WO2011064846A1 - 電気車の電力変換装置 - Google Patents

電気車の電力変換装置 Download PDF

Info

Publication number
WO2011064846A1
WO2011064846A1 PCT/JP2009/069854 JP2009069854W WO2011064846A1 WO 2011064846 A1 WO2011064846 A1 WO 2011064846A1 JP 2009069854 W JP2009069854 W JP 2009069854W WO 2011064846 A1 WO2011064846 A1 WO 2011064846A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
command
unit
value
power converter
Prior art date
Application number
PCT/JP2009/069854
Other languages
English (en)
French (fr)
Inventor
河野 雅樹
啓太 畠中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN200980162607.7A priority Critical patent/CN102754331B/zh
Priority to US13/502,528 priority patent/US8593094B2/en
Priority to PCT/JP2009/069854 priority patent/WO2011064846A1/ja
Priority to JP2010528629A priority patent/JP4738549B2/ja
Publication of WO2011064846A1 publication Critical patent/WO2011064846A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/16Estimation of constants, e.g. the rotor time constant
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/26Rotor flux based control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/12Induction machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/01Asynchronous machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a power converter for an electric vehicle that can start an AC rotating machine without using a speed detector, and more particularly to a power converter for an electric car that measures a resistance value of the AC rotating machine.
  • Patent Document 1 As a means for solving such a problem, for example, in Patent Document 1 below, an applied voltage and an input to an induction machine for driving an electric vehicle from when the electric vehicle starts up to when the speed of the electric vehicle is in a low speed range are input. A method for detecting the current and estimating the primary resistance and secondary resistance of the induction machine is described. Patent Document 2 below discloses a method for estimating primary and secondary resistances of an induction machine by temporarily applying a DC voltage or a pulsation voltage to the induction machine for a certain period of time immediately after the operation command rises from zero. Is described.
  • Patent Documents 1 and 2 describe a method of measuring the resistance of the motor when the speed of the electric vehicle is in a low speed range.
  • the primary resistance and the secondary resistance of the rotating motor are accurately estimated. It is difficult to do.
  • the reason why it is difficult to estimate the primary resistance and secondary resistance of a rotating motor is that the mutual inductance, primary leakage inductance, and secondary leakage inductance have impedance due to the rotation of the motor. It may be a value including impedance other than the secondary resistance. Or, since there are five or more elements of unknown impedance, it is difficult to separate the impedances of the respective inductances to extract accurate values of the primary resistance and the secondary resistance.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain an electric vehicle power conversion device that can accurately estimate the resistance value of an AC rotating machine without using a rotation detector.
  • the present invention includes a power converter that drives an AC rotating machine, and a control unit that controls the power converter based on an operation command.
  • a coordinate converter for converting the current information detected by the AC rotating machine into an orthogonal axis current on an orthogonal rotation coordinate; and a voltage command for the power converter based on the operation command and the orthogonal axis current;
  • the speed judgment unit judges that the speed of the rotating machine is zero and the speed judgment unit judges that the speed of the AC rotary machine is zero and the operation command is changed from the brake command to the powering command
  • a resistance calculation unit that calculates the resistance of the AC rotating machine based on the shaft current, the voltage command, and the powering command.
  • FIG. 8 is a diagram illustrating a relationship between the power running command, the brake power running command, and each ON element.
  • FIG. 9 is a diagram illustrating another configuration example of the resistance calculation unit illustrated in FIG. 1.
  • FIG. 10 is a block diagram which shows the power converter device concerning Embodiment 2 of this invention.
  • FIG. 11 is a block diagram of the resistance calculation unit shown in FIG.
  • FIG. 12 is an equivalent circuit of the synchronous machine when the power conversion device according to the second embodiment of the present invention is applied.
  • FIG. 13 is a configuration diagram of a power conversion device according to Embodiment 3 of the present invention.
  • FIG. 14 is a configuration diagram of the resistance calculation unit shown in FIG.
  • FIG. 15 is a block diagram of the motor abnormality detection unit shown in FIG.
  • FIG. 1 is a configuration diagram of a power conversion device according to a first embodiment of the present invention
  • FIG. 2 is a diagram illustrating a configuration example of a resistance calculation unit illustrated in FIG. 1
  • FIG. 4 is an equivalent circuit per phase of the induction machine when the technology is applied
  • FIG. 4 is an equivalent circuit of the induction machine when the power conversion device according to the first embodiment of the present invention is applied
  • 5 is another equivalent circuit of the induction machine when the power conversion device according to the first embodiment of the present invention is applied.
  • the power converter mainly includes an induction machine 1 that is an AC rotating machine, a power converter 2 that converts a DC voltage into a three-phase voltage and drives the induction machine 1, and an AC of the power converter 2. And current detectors 3a, 3b, 3c for detecting phase currents iu, iv, iw generated in the induction machine 1 and a control unit 40. Further, the control unit 40 converts the speed determination unit 4, the phase calculation unit 9, the three-phase / dq conversion unit 6, and the detected phase currents iu, iv, iw into dq-axis current detection values id, iq. and a dq / three-phase converter 10. Furthermore, the speed determination unit 4 includes a current command unit 7 and a speed calculation unit 8 that is a first calculation unit.
  • the current detector 3 is described as detecting the current flowing in the connection between the power converter 2 and the induction machine 1 by CT or the like, but is not limited thereto.
  • the configuration may be such that the phase current is detected using another known method.
  • the induction machine 1 is applied as an alternating current rotary machine is demonstrated as an example, it cannot be overemphasized that the same effect can be anticipated also with a synchronous machine.
  • the present embodiment can also be applied to a power conversion device that drives and controls an electromagnetic actuator such as a linear induction motor, a linear synchronous motor, or a solenoid.
  • be the phase of the coordinate axis.
  • This phase ⁇ is a value obtained by integrating a predetermined angular frequency by the phase calculation unit 9 that is the second calculation unit.
  • the phase calculation unit 9 integrates a predetermined angular frequency ⁇ and outputs it as a phase ⁇ to the three-phase / dq conversion unit 6 and the dq / three-phase conversion unit 10.
  • a powering command P or a brake command B which is a driving command from a driver's cab, is applied to a resistance calculation unit 5 that is a third calculation unit and a current command.
  • a resistance calculation unit 5 that is a third calculation unit and a current command.
  • the speed determination unit 4 detects the speed of the induction machine 1 that is an AC rotating machine, and in particular for detecting the initial speed of the induction machine 1 immediately after the power converter 2 is started from where it is stopped. It is a function.
  • the current command unit 7 generates dq axis current commands id * and iq * based on the power running command P or the brake command B.
  • the d-axis current command id * is given in steps, and the q-axis current command iq * is set to 0 so that the induction machine does not generate torque.
  • the dq axis current commands id * and iq * generated by the current command unit 7 are input to the speed calculation unit 8. Further, the dq-axis current detection values id and iq from the dq / three-phase conversion unit 10 are input to the speed calculation unit 8.
  • the speed calculation unit 8 calculates the magnetic flux amplitude based on the value obtained by subtracting the drop due to the d-axis resistance from the d-axis voltage on the rotating two axes (dq axes) rotating in synchronization with each frequency of the output voltage. Then, the value obtained by subtracting the q-axis resistance drop from the q-axis voltage is divided by the magnetic flux amplitude to calculate the angular frequency ⁇ of the AC rotating machine during free rotation.
  • the calculation of the angular frequency ⁇ by the speed calculation unit 8 will be specifically described.
  • the torque ⁇ m output from the induction machine 1 is proportional to the magnitude of the outer product of the armature magnetic flux and the armature current, and can be expressed by equation (6).
  • Pm indicates the number of pole pairs of the motor.
  • the rotating two axes (dq axes) are rotated in synchronism with the angular frequency ⁇ calculated according to the equations (7) and (8), the d-axis direction of the rotating two axes and the direction of the armature magnetic flux Match.
  • the angular frequency ⁇ calculated from the equation (8) is input to the phase calculation unit 9 to calculate the phase ⁇ .
  • the d-axis voltage command Vd * and the q-axis voltage command Vq * calculated by the speed calculation unit 8 are input to the three-phase / dq conversion unit 6 and converted into three-phase voltage commands Vu *, Vv *, and Vw *.
  • the power converter 2 is driven based on the three-phase voltage commands Vu *, Vv *, and Vw *.
