction, so that it is possible to correct the friction torque change. Therefore, it is possible to correct the tracking error caused by the change in the friction torque when the moving state is changed, and it is possible to suppress the tracking error.
  • the response of the motor is simulated and the sign determination of the speed is performed on the model position which is the simulated response, the determination of the moving state can be performed stably.
  • FIG. FIG. 5 is a block diagram showing the configuration of the servo control apparatus according to the second embodiment of the present invention.
  • the same or equivalent components as those shown in FIG. 1 are denoted by the same reference numerals.
  • the description will be focused on the portion related to the second embodiment.
  • a movement state determination unit 4b is provided instead of the movement state determination unit 4a.
  • some functions are added to the correction amount selection unit 5a.
  • FIG. 6 is a block diagram illustrating a configuration example of the movement state determination unit illustrated in FIG.
  • the moving state determination unit 4b is a model speed code determination unit in which the moving state storage unit 44 immediately before the speed zero is added and the sign is changed in the configuration shown in FIG. 3 (Embodiment 1).
  • 43b some functions are added to the model speed code determination unit 43a.
  • the model speed code determination unit 43b determines whether the sign of the model speed h is positive, zero, or negative, and sets the determination result as a moving state (the second embodiment). In this case, it is referred to as “current movement state”) d. In addition, in the second embodiment, the model speed code determination unit 43b determines that the determined current movement state d is zero speed, that is, if the current movement state d changes from a speed other than zero to zero speed. In addition, the movement state k immediately before the zero speed is output and stored in the movement state storage unit 44 immediately before the zero speed. The movement state storage unit 44 immediately before the zero speed outputs the stored movement state k immediately before the zero speed to the correction amount selection unit 5b.
  • the friction torque during the stop does not become zero.
  • the linear guide 85 that supports the table 84 has a spring characteristic.
  • the amount of change in the friction torque when moving from the stopped state changes depending on the moving direction immediately before the stopped state. Therefore, in the second embodiment, the movement state immediately before the movement state becomes zero speed is stored, and from the movement state determination unit 4b to the correction amount selection unit 5b in response to a request from the correction amount selection unit 5b. Enabled to output.
  • the correction amount selection unit 5b monitors the current movement state d output by the model speed code determination unit 43b, and when the current movement state d changes from positive to negative or from negative to positive, the first embodiment
  • the torque correction amount e having the same contents as the correction amount selection unit 5a described above is output to the addition unit 6, but when the current movement state d changes from zero speed to other than zero speed,
  • the torque correction amount e according to the second embodiment is selected and output to the adding unit 6.
  • the friction torque at the time of stop is taken into consideration even when stopping once before reversal.
  • the torque command output to the motor can be corrected with an appropriate correction amount.
  • FIG. 7 shows the relationship between the position x and the friction torque f when the motor is driven, as in FIG.
  • the change pattern (state (1) to state (7)) of the motor 2 is the same as that of the first embodiment.
  • the setting of the friction torque is different from that in FIG. 4 and is as follows.
  • the friction torque is generated in the direction opposite to the moving direction, and the magnitude thereof is constant in the case of Coulomb friction.
  • f1 friction torque is generated when moving in the positive direction
  • f4 friction torque is generated when moving in the negative direction.
  • the friction torque during the stop does not become 0 as described above.
  • a friction torque of f2 is generated, and when the stop is performed after moving in the negative direction. It is assumed that a friction torque of f3 is generated.
  • the correction amount selection unit 5b sets the torque correction amount e according to a pattern in which the current movement state d output from the movement state determination unit 4b changes.
  • the torque correction amount e is an amount that cancels the change in friction torque when the current movement state d changes, and the torque correction amount e for each change pattern of the current movement state d is set in advance as a parameter. This point is the same as in the first embodiment, but in the second embodiment, the setting of the friction torque is different from that in the first embodiment, so that it is as follows.
  • the torque correction amount selection unit 5b when the current movement state d changes from positive to negative, the friction torque changes from f1 to f4, so the torque correction amount e is an amount that cancels the difference between the two (f1 -F4). Similarly, when the current movement state d changes from negative to positive, the friction torque changes from f4 to f1, so the torque correction amount e is (f4-f1).
  • the torque correction amount e is an amount that cancels the difference between the two (f2 ⁇ f1).
  • the torque correction amount e is an amount that cancels the difference between the two (f2-f4).
  • the current movement state d changes from zero speed to positive and the movement state storage unit immediately before the zero speed is stored. Since the “movement state k immediately before the movement state becomes zero speed” read from 44 is negative, that is, the movement direction before and after the change is different, the torque correction amount e is selected as (f3-f1).
  • the current movement state d changes from zero speed to positive, and “the movement state becomes zero speed” read from the movement state storage unit 44 immediately before the zero speed. Since the immediately preceding movement state k ”is positive, that is, the movement directions before and after the change are the same, (f2 ⁇ f1) is selected as the torque correction amount e.
  • the torque correction amount e is selected as (f4-f1). Further, in the state (6) to the state (7), the current moving state d changes from zero speed to negative, and is read from the moving state storage unit 44 immediately before the zero speed “before the moving state becomes zero speed”. Since “movement state k” is negative, (f3-f4) is selected as the torque correction amount e used when the movement directions before and after the change are the same.
  • the second embodiment it is possible to correct the torque command output to the motor even when it is temporarily stopped during movement in the same direction. It is possible to correct the follow-up error caused by the change in the friction torque.
  • the torque command output to the motor can be corrected with an appropriate correction amount considering the remaining friction torque at the time of reversal. Regardless of the movement state, the tracking error of the trajectory can always be corrected appropriately.
  • the motor response is simulated, and the sign determination of the speed is performed with respect to the model position which is the simulated response, so that the determination of the moving state can be performed stably.
  • a current command may be used instead of the torque command.
  • the current command can be converted to a torque command by multiplying it by a torque constant.
  • the rotation position of the motor is used as the feedback position.
  • the table position may be detected by a linear scale or the like and fed back. In that case, the position of the table detected by a linear scale or the like is used as the feedback position.
  • the motor that is one of the components to be controlled is expressed as a rotary motor by expressing the driving force as torque.
  • a rotary motor but may be a linear motor. That is, the contents of the first and second embodiments can be applied to the case where the motor, which is one of the components to be controlled, is a linear motor as it is if the torque is replaced with thrust.
  • the servo control device according to the present invention is useful as a servo control device capable of reducing a tracking error caused by friction.
  • 1a, 1b servo control device 2 motor, 3 servo control unit, 4a, 4b movement state determination unit, 5a, 5b correction amount selection unit, 6 addition unit, 30, 32 addition / subtraction unit, 31 position control unit, 33 differential operation unit , 34 speed control unit, 41 position control simulation unit, 42 motor simulation unit, 43a, 43b model speed code determination unit, 44, moving state storage unit immediately before zero speed, 81 position detector, 82 ball screw, 83 nut, 84 table 85 Linear guide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Position Or Direction (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

