JP2009278760A - モータ制御装置及びモータ制御方法 - Google Patents

モータ制御装置及びモータ制御方法 Download PDF

Info

Publication number
JP2009278760A
JP2009278760A JP2008127179A JP2008127179A JP2009278760A JP 2009278760 A JP2009278760 A JP 2009278760A JP 2008127179 A JP2008127179 A JP 2008127179A JP 2008127179 A JP2008127179 A JP 2008127179A JP 2009278760 A JP2009278760 A JP 2009278760A
Authority
JP
Japan
Prior art keywords
motor
current
winding
induced voltage
motor control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008127179A
Other languages
English (en)
Inventor
Sari Maekawa
佐理 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008127179A priority Critical patent/JP2009278760A/ja
Publication of JP2009278760A publication Critical patent/JP2009278760A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】より信頼性が高い電流センサレス方式を実現することができるモータ制御装置を提供する。
【解決手段】ベクトル制御部22は、電流推定部23が、回転位置センサ9より得られるセンサ信号に基づき回転位置検出部14が出力する回転位置信号θ及び回転速度信号ωとモータ7の定数とに基づき励磁電流Ids及びトルク電流Iqsを推定する場合に、インダクタンス補償部24は、推定された電流Ids及びIqsに基づきインダクタンスLd,Lqを補償する。また、直流電流Isを電流検出器21により検出し、抵抗・定数補償部25は、電流Isと、直流電源1の電圧Vsと、ベクトル制御演算によって得られるインバータ回路4の出力電圧Vd,Vqと,巻線インダクタンスLd,Lqとに基づいて巻線抵抗R,誘起電圧定数Keを補償する。
【選択図】図1

Description

本発明は、モータに取付けられた回転位置センサより得られるセンサ信号に基づき、駆動回路を構成する複数のスイッチング素子に制御信号を出力するモータ制御装置及びモータ制御方法に関する。
図10は、モータをベクトル制御する装置につき、従来構成の一例を示すものである。直流電源1の両端には、平滑コンデンサ2が接続されていると共に、電源線3a,3bを介してインバータ回路(駆動手段)4が接続されている。尚、直流電源1は、交流電源を整流して得たものを含む。インバータ回路4は、例えば、6個のIGBT(スイッチング素子)5を3相ブリッジ接続して構成されている。また、電源線3bには、抵抗素子6が挿入されている。
インバータ回路4の各相出力端子は、モータ7の図示しない各相巻線に接続されており、また、両者間の2相(例えば、U,V相)の信号線には電流センサ8a,8bが配置されている。モータ7は、例えば、誘導モータやブラシレスDCモータ,或いはIPM(Interior Permanent Magnet)モータなどである。
モータ7には、例えば、レゾルバなどの回転位置センサ9が配置されている。電流センサ8a,8bの検出信号Iu,Ivは、アンプ10に与えられて増幅され、またそれらの信号より残り1相分の信号Iwが算出されて、ベクトル制御部11の3相/2相変換部12に出力される。また、回転位置センサ9の検出信号は、アンプ13に与えられて増幅され、回転位置検出部14に出力される。
回転位置検出部14は、回転位置信号よりモータ7のロータ位置信号θ並びに回転速度ωを算出すると、前者をベクトル制御部11の3相/2相変換部12及び2相/3相変換部15に出力する。3相/2相変換部12は、位置信号θに基づき、モータ7の3相電流Iu,Iv,Iwを2相電流Iα,Iβに変換すると、更にd軸電流(励磁電流)Id,q軸電流(トルク電流)Iqに変換し、減算器16a,16bに減算値として出力する。
減算器16a,16bには、外部からの励磁指令Idr,トルク指令Iqrが被減算値として与えられており、両者の減算結果は、比例積分回路17a,17bに出力される。比例積分回路17a,17bは、減算器16a,16bの減算結果を比例積分演算することでd軸電圧Vd,q軸電圧Vqを生成し、2相/3相変換部15に出力する。2相/3相変換部15は、d軸電圧Vd,q軸電圧Vqを3相電圧Vu,Vv,Vwに変換すると、それらをPWM変換部18に出力する。
PWM変換部18は、3相電圧Vu,Vv,Vwに基づいてPWM信号を生成すると、それらをゲートドライブ回路19を介してインバータ回路4を構成する各IGBT5のゲートに出力する。そして、保護回路20は、抵抗素子6の端子電圧に基づき、例えばIGBT5の短絡故障等に基づく電流異常を検出すると、異常検出信号をゲートドライブ回路19に出力し、ゲートドライブ回路19は、インバータ回路4に対するPWM信号の出力を停止する。
この場合、モータ7の負荷は、例えば電気自動車の駆動輪であり、駆動輪には外力が作用することが想定される。従って、位置センサレス駆動方式は不適であり、通常回転位置センサ9が必要とされる。
そして、上記のような制御装置については、小型化やコスト低減の要求に応じて、電流センサ8a,8bを削除する技術(電流センサレス技術)が提案されている。例えば、特許文献1には、抵抗素子6の端子電圧と、モータに印加する各相端子電圧の組み合わせ信号とに基づいて、モータ電流を検出する構成が開示されている。また、非特許文献1には、回転位置信号θ及び回転速度ω並びにモータ定数に基づき演算を行なうことで、d軸電流Id,q軸電流Iqを求める技術が開示されている。
特開平2−197295号公報 電気学会論文誌D,産業部門応用誌,2001年11月1日,p1126〜p1133,「低分解能位置センサのみによる同期モータの電流センサドライブシステム」
しかしながら、特許文献1に開示されている構成では、出力電圧が比較的小さい領域や、3相のうち2相の電圧が一致するタイミングで電流検出ができなくなるという問題がある。また、非特許文献1に開示されている技術では、温度が変化したり減磁が発生するなどしてモータ定数が変化すると、電流検出に誤差が生じてしまうという問題がある。
本発明は、上記事情に鑑みて成されたものであり、その目的は、より信頼性が高い電流センサレス方式を実現することができるモータ制御装置及びモータ制御方法を提供することにある。
上記目的を達成するため、請求項1記載のモータ制御装置は、モータに取付けられた回転位置センサより得られるセンサ信号に基づきベクトル制御を行うことで、直流電源に接続される駆動手段を構成する複数のスイッチング素子にスイッチング制御信号を出力するものにおいて、
前記センサ信号に基づき回転位置信号及び回転速度信号と、前記モータの定数とに基づいて、励磁電流Id及びトルク電流Iqを推定する電流推定検出手段と、
前記モータ定数である巻線抵抗値,誘起電圧定数を、それぞれ真値に補償する巻線抵抗補償手段,誘起電圧定数補償手段と、
前記直流電源より、前記駆動手段に供給される直流電流を検出する電流検出手段とを備え、
前記巻線抵抗補償手段,前記誘起電圧定数補償手段は、前記電流検出手段により検出された電流Isと、前記直流電源の電圧Vsと、ベクトル制御演算によって得られる前記駆動手段の出力電圧Vd,Vqと,前記モータ定数である巻線インダクタンスLd,Lqとに基づいて補償を行い、
前記モータの回転速度指令に応じて与えられる電流指令と、前記電流推定検出手段により推定された電流とに基づいて、前記モータをベクトル制御することを特徴とする。
また、請求項9記載のモータ制御方法は、モータに取付けられた回転位置センサより得られるセンサ信号に基づきベクトル制御を行うことで、直流電源に接続される駆動手段を構成する複数のスイッチング素子にスイッチング制御信号を出力してモータを制御する方法において、
前記センサ信号に基づき得られる回転位置信号及び回転速度信号と前記モータの定数とに基づいて、励磁電流Id及びトルク電流Iqを推定し、
前記モータの回転速度指令に応じて与えられる電流指令と前記推定された電流とに基づいて前記モータをベクトル制御する場合に、前記モータ定数である巻線抵抗値,誘起電圧定数をそれぞれ真値に補償するため、
前記直流電源より、前記駆動手段に供給される直流電流を電流検出手段により検出し、
前記検出された電流Isと、前記直流電源の電圧Vsと、ベクトル制御演算によって得られる前記駆動手段の出力電圧Vd,Vqと,前記モータ定数である巻線インダクタンスLd,Lqとに基づいて補償することを特徴とする。
請求項1記載のモータ制御装置,及び請求項9記載のモータ制御方法によれば、電流検出手段により直流電流を検出するだけで、モータの各相電流を個別の電流センサにより検出せずともベクトル制御を行うことが可能となる。その場合に、励磁電流Id及びトルク電流Iqを推定するのに使用するモータ定数である巻線抵抗値,誘起電圧定数をそれぞれ真値に補償するので、信頼性が高く、低コストで高精度のモータ制御を実現できる。
以下、本発明の一実施例について図1〜図9を参照して説明する。尚、図10と同一部分には同一符号を付して説明を省略し、以下異なる部分について説明する。本実施例のモータ制御装置は、図10に示す構成から抵抗素子6及び電流センサ8a,8bを取り除くと共に、ベクトル制御部11から3相/2相変換部12を除いている。そして、抵抗素子6に替えて、例えば電流トランスで構成される電流検出器21(電流検出手段)が、直流電源1の負側端子と平滑コンデンサ2との間に配置されている。
また、ベクトル制御部11に替わるベクトル制御部22(モータ制御装置)には、電流推定部23(電流推定手段),インダクタンス補償部24(巻線インダクタンス補償手段),巻線抵抗・誘起電圧定数補償部(以下、抵抗・定数補償部と称す)25,モータ状態判定部26(モータ状態判定手段)を備えている。
電流推定部23には、比例積分回路17a,17bより出力されるd軸電圧Vd,q軸電圧Vqが入力されると共に、回転位置検出部14より回転位置信号θ及び回転速度ωが与えられている。また、電流推定部23には、インダクタンス補償部24により補償された巻線インダクタンスLd,Lqと、抵抗・定数補償部25(巻線抵抗補償手段,誘起電圧定数補償手段)により補償された巻線抵抗Rと誘起電圧定数Keが与えられている。電流推定部23は、ベクトル制御演算を行うことでd軸電流Ids,q軸電流Iqsを推定し、減算器16a及び16b,インダクタンス補償部24,抵抗・定数補償部25,モータ状態判定部26に出力する。
モータ定数である巻線インダクタンスLd,Lqは、モータ電流の大きさに応じて発生する磁気飽和により変化するので、電流によるモデリングが可能である。すなわち、電流Ids,Iqsが大きくなると、磁気飽和によってインダクタンスLd,Lqは減少する。そこで、インダクタンス補償部24は、両者の関係を例えばデータテーブルとして持ち、電流Ids,Iqsに応じてインダクタンスLd,Lqを補償する。
抵抗・定数補償部25には、電流検出器21により検出された直流電流Isと、図示しない電圧検出器(分圧抵抗回路でも良い)より検出されるバッテリ1の電圧Vsとが与えられていると共に、前記回転速度ωが与えられている。また、インダクタンス補償部24より巻線インダクタンスLd,Lqと、モータ状態判定部26よりモータ7の状態判定信号が与えられており、上述したように補償した巻線抵抗Rと誘起電圧定数Keとを出力する。
モータ状態判定部26は、回転速度ωと、電流推定部23により推定された電流Ids,Iqsとに基づいてモータ7の駆動状態、すなわち、速度ωや推定電流Ids,Iqsの変化状態を判定する。また、減算器16aの前段には指令値変更部31が挿入されており、指令値変更部31は、抵抗・定数補償部25からの制御指令に応じて励磁指令Idrの値を変更するようになっている。尚、ベクトル制御部22の各機能は、マイクロコンピュータのソフトウエアによって実現されている。
次に、本実施例の作用について図2乃至図9を参照して説明する。図2及び図3は、モータ制御装置により実行される制御内容を示すフローチャートである。図2(a)は、例えば1m秒周期で実行されるメインループ処理である。先ず、与えられた励磁指令Idrと、トルク指令Iqrとに基づいてトルク指令,回転数指令を設定し(ステップS1)、トルク制御を行う場合はステップS2→S3へ、回転数制御を行う場合はS2→S4へ移行してそれぞれの制御を実行する。最後に、図2(c)に示すモータ定数補償を行う(ステップS5)。以上の処理を1m秒毎に繰り返し実行する。
図2(b)は、64μ秒毎に実行される制御割込み処理である。先ず、制御周期が奇数か偶数かを判断し(ステップS11)、奇数周期の場合はステップS12→S13と移行し、A/D変換処理と直流電流Isの検出処理とを行う。一方、偶数周期の場合はステップS14→S15→S16と移行し、ステップS12とは異なる対象についてのA/D変換処理,電流推定処理,電流制御処理を行う。ステップS13,S16の実行後は、ステップS17において、PWM変換部18によるPWM信号の生成出力を行う。以上の処理を64μ秒毎に繰り返し実行する。
尚、ステップS15の電流推定処理は、電流推定部23において下記の行列式を展開した(1),(2)式に基づき行われる。
Figure 2009278760
すなわち、Idsを表す式が(1)式,Iqsを表す式が(2)式である。
次に、図2(c)に示すモータ定数補償処理について説明する。先ず、補償の原理について説明する。図5は、インバータ回路4の入出力電力の関係を示しており、その関係は(3)式で示され、(3)式をd軸電流Idsについて解くと(4)式になる。
Vs・Is=3/2・(Vq・Iqs+Vd・Ids) …(3)
Ids=(W−Vq・Iqs)/Vd …(4)
但し、W=2/3・Vs・Isである。
そして、(4)式に(1),(2)式を代入し、誘起電圧定数Keについて解くと(5)式となる。
Ke=−(G・W−Vd・H−Vq・J)/(Vq・R・ω+Vd・ω・Lq)
…(5)
但し、G=R+ω・Ld・Lq
H=R・Vd+ω・Lq・Vq
J=−(ω・Ld・Vd)+R・Vq
である。
(5)式における未知数は、誘起電圧定数Ke,巻線抵抗Rの2つである。(5)式は巻線抵抗Rの3次式となっており、両者の関係は図6に示すように、モータ7の運転状態に応じてパラメータVs,Is,ω,Ld,Lqが異なる場合は、異なる負荷曲線を描く。そこで、所定の条件下において、上記パラメータを少なくとも2回サンプリングすることで2つの曲線式を得れば、それら2つの曲線が交差する点において定数Ke,抵抗Rの真値を得ることができる。
以下、(5)式を演算するためのパラメータを2回サンプリングして、定数Ke,抵抗Rを求める手法を、図2(c),図3のフローチャートと図4乃至図9も参照しながら説明する。尚、図4は、図2(c)のフローチャートの各処理を実行するタイミングを示すものである。
抵抗・定数補償部25は、モータ状態判定部26によりモータ7が現在回転中であることを確認してから、第1回のサンプリングを行い(ステップS21:YES)、電流Is,電圧Vs,Vd,Vq,回転速度ωを取得する(ステップS22)。また、同時に推定電流Ids,Iqsの値も取得しておく。
次に、第2回のサンプリングを行う以前に、異なる曲線式を得るため指令値変更部31によりd軸電流指令Idrを変化させるが、変化させる条件として、再びモータ状態判定部26によりモータ7が現在回転中であることを確認すると共に、その時点の回転速度ω,推定電流Ids,Iqsの何れかが、第1回のサンプリング時点における値よりも一定割合以上変化していないこと確認した上で(ステップS24:NO)、d軸電流指令Idrを変化させる(ステップS25)。
次に、第2回のサンプリングを行う(ステップS26:YES)。この場合もモータ状態判定部26によりモータ7が現在回転中であることを確認すると共に、その時点の回転速度ω,推定電流Ids,Iqsの何れかが、第1回のサンプリング時点における値よりも一定割合以上変化したこと確認した上でサンプリングする。ここで、上記各値の何れかが一定割合以上変化したこと確認するのは、例えば図7に示すように第1回のサンプリングで得られる曲線C1に対して、ある程度軌跡が異なる曲線C2を得るためである。
以降は、下記(a)〜(g)の手順による。
(a)電流Is,電圧Vs,Vd,Vq,回転速度ωを取得する(ステップS27)。
(b)巻線抵抗Rの初期値Rinitial[k]を設定する(ステップS27→図3のステップS31)。
(c)上記抵抗Rと、第1回,第2回でサンプリングした各値から、(5)式を用いて定数Ke1,Ke2を演算する(ステップS32,S33)。
(d)定数Ke1,Ke2の差の絶対値Kedevが最小となるように、n回の演算を行うことで抵抗Rの収束値を探索する(ステップS34〜S36)。例えば図7において、2つの曲線C1,C2の交点に到達するように抵抗Rの収束値を求める。
(e)抵抗Rの初期値Rinitial[k]をk回変化させて(今回の初期値R=前回の初期値R+α)、(c)→(d)のプロセスを繰り返す(ステップS37,S38)。
ここで、初期値Rinitial[k]をk回変化させる理由の1つは、演算結果の統計的な信頼性を得るためである。また、もう1つの理由は、(5)式が抵抗Rの3次式となっているので、図8に示すように、負荷状態によっては曲線C1,C2の交点、すなわち差の絶対値Kedevが最小となる点(解)が3つ得られる場合がある。そこで、初期値Rinitial[k]を複数回変えて(c)→(d)のプロセスを繰り返すことにより、3つの解に対応する差の絶対値Kedevを全て求めるようにし、局所解だけで誤判定することを避けるためである。
(f)k個の収束値Rから異常値(負の値や、所定の変動幅を超える値)を除外して平均化することで、抵抗Rの真値を決定する(ステップS39〜S41)。
(g)抵抗Rの真値を用いて(5)式を演算し、定数Keの真値を決定する(ステップS42)。
図9(a),(b)は、初期値Rinitial[k]を与えてn回の演算を行った結果、収束値Rが得られる状態(減少して収束するパターンと、増加して収束するパターン)を示している。そして、図9(c)は、k個の収束値Rをマッピングした一例を示している。すなわち、巻線抵抗Rが温度等の影響により変動するとしても、例えば室温基準の抵抗値からそれほどかけ離れた値にならないことは明らかである。したがって、所定範囲内に収まっているものだけを正常な収束値群として採用し、大きくかけ離れているものは異常値として排除する。
尚、以上はサンプリングを(m=)2回行う例で説明したが、実際には、サンプリング誤差などが含まれるため、図6に示すように(m=)3回以上行って3つ以上の曲線から抵抗R,定数Ke求めるようにした方が、現実的に妥当な値を得ることができる。
以上のように本実施例によれば、ベクトル制御部22は、電流推定部23が、回転位置センサ9より得られるセンサ信号に基づき回転位置検出部14が出力する回転位置信号θ及び回転速度信号ωとモータ7の定数とに基づいて、励磁電流Ids及びトルク電流Iqsを推定する場合に、インダクタンス補償部24は、推定された電流Ids及びIqsに基づきインダクタンスLd,Lqを補償する。
そして、直流電源1よりインバータ回路4に供給される直流電流Isを電流検出器21により検出し、抵抗・定数補償部25は、電流Isと、直流電源1の電圧Vsと、ベクトル制御演算によって得られるインバータ回路4の出力電圧Vd,Vqと,巻線インダクタンスLd,Lqとに基づいて巻線抵抗R,誘起電圧定数Keを補償し、ベクトル制御部22は、モータの回転速度指令に応じて与えられる電流指令Idr,Iqrと、推定された電流Ids及びIqsとに基づいて、モータ7をベクトル制御する。
したがって、電流検出器21により直流電流Isを検出するだけで、モータ7の各相電流を個別の電流センサにより検出せずともベクトル制御を行うことが可能となり、信頼性を向上させて、低コストで高精度のモータ制御を実現できる。その場合、インダクタンス補償部24は、推定された電流Ids及びIqsに基づいて巻線インダクタンスLd,Lqを補償するので、実際の運転状況に応じたインダクタンスにより制御精度を向上させることができる。
また、抵抗・定数補償部25は、電流Is,電圧Vs,Vd,Vq,巻線インダクタンスLd,Lqを異なるタイミング複数回サンプリングして、インバータ回路4の入出力電圧関係式と、dq軸電圧方程式とに基づき得られる巻線抵抗Rと誘起電圧定数Keとの関係式を用いて抵抗Rと定数Keとを補償する。したがって、理論的に得られる関係式に基づいて、補償を高精度に行うことができる。
その場合、抵抗・定数補償部25は、モータ状態判定部26によるモータ7の駆動状態の判定結果に応じてサンプリングを行うタイミングを決定するので、(5)式の係数が確実に異なるようにサンプリングを行うことができる。具体的には、抵抗・定数補償部25は、モータ7の回転速度ωがゼロでない場合に最初のサンプリングを行い、モータの回転速度ωがゼロでなく、且つ、回転速度ω,電流Ids,Iqsの何れかが、前回のサンプリングを行った時点から一定割合以上変換した場合に、2回目の以降のサンプリングを行うので、軌跡が確実に異なる複数の関係式を得て、それらの交点から抵抗Rと定数Keの真値を求めることができる。
また、抵抗・定数補償部25は、複数の関係式より得られる誘起電圧定数Keの差Kedevが最小となる巻線抵抗Rを探索するので、抵抗Rと定数Keの真値を高精度で特定することができる。
本発明は、上記実施例にのみ限定されるものではなく、次のように変形または拡張できる。
巻線インダクタンスLd,Lqの補償は必要に応じて行えば良く、巻線抵抗R,誘起電圧定数Keを補償する場合には、所与の値を用いても良い。
電流検出器21は、電源線3a側に挿入しても良い。また、電流検出手段は、図10と同様に抵抗素子を用いても良い。
スイッチング素子は、パワーMOSFETやパワートランジスタでも良い。
車両駆動用のモータに限ることなく、例えば、エアコン室外機のファンを駆動するモータに適用しても良い。
本発明の一実施例であり、モータ制御装置の構成を示す機能ブロック図 制御内容を示すフローチャート(その1) 制御内容を示すフローチャート(その2) 図2(c)のフローチャートの各処理を実行するタイミングを示す図 インバータ回路の入出力電力の関係を示す図 モータ運転状態に応じてR−Ke曲線の軌跡が異なる場合を説明する図 2つの曲線の交点を求める処理を説明する図(その1) 2つの曲線の交点を求める処理を説明する図(その2) (a),(b)は初期値Rinitial[k]を与えてn回の演算を行った結果収束値Rが得られる状態、(c)はk個の収束値Rをマッピングした一例を示す図 従来構成を示す図1相当図
符号の説明
図面中、1は直流電源、4はインバータ回路(駆動手段)、5はIGBT(スイッチング素子)、7はモータ、9は回転位置センサ、21は電流検出器(電流検出手段)、22はベクトル制御部(モータ制御装置)、23は電流推定部(電流推定手段)、24はインダクタンス補償部(巻線インダクタンス補償手段)、25は巻線抵抗・誘起電圧定数補償部(巻線抵抗補償手段,誘起電圧定数補償手段)、モータ状態判定部(モータ状態判定手段)を示す。

Claims (16)

  1. モータに取付けられた回転位置センサより得られるセンサ信号に基づきベクトル制御を行うことで、直流電源に接続される駆動手段を構成する複数のスイッチング素子にスイッチング制御信号を出力するモータ制御装置において、
    前記センサ信号に基づき得られる回転位置信号及び回転速度信号と、前記モータの定数とに基づいて、励磁電流Id及びトルク電流Iqを推定する電流推定検出手段と、
    前記モータ定数である巻線抵抗値,誘起電圧定数を、それぞれ真値に補償する巻線抵抗補償手段,誘起電圧定数補償手段と、
    前記直流電源より、前記駆動手段に供給される直流電流を検出する電流検出手段とを備え、
    前記巻線抵抗補償手段,前記誘起電圧定数補償手段は、前記電流検出手段により検出された電流Isと、前記直流電源の電圧Vsと、ベクトル制御演算によって得られる前記駆動手段の出力電圧Vd,Vqと,前記モータ定数である巻線インダクタンスLd,Lqとに基づいて補償を行い、
    前記モータの回転速度指令に応じて与えられる電流指令と、前記電流推定検出手段により推定された電流とに基づいて、前記モータをベクトル制御することを特徴とするモータ制御装置。
  2. 前記電流推定検出手段により推定された電流に基づいて、前記巻線インダクタンスLd,Lqを真値に補償する巻線インダクタンス補償手段を備え、
    前記巻線抵抗補償手段,前記誘起電圧定数補償手段は、前記巻線インダクタンス補償手段により補償された巻線インダクタンスLd,Lqを、前記巻線抵抗値,誘起電圧定数を補償する場合に用いることを特徴とする請求項1記載のモータ制御装置。
  3. 前記巻線抵抗補償手段,前記誘起電圧定数補償手段は、前記電流Is,前記電圧Vs,Vd,Vq,前記巻線インダクタンスLd,Lqを、異なるタイミングでm(m≧2)回サンプリングすることを特徴とする請求項1又は2記載のモータ制御装置。
  4. 前記電流推定検出手段により推定された電流と、前記回転位置センサより得られる回転速度信号とに基づいて、前記モータの駆動状態を判定するモータ状態判定手段を備え、
    前記巻線抵抗補償手段,前記誘起電圧定数補償手段は、前記モータ状態判定手段による駆動状態の判定結果に応じて、前記サンプリングを行うタイミングを決定することを特徴とする請求項3記載のモータ制御装置。
  5. 前記巻線抵抗補償手段,前記誘起電圧定数補償手段は、前記モータ状態判定手段によって前記モータの回転速度がゼロでない場合に、最初のサンプリングを行うことを特徴とする請求項4記載のモータ制御装置。
  6. 前記巻線抵抗補償手段,前記誘起電圧定数補償手段は、前記モータ状態判定手段によって前記モータの回転速度がゼロでなく、且つ、前記回転速度,前記電流推定検出手段により推定された電流の何れかが、前回のサンプリングを行った時点から一定割合以上変換した場合に、2回目の以降のサンプリングを行うことを特徴とする請求項5記載のモータ制御装置。
  7. 前記巻線抵抗補償手段,前記誘起電圧定数補償手段は、前記m回のサンプリング結果について、巻線抵抗Rと誘起電圧定数Keとの関係式をそれぞれ算出することを特徴とする請求項3乃至6の何れかに記載のモータ制御装置。
  8. 前記巻線抵抗補償手段,前記誘起電圧定数補償手段は、前記m個の関係式において、m個の誘起電圧定数Keの差が最小となる巻線抵抗Rを探索することを特徴とする請求項7記載のモータ制御装置。
  9. モータに取付けられた回転位置センサより得られるセンサ信号に基づきベクトル制御を行うことで、直流電源に接続される駆動手段を構成する複数のスイッチング素子にスイッチング制御信号を出力してモータを制御する方法において、
    前記センサ信号に基づき得られる回転位置信号及び回転速度信号と前記モータの定数とに基づいて、励磁電流Id及びトルク電流Iqを推定し、
    前記モータの回転速度指令に応じて与えられる電流指令と前記推定された電流とに基づいて前記モータをベクトル制御する場合に、前記モータ定数である巻線抵抗値,誘起電圧定数をそれぞれ真値に補償するため、
    前記直流電源より、前記駆動手段に供給される直流電流Isを電流検出手段により検出し、
    前記検出された電流Isと、前記直流電源の電圧Vsと、ベクトル制御演算によって得られる前記駆動手段の出力電圧Vd,Vqと,前記モータ定数である巻線インダクタンスLd,Lqとに基づいて補償することを特徴とするモータ制御方法。
  10. 前記推定された電流Id及びIqに基づいて、前記巻線インダクタンスLd,Lqを補償し、その補償された巻線インダクタンスLd,Lqを、前記巻線抵抗値,誘起電圧定数を補償する場合に用いることを特徴とする請求項9記載のモータ制御方法。
  11. 前記電流Is,前記電圧Vs,Vd,Vq,前記巻線インダクタンスLd,Lqを、異なるタイミングでm(m≧2)回サンプリングすることを特徴とする請求項9又は10記載のモータ制御方法。
  12. 前記推定された電流Id及びIqと、前記回転位置センサより得られる回転速度信号とに基づいて、前記モータの駆動状態を判定し、
    前記駆動状態の判定結果に応じて、前記サンプリングを行うタイミングを決定することを特徴とする請求項11記載のモータ制御方法。
  13. 前記モータの回転速度がゼロでない場合に、最初のサンプリングを行うことを特徴とする請求項12記載のモータ制御方法。
  14. 前記モータの回転速度がゼロでなく、且つ、前記回転速度,前記推定された電流Id及びIqの何れかが、前回のサンプリングを行った時点から一定割合以上変換した場合に、2回目の以降のサンプリングを行うことを特徴とする請求項13記載のモータ制御方法。
  15. 前記m回のサンプリング結果について、巻線抵抗Rと誘起電圧定数Keとの関係式をそれぞれ算出することを特徴とする請求項11乃至14の何れかに記載のモータ制御方法。
  16. 前記m個の関係式において、m個の誘起電圧定数Keの差が最小となる巻線抵抗Rを探索することを特徴とする請求項15記載のモータ制御方法。
JP2008127179A 2008-05-14 2008-05-14 モータ制御装置及びモータ制御方法 Pending JP2009278760A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008127179A JP2009278760A (ja) 2008-05-14 2008-05-14 モータ制御装置及びモータ制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008127179A JP2009278760A (ja) 2008-05-14 2008-05-14 モータ制御装置及びモータ制御方法

Publications (1)

Publication Number Publication Date
JP2009278760A true JP2009278760A (ja) 2009-11-26

Family

ID=41443659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008127179A Pending JP2009278760A (ja) 2008-05-14 2008-05-14 モータ制御装置及びモータ制御方法

Country Status (1)

Country Link
JP (1) JP2009278760A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011239563A (ja) * 2010-05-10 2011-11-24 Toshiba Corp 電動機制御装置及び制御方法
JP2012105440A (ja) * 2010-11-09 2012-05-31 Corona Corp モータ制御装置およびモータ制御システム
CN103633901A (zh) * 2013-10-22 2014-03-12 陕西航空电气有限责任公司 航空泵用高压无刷直流电动机控制方法
GB2511114A (en) * 2013-02-25 2014-08-27 Sevcon Ltd Motor control apparatus and method
JP2014523730A (ja) * 2011-07-05 2014-09-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 故障時シャットダウンを備えた電子整流される電動機
EP3062846A1 (en) * 2013-10-30 2016-09-07 Sanofi-Aventis Deutschland GmbH Apparatus with motor winding resistance measurement and method for controlling such an apparatus
CN107231114A (zh) * 2017-05-12 2017-10-03 深圳市海浦蒙特科技有限公司 变频器的节能控制方法和系统

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011239563A (ja) * 2010-05-10 2011-11-24 Toshiba Corp 電動機制御装置及び制御方法
JP2012105440A (ja) * 2010-11-09 2012-05-31 Corona Corp モータ制御装置およびモータ制御システム
JP2014523730A (ja) * 2011-07-05 2014-09-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 故障時シャットダウンを備えた電子整流される電動機
US9118269B2 (en) 2011-07-05 2015-08-25 Robert Bosch Gmbh Electronically commutated electric motor with defect shutdown
GB2511114A (en) * 2013-02-25 2014-08-27 Sevcon Ltd Motor control apparatus and method
GB2511114B (en) * 2013-02-25 2015-04-08 Sevcon Ltd Motor control apparatus and method
US9793834B2 (en) 2013-02-25 2017-10-17 Sevcon Limited Motor control apparatus and method
US10333437B2 (en) 2013-02-25 2019-06-25 Sevcon Limited Motor control apparatus and method
CN103633901A (zh) * 2013-10-22 2014-03-12 陕西航空电气有限责任公司 航空泵用高压无刷直流电动机控制方法
EP3062846A1 (en) * 2013-10-30 2016-09-07 Sanofi-Aventis Deutschland GmbH Apparatus with motor winding resistance measurement and method for controlling such an apparatus
US10065001B2 (en) 2013-10-30 2018-09-04 Sanofi-Aventis Deutschland Gmbh Apparatus with motor winding resistance measurement and method for controlling such an apparatus
CN107231114A (zh) * 2017-05-12 2017-10-03 深圳市海浦蒙特科技有限公司 变频器的节能控制方法和系统
CN107231114B (zh) * 2017-05-12 2019-10-29 深圳市海浦蒙特科技有限公司 变频器的节能控制方法和系统

Similar Documents

Publication Publication Date Title
JP5130031B2 (ja) 永久磁石モータの位置センサレス制御装置
JP4677852B2 (ja) 永久磁石同期モータのベクトル制御装置
JP5781235B2 (ja) 同期機制御装置
JP5176420B2 (ja) ブラシレスモータのセンサレス制御装置
JP5223109B2 (ja) 永久磁石形同期電動機の制御装置
JP2002320398A (ja) Dcブラシレスモータのロータ角度検出装置
JP2002186295A (ja) 誘導電動機の速度推定値補正方法およびその装置
JP2009278760A (ja) モータ制御装置及びモータ制御方法
JP5910757B2 (ja) 電動機の制御装置
WO2015056541A1 (ja) 電動機の駆動装置
JP2004048958A (ja) Dcブラシレスモータの制御装置
JP2006304478A (ja) モータ駆動制御装置及びそれを用いた電動パワーステアリング装置
CN109391186B (zh) 控制装置以及控制方法
JP5731355B2 (ja) 車両駆動用誘導電動機の制御装置
JP5074318B2 (ja) 同期電動機のロータ位置推定装置
JP4781933B2 (ja) 電動機の制御装置
JP5471156B2 (ja) 永久磁石形同期電動機の制御装置
JP2009290962A (ja) 永久磁石形同期電動機の制御装置
JP5768255B2 (ja) 永久磁石同期モータの制御装置
JP6102516B2 (ja) 永久磁石形同期電動機の制御方法及び制御装置
WO2011064846A1 (ja) 電気車の電力変換装置
JP4273775B2 (ja) 永久磁石型同期電動機の磁極位置推定方法および制御装置
JP5332301B2 (ja) 永久磁石形同期電動機の制御装置
JP2002165478A (ja) モータ制御装置
JP5106295B2 (ja) 同期電動機のロータ位置推定装置