  • the resistance calculator 5 receives a power running command P, a brake command B, a d-axis voltage command Vd *, a d-axis current detection value id, and an angular frequency ⁇ , and inputs a primary resistance estimated value Rs_ob and a secondary resistance estimated.
  • the value Rr_ob is calculated.
  • the resistance calculation unit 5 shown in FIG. 2 mainly includes a division unit 11, latch units 12 a, 12 b, and 12 c, a zero division prevention limiter processing unit 15, and a subtraction unit 17. , Secondary resistance limiter processing unit 18, primary resistance limiter processing unit 19, switching units 20 a and 20 b, ON time element part (50 msec) 21, ON time element part (150 msec) 22, and stop detection part 23.
  • the latch unit 12a includes a previous value storage element unit 13a and a switching unit 14a.
  • the latch unit 12b (12c) includes a previous value storage element unit 13b (13c) and a switching unit 14b (14c).
  • the stop detection unit 23 includes an equal comparison unit 24, an OFF time element (1 sec) 25, and a logical product unit 26.
  • the d-axis current detection value id is input to the zero split prevention limiter processing unit 15. Since the d-axis current detection value id is a positive value, the following processing is performed. When id ⁇ 0, a small value other than 0 is set. Further, the maximum rated current value can be determined by the characteristics of the induction machine 1.
  • id 0.0001.
  • id id (id is output as it is).
  • id maximum rated current value.
  • D-axis voltage command Vd * is input to the division unit 11.
  • the division unit 11 divides the d-axis voltage command Vd * by the d-axis current detection value id that has passed through the zero division prevention limiter processing unit 15.
  • An output from the division unit 11 is input to the switching unit 14 a and the switching unit 16.
  • the power running command P is input to the ON-time element unit 21, and the output signal of the ON-time element unit 21 is output as an ON command 50 msec after the ON command of the power running command P is input. Since this 50 msec is immediately after the voltage is applied to the induction machine 1 by the power converter 2, the current id flowing in the induction machine 1 is not the equivalent circuit shown in FIG. 3 but the path of the equivalent circuit shown in FIG. Will flow in.
  • FIG. 3 shows the equivalent times per phase of the induction machine, and shows the primary resistance Rs, secondary resistance Rr, mutual inductance M, primary leakage inductance ls, and secondary leakage inductance lr of this induction machine. ing. When the induction machine rotates, these inductances M, ls, and lr have impedance. Therefore, the rotating induction machine includes not only the values of the primary resistance Rs and the secondary resistance Rr but also the impedance due to the inductances M, ls, and lr. This is as described in the above problem.
  • the power conversion device divides the d-axis voltage command Vd * by the d-axis current detection value id for 50 msec after the ON command of the power running command P is input to the ON-time element unit 21.
  • the primary resistance estimated value + the secondary resistance estimated value RsRr_ob is estimated.
  • this value of 50 msec needs to be sufficiently shorter than the secondary time constant of the induction machine determined by (mutual inductance M + secondary leakage inductance lr) / secondary resistance Rr.
  • the secondary time constant of the motor is about 300 to 500 msec, so 50 msec, which is one tenth of the secondary time constant. It is set in the element part 21 when ON. As the second-order time constant is approached, the current stops flowing through the second-order resistor Rr, and the inventors have found that it is better to set a value that is one tenth of the second-order time constant.
  • the switching unit 16 outputs the primary resistance design value Rs * when the contact is B (that is, before 50 msec has elapsed).
  • the primary resistance design value Rs * is a value of the primary resistance Rs when the induction machine 1 is designed (for example, a value at 115 ° C. or 105 degrees).
  • the switching unit 16 outputs the value obtained by dividing the d-axis voltage command Vd * by the d-axis current detection value id, that is, the primary resistance estimated value Rs_ob1 when the contact is A contact (that is, after elapse of 50 msec).
  • the reason why the value obtained by dividing the d-axis voltage command Vd * by the d-axis current detection value id becomes Rs_ob1 when it exceeds 50 msec is as follows. As described above, since current does not flow through the secondary resistor Rr as the secondary time constant is approached, current does not flow through the secondary resistor (not shown) of the equivalent circuit of the motor shown in FIG. The current id flows through such a path.
  • the primary leakage inductance ls and the mutual inductance M shown in FIG. 5 do not have impedance, so the d-axis voltage command Vd * is changed to the d-axis current detection value id.
  • the value of the primary resistance Rs that is, to estimate the primary resistance estimated value Rs_ob1.
  • the subtraction unit 17 subtracts Rs_ob1 from the held RsRr_ob to calculate the secondary resistance estimated value Rr_ob1.
  • Rs_ob ⁇ b> 1 from the switching unit 16 is input to the primary resistance limiter processing unit 19.
  • the primary resistance limiter processing unit 19 performs the following processing. According to the primary resistance limiter processing unit 19, it is possible to prevent the primary resistance estimated value Rs_ob1 from being smaller or larger than expected.
  • Rs_ob1 Rs * ⁇ 0.5.
  • Rs_ob1 Rs_ob1 (Rs_ob1 is output as it is).
  • the primary resistance design value Rs * is a primary resistance value when the induction machine 1 is designed.
  • the output value of the primary resistance limiter processing unit 19 is output to the latch unit 12c.
  • Rr_ob1 from the subtraction unit 17 is input to the secondary resistance limiter processing unit 18.
  • the secondary resistance limiter processing unit 18 performs the following processing. According to the primary resistance limiter processing unit 18, it is possible to prevent Rr_ob ⁇ b> 1 from becoming smaller or larger than expected.
  • Rr_ob1 Rr * ⁇ 0.5.
  • Rr_ob1 Rr_ob1 (Rr_ob1 is output as it is).
  • the primary resistance design value Rs * is a primary resistance value when the induction machine 1 is designed.
  • the output value of the secondary resistance limiter processing unit 18 is output to the latch unit 12b.
  • the contacts of the switching units 14a and 14b are changed from B to A when the output of the element unit 22 is turned ON.
  • the time when the output of the element unit 22 is turned ON indicates 200 msec after the ON signal of the power running command P is input, and the speed determination unit 4 is a function for detecting the initial speed of the induction machine 1. It is time to complete the operation.
  • the latch unit 12b when the contact of the switching unit 14b is changed from B to A, Rr_ob1 stored in the previous value storage element unit 13b is held, and the output of the latch unit 12b is input to the switching unit 20a.
  • the latch unit 12c holds Rs_ob1 stored in the previous value storage element unit 13c, and the output of the latch unit 12c is input to the switching unit 20b.
  • the stop detection unit 23 that receives the power running command P, the brake command B, and the angular frequency ⁇ will be described.
  • the values of the primary resistance Rs and the secondary resistance Rr are estimated on the condition that the inductances M, ls, and lr do not include impedance, that is, the induction machine 1 is not rotating. Therefore, it is necessary to detect that the induction machine 1 is completely stopped (not rotating).
  • the stop detection unit 23 is a function for determining whether the induction machine 1 is completely stopped.
  • the meaning of (2) is that when the electric vehicle is stopped, the power converter 2 is not operating, and the wheel of the electric vehicle is mechanical brake (or air brake or the like). Is in a fixed state. If the brake command B is changed from ON to OFF in this state, the state in which the wheel is fixed by the mechanical brake is released. However, since the mechanical operation is involved, all braking forces are immediately applied. Is not canceled. In other words, since the force is released by the operating speed of the mechanical brake, the wheels of the electric vehicle are fixed when the mechanical brake remains. In this state, the power running command P is input and the power converter 2 operates to detect the initial speed (angular frequency ⁇ ) of the induction machine 1 by the speed determination unit 4. If this angular frequency ⁇ is zero, the power converter 2 operates. The inventor has discovered that the machine 1 is considered to be completely stopped.
  • FIG. 6 is a diagram for explaining the operation of the power conversion device according to the first embodiment of the present invention
  • FIG. 7 shows a resistance value estimation result by the power conversion device according to the first embodiment of the present invention
  • FIG. 8 is a diagram illustrating a relationship between the power running command, the brake power running command, and each ON-time element.
  • FIG. 8A shows the relationship between the powering command P, the ON-time element 21 and the ON-time element 22, and
  • FIG. 8B shows the brake command B and the OFF-time element 25. It shows the relationship.
  • time t1 is the timing when the brake command B is turned from ON to OFF, but FIG. 6 shows a state where the actual braking force remains even after the brake command B is turned off at time t1.
  • the time t2 is a timing when the power running command P is input and the output of the stop detection unit 23 is turned on, and the time t3 is a time 50 msec after the time t2.
  • the time t4 is a time 150 msec after the time t3, and the estimation of the resistance value is completed at the time t4.
