WO2014118958A1 - 永久磁石同期電動機の減磁診断装置 - Google Patents
永久磁石同期電動機の減磁診断装置 Download PDFInfo
- Publication number
- WO2014118958A1 WO2014118958A1 PCT/JP2013/052270 JP2013052270W WO2014118958A1 WO 2014118958 A1 WO2014118958 A1 WO 2014118958A1 JP 2013052270 W JP2013052270 W JP 2013052270W WO 2014118958 A1 WO2014118958 A1 WO 2014118958A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic flux
- permanent magnet
- magnet synchronous
- synchronous motor
- demagnetization
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/24—Vector control not involving the use of rotor position or rotor speed sensors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/02—Providing protection against overload without automatic interruption of supply
- H02P29/024—Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
- H02P29/0241—Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/34—Testing dynamo-electric machines
- G01R31/343—Testing dynamo-electric machines in operation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2207/00—Indexing scheme relating to controlling arrangements characterised by the type of motor
- H02P2207/05—Synchronous machines, e.g. with permanent magnets or DC excitation
Definitions
- the present invention relates to a demagnetization diagnostic apparatus for a permanent magnet synchronous motor.
- Patent Document 1 proposes a method of detecting the armature flux linkage based on information obtained from each of a current sensor, a speed / position sensor, and a temperature sensor.
- the method of detecting the armature flux linkage based on the information obtained from each of the current sensor, the speed / position sensor, and the temperature sensor uses only the current sensor without using the speed / position sensor. If an attempt is made to implement in an existing system in which a permanent magnet synchronous motor is driven and controlled by sensorless vector control, it is necessary to install new equipment and wiring such as a speed / position sensor and a temperature sensor. If it does so, there exists a problem that the installation cost and reliability of a speed / position sensor and a temperature sensor affect the expense, specification, and performance of a system using a permanent magnet synchronous motor.
- the present invention has been made in view of the above, and a permanent magnet capable of diagnosing the presence or absence of demagnetization of a permanent magnet synchronous motor by using a minimum necessary sensor without requiring a speed / position sensor and a temperature sensor.
- An object is to obtain a demagnetization diagnostic device for a synchronous motor.
- a demagnetization diagnostic apparatus for a permanent magnet synchronous motor flows to the permanent magnet synchronous motor, a power converter that applies an AC voltage to the permanent magnet synchronous motor, and the permanent magnet synchronous motor
- a current sensor for detecting a motor current
- an adaptive magnetic flux observer for estimating a magnetic flux of the permanent magnet synchronous motor based on an AC voltage applied by the power converter and a motor current detected by the current sensor
- the permanent magnet synchronization A magnetic flux comparator that compares a magnetic flux estimated value estimated by the adaptive magnetic flux observer with a pre-set magnetic flux reference value during no-load operation of the motor and outputs a demagnetization diagnosis result, and is input to the magnetic flux comparator
- the estimated magnetic flux value is a state quantity of the adaptive magnetic flux observer.
- the magnetic flux of the permanent magnet synchronous motor estimated by the adaptive magnetic flux observer during no-load operation based on the AC voltage applied by the power converter and the motor current detected by the current sensor, and a preset magnetic flux reference The value is compared to diagnose the presence or absence of demagnetization.
- FIG. 1 is a block diagram showing a configuration of a demagnetization diagnostic apparatus for a permanent magnet synchronous motor according to an embodiment of the present invention.
- FIG. 1 is a block diagram showing a configuration of a demagnetization diagnosis apparatus for a permanent magnet synchronous motor according to an embodiment of the present invention.
- the demagnetization diagnosis apparatus for a permanent magnet synchronous motor 1 includes a sensorless vector control unit 2 and a demagnetization diagnosis unit 3.
- the sensorless vector control unit 2 is a well-known drive control unit that realizes speed control and torque control of the permanent magnet synchronous motor 1 using only the current sensor 8 without using a speed / position sensor. Therefore, in the present embodiment, the permanent magnet synchronous motor 1 may be of a type equipped with a speed / position sensor.
- the demagnetization diagnosis unit 3 diagnoses the presence or absence of demagnetization of the permanent magnet synchronous motor 1 during no-load operation using the estimated magnetic flux ⁇ dr ⁇ estimated by the applied magnetic flux observer 4 provided in the sensorless vector control unit 2. Is configured to do.