 駆動するモータからのフィードバック位置を指令位置に追従させる駆動指令を演算するサーボ制御部を備え、前記駆動指令に従って前記モータを駆動するサーボ制御装置において、前記モータの応答を模擬して前記モータの速度が正・負・ゼロのいずれの状態であるかを判定しその判定結果を移動状態として出力する移動状態判定部と、前記判定された移動状態が変化するタイミングで前記移動状態の変化パターンに従って補正量を選択する補正量選択部と、サーボ制御部が演算した前記駆動指令に前記補正量選択部が出力する前記補正量を加算して補正駆動指令を生成し、該補正駆動指令を前記サーボ制御部が演算した前記駆動指令に代えて前記モータへの駆動指令とする加算部とを備え、摩擦によって生ずる追従誤差を低減可能なサーボ制御装置を得る。

Description

サーボ制御装置
 本発明は、工作機械等の機械装置をサーボ制御により駆動するサーボ制御装置に関するものである。
 工作機械等の機械装置を駆動するサーボ制御装置は、機械に備えられた工具やテーブルの位置が指令値に追従するように、工具やテーブルを駆動するモータへの駆動指令をフィードバック制御によって生成する。工具やテーブルを駆動するモータとして、回転モータを用いる場合とリニアモータを用いる場合とがある。駆動指令は、回転モータを用いる場合にはトルク指令となり、リニアモータを用いる場合には推力指令となるが、本明細書では回転モータを用いる場合について説明する。
 特に、加工対象物(ワーク)に対する工具位置が指令された経路(指令軌跡)に正確に追従するように機械装置における機械系を駆動するサーボ制御は、軌跡制御または輪郭運動制御と呼ばれ、数値制御装置やそれに付属するサーボ制御装置を用いて精密に行われる。制御対象の機械装置における機械系は、複数の軸を持ち、軸を構成するモータのそれぞれがサーボ制御装置を用いて駆動制御される。
 サーボ制御装置は、機械系に存在する摩擦などの外乱要因の影響を抑制するために、フィードバック制御に加えて、外乱により生ずる誤差(特に軌跡の誤差)を予測して補正を行う機能も備わっている。特に、送り軸の移動方向の反転時には摩擦が作用する方向も反転するので、その影響が軌跡の誤差に顕著に現れる。
 典型的なものとしては、円弧軌跡を指令した場合に、円弧軌跡の象限切り替り部分において送り軸の移動方向が反転する際に生じる追従誤差がある。この誤差は、半径方向の誤差量を拡大してプロットすると、軌跡が外側に突起状に飛び出た形状になることから、象限突起と呼ばれる。象限突起のような軌跡の追従誤差が発生すると、加工結果に筋や傷が発生することになり、好ましくない。
 そのため、例えば、特許文献1に示されているように従来では、位置指令方向が反転する際に、送り駆動機構の運動方向が反転する前後に発生する摩擦トルクの変化を推定し、推定された摩擦トルクの変化分をトルク指令に加算するという方法が実施されている。
特開2001-22417号公報
 しかし、上記従来の技術によれば、次のような2つの問題があった。
 第1の問題は、速度指令値符号が反転するタイミングで補正を行うが、同一方向移動中に一旦停止する場合には補正が行われないため、一旦停止後に動き出す際に追従誤差が発生し、軌跡に誤差が生じるということである。
 第2の問題は、移動方向が反転する直前に停止していたか否かを考慮していないため、停止時に摩擦外乱が減少する場合、方向反転の前に一旦停止すると補正量が過大になり、軌跡の追従誤差の抑制を十分に行うことができないということである。
 本発明は、上記に鑑みてなされたものであり、摩擦によって生ずる追従誤差を低減することが可能なサーボ制御装置を得ることを目的とする。
 上記目的を達成するため、本発明は、駆動するモータからのフィードバック位置を指令位置に追従させる駆動指令を演算するサーボ制御部を備え、前記駆動指令に従って前記モータを駆動するサーボ制御装置において、前記モータの応答を模擬して前記モータの速度が正・負・ゼロのいずれの状態であるかを判定しその判定結果を移動状態として出力する移動状態判定部と、前記判定された移動状態が変化するタイミングで前記移動状態の変化パターンに従って補正量を選択する補正量選択部と、サーボ制御部が演算した前記駆動指令に前記補正量選択部が出力する前記補正量を加算して補正駆動指令を生成し、該補正駆動指令を前記サーボ制御部が演算した前記駆動指令に代えて前記モータへの駆動指令とする加算部とを備えたことを特徴とする。
 本発明によれば、同一方向移動中に一旦停止する場合でも、摩擦分の補正を行うことができる。また、反転前に一旦停止する場合でも、停止時の摩擦分を考慮した適切な補正量で補正を行うことができる。よって、摩擦によって生ずる追従誤差を低減することが可能なサーボ制御装置が得られるという効果を奏する。
図1は、本発明の実施の形態1によるサーボ制御装置の構成を示すブロック図である。 図2は、図1に示すサーボ制御部の構成例を示すブロック図である。 図3は、図1に示す移動状態判定部の構成例を示すブロック図である。 図4は、実施の形態1による追従誤差低減動作を説明する図である。 図5は、本発明の実施の形態2によるサーボ制御装置の構成を示すブロック図である。 図6は、図5に示す移動状態判定部の構成例を示すブロック図である。 図7は、実施の形態2による追従誤差低減動作を説明する図である。 図8は、図1や図5に示すサーボ制御装置の制御対象である機械装置における機械系の一例を示す側面図である。