  • Time t5 is the timing when the time (1 sec) set in the OFF time element 25 has elapsed, and is when 1 sec has elapsed from the timing (t1) when the brake command B is turned OFF.
  • the output of the resistance calculation unit 5 is the primary resistance design value Rs * and the secondary resistance design value Rr *.
  • the division unit 11 starts calculating RsRr_ob.
  • the contact of the switching unit 16 is B, the primary resistance design value Rs * is output via the contact A of the switching unit 20b.
  • FIG. 7 shows a result of confirming the accuracy of the resistance estimation of the present invention by using the constant of the induction machine for trains (rated capacity 180 kW) by simulation. By this simulation, the primary and secondary resistance estimation values are shown. It can be confirmed that becomes a value that substantially matches the true value of the motor (actual motor value).
  • the Rs + Rr estimation period of FIG. 7A the estimated state of RsRr_ob and the estimated state of Rs_ob are shown.
  • Rr_ob obtained by the subtracting unit 17 is shown in the Rs and Rr individual estimation periods in FIG.
  • FIG. 7B shows an enlarged view of the estimation results of Rs_ob and value Rr_ob in the individual estimation period (t3 ⁇ ).
  • FIG. 9 is a diagram illustrating another configuration example of the resistance calculation unit illustrated in FIG.
  • the resistance calculation unit 5 illustrated in FIG. 9 includes latch units 12d and 12e instead of the switching units 20a and 20b illustrated in FIG.
  • the latch units 12d and 12e are employed, the calculated estimation results can be reflected one after another, so that the temperature of the induction machine 1 can be continuously monitored.
  • the contacts of the switching units 14d and 14e are changed to B, and after the resistance held in the previous value storage element units 13d and 13e is output, for example, driving is performed.
  • the power converter according to the present embodiment has a zero speed AC rotating machine based on the brake command B, the power running command P, the d-axis voltage command Vd *, and the d-axis current detection value id.
  • the speed of the AC rotating machine is zero and the brake command B is changed to the powering command P at a predetermined time
  • the d-axis voltage command Vd * and the d-axis current detection value are Since the resistance value of the AC rotating machine is calculated based on id, it is possible to accurately estimate the resistance value of the AC rotating machine.
  • a power running command When the AC rotating machine is rotated after P is input, that is, when the d-axis voltage command Vd * and the d-axis current detection value id are obtained and the angular frequency ⁇ is zero, the primary resistance estimated value Rs_ob is Since the secondary resistance estimated value Rr_ob is estimated, it is possible to obtain a more accurate resistance value than in the conventional technique. As a result, by using the obtained resistance value as a set value for vector control, it is possible to ensure a stable desired torque output, and estimate the temperature of the AC rotating machine based on the estimated resistance value. It is also possible to do.
  • the value of the primary resistance Rs and the value of the secondary resistance Rr can be estimated by applying to the induction machine 1 which is an AC rotating machine.
  • FIG. FIG. 10 is a block diagram showing a power converter according to the second embodiment of the present invention
  • FIG. 11 is a block diagram of the resistance calculation unit shown in FIG. 10
  • FIG. 12 is a block diagram of the embodiment of the present invention. It is an equivalent circuit of the synchronous machine at the time of applying the power converter device concerning form 2.
  • the difference from the first embodiment is that the AC rotating machine is the synchronous machine 27 and therefore the control unit 41 has a resistance calculation unit 28.
  • the same reference numerals are given to the same parts as those in the first embodiment, and the description thereof will be omitted, and only different parts will be described here.
  • the switching unit 14a estimates a value obtained by dividing the d-axis voltage command Vd * by the d-axis current detection value id, that is, a resistance estimated value R_ob1 when the contact is the B contact (that is, before 200 msec has elapsed). After the elapse of 200 msec, the held R_ob1 is input to the resistance limiter processing unit 50.
  • R_ob1 is held when the contact of the switching unit 14b is changed from B to A, and is input to the latch unit 12f.
  • the contact of the switching unit 14f is changed from A to B, so that R_ob1 stored in the previous value storage element unit 13f is held, and R_ob is output to the outside.
  • the power conversion device can obtain a resistance value that is more accurate than that of the prior art, as in the first embodiment, and the obtained resistance value can be obtained by vector control.
  • the set value it is possible to ensure a stable desired torque output.
  • the value of the resistance R of the synchronous machine 27 can be estimated.
  • FIG. 13 is a configuration diagram of the power conversion device according to the third embodiment of the present invention
  • FIG. 14 is a configuration diagram of the resistance calculation unit shown in FIG. 13
  • FIG. 15 is a motor abnormality shown in FIG. It is a block diagram of a detection part.
  • the control unit 42 includes a resistance calculation unit 30 and a motor abnormality detection unit 31 that is a new component.
  • the value of the primary resistance Rs and the value of the secondary resistance Rr of the induction machine 1 are estimated, and the abnormality of the induction machine 1 is detected using the estimated values. Note that the same parts as those of the first embodiment are denoted by the same reference numerals and description thereof is omitted, and only different parts will be described here.
  • the power converter according to the present embodiment is intended to prevent a failure of the induction machine 1 using the estimated value of the primary resistance Rs and the value of the secondary resistance Rr.
  • a cooling blower is installed to suppress heat generation of the rotor and stator of the motor.
  • the suction port of the blower is clogged, the cooling becomes insufficient, so that the temperature of the rotor and the stator of the motor rises, which may cause the rotor to break down and cause the motor to fail. Therefore, in the power conversion device according to the present embodiment, an abnormal temperature rise caused by such an event is estimated by the resistance calculation unit 30, and the estimated value of the primary resistance Rs and the value of the secondary resistance Rr are used.
  • the malfunction of the induction machine 1 is prevented by detecting a motor abnormality and outputting a signal for stopping the operation of the inverter.
  • the fact that the value of the secondary resistance Rr on the rotor side of the motor increases as the temperature of the motor rotor rises is utilized.
  • the resistance calculation unit 30 is almost the same as that of the first embodiment, but is characterized in that the limiter processing units 18 and 19 shown in FIG. 2 are not provided.
  • the limiter processing units 18 and 19 are present, the resistance value estimated when the above event occurs cannot be larger than a predetermined value. Therefore, the limiter processing units 18 and 19 are eliminated in order to obtain an abnormally large value of the primary resistance Rs and a value of the secondary resistance Rr.
  • the motor abnormality detection unit 31 is configured to receive Rs_ob and Rr_ob calculated by the resistance calculation unit 30 and detect an abnormal overtemperature of the motor.
  • the motor abnormality detection unit 31 includes a comparator 32a, a comparator 32b, and a logical sum unit 33 as main components.
  • the comparator 32a compares the value of the primary resistance Rs with Rs * _pr
  • the comparator 32b compares the value of the secondary resistance Rr with Rr * _pr.
  • Rs * _pr and Rr * _pr are values set on the assumption that the temperature of the rotor or stator of the motor rises, for example, lower than the temperature at which the rotor breaks down.
  • the allowable maximum temperature is determined by the type of insulation of the rotor and stator materials of the motor, and the resistance values corresponding to the allowable maximum temperature may be set to Rs * _pr and Rr * _pr.
  • the insulation type is H
  • the maximum allowable temperature is 180 degrees, and therefore, the resistance values corresponding to 180 degrees are set to Rs * _pr and Rr * _pr.
  • the comparator 32 a compares the value of the primary resistance Rs with Rs * _pr, and outputs 1 to the logical sum unit (OR) 33 when the value of the primary resistance Rs is larger than Rs * _pr.
  • the comparator 32b compares the value of the secondary resistance Rr and Rr * _pr, and when the value of the secondary resistance Rr is larger than Rr * _pr, outputs 1 to the OR unit (OR) 33. To do.
  • the OR unit 33 outputs an inverter stop signal Gstp indicating that the inverter is stopped when either one of the outputs of the comparator 32a and the comparator 32b becomes 1.
  • the power converter 2 receives the Gstp and stops its operation.
  • the power conversion device can obtain a resistance value that is more accurate than that of the prior art, as in the first embodiment. For this reason, for example, even when an event occurs that causes the rotor or stator of an AC rotating machine to rise in temperature and cause dielectric breakdown of the rotor, the presence or absence of an abnormality can be accurately detected using an accurate resistance value. Therefore, it is possible to prevent the AC rotating machine from being broken.
  • the present invention is applicable to an electric vehicle power conversion device that can start an AC rotating machine without using a speed detector, and in particular, accurately measures the resistance value of the AC rotating machine. It is useful as an invention that can be made.