- the power converter 5 includes a three-phase switching circuit that uses the output voltage Vdc of the DC power supply 6 as a bus voltage.
- the permanent magnet synchronous motor 1 is connected to the output terminal of the three-phase switching circuit.
- the power converter 5 is a three-phase voltage command value Vu *, Vv *, Vw output by the voltage coordinate converter 7 converting and outputting a PWM (pulse width modulation) signal for switching the three-phase switching circuit.
- PWM pulse width modulation
- the power converter 5 applies the converted three-phase AC voltage to the permanent magnet synchronous motor 1.
- three-phase motor currents iu, iv, iw flowing through the permanent magnet synchronous motor 1 are detected by the current sensor 8 and input to the current coordinate converter 9.
- the voltage coordinate converter 7 is a rotor in which the integrator 10 generates “d-axis voltage command Vd *, q-axis voltage command Vq *” which is a voltage command on the rotation orthogonal biaxial coordinates (d-axis, q-axis). Are converted into three-phase voltage command values Vu *, Vv *, and Vw *. Further, the current coordinate converter 9 converts the three-phase motor currents iu, iv, iw detected by the current sensor 8 into rotation orthogonal biaxial coordinates (d) according to the reference phase ⁇ of the rotor generated by the integrator 10. Are converted into “d-axis current id, q-axis current iq”, which is a detected current value on the (axis, q-axis).
- d-axis current id, q-axis current iq which is a detected current value on the rotation orthogonal biaxial coordinates (d-axis, q-axis) converted by the current coordinate converter 9
- the d-axis current id is an adder / subtracter.
- 11 and 12 are input to the subtraction input terminals ( ⁇ )
- the q-axis current iq is input to the subtraction input terminals ( ⁇ ) of the adder / subtractors 13 and 14.
- a d-axis current command id * is input to the addition input terminal (+) of the adder / subtractor 11 from a controller (not shown).
- the q-axis current command iq * output from the speed controller 15 is input to the addition input terminal (+) of the adder / subtractor 13.
- the adder / subtractor 11 obtains a deviation between the d-axis current command id * input from a controller (not shown) and the d-axis current id converted by the current coordinate converter 9.
- the d-axis current controller 16 calculates a d-axis voltage command Vd * for reducing the deviation obtained by the adder / subtractor 11 and outputs it to the voltage coordinate converter 7 and the adaptive magnetic flux observer 4.
- the adder / subtractor 13 obtains a deviation between the q-axis current command iq * input from the speed controller 15 and the q-axis current iq converted by the current coordinate converter 9.
- the q-axis current controller 17 calculates a q-axis voltage command Vq * for reducing the deviation obtained by the adder / subtractor 13 and outputs it to the voltage coordinate converter 7 and the adaptive magnetic flux observer 4.
- the adder / subtractor 18 obtains a deviation between the speed command value ⁇ * input from a controller (not shown) and the estimated speed value ⁇ r ⁇ output from the integrator 19.
- the speed controller 15 generates a torque command from the speed deviation obtained by the adder / subtracter 18 and outputs it as a q-axis current command iq *.
- the adaptive magnetic flux observer 4 has a built-in virtual motor model. First, based on the virtual motor model and the d-axis voltage command Vd * and the q-axis voltage command Vq *, the q-axis current estimated value iq ⁇ and the d-axis current estimated value. id ⁇ is calculated, the q-axis current estimated value iq ⁇ is output to the addition input terminal (+) of the adder / subtractor 14, and the d-axis current estimated value id ⁇ is output to the addition input terminal (+) of the adder / subtractor 12.
- the adder / subtracter 12 obtains a deviation (d-axis current estimation error) e_id between the calculated d-axis current estimated value id ⁇ and the detected d-axis current id. Further, the adder / subtracter 14 obtains a deviation (q-axis current estimation error) e_iq between the calculated q-axis current estimated value iq ⁇ and the detected q-axis current iq.
- the adaptive magnetic flux observer 4 estimates and calculates the estimated magnetic flux ⁇ dr ⁇ based on the virtual motor model, the d-axis current estimation error e_id, and the q-axis current estimation error e_iq.
- the acceleration estimator 20 obtains an acceleration estimated value based on the magnetic flux estimated value ⁇ dr ⁇ and the q-axis current estimation error e_iq, and the integrator 19 receives the acceleration estimated value and the integrator 19 receives the acceleration estimated value ⁇ r ⁇ . Ask for.