 以下に、本発明にかかるサーボ制御装置の実施の形態を図面に基づき詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1によるサーボ制御装置の構成を示すブロック図である。図1において、本実施の形態1によるサーボ制御装置1aの直接的な制御対象であるモータ2は、この明細書では回転モータであり、位置検出器と速度検出器のいずれか一方または両方が取り付けられている。モータ2からサーボ制御装置1aへ入力されるフィードバック位置aは、位置検出器の検出値、または、速度検出器の検出値の積分値である。
 図8は、本実施の形態1(図1)や後述する実施の形態2(図5)に示すサーボ制御装置の制御対象である機械装置における機械系の一例を示す側面図である。この明細書ではモータ2は、例えば図8に示すような機械系に組み込まれているとする。
 図8において、モータ2には、例えば位置検出器81が取り付けられている。位置検出器81は、ロータリエンコーダなどであり、検出したモータ位置を前記したフィードバック位置aとして出力する。
 また、モータ2の回転軸には所定長のボールねじ82が連結または形成されている。ボールねじ82には、ナット83、テーブル84、リニアガイド85からなる可動部が組み付けられている。ナット83はテーブル84の裏面に固定されており、ボールねじ82の回転を直動運動に変換する。また、リニアガイド85は、テーブル84を支持し、テーブル84の運動方向を拘束するためのものである。
 なお、位置検出器81において直接検出される位置はモータ2の回転角度であるが、この角度にモータ1回転あたりのテーブル移動距離であるボールねじリードを乗じてモータ1回転の角度2π[rad]で除することで、テーブルの移動方向の長さに換算することができる。以降では、モータ位置は、テーブル移動方向の長さに換算した値を用いることとする。
 さて、図1において、サーボ制御装置1aは、摩擦によって生ずる追従誤差を低減する構成として、サーボ制御部3と、移動状態判定部4aと、補正量選択部5aと、加算部6とを備えている。
 サーボ制御部3には、指令位置bが図示しないコントローラから入力されるとともに、位置検出器81にて検出されたモータ2の回転位置がフィードバック位置aとして入力される。サーボ制御部3では、例えば図2に示す構成により、フィードバック位置aが指令位置bに追従するようにサーボ制御が行われる。一般には、モータ2は、サーボ制御部3によるサーボ制御の結果演算されたトルク指令cに従って直接駆動される。しかし、本実施の形態では、加算部6が設けられ、サーボ制御部3によるサーボ制御の結果演算されたトルク指令cは加算部6の一方の入力となる。
 移動状態判定部4aは、例えば図3に示す構成により、図示しないコントローラから入力される指令位置bからモータ2の移動速度が正・ゼロ・負のいずれであるかを判定し、判定した結果を移動状態dとして補正量選択部5aへ出力する。
 補正量選択部5aは、移動状態判定部4aから入力された移動状態dに従ってトルク補正量eを選択し、加算部6の他方の入力とする。加算部6は、サーボ制御部3が演算したトルク指令cに、補正量選択部5aにて選択されたトルク補正量eを加算し、その加算したトルク指令fをサーボ制御装置1aの出力とする。
 補正量選択部5aの動作を具体的に説明する。補正量選択部5aでは、移動状態判定部4aの出力である移動状態dが正から負または負から正に変化したタイミングで、それぞれに対応するトルク補正量eを出力する。トルク補正量eの値は、移動方向反転時にモータ2に生ずる摩擦トルクを予めモデル化しておき、そのモデルに基づいて演算される。
 このモデルは、例えばクーロン摩擦のように移動方向と反対方向に一定の摩擦トルクが発生するものでもよい。また、図1では、加算部6を設け、求めたトルク補正量eをトルク指令cに加算する例を示したが、例えば、トルク指令に加算するかわりに、サーボ制御部3内の速度制御部(図2参照)において積分項に加算するようにしてもよい。
 また、補正量選択部5aでは、移動状態判定部4aの出力である移動状態dが速度ゼロから速度ゼロ以外(すなわち正または負)に変化したタイミングで、トルク補正量eを出力する。このときのトルク補正量eの値は、移動方向反転開始時にモータ2に生ずる摩擦トルクを予めモデル化しておき、そのモデルに基づいて演算される。
 次に、サーボ制御部3は、例えば図2に示すように、加減算部30,32と、位置制御部31と、微分演算部33と、速度制御部34とを備えている。
 図2において、加減算部30は、指令位置bとフィードバック位置aとの偏差(位置偏差)を求め、位置制御部31へ出力する。位置制御部31では、加減算部30から入力される位置偏差を小さくするように、比例制御などの位置制御処理が行われ、位置偏差を小さくする速度指令が出力される。また、微分演算部33では、フィードバック位置aを微分して実速度が求められる。
 なお、この微分処理は離散時間系においては差分処理に置き換えられる。すなわち、現在のフィードバック位置と1サンプル前のフィードバック位置の差を制御処理周期で除した値が、近似的な微分値として使用される。