Abstract

 任意のdq軸電圧指令Vd*、Vq*に基づいて誘導機1を駆動する電力変換器2と、外部からの力行指令P、ブレーキ指令Bに基づき電力変換器2を制御する制御部40とを備え、制御部40は、誘導機1にて検出された相電流情報iu、iv、iwを直交回転座標上のdq軸電流検出値id、iqに変換するdq/三相変換部10と、力行指令P、ブレーキ指令B、およびdq軸電流検出値id、iqに基づいて、電力変換器2に対するdq軸電圧指令Vd*、Vq*を演算すると共に、誘導機1の速度が零であることを判断する速度判断部4と、ブレーキ指令Bから力行指令Pに変更になり、かつ、速度判断部4が誘導機1の速度を零と判断したときに、力行指令P、d軸電流検出値id、およびd軸電圧指令Vd*に基づいて、誘導機1の抵抗値を演算する抵抗演算部5と、を有する。

Description

電気車の電力変換装置
 本発明は、速度検出器を用いることなく交流回転機を起動することが可能な電気車の電力変換装置に関し、特に交流回転機の抵抗値を測定する電気車の電力変換装置に関するものである。
 近年では、誘導機に速度センサレス制御を採用し、同期機に位置センサレス制御を採用することが一般的であり、速度センサレス制御では、誘導機もしくは同期機の抵抗値を把握することが重要である。特にモータ(交流回転機)の抵抗値は温度によって変動するため、制御側で設定した抵抗値と実際の抵抗値との間に誤差が生じることになれば、所望の出力トルクを得ることができない場合や、電気車が起動しない場合がある。
 このような問題を解決する手段として、例えば下記特許文献1には、電気車の起動時から、電気車の速度が低速域にあるときまでに、電気車駆動用誘導機への印加電圧と入力電流とを検出し、誘導機の一次抵抗と二次抵抗を推定する方法が記載されている。また、下記特許文献2には、運転指令が零から立ち上がった直後からの一定時間、直流電圧または脈動電圧を誘導機に一時的に印加し、誘導機の一次抵抗と二次抵抗を推定する方法が記載されている。
特開平4-8192号公報(4頁、5頁) 特開平4-364384号公報(段落「0008」、「0009」)
 しかしながら、上記特許文献1、2には、電気車の速度が低速域のときにモータの抵抗を測定する方法が記載されているが、回転中のモータの一次抵抗や二次抵抗を正確に推定することは困難である。回転中のモータの一次抵抗や二次抵抗を推定することが難しい理由としては、モータが回転することにより、相互インダクタンス、一次漏れインダクタンス、および二次漏れインダクタンスがインピーダンスを持つため、一次抵抗および二次抵抗以外のインピーダンスを含んだ値となってしまうことが挙げられる。もしくは、未知のインピーダンスの要素が5つ以上になるため、上記各インダクタンスのインピーダンスを分離して一次抵抗および二次抵抗の正確な値を取り出すことが困難であることなどが挙げられる。
 本発明は、上記に鑑みてなされたものであって、回転検出器を用いることなく正確に交流回転機の抵抗値を推定することができる電気車の電力変換装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、交流回転機を駆動する電力変換器と、運転指令に基づいて電力変換器を制御する制御部と、を備え、制御部は、交流回転機にて検出された電流情報を直交回転座標上の直交軸電流に変換する座標変換部と、運転指令および直交軸電流に基づいて、電力変換器に対する電圧指令を演算すると共に、交流回転機の速度が零であることを判断する速度判断部と、速度判断部が交流回転機の速度を零と判断し、かつ、運転指令がブレーキ指令から力行指令に変更になったとき、直交軸電流、電圧指令、および力行指令に基づいて、交流回転機の抵抗を演算する抵抗演算部と、を有すること、を特徴とする。
 この発明によれば、回転検出器を用いることなく正確に交流回転機の抵抗値を推定することができるという効果を奏する。
図1は、本発明の実施の形態1にかかる電力変換装置の構成図である。 図2は、図1に示される抵抗演算部の一の構成例を示す図である。 図3は、従来技術を適用した場合における誘導機の一相あたりの等価回路である。 図4は、本発明の実施の形態1にかかる電力変換装置を適用した場合における誘導機の一の等価回路である。 図5は、本発明の実施の形態1にかかる電力変換装置を適用した場合における誘導機の他の等価回路である。 図6は、本発明の実施の形態1にかかる電力変換装置の動作を説明するための図である。 図7は、本発明の実施の形態1にかかる電力変換装置による抵抗値推定結果を示す図である。 図8は、力行指令とブレーキ力行指令と各ON時素部との関係を示す図である。 図9は、図1に示される抵抗演算部の他の構成例を示す図である。 図10は、本発明の実施の形態2にかかる電力変換装置を示す構成図である。 図11は、図10に示される抵抗演算部の構成図である。 図12は、本発明の実施の形態2にかかる電力変換装置を適用した場合における同期機の等価回路である。 図13は、本発明の実施の形態3による電力変換装置の構成図である。 図14は、図13に示される抵抗演算部の構成図である。 図15は、図13に示されるモータ異常検知部の構成図である。
 以下に、本発明にかかる電力変換装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかる電力変換装置の構成図であり、図2は、図1に示される抵抗演算部の一の構成例を示す図であり、図3は、従来技術を適用した場合における誘導機の一相あたりの等価回路であり、図4は、本発明の実施の形態1にかかる電力変換装置を適用した場合における誘導機の一の等価回路であり、図5は、本発明の実施の形態1にかかる電力変換装置を適用した場合における誘導機の他の等価回路である。
 図1において、電力変換装置は、主たる構成として、交流回転機である誘導機1と、直流電圧を三相電圧に変換し誘導機1を駆動させる電力変換器2と、電力変換器2の交流側に接続され誘導機1に発生する相電流iu、iv、iwを検出する電流検出器3a、3b、3cと、制御部40とを有して構成されている。また、制御部40は、速度判断部4と、位相演算部9と、三相/dq変換部6と、検出された相電流iu、iv、iwをdq軸電流検出値id、iqに変換するdq/三相変換部10とを有して構成されている。さらに、速度判断部4は、電流指令部7と、第1の演算部である速度演算部8とを有して構成されている。
 なお、図1には、電流検出器3として、電力変換器2と誘導機1との結線に流れる電流をCT等により検出するものを記載しているが、これに限定されるものではなく、他の公知の手法を用いて相電流を検出する構成であってもよい。また、iu+iv+iw=0の関係が成立し、例えば、u、v2相分の検出電流からw相の電流を求めることもできるため、3つの電流検出器のうち1つの電流検出器を省略してもよい。また、本実施の形態では、一例として、交流回転機として誘導機1を適用した場合に関して説明しているが、同期機でも同様の効果が期待できることは言うまでもない。また、本実施の形態は、交流回転機の他に、例えばリニアインダクションモータ、リニア同期モータやソレノイド等の電磁アクチュエータを駆動制御する電力変換装置にも適用可能である。
 また、公知の通り、三相電圧あるいは三相電流を、回転直交二軸へ座標変換をするときに、制御座標軸が必要となるが、所定の角周波数ωに基づいて回転二軸座標である制御座標軸の位相をθとする。この位相θは、所定の角周波数を、第2の演算部である位相演算部9で積分した値である。位相演算部9は、所定の角周波数ωを積分し、位相θとして三相/dq変換部6およびdq/三相変換部10へ出力する。
 本実施の形態にかかる電力変換装置を電車に適用した場合、運転手が運転台からの運転指令である力行指令Pもしくはブレーキ指令Bが、第3の演算部である抵抗演算部5と電流指令部7とに入力される。
 速度判断部4は、交流回転機である誘導機1の速度を検出するものであり、特に電力変換器2が停止しているところから起動した直後の誘導機1の初期速度を検出するための機能である。電流指令部7は、力行指令Pもしくはブレーキ指令Bに基づいて、dq軸電流指令id*、iq*を生成する。d軸電流指令id*は、ステップで与えるようにしており、q軸電流指令iq*は、誘導機がトルクを発生しないように0にしている。