- the speed corrector 21 performs speed correction based on the magnetic flux estimated value ⁇ dr ⁇ , the d-axis current estimation error e_id, and the q-axis current estimation error e_iq. Then, the adder 22 obtains the total value of the speed estimated value ⁇ r ⁇ output from the integrator 19 and the speed value corrected by the speed corrector 21.
- the integrator 10 generates the reference phase ⁇ of the rotor based on the total value obtained by the adder 22.
- the demagnetization diagnosis unit 3 includes a magnetic flux comparator 23 and a multiplier 24.
- One input of the magnetic flux comparator 23 is the estimated magnetic flux ⁇ dr ⁇ obtained by the adaptive magnetic flux observer 4.
- the estimated magnetic flux ⁇ dr ⁇ input to the magnetic flux comparator 23 is a state quantity of the adaptive magnetic flux observer 4 when the sensorless vector control unit 2 is performing no-load operation control.
- the other input of the magnetic flux comparator 23 is “K ⁇ ⁇ ref” obtained by multiplying a predetermined magnetic flux reference value ⁇ ref by a coefficient K indicating a predetermined degree of demagnetization by the multiplier 24.
- the predetermined magnetic flux reference value ⁇ ref may be a design value, for example.
- a permanent magnet synchronous motor is driven and controlled by sensorless vector control including an adaptive magnetic flux observer that can accurately estimate the magnetic flux of the permanent magnet synchronous motor using only a current sensor.
- the estimated magnetic flux value during no-load operation by the adaptive magnetic flux observer can be used for demagnetization diagnosis.
- the speed / position sensor is not used, and the type of sensor required is minimized to the current sensor alone, so that the rotor
- the estimation of the magnetic flux and the diagnosis of the presence or absence of demagnetization of the permanent magnet synchronous motor can be performed in parallel.
- no temperature sensor is required for magnetic flux estimation and demagnetization diagnosis.
- the demagnetization diagnosis apparatus for a permanent magnet synchronous motor can detect the demagnetization of a permanent magnet synchronous motor by using a minimum necessary sensor without using a speed / position sensor and a temperature sensor. It is useful as a demagnetization diagnosis device for permanent magnet synchronous motors that can be diagnosed by using it.