 また、加減算部32は、位置制御部31にて求められた速度指令と微分演算部33にて求められた実速度との偏差(速度偏差)を求め、速度制御部34へ出力する。速度制御部34では、加減算部32から入力される速度偏差を小さくするように、比例・積分制御などの速度制御処理が行われ、トルク指令cが出力される。
 このようにサーボ制御部3は、指令位置bとフィードバック位置aの差を位置偏差として、位置偏差を抑制するようにフィードバック制御を行うことにより、フィードバック位置aが指令位置bに追従するように制御することができる。
 次に、移動状態判定部4aは、例えば図3に示すように、位置制御模擬部41と、モータ模擬部42と、モデル速度符号判定部43aとを備えている。
 図3において、位置制御模擬部41は、図示しないコントローラから入力される指令位置bと後述するモータ模擬部42が出力するモデル位置gとの偏差(位置偏差)が小さくなるように、比例制御などの位置制御処理を行い、位置偏差を小さくする指令であるモデル速度hを出力する。このモデル速度hは、モータ模擬部42とモデル速度符号判定部43aとに入力される。
 モータ模擬部42は、モデル速度hを用いてモータ2の特性を模擬する演算を行い、その演算結果をモデル位置gとして出力する。具体的には、モータ模擬部42は、モータ2の特性を模擬する演算としてモデル速度hを1回積分することを行い、その積分値をモデル位置gとして出力する。このモデル位置gは、図1や図2に示すフィードバック位置aに対応し、また、モデル速度hは、前述の位置制御部31が出力する速度指令に対応している。つまり、位置制御模擬部41は、前述の位置制御部31と同等の入力および出力を有し、内部においては位置制御部31と同一の演算処理を行っている。
 モデル速度符号判定部43aでは、モデル速度hの符号が正・ゼロ・負のいずれであるかを判定し、その判定結果を移動状態dとして出力する。ここで、モデル速度hの符号が速度ゼロであるか否かの判定では、まず、予め速度の閾値および時間の閾値を設定し、モデル速度hの絶対値が速度の閾値以下である状態を速度ゼロの状態であると定義する。その上で、速度ゼロの状態が時間の閾値で設定された時間以上連続して続いた場合に、移動状態が速度ゼロであると判定する。なお、速度の閾値および時間の閾値には、それぞれ速度の最小分解能およびサンプリング周期程度の正の定数を予め設定しておく。このような閾値を設定することで、演算誤差などに起因する移動状態の誤判定を防ぐことができる。
 このように移動状態判定部4aでは、モータ2の応答を模擬し、模擬した応答であるモデル位置に対して速度の符号判定を行うことで、移動状態dの判定を安定して行うことができる。
 以下、図4を参照して、実施の形態1による追従誤差低減動作について説明する。図4では、モータ駆動時の位置xと摩擦トルクfとの関係が示されている。図4において、状態(1)~状態(7)は、モータ2の移動状態の変化パターン例を示している。
 状態(1)は、位置x1で停止している状態(移動状態=ゼロ)を示している。状態(2)は、位置x1から位置x2まで正方向に移動している状態(移動状態=正)を示している。状態(3)は、位置x2で停止している状態(移動状態=ゼロ)を示している。状態(4)は、位置x2から位置x3まで正方向に移動している状態(移動状態=正)を示している。状態(5)は、位置x3にて停止せずに負方向に位置x2まで移動している状態(移動状態=負)を示している。状態(6)は、位置x2で停止している状態(移動状態=ゼロ)を示している。状態(7)は、位置x2から負方向に位置x1まで移動している状態(移動状態=負)を示している。
 摩擦トルクは、移動方向と反対の方向に発生し、その大きさはクーロン摩擦の場合一定値となる。図4では、摩擦トルクの大きさをfとおくと、正方向に移動する際には-fの摩擦トルクが生じ、負方向に移動する際には+fの摩擦トルクが生ずること、また、停止中の摩擦トルクは0となることが示されている。
 移動状態が変化するときに摩擦トルクが変化し、その変化が制御系に外乱として作用し過渡的な位置の追従誤差を発生させる。また、移動状態の変化パターンによって、発生する摩擦トルクも異なったパターンで変化する。
 そこで、補正量選択部5aでは、移動状態判定部4aが出力する移動状態dが変化するパターンに従ってトルク補正量eの設定を行う。トルク補正量eは、移動状態dが変化する際の摩擦トルクの変化を打ち消す量とする。移動状態の変化パターンごとのトルク補正量eは、予めパラメータとして設定しておく。
 すなわち、移動状態dが正から負に変化する場合は、摩擦トルクが-fから+fに変化するので、トルク補正量eは両者の差を打ち消す量である-2fとする。同様に、移動状態dが負から正に変化する場合は、摩擦トルクが+fから-fに変化するので、トルク補正量eは+2fとする。さらに、移動状態が速度ゼロから負に変化する場合は、摩擦トルクが0から+fに変化するので、トルク補正量eは両者の差を打ち消す量である-fとする。同様に、移動状態が速度ゼロから正に変化する場合は、摩擦トルクが0から-fに変化するので、トルク補正量eは+fとする。
 本実施の形態1で想定している移動経路の場合、状態(1)から状態(2)、および状態(3)から状態(4)では、それぞれ移動状態が速度ゼロから正に変化するので、トルク補正量eは+fが選択される。また、状態(4)から状態(5)では、移動状態が正から負に変化するので、トルク補正量eは-2fが選択される。さらに、状態(6)から状態(7)では、移動状態が速度ゼロから負に変化するので、トルク補正量eは-fが選択される。