 電流指令部7で生成されたdq軸電流指令id*、iq*は、速度演算部8に入力される。また、速度演算部8には、dq/三相変換部10からのdq軸電流検出値id、iqが入力される。速度演算部8は、(1)、(2)式に示すように、d軸電流指令id*と、q軸電流指令iq*(=0)と、dq軸電流検出値id、iqとに基づいて、dq軸電圧指令Vd*、Vq*を演算するとともに、速度情報である角周波数ωを演算する。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 なお、比例ゲインKpc、ωcpiは、電流応答目標値ωccを定め、(3)式によって与えればよい。なお、電流応答目標値ωccは、再起動を行う最高速度より十分に高い値を設定する。ただし、Lsは、誘導機1の一次側インダクタンスであり、Ls=M+lsの関係となる。
Figure JPOXMLDOC01-appb-M000003
 速度演算部8は、出力電圧の各周波数に同期して回転する回転二軸(d-q軸)上のd軸電圧からd軸抵抗による降下分を減算した値に基づいて、磁束振幅を演算し、q軸電圧からq軸抵抗降下を減算した値を前記磁束振幅で除算して、自由回転中の交流回転機の角周波数ωを演算する。以下具体的に、速度演算部8による角周波数ωの演算について説明する。回転二軸(d-q軸)が所定の角周波数ωで回転している場合、誘導機1の電機子(1次)磁束のd軸成分φdsとq軸成分φqsは(4)、(5)式で表現できる。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 また、誘導機1が出力するトルクτmは、電機子磁束と電機子電流の外積の大きさに比例し、(6)式で表現できる。なお、Pmは、モータの極対数を示す。
Figure JPOXMLDOC01-appb-M000006
 回転二軸のd軸方向と電機子磁束の方向が一致している場合、φqs=0となる。そこで、(4)、(5)式にφqs=0を代入すると、(7)、(8)式を得る。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 すなわち、回転二軸(d-q軸)を(7)、(8)式に従って演算した角周波数ωに同期して回転すれようにすれば、回転二軸のd軸方向と電機子磁束の方向は一致する。(8)式より演算された角周波数ωは、位相演算部9に入力され位相θが演算される。そして、速度演算部8で演算されたd軸電圧指令Vd*およびq軸電圧指令Vq*は、三相/dq変換部6に入力され、三相電圧指令Vu*、Vv*、Vw*に変換され、電力変換器2は、この三相電圧指令Vu*、Vv*、Vw*に基づいて駆動する。
(抵抗演算部)
 以下、本発明の最も重要な部分である抵抗演算部5について説明する。図2において、抵抗演算部5は、力行指令P、ブレーキ指令B、d軸電圧指令Vd*、d軸電流検出値id、および角周波数ωを入力として、一次抵抗推定値Rs_ob、二次抵抗推定値Rr_obを演算する。より具体的に説明すると、図2に示される抵抗演算部5は、主たる構成として、除算部11と、ラッチ部12a、12b、12cと、零割防止用リミッタ処理部15と、減算部17と、二次抵抗用リミッタ処理部18と、一次抵抗用リミッタ処理部19と、切替部20a、20bと、ON時素部(50msec)21と、ON時素部(150msec)22と、停止検知部23とを有して構成されている。
 ラッチ部12aは、前回値記憶素子部13aと切替部14aとを有して構成されている。ラッチ部12b(12c)も同様に、前回値記憶素子部13b(13c)と切替部14b(14c)とを有して構成されている。停止検知部23は、イコール比較部24とOFF時素部(1sec)25と論理積部26とを有して構成されている。
 以下、抵抗演算部5の構成と動作をより具体的に説明する。d軸電流検出値idは、零割防止用リミッタ処理部15に入力される。d軸電流検出値idは正の値であるので、以下の処理を行う。なお、id≦0の場合には、0でない小さい値を設定する。また、最大定格電流値は、誘導機1の特性で決定することができる。
 id≦0の場合、id=0.0001とする。0<id≦最大定格電流値の場合、id=idとする(そのままidを出力)。id>最大定格電流値の場合、id=最大定格電流値とする。
 d軸電圧指令Vd*は、除算部11に入力される。除算部11は、d軸電圧指令Vd*を、零割防止用リミッタ処理部15を通したd軸電流検出値idで除する。除算部11からの出力は、切替部14aと切替部16とに入力される。
 力行指令Pは、ON時素部21に入力され、ON時素部21の出力信号は、力行指令PのON指令が入力されてから50msec後にON指令として出力される。この50msec間は、電力変換器2によって誘導機1に電圧が印加された直後であるので、誘導機1内に流れる電流idは、図3に示す等価回路でなく図4に示す等価回路の経路で流れることになる。
 このことを具体的に説明すると以下の通りである。図3には、誘導機の一相あたりの等価回が示されており、この誘導機の一次抵抗Rs、二次抵抗Rr、相互インダクタンスM、一次漏れインダクタンスls、二次漏れインダクタンスlrが示されている。誘導機は、回転することによって、これらのインダクタンスM、ls、lrがインピーダンスを持つことになる。従って、回転中の誘導機には、一次抵抗Rsおよび二次抵抗Rrの値のみならず、各インダクタンスM、ls、lrによるインピーダンスも含まれる結果となる。このことは、上記課題で説明した通りである。
 一方、誘導機1が完全に停止している場合には、電流は相互インダクタンスMに流れることがなく、また、図4のインダクタンスls、lrがインピーダンスを持つこともない。本実施の形態にかかる電力変換装置は、ON時素部21に力行指令PのON指令が入力されてからの50msec間に、d軸電圧指令Vd*をd軸電流検出値idで除して一次抵抗推定値+二次抵抗推定値RsRr_obを推定するように構成されている。
 次に、力行指令Pが投入されてから50msec経過後に、ON時素部21から出力信号がON指令として出力されると、切替部14a、16の接点は、BからAに変更される。その結果、ラッチ部12aでは、前回値記憶素子部13aに記憶されているRsRr_obが保持される。すなわち、ラッチ部12aは、50msec経過直後のRsRr_obをラッチする。
 なお、この50msecの値は、(相互インダクタンスM+二次漏れインダクタンスlr)/二次抵抗Rrで決まる誘導機の2次時定数より十分短い必要がある。これは、電車用のモータ(例えば、定格電力が100kW~600kW)では、モータの2次時定数が300~500msec程度であるので、その2次時定数の10分の1の値である50msecをON時素部21に設定している。2次時定数に近づくにつれて、二次抵抗Rrに電流が流れなくなるので、2次時定数の10分の1の値を設定することがよいことを発明者は発見した。
 切替部16は、B接点のとき(すなわち50msec経過前)、一次抵抗設計値Rs*を出力している。一次抵抗設計値Rs*は、誘導機1を設計するときの一次抵抗Rsの値(例えば115℃もしくは105度のときの値)である。
 切替部16は、A接点のとき(すなわち50msec経過後)、d軸電圧指令Vd*をd軸電流検出値idで割った値、すなわち一次抵抗推定値Rs_ob1を出力する。50msecを超えるとd軸電圧指令Vd*をd軸電流検出値idで割った値がRs_ob1になる理由は以下の通りである。上述したように、2次時定数に近づくにつれて二次抵抗Rrに電流が流れなくなるので、図5に示すモータの等価回路の二次抵抗(図示せず)には電流が流れなくなるので、図5のような経路で電流idが流れることになる。また、誘導機1が完全に停止している場合には、図5に示す一次漏れインダクタンスlsと相互インダクタンスMは、インピーダンスを持っていないため、d軸電圧指令Vd*をd軸電流検出値idで割ることにより、一次抵抗Rsの値を算出すること、すなわち一次抵抗推定値Rs_ob1を推定することができる。
 50msec経過後、減算部17は、保持されているRsRr_obからRs_ob1を減算して二次抵抗推定値Rr_ob1を演算する。一方、切替部16からのRs_ob1は、一次抵抗用リミッタ処理部19に入力される。
 一次抵抗用リミッタ処理部19は、以下のような処理を行う。この一次抵抗用リミッタ処理部19によれば、一次抵抗推定値Rs_ob1が想定以上に小さい値や大きい値になることを防止可能である。
 Rs_ob1≦Rs*×0.5の場合、Rs_ob1=Rs*×0.5とする。Rs*×0.5<Rs_ob1≦Rs*×1.5の場合、Rs_ob1=Rs_ob1とする(そのままRs_ob1を出力)。Rs_ob1>Rs*×1.5の場合、Rs_ob1=Rs*×1.5とする。なお、一次抵抗設計値Rs*は、誘導機1を設計する時の一次抵抗値である。