- 1 permanent magnet synchronous motor 1 permanent magnet synchronous motor, 2 sensorless vector control unit, 3 demagnetization diagnosis unit, 4 adaptive magnetic flux observer, 5 power converter, 6 DC power supply, 7 voltage coordinate converter, 8 current sensor, 9 current coordinate converter, 10, 19 integrator, 11, 12, 13, 14, 18 adder / subtractor, 15 speed controller, 16 d-axis current controller, 17 q-axis current controller, 20 acceleration estimator, 21 speed corrector, 22 adder, 23 Magnetic flux comparator, 24 multiplier.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
電力変換器が印加する交流電圧と電流センサが検出したモータ電流とに基づいて適応磁束オブザーバが無負荷運転時に推定する永久磁石同期電動機の磁束と、予め設定された磁束参照値とを比較して減磁の有無を診断する。これによって、速度・位置センサ及び温度センサを用いずに、必要とするセンサの種類を電流センサのみの最小限に抑えた減磁診断装置を得られる。
Description
本発明は、永久磁石同期電動機の減磁診断装置に関するものである。
永久磁石同期電動機の減磁の有無を診断するには、永久磁石同期電動機の電機子鎖交磁束を検出する必要がある。例えば特許文献1では、その電機子鎖交磁束を、電流センサ、速度・位置センサ及び温度センサの各センサから得られる情報を基に検出する方法が提案されている。
しかし、電流センサ、速度・位置センサ及び温度センサの各センサから得られる情報を基に電機子鎖交磁束を検出する方法は、例えば速度・位置センサを用いずに電流センサのみを用いて、いわゆるセンサレスベクトル制御により永久磁石同期電動機を駆動制御している既存のシステムにおいて実施しようとすると、速度・位置センサ及び温度センサなる新たな機器や配線を設置する必要がある。そうすると、速度・位置センサ及び温度センサの設置コストや信頼性が永久磁石同期電動機を用いるシステムの費用、仕様、性能に影響を与えるという問題がある。
本発明は、上記に鑑みてなされたものであり、永久磁石同期電動機の減磁の有無を、速度・位置センサ及び温度センサを要さずに、必要最小限のセンサを用いて診断できる永久磁石同期電動機の減磁診断装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明による永久磁石同期電動機の減磁診断装置は、永久磁石同期電動機に交流電圧を印加する電力変換器と、前記永久磁石同期電動機に流れるモータ電流を検出する電流センサと、前記電力変換器が印加する交流電圧と前記電流センサが検出したモータ電流とに基づいて前記永久磁石同期電動機の磁束を推定する適応磁束オブザーバと、前記永久磁石同期電動機の無負荷運転時に前記適応磁束オブザーバにて推定された磁束推定値と予め設定された磁束参照値とを比較し減磁診断結果を出力する磁束比較器とを備え、前記磁束比較器へ入力される前記磁束推定値は、前記適応磁束オブザーバの状態量であることを特徴とする。
本発明によれば、電力変換器が印加する交流電圧と電流センサが検出したモータ電流とに基づいて適応磁束オブザーバが無負荷運転時に推定する永久磁石同期電動機の磁束と、予め設定された磁束参照値とを比較して減磁の有無を診断する。これによって、速度・位置センサ及び温度センサを用いずに、必要とするセンサの種類を電流センサのみの最小限に抑えた減磁診断装置が得られるという効果を奏する。
以下に、本発明にかかる永久磁石同期電動機の減磁診断装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態
図1は、本発明の一実施の形態による永久磁石同期電動機の減磁診断装置の構成を示すブロック図である。図1において、本実施の形態による永久磁石同期電動機1の減磁診断装置は、センサレスベクトル制御部2と減磁診断部3とを備えている。
図1は、本発明の一実施の形態による永久磁石同期電動機の減磁診断装置の構成を示すブロック図である。図1において、本実施の形態による永久磁石同期電動機1の減磁診断装置は、センサレスベクトル制御部2と減磁診断部3とを備えている。
センサレスベクトル制御部2は、永久磁石同期電動機1の速度制御やトルク制御を、速度・位置センサを用いないで、電流センサ8のみを用いて実現するよく知られた駆動制御装置部分である。よって、本実施の形態では、永久磁石同期電動機1は、速度・位置センサが装備されているタイプであっても構わない。
減磁診断部3は、このセンサレスベクトル制御部2が備える適用磁束オブザーバ4にて推定演算された磁束推定値φdr^を用いて、無負荷運転時における永久磁石同期電動機1の減磁有無を診断するように構成されている。
まず、よく知られているセンサレスベクトル制御部2の構成と動作を簡単に説明する。電力変換器5は、直流電源6の出力電圧Vdcを母線電圧とする三相のスイッチング回路を備えている。永久磁石同期電動機1は、その三相のスイッチング回路の出力端に接続されている。