 以上のように、実施の形態1によれば、同一方向移動中に一旦停止する場合でも、モータへ出力するトルク指令に補正を行うので、摩擦トルク変化の補正を行うことができる。したがって、移動状態変化時の摩擦トルク変化に起因する追従誤差を補正することが可能となり、軌跡の追従誤差を抑制することができる。このとき、モータの応答を模擬し、模擬した応答であるモデル位置に対して速度の符号判定を行うので、移動状態の判定を安定して行うことができる。
実施の形態2.
 図5は、本発明の実施の形態2によるサーボ制御装置の構成を示すブロック図である。なお、図5では、図1(実施の形態1)に示した構成要素と同一ないし同等である構成要素には同一の符号が付されている。ここでは、本実施の形態2に関わる部分を中心に説明する。
 図5において、本実施の形態2によるサーボ制御装置1bでは、図1(実施の形態1)に示した構成において、移動状態判定部4aに代えて、移動状態判定部4bが設けられている。また、符号を変えた補正量選択部5bでは、補正量選択部5aに若干の機能追加がなされている。
 図6は、図5に示す移動状態判定部の構成例を示すブロック図である。図6に示すように、移動状態判定部4bは、図3(実施の形態1)に示した構成において、速度ゼロ直前の移動状態記憶部44が追加され、符号を変えたモデル速度符号判定部43bでは、モデル速度符号判定部43aに若干の機能追加がなされている。
 モデル速度符号判定部43bは、モデル速度符号判定部43aと同様に、モデル速度hの符号が正・ゼロ・負のいずれであるかを判定し、その判定結果を移動状態(本実施の形態2では「現在の移動状態」と称する)dとして出力する。加えて、本実施の形態2ではモデル速度符号判定部43bは、判定した現在の移動状態dが速度ゼロである場合に、つまり、現在の移動状態dが速度ゼロ以外から速度ゼロに変化した場合に、その速度ゼロ直前の移動状態kを速度ゼロ直前の移動状態記憶部44に出力して記憶させることを行う。速度ゼロ直前の移動状態記憶部44は、記憶している速度ゼロ直前の移動状態kを補正量選択部5bへ出力する。
 本実施の形態2では、停止中の摩擦トルクが0にならないような場合を想定している。これは、図8に示した例で言えば、例えばテーブル84を支持するリニアガイド85にバネ特性がある場合である。この場合、停止状態から移動する際の摩擦トルクの変化量は、停止状態になる直前の移動方向に依存して変化することになる。そのため、本実施の形態2では、移動状態が速度ゼロになる直前の移動状態を記憶しておき、補正量選択部5bからの要求に応じて、移動状態判定部4bから補正量選択部5bへ出力できるようにした。
 補正量選択部5bは、モデル速度符号判定部43bが出力する現在の移動状態dを監視し、現在の移動状態dが正から負または負から正に変化した場合は、実施の形態1にて説明した補正量選択部5aと同様内容のトルク補正量eを加算部6へ出力するが、現在の移動状態dが速度ゼロから速度ゼロ以外に変化する場合は、本実施の形態2では、速度ゼロ直前の移動状態記憶部44から速度ゼロ直前の移動状態kを読み出し、その読み出した「速度ゼロ直前の移動状態k」と「変化後の移動状態(=現在の移動状態d)」とが異なる場合に、本実施の形態2によるトルク補正量eを選択し、加算部6へ出力するようになっている。
 実施の形態2によれば、以上のように構成される移動状態判定部4bと補正量選択部5bとの協働により、反転前に一旦停止する場合でも、停止時の摩擦トルク分を考慮した適切な補正量でモータへ出力するトルク指令の補正を行うことができる。
 以下、図7を参照して、実施の形態2による追従誤差低減動作について説明する。図7では、図4と同様に、モータ駆動時の位置xと摩擦トルクfとの関係が示されている。但し、モータ2の変化パターン(状態(1)~状態(7))は実施の形態1と同様である。本実施の形態2では、摩擦トルクの設定が図4とは異なり、次のようになっている。
 摩擦トルクは、移動方向と反対の方向に発生し、その大きさはクーロン摩擦の場合一定値となる。図7では、正方向に移動する際にはf1の摩擦トルクが生じ、負方向に移動する際にはf4の摩擦トルクが生ずるとしている。また、停止中の摩擦トルクは、前記したように0にならないような場合を想定しており、正方向の移動後に停止した場合はf2の摩擦トルクが生じ、負方向の移動後に停止した場合はf3の摩擦トルクが生ずるとしている。
 移動状態が変化するときに摩擦トルクが変化し、その変化が制御系に外乱として作用し過渡的な位置の追従誤差を発生させる。また、移動状態の変化パターンによって、発生する摩擦トルクも異なったパターンで変化する。
 補正量選択部5bでは、移動状態判定部4bが出力する現在の移動状態dが変化するパターンに従ってトルク補正量eの設定を行う。トルク補正量eは、現在の移動状態dが変化する際の摩擦トルクの変化を打ち消す量とし、現在の移動状態dの変化パターンごとのトルク補正量eを予めパラメータとして設定しておく。この点は実施の形態1と同様であるが、実施の形態2では、摩擦トルクの設定が実施の形態1とは異なるので、次のようになる。