 一次抵抗用リミッタ処理部19の出力値は、ラッチ部12cに出力される。減算部17からのRr_ob1は、二次抵抗用リミッタ処理部18に入力される。二次抵抗用リミッタ処理部18は、以下のような処理を行う。この一次抵抗用リミッタ処理部18によれば、Rr_ob1が想定以上に小さい値や大きい値になることを防止可能である。
 Rr_ob1≦Rr*×0.5の場合、Rr_ob1=Rr*×0.5とする。Rr*×0.5<Rr_ob1≦Rr*×1.5の場合、Rr_ob1=Rr_ob1とする(そのままRr_ob1を出力)。Rr_ob1>Rr*×1.5の場合、Rr_ob1=Rr*×1.5とする。なお、一次抵抗設計値Rs*は、誘導機1を設計する時の一次抵抗値である。
 二次抵抗用リミッタ処理部18の出力値は、ラッチ部12bに出力される。切替部14a、14bの接点は、ON時素部22の出力がONされた時に、BからAに変更される。このON時素部22の出力がONされた時とは、力行指令PのON信号が入力されてから200msec後を示しており、誘導機1の初期速度を検出する機能である速度判断部4の動作が完了する時間である。
 ラッチ部12bでは切替部14bの接点がBからAに変更されたことで前回値記憶素子部13bに記憶されているRr_ob1が保持され、ラッチ部12bの出力は切替部20aに入力される。また、ラッチ部12cでは前回値記憶素子部13cに記憶されているRs_ob1が保持され、ラッチ部12cの出力は切替部20bに入力される。
 以下、力行指令P、ブレーキ指令B、および角周波数ωを入力とする停止検知部23の構成および動作を説明する。本発明では、上述したように、インダクタンスM、ls、lrがインピーダンスを含まないこと、すなわち誘導機1が回転していないことを条件として、一次抵抗Rsの値と二次抵抗Rrの値を推定しているため、誘導機1が完全に停止している(回転していない)ことを検知する必要がある。停止検知部23は、誘導機1が完全に停止しているか否かを判断するための機能である。
 誘導機1が完全に停止している条件は、以下の通りである。(1)角周波数ωが0であり(イコール比較部24により検出)、かつ、(2)ブレーキ指令BがOFFされてから1sec以内に力行指令PがONされていること(OFF時素部25と論理積部26により検出)。論理積部26は、(1)および(2)の条件を満たしているときにはON信号を出力する。ただし、論理積部26は、これらの条件を満たしていないとき、例えば、角周波数ωが0ではないとき、ブレーキ指令BがOFFされてから1sec以内に力行指令PがONされていないとき、あるいはブレーキ指令BがOFFされてから1secを越えたときにはOFF信号を出力する。
 なお、上記(2)の意味としては、電気車が停止しているときは、電力変換器2が動作しておらず、かつ、機械ブレーキ(もしくは、空気ブレーキなどと言う)で電気車の車輪が固定されている状態である。この状態でブレーキ指令BがONからOFFにされると、その機械ブレーキで車輪が固定されている状態が解除されることになるのであるが、機械的な動作を伴うため、直ぐに全てのブレーキ力が解除されるわけでない。すなわち、機械ブレーキの動作速度により力が解除されることになるので、機械ブレーキが残っているときは電気車の車輪が固定された状態となっている。この状態のときに力行指令Pが投入されて電力変換器2が動作し、速度判断部4によって誘導機1の初期速度(角周波数ω)を検出し、この角周波数ωが零であれば誘導機1が完全に停止していると考えられることを発明者は発見した。
 停止検知部23の出力がON(もしくは1となる)になったとき、切替部20a、20bでは、接点がBからAに変更され、Rs_ob1およびRr_ob1が反映され、一次抵抗推定値Rs_obおよび二次抵抗推定値Rr_obが外部に出力される。Rs_obとRr_obは、トルク制御を行うベクトル制御の設定値として使用される。
 図6は、本発明の実施の形態1にかかる電力変換装置の動作を説明するための図であり、図7は、本発明の実施の形態1にかかる電力変換装置による抵抗値推定結果を示す図であり、図8は、力行指令とブレーキ力行指令と各ON時素部との関係を示す図である。また、図8(a)は、力行指令PとON時素部21とON時素部22との関係を示したものであり、図8(B)は、ブレーキ指令BとOFF時素部25との関係を示したものである。
 図6において、時刻t1は、ブレーキ指令BがONからOFFになったタイミングであるが、図6には時刻t1にブレーキ指令Bがオフされた後も実際のブレーキ力は残っている状態が示されている。時刻t2は、力行指令Pが入力されて、停止検知部23の出力がONになったタイミングであり、時刻t3は、時刻t2から50msec後の時刻である。時刻t4は、時刻t3から150msec後の時刻であり、この時刻t4で抵抗値の推定が完了する。時刻t5は、OFF時素部25に設定された時間(1sec)が経過したタイミングであり、ブレーキ指令BがOFFになったタイミング(t1)から1sec経過したときである。
 時刻t1~t2では、電力変換器2が停止状態のためω=0である。また、時刻t2以降では、上述したように機械ブレーキが残っているため力行指令Pが投入されてもω=0である。
 また、時刻t1~t2では、切替部16、20a、20bの接点がBであるため、抵抗演算部5の出力は、一次抵抗設計値Rs*および二次抵抗設計値Rr*である。
 時刻t2~t3では、上述した条件(1)、かつ、(2)が満たされるため、除算部11によってRsRr_obの演算が開始される。また、時刻t2では切替部16の接点がBであるため、一次抵抗設計値Rs*が切替部20bの接点Aを介して出力される。
 時刻t3~t4では、切替部16の接点がAに替わるため、切替部16からRs_ob1が出力されるとともに、減算部17からRr_ob1が出力される。
 t4~t5では、切替部14b、14cの接点がAに替わるため、Rs_obとRr_obとが保持され、切替部20a、20bの接点Aを介して外部に出力される。
 時刻t5以降では、切替部20a、20bの接点がBに替わるため、再び一次抵抗設計値Rs*および二次抵抗設計値Rr*が出力される。
 図7には、シミュレーションにより電車用誘導機(定格容量180kW)の定数を用いて本発明の抵抗推定の精度を確認した結果が示されており、このシミュレーションによって、一次、二次の抵抗推定値がモータの真値(実際のモータの値)にほぼ一致した値となることが確認できる。図7(a)のRs+Rr推定期間では、RsRr_obの推定状態と、Rs_obの推定状態とが示されている。また、図7(a)のRs、Rr個別推定期間では、減算部17で得られたRr_obが示されている。なお、図7(b)は、個別推定期間(t3~)におけるRs_obと値Rr_obの推定結果を拡大して示したものである。
 図9は、図1に示される抵抗演算部の他の構成例を示す図である。図9に示される抵抗演算部5は、図2の切替部20a、20bに替えて、ラッチ部12d、12eを有して構成されている。ラッチ部12d、12eを採用した場合、演算された推定結果を次々と反映することができるので、連続的に誘導機1の温度監視などが可能である。このことを説明すると、Rs_obおよびRr_obを推定した後に、切替部14d、14eの接点がBに替わり、前回値記憶素子部13d、13eに保持された抵抗が出力された後において、例えば、走行を開始した電気車が再び停止したときに、上述したt1~t4の動作を行うことで、新たな一次抵抗推定値Rs_obおよび二次抵抗推定値Rr_obを得ることが可能である。
 以上に説明したように、本実施の形態にかかる電力変換装置は、ブレーキ指令Bと力行指令Pとd軸電圧指令Vd*とd軸電流検出値idとに基づいて交流回転機の速度が零であることを判断し、交流回転機の速度が零であり、かつ、所定の時間でブレーキ指令Bから力行指令Pに変更になったときに、d軸電圧指令Vd*とd軸電流検出値idとに基づいて交流回転機の抵抗値を演算するようにしたので、正確に交流回転機の抵抗値を推定することが可能である。従来技術では、速度センサレス制御される交流回転機が回転することで生じるインダクタンス成分によって正確な抵抗値を得ることが困難であったが、本実施の形態にかかる電力変換装置によれば、力行指令Pが入力されてから交流回転機が回転する前、すなわちd軸電圧指令Vd*およびd軸電流検出値idが得られ、かつ、角周波数ωが零であるときに、一次抵抗推定値Rs_obと二次抵抗推定値Rr_obとを推定する態様であるため、従来技術よりも正確な抵抗値を得ることができる。その結果、この得られた抵抗値をベクトル制御の設定値に用いることにより、安定した所望のトルク出力を確保することが可能であり、また、推定された抵抗値によって交流回転機の温度を推定することも可能である。特に交流回転機である誘導機1に適用することにより、一次抵抗Rsの値や二次抵抗Rrの値を推定することができる。