電力変換器5は、その三相のスイッチング回路をスイッチング動作させるPWM(パルス幅変調)信号を、電圧座標変換器7が座標変換して出力する三相の電圧指令値Vu*,Vv*,Vw*に従って生成することで、直流電源6の出力電圧Vdcを三相の交流電圧へ変換する。
電力変換器5は、その変換した三相の交流電圧を永久磁石同期電動機1に印加する。その結果、永久磁石同期電動機1に流れる三相のモータ電流iu,iv,iwが電流センサ8にて検出され、電流座標変換器9に入力される。
電圧座標変換器7は、回転直交二軸座標(d軸、q軸)上の電圧指令である「d軸電圧指令Vd*,q軸電圧指令Vq*」を、積分器10が生成する回転子の基準位相θに従って、三相の電圧指令値Vu*,Vv*,Vw*へ変換する。また、電流座標変換器9は、電流センサ8にて検出された三相のモータ電流iu,iv,iwを、積分器10が生成する回転子の基準位相θに従って、回転直交二軸座標(d軸、q軸)上の検出電流値である「d軸電流id,q軸電流iq」へ変換する。
電流座標変換器9にて変換された回転直交二軸座標(d軸、q軸)上の検出電流値である「d軸電流id,q軸電流iq」のうち、d軸電流idは加減算器11,12の各減算入力端子(-)に入力され、q軸電流iqは加減算器13,14の各減算入力端子(-)に入力される。加減算器11の加算入力端子(+)には図示しないコントローラからd軸電流指令id*が入力される。また、加減算器13の加算入力端子(+)には速度制御器15が出力するq軸電流指令iq*が入力される。
加減算器11は、図示しないコントローラから入力されたd軸電流指令id*と電流座標変換器9にて変換されたd軸電流idとの偏差を求める。d軸電流制御器16は、加減算器11にて求められた偏差を小さくするd軸電圧指令Vd*を演算し、それを電圧座標変換器7と適応磁束オブザーバ4とへ出力する。
また、加減算器13は、速度制御器15から入力されるq軸電流指令iq*と電流座標変換器9にて変換されたq軸電流iqとの偏差を求める。q軸電流制御器17は、加減算器13にて求められた偏差を小さくするq軸電圧指令Vq*を演算し、それを電圧座標変換器7と適応磁束オブザーバ4とへ出力する。
加減算器18は、図示しないコントローラから入力される速度指令値ω*と積分器19が出力する速度推定値ωr^との偏差を求める。速度制御器15は、加減算器18が求めた速度偏差からトルク指令を生成しそれをq軸電流指令iq*として出力する。
適応磁束オブザーバ4は、仮想モータモデルを内蔵し、まず、その仮想モータモデルとd軸電圧指令Vd*及びq軸電圧指令Vq*とに基づいてq軸電流推定値iq^及びd軸電流推定値id^を演算し、q軸電流推定値iq^は加減算器14の加算入力端子(+)へ出力し、d軸電流推定値id^は加減算器12の加算入力端子(+)へ出力する。
加減算器12は、演算されたd軸電流推定値id^と検出されたd軸電流idとの偏差(d軸電流推定誤差)e_idを求める。また、加減算器14は、演算されたq軸電流推定値iq^と検出されたq軸電流iqとの偏差(q軸電流推定誤差)e_iqを求める。
すると、適応磁束オブザーバ4は、仮想モータモデルとd軸電流推定誤差e_id及びq軸電流推定誤差e_iqとに基づいて磁束推定値φdr^を推定演算する。これによって、加速度推定器20にて、磁束推定値φdr^とq軸電流推定誤差e_iqとに基づいて加速度推定値が求められ、その加速度推定値を受けて積分器19が、速度推定値ωr^を求める。
適応磁束オブザーバ4の動作と並行して、速度補正器21にて、磁束推定値φdr^とd軸電流推定誤差e_idとq軸電流推定誤差e_iqとに基づく速度補正が行われる。すると、加算器22では、積分器19が出力する速度推定値ωr^と速度補正器21にて補正された速度値との合計値が求められる。積分器10では、加算器22にて求められた合計値に基づき回転子の基準位相θを生成する。
さて、減磁診断部3は、磁束比較器23と乗算器24とを備えている。磁束比較器23の一方の入力は、適応磁束オブザーバ4にて求められた磁束推定値φdr^である。このとき磁束比較器23に入力される磁束推定値φdr^は、センサレスベクトル制御部2が無負荷運転制御を行っている時における適応磁束オブザーバ4の状態量である。磁束比較器23の他方の入力は、所定の磁束参照値φrefに乗算器24にて所定の減磁度合いを示す係数Kを乗じた「K×φref」である。
磁束比較器23は、
φdr^<K×φref
の関係が成立した場合に、永久磁石同期電動機1は減磁している、という減磁診断結果を出力する。なお、所定の磁束参照値φrefは、例えば設計値でもよい。
φdr^<K×φref
の関係が成立した場合に、永久磁石同期電動機1は減磁している、という減磁診断結果を出力する。なお、所定の磁束参照値φrefは、例えば設計値でもよい。
以上のように、本実施の形態によれば、電流センサのみを用いて永久磁石同期電動機の磁束を高精度に推定できる適応磁束オブザーバを備えたセンサレスベクトル制御により永久磁石同期電動機を駆動制御する際に、適応磁束オブザーバによる無負荷運転時の磁束推定値を減磁診断に用いることができる。
つまり、本実施の形態によれば、速度・位置センサが装備されている場合でもその速度・位置センサを用いずに、必要とするセンサの種類を電流センサのみの最小限に抑えて、回転子磁束の推定と、永久磁石同期電動機の減磁の有無の診断とを並行して行うことができる。加えて、磁束の推定と、減磁診断とのために、温度センサも必要としない。
以上のように、本発明にかかる永久磁石同期電動機の減磁診断装置は、永久磁石同期電動機の減磁の有無を、速度・位置センサ及び温度センサを要さずに、必要最小限のセンサを用いて診断できる永久磁石同期電動機の減磁診断装置として有用である。