 すなわち、補正量選択部5bでは、現在の移動状態dが正から負に変化する場合は、摩擦トルクがf1からf4に変化するので、トルク補正量eは両者の差を打ち消す量である(f1-f4)とする。同様に、現在の移動状態dが負から正に変化する場合は、摩擦トルクがf4からf1に変化するので、トルク補正量eは(f4-f1)とする。
 また、現在の移動状態dが速度ゼロから正に変化する場合で、速度ゼロ直前の移動状態記憶部44から読み出した「移動状態が速度ゼロになる直前の移動状態k」が正であった場合は、変化前後の移動方向は同一方向である。この場合は摩擦トルクがf2からf1に変化するので、トルク補正量eは両者の差を打ち消す量である(f2-f1)とする。
 一方、現在の移動状態dが速度ゼロから正に変化する場合で、速度ゼロ直前の移動状態記憶部44から読み出した「移動状態が速度ゼロになる直前の移動状態k」が負であった場合は、変化前後の移動方向は同一方向ではなく異なっている。この場合は摩擦トルクがf3からf1に変化するので、トルク補正量eは(f3-f1)とする。
 さらに、現在の移動状態dが速度ゼロから負に変化する場合で、速度ゼロ直前の移動状態記憶部44から読み出した「移動状態が速度ゼロになる直前の移動状態k」が正であった場合は、変化前後の移動方向は同一方向ではなく異なっている。この場合は摩擦トルクがf2からf4に変化するので、トルク補正量eは両者の差を打ち消す量である(f2-f4)とする。
 一方、現在の移動状態dが速度ゼロから負に変化する場合で、速度ゼロ直前の移動状態記憶部44から読み出した「移動状態が速度ゼロになる直前の移動状態」が負であった場合は、変化前後の移動方向は同一方向である。この場合は摩擦トルクがf3からf4に変化するので、トルク補正量eは(f3-f4)とする。
 本実施の形態2で想定している移動経路の場合、状態(1)から状態(2)では、現在の移動状態dが速度ゼロから正に変化し、かつ、速度ゼロ直前の移動状態記憶部44から読み出した「移動状態が速度ゼロになる直前の移動状態k」は負であるので、つまり変化前後の移動方向が異なるので、トルク補正量eは(f3-f1)が選択される。
 次に、状態(3)から状態(4)では、現在の移動状態dが速度ゼロから正に変化し、かつ、速度ゼロ直前の移動状態記憶部44から読み出した「移動状態が速度ゼロになる直前の移動状態k」は正であるので、つまり変化前後の移動方向が同じであるので、トルク補正量eは(f2-f1)が選択される。
 また、状態(4)から状態(5)では、現在の移動状態dが正から負に変化するので、トルク補正量eは(f4-f1)が選択される。さらに状態(6)から状態(7)では、現在の移動状態dが速度ゼロから負に変化し、かつ、速度ゼロ直前の移動状態記憶部44から読み出した「移動状態が速度ゼロになる直前の移動状態k」は負であるので、変化前後の移動方向が同じ場合に用いるトルク補正量eは(f3-f4)が選択される。
 以上のように、実施の形態2によれば、同一方向移動中に一旦停止する場合でもモータへ出力するトルク指令に補正を行うことができるので、実施の形態1と同様に、移動状態変化時の摩擦トルク変化に起因する追従誤差を補正することが可能となる。加えて、実施の形態2では、反転前に一旦停止する場合でも、停止時の摩擦トルク残存分を考慮した適切な補正量でモータへ出力するトルク指令に補正を行うことができるので、反転前後の移動状態によらず軌跡の追従誤差を常に適正に補正することができる。このとき、実施の形態1と同様に、モータの応答を模擬し、模擬した応答であるモデル位置に対して速度の符号判定を行うので、移動状態の判定を安定して行うことができる。
 なお、以上の各実施の形態においては、テーブルが移動する場合について説明したが、工具やその他の加工ヘッドなど、他の機械要素が移動する場合であっても、同様に適用できる。
 また、以上の各実施の形態において、トルク指令のかわりに電流指令を用いてもよい。その場合、電流指令にトルク定数を乗じるとトルク指令に換算できる。
 また、以上の各実施の形態においては、モータの回転位置をフィードバック位置として用いるものとして説明したが、テーブルの位置をリニアスケールなどで検出してフィードバックするものであってもよい。その場合、リニアスケールなどで検出したテーブルの位置をフィードバック位置として用いる。
 加えて、以上の各実施の形態においては、制御対象の構成要素の一つであるモータは、駆動力をトルクと表記して回転モータであることを明示しているが、本発明で言うモータは、回転モータに限定されるものではなく、リニアモータであってもよい。つまり、実施の形態1,2の内容は、トルクを推力に置き換えれば、そのまま、制御対象の構成要素の一つであるモータがリニアモータである場合にも適用できる。
 以上のように、本発明にかかるサーボ制御装置は、摩擦によって生ずる追従誤差を低減することが可能なサーボ制御装置として有用である。
 1a,1b サーボ制御装置、2 モータ、3 サーボ制御部、4a,4b 移動状態判定部、5a,5b 補正量選択部、6 加算部、30,32 加減算部、31 位置制御部、33 微分演算部、34 速度制御部、41 位置制御模擬部、42 モータ模擬部、43a,43b モデル速度符号判定部、44 速度ゼロ直前の移動状態記憶部、81 位置検出器、82 ボールねじ、83 ナット、84 テーブル、85 リニアガイド。