実施の形態2.
 図10は、本発明の実施の形態2にかかる電力変換装置を示す構成図であり、図11は、図10に示される抵抗演算部の構成図であり、図12は、本発明の実施の形態2にかかる電力変換装置を適用した場合における同期機の等価回路である。図10において、実施の形態1と異なる点は、交流回転機が同期機27であるため、制御部41に抵抗演算部28を有している点である。以下、第1の実施の形態と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
 図12において、同期機27が完全に停止している場合、同期機27のq軸側に電流が流れていないとき(すなわち、iq=0)には、図12に示されるd軸インダクタンスLdおよびq軸インダクタンスωLqはインピーダンスを持たないため、d軸電圧指令Vd*とd軸電流検出値idとから抵抗Rの値を推定することができる。これを実現したものが図11に示す抵抗演算部28である。抵抗演算部28は、そのほとんどの機能が実施の形態1と同様であるが、力行指令Pが投入されてから200msec経過するまでの間に、抵抗Rを推定している。より具体的には、切替部14aは、B接点のとき(すなわち200msec経過前)、d軸電圧指令Vd*をd軸電流検出値idで割った値、すなわち抵抗推定値R_ob1を推定する。200msec経過後には、保持されているR_ob1が抵抗用リミッタ処理部50に入力される。ラッチ部12bでは、切替部14bの接点がBからAに変更されたことでR_ob1が保持され、ラッチ部12fに入力される。ラッチ部12fでは、切替部14fの接点がAからBに変更されたことで前回値記憶素子部13fに記憶されているR_ob1が保持され、R_obが外部に出力される。
 すなわち、実施の形態1のような一次抵抗Rs+二次抵抗Rrを推定するモードと、一次抵抗Rsを推定するモードと、二次抵抗Rrを推定するモードとが無い。なお、本実施の形態では、一例としてON時素部29に200msecを設定しているが、これらのモードがないため、より短い値に設定することも可能である。
 以上に説明したように、本実施の形態にかかる電力変換装置は、実施の形態1と同様に、従来技術よりも正確な抵抗値を得ることができ、この得られた抵抗値をベクトル制御の設定値に用いることにより、安定した所望のトルク出力を確保することが可能である。また、推定された抵抗値によって交流回転機の温度を推定することも可能である。特に、本実施の形態によれば、同期機27の抵抗Rの値を推定することができる。
実施の形態3.
 図13は、本発明の実施の形態3による電力変換装置の構成図であり、図14は、図13に示される抵抗演算部の構成図であり、図15は、図13に示されるモータ異常検知部の構成図である。図13において、実施の形態1と異なる点は、制御部42に、抵抗演算部30と、新たな構成要素であるモータ異常検知部31とを有している点である。本実施の形態にかかる電力変換装置では、誘導機1の一次抵抗Rsの値と二次抵抗Rrの値とを推定して、その推定値を用いて誘導機1の異常を検知する。なお、第1の実施の形態と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
 本実施の形態にかかる電力変換装置は、推定された一次抵抗Rsの値と二次抵抗Rrの値とを用いて誘導機1の故障を防止することを目的としている。このことを説明すると、例えば、電車用交流回転機の場合、モータの回転子や固定子の発熱を抑制するために、冷却用のブロアが設置されている。このブロアの吸入口が目詰りを起こした場合には、冷却不足となるためモータの回転子や固定子が温度上昇して、回転子の絶縁破壊を起こしてモータが故障する可能性がある。そのため、本実施の形態にかかる電力変換装置では、このような事象で発生する異常な温度上昇を抵抗演算部30で推定し、推定された一次抵抗Rsの値および二次抵抗Rrの値を用いてモータの異常を検知し、インバータの動作を停止させる信号を出力することで誘導機1の故障を防止している。本実施の形態では、モータの回転子の温度が上昇するとモータの回転子側の二次抵抗Rrの値が増加することを利用している。
 図14において、抵抗演算部30は、第1の実施の形態とほとんど同じであるが、図2に示したリミッタ処理部18、19がないことが特徴である。リミッタ処理部18、19があると、上記のような事象が発生したときに推定された抵抗値が所定の値より大きくなることができない。そこで、異常に大きな一次抵抗Rsの値と二次抵抗Rrの値とを得るべく、リミッタ処理部18、19を無くしている。
 図15において、モータ異常検知部31は、抵抗演算部30で演算されたRs_ob、Rr_obを入力して、モータの異常過温度を検知するように構成されている。以下、モータ異常検知部31の構成と動作を説明する。モータ異常検知部31は、主たる構成として、比較器32a、比較器32b、および論理和部33を有して構成されている。比較器32aは、一次抵抗Rsの値とRs*_prとを比較し、比較器32bは、二次抵抗Rrの値とRr*_prとを比較する。Rs*_pr、Rr*_prは、モータの回転子あるいは固定子が温度上昇して、例えば、回転子の絶縁破壊する温度より低い温度を想定して設定された値である。例えば、モータの回転子や固定子の材料の絶縁の種類より許容最高温度が決まるので、その許容最高温度に相当する抵抗値をRs*_pr、Rr*_prに設定すればよい。例えば、絶縁の種類がHの場合、最高許容温度が180度となるので、180度に相当する抵抗値をRs*_pr、Rr*_prに設定する。比較器32aは、一次抵抗Rsの値とRs*_prとを比較し、一次抵抗Rsの値がRs*_prより大きい場合、論理和部(OR)33に対して1を出力する。同様に、比較器32bは、二次抵抗Rrの値とRr*_prとを比較し、二次抵抗Rrの値がRr*_prより大きい場合、論理和部(OR)33に対して1を出力する。
 論理和部33は、比較器32aおよび比較器32bの出力の何れか一方が1となったとき、インバータを停止することを示すインバータ停止信号Gstpを出力する。電力変換器2は、そのGstpを受けてその動作を停止する。
 以上に説明したように、本実施の形態にかかる電力変換装置は、実施の形態1と同様に、従来技術よりも正確な抵抗値を得ることができる。そのため、例えば、交流回転機の回転子や固定子が温度上昇して回転子の絶縁破壊を起こすような事象が発生した場合でも、正確な抵抗値を用いて異常の有無を精度よく検出することができるので、交流回転機の故障を未然に防止することが可能である。
 以上のように、本発明は、速度検出器を用いることなく交流回転機を起動することが可能な電気車の電力変換装置に適用可能であり、特に、交流回転機の抵抗値を正確に測定することができる発明として有用である。
 1 誘導機
 2 電力変換器
 3a,3b,3c 電流検出器
 4 速度判断部
 5,28,30,31 抵抗演算部
 6 三相/dq変換部
 7 電流指令部
 8 速度演算部
 9 位相演算部
 10 dq/三相変換部
 11 除算部
 12a,12b,12c,12d,12f ラッチ部
 13a,13b,13c,13f 前回値記憶素子部
 14a,14b,14c,14f,16,20a,20b 切替部
 15 零割防止用リミッタ処理部
 17 減算部
 18,19 一次抵抗用リミッタ処理部
 21,22,29 ON時素部
 23 停止検知部
 24 イコール比較部
 25 OFF時素部
 26 論理積部
 27 同期機
 31 モータ異常検知部
 32a,32b 比較器
 33 論理和部
 40,41,42 制御部
 50 抵抗用リミッタ処理部
 B ブレーキ指令
 Gstp インバータ停止信号
 id d軸電流検出値
 iq q軸電流検出値
 id* d軸電流指令
 iq* q軸電流指令
 iu,iv,iw 相電流情報
 Ld d軸インダクタンス
 lr 二次漏れインダクタンス
 ls 一次漏れインダクタンス
 M 相互インダクタンス
 P 力行指令
 R 抵抗
 Rr 二次抵抗
 Rs 一次抵抗
 R_ob 抵抗推定値
 Rr_ob,Rr_ob1 二次抵抗推定値
 Rs_ob,Rs_ob1 一次抵抗推定値
 Rr* 二次抵抗設計値
 Rs* 一次抵抗設計値
 RsRr_ob 一次抵抗推定値+二次抵抗推定値
 Vd* d軸電圧指令
 Vq* q軸電圧指令
 Vu*,Vv*,Vw* 三相電圧指令
 θ 位相
 τm トルク
 ω 角周波数
 ωLq q軸インダクタンス

Claims (4)

  1.  交流回転機を駆動する電力変換器と、
     運転指令に基づいて前記電力変換器を制御する制御部と、
     を備え、
     前記制御部は、
     前記交流回転機にて検出された電流情報を直交回転座標上の直交軸電流に変換する座標変換部と、
     前記運転指令および前記直交軸電流に基づいて、前記前記電力変換器に対する電圧指令を演算すると共に、前記交流回転機の速度を判断する速度判断部と、
     前記速度判断部が交流回転機の速度を零と判断し、かつ、前記運転指令がブレーキ指令から力行指令に変更になったとき、前記直交軸電流、前記電圧指令、および前記力行指令に基づいて、前記交流回転機の抵抗を演算する抵抗演算部と、を有すること、
     を特徴とする電気車の電力変換装置。
  2.  前記交流回転機は、同期機であり、
     前記抵抗演算部は、前記同期機の抵抗を演算することを特徴とする請求項1に記載の電気車の電力変換装置。
  3.  前記交流回転機は、誘導機であり、
     前記抵抗演算部は、前記誘導機の一次抵抗および二次抵抗を演算することを特徴とする請求項1に記載の電気車の電力変換装置。
  4.  前記制御部は、前記誘導機の一次抵抗および二次抵抗に基づいて、前記誘導機の異常過熱を検知して電力変換器を停止するモータ異常検知部を備えたことを特徴とする請求項1または3に記載の電気車の電力変換装置。
PCT/JP2009/069854 2009-11-25 2009-11-25 電気車の電力変換装置 WO2011064846A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980162607.7A CN102754331B (zh) 2009-11-25 2009-11-25 电动车辆的电力变换装置
US13/502,528 US8593094B2 (en) 2009-11-25 2009-11-25 Power conversion apparatus of electric vehicle
PCT/JP2009/069854 WO2011064846A1 (ja) 2009-11-25 2009-11-25 電気車の電力変換装置
JP2010528629A JP4738549B2 (ja) 2009-11-25 2009-11-25 電気車の電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/069854 WO2011064846A1 (ja) 2009-11-25 2009-11-25 電気車の電力変換装置

Publications (1)

Publication Number Publication Date
WO2011064846A1 true WO2011064846A1 (ja) 2011-06-03

Family

ID=44065969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069854 WO2011064846A1 (ja) 2009-11-25 2009-11-25 電気車の電力変換装置

Country Status (4)

Country Link
US (1) US8593094B2 (ja)
JP (1) JP4738549B2 (ja)
CN (1) CN102754331B (ja)
WO (1) WO2011064846A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150194918A1 (en) * 2012-08-09 2015-07-09 Mitsubishi Electric Corporation Control device for electric car
WO2019093064A1 (ja) * 2017-11-08 2019-05-16 株式会社日立製作所 誘導電動機の駆動装置および駆動方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107846159B (zh) * 2017-09-05 2019-10-29 珠海格力电器股份有限公司 电机的控制方法、装置、存储介质、设备及脉冲提取电路
CN112133987A (zh) * 2019-06-25 2020-12-25 北京新能源汽车股份有限公司 一种动力电池的加热控制方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05297079A (ja) * 1992-04-23 1993-11-12 Toshiba Corp 誘導電動機制御装置
JPH11262102A (ja) * 1998-03-12 1999-09-24 Toshiba Corp 電気車の制御装置
JP2007189897A (ja) * 2007-04-16 2007-07-26 Hitachi Ltd 交流電動機の制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048192A (ja) 1990-04-25 1992-01-13 Hitachi Ltd 電動機の抵抗値測定方法とその装置および電気車の制御方法とその装置
JP2505325B2 (ja) 1991-06-10 1996-06-05 東洋電機製造株式会社 誘導電動機の抵抗推定起動装置
JPH09304489A (ja) * 1996-05-09 1997-11-28 Matsushita Electric Ind Co Ltd 誘導電動機のモータ定数測定方法
JP4816838B2 (ja) * 2000-07-13 2011-11-16 株式会社安川電機 誘導電動機のベクトル制御装置
JP3826787B2 (ja) * 2001-12-27 2006-09-27 アイシン・エィ・ダブリュ株式会社 電動車両駆動制御装置、電動車両駆動制御方法及びそのプログラム
CN101029915B (zh) * 2006-09-11 2010-05-12 国电南瑞科技股份有限公司 交流感应电动机的绕组温度测量和过热保护方法
JP5107581B2 (ja) * 2007-01-12 2012-12-26 三菱電機株式会社 電気車の制御装置
CN101188398A (zh) * 2007-11-30 2008-05-28 艾默生网络能源有限公司 异步电机转子电阻的在线识别方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05297079A (ja) * 1992-04-23 1993-11-12 Toshiba Corp 誘導電動機制御装置
JPH11262102A (ja) * 1998-03-12 1999-09-24 Toshiba Corp 電気車の制御装置
JP2007189897A (ja) * 2007-04-16 2007-07-26 Hitachi Ltd 交流電動機の制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150194918A1 (en) * 2012-08-09 2015-07-09 Mitsubishi Electric Corporation Control device for electric car
WO2019093064A1 (ja) * 2017-11-08 2019-05-16 株式会社日立製作所 誘導電動機の駆動装置および駆動方法

Also Published As

Publication number Publication date
JPWO2011064846A1 (ja) 2013-04-11
US20120212163A1 (en) 2012-08-23
CN102754331B (zh) 2014-12-03
CN102754331A (zh) 2012-10-24
US8593094B2 (en) 2013-11-26
JP4738549B2 (ja) 2011-08-03

Similar Documents

Publication Publication Date Title
JP5130031B2 (ja) 永久磁石モータの位置センサレス制御装置
JP4677852B2 (ja) 永久磁石同期モータのベクトル制御装置
JP5025142B2 (ja) モータ制御装置
KR102108911B1 (ko) 드라이브 시스템 및 인버터 장치
EP3200340B1 (en) Power conversion device
JP4860012B2 (ja) 電気車の電力変換装置
JP4406552B2 (ja) 電動機の制御装置
WO2014118958A1 (ja) 永久磁石同期電動機の減磁診断装置
JP4912516B2 (ja) 電力変換装置
JP4738549B2 (ja) 電気車の電力変換装置
JP5934295B2 (ja) インバータシステムにおける電力ケーブルの状態検出方法
JP2009278760A (ja) モータ制御装置及びモータ制御方法
JP2010041868A (ja) 同期電動機のロータ回転監視装置および制御システム
JP2008043069A (ja) 電気車制御装置
JP3946689B2 (ja) 電気車制御装置
JP5886117B2 (ja) 交流電動機の制御装置
JP2006217754A (ja) 同期機駆動制御装置
JP2012114974A (ja) 電気車制御装置
JP5884747B2 (ja) 交流電動機の制御装置
JP4583016B2 (ja) 永久磁石同期電動機の制御装置
JP2018023208A (ja) インバータ装置
WO2021240893A1 (ja) 同期電動機の駆動装置および同期電動機の駆動方法
JP3578096B2 (ja) モータ制御装置
JP5333716B2 (ja) 永久磁石形同期電動機の制御装置
WO2020174621A1 (ja) モータ駆動装置及び空気調和機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980162607.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010528629

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851638

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13502528

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09851638

Country of ref document: EP

Kind code of ref document: A1