1 永久磁石同期電動機、2 センサレスベクトル制御部、3 減磁診断部、4 適応磁束オブザーバ、5 電力変換器、6 直流電源、7 電圧座標変換器、8 電流センサ、9 電流座標変換器、10,19 積分器、11,12,13,14,18 加減算器、15 速度制御器、16 d軸電流制御器、17 q軸電流制御器、20 加速度推定器、21 速度補正器、22 加算器、23 磁束比較器、24 乗算器。
Claims (1)
- 永久磁石同期電動機に交流電圧を印加する電力変換器と、
前記永久磁石同期電動機に流れるモータ電流を検出する電流センサと、
前記電力変換器が印加する交流電圧と前記電流センサが検出したモータ電流とに基づいて前記永久磁石同期電動機の磁束を推定する適応磁束オブザーバと、
前記永久磁石同期電動機の無負荷運転時に前記適応磁束オブザーバにて推定された磁束推定値と予め設定された磁束参照値とを比較し減磁診断結果を出力する磁束比較器と、
を備え、
前記磁束比較器へ入力される前記磁束推定値は、前記適応磁束オブザーバの状態量である
ことを特徴とする永久磁石同期電動機の減磁診断装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/052270 WO2014118958A1 (ja) | 2013-01-31 | 2013-01-31 | 永久磁石同期電動機の減磁診断装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/052270 WO2014118958A1 (ja) | 2013-01-31 | 2013-01-31 | 永久磁石同期電動機の減磁診断装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014118958A1 true WO2014118958A1 (ja) | 2014-08-07 |
Family
ID=51261702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/052270 WO2014118958A1 (ja) | 2013-01-31 | 2013-01-31 | 永久磁石同期電動機の減磁診断装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014118958A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104965183A (zh) * | 2015-07-27 | 2015-10-07 | 广东美的暖通设备有限公司 | 永磁无刷直流电机的退磁检测方法及装置 |
CN106019148A (zh) * | 2016-05-16 | 2016-10-12 | 安徽大学 | 一种基于磁链观测的永磁同步电机匝间短路故障诊断方法 |
CN107482976A (zh) * | 2017-09-25 | 2017-12-15 | 湖南大学 | 用于永磁同步电机的失磁故障容错预测控制方法及装置 |
CN108072836A (zh) * | 2017-12-08 | 2018-05-25 | 国家电网公司 | 一种大型同步电机空载特性惰速测试方法 |
CN108365789A (zh) * | 2018-02-26 | 2018-08-03 | 株式会社安川电机 | 控制装置、方法以及系统、学习装置和模型数据生成方法 |
CN109217764A (zh) * | 2018-09-29 | 2019-01-15 | 株洲中车时代电气股份有限公司 | 一种电励磁同步电机的气隙磁场定向控制方法及系统 |
WO2019218389A1 (zh) * | 2018-05-15 | 2019-11-21 | 华中科技大学 | 基于虚拟电压注入的感应电机无速度传感器驱动控制方法 |
FR3092214A1 (fr) | 2019-01-30 | 2020-07-31 | Renault S.A.S | Système de commande d’un moteur synchrone à aimants permanents avec détermination de démagnétisation |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000312498A (ja) * | 1999-04-26 | 2000-11-07 | Toyo Electric Mfg Co Ltd | 定数測定設定機能付きpmモータ制御装置 |
JP2004159400A (ja) * | 2002-11-05 | 2004-06-03 | Daihatsu Motor Co Ltd | ハイブリッド車両における磁束検出装置 |
JP2010088232A (ja) * | 2008-10-01 | 2010-04-15 | Fuji Electric Systems Co Ltd | 誘導電動機の制御装置 |
-
2013
- 2013-01-31 WO PCT/JP2013/052270 patent/WO2014118958A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000312498A (ja) * | 1999-04-26 | 2000-11-07 | Toyo Electric Mfg Co Ltd | 定数測定設定機能付きpmモータ制御装置 |
JP2004159400A (ja) * | 2002-11-05 | 2004-06-03 | Daihatsu Motor Co Ltd | ハイブリッド車両における磁束検出装置 |