Claims (6)

  1.  駆動するモータからのフィードバック位置を指令位置に追従させる駆動指令を演算するサーボ制御部を備え、前記駆動指令に従って前記モータを駆動するサーボ制御装置において、
     前記モータの応答を模擬して前記モータの速度が正・負・ゼロのいずれの状態であるかを判定しその判定結果を移動状態として出力する移動状態判定部と、
     前記判定された移動状態が変化するタイミングで前記移動状態の変化パターンに従って補正量を選択する補正量選択部と、
     サーボ制御部が演算した前記駆動指令に前記補正量選択部が出力する前記補正量を加算して補正駆動指令を生成し、該補正駆動指令を前記サーボ制御部が演算した前記駆動指令に代えて前記モータへの駆動指令とする加算部と
     を備えたことを特徴とするサーボ制御装置。
  2.  前記サーボ制御部は、
     前記指令位置と前記フィードバック位置との差である位置偏差を小さくするように位置制御演算を行う位置制御部と、
     前記フィードバック位置を微分する微分演算部と、
     前記位置制御部の出力と前記微分演算部の出力との差である速度偏差を小さくするように速度制御演算を行って前記駆動指令を出力する速度制御部と
     を備えることを特徴とする請求項1に記載のサーボ制御装置。
  3.  前記移動状態判定部は、
     前記指令位置とモデル位置とを入力とし前記位置制御部と同一の演算を行ってモデル速度を演算する位置制御模擬部と、
     前記モデル速度に対するフィードバック位置を模擬して前記モデル位置を出力するモータ模擬部と、
     前記モデル速度の符号が正・ゼロ・負のいずれであるか判定し判定結果を前記移動状態として前記補正量選択部へ出力するモデル速度符号判定部と
     を備えることを特徴とする請求項1に記載のサーボ制御装置。
  4.  前記補正量選択部は、
     前記補正量を、前記移動状態が正から負または負から正に変化した場合と、前記移動状態が速度ゼロから速度ゼロ以外に変化した場合とのそれぞれの場合に対応して出力する
     ことを特徴とする請求項1に記載のサーボ制御装置。
  5.  前記移動状態判定部は、
     前記移動状態が速度ゼロ以外から速度ゼロに変化した時点で、速度ゼロに変化する直前の移動状態を記憶させるための速度ゼロ直前の移動状態記憶部
     を備え、記憶している速度ゼロに変化する直前の移動状態を速度ゼロ直前の移動状態として補正量選択部へ出力する
     ことを特徴とする請求項3に記載のサーボ制御装置。
  6.  前記補正量選択部は、
     前記移動状態が正から負または負から正に変化した場合にそれぞれに対応した補正量を出力するとともに、
     前記移動状態が速度ゼロから速度ゼロ以外に変化し、かつ前記速度ゼロ直前の移動状態と変化後の移動状態とが異なる場合に、それに対応した補正量を出力する
     ことを特徴とする請求項5に記載のサーボ制御装置。
PCT/JP2013/077803 2013-02-07 2013-10-11 サーボ制御装置 WO2014122822A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014560637A JP5875714B2 (ja) 2013-02-07 2013-10-11 サーボ制御装置およびサーボ制御方法
CN201380072456.2A CN104981749B (zh) 2013-02-07 2013-10-11 伺服控制装置
DE112013006613.0T DE112013006613B4 (de) 2013-02-07 2013-10-11 Servo-Regelungsvorrichtung
US14/650,401 US10031507B2 (en) 2013-02-07 2013-10-11 Servo control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-022431 2013-02-07
JP2013022431 2013-02-07

Publications (1)

Publication Number Publication Date
WO2014122822A1 true WO2014122822A1 (ja) 2014-08-14

Family

ID=51299431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077803 WO2014122822A1 (ja) 2013-02-07 2013-10-11 サーボ制御装置

Country Status (5)

Country Link
US (1) US10031507B2 (ja)
JP (1) JP5875714B2 (ja)
CN (1) CN104981749B (ja)
DE (1) DE112013006613B4 (ja)
WO (1) WO2014122822A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5968572B1 (ja) * 2015-06-18 2016-08-10 三菱電機株式会社 制御パラメータ調整装置
US10656616B2 (en) 2017-01-25 2020-05-19 Omron Corporation Control device, control system, and recording medium
US10985684B2 (en) 2016-03-08 2021-04-20 Panasonic Intellectual Property Management Co., Ltd. Motor control device
WO2021100416A1 (ja) * 2019-11-21 2021-05-27 パナソニックIpマネジメント株式会社 ロボット制御方法及びロボット制御装置
JP2022090463A (ja) * 2020-12-07 2022-06-17 三菱電機株式会社 モータ制御装置
JP7199616B1 (ja) * 2022-05-18 2023-01-05 三菱電機株式会社 加工結果評価装置、加工結果評価方法、加工条件決定装置、および加工条件決定方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10452051B2 (en) * 2016-10-04 2019-10-22 Mitsubishi Electric Corporation Numerical control device
JP6497401B2 (ja) * 2017-03-09 2019-04-10 オムロン株式会社 シミュレーション装置、シミュレーション方法、及びシミュレーションプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218719A (ja) * 1991-03-29 1992-08-10 Nippon Telegr & Teleph Corp <Ntt> 状態観測方法
JP2001175313A (ja) * 1999-10-05 2001-06-29 Mitsubishi Electric Corp 数値制御システムおよびそれに用いられる位置指令値補正装置
JP2005266932A (ja) * 2004-03-16 2005-09-29 Okuma Corp 駆動制御方法および駆動制御装置
JP2008210273A (ja) * 2007-02-27 2008-09-11 Tokyo Univ Of Agriculture & Technology 摩擦補償方法、摩擦補償器及びモータ制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238508A (ja) * 1990-02-16 1991-10-24 Omron Corp 非線形摩擦補償装置
JP2000010612A (ja) 1998-06-19 2000-01-14 Yaskawa Electric Corp 突起補償方法および突起補償機能つきモータ制御装置
JP3578634B2 (ja) 1998-07-17 2004-10-20 東芝機械株式会社 円弧状指令の作成方法
JP2001022417A (ja) * 1999-07-07 2001-01-26 Okuma Corp 位置制御装置
GB2373066B (en) * 2000-11-01 2004-11-10 Mitsubishi Electric Corp Servo controller method and its apparatus
JP4391218B2 (ja) 2003-02-20 2009-12-24 三菱電機株式会社 サーボ制御装置
CN100470433C (zh) * 2003-04-11 2009-03-18 三菱电机株式会社 伺服控制器
JP4687809B2 (ja) * 2009-03-31 2011-05-25 ブラザー工業株式会社 モータ制御装置
CN102075127B (zh) * 2011-01-04 2012-09-05 北京航空航天大学 一种永磁同步电机伺服驱动装置及其位置控制方法
US9625349B2 (en) * 2012-02-29 2017-04-18 Fisher Controls International Llc Time-stamped emissions data collection for process control devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218719A (ja) * 1991-03-29 1992-08-10 Nippon Telegr & Teleph Corp <Ntt> 状態観測方法
JP2001175313A (ja) * 1999-10-05 2001-06-29 Mitsubishi Electric Corp 数値制御システムおよびそれに用いられる位置指令値補正装置
JP2005266932A (ja) * 2004-03-16 2005-09-29 Okuma Corp 駆動制御方法および駆動制御装置
JP2008210273A (ja) * 2007-02-27 2008-09-11 Tokyo Univ Of Agriculture & Technology 摩擦補償方法、摩擦補償器及びモータ制御装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5968572B1 (ja) * 2015-06-18 2016-08-10 三菱電機株式会社 制御パラメータ調整装置
WO2016203614A1 (ja) * 2015-06-18 2016-12-22 三菱電機株式会社 制御パラメータ調整装置
US10108177B2 (en) 2015-06-18 2018-10-23 Mitsubishi Electric Corporation Control parameter adjustment device
US10985684B2 (en) 2016-03-08 2021-04-20 Panasonic Intellectual Property Management Co., Ltd. Motor control device
US10656616B2 (en) 2017-01-25 2020-05-19 Omron Corporation Control device, control system, and recording medium
JPWO2021100416A1 (ja) * 2019-11-21 2021-05-27
WO2021100416A1 (ja) * 2019-11-21 2021-05-27 パナソニックIpマネジメント株式会社 ロボット制御方法及びロボット制御装置
CN114466733A (zh) * 2019-11-21 2022-05-10 松下知识产权经营株式会社 机器人控制方法以及机器人控制装置
JP7113200B2 (ja) 2019-11-21 2022-08-05 パナソニックIpマネジメント株式会社 ロボット制御方法及びロボット制御装置
JP2022090463A (ja) * 2020-12-07 2022-06-17 三菱電機株式会社 モータ制御装置
JP7505695B2 (ja) 2020-12-07 2024-06-25 三菱電機株式会社 モータ制御装置
JP7199616B1 (ja) * 2022-05-18 2023-01-05 三菱電機株式会社 加工結果評価装置、加工結果評価方法、加工条件決定装置、および加工条件決定方法
WO2023223471A1 (ja) * 2022-05-18 2023-11-23 三菱電機株式会社 加工結果評価装置、加工結果評価方法、加工条件決定装置、および加工条件決定方法

Also Published As

Publication number Publication date
DE112013006613T5 (de) 2015-10-22
JP5875714B2 (ja) 2016-03-02
US10031507B2 (en) 2018-07-24
JPWO2014122822A1 (ja) 2017-01-26
CN104981749B (zh) 2019-01-18
DE112013006613B4 (de) 2023-04-27
US20150323924A1 (en) 2015-11-12
CN104981749A (zh) 2015-10-14

Similar Documents

Publication Publication Date Title
JP5875714B2 (ja) サーボ制御装置およびサーボ制御方法
KR101688360B1 (ko) 서보 제어 장치
US10162912B2 (en) Friction identification method and friction identification device
JP5890473B2 (ja) モータを制御するモータ制御装置
JP5646073B2 (ja) サーボ制御装置
JP6051970B2 (ja) 数値制御装置と摩擦補償方法
WO2014091840A1 (ja) サーボ制御装置
JP2007226836A (ja) 数値制御工作機械の制御方法及び数値制御工作機械
JP5836206B2 (ja) サーボ制御装置
US9804583B2 (en) Numerical control device
JP6211240B1 (ja) 数値制御装置
JP6370866B2 (ja) サーボモータ制御装置、サーボモータ制御方法、及びサーボモータ制御用プログラム
CN109143981B (zh) 计算机可读取的信息记录介质、评价方法以及控制装置
CN107894749B (zh) 伺服电动机控制装置及其方法、计算机可读取的记录介质
JPWO2008093486A1 (ja) 慣性モーメント同定装置とその同定方法、ならびにその同定装置を備えたモータ制御装置
JP2019221032A (ja) 電動機の制御装置
US20180157237A1 (en) Servo motor controller, servo motor control method, and non-transitory computer-readable medium storing computer program
JP4383934B2 (ja) 駆動制御方法および駆動制御装置
JP6048174B2 (ja) 数値制御装置とロストモーション補償方法
WO2018042554A1 (ja) サーボ制御装置
JP2019188517A (ja) 曲面トレース装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014560637

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14650401

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130066130

Country of ref document: DE

Ref document number: 112013006613

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874317

Country of ref document: EP

Kind code of ref document: A1