JP2010088232A (ja) * | 2008-10-01 | 2010-04-15 | Fuji Electric Systems Co Ltd | 誘導電動機の制御装置 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104965183A (zh) * | 2015-07-27 | 2015-10-07 | 广东美的暖通设备有限公司 | 永磁无刷直流电机的退磁检测方法及装置 |
CN106019148A (zh) * | 2016-05-16 | 2016-10-12 | 安徽大学 | 一种基于磁链观测的永磁同步电机匝间短路故障诊断方法 |
CN107482976A (zh) * | 2017-09-25 | 2017-12-15 | 湖南大学 | 用于永磁同步电机的失磁故障容错预测控制方法及装置 |
CN107482976B (zh) * | 2017-09-25 | 2018-10-19 | 湖南大学 | 用于永磁同步电机的失磁故障容错预测控制方法及装置 |
CN108072836A (zh) * | 2017-12-08 | 2018-05-25 | 国家电网公司 | 一种大型同步电机空载特性惰速测试方法 |
CN108072836B (zh) * | 2017-12-08 | 2019-12-31 | 国家电网公司 | 一种大型同步电机空载特性惰速测试方法 |
CN108365789A (zh) * | 2018-02-26 | 2018-08-03 | 株式会社安川电机 | 控制装置、方法以及系统、学习装置和模型数据生成方法 |
CN108365789B (zh) * | 2018-02-26 | 2019-06-07 | 株式会社安川电机 | 控制装置、方法以及系统、学习装置和模型数据生成方法 |
WO2019218389A1 (zh) * | 2018-05-15 | 2019-11-21 | 华中科技大学 | 基于虚拟电压注入的感应电机无速度传感器驱动控制方法 |
CN109217764A (zh) * | 2018-09-29 | 2019-01-15 | 株洲中车时代电气股份有限公司 | 一种电励磁同步电机的气隙磁场定向控制方法及系统 |
CN109217764B (zh) * | 2018-09-29 | 2020-12-08 | 株洲中车时代电气股份有限公司 | 一种电励磁同步电机的气隙磁场定向控制方法及系统 |
FR3092214A1 (fr) | 2019-01-30 | 2020-07-31 | Renault S.A.S | Système de commande d’un moteur synchrone à aimants permanents avec détermination de démagnétisation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014118958A1 (ja) | 永久磁石同期電動機の減磁診断装置 | |
US9590552B2 (en) | Motor drive device and electric compressor | |
JP4881635B2 (ja) | 永久磁石モータのベクトル制御装置 | |
JP2007049843A (ja) | 永久磁石同期モータのベクトル制御装置 | |
JP4860012B2 (ja) | 電気車の電力変換装置 | |
JPWO2018230140A1 (ja) | 電動工具 | |
KR100845110B1 (ko) | 센서리스 인버터의 관성 모멘트 추정방법 | |
JP6954149B2 (ja) | 交流電動機の制御装置 | |
WO2020217764A1 (ja) | 電力変換装置およびそれを備えた電動車両システム | |
JP4425091B2 (ja) | モータの位置センサレス制御回路 | |
WO2013035382A1 (ja) | 同期電動機の制御システム | |
JP5250603B2 (ja) | モータ制御装置 | |
WO2011064846A1 (ja) | 電気車の電力変換装置 | |
JP5223280B2 (ja) | 電動機付ターボチャージャ制御システム | |
JP4735439B2 (ja) | 永久磁石式同期電動機の初期磁極位置推定装置 | |
JP4637616B2 (ja) | ブラシレスdcモータの制御装置 | |
JP5726273B2 (ja) | 永久磁石状態推定機能を備えた同期機制御装置およびその方法 | |
JP2013146155A (ja) | 巻線温度推定装置及び巻線温度推定方法 | |
JP2004289927A (ja) | モーター制御装置 | |
JP5326284B2 (ja) | 同期電動機の制御装置 | |
JP2007116768A (ja) | 電動機付ターボチャージャ用回転検出装置 | |
JP6479255B2 (ja) | 永久磁石式同期モータの制御システム、及び、永久磁石式同期モータの制御方法 | |
JP2010022189A (ja) | モータの位置センサレス制御回路 | |
JP5996485B2 (ja) | モータの駆動制御装置 | |
JP2010200544A (ja) | 交流電動機制御装置および制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13873781 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13873781 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |