WO2014115762A1 - サイジング剤塗布炭素繊維束、炭素繊維束の製造方法およびプリプレグ - Google Patents

サイジング剤塗布炭素繊維束、炭素繊維束の製造方法およびプリプレグ Download PDF

Info

Publication number
WO2014115762A1
WO2014115762A1 PCT/JP2014/051248 JP2014051248W WO2014115762A1 WO 2014115762 A1 WO2014115762 A1 WO 2014115762A1 JP 2014051248 W JP2014051248 W JP 2014051248W WO 2014115762 A1 WO2014115762 A1 WO 2014115762A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
fiber bundle
sizing agent
fiber
bundle
Prior art date
Application number
PCT/JP2014/051248
Other languages
English (en)
French (fr)
Inventor
渡邉潤
田中文彦
奥田治己
沖嶋勇紀
林田賢吾
伊勢昌史
市川智子
村木直樹
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201480005579.9A priority Critical patent/CN104937150B/zh
Priority to EP20200246.5A priority patent/EP3800285A1/en
Priority to KR1020157021644A priority patent/KR101624839B1/ko
Priority to EP14743393.2A priority patent/EP2949792A4/en
Priority to US14/758,621 priority patent/US9435057B2/en
Publication of WO2014115762A1 publication Critical patent/WO2014115762A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/248Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using pre-treated fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/14Chemical after-treatment of artificial filaments or the like during manufacture of carbon with organic compounds, e.g. macromolecular compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/11Compounds containing epoxy groups or precursors thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]

Definitions

  • the present invention relates to a carbon fiber bundle coated with a sizing agent (hereinafter referred to as a sizing agent-coated carbon fiber bundle) and a prepreg. More specifically, the present invention relates to a sizing agent-coated carbon fiber bundle and a prepreg from which a carbon fiber reinforced composite material having good physical properties can be obtained.
  • a sizing agent-coated carbon fiber bundle coated with a sizing agent (hereinafter referred to as a sizing agent-coated carbon fiber bundle) and a prepreg.
  • Carbon fiber is used for aircraft applications as a reinforcing fiber for fiber-reinforced composite materials due to its high specific strength and specific modulus, and contributes to weight reduction of aircraft.
  • the expansion of members to which carbon fibers are applied and the flow of application of carbon fibers to large members are being accelerated.
  • it is most effective to improve the tensile modulus of carbon fiber, which dominates the rigidity of carbon fiber reinforced composite material, as a characteristic of carbon fiber.
  • There is a demand for excellent balance of physical properties such as improvement of tensile / compressive strength and perforated plate tensile / compressive strength.
  • the strand strength is used as a simple method for examining the strength potential of carbon fibers as reinforcing fibers, and is a simple unidirectional carbon fiber reinforced composite material obtained by impregnating a specific epoxy resin.
  • the tensile strength (hereinafter referred to as unidirectional composite material strength).
  • Patent Documents 1 and 2 disclose examples in which the characteristics of carbon fibers have been studied for the purpose of improving the perforated plate tensile strength of carbon fiber reinforced composite materials.
  • Patent Document 1 discloses an attempt to improve the perforated plate tensile strength of the carbon fiber reinforced composite material by changing the surface morphology of the carbon fiber and the surface treatment conditions for the carbon fiber.
  • Patent Document 2 discloses a concept of increasing the perforated plate tensile strength of a carbon fiber reinforced composite material by controlling the spreadability of carbon fibers and the wettability of the surface thereof. It was a low level.
  • Patent Document 3 discloses that a carbon fiber having high strand strength and elastic modulus can be obtained in a normal condition range because the polyacrylonitrile-based polymer used for the production of carbon fiber has a specific molecular weight distribution.
  • Patent Documents 4 and 5 focus on the tensile modulus of carbon fiber, so the single fiber strength of the carbon fiber cannot be controlled, and the stretching tension in the firing step of the pre-carbonized fiber bundle is increased. For this reason, deterioration in quality was inevitable, and the tensile strength of the perforated plate was at a low level.
  • Patent Document 6 proposes a technique for improving the strand elastic modulus by highly stretching a precursor fiber-resistant bundle of carbon fibers in a flameproofing process and a pre-carbonization process.
  • this technique is a drawing before carbonization and has little influence on the structure of carbon fiber, and the single fiber strength of the carbon fiber has not been controlled.
  • Patent Documents 7 and 8 propose a technique for entanglement of precursor fibers for the purpose of eliminating pseudo-adhesion caused by an oil agent in the yarn production process.
  • the strand strength and the strand elastic modulus were not compatible at a high level.
  • Patent Document 9 a technique has been proposed in which the single fiber diameter of the carbon fiber is controlled to be small to reduce the existence probability of surface defects. According to such a technique, although the strand strength and elastic modulus are high, structural variation between single fibers and accompanying single fiber strength variation are induced in the carbonization step. Moreover, generation
  • the inventors of the present invention can obtain even when the strand strength of the carbon fiber is increased when the carbon fiber having an excellent tensile elastic modulus and a specific matrix resin that expresses extremely high perforated plate tensile strength are combined.
  • OHT perforated plate tensile strength
  • the present invention provides a prepreg containing carbon fibers having an excellent tensile elastic modulus and capable of producing a carbon fiber reinforced composite material having a high perforated plate tensile strength, and a sizing agent-coated carbon fiber bundle used therefor. Purpose.
  • Another object of the present invention is to provide a carbon fiber bundle having both high strand strength and high strand elastic modulus and excellent quality.
  • the present inventors have found that the high strength (short sample length) region of carbon fiber that has not been clearly measured in the past.
  • the inventors have found that by controlling the fiber strength distribution, the perforated plate tensile strength of the carbon fiber reinforced composite material can be improved, and the present invention has been achieved.
  • the perforated plate tensile strength of a carbon fiber reinforced composite material could be improved by controlling the bundle strength of the long test length region of the carbon fiber bundle as another means.
  • the present invention has the following configuration.
  • (I) A sizing agent-coated carbon fiber bundle in which a sizing agent containing an aliphatic epoxy compound (C) and an aromatic epoxy compound (D) is applied to a carbon fiber bundle, and the carbon fiber contained in the carbon fiber bundle is When measured using the fragmentation method of a single fiber composite, when the single fiber apparent stress is 15.3 GPa, the number of fiber breaks is 2.0 pieces / mm or more, and the single fiber apparent stress is 12.2 GPa. A sizing agent-coated carbon fiber bundle having a fiber breakage number of 1.7 pieces / mm or less.
  • the pre-carbonized fiber bundle obtained by the pre-carbonization in the carbonization step is a temperature range of 1200 to 2000 ° C.
  • the sizing agent-coated carbon fiber bundle of the present invention preferably has a C1s inner-shell spectrum obtained by measuring the surface of the sizing agent applied to the carbon fiber at a photoelectron escape angle of 15 ° by X-ray photoelectron spectroscopy.
  • the ratio (a) / (b) between the height of the component having a binding energy of 284.6 eV and the height of the component having (b) binding energy of 286.1 eV is 0.50 to 0.90.
  • a sizing agent-coated carbon fiber bundle and a prepreg that can produce a carbon fiber reinforced composite material having an excellent tensile elastic modulus and exhibiting a perforated plate tensile strength can be obtained.
  • the prepreg of the present invention has a well-balanced physical property such as tensile modulus of elasticity and perforated plate tensile strength of the carbon fiber composite material obtained by curing the prepreg. Therefore, it greatly contributes to weight reduction of the aircraft, and fuel consumption rate of the aircraft Can be improved.
  • FIG. 1 is a diagram illustrating a method of measuring a tearable distance.
  • FIG. 2 is a diagram showing an example of a fragmentation test result of a single fiber composite using the sizing agent-coated carbon fiber bundle according to the embodiment of the present invention.
  • the sizing agent-coated carbon fiber bundle of the present invention is a sizing agent-coated carbon fiber bundle in which a sizing agent containing an aliphatic epoxy compound (C) and an aromatic epoxy compound (D) is applied to a carbon fiber bundle,
  • the carbon fiber contained in the carbon fiber bundle has a fiber breakage number of 2.0 pieces / mm or more when the single fiber apparent stress is 15.3 GPa when measured using the fragmentation method of the single fiber composite, and A sizing agent-coated carbon fiber bundle having a fiber breakage number of 1.7 pieces / mm or less when the single fiber apparent stress is 12.2 GPa.
  • the strand strength is predicted on the assumption that the load applied to the entire composite material is borne only by the carbon fiber. Since the strength of the carbon fiber per fiber cross-sectional area is 6 to 7 GPa or less, it has hitherto been discussed the relationship between the breaking probability of the carbon fiber monofilament and the strength of the carbon fiber reinforced composite material in the region above the strength. There was no. However, the inventors have found that when the OHT of the carbon fiber reinforced composite material is increased, the single fiber strength distribution in the high strength region strongly affects the OHT in combination with a specific matrix resin. .
  • the single fiber strength test is a single fiber pull-out test from the adhesive, and in the single fiber strength test, stress is applied to several mm of fibers in the resin. I found out.
  • the single fiber strength test even if the distance between the chucks is less than 5 mm, the substantial test length becomes longer. In particular, the shorter the chuck distance, the more the actual test length and the chuck distance are different. It was found that the single fiber strength distribution in the test length region could not be evaluated.
  • the inventors have found a method for evaluating the single fiber strength distribution by a fragmentation test of a single fiber composite.
  • the fragmentation test of the single fiber composite and the result of the single fiber strength distribution calculated from the single fiber strength test of the test length of 25 mm are in good agreement. It became clear that it was excellent as an evaluation method of single fiber strength distribution.
  • the matrix resin used for the single fiber composite is appropriately selected and the adhesive strength at the single fiber-matrix resin interface is set to a certain level, the strength distribution can be evaluated with high accuracy up to a short test length of about 1 mm. Became clear.
  • the fragmentation method of a single fiber composite is a method of counting the number of fiber breaks at each strain while giving the strain stepwise to a composite in which carbon fiber single fibers are embedded in a resin (single fiber composite). .
  • the single fiber strength distribution of the carbon fiber can be examined. Details of the measurement using the fragmentation method will be described later.
  • the difference between the single fiber composite strain and the fiber strain and the elastic modulus of the single fiber at each fiber strain are taken into account. There is a need.
  • the elastic modulus of carbon fiber has nonlinearity of elastic modulus that increases as strain increases, and the exact fiber stress when the fiber breaks cannot be obtained by simple calculation.
  • the single fiber apparent stress indicates a product of single fiber composite strain and single fiber elastic modulus of carbon fiber.
  • the single fiber composite strain When fiber breakage occurs, there is a difference between the single fiber composite strain and the fiber strain because the fiber stress recovers as the distance from the fiber breakage portion increases. Therefore, even if the single fiber composite strain is increased, the maximum fiber stress may hardly increase. This creates a difference between single fiber composite strain and maximum fiber stress.
  • the difference between the single fiber apparent stress and the maximum fiber stress is often very small up to 1.0 fiber breaks / mm. Although the difference increases as the number of fiber breaks further increases, there is a correlation between the apparent single fiber stress and the maximum fiber stress. Therefore, as a simple method, it is appropriate to use the single fiber apparent stress as an evaluation scale.
  • the number of fiber breaks is 1.7 when the single fiber apparent stress is 12.2 GPa.
  • Pieces / mm or less preferably 1.5 pieces / mm or less, more preferably 1.3 pieces / mm or less, and most preferably 1.0 pieces / mm or less.
  • the single fiber strength of the carbon fiber is dominant as a factor of the breakage of the carbon fiber under this degree of stress.
  • the inventors have found that in order to improve OHT, it is important that the single fiber strength of the carbon fiber, particularly the single fiber strength at a short fiber length, is high. That is, when the number of fiber breaks exceeds 1.7 pieces / mm, the OHT decreases due to the lack of single fiber strength of the carbon fiber. Therefore, the number of fiber breaks is set to 1.7 pieces / mm or less. good. Furthermore, it is more preferable that the number of fiber breaks is 1.3 pieces / mm or less because the single fiber strength of the carbon fiber is sufficiently high, and OHT is not limited to a specific resin.
  • the sizing agent-coated carbon fiber bundle has a number of fiber breaks of 0.8 when the single fiber apparent stress is 10.0 GPa when the contained carbon fiber is measured using the fragmentation method of a single fiber composite. / Mm or less, more preferably 0.7 pieces / mm or less, still more preferably 0.5 pieces / mm or less.
  • the number of fiber breaks exceeds 0.8 / mm, OHT is lowered due to insufficient single fiber strength of the carbon fiber.
  • the number of fiber breaks is 0.8 pieces / mm or less, since the single fiber strength of the carbon fiber is high, fiber breakage can be suppressed in a wide range around the carbon fiber composite material circular hole at the time of the OHT test, OHT increases.
  • the sizing agent-coated carbon fiber bundle has a number of fiber breaks of 0.3 when the single fiber apparent stress is 6.8 GPa when the contained carbon fiber is measured using the fragmentation method of a single fiber composite. / Mm or less, more preferably 0.2 pieces / mm or less, and still more preferably 0.1 pieces / mm or less. If the fiber stress at which the number of fiber breaks is around 0.3 / mm is too low, stress concentration on the adjacent fibers of the broken fiber in the carbon fiber reinforced composite material is likely to be induced. Therefore, a high OHT can be maintained by setting the number of fiber breaks to 0.3 pieces / mm or less.
  • the number of fiber breaks was 1.7 pieces / piece when the single fiber composite strain was 3.6%. It is preferably mm or less, more preferably 1.5 pieces / mm or less, still more preferably 1.0 pieces / mm or less.
  • OHT is decreased due to insufficient single fiber strength of the carbon fiber, and the smaller the number of fiber breaks, the higher the single fiber strength of the carbon fiber, which is preferable. .
  • the number of fiber breaks is 0.1 when the single fiber composite strain is 2.0%.
  • the number is preferably not more than pieces / mm, more preferably not more than 0.08 pieces / mm, and still more preferably not more than 0.06 pieces / mm. If the fiber stress at which the number of fiber breaks is near 0.1 pieces / mm is too low, stress concentration on the adjacent fibers of the broken fibers in the composite material is likely to be induced. By setting it as below, high OHT can be maintained.
  • the sizing agent-coated carbon fiber bundle of the present invention has a fiber breakage number of 2 when the apparent single fiber stress is 15.3 GPa when the carbon fiber contained is measured using the fragmentation method of a single fiber composite. 0.0 piece / mm or more, preferably 2.5 piece / mm or more, more preferably 3.0 piece / mm or more. Unlike the case where the single fiber apparent stress is 12.2 GPa, the cause of the breakage of the carbon fiber under such a high stress is considered to be dominated by the interfacial shear strength at the fiber / resin interface. In the fragmentation method, the interfacial shear strength at the fiber / resin interface can be examined in addition to examining the single fiber strength of the carbon fiber.
  • the single fiber composite When the single fiber elastic modulus of the carbon fiber is low, the single fiber composite may be broken before the single fiber apparent stress is loaded up to 15.3 GPa, but when the number of fiber breaks is saturated, Can be substituted.
  • saturation means when the increase in the number of fiber breaks is 0.2 pieces / mm when the single fiber composite strain is increased by 1%.
  • the sizing agent-coated carbon fiber bundle has a number of fiber breaks of 2.0 / cm2 when the single fiber composite strain is 4.5% when the contained carbon fiber is measured using the fragmentation method of a single fiber composite. It is preferable that it is mm or more, more preferably 3.0 pieces / mm or more. Even when the single fiber composite strain is 4.5%, the number of fiber breaks is often not saturated, but if the number of fiber breaks at that strain is substantially evaluated, it is sufficient to evaluate the height of interfacial adhesion. . When the number of fiber breaks is 2.0 pieces / mm or more, when the number of breaks increases due to a decrease in interfacial adhesion, the fibers in the vicinity of the breaks easily bear fiber stress, and a high OHT can be maintained.
  • the inventors have clarified that both the single fiber strength distribution of carbon fibers and the interfacial shear strength at the fiber / resin interface can be examined by using the fragmentation method.
  • a high OHT was obtained when a sizing agent-coated carbon fiber bundle having a small number of fractures under a low stress and a large number of fractures under a high stress was used. It has been found that a carbon fiber reinforced composite material can be obtained.
  • One aspect of the present invention is a sizing agent-coated carbon fiber bundle in which a sizing agent is applied to a carbon fiber bundle, and the carbon fiber contained in the carbon fiber bundle is measured using a fragmentation method of a single fiber composite.
  • the single fiber apparent stress is 15.3 GPa
  • the number of fiber breaks is 2.0 pieces / mm or more
  • the single fiber apparent stress is 12.2 GPa
  • the number of fiber breaks is 1.3 pieces / mm.
  • a sizing agent-coated carbon fiber bundle that is not more than mm.
  • the strand strength of the sizing agent-coated carbon fiber bundle is preferably 5.9 GPa or more, more preferably 6.4 GPa or more, more preferably 6.8 GPa or more, and more preferably 7.0 GPa or more. Preferably it is 7.2 GPa or more, More preferably, it is 7.5 GPa or more. Moreover, it is preferable that the strand elastic modulus of carbon fiber is 320 GPa or more, More preferably, it is 340 GPa or more, More preferably, it is 350 GPa or more. When the carbon fiber strain in the fragmentation method is converted into fiber stress, the strand elastic modulus is necessary. Essentially, it is important that the fiber breakage is small even at high fiber stress.
  • the strand elastic modulus when the strand elastic modulus is less than 320 GPa OHT may decrease.
  • the single fiber elastic modulus of the carbon fibers contained in the sizing agent-coated carbon fiber bundle is preferably 320 GPa or more, more preferably 340 GPa or more, and further preferably 350 GPa or more.
  • the fragmentation method in order to evaluate the single fiber strength, it is important that the fiber breakage is small even at a high fiber stress rather than a low fiber breakage at a high single fiber composite strain. Convert.
  • the strand elastic modulus or single fiber elastic modulus of the carbon fiber is required, and here, the single fiber elastic modulus is used.
  • the higher the single fiber elastic modulus the higher the fiber stress is applied even if the composite material single fiber composite strain is low.
  • OHT may decrease when the single fiber elastic modulus is less than 320 GPa due to the relationship with the matrix resin characteristics.
  • the single fiber elastic modulus of the carbon fiber can be determined based on JIS-R-7606 (2000). That is, in the single fiber tensile test, the slip occurs between the carbon fiber and the adhesive of the chuck part in the chuck, so it is not possible to accurately measure the single fiber elastic modulus. However, the longer the gauge length, the smaller the error. Therefore, the gauge length is 50 mm.
  • the strain range when measuring the single fiber modulus is the entire range from 0% strain to breakage.
  • the sizing agent-coated carbon fiber bundle of the present invention is obtained by applying a sizing agent containing at least an aliphatic epoxy compound (C) and an aromatic epoxy compound (D) to a carbon fiber bundle.
  • Carbon fiber consisting of only aromatic epoxy compound (D) as epoxy compound and coated with sizing agent that does not contain aliphatic epoxy compound (C) has low reactivity between sizing agent and matrix resin, and preserves prepreg for a long time.
  • the change in physical properties is small.
  • a rigid interface layer can be formed.
  • the aromatic epoxy compound (D) is slightly inferior in adhesion between the carbon fiber and the matrix resin compared to the aliphatic epoxy compound (C) due to the rigidity of the compound.
  • the carbon fiber coated with a sizing agent composed only of the aliphatic epoxy compound (C) as the epoxy compound has high adhesiveness with the matrix resin.
  • the aliphatic epoxy compound (C) is derived from a flexible skeleton and a structure having a high degree of freedom, and the functional group of the carboxyl group and hydroxyl group on the surface of the carbon fiber and the aliphatic epoxy compound are strongly interacting with each other. It is considered possible to form an action.
  • the aliphatic epoxy compound (C) exhibits high adhesiveness due to the interaction with the carbon fiber surface, while having high reactivity with the compound having a functional group represented by the curing agent in the matrix resin, When stored for a long time in this state, there is a problem that the structure of the interface layer changes due to the interaction between the matrix resin and the sizing agent, and the physical properties of the carbon fiber reinforced composite material obtained from the prepreg deteriorate.
  • the aliphatic epoxy compound (C) and the aromatic epoxy compound (D) are mixed, the more highly polar aliphatic epoxy compound (C) is unevenly distributed on the carbon fiber side, and the sizing layer on the side opposite to the carbon fiber is the most. There is a phenomenon that an aromatic epoxy compound (D) having a low polarity is likely to be unevenly distributed in the outer layer. As a result of the inclined structure of the sizing layer, the aliphatic epoxy compound (C) has a strong interaction with the carbon fiber in the vicinity of the carbon fiber, whereby the adhesion between the carbon fiber and the matrix resin can be enhanced.
  • the aromatic epoxy compound (D) present in a large amount in the outer layer plays a role of blocking the aliphatic epoxy compound (C) from the matrix resin when a prepreg is produced using a sizing agent-coated carbon fiber bundle.
  • the reaction between the aliphatic epoxy compound (C) and the highly reactive component in the matrix resin is suppressed, so that stability during long-term storage is exhibited.
  • the sizing agent contains an aliphatic epoxy compound (C) and an aromatic epoxy compound (D).
  • the aliphatic epoxy compound (C) is preferably contained in an amount of 35 to 65% by mass based on the total amount of the applied sizing agent. Adhesiveness improves by containing 35 mass% or more. Moreover, when the content is 65% by mass or less, the prepreg produced using the obtained sizing agent-coated fiber has good physical properties of the obtained carbon fiber reinforced composite material even when stored for a long time.
  • the content of the aliphatic epoxy compound (C) is more preferably 38% by mass or more, and further preferably 40% by mass or more. Moreover, 60 mass% or less is more preferable, and 55 mass% or more is further more preferable.
  • the aromatic epoxy compound (D) is preferably contained in an amount of 35 to 60% by mass with respect to the total amount of the sizing agent.
  • the aromatic epoxy compound (D) By containing 35% by mass or more of the aromatic epoxy compound (D), the composition of the aromatic compound in the outer layer of the sizing agent can be maintained high, so that the aliphatic epoxy compound and the matrix are highly reactive during long-term storage of the prepreg. Reduction in physical properties due to reaction with the reactive compound in the resin is suppressed.
  • the content is 60% by mass or less, the above-described inclined structure in the sizing agent can be expressed, and the adhesiveness can be maintained, which is preferable.
  • content of an aromatic epoxy compound (D) 37 mass% or more is more preferable, and 39 mass% or more is further more preferable. Moreover, 55 mass% or less is more preferable, and 45 mass% or more is further more preferable.
  • the mass ratio (C) / (D) of the aliphatic epoxy compound (C) and the aromatic epoxy compound (D) is preferably 52/48 to 80/20.
  • (C) / (D) is 52/48 or more, the ratio of the aliphatic epoxy compound (C) present on the carbon fiber surface is increased, and the adhesion between the carbon fiber and the matrix resin is improved.
  • the composite properties such as tensile strength of the obtained carbon fiber reinforced resin are preferably increased.
  • 80/20 or less is preferable because the amount of the highly reactive aliphatic epoxy compound present on the surface of the carbon fiber is reduced and the reactivity with the matrix resin can be suppressed.
  • the mass ratio of (C) / (D) is more preferably 55/45 or more, and further preferably 60/40 or more. Moreover, 75/35 or less is more preferable, and 73/37 or less is further more preferable.
  • the ratio (a) / (b) between the height (cps) of the component of energy (284.6 eV) and the height (cps) of the component of binding energy (286.1 eV) attributed to CO (b) It is preferably 0.50 to 0.90.
  • the ratio of (a) / (b) is more preferably 0.55 or more, and further preferably 0.57 or more.
  • the ratio (a) / (b) is preferably 0.80 or less, and more preferably 0.74 or less.
  • a large ratio of (a) / (b) indicates that there are many compounds derived from aromatics on the sizing agent surface and few compounds derived from aliphatic esters.
  • the sizing agent-coated carbon fiber bundle in which the ratio of (a) / (b) falls within the above specific range is excellent in adhesion to the matrix resin, and the sizing agent-coated carbon fiber bundle is used for a prepreg. In addition, there is little decrease in physical properties when the prepreg is stored for a long time.
  • X-ray photoelectron spectroscopy is an analysis technique in which a sample is irradiated with X-rays in an ultra-high vacuum and the kinetic energy of photoelectrons emitted from the surface of the sample is measured with an apparatus called an energy analyzer.
  • an energy analyzer By examining the kinetic energy of the photoelectrons emitted from the surface of the sample, the binding energy converted from the energy value of the X-rays incident on the sample can be uniquely obtained. From the binding energy and photoelectron intensity, it is possible to analyze the type and concentration of the element present on the outermost surface ( ⁇ nm) of the sample and its chemical state.
  • the peak ratio (a) / (b) on the sizing agent surface of the sizing agent-coated fiber is determined by X-ray photoelectron spectroscopy according to the following procedure.
  • the sizing agent-coated carbon fiber bundle was cut to 20 mm, spread and arranged on a copper sample support, and AlK ⁇ 1 , 2 was used as an X-ray source, and the sample chamber was kept at 1 ⁇ 10 ⁇ 8 Torr for measurement. Done.
  • the binding energy value of the main peak of C 1s is adjusted to 286.1 eV.
  • the peak area of C 1s is obtained by drawing a straight baseline in the range of 282 to 296 eV.
  • a linear base line of 282 to 296 eV obtained by calculating the area at the C 1s peak is defined as the origin (zero point) of photoelectron intensity, and (b) the peak of the binding energy 286.1 eV attributed to the CO component is obtained.
  • Ratio (a ′) of the height (cps) of the component of the binding energy (284.6 eV) to be produced and (b ′) the height (cps) of the component of the binding energy (286.1 eV) attributed to C—O / (B ′) is preferably 0.45 to 1.0.
  • the sizing-coated carbon fiber was ultrasonically washed with an acetone solvent for 1 to 10 minutes and then rinsed with distilled water, and the remaining sizing agent adhering to the carbon fiber was 0.10 ⁇ 0. After controlling to the range of 0.05 mass%, the measurement may be performed by the method described above.
  • the adhesion amount of the sizing agent is preferably in the range of 0.1 to 3.0 parts by mass, more preferably in the range of 0.2 to 3.0 parts by mass with respect to 100 parts by mass of the carbon fiber. When the amount of the sizing agent is within such a range, high OHT can be expressed.
  • the amount of sizing agent deposited was 2 ⁇ 0.5g of sizing coated carbon fiber, and the amount of mass change before and after the heat treatment when the heat treatment was performed at 450 ° C. in a nitrogen atmosphere for 15 minutes was sizing before the heat treatment. It can obtain
  • the adhesion amount of the aliphatic epoxy compound (C) is preferably in the range of 0.05 to 2.0 parts by mass, more preferably 0.2 to 2.0 parts by mass with respect to 100 parts by mass of the carbon fiber. Range. More preferably, it is 0.3 to 1.0 part by mass.
  • the adhesion amount of the aliphatic epoxy compound (C) is 0.05 parts by mass or more, the aliphatic epoxy compound (C) on the carbon fiber surface is preferable because the adhesion between the sizing agent-coated carbon fiber bundle and the matrix resin is improved. .
  • the aliphatic epoxy compound (C) is an epoxy compound that does not contain an aromatic ring. Since it has a flexible skeleton with a high degree of freedom, it can have a strong interaction with carbon fibers.
  • the aliphatic epoxy compound (C) is an epoxy compound having one or more epoxy groups in the molecule.
  • the number of epoxy groups in the molecule is preferably 2 or more, and more preferably 3 or more.
  • the aliphatic epoxy compound (C) is preferably an epoxy compound having a total of 3 or more of two or more functional groups, and more preferably an epoxy compound having a total of 4 or more of two or more functional groups.
  • the functional group other than the epoxy group possessed by the epoxy compound is preferably one selected from a hydroxyl group, an amide group, an imide group, a urethane group, a urea group, a sulfonyl group, and a sulfo group.
  • an epoxy compound having three or more epoxy groups or other functional groups in the molecule even if one epoxy group forms a covalent bond with an oxygen-containing functional group on the carbon fiber surface, the remaining two or more The epoxy group or other functional group can form a covalent bond or a hydrogen bond with the matrix resin, and the adhesion is further improved.
  • the epoxy equivalent of the aliphatic epoxy compound (C) is preferably less than 360 g / mol, more preferably less than 270 g / mol, and even more preferably less than 180 g / mol.
  • the epoxy equivalent is less than 360 g / mol, an interaction with the carbon fiber is formed at a high density, and the adhesion between the carbon fiber and the matrix resin is further improved.
  • the aliphatic epoxy compound (C) include, for example, a glycidyl ether type epoxy compound derived from a polyol, a glycidyl amine type epoxy compound derived from an amine having a plurality of active hydrogens, and a glycidyl derived from a polycarboxylic acid.
  • a glycidyl ether type epoxy compound derived from a polyol examples include an ester type epoxy compound and an epoxy compound obtained by oxidizing a compound having a plurality of double bonds in the molecule.
  • Examples of the glycidyl ether type epoxy compound include a glycidyl ether type epoxy compound obtained by a reaction between epichlorohydrin and a polyol. Further, as glycidyl ether type epoxy compounds, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, polypropylene glycol, trimethylene glycol, 1,2 -Butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, polybutylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,4 -Cyclohexanedimethanol, hydrogenated bisphenol A, hydrogenated bisphenol F, glycerol, diglycerol
  • Examples of the glycidylamine type epoxy compound include an epoxy compound obtained by reaction of 1,3-bis (aminomethyl) cyclohexane and epichlorohydrin.
  • Examples of the glycidyl ester type epoxy compound include an epoxy compound obtained by reacting dimer acid with epichlorohydrin.
  • Examples of the epoxy compound obtained by oxidizing a compound having a plurality of double bonds in the molecule include an epoxy compound having an epoxycyclohexane ring in the molecule. Furthermore, the epoxy compound includes epoxidized soybean oil.
  • Examples of the aliphatic epoxy compound (C) include epoxy compounds such as triglycidyl isocyanurate in addition to these epoxy compounds.
  • Examples of the compound having a hydroxyl group in addition to the epoxy group include sorbitol type polyglycidyl ether and glycerol type polyglycidyl ether.
  • sorbitol type polyglycidyl ether examples include sorbitol type polyglycidyl ether and glycerol type polyglycidyl ether.
  • “Denacol (registered trademark)” EX-611, EX-612, EX-614, EX-614B, EX-622, EX-512, EX-521, EX-421, EX-313, EX-314 And EX-321 manufactured by Nagase ChemteX Corporation.
  • Examples of the compound having an amide group in addition to the epoxy group include an amide-modified epoxy compound.
  • the amide-modified epoxy can be obtained by reacting an epoxy group of an epoxy compound having two or more epoxy groups with a carboxyl group of an aliphatic dicarboxylic acid amide.
  • Examples of the compound having a urethane group in addition to the epoxy group include a urethane-modified epoxy compound.
  • a urethane-modified epoxy compound Specifically, “Adeka Resin (registered trademark)” EPU-78-13S, EPU-6, EPU-11, EPU-15, EPU-16A, EPU-16N, EPU-17T-6, EPU-1348 and EPU-1395 (Made by ADEKA Corporation).
  • a polyvalent isocyanate equivalent to the amount of the hydroxyl group by reacting the isocyanate residue of the obtained reaction product with the hydroxyl group in the polyvalent epoxy compound.
  • examples of the polyvalent isocyanate used include hexamethylene diisocyanate, isophorone diisocyanate, and norbornane diisocyanate.
  • Examples of the compound having a urea group in addition to the epoxy group include a urea-modified epoxy compound.
  • a urea-modified epoxy can be obtained by reacting an epoxy group of an epoxy compound having two or more epoxy groups with a carboxyl group of an aliphatic dicarboxylic acid urea.
  • aliphatic epoxy compound (C) ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, from the viewpoint of high adhesion among the above-mentioned Polypropylene glycol, trimethylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, polybutylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, glycerol, diglycerol, polyglycerol, trimethylolpropane, pentaerythritol, sodium Bitoru, and a polyol selected from arabitol, glycidyl ether type
  • the aromatic epoxy compound (D) is an epoxy compound having one or more aromatic rings in the molecule.
  • the aromatic ring may be an aromatic ring hydrocarbon consisting only of carbon, or a heteroaromatic ring such as furan, thiophene, pyrrole or imidazole containing a heteroatom such as nitrogen or oxygen.
  • the aromatic ring may be a polycyclic aromatic ring such as naphthalene or anthracene.
  • a so-called interface layer in the vicinity of the carbon fiber may be affected by the carbon fiber or the sizing agent and have different characteristics from the matrix resin.
  • the epoxy compound has one or more aromatic rings
  • a rigid interface layer is formed, the stress transmission ability between the carbon fiber and the matrix resin is improved, and the mechanical properties such as 0 ° tensile strength of the fiber reinforced composite material are improved. improves.
  • the hydrophobicity is improved by the aromatic ring, so that the interaction with the carbon fiber is weaker than that of the aliphatic epoxy compound, and the aliphatic epoxy compound can be covered and exist in the outer layer of the sizing layer.
  • a sizing agent-coated carbon fiber bundle is used for a prepreg, it is preferable because a change with time when stored for a long period of time can be suppressed. Having two or more aromatic rings is more preferable because long-term stability due to the aromatic rings is improved.
  • the number of epoxy groups in the aromatic epoxy compound (D) is preferably 2 or more, more preferably 3 or more in the molecule. Moreover, it is preferable that it is 10 or less.
  • the aromatic epoxy compound (D) is preferably an epoxy compound having a total of 3 or more of two or more functional groups in the molecule, and preferably an epoxy compound having a total of 4 or more of two or more functional groups. More preferred.
  • the functional group other than the epoxy group possessed by the epoxy compound is preferably one selected from a hydroxyl group, an amide group, an imide group, a urethane group, a urea group, a sulfonyl group, and a sulfo group.
  • an epoxy compound having three or more epoxy groups or other functional groups in the molecule even if one epoxy group forms a covalent bond with an oxygen-containing functional group on the carbon fiber surface, the remaining two or more The epoxy group or other functional group can form a covalent bond or a hydrogen bond with the matrix resin, and the adhesion is further improved.
  • the epoxy equivalent of the aromatic epoxy compound (D) is preferably less than 360 g / mol, more preferably less than 270 g / mol, and even more preferably less than 180 g / mol.
  • the epoxy equivalent is less than 360 g / mol, covalent bonds are formed at a high density, and the adhesion between the carbon fiber and the matrix resin is further improved.
  • aromatic epoxy compound (D) examples include, for example, a glycidyl ether type epoxy compound derived from a polyol, a glycidyl amine type epoxy compound derived from an amine having a plurality of active hydrogens, and a glycidyl derived from a polycarboxylic acid.
  • examples thereof include an ester type epoxy compound and an epoxy compound obtained by oxidizing a compound having a plurality of double bonds in the molecule.
  • Examples of the glycidyl ether type epoxy compound include bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetrabromobisphenol A, phenol novolac, cresol novolac, hydroquinone, resorcinol, 4,4′-dihydroxy-3,3 ′, 5. , 5'-tetramethylbiphenyl, 1,6-dihydroxynaphthalene, 9,9-bis (4-hydroxyphenyl) fluorene, tris (p-hydroxyphenyl) methane, and tetrakis (p-hydroxyphenyl) ethane, and epichloro
  • the epoxy compound obtained by reaction with hydrin is mentioned.
  • an epoxy compound having a biphenylaralkyl skeleton is also exemplified as the glycidyl ether type epoxy.
  • Examples of the glycidylamine type epoxy compound include N, N-diglycidylaniline and N, N-diglycidyl-o-toluidine.
  • epoxy compounds obtained by the reaction of m-xylylenediamine, m-phenylenediamine, 4,4′-diaminodiphenylmethane and 9,9-bis (4-aminophenyl) fluorene with epichlorohydrin can be mentioned.
  • epoxy compounds obtained by reacting both the hydroxyl group and amino group of aminophenols of m-aminophenol, p-aminophenol, and 4-amino-3-methylphenol with epichlorohydrin are mentioned. It is done.
  • Examples of the glycidyl ester type epoxy compound include an epoxy compound obtained by reacting phthalic acid, terephthalic acid, or hexahydrophthalic acid with epichlorohydrin.
  • epoxy compounds synthesized from the above-mentioned epoxy compounds for example, bisazol A diglycidyl ether and tolylene diisocyanate are synthesized by an oxazolidone ring formation reaction. And epoxy compounds.
  • Examples of the compound having an amide group in addition to the epoxy group include glycidyl benzamide and an amide-modified epoxy compound.
  • the amide-modified epoxy compound can be obtained by reacting an epoxy group of an epoxy compound having two or more epoxy groups with a carboxyl group of a dicarboxylic acid amide containing an aromatic ring.
  • Examples of the compound having an imide group in addition to the epoxy group include glycidyl phthalimide. Specific examples include “Denacol (registered trademark)” EX-731 (manufactured by Nagase ChemteX Corporation).
  • the terminal hydroxyl group of polyethylene oxide monoalkyl ether is reacted with a polyvalent isocyanate containing an aromatic ring having a reaction equivalent to the amount of the hydroxyl group, and then the reaction product obtained
  • the epoxy compound obtained by making an isocyanate residue react with the hydroxyl group in a polyhydric epoxy compound is mentioned.
  • examples of the polyvalent isocyanate used include 2,4-tolylene diisocyanate, metaphenylene diisocyanate, paraphenylene diisocyanate, diphenylmethane diisocyanate, triphenylmethane triisocyanate, and biphenyl-2,4,4′-triisocyanate. It is done.
  • Examples of the compound having a urea group in addition to the epoxy group include a urea-modified epoxy compound.
  • the urea-modified epoxy compound can be obtained by reacting the epoxy group of an epoxy compound containing an aromatic ring having two or more epoxy groups with the carboxyl group of the dicarboxylic acid urea.
  • Examples of the compound having a sulfonyl group in addition to the epoxy group include bisphenol S-type epoxy.
  • Examples of the compound having a sulfo group in addition to the epoxy group include glycidyl p-toluenesulfonate and glycidyl 3-nitrobenzenesulfonate.
  • the aromatic epoxy compound (D) is a phenol novolac type epoxy compound, a cresol novolak type epoxy compound, tetraglycidyl diaminodiphenylmethane, a bisphenol A type epoxy compound or a bisphenol F type epoxy compound
  • a bisphenol A type epoxy compound or a bisphenol F type epoxy compound is more preferable.
  • the sizing agent may contain one or more components other than the aliphatic epoxy compound (C) and the aromatic epoxy compound (D).
  • Accelerator that enhances adhesion between carbon fiber and sizing agent. Improves handling, scratch resistance, and fluff resistance by imparting convergence or flexibility to sizing agent-coated carbon fiber bundle, and impregnation of matrix resin. Can be improved.
  • auxiliary components such as a dispersant and a surfactant may be added.
  • the epoxy equivalent of the sizing agent applied to the carbon fiber is preferably 350 to 550 g / mol. It is preferable that the epoxy equivalent is 550 g / mol or less because the adhesion between the carbon fiber coated with the sizing agent and the matrix resin is improved. In addition, when the sizing agent-coated carbon fiber bundle is used for the prepreg, the epoxy equivalent of 350 g / mol or more can suppress the reaction between the resin component used in the prepreg and the sizing agent. Is preferable because the physical properties of the obtained carbon fiber reinforced composite material become good even when stored for a long time.
  • the epoxy equivalent of the sizing agent applied to the carbon fiber is determined by immersing the sizing agent-coated fiber in a solvent typified by N, N-dimethylformamide and elution from the fiber by ultrasonic cleaning.
  • the epoxy group can be opened and determined by acid-base titration.
  • the epoxy equivalent is more preferably 360 g / mol or more, and still more preferably 380 g / mol or more.
  • 530 g / mol or less is more preferable, and 500 g / mol or less is further more preferable.
  • the epoxy equivalent of the sizing agent applied to the carbon fiber can be controlled by the epoxy equivalent of the sizing agent used for application and the heat history in drying after application.
  • the aliphatic epoxy compound (C) eluted from the sizing agent-coated fibers is preferably 0.3 parts by mass or less with respect to 100 parts by mass of the sizing agent-coated carbon fiber bundle.
  • the elution amount is more preferably 0.1 parts by mass or less, and further preferably 0.05 parts by mass or less.
  • the elution amount of the aliphatic epoxy compound (C) eluted from the sizing agent-coated fiber is determined by the following procedure.
  • a sizing agent-coated carbon fiber bundle (0.1 g) was immersed in 10 ml of a solution in which acetonitrile and chloroform were mixed at a volume ratio of 9 to 1, and the sizing agent was eluted from the fibers by ultrasonic cleaning for 20 minutes. Collect 5 ml, evaporate the solvent in nitrogen, add the above-mentioned mixed solution of acetonitrile and chloroform to a volume of 0.2 ml, and make a constant volume to make a 25-fold concentrated solution.
  • the solution is separated from the other peaks of the aliphatic epoxy compound (C) by liquid chromatography using a mixture of water and acetonitrile as a mobile phase and detected by an evaporative light scattering detector (ELSD). . Then, by creating a calibration curve using the peak area of the solution of the aliphatic epoxy compound (C) whose concentration is known in advance, and quantifying the concentration of the aliphatic epoxy compound (C) based on the calibration curve, The elution amount of the aliphatic epoxy compound (C) with respect to 100 parts by mass of the sizing agent-coated carbon fiber bundle is determined.
  • ELSD evaporative light scattering detector
  • the carbon fiber has a surface oxygen concentration (O / C), which is the ratio of the number of oxygen (O) and carbon (C) atoms on the fiber surface measured by X-ray photoelectron spectroscopy, of 0.05 to 0.00. Those within the range of 50 are preferred, more preferably within the range of 0.06 to 0.30, and even more preferably within the range of 0.07 to 0.25.
  • O / C surface oxygen concentration
  • an oxygen-containing functional group on the surface of the carbon fiber can be secured and strong adhesion with the matrix resin can be obtained.
  • the surface oxygen concentration (O / C) is 0.50 or less, the decrease in the single fiber strength of the carbon fiber itself due to oxidation is suppressed, that is, the single fiber apparent stress by the fragmentation method of the single fiber composite is reduced.
  • the number of fiber breaks at 12.2 GPa can be controlled to 1.7 pieces / mm or less.
  • the surface oxygen concentration of the carbon fiber can be adjusted by an oxidation treatment described later.
  • the surface oxygen concentration of the carbon fiber is determined by X-ray photoelectron spectroscopy according to the following procedure. After carbon fibers from which dirt and the like adhering to the carbon fiber surface have been removed with a solvent are cut into 20 mm and spread on a copper sample support table, AlK ⁇ 1 and 2 are used as an X-ray source in the sample chamber. Was measured at 1 ⁇ 10 ⁇ 8 Torr. As a correction value for the peak accompanying charging during measurement, the binding energy value of the C 1s main peak (peak top) is adjusted to 284.6 eV.
  • the C 1s peak area is obtained by drawing a straight base line in the range of 282 to 296 eV
  • the O 1s peak area is obtained by drawing a straight base line in the range of 528 to 540 eV.
  • the surface oxygen concentration O / C is represented by an atomic ratio calculated by dividing the ratio of the O 1s peak area by the sensitivity correction value unique to the apparatus.
  • the sensitivity correction value unique to the apparatus is 2.33.
  • a carbon fiber bundle is a fiber bundle formed by bundling single carbon fibers.
  • the number of single fibers is preferably 3000 to 48000, more preferably 10,000 to 20000.
  • the total fineness of the sizing agent-coated carbon fiber bundle is preferably 400 to 3000 tex.
  • the number of carbon fiber filaments is preferably 10,000 to 30,000.
  • the single fiber diameter of the carbon fiber contained in the sizing agent-coated carbon fiber bundle is preferably 4.5 ⁇ m or less, more preferably 3.0 ⁇ m or less.
  • the single fiber diameter is 4.5 ⁇ m or less, the probability of existence of surface defects can be reduced, so that the single fiber strength is increased, and the adhesion with the matrix resin is improved by increasing the surface area ratio of the carbon fibers, The stress transmission in the carbon fiber reinforced composite material is also uniform, resulting in a higher OHT.
  • the larger the single fiber diameter of the carbon fiber the more easily the matrix resin is impregnated between the single fibers, and as a result, the OHT can be increased. Therefore, the single fiber diameter is preferably 2.0 ⁇ m or more.
  • any method can be adopted as long as the numerical range described above can be achieved, but it can be controlled by adjusting the fineness of the polyacrylonitrile precursor fiber described later. .
  • the sizing agent-coated carbon fiber bundle preferably has an average tearable distance of 300 to 710 mm.
  • the average tearable distance is an index indicating the degree of entanglement of carbon fibers in the carbon fiber bundle.
  • Fig. 1 shows how to measure the tearable distance.
  • the fiber bundle 1 is cut to a length of 1160 mm, and one end 2 thereof is fixed on a horizontal base so as not to move with an adhesive tape (this point is referred to as a fixing point A).
  • One end 3 of the fiber bundle that is not fixed is divided into two with a finger, and one of the ends is tensioned and fixed on the table so as not to move with an adhesive tape (this point is referred to as a fixing point B).
  • the other end of the fiber bundle divided into two is moved along the table so that no slack occurs with the fixed point A as a fulcrum, and is stopped at position 4 where the linear distance from the fixed point B is 500 mm. (This point is called a fixed point C).
  • the entanglement point 5 farthest from the fixed point A is found, and the distance projected on the straight line connecting the fixed point A and the fixed point B is the lowest scale.
  • the entanglement point farthest from the fixed point A is the point where the linear distance from the fixed point A is the longest and three or more single fibers having no slack are entangled.
  • the OHT can be increased by increasing the strength of the long-length carbon fiber bundle in the order of several meters. Therefore, a smaller average tearable distance is preferable.
  • the average tearable distance of the sizing agent-coated carbon fiber bundle is 710 mm or less, when the prepreg is processed into a carbon fiber reinforced composite material, high tension can be applied to enhance the fiber alignment.
  • the stress transmission in the carbon fiber reinforced composite material becomes more uniform, so that the OHT can be increased.
  • the average tearable distance of the sizing agent-coated carbon fiber bundle is less than 300 mm, the fiber alignment is disturbed, and the fibers laminated in the 0 ° direction are less likely to concentrate stress, which may reduce OHT.
  • the average tearable distance is more preferably 300 to 600 mm.
  • the average tearable distance of the sizing agent-coated carbon fiber bundle can be controlled by controlling the average tearable distance at the time of the preliminary carbonized fiber bundle as described later.
  • Bundle strength of carbon fiber bundles coated with a sizing agent can be generally calculated from a single fiber average strength and a Weibull shape factor indicating the strength distribution.
  • the Weibull shape factor of carbon fiber is about 3 to 8.
  • the bundle strength can be greatly increased even if the single fiber strength distribution of the carbon fibers is the same.
  • the average tearable distance is in the above-described range, and the ratio of the tearable distance of 800 mm or more is preferably 15% or less.
  • the effect described above can be further expanded by reducing the ratio.
  • the ratio of the distance of 800 mm or more is the ratio of the number of times that the tearable distance was 800 mm or more out of 30 measurements when the tearable distance was measured 30 times as described above. That is.
  • Ratio (%) of tearable distance of 800 mm or more number of times of tearable distance of 800 mm or more / 30 ⁇ 100.
  • the ratio of the distance of 800 mm or more of the distance is 15% or more, the entangled state of the carbon fiber bundle is not controlled, and a portion having a low stress transmission ability between the single fibers is present in the carbon fiber bundle, When a high stretching tension is applied in the carbonization process, the quality may be lowered.
  • the sizing agent-coated carbon fiber bundle preferably has a bundle strength of 1.9 to 4.0 GPa, more preferably 2.2 to 4.0 GPa, and even more preferably 2.10 GPa. 6 to 4.0 GPa.
  • the bundle strength of a carbon fiber bundle having a test length of 10 m is 1.9 GPa or more, it is possible to enhance fiber alignment by applying high tension when processing into a carbon fiber reinforced composite material, and excellent in stress transmission between single fibers. As a result, OHT can be increased.
  • 4.0 GPa is an industrial upper limit for the bundle strength of a carbon fiber bundle having a test length of 10 m. The greater the control length dependence coefficient of the carbon fiber bundle, the higher the bundle strength of the carbon fiber bundle.
  • One aspect of the present invention is a sizing agent-coated carbon fiber bundle in which a sizing agent is applied to a carbon fiber bundle, the average tearable distance is 300 to 710 mm, the strand strength is 5900 MPa or more, and the strand elastic modulus is 320 GPa.
  • the carbon fiber bundle is a sizing agent-coated carbon fiber bundle having a single fiber breaking number of 0.5 to 3 pieces / m and substantially no twist.
  • substantially untwisted means that it is 1 turn or less per 1 m of fiber bundle even if twist is present.
  • the number of single fiber breaks is the number of single fiber breaks per 1 m of carbon fiber bundle (pieces / m).
  • a method for producing a carbon fiber bundle will be described.
  • a precursor fiber made of a polyacrylonitrile polymer is prepared, and a carbon fiber bundle is obtained by subjecting the precursor fiber to a flame resistance process, a preliminary carbonization process, and a carbonization process.
  • the polyacrylonitrile polymer suitably used for the precursor fiber for producing the sizing agent-coated carbon fiber of the present invention preferably has a weight average molecular weight of 500,000 to 1.110,000, and preferably 700,000 to 900,000. More preferred.
  • a polyacrylonitrile polymer having a weight average molecular weight in a general range for carbon fibers, such as a weight average molecular weight of less than 500,000 is used, the molecular chain ends decrease because the connection between molecules in the fiber axis direction decreases. Due to the influence of the above, in the obtained carbon fiber, the single fiber strength is easily lowered in the high strength region.
  • the polyacrylonitrile polymer preferably has a higher weight average molecular weight.
  • a polyacrylonitrile polymer having a high molecular weight exceeding 1.110,000 needs to have a low polymer concentration when spinning as a polymer solution.
  • voids are formed in the obtained carbon fiber, and the single fiber strength of the carbon fiber is likely to be lowered in a high strength region.
  • the weight average molecular weight of the polyacrylonitrile polymer can be controlled by changing the amounts of monomers, initiators, chain transfer agents and the like during polymerization. Specifically, the weight average molecular weight can be increased by increasing the monomer concentration at the start of polymerization, decreasing the initiator concentration, and decreasing the chain transfer agent concentration.
  • the weight average molecular weight and the intrinsic viscosity of the polyacrylonitrile polymer have a one-to-one relationship, and the intrinsic viscosity 4.0 can be converted to 1.11 million in terms of the weight average molecular weight.
  • the polyacrylonitrile polymer means a polymer in which at least an acrylonitrile unit is a main constituent unit of a polymer skeleton.
  • the main structural unit means that the unit occupies 90 to 100 mol% of the polymer skeleton.
  • a preferred polyacrylonitrile polymer has a polydispersity Mz / Mw of 1.4 to 2.4.
  • the larger Mz / Mw means that the higher molecular weight side contains components having different molecular weights. Even if Mz / Mw is less than 1.4 or Mz / Mw exceeds 2.4, the single fiber strength of the carbon fiber tends to decrease in the high strength region.
  • the polyacrylonitrile polymer preferably contains a copolymer component from the viewpoint of improving the yarn-making property and efficiently performing the flameproofing treatment.
  • a copolymer component from the viewpoint of improving the yarn-making property and efficiently performing the flameproofing treatment.
  • the flameproofing reaction may be non-uniform.
  • the copolymer component itself may be thermally decomposed and recognized as a carbon fiber defect.
  • a preferable amount of the copolymerization component is 0.1 to 0.8% by mass.
  • Preferred examples of the copolymer component include those having one or more carboxyl groups or amide groups from the above viewpoint.
  • a small amount of a monomer having a high flame resistance promoting effect it is preferable to use a copolymer component having a carboxyl group rather than an amide group.
  • the number of amide groups and carboxyl groups contained is more preferably two or more than one. From that viewpoint, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, citraconic acid, ethacrylic acid, maleic acid and mesaconic acid are preferred, itaconic acid, maleic acid and mesaconic acid are more preferred, and itaconic acid is most preferred.
  • polymerization method for producing the polyacrylonitrile polymer a known polymerization method can be selected.
  • the method for producing the polyacrylonitrile precursor fiber includes a spinning process in which a spinning solution is discharged from a spinneret to a coagulation bath by a dry and wet spinning method, a water washing process in which the fiber obtained in the spinning process is washed in a water bath, and the water washing. It consists of a water bath stretching step for stretching the fiber obtained in the step in a water bath, and a drying heat treatment step for subjecting the fiber obtained in the water bath stretching step to a dry heat treatment. If necessary, it may further include a steam stretching step of steam stretching the fiber obtained in the drying heat treatment step.
  • the spinning solution is obtained by dissolving the polyacrylonitrile polymer in a solvent in which polyacrylonitrile polymers such as dimethyl sulfoxide, dimethylformamide, and dimethylacetamide are soluble.
  • a spinning solution having a polyacrylonitrile polymer concentration of 10 to 18% by mass is preferred.
  • concentration of the spinning solution is less than 10% by mass, voids are formed in the carbon fiber, and the single fiber strength of the carbon fiber is likely to be lowered in the high strength region.
  • the concentration of the spinning solution exceeds 18% by mass, it may be necessary to lower the weight average molecular weight of the polymer for spinnability.
  • the coagulation bath preferably contains a solvent such as dimethyl sulfoxide, dimethylformamide and dimethylacetamide used as a solvent for the spinning solution and a so-called coagulation promoting component.
  • a solvent such as dimethyl sulfoxide, dimethylformamide and dimethylacetamide used as a solvent for the spinning solution
  • a so-called coagulation promoting component a component that does not dissolve the polyacrylonitrile polymer and is compatible with the solvent used in the spinning solution can be used.
  • water it is preferable to use water as a coagulation promoting component.
  • the water washing step it is preferable to perform water washing using a water washing bath having a plurality of stages at a temperature of 20 to 90 ° C. Further, the draw ratio in the water bath drawing step is preferably 1.3 to 5 times, more preferably 2 to 4 times.
  • an oil agent made of silicone or the like it is preferable to apply an oil agent made of silicone or the like to the yarn for the purpose of preventing adhesion between single fibers.
  • a silicone oil agent it is preferable to use a modified silicone, and it is preferable to use one containing an amino-modified silicone having high heat resistance.
  • the steam stretching step it is preferable to stretch at least 3 times, more preferably 4 times or more, and even more preferably 5 times or more in pressurized steam.
  • the polyacrylonitrile precursor fiber is preferably adjusted to have a fineness of 0.60 dtex or less, more preferably 0.41 dex or less, and further preferably 0.26 dtex or less. Such fineness can be controlled by adjusting the discharge amount of the spinning solution and the spinning speed.
  • the polyacrylonitrile precursor fiber thus obtained is subjected to a flameproofing step to obtain a flameproofed fiber.
  • the flameproofing step is preferably performed at as high a temperature as possible without causing a runaway reaction. Specifically, it is preferably performed in air at 200 to 300 ° C.
  • the treatment time of the flameproofing step can be suitably selected within a range of preferably 10 to 100 minutes. The treatment time is preferably set so that the specific gravity of the obtained flame-resistant fiber is in the range of 1.3 to 1.4 for the purpose of improving the mechanical properties of the obtained carbon fiber.
  • the flame resistant fiber obtained by the flame resistance process is subjected to a preliminary carbonization process to obtain a preliminary carbonized fiber.
  • a preliminary carbonization process it is preferable to heat-treat the flame-resistant fiber in an inert atmosphere at a maximum temperature of 500 to 1200 ° C. until the specific gravity becomes 1.5 to 1.8.
  • the pre-carbonized fiber obtained by the pre-carbonization step is subjected to a carbonization step to obtain carbon fiber.
  • the preliminary carbonized fiber is heated to 1200 to 2000 ° C. in an inert atmosphere.
  • the temperature of the carbonization step is preferably higher from the viewpoint of increasing the strand elastic modulus of the carbon fiber to be obtained, but if it is too high, the strength of the high strength region may decrease, and it is set in consideration of both. Is good.
  • a more preferable temperature range is 1200 to 1800 ° C., and a further preferable temperature range is 1200 to 1600 ° C.
  • the tension of the carbonization step is 4.9 ⁇ carbonization tension (mN / dtex) ⁇ ⁇ 0.0225 ⁇ (average tearing of the pre-carbonized fiber bundle is possible. Distance (mm)) + 23.5 (1)
  • the carbonization process is performed within a range satisfying the above, and the pre-carbonized fiber bundle is substantially untwisted, and the carbon fiber bundle having an average tearable distance of 150 to 620 mm is prepared. Is the method.
  • substantially untwisted means that it is 1 turn or less per 1 m of fiber bundle even if twist is present.
  • the tension of the carbonization step is 9.8 ⁇ the tension of the carbonization step (mN / dtex) ⁇ ⁇ 0.0225 ⁇ (average tearable distance of pre-carbonized fiber bundle (mm) +23.5 (2) It is preferable that the carbonization step is performed within a range satisfying the above condition, the pre-carbonized fiber bundle is substantially untwisted, and the average tearable distance of the pre-carbonized fiber bundle is 150 to 620 mm.
  • the strand elastic modulus of the carbon fiber bundle can be increased by increasing the crystallite size inside the carbon fiber as the maximum temperature in the carbonization process is increased.
  • the tensile strength and adhesive strength of the obtained carbon fiber bundle are lowered by raising the maximum temperature of the carbonization step.
  • the strand elastic modulus of the obtained carbon fiber bundle can be increased by increasing the tension of the carbonization process without increasing the maximum temperature of the carbonization process.
  • the crystallite size inside the carbon fiber is preferably 1.2 nm or more and 2.5 nm or less, and more preferably 1.2 nm or more and 2.5 nm or less.
  • the crystallite size is preferably controlled within the above range.
  • the crystallite size can be controlled mainly by the carbonization temperature.
  • the relationship between the crystallite size and the strand elastic modulus preferably satisfies the following formula. 50 ⁇ crystallite size (nm) + 200 ⁇ strand modulus ⁇ 50 ⁇ crystallite size (nm) +300
  • the carbon fiber bundle can have excellent strand elastic modulus and single fiber strength balance. Satisfying the relational expression can be achieved by controlling the carbonization tension by controlling the tearable distance of the pre-carbonized fiber bundle within the range of the present invention.
  • the tension (carbonization tension) in the carbonization step is represented by a value obtained by dividing the tension (mN) measured on the outlet side of the carbonization furnace by the fineness (dtex) of the polyacrylonitrile precursor fiber when it is completely dried. If the tension is lower than 4.9 mN / dtex, the crystallite orientation of the carbon fibers cannot be increased, and a high strand elastic modulus is not exhibited, so that OHT may be lowered. When the tension is set higher than 9.8 mN / dtex, the fiber alignment is improved and a state of excellent stress transmission between single fibers is formed. Since OHT can be improved, it is preferable.
  • the tension is preferably higher from the viewpoint of increasing the strand elastic modulus of the carbon fiber to be obtained, but if it is too high, the process passability and the quality may be deteriorated, and therefore the range satisfying the formula (2). It is preferable to set by.
  • the meaning of the first-order coefficient ⁇ 0.0225 on the right side of Equation (2) is the gradient of the tension that can be set as the average tearable distance increases, and the constant term 23.5 represents the average tearable distance to the limit. This tension can be set when the length is shortened.
  • the tearable distance of the pre-carbonized fiber bundle in the carbonization process is an index representing the entangled state of the fiber bundle.
  • the tearable distance of the preliminary carbonized fiber bundle is obtained in the same manner as the tearable distance of the carbonized fiber bundle described above.
  • the hook drop method has been generally used as a method for evaluating the confounding state.
  • the degree of entanglement (CF value) of the fiber bundle by the hook drop method is fixed to the upper part of the drooping device, and the weight is suspended at the lower end of the fiber bundle, as defined in JIS L1013 (2010).
  • the average tearable distance is used instead of the degree of entanglement (CF value) obtained by the conventional hook drop method, and the distance is set to a specific range, whereby high strength of carbon fiber is obtained. It was found that a high stretching tension in the carbonization process can be expressed while avoiding a decrease in the strength of the region. In order to apply a high drawing tension in the carbonization process, it is necessary to create a fiber bundle state in which the stress transmission ability between single fibers is high. For that purpose, it is important to form a fine entanglement network between single fibers.
  • the conventional hook drop method is an evaluation at a “point” using a hook, whereas the tearable distance is an evaluation at a “surface” that looks at the entire bundle. Due to this difference, in the carbonization process, It is considered that a state for expressing a high stretching tension can be appropriately defined.
  • the tearable distance of the pre-carbonized fiber bundle is more preferably 150 to 500 mm.
  • the variation in tear distance is small.
  • the ratio of the distance of 800 mm or more is preferably 15% or less, and more preferably the ratio is 10% or less.
  • the ratio of 800 mm or more of the distance is the ratio of the number of times that the tearable distance was 800 mm or more among the 30 measurements when the tearable distance was measured 30 times.
  • the ratio of the distance of 800 mm or more is 15% or more, the entangled state is not controlled, and a portion having a low stress transmission ability between single fibers is present in the bundle. May cause degradation in quality and induce structural variations between single fibers and accompanying strength variations, making it impossible to control the single fiber strength distribution in the short length region of carbon fibers, resulting in OHT. Decreases.
  • the ratio of 800 mm or more of the distance is calculated 30 times based on the above-described measurement of the tearable distance and calculated from the following formula.
  • Ratio (%) of tearable distance of 800 mm or more frequency of tearable distance of 800 mm or more / 30 ⁇ 100.
  • any method can be adopted as long as the above-described numerical range can be achieved, but confounding treatment with a fluid to the fiber bundle is preferably used. .
  • the dynamic friction coefficient can be measured by a method described later, and can be controlled by the surface form, cross-sectional shape, and kind of oil applied to the fiber bundle forming the fiber bundle.
  • the process of performing the fluid entanglement process may be any process of the polyacrylonitrile precursor fiber bundle manufacturing process, the flame resistance process, and the preliminary carbonization process.
  • the polyacrylonitrile precursor fiber bundle is preferably produced in a process of producing a high degree of elongation of the polyacrylonitrile precursor fiber bundle, more preferably before the process oil is applied to the polyacrylonitrile precursor fiber bundle.
  • the average tearable distance of the polyacrylonitrile precursor fiber bundle after the fluid entanglement treatment is preferably 100 to 500 mm, more preferably 100 mm.
  • It is ⁇ 400 mm, more preferably 100 to 300 mm.
  • the distance is less than 100 mm, the density of single fibers in the bundle increases, and in the flameproofing process, the inside of the bundle is not flameproofed, resulting in burn unevenness, thereby inducing structural variations and strength variations between the single fibers. As a result, the perforated plate tensile strength may decrease.
  • the distance exceeds 500 mm, there is a possibility that the quality deteriorates or the yarn breaks when a high stretching tension is applied in the carbonization process.
  • the fluid used for the fluid entanglement treatment either gas or liquid can be used, but air or nitrogen is preferable because it is inexpensive.
  • the fluid is preferably sprayed onto the fiber bundle using a nozzle, and the shape of the nozzle that sprays the fluid is not particularly limited, but it is preferable to use one having 2 to 8 ejection holes.
  • the arrangement of the ejection ports is not particularly limited, but an even number of ejection holes are arranged so as to surround the fiber bundle so that the angle formed by the fiber bundle longitudinal direction and the fluid blowing direction is in the range of 88 ° to 90 °. It is preferable to arrange the jet holes at positions facing each other so as to form a pair of two holes. Other conditions such as fiber bundle tension and fluid discharge pressure during the fluid entanglement process may be adjusted as appropriate so that the tearable distance is appropriate.
  • the tension In the fluid entanglement treatment, it is preferable to set the tension to 2 to 5 mN / dtex-fiber bundle and set the fluid discharge pressure to 0.2 to 0.4 MPa-G. More preferably, the tension is 2 to 3 mN / dtex-fiber bundle, and the discharge pressure is 0.25 to 0.35 MPa-G. Moreover, it is preferable that the fiber bundle at the time of the fluid entanglement process is substantially untwisted. Here, “substantially untwisted” means that it is 1 turn or less per 1 m of fiber bundle even if twist is present.
  • the swirl movement of the single fiber may be suppressed, and the formation of entanglement may also be suppressed.
  • the tension at the time of fluid entanglement treatment is lowered below 2 mN / dtex-fiber bundle, the swirl movement of the single fibers constituting the fiber bundle is promoted and entanglement is likely to be formed, but the fiber bundle comes into contact with the nozzle. Yarn pain and scratches may occur, which may cause deterioration in quality and decrease in strand strength.
  • the formation of the entanglement in the longitudinal direction of the fiber bundle becomes non-uniform, and a portion having a low degree of entanglement may occur.
  • the pressure during the fluid entanglement process is higher than 0.4 MPa-G, the fluid may cause thread pain and scratches, which may cause deterioration in quality and decrease in strand strength.
  • the pressure during the fluid entanglement process is lower than 0.2 MPa-G, the swirl movement of the single fibers may be suppressed, and the formation of entanglement may be suppressed.
  • the number of single fibers constituting the fiber bundle during the fluid entanglement treatment is preferably 12,000 or less, more preferably 6000 or less. As the number of single fibers constituting the fiber bundle increases, the entanglement of the single fibers becomes easier to form, but a portion where no entanglement is imparted is also formed in the fiber bundle, and the entanglement formation may become uneven.
  • the fluid entanglement treatment is performed on the polyacrylonitrile precursor fiber bundle, after the fluid entanglement treatment, two or more polyacrylonitrile precursor fiber bundles are combined and adjusted to the number of filaments necessary as a final product.
  • the obtained carbon fiber bundle is preferably subjected to an oxidation treatment to introduce an oxygen-containing functional group in order to improve adhesion with the matrix resin.
  • an oxidation treatment method gas phase oxidation, liquid phase oxidation and liquid phase electrolytic oxidation are used. From the viewpoint of high productivity and uniform processing, liquid phase electrolytic oxidation is preferably used.
  • Examples of the electrolytic solution used in the liquid phase electrolytic oxidation include an acidic electrolytic solution and an alkaline electrolytic solution. From the viewpoint of adhesiveness, it is more preferable to apply a sizing agent after liquid-phase electrolytic oxidation of a carbon fiber bundle in an alkaline electrolyte.
  • Examples of the acidic electrolyte include inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, boric acid, and carbonic acid, organic acids such as acetic acid, butyric acid, oxalic acid, acrylic acid, and maleic acid, or ammonium sulfate and ammonium hydrogen sulfate. And the like. Of these, sulfuric acid and nitric acid exhibiting strong acidity are preferably used.
  • alkaline electrolyte examples include aqueous solutions of hydroxides such as sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide and barium hydroxide, sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate, Aqueous solutions of carbonates such as barium carbonate and ammonium carbonate, aqueous solutions of bicarbonates such as sodium bicarbonate, potassium bicarbonate, magnesium bicarbonate, calcium bicarbonate, barium bicarbonate and ammonium bicarbonate, ammonia, tetraalkylammonium hydroxide And an aqueous solution of hydrazine.
  • hydroxides such as sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide and barium hydroxide
  • Aqueous solutions of carbonates such as barium carbonate and ammonium carbonate
  • bicarbonates such as sodium bicarbonate, potassium bicarbonate, magnesium bicarbonate, calcium bicarbonate, bar
  • an aqueous solution of ammonium carbonate and ammonium hydrogen carbonate or an aqueous solution of tetraalkylammonium hydroxide exhibiting strong alkalinity is preferably used.
  • the concentration of the electrolytic solution is preferably in the range of 0.01 to 5 mol / liter, more preferably in the range of 0.1 to 1 mol / liter.
  • concentration of the electrolytic solution is 0.01 mol / liter or more, the electrolytic treatment voltage is lowered, which is advantageous for the operating cost.
  • concentration of the electrolytic solution is 5 mol / liter or less, it is advantageous from the viewpoint of safety.
  • the temperature of the electrolytic solution is preferably in the range of 10 to 100 ° C., more preferably in the range of 10 to 40 ° C.
  • the temperature of the electrolytic solution is 10 ° C. or higher, the efficiency of the electrolytic treatment is improved, which is advantageous for the operating cost.
  • the temperature of the electrolytic solution is 100 ° C. or lower, it is advantageous from the viewpoint of safety.
  • the amount of electricity in the liquid phase electrolytic oxidation is preferably optimized in accordance with the carbonization degree of the carbon fiber, and a larger amount of electricity is required when processing high-modulus carbon fiber.
  • the current density in the liquid phase electrolytic oxidation is preferably in the range of 1.5 to 1000 amperes / m 2 per 1 m 2 of the surface area of the carbon fiber in the electrolytic treatment solution, more preferably 3 to 500 amperes / m 2 . Within range. When the current density is 1.5 amperes / m 2 or more, the efficiency of the electrolytic treatment is improved, which is advantageous for the operating cost. On the other hand, when the current density is 1000 amperes / m 2 or less, it is advantageous from the viewpoint of safety.
  • the total amount of electrolytic electricity employed in the electrolytic treatment is preferably 3 to 300 coulomb / g per gram of carbon fiber. If the total amount of electrolytic electricity is less than 3 coulombs / g, functional groups may not be sufficiently imparted to the carbon fiber surface, and the number of fiber breaks when the single fiber apparent stress by the fragmentation method of the single fiber composite is 15.3 GPa. May be less than 2.0 pieces / mm. On the other hand, when the total amount of electrolytic electricity exceeds 300 coulombs / g, defects on the surface of the carbon fiber single fiber are enlarged, and the number of fiber breaks when the single fiber apparent stress is 12.2 GPa by the fragmentation method of the single fiber composite is 1. May exceed 7 / mm.
  • the carbon fiber is preferably washed and dried.
  • a cleaning method for example, a dip method and a spray method can be used.
  • a dip method from a viewpoint that washing
  • a dip method vibrating a carbon fiber with an ultrasonic wave.
  • the drying temperature is preferably 250 ° C. or lower, more preferably 210 ° C. or lower.
  • the prepreg of the present invention is a prepreg containing the sizing agent-coated carbon fiber bundle of the present invention and a thermosetting resin.
  • the thermosetting resin contains an epoxy compound (A) and an aromatic amine curing agent (B).
  • the sizing agent-coated carbon fiber bundle of the present invention exhibits high OHT in combination with a thermosetting resin containing an epoxy compound (A) and an aromatic amine curing agent (B).
  • the epoxy compound (A) used for the epoxy resin is not particularly limited, and is a bisphenol type epoxy compound, an amine type epoxy compound, a phenol novolak type epoxy compound, a cresol novolak type epoxy compound, a resorcinol type epoxy compound, a glycidyl aniline type.
  • epoxy compounds phenol aralkyl type epoxy compounds, naphthol aralkyl type epoxy compounds, dicyclopentadiene type epoxy compounds, epoxy compounds having a biphenyl skeleton, isocyanate-modified epoxy compounds, tetraphenylethane type epoxy compounds, triphenylmethane type epoxy compounds, etc.
  • One or more types can be selected and used.
  • the bisphenol type epoxy compound is obtained by glycidylation of two phenolic hydroxyl groups of a bisphenol compound.
  • not only a monomer but the high molecular weight body which has several repeating units can also be used conveniently.
  • bisphenol A type epoxy compounds include “jER (registered trademark)” 825, 828, 834, 1001, 1002, 1003, 1003F, 1004, 1004AF, 1005F, 1006FS, 1007, 1009, 1010 (and above, Mitsubishi Chemical) Etc.).
  • brominated bisphenol A type epoxy compound examples include “jER (registered trademark)” 505, 5050, 5051, 5054, 5057 (manufactured by Mitsubishi Chemical Corporation).
  • Examples of commercially available hydrogenated bisphenol A type epoxy compounds include ST5080, ST4000D, ST4100D, and ST5100 (manufactured by Nippon Steel Chemical Co., Ltd.).
  • bisphenol F type epoxy compounds include “jER (registered trademark)” 806, 807, 4002P, 4004P, 4007P, 4009P, 4010P (above, manufactured by Mitsubishi Chemical Corporation), “Epiclon (registered trademark)” 830. 835 (above, manufactured by DIC Corporation), “Epototo (registered trademark)” YDF2001, YDF2004 (above, manufactured by Nippon Steel Chemical Co., Ltd.), and the like.
  • Examples of the tetramethylbisphenol F type epoxy compound include YSLV-80XY (manufactured by Nippon Steel Chemical Co., Ltd.).
  • Examples of the bisphenol S type epoxy compound include “Epiclon (registered trademark)” EXA-154 (manufactured by DIC Corporation).
  • amine-type epoxy compound examples include tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, triglycidylaminocresol, tetraglycidylxylylenediamine, halogens thereof, alkynol-substituted products, hydrogenated products, and the like.
  • tetraglycidyldiaminodiphenylmethane Commercially available products of tetraglycidyldiaminodiphenylmethane include “Sumiepoxy (registered trademark)” ELM434 (manufactured by Sumitomo Chemical Co., Ltd.), YH434L (manufactured by Nippon Steel Chemical Co., Ltd.), and “jER (registered trademark)” 604 (Mitsubishi Chemical). (Manufactured by Co., Ltd.), “Araldide (registered trademark)” MY720, MY721, MY725 (manufactured by Huntsman Advanced Materials Co., Ltd.).
  • triglycidylaminophenol or triglycidylaminocresol Commercially available products of triglycidylaminophenol or triglycidylaminocresol include “SUMI Epoxy (registered trademark)” ELM100, ELM120 (manufactured by Sumitomo Chemical Co., Ltd.), “Araldide (registered trademark)” MY0500, MY0510, MY0600, MY0610. (The above is manufactured by Huntsman Advanced Materials Co., Ltd.), “jER (registered trademark)” 630 (manufactured by Mitsubishi Chemical Corporation), and the like.
  • Examples of commercially available tetraglycidylxylylenediamine and hydrogenated products thereof include TETRAD-X and TETRAD-C (hereinafter, manufactured by Mitsubishi Gas Chemical Co., Ltd.). *
  • cresol novolac epoxy compounds examples include “Epiclon (registered trademark)” N-660, N-665, N-670, N-673, N-695 (above, manufactured by DIC Corporation), EOCN-1020.
  • EOCN-102S, EOCN-104S Nippon Kayaku Co., Ltd.
  • Examples of commercially available resorcinol-type epoxy compounds include “Denacol (registered trademark)” EX-201 (manufactured by Nagase ChemteX Corporation).
  • Examples of commercial products of glycidyl aniline type epoxy compounds include GAN and GOT (manufactured by Nippon Kayaku Co., Ltd.).
  • Examples of commercially available epoxy compounds having a biphenyl skeleton include “jER (registered trademark)” YX4000H, YX4000, YL6616 (manufactured by Mitsubishi Chemical Corporation), NC-3000 (manufactured by Nippon Kayaku Co., Ltd.), and the like. It is done.
  • dicyclopentadiene type epoxy compounds include “Epicron (registered trademark)” HP7200L, “Epicron (registered trademark)” HP7200, “Epicron (registered trademark)” HP7200H, “Epicron (registered trademark)” HP7200HH (above, Dainippon Ink Chemical Co., Ltd.), XD-1000-L, XD-1000-2L (above, Nippon Kayaku Co., Ltd.), “Tactix (registered trademark)” 556 (Huntsman Advanced Materials) Etc.).
  • Examples of commercially available isocyanate-modified epoxy compounds include XAC4151, AER4152 (produced by Asahi Kasei Epoxy Co., Ltd.) and ACR1348 (produced by ADEKA Co., Ltd.) having an oxazolidone ring.
  • Examples of commercially available tetraphenylethane type epoxy compounds include “jER (registered trademark)” 1031 (manufactured by Mitsubishi Chemical Corporation), which is a tetrakis (glycidyloxyphenyl) ethane type epoxy compound.
  • triphenylmethane type epoxy compounds examples include “Tactics (registered trademark)” 742 (manufactured by Huntsman Advanced Materials Co., Ltd.).
  • the epoxy compound (A) a polyfunctional glycidylamine type epoxy compound is preferably used in combination with the sizing agent-coated carbon fiber bundle of the present invention, because the OHT of the carbon fiber reinforced composite material can be greatly improved. .
  • the reason is not necessarily clear, but it is considered that when the epoxy compound is used, the strength distribution in the high strength region of the carbon fiber has a strong influence on the OHT.
  • polyfunctional glycidylamine type epoxy compound examples include tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol and triglycidylaminocresol, N, N-diglycidylaniline, N, N-diglycidyl-o-toluidine, N, N- Diglycidyl-4-phenoxyaniline, N, N-diglycidyl-4- (4-methylphenoxy) aniline, N, N-diglycidyl-4- (4-tert-butylphenoxy) aniline and N, N-diglycidyl-4- ( 4-phenoxyphenoxy) aniline and the like.
  • these compounds are obtained by adding epichlorohydrin to a phenoxyaniline derivative and cyclizing with an alkali compound. Since the viscosity increases as the molecular weight increases, N, N-diglycidyl-4-phenoxyaniline is particularly preferably used from the viewpoint of handleability.
  • phenoxyaniline derivative examples include 4-phenoxyaniline, 4- (4-methylphenoxy) aniline, 4- (3-methylphenoxy) aniline, 4- (2-methylphenoxy) aniline, 4- (4 -Ethylphenoxy) aniline, 4- (3-ethylphenoxy) aniline, 4- (2-ethylphenoxy) aniline, 4- (4-propylphenoxy) aniline, 4- (4-tert-butylphenoxy) aniline, 4- (4-cyclohexylphenoxy) aniline, 4- (3-cyclohexylphenoxy) aniline, 4- (2-cyclohexylphenoxy) aniline, 4- (4-methoxyphenoxy) aniline, 4- (3-methoxyphenoxy) aniline, 4- (2-methoxyphenoxy) aniline, 4- (3-phenoxy Enoxy) aniline, 4- (4-phenoxyphenoxy) aniline, 4- [4- (trifluoromethyl) phenoxy] aniline, 4- [3- (trifluoromethyl) phenoxy] aniline, 4- [4-
  • tetraglycidyldiaminodiphenylmethane examples include, for example, “Sumiepoxy (registered trademark)” ELM434 (manufactured by Sumitomo Chemical Co., Ltd.), YH434L (manufactured by Tohto Kasei Co., Ltd.), “Araldite (registered trademark)” MY720, MY721, MY725. (Manufactured by Huntsman Advanced Materials Co., Ltd.), “jER (registered trademark) 604” (manufactured by Mitsubishi Chemical Corporation), and the like can be used.
  • triglycidylaminophenol and triglycidylaminocresol examples include, for example, “Sumiepoxy (registered trademark)” ELM100 (manufactured by Sumitomo Chemical Co., Ltd.), “Araldite (registered trademark)” MY500, MY0510, “Araldite (registered trademark)” MY0600. MY610 (manufactured by Huntsman Advanced Materials Co., Ltd.), “jER (registered trademark)” 630 (manufactured by Mitsubishi Chemical Corporation), and the like can be used.
  • the polyfunctional glycidylamine type epoxy compound is preferably an aromatic epoxy compound (A1) having at least one glycidylamine skeleton and having a trifunctional or higher functional epoxy group.
  • the proportion of the polyfunctional glycidylamine type aromatic epoxy compound (A1) is preferably 30 to 100% by mass in the epoxy compound (A), and more preferably 50% by mass or more. Since the ratio of a glycidyl amine type epoxy compound is 30 mass% or more and OHT of a carbon fiber reinforced composite material is improved, it is preferable.
  • the aromatic amine curing agent (B) is not particularly limited as long as it is an aromatic amine used as an epoxy resin curing agent. Specifically, 3,3′-diaminodiphenylsulfone (3,3) is used. 3'-DDS), 4,4'-diaminodiphenylsulfone (4,4'-DDS), diaminodiphenylmethane (DDM), 3,3'-diisopropyl-4,4'-diaminodiphenylmethane, 3,3'-di -T-butyl-4,4'-diaminodiphenylmethane, 3,3'-diethyl-5,5'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-diisopropyl-5,5'-dimethyl-4 , 4'-diaminodiphenylmethane, 3,3'-diisopropyl-5,5'-di
  • the combination of the sizing agent used in the sizing coated carbon fiber of the present invention and the aromatic amine curing agent (B) the following combinations are preferable.
  • the sizing agent and the aromatic amine curing agent (B) are mixed so that the amine equivalent / epoxy equivalent of the amine equivalent and the epoxy equivalent of the sizing agent and the aromatic amine curing agent (B) is 0.9, and the temperature When stored for 20 days in an environment of 25 ° C. and 60% humidity, the increase in the glass transition point of the mixture is preferably 25 ° C. or less. The increase in the glass transition point is 25 ° C.
  • the increase in the glass transition point is more preferably 15 ° C. or less, and further preferably 10 ° C. or less.
  • the glass transition point can be determined by differential scanning calorimetry (DSC).
  • the total amount of the aromatic amine curing agent (B) preferably includes an amount such that the active hydrogen group is in the range of 0.6 to 1.2 equivalents relative to 1 equivalent of the epoxy groups of all epoxy resin components.
  • the amount is preferably in the range of 0.7 to 0.9 equivalent.
  • the active hydrogen group means a functional group that can react with an epoxy group.
  • the reaction rate, heat resistance, and elastic modulus of the cured product are insufficient, and the glass transition temperature and OHT of the carbon fiber reinforced composite material may be insufficient. If the active hydrogen group exceeds 1.2 equivalents, the reaction rate, glass transition temperature, and elastic modulus of the cured product are sufficient, but the plastic deformation ability is insufficient, so the impact resistance of the carbon fiber reinforced composite material May be insufficient.
  • the prepreg of the present invention preferably contains a thermoplastic resin in order to adjust toughness and fluidity. From the viewpoint of heat resistance, it is more preferable to include at least one selected from polysulfone, polyethersulfone, polyetherimide, polyimide, polyamide, polyamideimide, polyphenylene ether, phenoxy resin, and polyolefin.
  • the prepreg of the present invention can contain an oligomer of a thermoplastic resin. Moreover, an elastomer, a filler, and another additive can also be mix
  • the thermoplastic resin is preferably contained in the epoxy resin that constitutes the prepreg.
  • thermoplastic resin a thermoplastic resin soluble in an epoxy resin, organic particles such as rubber particles and thermoplastic resin particles, and the like can be blended.
  • thermoplastic resin soluble in the epoxy resin a thermoplastic resin having a hydrogen bonding functional group that can be expected to improve the adhesion between the resin and the carbon fiber is preferably used.
  • thermoplastic resin that is soluble in an epoxy resin and has a hydrogen bonding functional group
  • a thermoplastic resin having an alcoholic hydroxyl group, a thermoplastic resin having an amide bond, or a thermoplastic resin having a sulfonyl group can be used.
  • thermoplastic resin having an alcoholic hydroxyl group examples include polyvinyl acetal resins such as polyvinyl formal and polyvinyl butyral, polyvinyl alcohol, and phenoxy resins.
  • Thermoplastic resins having an amide bond include polyamide, polyimide, and polyvinyl. Pyrrolidone can be mentioned, and as the thermoplastic resin having a sulfonyl group, polysulfone can be mentioned.
  • Polyamide, polyimide and polysulfone may have a functional group such as an ether bond and a carbonyl group in the main chain.
  • the polyamide may have a substituent on the nitrogen atom of the amide group.
  • the acrylic resin is highly compatible with the epoxy resin, and is suitably used for fluidity adjustment such as thickening.
  • examples of commercially available acrylic resins include “Dianal (registered trademark)” BR series (manufactured by Mitsubishi Rayon Co., Ltd.), “Matsumoto Microsphere (registered trademark)” M, M100, M500 (Matsumoto Yushi Seiyaku Co., Ltd.) And “Nanostrength (registered trademark)” E40F, M22N, M52N (manufactured by Arkema Co., Ltd.), and the like.
  • polyethersulfone and polyetherimide are suitable because OHT can be increased and the characteristics of the sizing agent-coated carbon fiber bundle of the present invention can be maximized.
  • Polyethersulfones include “Sumika Excel” (registered trademark) 3600P, “Sumika Excel” (registered trademark) 5003P, “Sumika Excel” (registered trademark) 5200P, “Sumika Excel” (registered trademark, Sumitomo Chemical Co., Ltd.) 7200P, “Virantage” (registered trademark) PESU VW-10200, “Virantage” (registered trademark) PESU VW-10700 (registered trademark, manufactured by Solvay Advance Polymers), “Ultrason” (registered trademark) ) 2020SR (manufactured by BASF Corporation), polyetherimide includes “Ultem” (registered trademark) 1000, “Ultem” (registered trademark) 1010, “Ultem” (registered trademark) 1040 (above, S
  • thermoplastic resin is uniformly dissolved in the epoxy resin composition or finely dispersed in the form of particles so as not to hinder the prepreg manufacturing process centering on impregnation.
  • the amount of the thermoplastic resin is preferably 6 to 40 parts by mass, more preferably 6 to 25 parts by mass with respect to 100 parts by mass of the epoxy resin when the thermoplastic resin is dissolved in the epoxy resin composition. It is. On the other hand, when the thermoplastic resin is used dispersed in the epoxy resin composition, the amount is preferably 10 to 40 parts by mass, more preferably 15 to 30 parts by mass with respect to 100 parts by mass of the epoxy resin. Even if the thermoplastic resin is less than or exceeds the blending amount, OHT may be lowered.
  • the prepreg of the present invention is obtained by impregnating a matrix resin with a carbon fiber bundle coated with a sizing agent (a sizing agent-coated carbon fiber bundle).
  • the prepreg can be produced by, for example, a wet method in which the matrix resin is dissolved in a solvent such as methyl ethyl ketone or methanol to lower the viscosity and impregnated, or a hot melt method in which the matrix resin is reduced in viscosity by heating and impregnated. it can.
  • a carbon fiber bundle coated with a sizing agent is immersed in a liquid containing a matrix resin, and then the prepreg can be obtained by lifting and evaporating the solvent using an oven or the like.
  • a method of directly impregnating a carbon fiber bundle coated with a sizing agent with a matrix resin whose viscosity has been reduced by heating, or a film in which a matrix resin is once coated on release paper or the like is first produced, and then a sizing agent is prepared.
  • a prepreg can be produced by a method in which the film is overlapped from both sides or one side of the coated carbon fiber bundle and heated and pressed to impregnate the sizing agent coated carbon fiber bundle with the matrix resin.
  • the hot melt method is a preferable means because there is no solvent remaining in the prepreg.
  • a method of heat-curing a matrix resin while applying pressure to the laminate after laminating the prepreg can be used.
  • the prepreg of the present invention is suitably used for sports applications such as golf shafts and fishing rods and other general industrial applications, including aircraft members, spacecraft members, automobile members, and ship members.
  • the measuring method of various physical property values described in this specification is as follows.
  • the peak ratio of (a) and (b) on the sizing agent surface of sizing agent-coated fiber is determined by X-ray photoelectron spectroscopy. It was determined according to the following procedure. Cut the sizing agent-coated carbon fiber bundle to 20 mm, spread and arrange it on a copper sample support, and use AlK ⁇ 1,2 as the X-ray source and keep the sample chamber at 1 ⁇ 10 ⁇ 8 Torr for measurement. went.
  • the binding energy value of the main peak of C 1s was adjusted to 286.1 eV.
  • the peak area of C 1s was obtained by drawing a straight baseline in the range of 282 to 296 eV.
  • a linear base line of 282 to 296 eV obtained by calculating the area at the C 1s peak is defined as the origin (zero point) of photoelectron intensity
  • (b) the peak of the binding energy 286.1 eV attributed to the CO component is obtained.
  • Obtain the height (cps: photoelectron intensity per unit time) and (a) the height (cps) of the component with a binding energy of 284.6 eV attributed to CHx, CC, C C.
  • the thickness ratio (a) / (b) was calculated.
  • the surface oxygen concentration (O / C) of the carbon fiber was determined by X-ray photoelectron spectroscopy according to the following procedure. First, the carbon fiber from which the dirt adhering to the surface is removed using a solvent is cut to about 20 mm and spread on a copper sample support. Next, the sample support was set in the sample chamber, and the inside of the sample chamber was kept at 1 ⁇ 10 ⁇ 8 Torr. Subsequently, AlK ⁇ 1 and 2 were used as the X-ray source, and the photoelectron escape angle was 90 °. The bond energy value of the C 1s main peak (peak top) was adjusted to 286.1 eV as a peak correction value associated with charging during measurement.
  • the C 1s peak area was determined by drawing a straight base line in the range of 282 to 296 eV.
  • the O 1s peak area was determined by drawing a straight base line in the range of 528 to 540 eV.
  • the surface oxygen concentration is calculated as an atomic ratio by using a sensitivity correction value unique to the apparatus from the ratio of the O 1s peak area to the C 1s peak area.
  • a sensitivity correction value unique to the apparatus was 2.33.
  • a perforated mount with single fibers fixed thereon was placed on the spacer, and a glass plate on which a film was similarly attached was further set on the spacer with the surface on which the film was attached facing downward.
  • a tape having a thickness of about 70 ⁇ m was attached to both ends of the film.
  • the fiber embedding depth d ( ⁇ m) was calculated by the following formula using the refractive index of the resin 1.732 measured using the above laser.
  • d (A ⁇ B) ⁇ 1.732 (V)
  • Tensile strain was applied to the test piece obtained in the above procedure (iii) by four-point bending using a jig having an outer indenter interval of 50 mm and an inner indenter interval of 20 mm. The stepwise strain was applied every 0.1%, the specimen was observed with a polarizing microscope, and the number of breaks of the single fiber in the range of the central part of 10 mm in the longitudinal direction of the specimen was measured.
  • a value obtained by dividing the measured number of breaks by 10 was defined as the number of fiber breaks (pieces / mm). Further, the strain ⁇ (%) was measured using a strain gauge attached at a position about 5 mm away from the center of the test piece in the width direction.
  • (E) Single fiber elastic modulus of carbon fiber The single fiber elastic modulus of carbon fiber is calculated
  • the elastic modulus is defined by the following formula.
  • Elastic modulus (obtained strength) / (cross-sectional area of single fiber ⁇ obtained elongation)
  • the cross-sectional area of the single fiber is obtained by dividing the mass per unit length (g / m) by the density (g / m 3 ) and further dividing by the number of filaments for the fiber bundle to be measured.
  • the density was measured by Archimedes method using a specific gravity solution as o-dichloroethylene.
  • FIG. 1 shows a method for measuring the tearable distance.
  • the fiber bundle 1 is cut to a length of 1160 mm, and one end 2 thereof is fixed on a horizontal base so as not to move with an adhesive tape (this point is referred to as a fixing point A).
  • One end 3 of the fiber bundle that is not fixed is divided into two with a finger, and one of the ends is tensioned and fixed on the table so as not to move with an adhesive tape (this point is referred to as a fixing point B).
  • the other end of the fiber bundle divided into two is moved along the table so that no slack occurs with the fixed point A as a fulcrum, and is stopped at position 4 where the linear distance from the fixed point B is 500 mm.
  • a fixed point C This point is called a fixed point C.
  • the region surrounded by the fixed points A, B, and C is visually observed, the entanglement point 5 farthest from the fixed point A is found, and the distance projected on the straight line connecting the fixed point A and the fixed point B is the lowest scale.
  • the entanglement point farthest from the fixed point A is the point where the linear distance from the fixed point A is the longest and three or more single fibers having no slack are entangled.
  • (K) Bundle strength at 10 m test length of carbon fiber bundle The bundle strength at 10 m test length is measured by the following procedure. One set of drive rolls is installed so that the distance between the apexes of the rolls is 10 m. A fiber bundle to be used for measurement is placed on both drive rolls, and while one drive roll is stopped, the other drive roll is rotated at 70 mm / min to perform a tensile test. The tension of the fiber bundle during the tensile test is measured with a tension meter, and the maximum tension until the yarn breaks is defined as the bundle strength. The arithmetic average value of 10 measurements was set to a bundle strength of 10 m. In addition, a contact angle and a roll material are appropriately selected so that the fiber bundle does not slip on the drive roll.
  • (L) Crystallite size Lc of carbon fiber bundle By aligning the carbon fibers to be used for measurement and solidifying them using a collodion / alcohol solution, a rectangular column measurement sample having a length of 4 cm and a side length of 1 mm is prepared. The prepared measurement sample is measured under the following conditions using a wide-angle X-ray diffractometer.
  • -X-ray source CuK ⁇ ray (tube voltage 40 kV, tube current 30 mA)
  • Scan mode Step scan, step unit 0.02 °, counting time 2 seconds.
  • Crystallite size (nm) K ⁇ / ⁇ 0 cos ⁇ B
  • K 1.0, ⁇ : 0.15418 nm (X-ray wavelength)
  • ⁇ 0 ( ⁇ E 2 - ⁇ 1 2 ) 1/2
  • ⁇ E Apparent half width (measured value) rad
  • ⁇ 1 1.046 ⁇ 10 ⁇ 2 rad
  • B Bragg diffraction angle.
  • each example and each comparative example are as follows.
  • the following first step a step of producing a carbon fiber as a raw material
  • second step a step of performing a surface treatment of the carbon fiber
  • third step a step of attaching a sizing agent to the carbon fiber
  • Step IV It consists of preparation of a prepreg.
  • Step I A monomer mixture consisting of 99.5 mol% acrylonitrile and 0.5 mol% itaconic acid was polymerized by a solution polymerization method using dimethyl sulfoxide as a solvent and 2,2'-azobisisobutyronitrile as an initiator.
  • Ammonia gas was blown into the manufactured polyacrylonitrile polymer until the pH reached 8.5, and the polymer concentration was adjusted to 15% by mass to obtain a spinning solution.
  • the obtained spinning solution was discharged into the air once at 40 ° C.
  • a coagulated yarn was obtained by a dry-wet spinning method introduced into a coagulation bath consisting of an aqueous solution of% dimethyl sulfoxide.
  • the coagulated yarn was washed with water by a conventional method, and then stretched 3.5 times in two warm water baths. Subsequently, an amino-modified silicone-based silicone oil was applied to the fiber bundle after stretching in the water bath, and a dry densification treatment was performed using a 160 ° C. heating roller.
  • the two yarns are combined and the number of single fibers is set to 12,000, and then drawn in pressure steam to 3.7 times to make the total drawing ratio of yarn making 13 times, and then the entanglement treatment is performed to obtain single fibers.
  • a polyacrylonitrile precursor fiber having a fineness of 0.7 dtex and a single fiber number of 12,000 was obtained.
  • the entanglement treatment means that the angle formed by the fiber bundle longitudinal direction and the fluid blowing direction is 90 °, and eight ejection holes are arranged so as to surround the fiber bundle, and each ejection hole is composed of two holes.
  • a carbon fiber was obtained in the same manner as the carbon fiber A, except that the polyacrylonitrile precursor fiber was not entangled. This was designated as carbon fiber B.
  • a spinning solution having a polyacrylonitrile copolymer weight average molecular weight of 400,000, Mz / Mw of 3.5, and polymer concentration of 19% was obtained.
  • a carbon fiber was obtained in the same manner as the carbon fiber A except that was used. This was designated as carbon fiber C.
  • a carbon fiber was obtained in the same manner as the carbon fiber C except that the entanglement treatment of the polyacrylonitrile precursor fiber was not performed. This was designated as carbon fiber D.
  • TORAYCA registered trademark
  • TORAYCA registered trademark
  • T700S-24k-50E manufactured by Toray Industries, Inc.
  • Hexow (registered) Trademarks “IM-10” (manufactured by Hexcel)
  • IM-9 manufactured by Hexcel
  • TENAX (registered trademark) IV” IM600 manufactured by Toho Tenax
  • Step II The carbon fiber obtained in Step I was subjected to electrolytic surface treatment using an aqueous ammonium hydrogen carbonate solution having a concentration of 0.1 mol / l as an electrolytic solution at an electric quantity of 80 coulomb per gram of carbon fiber.
  • the carbon fiber subjected to the electrolytic surface treatment was washed with water and dried in heated air at a temperature of 150 ° C. to obtain a surface-treated carbon fiber.
  • This surface treatment was designated as surface treatment A.
  • the surface oxygen concentration O / C was 0.15.
  • the carbon fiber obtained in the first step was subjected to an electrolytic surface treatment with an aqueous solution of ammonium hydrogen carbonate having a concentration of 0.1 mol / l as an electrolytic solution at an electric charge of 500 coulomb per gram of carbon fiber.
  • the carbon fiber subjected to the electrolytic surface treatment was subsequently washed with water and dried in heated air at a temperature of 150 ° C. to obtain a surface-treated carbon fiber.
  • This surface treatment was designated as surface treatment B. At this time, the surface oxygen concentration O / C was 0.22.
  • the carbon fiber obtained in the first step was subjected to an electrolytic surface treatment with an aqueous solution of sulfuric acid having a concentration of 0.1 mol / l as an electrolyte and an electric quantity of 80 coulomb per 1 g of carbon fiber.
  • the carbon fiber subjected to the electrolytic surface treatment was subsequently washed with water and dried in heated air at a temperature of 150 ° C. to obtain a surface-treated carbon fiber.
  • This surface treatment was designated as surface treatment C.
  • the surface oxygen concentration O / C was 0.20.
  • the carbon fiber obtained in the first step was subjected to an electrolytic surface treatment with an aqueous solution of nitric acid having a concentration of 0.1 mol / l as an electrolyte and an electric quantity of 80 coulomb per gram of carbon fiber.
  • the carbon fiber subjected to the electrolytic surface treatment was subsequently washed with water and dried in heated air at a temperature of 150 ° C. to obtain a surface-treated carbon fiber.
  • This surface treatment was designated as surface treatment D.
  • the surface oxygen concentration O / C was 0.14.
  • Step III As component (D), 10 parts by weight of D-1 and 10 parts by weight of D-2, 2 moles of an EO2 mole adduct of bisphenol A, 1.5 moles of maleic acid and 0.5 moles of sebacic acid
  • aqueous dispersion emulsion comprising 20 parts by mass of the condensate and 10 parts by mass of polyoxyethylene (70 mol) styrenated (5 mol) cumylphenol as an emulsifier, 50 parts by mass of C-3 as component (C) Partially mixed to prepare a sizing solution. After this sizing agent was applied to the surface-treated carbon fiber obtained in the second step by the dipping method, heat treatment was performed at a temperature of 210 ° C.
  • the ratio (a) / (b) between the height (cps) of (b) and the height (cps) of the component of the binding energy (286.1 eV) attributed to C—O was 0.67.
  • a sizing agent-coated carbon fiber bundle was obtained in the same manner as sizing agent A, except that the amount of sizing agent adhered was adjusted to 0.2 parts by mass with respect to 100 parts by mass of the surface-treated carbon fibers. This was designated as sizing agent B.
  • the ratio (a) / (b) was 0.67.
  • a sizing agent-coated carbon fiber bundle was obtained in the same manner as sizing agent A, except that the amount of sizing agent adhered was adjusted to 2.0 parts by mass with respect to 100 parts by mass of the surface-treated carbon fibers. This was designated as Sizing Agent C.
  • the ratio (a) / (b) was 0.67.
  • sizing agent D The thing which did not apply the sizing agent to the surface-treated carbon fiber obtained in the second step is called sizing agent D for convenience.
  • D-1 and D-2 components 2 mol of EO2 mol adduct of bisphenol A, 1.5 mol of maleic acid and 0.5 mol of sebacic acid, and C-3 component from 10: 10: 20: 50 to 22 .5: 22.5: Performed in the same manner as Sizing Agent A except that the ratio was changed to 45: 0. This was designated as Sizing Agent E.
  • the ratio (a) / (b) was 0.99.
  • a sizing agent-coated carbon fiber bundle was obtained in the same manner as the sizing agent A, except that the D-2 component was changed to the D-3 component. This was designated as sizing agent G.
  • the ratio (a) / (b) was 0.63.
  • a carbon fiber bundle coated with a sizing agent was obtained. This was designated as sizing agent H.
  • the ratio (a) / (b) was 0.60.
  • a sizing agent-coated carbon fiber bundle was obtained in the same manner as the sizing agent H except that the C-1 component was changed to the C-2 component. This was designated as Sizing Agent I.
  • the ratio (a) / (b) was 0.62.
  • the strand strength test and single fiber elastic modulus test of the sizing agent-coated carbon fiber bundle were performed as described above. Further, as an accelerated test assuming use conditions, the sizing agent-coated carbon fiber bundle was stored at a temperature of 70 ° C. and a humidity of 95% for 3 days, and then a sizing agent-coated carbon fiber bundle was fragmented. The results are summarized in Table 1.
  • Step IV In a kneading apparatus, as component (A), 35 parts by mass of (A-1), 35 parts by mass of (A-2), 30 parts by mass of (A-3), and thermoplastic resin 14 parts by mass of “SUMICA EXCEL (registered trademark)” 5003P was mixed and dissolved, and then 40 parts by mass of component (B) 4,4′-diaminodiphenylsulfone was added and kneaded to prepare a carbon fiber reinforced composite. An epoxy resin composition for the material was prepared. This was designated as Resin Composition A.
  • Resin composition was obtained in the same manner as Resin Composition A except that the amount of Sumika Excel 5003P was changed from 10 parts by mass to 5 parts by mass. This was designated as Resin Composition B.
  • the obtained resin composition was coated on a release paper with a resin basis weight of 52 g / m 2 using a knife coater to prepare a resin film.
  • the resin composition is superposed on both sides of a sizing agent-coated carbon fiber bundle (weight per unit area: 190 g / m 2 ) aligned in one direction, using a heat roll, and a fat composition while heating and pressurizing at a temperature of 100 ° C. and an atmospheric pressure of 1 atm.
  • a sizing agent-coated carbon fiber bundle weight per unit area: 190 g / m 2
  • a fat composition while heating and pressurizing at a temperature of 100 ° C. and an atmospheric pressure of 1 atm.
  • the prepreg was stored at a temperature of 25 ° C. and a humidity of 60% for 20 days, and then the composite material was molded and subjected to an OHT
  • Steps I to III the evaluation results of the sizing agent-coated carbon fiber bundles produced as shown in Table 1 are shown in Table 1, Example 1 (Carbon fiber A), Comparative Example 2 (Carbon fiber C), and Comparative Example 3 ( Fig. 2 shows the result of fragmentation test of Carbon fiber D).
  • Table 2 shows the evaluation results of the prepregs produced by combining the sizing agent-coated carbon fiber bundles shown in Table 1 and the matrix resin. Judging from Tables 1 and 2, it was found that the higher the strand strength, the smaller the number of fiber breaks when the single fiber apparent stress was 6.8 GPa.
  • Example 17 A monomer mixture composed of 99.4 mol% of acrylonitrile and 0.6 mol% of itaconic acid was polymerized by a solution polymerization method using dimethyl sulfoxide as a solvent and 2,2′-azobisisobutyronitrile as an initiator, and polyacrylonitrile copolymer A coalescence was produced. Ammonia gas was blown into the produced polyacrylonitrile polymer until the pH reached 9.0, and while itaconic acid was neutralized, ammonium groups were introduced into the polyacrylonitrile copolymer, and the intrinsic viscosity was 3.4 (weight average molecular weight). A spinning solution of 900,000) was obtained. The obtained spinning solution was discharged at 30 ° C.
  • a coagulated yarn was obtained by a dry-wet spinning method introduced into a coagulation bath consisting of an aqueous solution of% dimethyl sulfoxide.
  • the coagulated yarn was washed with water by a conventional method, and then the temperature of the fourth bath was set to 95 ° C. by raising the temperature from the first bath by 10 ° C. in 4 warm water baths. At this time, the total draw ratio was 2.5 times.
  • an amino-modified silicone-based silicone oil agent is applied to the fiber bundle after stretching in the water bath, a drying densification treatment is performed using a heating roller at 160 ° C., two yarns are combined, and a single fiber After the number of yarns is 12,000, the yarn is stretched 3.7 times in pressurized steam to increase the total draw ratio of yarn production to 13 times, and then entangled to give a single fiber fineness of 0.41 dtex and a single fiber of 12,000 polyacrylonitrile. Precursor fibers were obtained.
  • the entanglement treatment means that the angle formed by the fiber bundle longitudinal direction and the fluid blowing direction is 90 °, and eight ejection holes are arranged so as to surround the fiber bundle, and each ejection hole is composed of two holes.
  • fluid blowing nozzles arranged at opposing positions so as to form a pair
  • using air as the fluid adjusting the tension of the fiber bundle to 3 mN / dtex, and setting the fluid discharge pressure to 0.35 MPa I went.
  • flameproofing treatment was performed in air at a temperature of 250 to 280 ° C. while drawing at a draw ratio of 1.00, to obtain a flameproofed fiber bundle having a specific gravity of 1.36 g / cm 3 .
  • the obtained flame-resistant fiber bundle was subjected to a pre-carbonization treatment while being drawn at a draw ratio of 1.10 in a nitrogen atmosphere at a temperature of 300 to 800 ° C. to obtain a pre-carbonized fiber bundle.
  • the obtained pre-carbonized fiber bundle was carbonized at a maximum temperature of 1500 ° C. and a tension of 9.8 mN / dtex in a nitrogen atmosphere to obtain carbon fibers.
  • the obtained carbon fiber was subjected to electrolytic surface treatment with an aqueous solution of ammonium hydrogen carbonate having a concentration of 0.1 mol / liter as an electrolytic solution at an electric quantity of 80 coulomb per gram of carbon fiber.
  • the carbon fiber subjected to the electrolytic surface treatment was washed with water and dried in heated air at a temperature of 150 ° C. to obtain a surface-treated carbon fiber.
  • Example 18 A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 17 except that the amount of spinning solution discharged was adjusted so that the single fiber fineness of the polyacrylonitrile precursor fiber was 0.26 dtex. Table 3 shows the characteristics of the obtained sizing agent-coated carbon fiber bundle and the OHT test results.
  • Example 19 A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 17 except that the discharge amount of the spinning solution was adjusted so that the single fiber fineness of the polyacrylonitrile precursor fiber was 0.14 dtex. Table 3 shows the characteristics of the obtained sizing agent-coated carbon fiber bundle and the OHT test results.
  • Example 20 A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 17 except that the discharge amount of the spinning solution was adjusted so that the single fiber fineness of the polyacrylonitrile precursor fiber was 0.60 dtex. Table 3 shows the characteristics of the obtained sizing agent-coated carbon fiber bundle and the OHT test results.
  • Example 21 A monomer mixture composed of 99.5 mol% of acrylonitrile and 0.5 mol% of itaconic acid was polymerized by a solution polymerization method using dimethyl sulfoxide as a solvent and 2,2′-azobisisobutyronitrile as an initiator, and a weight average molecular weight of 70 A polyacrylonitrile copolymer having a Mz / Mw of 1.8 was produced. Ammonia gas was blown into the manufactured polyacrylonitrile polymer until the pH reached 8.5, and the polymer concentration was adjusted to 15% by mass to obtain a spinning solution. The obtained spinning solution was discharged into the air once at 40 ° C.
  • a coagulated yarn was obtained by a dry-wet spinning method introduced into a coagulation bath consisting of an aqueous solution of% dimethyl sulfoxide.
  • the coagulated yarn was washed with water by a conventional method, and then stretched 3.5 times in two warm water baths. Subsequently, an amino-modified silicone-based silicone oil was applied to the fiber bundle after stretching in the water bath, and a dry densification treatment was performed using a 160 ° C. heating roller.
  • the two yarns are combined and the number of single fibers is set to 12,000, and then drawn in pressure steam to 3.7 times to make the total drawing ratio of yarn making 13 times, and then the entanglement treatment is performed to obtain single fibers.
  • a polyacrylonitrile precursor fiber having a fineness of 0.70 dtex and a number of single fibers of 12,000 was obtained.
  • the entanglement treatment means that the angle formed by the fiber bundle longitudinal direction and the fluid blowing direction is 90 °, and eight ejection holes are arranged so as to surround the fiber bundle, and each ejection hole is composed of two holes.
  • the obtained carbon fiber was subjected to electrolytic surface treatment with an aqueous solution of ammonium hydrogen carbonate having a concentration of 0.1 mol / liter as an electrolytic solution at an electric quantity of 80 coulomb per gram of carbon fiber.
  • the carbon fiber subjected to the electrolytic surface treatment was washed with water and dried in heated air at a temperature of 150 ° C. to obtain a surface-treated carbon fiber.
  • component (A) 20 parts by weight of component (A), 2 moles of an EO2 mole adduct of bisphenol A, 20 parts by weight of a condensate of 1.5 moles of maleic acid and 0.5 moles of sebacic acid and polyoxyethylene (70)
  • component (B) 50 parts by mass of component (B) was mixed to prepare a sizing solution.
  • this sizing agent was applied to the carbon fiber surface-treated by the dipping method, heat treatment was performed at a temperature of 210 ° C. for 75 seconds to obtain a sizing agent-coated carbon fiber bundle.
  • the adhesion amount of the sizing agent was adjusted to be 1.0 part by mass with respect to 100 parts by mass of the surface-treated carbon fiber.
  • Table 3 shows the characteristics of the obtained sizing agent-coated carbon fiber bundle and the OHT test results.
  • Example 22 A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 21, except that the discharge amount of the spinning solution was adjusted so that the single fiber fineness of the polyacrylonitrile precursor fiber was 0.62 dtex. Table 3 shows the characteristics of the obtained sizing agent-coated carbon fiber bundle and the OHT test results.
  • a sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 17 except that the mass was changed to 22.5 parts by mass: 22.5 parts by mass: 45 parts by mass: 0.
  • Table 3 shows the characteristics of the obtained sizing agent-coated carbon fiber bundle and the OHT test results.
  • Comparative Example 28 A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Comparative Example 27 except that the discharge amount of the spinning solution was adjusted so that the single fiber fineness of the polyacrylonitrile precursor fiber was 0.14 dtex. Table 3 shows the characteristics of the obtained sizing agent-coated carbon fiber bundle and the OHT test results.
  • Example 23 A monomer mixture composed of 99.5 mol% of acrylonitrile and 0.5 mol% of itaconic acid was polymerized by a solution polymerization method using dimethyl sulfoxide as a solvent and 2,2′-azobisisobutyronitrile as an initiator, and polyacrylonitrile copolymer A coalescence was produced. Ammonia gas was blown into the produced polyacrylonitrile polymer until the pH reached 8.5, and ammonium groups were introduced into the polyacrylonitrile copolymer while neutralizing itaconic acid to obtain a spinning dope. The obtained stock solution for spinning was discharged at 40 ° C.
  • a coagulated yarn was obtained by a dry-wet spinning method introduced into a coagulation bath consisting of an aqueous solution of% dimethyl sulfoxide.
  • the coagulated yarn was washed with water by a conventional method, and then stretched 3.5 times in two warm water baths. Subsequently, the fiber bundle after the water bath stretching was subjected to fluid entanglement treatment using air as a fluid under the conditions shown in Table 4, and then an amino-modified silicone-based silicone oil was applied, and a 160 ° C. heating roller was attached.
  • a precursor fiber bundle was obtained.
  • two acrylic fibers obtained were combined to make 12,000 single fibers, and subjected to a flame resistance treatment in air at a temperature of 240 to 260 ° C. while drawing at a draw ratio of 1, and a specific gravity of 1.35 to 1 .36 flame-resistant fiber bundles were obtained.
  • the obtained flame-resistant fiber bundle was subjected to a preliminary carbonization treatment while being drawn at a draw ratio of 1.15 in a nitrogen atmosphere at a temperature of 300 to 800 ° C. to obtain a pre-carbonized fiber bundle.
  • the obtained pre-carbonized fiber bundle was carbonized in a nitrogen atmosphere at a maximum temperature of 1500 ° C. and with the tensions shown in Table 5 to obtain carbon fibers.
  • the obtained carbon fiber was subjected to electrolytic surface treatment using an aqueous sulfuric acid solution having a concentration of 0.1 mol / l as an electrolytic solution, washed with water and dried at 150 ° C., and then provided with a sizing agent. A twisted sizing agent-coated carbon fiber bundle was obtained. Production conditions, characteristics of the obtained carbon fiber bundle, etc. are summarized in Tables 4 and 5.
  • Example 24 A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 23 except that the carbonization tension in the carbonization treatment was changed to 14.7 mN / dtex. The obtained carbon fiber bundle had few single fiber breaks and good quality, and the strand elastic modulus was improved to 364 GPa. Production conditions, characteristics of the obtained carbon fiber bundle, etc. are summarized in Tables 4 and 5.
  • Example 25 A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 23 except that the carbonization tension in the carbonization treatment was changed to 18.6 mN / dtex. The obtained carbon fiber bundle had few single fiber breaks and good quality, and the strand elastic modulus was improved to 378 GPa. Production conditions, characteristics of the obtained carbon fiber bundle, etc. are summarized in Tables 4 and 5.
  • Example 33 A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 23, except that the fluid entanglement treatment of the polyacrylonitrile precursor fiber was not performed. The number of single fiber breaks in the obtained carbon fiber bundle was increased, the quality was greatly reduced, and the strand strength was reduced to 5500 MPa. Production conditions, characteristics of the obtained carbon fiber bundle, etc. are summarized in Tables 4 and 5.
  • a coagulated yarn was obtained by a dry and wet spinning method introduced into a coagulation bath made of an aqueous solution of sulfoxide.
  • the coagulated yarn is washed with water by a conventional method, and then stretched 3.5 times in two warm water baths. Then, an amino-modified silicone-based silicone oil agent is applied, and a 160 ° C. heating roller is used.
  • the polyacrylonitrile precursor having a single fiber fineness of 0.7 dtex and a single fiber number of 6000 is obtained by performing a drying densification treatment and then stretching by 3.7 times in pressurized steam to increase the total drawing ratio of yarns to 13 times.
  • a fiber bundle was obtained.
  • the polyacrylonitrile precursor fiber bundle was subjected to fluid entanglement treatment under the conditions shown in Table 4 using air as a fluid, and then combined into 12,000 yarns, and the sizing agent in the same manner as in Example 23.
  • a coated carbon fiber bundle was obtained.
  • Example 26 A monomer mixture composed of 99.5 mol% of acrylonitrile and 0.5 mol% of itaconic acid was polymerized by a solution polymerization method using dimethyl sulfoxide as a solvent and 2,2′-azobisisobutyronitrile as an initiator, and polyacrylonitrile copolymer A coalescence was produced. Ammonia gas was blown into the produced polyacrylonitrile polymer until the pH reached 8.5, and ammonium groups were introduced into the polyacrylonitrile copolymer while neutralizing itaconic acid to obtain a spinning dope. The obtained stock solution for spinning was discharged at 40 ° C.
  • a coagulated yarn was obtained by a dry and wet spinning method introduced into a coagulation bath made of an aqueous solution of sulfoxide.
  • the coagulated yarn is washed with water by a conventional method, and then stretched 3.5 times in two warm water baths. Then, an amino-modified silicone-based silicone oil agent is applied, and a 160 ° C. heating roller is used.
  • the polyacrylonitrile precursor having a single fiber fineness of 0.7 dtex and a single fiber number of 6000 is obtained by performing a drying densification treatment and then stretching by 3.7 times in pressurized steam to increase the total drawing ratio of yarns to 13 times. A fiber bundle was obtained. Next, the obtained acrylic fiber was flameproofed in air at a temperature of 240 to 260 ° C. while being stretched at a stretch ratio of 1, to obtain a flameproof fiber bundle having a specific gravity of 1.35 to 1.36.
  • the obtained flame-resistant fiber bundle was subjected to a preliminary carbonization treatment while being drawn at a draw ratio of 1.15 in a nitrogen atmosphere at a temperature of 300 to 800 ° C., and fluid was entangled under the conditions shown in Table 4 using air as a fluid. After the treatment, 12,000 yarns were combined to obtain a pre-carbonized fiber bundle. The obtained pre-carbonized fiber bundle was carbonized at a maximum temperature of 1500 ° C. and with the tension described in Table 4 in a nitrogen atmosphere to obtain carbon fibers.
  • the obtained carbon fiber was subjected to electrolytic surface treatment using an aqueous sulfuric acid solution having a concentration of 0.1 mol / l as an electrolytic solution, washed with water and dried at 150 ° C., and then provided with a sizing agent. A twisted sizing agent-coated carbon fiber bundle was obtained. Production conditions, characteristics of the obtained carbon fiber bundle, etc. are summarized in Tables 4 and 5.
  • Example 27 A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 26 except that the carbonization tension in the carbonization treatment was changed to 14.7 mN / dtex. The obtained carbon fiber bundle had few single fiber breaks and good quality, and the strand elastic modulus was improved to 365 GPa. Production conditions, characteristics of the obtained carbon fiber bundle, etc. are summarized in Tables 4 and 5.
  • Example 37 A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 23 except that the carbonization temperature in the carbonization treatment was changed to 2300 ° C. The resulting carbon fiber bundle had few single fiber breaks and good quality, and the strand elastic modulus improved to 377 GPa, but the strand strength decreased to 4560 MPa. Production conditions, characteristics of the obtained carbon fiber bundle, etc. are summarized in Tables 4 and 5.
  • Example 28 Sizing agent-coated carbon fiber bundles were used in the same manner as in Example 23, except that air was used as the fluid, fluid entanglement treatment was performed under the conditions described in Table 4, and the carbonization tension in the carbonization treatment was changed to 19.1 mN / dtex. Got. The number of single fiber breaks in the obtained carbon fiber bundle was slightly increased, the quality was slightly lowered, and the strand elastic modulus was improved to 384 GPa, but the strand strength was slightly lowered to 5900 MPa. Production conditions, characteristics of the obtained carbon fiber bundle, etc. are summarized in Tables 4 and 5.
  • Example 29 Sizing agent-coated carbon fiber bundles were used in the same manner as in Example 23, except that air was used as the fluid, fluid entanglement treatment was performed under the conditions shown in Table 4, and the carbonization tension in the carbonization treatment was changed to 19.5 mN / dtex. Got. The number of single fiber breaks in the obtained carbon fiber bundle was slightly increased, the quality was slightly lowered, and the strand elastic modulus was improved to 386 GPa, but the strand strength was slightly lowered to 5900 MPa. Production conditions, characteristics of the obtained carbon fiber bundle, etc. are summarized in Tables 4 and 5.
  • Example 30 A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 23 except that the number of filaments during the fluid entanglement treatment was changed to 12,000. The number of single fiber breaks in the obtained carbon fiber bundle increased slightly. Production conditions, characteristics of the obtained carbon fiber bundle, etc. are summarized in Tables 4 and 5.
  • Example 31 A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 28 except that the carbonization tension in the carbonization treatment was changed to 11.8 mN / dtex. The number of single fiber breaks of the obtained carbon fiber bundle increased slightly, and the strand elastic modulus improved to 351 GPa. Production conditions, characteristics of the obtained carbon fiber bundle, etc. are summarized in Tables 4 and 5.
  • Example 38 A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 30, except that the number of filaments during the fluid entanglement treatment was changed to 24,000. The number of single fiber breaks in the obtained carbon fiber bundle increased, the quality was greatly reduced, and the strand strength was reduced to 5700 MPa. Production conditions, characteristics of the obtained carbon fiber bundle, etc. are summarized in Tables 4 and 5.
  • the carbon fiber composite material obtained by curing it has high physical properties such as tensile elastic modulus and perforated plate tensile strength. Therefore, it can greatly contribute to the weight reduction of the aircraft and improve the fuel consumption rate of the aircraft.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本発明は、脂肪族エポキシ化合物(C)および芳香族エポキシ化合物(D)を含むサイジング剤が炭素繊維束に塗布されたサイジング剤塗布炭素繊維束であって、前記炭素繊維束に含まれる炭素繊維は、単繊維コンポジットのフラグメンテーション法を用いて測定したときに、単繊維見掛け応力が15.3GPaのときに繊維破断数が2.0個/mm以上であり、かつ、単繊維見掛け応力が12.2GPaのときに繊維破断数が1.7個/mm以下である、サイジング剤塗布炭素繊維束である。また、本発明の別の態様は、該サイジング剤塗布炭素繊維束、およびエポキシ化合物(A)と芳香族アミン硬化剤(B)とを含有するプリプレグである。本発明は、優れた引張弾性率、有孔板引張強度を発現する炭素繊維複合材料を作製するためのプリプレグ、およびその原料であるサイジング剤塗布炭素繊維束を提供する。

Description

サイジング剤塗布炭素繊維束、炭素繊維束の製造方法およびプリプレグ
 本発明は、サイジング剤が塗布された炭素繊維束、(以下、サイジング剤塗布炭素繊維束という)およびプリプレグに関するものである。より詳しくは、本発明は、良好な物性を有する炭素繊維強化複合材料が得られるサイジング剤塗布炭素繊維束、および、プリプレグに関するものである。
 炭素繊維は、その高い比強度および比弾性率から、繊維強化複合材料の強化繊維として航空機用途に用いられ、航空機の軽量化に貢献している。近年、炭素繊維を適用する部材の拡大と炭素繊維の大型部材への適用の流れが加速されつつある。航空機の軽量化のためには、炭素繊維の特性として、炭素繊維強化複合材料の剛性を支配する炭素繊維の引張弾性率を向上させることが最も効果的であるが、炭素繊維強化複合材料としての引張・圧縮強度や有孔板引張・圧縮強度の向上など、幅広い物性バランスに優れることが求められている。なかでも、炭素繊維強化複合材料が航空機用途に用いられる場合には、擬似等方材料を穿孔してファスナーとともに用いることが多いため、一方向の炭素繊維強化複合材料の引張強度よりも、有孔板引張強度が重要である。
 多くの要素が有孔板引張強度に影響を与えるため、その強度発現のメカニズムは不明確な部分も多いものの、炭素繊維が有孔板引張強度に与える影響については、一般に有孔板引張強度は炭素繊維のストランド強度と比例すると考えられていた。ここで、ストランド強度とは、強化繊維である炭素繊維の強度ポテンシャルを調べる簡便な方法として用いられているもので、特定のエポキシ樹脂を含浸させて得られる簡易な一方向の炭素繊維強化複合材料の引張強度(以下、一方向複合材料強度という)のことを示す。
 また、炭素繊維強化複合材料の有孔板引張強度を向上させる目的で、炭素繊維の特性を検討した例はある(特許文献1および2)。特許文献1には、炭素繊維の表面形態や炭素繊維への表面処理条件を変化させて炭素繊維強化複合材料の有孔板引張強度を向上させようという試みが開示されている。特許文献2では、炭素繊維の拡がり性とその表面の濡れ性を制御することで炭素繊維強化複合材料の有孔板引張強度を高める思想が開示されているものの、該有孔板引張強度は所詮低いレベルであった。
 また近年、炭素繊維の引張弾性率を炭素化工程の最高温度の制御によらず向上させるために、高い延伸張力での焼成を安定して行う技術がいくつか提案されている(特許文献3、4および5)。特許文献3には、炭素繊維の製造に用いるポリアクリロニトリル系重合体が特定の分子量分布を有していることで、通常の条件範囲ではストランド強度および弾性率が高い炭素繊維が得られることが開示されている。特許文献4および5では、炭素繊維の引張弾性率に着目しているため、炭素繊維の単繊維強度を制御できておらず、また、予備炭素化繊維束の焼成工程における延伸張力を高めているため、品位の低下は避けられず、有孔板引張強度は低いレベルであった。
 特許文献6では、耐炎化工程および前炭素化工程において、炭素繊維の前駆耐繊維束を高延伸することでストランド弾性率の向上を図った技術が提案されている。しかしながら、該技術は、炭素化前の延伸であり、炭素繊維の構造に及ぼす影響は小さく、炭素繊維の単繊維強度を制御したものではなかった。
 特許文献7および8では、製糸工程における油剤による擬似接着を解消する目的で、前駆体繊維に交絡を加える技術が提案されている。しかし、ストランド強度とストランド弾性率を高いレベルで両立できるものではなかった。
 また、炭素繊維の単繊維強度を向上させるために炭素繊維の単繊維直径を小さく制御して表面欠陥の存在確率を低下させる技術が提案されている(特許文献9)。かかる技術によれば、ストランド強度および弾性率は高いものの、炭素化工程で、単繊維間の構造バラツキとそれに伴う単繊維強度バラツキを誘起する。また、炭素化工程において毛羽の発生や糸切れを誘発し、操業性の低下や得られる炭素繊維束の品位の低下も避けられなかった。
特開2010-047865号公報 特開2010-111957号公報 特開2008-248219号公報 特開2008-308776号公報 特開2008-308777号公報 特開2004-316052号公報 特開平11-12874号公報 特開2009-114578号公報 特開平11-241230号公報
 本発明者らは、優れた引張弾性率を有する炭素繊維と、極めて高い有孔板引張強度を発現させる特定のマトリックス樹脂とを組み合わせた場合は、炭素繊維のストランド強度を高めても、得られる炭素繊維強化複合材料の有孔板引張強度(以下、OHTと略記することもある)が向上しないことを見出し、より高い有孔板引張強度を有する炭素繊維強化複合材料を得るためには、従来とは異なるアプローチが必要であるという結論に到った。本発明は、優れた引張弾性率を有する炭素繊維を含有し、高い有孔板引張強度を有する炭素繊維強化複合材料を作製できるプリプレグ、およびそれに用いられるサイジング剤塗布炭素繊維束を提供することを目的する。
 また、本発明の別の目的は、高いストランド強度と高いストランド弾性率を両立し、かつ、品位の優れた炭素繊維束を提供することである。
 本発明者らは、炭素繊維強化複合材料のマトリックス樹脂、界面、繊維形態など種々の検討を行った結果、従来明瞭には測定できていなかった炭素繊維の高強度(短試長)領域の単繊維強度分布を制御することで、炭素繊維強化複合材料の有孔板引張強度を向上させうることを見出し、発明に達した。また、もう一つの手段として炭素繊維束の長試長領域の束強度を制御することで炭素繊維強化複合材料の有孔板引張強度を向上させうることを見出した。
 本発明は次の構成を有する。
(I)脂肪族エポキシ化合物(C)および芳香族エポキシ化合物(D)を含むサイジング剤が炭素繊維束に塗布されたサイジング剤塗布炭素繊維束であって、前記炭素繊維束に含まれる炭素繊維は、単繊維コンポジットのフラグメンテーション法を用いて測定したときに、単繊維見掛け応力が15.3GPaのときに繊維破断数が2.0個/mm以上であり、かつ、単繊維見掛け応力が12.2GPaのときに繊維破断数が1.7個/mm以下である、サイジング剤塗布炭素繊維束。
(II)炭素繊維束にサイジング剤が塗布されたサイジング剤塗布炭素繊維束であって、前記炭素繊維束に含まれる炭素繊維は、単繊維コンポジットのフラグメンテーション法を用いて測定したときに、単繊維見掛け応力が15.3GPaのときに繊維破断数が2.0個/mm以上であり、かつ、単繊維見掛け応力が12.2GPaのときに繊維破断数が1.3個/mm以下であるサイジング剤塗布炭素繊維束。
(III)炭素繊維束にサイジング剤が塗布されたサイジング剤塗布炭素繊維束であって、平均引き裂き可能距離が300~710mmであり、ストランド強度が5900MPa以上、ストランド弾性率が320GPa以上であり、単繊維破断数が0.5~3個/mであり、実質的に無撚りのサイジング剤塗布炭素繊維束。
(IV)ポリアクリロニトリル重合体からなる前駆体繊維束に、耐炎化工程、予備炭素化工程、および炭素化工程を施すことにより、炭素繊維束を得る炭素繊維束の製造方法であって、前記炭素化工程が前記予備炭素化により得られた予備炭素化繊維束を、不活性雰囲気中1200~2000℃の温度範囲、かつ、炭素化工程の張力が下式
9.8≦炭素化工程の張力(mN/dtex)≦-0.0225×(予備炭素化繊維束の平均引き裂き可能距離(mm))+23.5
を満たす範囲で実施される工程であって、前記予備炭素化繊維束は実質的に無撚りであって、かつ、前記予備炭素化繊維束の平均引き裂き可能距離が150~620mmである炭素繊維束の製造方法。
 本発明のサイジング剤塗布炭素繊維束は、好ましくは前記炭素繊維に塗布されたサイジング剤表面を、X線光電子分光法によって光電子脱出角度15°で測定したときに得られる、C1s内殻スペクトルの(a)結合エネルギー284.6eVの成分の高さと、(b)結合エネルギー286.1eVの成分の高さとの比率(a)/(b)が0.50~0.90である。
 本発明によれば、優れた引張弾性率を有し、有孔板引張強度を発現する炭素繊維強化複合材料を作製できるサイジング剤塗布炭素繊維束、ならびに、プリプレグが得られる。本発明のプリプレグは、それを硬化して得られる炭素繊維複合材料の引張弾性率および有孔板引張強度という物性がバランス良く高く、そのため、航空機の軽量化に大きく貢献し、航空機の燃料消費率を改善することができる。
 また、本発明の炭素繊維束の製造方法によれば、高いストランド強度と高いストランド弾性率を両立し、かつ、品位の優れた炭素繊維束を提供することができる。
図1は、引き裂き可能距離の測定方法を示す図である。 図2は、本発明の実施の形態にかかるサイジング剤塗布炭素繊維束を用いた単繊維コンポジットのフラグメンテーション試験結果の一例を示す図である。
 本発明のサイジング剤塗布炭素繊維束は、脂肪族エポキシ化合物(C)および芳香族エポキシ化合物(D)を含むサイジング剤が、炭素繊維束に塗布されたサイジング剤塗布炭素繊維束であって、前記炭素繊維束に含まれる炭素繊維は、単繊維コンポジットのフラグメンテーション法を用いて測定したときに、単繊維見掛け応力が15.3GPaのときに繊維破断数が2.0個/mm以上であり、かつ、単繊維見掛け応力が12.2GPaのときに繊維破断数が1.7個/mm以下である、サイジング剤塗布炭素繊維束である。
 通常、ストランド強度は、複合材料全体に負荷されている荷重を炭素繊維だけで負担していると仮定して予測される。繊維断面積あたりの炭素繊維の強度は、6~7GPa以下であるため、その強度以上の領域における炭素繊維単繊維の破断確率と炭素繊維強化複合材料強度との関係を議論されることは従来にはなかった。しかし、発明者らは、炭素繊維強化複合材料のOHTを高めようとした場合に、特定のマトリックス樹脂との組み合わせにおいては、高強度領域の単繊維強度分布がOHTに強く影響することを見出した。
 ところで、炭素繊維の単繊維強度分布を評価する手法としては、従来は、単繊維強度試験が一般的であった。しかし、単繊維強度試験では、チャック部においてシアネート系接着剤やエポキシ系接着剤を用いて単繊維を包埋してチャックしているので、接着剤内の繊維にまで応力がかかって接着剤内で繊維破断することがあった。すなわち、発明者らは、単繊維強度試験は、接着剤から単繊維引き抜き試験を行っているようなものであり、単繊維強度試験においては樹脂内数mmの繊維に渡って応力が負荷されていることを見出した。言い換えれば、単繊維強度試験においては、チャック間の距離を5mm未満としても実質的な試長は長くなり、特に、チャック間距離が短いほど実試長とチャック間距離の乖離があって、短試長領域の単繊維強度分布を評価できていなかったことを見出した。
 このような問題に対処するために、発明者らは、単繊維コンポジットのフラグメンテーション試験によって単繊維強度分布を評価する手法を見出した。そして、発明者らの検討の結果、単繊維コンポジットのフラグメンテーション試験と、試長25mmの単繊維強度試験から計算される単繊維強度分布の結果とが良い一致をしていたことから、フラグメンテーション試験は単繊維強度分布の評価法として優れていることが明らかになった。さらに、単繊維コンポジットに用いるマトリックス樹脂を適切に選択し、単繊維-マトリックス樹脂界面の接着強さをある程度以上とすれば、試長が1mm程度の短試長まで強度分布を高精度に評価できることが明らかになった。なお、このような高強度-短試長領域の精密な強度分布が議論された例はこれまで皆無であった。
 ここで、単繊維コンポジットのフラグメンテーション法とは、炭素繊維の単繊維を樹脂に埋め込んだコンポジット(単繊維コンポジット)に、歪みをステップワイズに与えながら、各歪みでの繊維破断数を数える方法である。これによって、炭素繊維の単繊維強度分布を調べることができる。なお、フラグメンテーション法を用いた測定の詳細については、後述する。なお、繊維破断したときの単繊維コンポジット歪みから単繊維強度を正確に計算するためには、単繊維コンポジット歪みと繊維歪みとの差、および、各繊維歪みでの単繊維の弾性率を考慮する必要がある。しかし、炭素繊維の弾性率には、歪みが高まるほどその増加が見られるという弾性率の非線形性があり、繊維破断したときの正確な繊維応力は単純な計算では求められない。
 そのため、炭素繊維の単繊維強度分布を評価するにあたって、正確な繊維応力の代わりに、単繊維見掛け応力を評価の尺度に用いることが簡便である。ここで、単繊維見掛け応力とは、単繊維コンポジット歪みと炭素繊維の単繊維弾性率の積のことを示す。繊維破断が起こると、繊維破断部から遠ざかるに従って繊維応力が回復していく挙動を示すために、単繊維コンポジット歪みと繊維歪みには差異が生じる部分がある。そのために単繊維コンポジット歪みを増やしても最大の繊維応力はほとんど増加しないことがある。それにより、単繊維コンポジット歪みと最大の繊維応力に差が生じる。しかし、繊維破断数が1.0個/mmまでは単繊維見掛け応力と最大の繊維応力の差は極めて小さいことが多い。繊維破断数がさらに増えるにつれてその差は拡大していくものの、単繊維見掛け応力と最大の繊維応力に相関がある。したがって、簡便な手法として、単繊維見掛け応力を評価の尺度に用いることは妥当である。
 本発明のサイジング剤塗布炭素繊維束は、含有される炭素繊維を、単繊維コンポジットのフラグメンテーション法を用いて測定したときに、単繊維見掛け応力が12.2GPaのときに繊維破断数が1.7個/mm以下であり、好ましくは1.5個/mm以下であり、より好ましくは1.3個/mm以下であり、最も好ましくは1.0個/mm以下である。
 この程度の応力下における炭素繊維の破断の要因としては、炭素繊維の単繊維強度が支配的である。発明者らは、OHTを向上するためには、炭素繊維の単繊維強度、特に短い繊維長における単繊維強度が高いことが重要であることを見出した。すなわち、かかる繊維破断数が1.7個/mmを上回る場合には、炭素繊維の単繊維強度の不足によりOHTが低下するので、かかる繊維破断数を1.7個/mm以下とするのが良い。さらに、かかる繊維破断数が1.3個/mm以下であると、炭素繊維の単繊維強度が十分に高く、特定の樹脂に限らずOHTが向上するので、より好ましい。
 また、サイジング剤塗布炭素繊維束は、含有される炭素繊維を、単繊維コンポジットのフラグメンテーション法を用いて測定したときに、単繊維見掛け応力が10.0GPaのときに繊維破断数が0.8個/mm以下であることが好ましく、より好ましくは0.7個/mm以下であり、さらに好ましくは0.5個/mm以下である。かかる繊維破断数が0.8個/mmを上回る場合に炭素繊維の単繊維強度の不足によりOHTが低下する。かかる繊維破断数が0.8個/mm以下である場合は、炭素繊維の単繊維強度が高いため、OHT試験時の炭素繊維複合材料円孔周辺の幅広い範囲で繊維破断を抑えることができ、OHTが高くなる。
 また、サイジング剤塗布炭素繊維束は、含有される炭素繊維を、単繊維コンポジットのフラグメンテーション法を用いて測定したときに、単繊維見掛け応力が6.8GPaのときに繊維破断数が0.3個/mm以下であることが好ましく、より好ましくは0.2個/mm以下であり、さらに好ましくは0.1個/mm以下である。かかる繊維破断数が0.3個/mm付近となる繊維応力が低すぎると炭素繊維強化複合材料中の破断繊維の隣接繊維への応力集中を誘起しやすくなる。そのため、かかる繊維破断数を0.3個/mm以下とすることで、高いOHTを維持できる。
 サイジング剤塗布炭素繊維束は、含有される炭素繊維を、単繊維コンポジットのフラグメンテーション法を用いて測定したときに、単繊維コンポジット歪みが3.6%のときに繊維破断数が1.7個/mm以下であることが好ましく、より好ましくは1.5個/mm以下であり、さらに好ましくは1.0個/mm以下である。かかる繊維破断数が1.7個/mmを上回る場合、炭素繊維の単繊維強度の不足によりOHTが低下し、かかる繊維破断数は少ないほど炭素繊維の単繊維強度が高いことを意味するので好ましい。通常、一方向の炭素繊維強化複合材料の破断伸度は2%以下であるため、その伸度以上の炭素繊維破断確率と複合材料強度との関係を議論されることは従来にはなかったが、本発明者らは、OHTを高めようとした場合に特定の樹脂との組み合わせで高伸度領域の炭素繊維破断確率がOHTに強く影響することをも明らかにしたのである。
 さらに、サイジング剤塗布炭素繊維束は、含有される炭素繊維を、単繊維コンポジットのフラグメンテーション法を用いて測定したときに、単繊維コンポジット歪みが2.0%のときに繊維破断数が0.1個/mm以下であることが好ましく、より好ましくは0.08個/mm以下であり、さらに好ましくは0.06個/mm以下である。繊維破断数が0.1個/mm付近となる繊維応力が低すぎると複合材料中の破断繊維の隣接繊維への応力集中を誘起しやすくなるため、かかる繊維破断数を0.1個/mm以下とすることで、高いOHTを維持できる。
 また、本発明のサイジング剤塗布炭素繊維束は、含有される炭素繊維を、単繊維コンポジットのフラグメンテーション法を用いて測定したときに、単繊維見掛け応力が15.3GPaのときに繊維破断数が2.0個/mm以上であり、好ましくは2.5個/mm以上であり、より好ましくは3.0個/mm以上である。このような高い応力下における炭素繊維の破断の要因は、単繊維見掛け応力が12.2GPaのときとは異なり、繊維/樹脂界面の界面剪断強度が支配的であると考えられる。フラグメンテーション法では、炭素繊維の単繊維強度を調べる以外に、繊維/樹脂界面の界面剪断強度を調べることもできる。そのとき、正確さには欠けるものの簡便なKelly-Tysonモデルがよく用いられる。フラグメンテーション法における飽和繊維破断数が多いほど界面剪断強度が高いといわれている。基本的には界面剪断強度が高いほど一方向の炭素繊維強化複合材料強度は高いために、OHTも高めることができる。かかる繊維破断数が2.0個/mmを下回る場合、炭素繊維とマトリックス樹脂との界面接着の低下により、繊維破断数が増加したときに繊維が応力を負担できずにOHTが低下する。炭素繊維の単繊維弾性率が低い場合は、単繊維見掛け応力を15.3GPaまで負荷する前に単繊維コンポジットが壊れることがあるが、繊維破断数が飽和している場合は、その破断数で代用することができる。ここで、飽和とは、単繊維コンポジット歪みが1%増加したときに、繊維破断数の増加が0.2個/mmとなったときのことをいう。
 サイジング剤塗布炭素繊維束は、含有される炭素繊維を、単繊維コンポジットのフラグメンテーション法を用いて測定したときに、単繊維コンポジット歪みが4.5%のときに繊維破断数が2.0個/mm以上であることが好ましく、より好ましくは3.0個/mm以上である。単繊維コンポジット歪みが4.5%でも繊維破断数は飽和していないことが多いが、実質的にその歪みでの繊維破断数を評価すれば界面接着の高さを評価するには十分である。かかる繊維破断数が2.0個/mm以上である場合、界面接着の低下により破断が増加したときに破断部近傍の繊維が繊維応力を負担しやすくなり、高いOHTを維持できる。
 以上のように、発明者らは、フラグメンテーション法を用いれば、炭素繊維の単繊維強度分布と、繊維/樹脂界面の界面剪断強度の両方を調べることができることを明らかにした。そして、フラグメンテーション法を用いてサイジング剤塗布炭素繊維束を測定した結果、低応力下では破断数が少なく、高応力下では破断数が多いサイジング剤塗布炭素繊維束を用いた場合に、高いOHTを有する炭素繊維強化複合材料が得られることを見出した。
 本発明の一つの態様は、炭素繊維束にサイジング剤が塗布されたサイジング剤塗布炭素繊維束であって、前記炭素繊維束に含まれる炭素繊維は、単繊維コンポジットのフラグメンテーション法を用いて測定したときに、単繊維見掛け応力が15.3GPaのときに繊維破断数が2.0個/mm以上であり、かつ、単繊維見掛け応力が12.2GPaのときに繊維破断数が1.3個/mm以下であるサイジング剤塗布炭素繊維束である。
 サイジング剤塗布炭素繊維束のストランド強度は、5.9GPa以上であることが好ましく、より好ましくは6.4GPa以上であり、より好ましくは6.8GPa以上であり、より好ましくは7.0GPa以上、より好ましくは7.2GPa以上であり、さらに好ましくは7.5GPa以上である。また、炭素繊維のストランド弾性率が、320GPa以上であることが好ましく、より好ましくは340GPa以上であり、さらに好ましくは350GPa以上である。フラグメンテーション法における炭素繊維歪みを繊維応力に変換する場合にはストランド弾性率が必要であり、本質的には高い繊維応力でも繊維破断が少ないことが重要であるため、ストランド弾性率が320GPa未満のときにOHTが低下することがある。本発明において、炭素繊維のストランド引張強度と弾性率は、JIS-R-7608(2004)の樹脂含浸ストランド試験法に準拠し、次の手順に従い求めることができる。すなわち、樹脂処方としては、“セロキサイド(登録商標)”2021P(ダイセル化学工業社製)/3フッ化ホウ素モノエチルアミン(東京化成工業(株)製)/アセトン=100/3/4(質量部)を用い、硬化条件としては、常圧、130℃、30分を用いる。炭素繊維束のストランド10本を測定し、その平均値をストランド引張強度およびストランド弾性率とする。ストランド弾性率を測定する際の歪み範囲は0.45~0.85%とする。
 サイジング剤塗布炭素繊維束に含まれる炭素繊維の単繊維弾性率は、320GPa以上であることが好ましく、より好ましくは340GPa以上であり、さらに好ましくは350GPa以上である。フラグメンテーション法において、単繊維強度を評価するためには、高い単繊維コンポジット歪みで繊維破断が少ないことよりも高い繊維応力でも繊維破断が少ないことが重要であるため、単繊維コンポジット歪みを繊維応力に変換する。フラグメンテーション法における炭素繊維歪みを繊維応力に変換する場合には、炭素繊維のストランド弾性率もしくは単繊維弾性率が必要であり、ここでは単繊維弾性率を用いる。単繊維弾性率が高いほど、複合材料単繊維コンポジット歪みが低くても高い繊維応力が負荷されている。マトリックス樹脂特性との関係のために、単繊維弾性率が320GPa未満のときにOHTが低下することがある。
 本発明において、炭素繊維の単繊維弾性率は、JIS-R-7606(2000)に基づいて求めることができる。すなわち、単繊維引張試験では、チャックで炭素繊維とチャック部の接着剤との間ですべりが発生するため正確な単繊維弾性率を測定することはできないが、ゲージ長が長いほど誤差が小さくなるため、ゲージ長を50mmとする。単繊維弾性率を測定する際の歪み範囲は歪み0%から破断までの全範囲とする。
 本発明のサイジング剤塗布炭素繊維束は、炭素繊維束に、脂肪族エポキシ化合物(C)および芳香族エポキシ化合物(D)を少なくとも含むサイジング剤が塗布されたものである。
 エポキシ化合物として、芳香族エポキシ化合物(D)のみからなり、脂肪族エポキシ化合物(C)を含まないサイジング剤を塗布した炭素繊維は、サイジング剤とマトリックス樹脂との反応性が低く、プリプレグを長期保管した場合の物性変化が小さいという利点がある。また、剛直な界面層を形成することができるという利点もある。しかしながら、芳香族エポキシ化合物(D)は、その化合物の剛直さに由来して、脂肪族エポキシ化合物(C)と比較して、炭素繊維とマトリックス樹脂との接着性が若干劣る。
 また、エポキシ化合物として脂肪族エポキシ化合物(C)のみからなるサイジング剤を塗布した炭素繊維は、マトリックス樹脂との接着性が高いことが確認されている。そのメカニズムは確かではないが、脂肪族エポキシ化合物(C)は柔軟な骨格および自由度が高い構造に由来して、炭素繊維表面のカルボキシル基および水酸基との官能基と脂肪族エポキシ化合物が強い相互作用を形成することが可能であると考えられる。しかしながら、脂肪族エポキシ化合物(C)は、炭素繊維表面との相互作用により高い接着性を発現する一方、マトリックス樹脂中の硬化剤に代表される官能基を有する化合物との反応性が高く、プリプレグの状態で長期間保管すると、マトリックス樹脂とサイジング剤の相互作用により界面層の構造が変化し、そのプリプレグから得られる炭素繊維強化複合材料の物性が低下する課題がある。
 脂肪族エポキシ化合物(C)と芳香族エポキシ化合物(D)を混合した場合、より極性の高い脂肪族エポキシ化合物(C)が炭素繊維側に多く偏在し、炭素繊維と逆側のサイジング層の最外層に極性の低い芳香族エポキシ化合物(D)が偏在しやすいという現象が見られる。このサイジング層の傾斜構造の結果として、脂肪族エポキシ化合物(C)が炭素繊維近傍で炭素繊維と強い相互作用を有することで、炭素繊維とマトリックス樹脂の接着性を高めることができる。また、外層に多く存在する芳香族エポキシ化合物(D)は、サイジング剤塗布炭素繊維束を用いてプリプレグを製造した場合には、脂肪族エポキシ化合物(C)をマトリックス樹脂から遮断する役割を果たす。このことにより、脂肪族エポキシ化合物(C)とマトリックス樹脂中の反応性の高い成分との反応が抑制されるため、長期保管時の安定性が発現される。
 サイジング剤は、脂肪族エポキシ化合物(C)および芳香族エポキシ化合物(D)を含む。脂肪族エポキシ化合物(C)は、塗布されたサイジング剤全量に対して35~65質量%含まれることが好ましい。35質量%以上含まれていることで、接着性が向上する。また、含有量が65質量%以下であることで、得られたサイジング剤塗布繊維を用いて作製したプリプレグは長期保管した場合にも得られた炭素繊維強化複合材料の物性が良好になる。脂肪族エポキシ化合物(C)の含有量は、38質量%以上がより好ましく、40質量%以上がさらに好ましい。また、60質量%以下がより好ましく、55質量%以上がさらに好ましい。
 芳香族エポキシ化合物(D)は、サイジング剤全量に対して35~60質量%含まれることが好ましい。芳香族エポキシ化合物(D)を35質量%以上含むことで、サイジング剤外層中の芳香族化合物の組成を高く維持することができるため、プリプレグの長期保管時に反応性の高い脂肪族エポキシ化合物とマトリックス樹脂中の反応性化合物との反応による物性低下が抑制される。含有量が60質量%以下であることで、上述したサイジング剤中の傾斜構造を発現することができ、接着性を維持することができることから好ましい。芳香族エポキシ化合物(D)の含有量は、37質量%以上がより好ましく、39質量%以上がさらに好ましい。また、55質量%以下がより好ましく、45質量%以上がさらに好ましい。
 脂肪族エポキシ化合物(C)と芳香族エポキシ化合物(D)の質量比(C)/(D)は52/48~80/20であることが好ましい。(C)/(D)が52/48以上で、炭素繊維表面に存在する脂肪族エポキシ化合物(C)の比率が大きくなり、炭素繊維とマトリックス樹脂の接着性が向上する。その結果、得られた炭素繊維強化樹脂の引張強度などのコンポジット物性が高くなるため好ましい。また、80/20以下において、反応性の高い脂肪族エポキシ化合物が炭素繊維表面に存在する量が少なくなり、マトリックス樹脂との反応性が抑制できるため好ましい。(C)/(D)の質量比は55/45以上がより好ましく、60/40以上がさらに好ましい。また、75/35以下がより好ましく、73/37以下がさらに好ましい。
 サイジング剤塗布炭素繊維束は、サイジング剤表面を光電子脱出角度15°でX線光電子分光法によって測定されるC1s内殻スペクトルの(a)CHx、C-C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と(b)C-Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)の比率(a)/(b)が0.50~0.90であることが好ましい。(a)/(b)の比率は、より好ましくは、0.55以上、さらに好ましくは0.57以上である。また、(a)/(b)の比率は、好ましくは0.80以下、より好ましくは0.74以下である。(a)/(b)の比率が大きいということは、サイジング剤表面に芳香族由来の化合物が多く、脂肪族エステル由来の化合物が少ないことを示す。この(a)/(b)の比率が、上記特定の範囲に入るサイジング剤塗布炭素繊維束は、マトリックス樹脂との接着性に優れ、かつ、そのサイジング剤塗布炭素繊維束をプリプレグに用いた場合に、プリプレグを長期保管した場合の物性低下が少ない。
 X線光電子分光法とは、超高真空中で試料にX線を照射し、試料の表面から放出される光電子の運動エネルギーをエネルギーアナライザーとよばれる装置で測定する分析手法のことである。この試料の表面から放出される光電子の運動エネルギーを調べることにより、試料に入射したX線のエネルギー値から換算される結合エネルギーが一意的に求まる。その結合エネルギーと光電子強度から、試料の最表面(~nm)に存在する元素の種類と濃度、その化学状態を解析することができる。
 本発明において、サイジング剤塗布繊維のサイジング剤表面の前記(a)/(b)のピーク比は、X線光電子分光法により、次の手順に従って求められるものである。サイジング剤塗布炭素繊維束を20mmにカットして、銅製の試料支持台に拡げて並べた後、X線源としてAlKα1,2を用い、試料チャンバー中を1×10-8Torrに保ち測定が行われる。測定時の帯電に伴うピークの補正として、まずC1sの主ピークの結合エネルギー値を286.1eVに合わせる。このときに、C1sのピーク面積は282~296eVの範囲で直線ベースラインを引くことにより求められる。また、C1sピークにて面積を求めた282~296eVの直線ベースラインを光電子強度の原点(零点)と定義して、(b)C-O成分に帰属される結合エネルギー286.1eVのピークの高さ(cps:単位時間あたりの光電子強度)と(a)CHx、C-C、C=Cに帰属される結合エネルギー284.6eVの成分の高さ(cps)をそれぞれ求め、(a)/(b)が算出される。
 また、サイジング剤塗布繊維のサイジング剤の内層を光電子脱出角度15°でX線光電子分光法によって測定したときの、C1s内殻スペクトルの(a’)CHx、C-C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と(b’)C-Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)の比率(a’)/(b’)が0.45~1.0であることが好ましい。サイジング剤の内層を測定するためには、サイジング塗布炭素繊維をアセトン溶媒で1~10分間超音波洗浄した後、蒸留水で洗い流し、炭素繊維に付着している残存サイジング剤を0.10±0.05質量%の範囲に制御した後、上述した方法にて測定すればよい。
 サイジング剤の付着量は、炭素繊維100質量部に対して、0.1~3.0質量部の範囲であることが好ましく、より好ましくは0.2~3.0質量部の範囲である。サイジング剤の付着量がかかる範囲であると、高いOHTを発現させることができる。
 サイジング剤の付着量は、サイジング塗布炭素繊維を2±0.5g採取し、窒素雰囲気中450℃にて加熱処理を15分間行ったときの該加熱処理前後の質量変化量を加熱処理前のサイジング塗布炭素繊維の質量と比較することにより求めることができる。
 脂肪族エポキシ化合物(C)の付着量は、炭素繊維100質量部に対して、0.05~2.0質量部の範囲であることが好ましく、より好ましくは0.2~2.0質量部の範囲である。さらに好ましくは0.3~1.0質量部である。脂肪族エポキシ化合物(C)の付着量が0.05質量部以上であると、炭素繊維表面に脂肪族エポキシ化合物(C)でサイジング剤塗布炭素繊維束とマトリックス樹脂の接着性が向上するため好ましい。
 脂肪族エポキシ化合物(C)は、芳香環を含まないエポキシ化合物である。自由度の高い柔軟な骨格を有していることから、炭素繊維と強い相互作用を有することが可能である。
 脂肪族エポキシ化合物(C)は、分子内に1個以上のエポキシ基を有するエポキシ化合物である。そのことにより、炭素繊維とサイジング剤中のエポキシ基の強固な結合を形成することができる。分子内のエポキシ基は、2個以上であることが好ましく、3個以上であることがより好ましい。分子内に2個以上のエポキシ基を有するエポキシ化合物であると、1個のエポキシ基が炭素繊維表面の酸素含有官能基と共有結合を形成した場合でも、残りのエポキシ基がマトリックス樹脂と共有結合または水素結合を形成することができ、接着性がさらに向上するため好ましい。エポキシ基の数の上限は特にないが、接着性の観点からは10個で十分である。
 脂肪族エポキシ化合物(C)は2種以上の官能基を合計3個以上有するエポキシ化合物であることが好ましく、2種以上の官能基を合計4個以上有するエポキシ化合物であることがより好ましい。エポキシ化合物が有するエポキシ基以外の官能基としては、水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基およびスルホ基から選択されるものが好ましい。分子内に3個以上のエポキシ基または他の官能基を有するエポキシ化合物であると、1個のエポキシ基が炭素繊維表面の酸素含有官能基と共有結合を形成した場合でも、残りの2個以上のエポキシ基または他の官能基がマトリックス樹脂と共有結合または水素結合を形成することができ、接着性がさらに向上する。エポキシ基を含む官能基の数の上限は特にないが、接着性の観点から10個で十分である。
 脂肪族エポキシ化合物(C)のエポキシ当量は、360g/mol未満であることが好ましく、より好ましくは270g/mol未満であり、さらに好ましくは180g/mol未満である。エポキシ当量が360g/mol未満であると、高密度で炭素繊維との相互作用が形成され、炭素繊維とマトリックス樹脂との接着性がさらに向上する。エポキシ当量の下限は特にないが、90g/mol以上であれば接着性の観点から十分である。
 脂肪族エポキシ化合物(C)の具体例としては、例えば、ポリオールから誘導されるグリシジルエーテル型エポキシ化合物、複数活性水素を有するアミンから誘導されるグリシジルアミン型エポキシ化合物、ポリカルボン酸から誘導されるグリシジルエステル型エポキシ化合物、および分子内に複数の2重結合を有する化合物を酸化して得られるエポキシ化合物が挙げられる。
 グリシジルエーテル型エポキシ化合物としては、例えば、エピクロロヒドリンとポリオールとの反応により得られるグリシジルエーテル型エポキシ化合物が挙げられる。また、グリシジルエーテル型エポキシ化合物として、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ポリプロピレングリコール、トリメチレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、ポリブチレングリコール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、水添ビスフェノールA、水添ビスフェノールF、グリセロール、ジグリセロール、ポリグリセロール、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、およびアラビトールと、エピクロロヒドリンとの反応により得られるエポキシ化合物が例示される。また、このグリシジルエーテル型エポキシ化合物として、ジシクロペンタジエン骨格を有するグリシジルエーテル型エポキシ化合物も例示される。
 グリシジルアミン型エポキシ化合物としては、例えば、1,3-ビス(アミノメチル)シクロヘキサンとエピクロロヒドリンとの反応により得られるエポキシ化合物が挙げられる。
 グリシジルエステル型エポキシ化合物としては、例えば、ダイマー酸を、エピクロロヒドリンと反応させて得られるエポキシ化合物が挙げられる。
 分子内に複数の2重結合を有する化合物を酸化させて得られるエポキシ化合物としては、例えば、分子内にエポキシシクロヘキサン環を有するエポキシ化合物が挙げられる。さらに、このエポキシ化合物としては、エポキシ化大豆油が挙げられる。
 脂肪族エポキシ化合物(C)として、これらのエポキシ化合物以外にも、トリグリシジルイソシアヌレートのようなエポキシ化合物も挙げられる。
 エポキシ基に加えて水酸基を有する化合物としては、例えば、ソルビトール型ポリグリシジルエーテルおよびグリセロール型ポリグリシジルエーテル等が挙げられる。具体的には”デナコール(登録商標)”EX-611、EX-612、EX-614、EX-614B、EX-622、EX-512、EX-521、EX-421、EX-313、EX-314およびEX-321(ナガセケムテックス株式会社製)等が挙げられる。
 エポキシ基に加えてアミド基を有する化合物としては、例えば、アミド変性エポキシ化合物等が挙げられる。アミド変性エポキシは脂肪族ジカルボン酸アミドのカルボキシル基に2個以上のエポキシ基を有するエポキシ化合物のエポキシ基を反応させることによって得ることができる。
 エポキシ基に加えてウレタン基を有する化合物としては、例えば、ウレタン変性エポキシ化合物が挙げられる。具体的には”アデカレジン(登録商標)”EPU-78-13S、EPU-6、EPU-11、EPU-15、EPU-16A、EPU-16N、EPU-17T-6、EPU-1348およびEPU-1395(株式会社ADEKA製)等が挙げられる。または、ポリエチレンオキサイドモノアルキルエーテルの末端水酸基に、その水酸基量に対する反応当量の多価イソシアネートを反応させ、次いで得られた反応生成物のイソシアネート残基に多価エポキシ化合物内の水酸基と反応させることによって得ることができる。ここで、用いられる多価イソシアネートとしては、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネートなどが挙げられる。
 エポキシ基に加えてウレア基を有する化合物としては、例えば、ウレア変性エポキシ化合物等が挙げられる。ウレア変性エポキシは脂肪族ジカルボン酸ウレアのカルボキシル基に2個以上のエポキシ基を有するエポキシ化合物のエポキシ基を反応させることによって得ることができる。
 脂肪族エポキシ化合物(C)としては、上述した中でも高い接着性の観点からエチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ポリプロピレングリコール、トリメチレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、ポリブチレングリコール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、グリセロール、ジグリセロール、ポリグリセロール、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、およびアラビトールから選ばれたポリオールと、エピクロロヒドリンとの反応により得られるグリシジルエーテル型エポキシ化合物がより好ましい。ポリグリセロールポリグリシジルエーテルがさらに好ましい。
 芳香族エポキシ化合物(D)は、分子内に芳香環を1個以上有するエポキシ化合物である。芳香環としては、炭素からのみからなる芳香環炭化水素でも良いし、窒素あるいは酸素などのヘテロ原子を含むフラン、チオフェン、ピロール、イミダゾールなどの複素芳香環でも構わない。また、芳香環は、ナフタレン、アントラセンなどの多環式芳香環でも構わない。サイジング剤塗布炭素繊維束とマトリックス樹脂とからなる繊維強化複合材料において、炭素繊維近傍のいわゆる界面層は、炭素繊維あるいはサイジング剤の影響を受け、マトリックス樹脂とは異なる特性を有する場合がある。エポキシ化合物が芳香環を1個以上有すると、剛直な界面層が形成され、炭素繊維とマトリックス樹脂との間の応力伝達能力が向上し、繊維強化複合材料の0°引張強度等の力学特性が向上する。また、芳香環により疎水性が向上することにより、脂肪族エポキシ化合物に比べて炭素繊維との相互作用が弱く、脂肪族エポキシ化合物を覆い、サイジング層外層に存在することができる。このことにより、サイジング剤塗布炭素繊維束をプリプレグに用いた場合、長期間保管した場合の経時変化を抑制することができ好ましい。芳香環を2個以上有することで、芳香環による長期安定性が向上するためより好ましい。芳香環の数の上限は特にないが、10個あれば力学特性およびマトリックス樹脂との反応の抑制の観点から十分である。
 芳香族エポキシ化合物(D)のエポキシ基は、分子内に2個以上であることが好ましく、3個以上であることがより好ましい。また、10個以下であることが好ましい。
 芳香族エポキシ化合物(D)は、分子内に2種以上の官能基を合計3個以上有するエポキシ化合物であることが好ましく、2種以上の官能基を合計4個以上有するエポキシ化合物であることがより好ましい。エポキシ化合物が有するエポキシ基以外の官能基としては、水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、およびスルホ基から選択されるものが好ましい。分子内に3個以上のエポキシ基または他の官能基を有するエポキシ化合物であると、1個のエポキシ基が炭素繊維表面の酸素含有官能基と共有結合を形成した場合でも、残りの2個以上のエポキシ基または他の官能基がマトリックス樹脂と共有結合または水素結合を形成することができ、接着性がさらに向上する。エポキシ基を含む官能基の数の上限は特にないが、接着性の観点から10個で十分である。
 芳香族エポキシ化合物(D)のエポキシ当量は、360g/mol未満であることが好ましく、より好ましくは270g/mol未満であり、さらに好ましくは180g/mol未満である。エポキシ当量が360g/mol未満であると、高密度で共有結合が形成され、炭素繊維とマトリックス樹脂との接着性がさらに向上する。エポキシ当量の下限は特にないが、90g/mol以上であれば接着性の観点から十分である。
 芳香族エポキシ化合物(D)の具体例としては、例えば、ポリオールから誘導されるグリシジルエーテル型エポキシ化合物、複数活性水素を有するアミンから誘導されるグリシジルアミン型エポキシ化合物、ポリカルボン酸から誘導されるグリシジルエステル型エポキシ化合物、および分子内に複数の2重結合を有する化合物を酸化して得られるエポキシ化合物が挙げられる。
 グリシジルエーテル型エポキシ化合物としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、テトラブロモビスフェノールA、フェノールノボラック、クレゾールノボラック、ヒドロキノン、レゾルシノール、4,4’-ジヒドロキシ-3,3’,5,5’-テトラメチルビフェニル、1,6-ジヒドロキシナフタレン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、トリス(p-ヒドロキシフェニル)メタン、およびテトラキス(p-ヒドロキシフェニル)エタンと、エピクロロヒドリンとの反応により得られるエポキシ化合物が挙げられる。また、グリシジルエーテル型エポキシとして、ビフェニルアラルキル骨格を有するエポキシ化合物も例示される。
 グリシジルアミン型エポキシ化合物としては、例えば、N,N-ジグリシジルアニリン、N,N-ジグリシジル-o-トルイジンが挙げられる。また、m-キシリレンジアミン、m-フェニレンジアミン、4,4’-ジアミノジフェニルメタンおよび9,9-ビス(4-アミノフェニル)フルオレンと、エピクロロヒドリンとの反応により得られるエポキシ化合物が挙げられる。さらに、例えば、m-アミノフェノール、p-アミノフェノール、および4-アミノ-3-メチルフェノールのアミノフェノール類の水酸基とアミノ基の両方を、エピクロロヒドリンと反応させて得られるエポキシ化合物が挙げられる。
 グリシジルエステル型エポキシ化合物としては、例えば、フタル酸、テレフタル酸、ヘキサヒドロフタル酸を、エピクロロヒドリンと反応させて得られるエポキシ化合物が挙げられる。
 芳香族エポキシ化合物(D)として、これらのエポキシ化合物以外にも、上に挙げたエポキシ化合物を原料として合成されるエポキシ化合物、例えば、ビスフェノールAジグリシジルエーテルとトリレンジイソシアネートからオキサゾリドン環生成反応により合成されるエポキシ化合物が挙げられる。
 エポキシ基に加えてアミド基を有する化合物としては、例えば、グリシジルベンズアミド、アミド変性エポキシ化合物等が挙げられる。アミド変性エポキシ化合物は、芳香環を含有するジカルボン酸アミドのカルボキシル基に2個以上のエポキシ基を有するエポキシ化合物のエポキシ基を反応させることによって得ることができる。
 エポキシ基に加えてイミド基を有する化合物としては、例えば、グリシジルフタルイミド等が挙げられる。具体的には”デナコール(登録商標)”EX-731(ナガセケムテックス株式会社製)等が挙げられる。
 エポキシ基に加えてウレタン基を有する化合物としては、ポリエチレンオキサイドモノアルキルエーテルの末端水酸基に、その水酸基量に対する反応当量の芳香環を含有する多価イソシアネートを反応させ、次いで得られた反応生成物のイソシアネート残基に多価エポキシ化合物内の水酸基と反応させることによって得られるエポキシ化合物が挙げられる。ここで、用いられる多価イソシアネートとしては、2,4-トリレンジイソシアネート、メタフェニレンジイソシアネート、パラフェニレンジイソシアネート、ジフェニルメタンジイソシアネート、トリフェニルメタントリイソシアネートおよびビフェニル-2,4,4’-トリイソシアネートなどが挙げられる。
 エポキシ基に加えてウレア基を有する化合物としては、例えば、ウレア変性エポキシ化合物等が挙げられる。ウレア変性エポキシ化合物は、ジカルボン酸ウレアのカルボキシル基に2個以上のエポキシ基を有する芳香環を含有するエポキシ化合物のエポキシ基を反応させることによって得ることができる。
 エポキシ基に加えてスルホニル基を有する化合物としては、例えば、ビスフェノールS型エポキシ等が挙げられる。
 エポキシ基に加えてスルホ基を有する化合物としては、例えば、p-トルエンスルホン酸グリシジルおよび3-ニトロベンゼンスルホン酸グリシジル等が挙げられる。
 芳香族エポキシ化合物(D)がフェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、テトラグリシジルジアミノジフェニルメタン、ビスフェノールA型エポキシ化合物あるいはビスフェノールF型エポキシ化合物であることが、プリプレグを長期保管した場合の安定性、接着性の観点から好ましく、ビスフェノールA型エポキシ化合物あるいはビスフェノールF型エポキシ化合物であることがより好ましい。
 さらに、サイジング剤には、脂肪族エポキシ化合物(C)と芳香族エポキシ化合物(D)以外の成分を1種類以上含んでも良い。炭素繊維とサイジング剤との接着性を高める促進剤、サイジング剤塗布炭素繊維束に収束性あるいは柔軟性を付与することで、取扱い性、耐擦過性および耐毛羽性を高め、マトリックス樹脂の含浸性を向上させることができる。また、サイジング剤の安定性を目的として、分散剤および界面活性剤等の補助成分を添加しても良い。
 炭素繊維に塗布されたサイジング剤のエポキシ当量は350~550g/molであることが好ましい。エポキシ当量が550g/mol以下であることで、サイジング剤を塗布した炭素繊維とマトリックス樹脂の接着性が向上するため好ましい。また、エポキシ当量350g/mol以上であることで、プリプレグに該サイジング剤塗布炭素繊維束を用いた場合に、プリプレグに用いている樹脂成分とサイジング剤との反応を抑制することができるため、プリプレグを長期保管した場合にも得られた炭素繊維強化複合材料の物性が良好になるため好ましい。炭素繊維に塗布されたサイジング剤のエポキシ当量は、サイジング剤塗布繊維をN,N-ジメチルホルムアミドに代表される溶媒中に浸漬し、超音波洗浄を行うことで繊維から溶出させたのち、塩酸でエポキシ基を開環させ、酸塩基滴定で求めることができる。エポキシ当量は360g/mol以上がより好ましく、380g/mol以上がさらに好ましい。また、530g/mol以下がより好ましく、500g/mol以下がさらに好ましい。なお、炭素繊維に塗布されたサイジング剤のエポキシ当量は、塗布に用いるサイジング剤のエポキシ当量および塗布後の乾燥での熱履歴などにより、制御することができる。
 サイジング剤塗布繊維から溶出される脂肪族エポキシ化合物(C)は、サイジング剤塗布炭素繊維束100質量部に対して0.3質量部以下であることが好ましい。かかる溶出量を0.3質量部以下とすることで、本発明のサイジング剤塗布炭素繊維束を熱硬化性樹脂とともに用いてプリプレグとした場合に、熱硬化性樹脂の樹脂成分とサイジング剤による反応を抑制することができるため、プリプレグを長期保管した場合にも得られた炭素繊維強化複合材料の物性が良好になるため好ましい。溶出量は、0.1質量部以下がより好ましく、0.05質量部以下がさらに好ましい。サイジング剤塗布繊維から溶出される脂肪族エポキシ化合物(C)の溶出量は、以下の手順で求められる。
 サイジング剤塗布炭素繊維束0.1gをアセトニトリルとクロロホルムを体積比9対1で混合した溶液10mlに浸漬し、超音波洗浄を20分間行うことで繊維からサイジング剤を溶出させた後、試料溶液を5ml採取し窒素中で溶媒を留去、さらに0.2mlになるまで上述のアセトニトリルとクロロホルムの混合溶液を加えて定容し、25倍の濃縮液を作成する。その溶液を水とアセトニトリルの混合液を移動相とした液体クロマトグラフィーを用いて脂肪族エポキシ化合物(C)のピークをそれ以外のピークと分離し、蒸発光散乱検出器(ELSD)にて検出する。そして、予め濃度の分かっている脂肪族エポキシ化合物(C)の溶液のピーク面積を用いて検量線を作成し、それを基準にして脂肪族エポキシ化合物(C)の濃度を定量化することにより、サイジング剤塗布炭素繊維束100質量部に対する脂肪族エポキシ化合物(C)の溶出量を求める。
 炭素繊維としては、X線光電子分光法により測定されるその繊維表面の酸素(O)と炭素(C)の原子数の比である表面酸素濃度(O/C)が、0.05~0.50の範囲内であるものが好ましく、より好ましくは0.06~0.30の範囲内のものであり、さらに好ましくは0.07~0.25の範囲内ものである。表面酸素濃度(O/C)が0.05以上であることにより、炭素繊維表面の酸素含有官能基を確保し、マトリックス樹脂との強固な接着を得ることができる。また、表面酸素濃度(O/C)が0.50以下であることにより、酸化による炭素繊維自体の単繊維強度の低下を抑えること、すなわち、単繊維コンポジットのフラグメンテーション法による、単繊維見掛け応力が12.2GPaのときの繊維破断数が1.7個/mm以下に制御することができる。炭素繊維の表面酸素濃度は、後述の酸化処理等により、調整することができる。
 炭素繊維の表面酸素濃度は、X線光電子分光法により、次の手順に従って求めたものである。溶剤で炭素繊維表面に付着している汚れなどを除去した炭素繊維を20mmにカットして、銅製の試料支持台に拡げて並べた後、X線源としてAlKα1、2を用い、試料チャンバー中を1×10-8Torrに保ち測定した。測定時の帯電に伴うピークの補正値としてC1sのメインピーク(ピークトップ)の結合エネルギー値を284.6eVに合わせる。C1sピーク面積は、282~296eVの範囲で直線のベースラインを引くことにより求め、O1sピーク面積は、528~540eVの範囲で直線のベースラインを引くことにより求められる。表面酸素濃度O/Cは、上記O1sピーク面積の比を装置固有の感度補正値で割ることにより算出した原子数比で表す。X線光電子分光法装置として、アルバック・ファイ(株)製ESCA-1600を用いる場合、上記装置固有の感度補正値は2.33である。
 炭素繊維束は、炭素繊維の単繊維が束ねられて繊維束となったものである。その単繊維の本数は、3000~48000本が好ましく、より好ましくは10000~20000本である。
 サイジング剤塗布炭素繊維束の総繊度は、400~3000texであることが好ましい。また、炭素繊維のフィラメント数は好ましくは10000~30000本である。
 サイジング剤塗布炭素繊維束に含まれる炭素繊維の単繊維直径は、4.5μm以下であることが好ましく、より好ましくは3.0μm以下である。かかる単繊維直径が4.5μm以下の場合、表面欠陥の存在確率を低下させることができるので単繊維強度が高まるとともに、炭素繊維の表面積比が増えることでマトリックス樹脂との接着性が向上し、炭素繊維強化複合材料中の応力伝達も均一となるので、結果としてOHTが高くなる。ただし、炭素繊維の単繊維直径が大きいほどマトリックス樹脂が単繊維間に含浸しやすくなり、結果的にOHTを高めることもできるため、単繊維直径は2.0μm以上であることが好ましい。前記した単繊維直径を達成する手段は、前記した数値範囲が達成できれば、どのような方法も採用することができるが、後述のポリアクリロニトリル前駆体繊維の繊度を調整することで制御することができる。
 サイジング剤塗布炭素繊維束は、平均引き裂き可能距離が300~710mmであることが好ましい。ここで、平均引き裂き可能距離とは、炭素繊維束における炭素繊維の交絡の程度を示す指標である。
 引き裂き可能距離の測定方法を図1に示す。繊維束1を1160mmの長さにカットし、その一端2を水平な台上に粘着テープで動かないように固定する(この点を固定点Aと呼ぶ)。該繊維束の固定していない方の一端3を指で2分割し、その一方を緊張させた状態で台上に粘着テープで動かないように固定する(この点を固定点Bと呼ぶ)。2分割した繊維束の一端の他方を、固定点Aを支点として弛みが出ないよう台上に沿って動かし、固定点Bからの直線距離が500mmの位置4で静止させ、台上に粘着テープで動かないように固定する(この点を固定点Cと呼ぶ)。固定点A、B、Cで囲まれた領域を目視で観察し、固定点Aから最も遠い交絡点5を見つけ、固定点Aと固定点Bで結ばれる直線上に投影した距離を最低目盛りが1mmの定規で読み取り、引き裂き可能距離6とする。この測定を30回繰り返し、測定値の算術平均値を平均引き裂き可能距離とする。本測定方法において、固定点Aから最も遠い交絡点とは、固定点Aからの直線距離が最も遠く、かつ弛みのない3本以上の単繊維が交絡している点のことである。
 炭素繊維束に均一な交絡が強くかかっているほど平均引き裂き可能距離は短くなり、交絡がかかっていないか、または、交絡が不均一な場合に、平均引き裂き可能距離は大きくなる。炭素繊維束に均一な交絡が強くかかっている場合には、数mオーダーでの長試長の炭素繊維束強度が大きくなることにより、OHTを高めることができる。そのため、平均引き裂き可能距離は、小さい方が好ましい。サイジング剤塗布炭素繊維束の平均引き裂き可能距離が710mm以下であることによって、プリプレグを炭素繊維強化複合材料に加工する際に、高い張力を与えて繊維アライメントを高めることができる。また、炭素繊維強化複合材料にした際に、炭素繊維強化複合材料中での応力伝達が、より均一となるので、OHTを高めることができる。しかし、サイジング剤塗布炭素繊維束の平均引き裂き可能距離が300mm未満の場合は、繊維アライメントが乱れて、0°方向に積層した繊維が応力集中しにくくなって、OHTを低下させることがある。平均引き裂き可能距離は、より好ましくは300~600mmである。サイジング剤塗布炭素繊維束の平均引き裂き可能距離は、後述のようにして予備炭素化繊維束の時点における平均引き裂き可能距離を制御することにより、制御することができる。
 サイジング剤塗布炭素繊維束の束強度は、一般的に単繊維平均強度とその強度分布を示すワイブル形状係数から計算でき、ワイブル形状係数が大きいほど束強度は高い。炭素繊維のワイブル形状係数は3~8程度である。ただし、強い交絡がある場合には、炭素繊維の単繊維強度分布が同じでも、束強度を大きく高めることができる。サイジング剤塗布炭素繊維束の平均引き裂き可能距離を小さくすることにより、単繊維強度分布を変更することなしに、ワイブル形状係数が20以上のときに相当する束強度を発現させることができる。
 サイジング剤塗布炭素繊維束は、平均引き裂き可能距離が前記した範囲であることに加え、引き裂き可能距離の800mm以上の割合が15%以下であることが好ましい。該割合が小さくなることにより、前記した効果をさらに拡大することができる。ここで、該距離の800mm以上の割合とは、前記のように引き裂き可能距離の測定を30回行った際に、30回の測定の内、引き裂き可能距離が800mm以上であった回数の割合のことである。
引き裂き可能距離800mm以上の割合(%)=引き裂き可能距離800mm以上の回数/30×100。
 該距離の800mm以上の割合が15%以上の場合は、炭素繊維束の交絡状態が制御されておらず、単繊維間の応力伝達能力の低い部分が炭素繊維束内に存在することになり、炭素化工程において高い延伸張力をかけたときに品位低下を引き起こす場合がある。
 サイジング剤塗布炭素繊維束は、試長10mの炭素繊維束の束強度が1.9~4.0GPaであることが好ましく、より好ましくは2.2~4.0GPaであり、さらに好ましくは2.6~4.0GPaである。試長10mの炭素繊維束の束強度が1.9GPa以上であれば、炭素繊維強化複合材料に加工する際に、高張力を与えて繊維アライメントを高められるとともに、単繊維間の応力伝達に優れることにより、OHTを高めることができる。ただし、試長10mの炭素繊維束の束強度は、4.0GPaが工業的な上限である。炭素繊維束の試長依存性係数を大きく制御するほど炭素繊維束の束強度を高めることができる。
 本発明の一つの態様は、炭素繊維束にサイジング剤が塗布されたサイジング剤塗布炭素繊維束であって、平均引き裂き可能距離が300~710mmであり、ストランド強度が5900MPa以上、ストランド弾性率が320GPa以上であり、単繊維破断数が0.5~3個/mであり、実質的に無撚りのサイジング剤塗布炭素繊維束である。ここで、実質的に無撚りとは、たとえ撚りが存在していても、繊維束1mあたり1ターン以下であることを意味する。
 単繊維破断数は、炭素繊維束1mあたりの単繊維破断数(個/m)である。サイジング剤塗布炭素繊維束の単繊維破断数は、少ないほど好ましいが、好ましくは0.5~2個/mである。単繊維破断数を上記範囲内とすることで、コンポジット中の単繊維の応力負担が均一になり有孔板引張強度が高まるとともに、高次加工時の工程通過性を高めることができる。後述の製造方法によれば、予備炭素化工程で高い張力を設定するにもかかわらず、交絡によりそれぞれの単繊維が均一に応力を負担するために繊維破断が少なくなるものである。
 次に、炭素繊維束の製造方法を説明する。まず、ポリアクリロニトリル重合体からなる前駆体繊維を準備し、該前駆体繊維に、耐炎化工程、予備炭素化工程、および炭素化工程を施すことにより、炭素繊維束を得る。
 本発明のサイジング剤塗布炭素繊維の製造のための前駆体繊維に好適に用いられるポリアクリロニトリル重合体としては、重量平均分子量が50万~111万のものが好ましく、70万~90万のものがより好ましい。重量平均分子量が50万を下回るような、炭素繊維用として一般的な範囲の重量平均分子量を有するポリアクリロニトリル重合体を用いた場合、繊維軸方向の分子同士のつながりが低下するため、分子鎖末端の影響によって、得られる炭素繊維において、高強度領域での単繊維強度の低下が起こりやすくなる。また、ポリアクリロニトリル重合体の重量平均分子量は高い方が好ましいが、111万を超えるような高分子量のポリアクリロニトリル重合体は、重合体溶液として紡糸するときに重合体濃度を低く設定する必要が生じ、その結果、得られる炭素繊維中にボイドが形成され、高強度領域で炭素繊維の単繊維強度の低下が起こりやすくなる。ポリアクリロニトリル重合体の重量平均分子量は、重合時のモノマー、開始剤および連鎖移動剤などの量を変えることにより制御することができる。具体的には、重合開始時のモノマー濃度を高くする、開始剤濃度を低くする、連鎖移動剤の濃度を少なくすることにより、重量平均分子量を高めることができる。ポリアクリロニトリル重合体の重量平均分子量と極限粘度は1対1の関係があり、極限粘度4.0は重量平均分子量で111万と換算できる。なお、本発明においてポリアクリロニトリル重合体とは、少なくともアクリロニトリル単位が重合体骨格の主構成単位となっているものをいう。ここで、主構成単位とは、当該単位が重合体骨格の90~100mol%を占めることをいう。
 好適なポリアクリロニトリル重合体の多分散度Mz/Mwは、1.4~2.4である。Mz/Mwは大きいほど高分子量側に分子量の異なる成分を含むことを意味する。Mz/Mwが1.4未満でも、Mz/Mwが2.4を超えても高強度領域で炭素繊維の単繊維強度の低下が起こりやすくなる。
 ポリアクリロニトリル重合体は、製糸性向上の観点および、耐炎化処理を効率よく行う観点等から、共重合成分を含むことが好ましい。一般に、共重合成分の量が少ないと、耐炎化反応が不均一となる場合がある。また、共重合成分の量が多いと、共重合成分自身が熱分解して炭素繊維の欠陥として認識される場合がある。好ましい共重合成分の量としては、0.1~0.8質量%である。共重合成分としては、前記観点からカルボキシル基またはアミド基を一つ以上有するものが好ましく例示される。耐熱性の低下を防止するという目的からは、耐炎化促進効果の高いモノマーを少量用いることが好ましく、アミド基よりもカルボキシル基を有する共重合成分を用いることが好ましい。また、含有されるアミド基とカルボキシル基の数は、1つよりも2つ以上であることがより好ましい。その観点からは、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、シトラコン酸、エタクリル酸、マレイン酸およびメサコン酸が好ましく、イタコン酸、マレイン酸およびメサコン酸がより好ましく、イタコン酸が最も好ましい。
 ポリアクリロニトリル重合体を製造する重合方法としては、公知の重合方法を選択することができる。
 ポリアクリロニトリル前駆体繊維の製造方法は、乾湿式紡糸法により紡糸溶液を紡糸口金から凝固浴に吐出させる紡糸工程と、該紡糸工程で得られた繊維を水浴中で洗浄する水洗工程と、該水洗工程で得られた繊維を水浴中で延伸する水浴延伸工程と、該水浴延伸工程で得られた繊維を乾燥熱処理する乾燥熱処理工程からなる。必要に応じて、該乾燥熱処理工程で得られた繊維をスチーム延伸するスチーム延伸工程をさらに含んでも良い。
 前記紡糸溶液は、前記したポリアクリロニトリル重合体を、ジメチルスルホキシド、ジメチルホルムアミドおよびジメチルアセトアミドなどのポリアクリロニトリル重合体が可溶な溶媒に溶解したものである。ポリアクリロニトリル重合体の濃度が10~18質量%の紡糸溶液とすることが好ましい。該紡糸溶液の濃度が10質量%に満たないと、炭素繊維中にボイドが形成されて高強度領域で炭素繊維の単繊維強度の低下が起こりやすくなる。また、該紡糸溶液の濃度が18質量%を超えると、紡糸性のために該重合体の重量平均分子量を下げなければならない場合がある。
 前記凝固浴には、紡糸溶液の溶媒として用いたジメチルスルホキシド、ジメチルホルムアミドおよびジメチルアセトアミドなどの溶媒と、いわゆる凝固促進成分とを含ませることが好ましい。凝固促進成分としては、前記ポリアクリロニトリル重合体を溶解せず、かつ紡糸溶液に用いる溶媒と相溶性があるものを使用することができる。具体的には、凝固促進成分として水を使用することが好ましい。
 水洗工程においては、温度20~90℃の複数段からなる水洗浴を用いて水洗することが好ましい。また、水浴延伸工程における延伸倍率は、1.3~5倍であることが好ましく、より好ましくは2~4倍である。水浴延伸工程の後、単繊維同士の接着を防止する目的から、糸条にシリコーン等からなる油剤を付与することが好ましい。かかるシリコーン油剤は、変性されたシリコーンを用いることが好ましく、耐熱性の高いアミノ変性シリコーンを含有するものを用いることが好ましい。
 必要に応じて行われるスチーム延伸工程においては、加圧スチーム中において、少なくとも3倍以上、より好ましくは4倍以上、さらに好ましくは5倍以上延伸するのがよい。
 ポリアクリロニトリル前駆体繊維は、繊度が、0.60dtex以下になるように調整するのが好ましく、より好ましくは、0.41dex以下であり、さらに好ましくは0.26dtex以下である。かかる繊度は、前記紡糸溶液の吐出量と紡糸速度を調整することで制御することができる。
 次に、このようにして得られたポリアクリロニトリル前駆体繊維を耐炎化工程に供し、耐炎化繊維を得る。耐炎化工程は、暴走反応を生じない範囲でできるだけ高い温度で行うことが好ましく、具体的には200~300℃の空気中において行うことが好ましい。耐炎化工程の処理時間は、好適には10~100分の範囲で適宜選択することができる。処理時間は、得られる炭素繊維の力学的物性を向上させる目的から、得られる耐炎化繊維の比重が1.3~1.4の範囲となるように設定することが好ましい。
 前記耐炎化工程によって得られた耐炎化繊維を、予備炭素化工程に供し、予備炭素化繊維を得る。予備炭素化工程においては、耐炎化繊維を、不活性雰囲気中、最高温度500~1200℃において、比重1.5~1.8になるまで熱処理することが好ましい。
 前記予備炭素化工程によって得られた予備炭素化繊維を、炭素化工程に供し、炭素繊維を得る。炭素化工程においては、予備炭化繊維を不活性雰囲気中、1200~2000℃に加熱する。炭素化工程の温度は、得られる炭素繊維のストランド弾性率を高める観点からは、高い方が好ましいが、高すぎると高強度領域の強度が低下する場合があり、両者を勘案して設定するのが良い。より好ましい温度範囲は1200~1800℃であり、さらに好ましい温度範囲は、1200~1600℃である。
 本発明の一つの態様は、前記炭素化工程において、炭素化工程の張力が下式
4.9≦炭素化張力(mN/dtex)≦-0.0225×(予備炭素化繊維束の平均引き裂き可能距離(mm))+23.5   (1)
を満たす範囲で炭素化工程を実施し、前記予備炭素化繊維束は実質的に無撚りであって、かつ、予備炭素化繊維束の平均引き裂き可能距離が150~620mmである炭素繊維束の製造方法である。ここで、実質的に無撚りとは、たとえ撚りが存在していても、繊維束1mあたり1ターン以下であることを意味する。
 また、前記炭素化工程において、炭素化工程の張力が下式
9.8≦炭素化工程の張力(mN/dtex)≦-0.0225×(予備炭素化繊維束の平均引き裂き可能距離(mm))+23.5   (2)
を満たす範囲で炭素化工程を実施し、前記予備炭素化繊維束は実質的に無撚りであって、かつ、前記予備炭素化繊維束の平均引き裂き可能距離が150~620mmであることが好ましい。
 炭素繊維束のストランド弾性率は、炭素化工程における最高温度を高くするほど炭素繊維内部の結晶子サイズが増大し、高くできることが知られている。しかしながら、炭素化工程の最高温度を上げることによって、得られる炭素繊維束の引張強度や接着強度は低下することが知られている。本発明では、予備炭素化繊維束の交絡状態を制御することにより、炭素化工程の最高温度を高めなくても、炭素化工程の張力を高めることで、得られる炭素繊維束のストランド弾性率を高めることができる。炭素繊維内部の結晶子サイズは、好ましくは1.2nm以上2.5nm以下であり、より好ましくは1.2nm以上2.5nm以下である。結晶子サイズが1.2nm未満の場合は、ストランド弾性率が低下する場合がある。結晶子サイズが2.5nmを超える場合は、ストランド強度が低下する場合がある。ストランド強度やストランド弾性率の低下はOHTの低下を引き起こす場合があるので、結晶子サイズは上記範囲に制御することが好ましい。結晶子サイズは、主に炭素化処理温度により制御することができる。さらに、結晶子サイズとストランド弾性率の関係は下式を満たすことが好ましい。
50×結晶子サイズ(nm)+200≦ストランド弾性率≦50×結晶子サイズ(nm)+300
該関係式を満たすことで炭素繊維束のストランド弾性率と単繊維強度バランスに優れるものとすることができる。該関係式を満たすためには、予備炭素化繊維束の引き裂き可能距離を本発明の範囲に制御して、炭素化張力を制御することで達成できる。
 炭素化工程の張力(炭素化張力)は、炭素化炉出側で測定した張力(mN)をポリアクリロニトリル前駆体繊維の絶乾時の繊度(dtex)で割った値で示す。該張力を4.9mN/dtexよりも低くすると炭素繊維の結晶子配向を高めることができず、高いストランド弾性率を発現しないため、OHTを低下させることがある。該張力を9.8mN/dtexよりも高く設定した場合、繊維アライメントが良くなり、かつ、単繊維間の応力伝達に優れた状態が形成されるため、短試長の単繊維強度に依存せずにOHTを向上できるので、好ましい。また、該張力は、得られる炭素繊維のストランド弾性率を高める観点からは、高い方が好ましいが、高すぎると工程通過性や、品位が低下する場合があるため、式(2)を満たす範囲で設定することが好ましい。式(2)の右辺の一次係数-0.0225の示す意味は、平均引き裂き可能距離の増加に伴う設定可能な該張力の低下勾配であり、定数項23.5は平均引き裂き可能距離を極限まで短くした場合に設定可能な該張力である。
 炭素化工程における予備炭素化繊維束の引き裂き可能距離は、繊維束の交絡状態を表す指標である。予備炭素化繊維束の引き裂き可能距離は、前述の炭素化繊維束の引き裂き可能距離と同様にして求める。
 従来、交絡状態の評価手法として、フックドロップ法が一般的に用いられてきた。フックドロップ法による繊維束の交絡度(CF値)は、JIS L1013(2010年)に規定されているように、測定に供する繊維束を垂下装置の上部に固定し、繊維束下端に錘をぶらさげ、試料を垂直にたらし、試料上部固定端から1cm下に、繊維束を2分割するように、直径0.6mmの表面を滑らかに仕上げた重さ10gのフックを挿入し、その降下距離を測定するものである。
 本発明においては、交絡度の指標として、従来のフックドロップ法により求めた交絡度(CF値)ではなく、平均引き裂き可能距離を用い、該距離を特定の範囲にすることで、炭素繊維高強度領域の強度低下を避けつつ、炭素化工程における高い延伸張力を発現できることを見出した。炭素化工程において高い延伸張力をかけるためには、単繊維間の応力伝達能力が高い繊維束状態をつくる必要があり、そのためには単繊維同士の細かい交絡ネットワークを形成することが重要である。従来のフックドロップ法は、フックを用いた「点」での評価であるのに対し、引き裂き可能距離は、束全体を見る「面」での評価であり、この相違点により、炭素化工程における高い延伸張力を発現するための状態を適切に規定できるものと考える。
 炭素化工程における予備炭素化繊維束の引き裂き可能距離は、短いほど交絡度が高く、単繊維間の応力伝達能力が高まり、炭素化工程における延伸張力を高めることができるが、該距離が150mm未満の場合は、炭素繊維束のミスアライメントが大きく、炭素繊維束が引き揃っていない状態となるため結果として有孔板引張強度が低下する。引き裂き可能距離が620mmを超える場合は、交絡が弱いことによって、炭素化工程において、ある一定確率で破断する単繊維分の応力を破断していない他の単繊維が負担することなり、単繊維間の構造バラツキとそれに伴う強度バラツキを誘起して、炭素繊維の短試長領域の単繊維強度分布を制御できなくなり、結果としてOHTが低下する。予備炭素化繊維束の引き裂き可能距離は、150~500mmであることがより好ましい。
 また、引き裂き距離のバラツキは小さいことが好ましい。該距離800mm以上の割合が15%以下であることが好ましく、より好ましくは該割合が10%以下である。ここで、該距離の800mm以上の割合とは、引き裂き可能距離の測定を30回行った際に、30回の測定の内、引き裂き可能距離が800mm以上であった回数の割合のことである。該距離800mm以上の割合が15%以上の場合は、交絡状態が制御されておらず、単繊維間の応力伝達能力の低い部分が束内に存在することになり、炭素化工程において高い延伸張力をかけたときに品位低下を引き起こす場合があるとともに、単繊維間の構造バラツキとそれに伴う強度バラツキを誘起して、炭素繊維の短試長領域の単繊維強度分布を制御できなくなり、結果としてOHTが低下する。該距離の800mm以上の割合は、前記した引き裂き可能距離の測定に基づいて30回行い、下記式より算出する。
引き裂き可能距離800mm以上の割合(%)=引き裂き可能距離800mm以上の頻度/30×100。
 前記した予備炭素化繊維束の平均引き裂き可能距離を達成する手段は、前記した数値範囲が達成できれば、どのような方法も採用することができるが、繊維束への流体による交絡処理が好ましく用いられる。中でも、ポリアクリロニトリル前駆体繊維束の製造工程、耐炎化工程、予備炭素化工程のいずれかにおいて、繊維束同士の動摩擦係数が0.3~0.6の状態で流体交絡処理を行うことが好ましい。該動摩擦係数は高いほど、引き裂き可能距離を小さくするために好ましく、より好ましくは該動摩擦係数が0.4~0.6であり、さらに好ましくは該動摩擦係数が0.5~0.6である。該動摩擦係数は、後述する方法によって測定することができ、また、繊維束を形成する単繊維の表面形態、断面形状、繊維束に付与する油剤の種類によって、制御することができる。
 流体交絡処理を行う工程は、該動摩擦係数が0.3~0.6であれば、ポリアクリロニトリル前駆体繊維束の製造工程、耐炎化工程、予備炭素化工程のいずれの工程でもよいが、繊維の伸度が高いポリアクリロニトリル前駆体繊維束の製造工程で行うことが好ましく、ポリアクリロニトリル前駆体繊維束に工程油剤を付与する前に行うのがさらに好ましい。ポリアクリロニトリル前駆体繊維束の製造工程のいずれかの場所で流体交絡処理を行う場合、流体交絡処理後のポリアクリロニトリル前駆体繊維束の平均引き裂き可能距離は、100~500mmが好ましく、より好ましくは100~400mmであり、さらに好ましくは100~300mmである。該距離が100mm未満の場合は、束内の単繊維密度が高まるため、耐炎化工程において束内部まで耐炎化されず焼けムラ生じることになり、単繊維間の構造バラツキや強度バラツキを誘発するため、結果として有孔板引張強度が低下する場合がある。該距離が500mmを超える場合は、炭素化工程において高い延伸張力をかけたときに品位低下あるいは糸切れを引き起こす場合がある。
 流体交絡処理に用いる流体としては、気体、液体とも用いることができるが、空気または窒素が安価なため好ましい。流体交絡処理において、流体はノズルを用いて繊維束に吹き付けることが好ましく、流体を吹き付けるノズル形状は特に限定されないが、2~8箇所の噴出孔を有するものを用いることが好ましい。噴出口の配置は特に限定されないが、繊維束長手方向と流体の吹き付け方向の成す角が88°~90°の範囲となるよう繊維束を取り囲むように偶数個の噴出孔を配置し、各々の噴出孔が2孔で1組となるよう対向する位置に配置することが好ましい。それ以外の流体交絡処理時の繊維束張力、流体の吐出圧等の条件は、引き裂き可能距離が適切になるように適宜調整すればよい。
 流体交絡処理は、張力を2~5mN/dtex-繊維束の状態とし、かつ、流体の吐出圧力を0.2~0.4MPa-Gに設定するのが好ましい。また、より好ましくは該張力が2~3mN/dtex-繊維束であり、かつ、該吐出圧力が0.25~0.35MPa-Gである。また、流体交絡処理時の繊維束は、実質的に無撚りであることがよい。ここで、実質的に無撚りとは、たとえ撚りが存在していても、繊維束1mあたり1ターン以下であることを意味する。
 流体交絡処理時の張力を5mN/dtex-繊維束よりも高くすると、単繊維の旋回運動が抑制されることにより、交絡の形成も抑制される場合がある。一方、流体交絡処理時の張力を2mN/dtex-繊維束よりも低下させると繊維束を構成する単繊維の旋回運動は促進されて交絡は形成されやすくなるが、繊維束がノズルに接触して糸痛みや傷が発生し、それによって品位の悪化やストランド強度の低下を引き起こす場合がある。また、繊維束の旋回運動が過度になることで繊維束長手方向の交絡形成が不均一になり、交絡度が低い部分が発生する場合がある。流体交絡処理時の圧力を0.4MPa-Gよりも高くすると、流体によって糸痛みや傷が発生し、それによって品位の悪化やストランド強度の低下を引き起こす場合がある。一方、流体交絡処理時の圧力を0.2MPa-Gよりも低くすると、単繊維の旋回運動が抑制されて交絡形成が抑制される場合がある。前記事項のバランスを考慮して、流体交絡処理時の繊維束の張力と流体の吐出圧力を設定するのがよい。
 流体交絡処理時の繊維束を構成する単繊維の本数は、12000本以下が好ましく、より好ましくは6000本以下である。繊維束を構成する単繊維の本数が多ければ多いほど、単繊維の交絡は形成しやすくなるが、繊維束内に交絡が付与されない部分も形成され、交絡形成が不均一になる場合がある。ポリアクリロニトリル前駆体繊維束に流体交絡処理を行う場合、流体交絡処理をした後に2糸条以上のポリアクリロニトリル前駆体繊維束を合糸し、最終製品として必要なフィラメント数に調整することもできる。
 得られた炭素繊維束は、マトリックス樹脂との接着性を向上させるために、酸化処理が施され、酸素含有官能基が導入されることが好ましい。酸化処理方法としては、気相酸化、液相酸化および液相電解酸化が用いられる。生産性が高く、均一処理ができるという観点から、液相電解酸化が好ましく用いられる。
 液相電解酸化で用いられる電解液としては、酸性電解液およびアルカリ性電解液が挙げられる。接着性の観点からアルカリ性電解液中で炭素繊維束を液相電解酸化した後、サイジング剤を塗布することがより好ましい。
 酸性電解液としては、例えば、硫酸、硝酸、塩酸、燐酸、ホウ酸、および炭酸等の無機酸、酢酸、酪酸、シュウ酸、アクリル酸、およびマレイン酸等の有機酸、または硫酸アンモニウムや硫酸水素アンモニウム等の塩が挙げられる。なかでも、強酸性を示す硫酸と硝酸が好ましく用いられる。
 アルカリ性電解液としては、具体的には、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウムおよび水酸化バリウム等の水酸化物の水溶液、炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウムおよび炭酸アンモニウム等の炭酸塩の水溶液、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素マグネシウム、炭酸水素カルシウム、炭酸水素バリウムおよび炭酸水素アンモニウム等の炭酸水素塩の水溶液、アンモニア、水酸化テトラアルキルアンモニウムおよびヒドラジンの水溶液等が挙げられる。なかでも、マトリックス樹脂の硬化阻害を引き起こすアルカリ金属を含まないという観点から、炭酸アンモニウムおよび炭酸水素アンモニウムの水溶液、あるいは、強アルカリ性を示す水酸化テトラアルキルアンモニウムの水溶液が好ましく用いられる。
 電解液の濃度は、0.01~5モル/リットルの範囲内であることが好ましく、より好ましくは0.1~1モル/リットルの範囲内である。電解液の濃度が0.01モル/リットル以上であると、電解処理電圧が下げられ、運転コストに有利になる。一方、電解液の濃度が5モル/リットル以下であると、安全性の観点から有利になる。
 電解液の温度は、10~100℃の範囲内であることが好ましく、より好ましくは10~40℃の範囲内である。電解液の温度が10℃以上であると、電解処理の効率が向上し、運転コストに有利になる。一方、電解液の温度が100℃以下であると、安全性の観点から有利になる。
 液相電解酸化における電気量は、炭素繊維の炭化度に合わせて最適化することが好ましく、高弾性率の炭素繊維に処理を施す場合、より大きな電気量が必要である。
 液相電解酸化における電流密度は、電解処理液中の炭素繊維の表面積1m当たり1.5~1000アンペア/mの範囲内であることが好ましく、より好ましくは3~500アンペア/mの範囲内である。電流密度が1.5アンペア/m以上であると、電解処理の効率が向上し、運転コストに有利になる。一方、電流密度が1000アンペア/m以下であると、安全性の観点から有利になる。
 また、電解処理で採用する電解電気量の総量は、炭素繊維1g当たり3~300クーロン/gであることが好ましい。電解電気量の総量が3クーロン/g未満では、炭素繊維表面に十分に官能基を付与できない場合があり、単繊維コンポジットのフラグメンテーション法による、単繊維見掛け応力が15.3GPaのときに繊維破断数が2.0個/mm未満となることがある。一方、電解電気量の総量が300クーロン/gを超えると炭素繊維単繊維表面の欠陥を拡大させ、単繊維コンポジットのフラグメンテーション法による、単繊維見掛け応力が12.2GPaのときの繊維破断数が1.7個/mmを超えることがある。
 電解処理の後、炭素繊維を水洗および乾燥することが好ましい。洗浄する方法としては、例えば、ディップ法とスプレー法を用いることができる。なかでも、洗浄が容易であるという観点から、ディップ法を用いることが好ましく、さらには、炭素繊維を超音波で加振させながらディップ法を用いることが好ましい態様である。また、乾燥温度が高すぎると炭素繊維の最表面に存在する官能基は熱分解により消失し易いため、できる限り低い温度で乾燥することが望ましい。具体的には乾燥温度が好ましくは250℃以下、さらに好ましくは210℃以下で乾燥することが好ましい。
 本発明のプリプレグは、本発明のサイジング剤塗布炭素繊維束および熱硬化性樹脂を含むプリプレグである。該熱硬化性樹脂は、エポキシ化合物(A)と芳香族アミン硬化剤(B)とを含有する。本発明のサイジング剤塗布炭素繊維束は、エポキシ化合物(A)と芳香族アミン硬化剤(B)とを含有した熱硬化性樹脂との組み合わせで高いOHTを発現する。
 エポキシ樹脂に用いるエポキシ化合物(A)としては、特に限定されるものではなく、ビスフェノール型エポキシ化合物、アミン型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、レゾルシノール型エポキシ化合物、グリシジルアニリン型エポキシ化合物、フェノールアラルキル型エポキシ化合物、ナフトールアラルキル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、ビフェニル骨格を有するエポキシ化合物、イソシアネート変性エポキシ化合物、テトラフェニルエタン型エポキシ化合物、トリフェニルメタン型エポキシ化合物などの中から1種以上を選択して用いることができる。
 ここで、ビスフェノール型エポキシ化合物とは、ビスフェノール化合物の2つのフェノール性水酸基がグリシジル化されたものであり、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールAD型エポキシ化合物、ビスフェノールS型エポキシ化合物、もしくはこれらのハロゲン置換体、アルキル置換体、水添品等が挙げられる。また、単量体に限らず、複数の繰り返し単位を有する高分子量体も好適に使用することができる。
 ビスフェノールA型エポキシ化合物の市販品としては、“jER(登録商標)”825、828、834、1001、1002、1003、1003F、1004、1004AF、1005F、1006FS、1007、1009、1010(以上、三菱化学(株)製)などが挙げられる。臭素化ビスフェノールA型エポキシ化合物としては、“jER(登録商標)”505、5050、5051、5054、5057(以上、三菱化学(株)製)などが挙げられる。水添ビスフェノールA型エポキシ化合物の市販品としては、ST5080、ST4000D、ST4100D、ST5100(以上、新日鐵化学(株)製)などが挙げられる。
 ビスフェノールF型エポキシ化合物の市販品としては、“jER(登録商標)”806、807、4002P、4004P、4007P、4009P、4010P(以上、三菱化学(株)製)、“エピクロン(登録商標)”830、835(以上、DIC(株)製)、“エポトート(登録商標)”YDF2001、YDF2004(以上、新日鐵化学(株)製)などが挙げられる。テトラメチルビスフェノールF型エポキシ化合物としては、YSLV-80XY(新日鐵化学(株)製)などが挙げられる。
 ビスフェノールS型エポキシ化合物としては、“エピクロン(登録商標)”EXA-154(DIC(株)製)などが挙げられる。
 また、アミン型エポキシ化合物としては、例えば、テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、テトラグリシジルキシリレンジアミンや、これらのハロゲン、アルキノール置換体、水添品などが挙げられる。
 テトラグリシジルジアミノジフェニルメタンの市販品としては、“スミエポキシ(登録商標)”ELM434(住友化学(株)製)、YH434L(新日鐵化学(株)製)、“jER(登録商標)”604(三菱化学(株)製)、“アラルダイド(登録商標)”MY720、MY721、MY725(以上、ハンツマン・アドバンズド・マテリアルズ(株)製)などが挙げられる。トリグリシジルアミノフェノールまたはトリグリシジルアミノクレゾールの市販品としては、“スミエポキシ(登録商標)”ELM100、ELM120(以上、住友化学(株)製)、“アラルダイド(登録商標)”MY0500、MY0510、MY0600、MY0610(以上、ハンツマン・アドバンズド・マテリアルズ(株)製)、“jER(登録商標)”630(三菱化学(株)製)などが挙げられる。テトラグリシジルキシリレンジアミンおよびその水素添加品の市販品としては、TETRAD-X、TETRAD-C(以上、三菱ガス化学(株)製)などが挙げられる。 
 フェノールノボラック型エポキシ化合物の市販品としては“jER(登録商標)”152、154(以上、三菱化学(株)製)、“エピクロン(登録商標)”N-740、N-770、N-775(以上、DIC(株)製)などが挙げられる。
 クレゾールノボラック型エポキシ化合物の市販品としては、“エピクロン(登録商標)”N-660、N-665、N-670、N-673、N-695(以上、DIC(株)製)、EOCN-1020、EOCN-102S、EOCN-104S(以上、日本化薬(株)製)などが挙げられる。
 レゾルシノール型エポキシ化合物の市販品としては、“デナコール(登録商標)”EX-201(ナガセケムテックス(株)製)などが挙げられる。
 グリシジルアニリン型エポキシ化合物の市販品としては、GANやGOT(以上、日本化薬(株)製)などが挙げられる。
 ビフェニル骨格を有するエポキシ化合物の市販品としては、“jER(登録商標)”YX4000H、YX4000、YL6616(以上、三菱化学(株)製)、NC-3000(日本化薬(株)製)などが挙げられる。
 ジシクロペンタジエン型エポキシ化合物の市販品としては、“エピクロン(登録商標)”HP7200L、“エピクロン(登録商標)”HP7200、“エピクロン(登録商標)”HP7200H、“エピクロン(登録商標)”HP7200HH(以上、大日本インキ化学工業(株)製)、XD-1000-L、XD-1000-2L(以上、日本化薬(株)製)、“Tactix(登録商標)”556(ハンツマン・アドバンズド・マテリアルズ(株)製)などが挙げられる。
 イソシアネート変性エポキシ化合物の市販品としては、オキサゾリドン環を有するXAC4151、AER4152(旭化成エポキシ(株)製)やACR1348((株)ADEKA製)などが挙げられる。
 テトラフェニルエタン型エポキシ化合物の市販品としては、テトラキス(グリシジルオキシフェニル)エタン型エポキシ化合物である“jER(登録商標)”1031(三菱化学(株)製)などが挙げられる。
 トリフェニルメタン型エポキシ化合物の市販品としては、“タクチックス(登録商標)”742(ハンツマン・アドバンズド・マテリアルズ(株)製)などが挙げられる。
 特にエポキシ化合物(A)として、多官能のグリシジルアミン型エポキシ化合物が、本発明のサイジング剤塗布炭素繊維束と組み合わせて用いることで、炭素繊維強化複合材料のOHTを大きく向上させることができるため好ましい。その理由は必ずしも明らかではないが、該エポキシ化合物を用いたときに、炭素繊維の高強度領域の強度分布がOHTに強く影響するようになるためと考えている。
 多官能のグリシジルアミン型エポキシ化合物としては、例えば、テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノールおよびトリグリシジルアミノクレゾール、N,N-ジグリシジルアニリン、N,N-ジグリシジル-o-トルイジン、N,N-ジグリシジル-4-フェノキシアニリン、N,N-ジグリシジル-4-(4-メチルフェノキシ)アニリン、N,N-ジグリシジル-4-(4-tert-ブチルフェノキシ)アニリンおよびN,N-ジグリシジル-4-(4‐フェノキシフェノキシ)アニリン等が挙げられる。これらの化合物は、多くの場合、フェノキシアニリン誘導体にエピクロロヒドリンを付加し、アルカリ化合物により環化して得られる。分子量の増加に伴い粘度が増加していくため、取扱い性の点から、N,N-ジグリシジル-4-フェノキシアニリンが特に好ましく用いられる。
 フェノキシアニリン誘導体としては、具体的には、4-フェノキシアニリン、4-(4-メチルフェノキシ)アニリン、4-(3-メチルフェノキシ)アニリン、4-(2-メチルフェノキシ)アニリン、4-(4-エチルフェノキシ)アニリン、4-(3-エチルフェノキシ)アニリン、4-(2-エチルフェノキシ)アニリン、4-(4-プロピルフェノキシ)アニリン、4-(4-tert-ブチルフェノキシ)アニリン、4-(4-シクロヘキシルフェノキシ)アニリン、4-(3-シクロヘキシルフェノキシ)アニリン、4-(2-シクロヘキシルフェノキシ)アニリン、4-(4-メトキシフェノキシ)アニリン、4-(3-メトキシフェノキシ)アニリン、4-(2-メトキシフェノキシ)アニリン、4-(3-フェノキシフェノキシ)アニリン、4-(4-フェノキシフェノキシ)アニリン、4-[4-(トリフルオロメチル)フェノキシ]アニリン、4-[3-(トリフルオロメチル)フェノキシ]アニリン、4-[2-(トリフルオロメチル)フェノキシ]アニリン、4-(2-ナフチルオキシフェノキシ)アニリン、4-(1-ナフチルオキシフェノキシ)アニリン、4-[(1,1’-ビフェニル-4-イル)オキシ]アニリン、4-(4-ニトロフェノキシ)アニリン、4-(3-ニトロフェノキシ)アニリン、4-(2-ニトロフェノキシ)アニリン、3-ニトロ-4-アミノフェニルフェニルエーテル、2-ニトロ-4-(4-ニトロフェノキシ)アニリン、4-(2,4-ジニトロフェノキシ)アニリン、3-ニトロ-4-フェノキシアニリン、4-(2-クロロフェノキシ)アニリン、4-(3-クロロフェノキシ)アニリン、4-(4-クロロフェノキシ)アニリン、4-(2,4-ジクロロフェノキシ)アニリン、3-クロロ-4-(4-クロロフェノキシ)アニリン、および4-(4-クロロ-3-トリルオキシ)アニリンなどが挙げられる。
 テトラグリシジルジアミノジフェニルメタンの市販品として、例えば、“スミエポキシ(登録商標)”ELM434(住友化学(株)製)、YH434L(東都化成(株)製)、“アラルダイト(登録商標)”MY720、MY721、MY725(ハンツマン・アドバンスト・マテリアルズ(株)製)、および“jER(登録商標)604”(三菱化学(株)製)等を使用することができる。トリグリシジルアミノフェノールおよびトリグリシジルアミノクレゾールとしては、例えば、“スミエポキシ(登録商標)”ELM100(住友化学(株)製)、“アラルダイト(登録商標)”MY500、MY0510、“アラルダイト(登録商標)”MY0600、MY610(以上、ハンツマン・アドバンスト・マテリアルズ(株)製)、および“jER(登録商標)”630(三菱化学(株)製)等を使用することができる。
 多官能のグリシジルアミン型エポキシ化合物として、上述した中でもグリシジルアミン骨格を少なくとも1つ有し、かつ3官能以上のエポキシ基を有する芳香族エポキシ化合物(A1)であることが好ましい。
 多官能のグリシジルアミン型芳香族エポキシ化合物(A1)の割合は、エポキシ化合物(A)中に30~100質量%含まれていることが好ましく、より好ましい割合は50質量%以上である。グリシジルアミン型エポキシ化合物の割合が30質量%以上で、炭素繊維強化複合材料のOHTが向上するため好ましい。
 芳香族アミン硬化剤(B)としては、エポキシ樹脂硬化剤として用いられる芳香族アミン類であれば特に限定されるものではないが、具体的には、3,3’-ジアミノジフェニルスルホン(3,3’-DDS)、4,4’-ジアミノジフェニルスルホン(4,4’-DDS)、ジアミノジフェニルメタン(DDM)、3,3’-ジイソプロピル-4,4’-ジアミノジフェニルメタン、3,3’-ジ-t-ブチル-4,4’-ジアミノジフェニルメタン、3,3’-ジエチル-5,5’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジイソプロピル-5,5’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジ-t-ブチル-5,5’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラエチル-4,4’-ジアミノジフェニルメタン、3,3’-ジイソプロピル-5,5’-ジエチル-4,4’-ジアミノジフェニルメタン、3,3’-ジ-t-ブチル-5,5’-ジエチル-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトライソプロピル-4,4’-ジアミノジフェニルメタン、3,3’-ジ-t-ブチル-5,5’-ジイソプロピル-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラ-t-ブチル-4,4’-ジアミノジフェニルメタン、ジアミノジフェニルエーテル(DADPE)、ビスアニリン、ベンジルジメチルアニリン、2-(ジメチルアミノメチル)フェノール(DMP-10)、2,4,6-トリス(ジメチルアミノメチル)フェノール(DMP-30)、2,4,6-トリス(ジメチルアミノメチル)フェノールの2-エチルヘキサン酸エステル等を使用することができる。これらは、単独で用いても、2種以上を混合して用いてもよい。
 本発明のサイジング塗布炭素繊維に用いられるサイジング剤と、芳香族アミン硬化剤(B)の組み合わせとしては、次に示す組み合わせが好ましい。サイジング剤と芳香族アミン硬化剤(B)のアミン当量とエポキシ当量の比率であるアミン当量/エポキシ当量が0.9となるようにサイジング剤と芳香族アミン硬化剤(B)を混合し、温度25℃、湿度60%の環境下で20日保管した場合の、該混合物のガラス転移点の上昇が25℃以下であることが好ましい。ガラス転移点の上昇が25℃以下であることで、プリプレグにしたときに、サイジング剤外層とマトリックス樹脂中の反応が抑制され、プリプレグを長期間保管した後の炭素繊維強化複合材料のOHT低下が抑制されるため好ましい。またガラス転移点の上昇が15℃以下であることがより好ましく、10℃以下であることがさらに好ましい。なお、ガラス転移点は、示差走査熱量分析(DSC)により求めることができる。
 また、芳香族アミン硬化剤(B)の総量は、全エポキシ樹脂成分のエポキシ基1当量に対し、活性水素基が0.6~1.2当量の範囲となる量を含むことが好ましく、より好ましくは0.7~0.9当量の範囲となる量を含むことである。ここで、活性水素基とは、エポキシ基と反応しうる官能基を意味する。活性水素基が0.6当量に満たない場合は、硬化物の反応率、耐熱性、弾性率が不足し、また、炭素繊維強化複合材料のガラス転移温度やOHTが不足する場合がある。また、活性水素基が1.2当量を超える場合は、硬化物の反応率、ガラス転移温度、弾性率は十分であるが、塑性変形能力が不足するため、炭素繊維強化複合材料の耐衝撃性が不足する場合がある。
 本発明のプリプレグには、靱性や流動性を調整するために、熱可塑性樹脂が含まれていることが好ましい。耐熱性の観点から、ポリスルホン、ポリエーテルスルホン、ポリエーテルイミド、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、フェノキシ樹脂およびポリオレフィンから選ばれる少なくとも1種を含むことがより好ましい。また、本発明のプリプレグには、熱可塑性樹脂のオリゴマーを含ませることができる。また、本発明のプリプレグには、エラストマー、フィラーおよびその他の添加剤を配合することもできる。なお、熱可塑性樹脂は、プリプレグを構成するエポキシ樹脂に含まれていると良い。熱可塑性樹脂としては、エポキシ樹脂に可溶性の熱可塑性樹脂や、ゴム粒子および熱可塑性樹脂粒子等の有機粒子等を配合することができる。エポキシ樹脂に可溶性の熱可塑性樹脂としては、樹脂と炭素繊維との接着性改善効果が期待できる水素結合性の官能基を有する熱可塑性樹脂が好ましく用いられる。
 エポキシ樹脂に可溶で、水素結合性官能基を有する熱可塑性樹脂として、アルコール性水酸基を有する熱可塑性樹脂、アミド結合を有する熱可塑性樹脂やスルホニル基を有する熱可塑性樹脂を使用することができる。
 アルコール性水酸基を有する熱可塑性樹脂としては、ポリビニルホルマールやポリビニルブチラールなどのポリビニルアセタール樹脂、ポリビニルアルコール、フェノキシ樹脂を挙げることができ、また、アミド結合を有する熱可塑性樹脂としては、ポリアミド、ポリイミド、ポリビニルピロリドンを挙げることができ、さらに、スルホニル基を有する熱可塑性樹脂としては、ポリスルホンを挙げることができる。ポリアミド、ポリイミドおよびポリスルホンは、主鎖にエーテル結合、カルボニル基などの官能基を有してもよい。ポリアミドは、アミド基の窒素原子に置換基を有してもよい。
 エポキシ樹脂に可溶で水素結合性官能基を有する熱可塑性樹脂の市販品を例示すると、ポリビニルアセタール樹脂として、デンカブチラール(電気化学工業(株)製)、“ビニレック(登録商標)”(チッソ(株)製)、フェノキシ樹脂として、“UCAR(登録商標)”PKHP(ユニオンカーバイド(株)製)、ポリアミド樹脂として“マクロメルト(登録商標)”(ヘンケル白水(株)製)、“アミラン(登録商標)”(東レ(株)製)、ポリイミドとして“ウルテム(登録商標)”(SABICイノベーティブプラスチックスジャパン合同会社製)、“Matrimid(登録商標)”5218(チバ(株)製)、ポリスルホンとして“スミカエクセル(登録商標)”(住友化学(株)製)、“UDEL(登録商標)”、RADEL(登録商標)”(以上、ソルベイアドバンストポリマーズ(株)製)、ポリビニルピロリドンとして、“ルビスコール(登録商標)”(ビーエーエスエフジャパン(株)製)を挙げることができる。
 また、アクリル樹脂は、エポキシ樹脂との相溶性が高く、増粘等の流動性調整のために好適に用いられる。アクリル樹脂の市販品を例示すると、“ダイヤナール(登録商標)”BRシリーズ(三菱レイヨン(株)製)、“マツモトマイクロスフェアー(登録商標)”M,M100,M500(松本油脂製薬(株)製)、“Nanostrength(登録商標)”E40F、M22N、M52N(アルケマ(株)製)などを挙げることができる。
 特に、OHTを高めることができ、本発明のサイジング剤塗布炭素繊維束の特性を最大限発揮させられることから、ポリエーテルスルホンやポリエーテルイミドが好適である。ポリエーテルスルホンとしては、“スミカエクセル”(登録商標)3600P、“スミカエクセル”(登録商標)5003P、“スミカエクセル”(登録商標)5200P、“スミカエクセル”(登録商標、以上、住友化学工業(株)製)7200P、“Virantage”(登録商標)PESU VW-10200、“Virantage”(登録商標)PESU VW-10700(登録商標、以上、ソルベイアドバンスポリマーズ(株)製)、“Ultrason”(登録商標)2020SR(BASF(株)製)、ポリエーテルイミドとしては、“ウルテム”(登録商標)1000、“ウルテム”(登録商標)1010、“ウルテム”(登録商標)1040(以上、SABICイノベーティブプラスチックスジャパン合同会社製)などを使用することができる。
 熱可塑性樹脂は、特に含浸性を中心としたプリプレグ作製工程に支障をきたさないように、エポキシ樹脂組成物中に均一溶解しているか、粒子の形態で微分散していることが好ましい。
 また、熱可塑性樹脂の配合量は、熱可塑性樹脂をエポキシ樹脂組成物中に溶解せしめる場合には、エポキシ樹脂100質量部に対して6~40質量部が好ましく、より好ましくは6~25質量部である。一方、熱可塑性樹脂をエポキシ樹脂組成物中に分散させて用いる場合には、エポキシ樹脂100質量部に対して10~40質量部が好ましく、より好ましくは15~30質量部である。熱可塑性樹脂がかかる配合量に満たなくても、超えても、OHTが低下する場合がある。
 次に、本発明のプリプレグの好適な製造方法について説明する。本発明のプリプレグは、マトリックス樹脂を、サイジング剤を塗布した炭素繊維束(サイジング剤塗布炭素繊維束)に含浸せしめたものである。プリプレグは、例えば、マトリックス樹脂をメチルエチルケトンやメタノールなどの溶媒に溶解して低粘度化し、含浸させるウェット法、あるいは加熱によりマトリックス樹脂を低粘度化し、含浸させるホットメルト法などの方法により製造することができる。
 ウェット法では、サイジング剤塗布炭素繊維束をマトリックス樹脂が含まれる液体に浸漬した後、引き上げ、オーブンなどを用いて溶媒を蒸発させてプリプレグを得ることができる。
 また、ホットメルト法では、加熱により低粘度化したマトリックス樹脂を直接サイジング剤塗布炭素繊維束に含浸させる方法、あるいは一旦マトリックス樹脂を離型紙などの上にコーティングしたフィルムをまず作製し、ついでサイジング剤塗布炭素繊維束の両側あるいは片側から該フィルムを重ね、加熱加圧してマトリックス樹脂をサイジング剤塗布炭素繊維束に含浸させる方法により、プリプレグを製造することができる。ホットメルト法は、プリプレグ中に残留する溶媒がないため好ましい手段である。
 本発明のプリプレグを用いて炭素繊維強化複合材料を成形するには、プリプレグを積層後、積層物に圧力を付与しながらマトリックス樹脂を加熱硬化させる方法などを用いることができる。本発明のプリプレグは、航空機部材、宇宙機部材、自動車部材および船舶部材をはじめとして、ゴルフシャフトや釣竿等のスポーツ用途およびその他一般産業用途に好適に用いられる。
 本明細書に記載の各種物性値の測定方法は以下の通りである。
(A)サイジング剤塗布炭素繊維束のサイジング剤表面のX線光電子分光法による測定
 サイジング剤塗布繊維のサイジング剤表面の前記(a)、(b)のピーク比は、X線光電子分光法により、次の手順に従って求めた。サイジング剤塗布炭素繊維束を20mmにカットして、銅製の試料支持台に拡げて並べた後、X線源としてAlKα1,2を用い、試料チャンバー中を1×10-8Torrに保ち測定を行った。測定時の帯電に伴うピークの補正として、まずC1sの主ピークの結合エネルギー値を286.1eVに合わせた。この時に、C1sのピーク面積は282~296eVの範囲で直線ベースラインを引くことにより求めた。また、C1sピークにて面積を求めた282~296eVの直線ベースラインを光電子強度の原点(零点)と定義して、(b)C-O成分に帰属される結合エネルギー286.1eVのピークの高さ(cps:単位時間あたりの光電子強度)と(a)CHx、C-C、C=Cに帰属される結合エネルギー284.6eVの成分の高さ(cps)を求め、両者のピークの高さの比(a)/(b)を算出した。
 なお、(b)より(a)のピークが大きい場合には、C1sの主ピークの結合エネルギー値を286.1に合わせた場合、C1sのピークが282~296eVの範囲に入らない。その場合には、C1sの主ピークの結合エネルギー値を284.6eVに合わせた後、上記手法にて(a)/(b)を算出した。
 (B)炭素繊維束のストランド引張強度とストランド弾性率
 炭素繊維束のストランド引張強度とストランド弾性率は、JIS-R-7608(2004)の樹脂含浸ストランド試験法に準拠し、次の手順に従い求めた。使用する樹脂としては、“セロキサイド(登録商標)”2021P(ダイセル化学工業社製)/3フッ化ホウ素モノエチルアミン(東京化成工業(株)製)/アセトン=100/3/4(質量部)を用い、硬化条件としては、常圧、温度125℃、時間30分を用いた。炭素繊維束のストランド10本を測定し、その平均値をストランド引張強度およびストランド弾性率とした。
 (C)炭素繊維の表面酸素濃度(O/C)
 炭素繊維の表面酸素濃度(O/C)は、次の手順に従いX線光電子分光法により求めた。まず、溶媒を用いて表面に付着している汚れを除去した炭素繊維を、約20mmにカットし、銅製の試料支持台に拡げる。次に、試料支持台を試料チャンバー内にセットし、試料チャンバー中を1×10-8Torrに保った。続いて、X線源としてAlKα1,2 を用い、光電子脱出角度を90°として測定を行った。なお、測定時の帯電に伴うピークの補正値としてC1sのメインピーク(ピークトップ)の結合エネルギー値を286.1eVに合わせた。C1sピーク面積は282~296eVの範囲で直線のベースラインを引くことにより求めた。また、O1sピーク面積は528~540eVの範囲で直線のベースラインを引くことにより求めた。ここで、表面酸素濃度とは、上記のO1sピーク面積とC1sピーク面積の比から装置固有の感度補正値を用いて原子数比として算出したものである。X線光電子分光法装置として、アルバック・ファイ(株)製ESCA-1600を用い、上記装置固有の感度補正値は2.33であった。
 (D)フラグメンテーション法
 フラグメンテーション法による繊維破断数の測定は、次の(i)~(v)の手順で行った。
(i)樹脂の調整
 ビスフェノールA型エポキシ樹脂化合物“エポトートYD-128”(新日鐵化学(株)製)190質量部とジエチレントリアミン(和光純薬工業(株)製)20.7質量部を容器に入れてスパチュラでかき混ぜ、自動真空脱泡装置を用いて脱泡した。
 (ii)炭素繊維単繊維のサンプリングとモールドへの固定
 20cm程度の長さの炭素繊維束をほぼ4等分し、4つの束から順番に単繊維をサンプリングした。このとき、束全体からできるだけまんべんなくサンプリングした。次に、穴あき台紙の両端に両面テープを貼り、サンプリングした単繊維に一定張力を与えた状態で穴あき台紙に単繊維を固定した。次に、ポリエステルフィルム“ルミラー (登録商標) ”(東レ(株)製)を貼り付けたガラス板を用意して、試験片の厚さを調整するための2mm厚のスペーサーをフィルム上に固定した。そのスペーサー上に単繊維を固定した穴あき台紙を置き、さらにその上に、同様にフィルムを貼り付けたガラス板をフィルムが貼り付いた面を下向きにセットした。このときに繊維の埋め込み深さを制御するために、厚み70μm程度のテープをフィルムの両端に貼り付けた。
 (iii)樹脂の注型から硬化まで
 上記(ii)の手順のモールド内(スペーサーとフィルムに囲まれた空間)に上記(i)の手順で調整した樹脂を流し込んだ。樹脂を流し込んだモールドを、あらかじめ50℃に昇温させたオーブンを用いて5時間加熱後、降温速度2.5℃/分で30℃の温度まで降温した。その後、脱型、カットをして2cm×7.5cm×0.2cmの試験片を得た。このとき、試験片幅の中央0.5cm幅内に単繊維が位置するように試験片をカットした。
 (iv)繊維埋め込み深さ測定
 上記(iii)の手順で得られた試験片に対して、レーザーラマン分光光度計(日本分光 NRS-3000)のレーザーと532nmノッチフィルターを用いて繊維の埋め込み深さ測定を行った。まず、単繊維表面にレーザーを当て、レーザーのビーム径が最も小さくなるようにステージ高さを調整し、そのときの高さをA(μm)とする。次に試験片表面にレーザーを当て、レーザーのビーム径が最も小さくなるようにステージ高さを調整し、そのときの高さをB(μm)とする。繊維の埋め込み深さd(μm)は上記レーザーを使用して測定した樹脂の屈折率1.732を用いて、以下の式で計算した。
d=(A-B)×1.732
 (v)4点曲げ試験
 上記(iii)の手順で得られた試験片に対して、外側圧子50mm間隔、内側圧子20mm間隔の治具を用いて4点曲げで引張り歪みを負荷した。ステップワイズに0.1%毎に歪みを与え、偏光顕微鏡により試験片を観察し、試験片長手方向の中心部10mmの範囲の単繊維の破断数を測定した。測定した破断数を10で除した値を繊維破断数(個/mm)とした。また、試験片の中心から幅方向に約5mm離れた位置に貼り付けた歪みゲージを用いて歪みε(%)を測定した。最終的な単繊維コンポジットの歪みεcは、歪みゲージのゲージファクターκ、上記(iv)の手順で測定した繊維埋め込み深さd(μm)、残留歪み0.14(%)を考慮して以下の式で計算した。
ε=ε×(2/κ)×(1000-d)/1000-0.14
なお、試験のn数は30とした。
 (E)炭素繊維の単繊維弾性率
 炭素繊維の単繊維弾性率は、JIS R7606(2000年)に基づいて、以下の通りにして求める。つまり、まず、20cm程度の炭素繊維の束をほぼ4等分し、4つの束から順番に単糸をサンプリングして束全体からできるだけまんべんなくサンプリングする。サンプリングした単糸は、穴あき台紙に接着剤を用いて固定する。単糸を固定した台紙を引張試験機に取り付け、ゲージ長50mm、歪速度2mm/分、試料数20で引張試験をおこなう。弾性率は以下の式で定義される。
弾性率=(得られる強力)/(単繊維の断面積×得られる伸度)
単繊維の断面積は、測定する繊維束について、単位長さ当たりの質量(g/m)を密度(g/m)で除して、さらにフィラメント数で除して求める。密度は、比重液をo-ジクロロエチレンとしてアルキメデス法で測定した。
 (F)有孔板引張強度
 ASTM D5766(Open-hole Tensile Strength of Polymer Matrix Composite Laminates)に準拠して行った。
a.テストコンディション
・室温条件(RTD): 69°F(20.6℃) ±5°F
・低温条件(LTD): -75°F(-59.4℃)  ±5°F
b.積層構成
16ply(45/90/-45/0)2s
c.成形コンディション
 プリプレグを所定の大きさにカットし、上述bの構成となるように積層した後、得られた積層物をバギングフィルムで覆い、積層物内を脱気しながら、オートクレーブを用いて昇温速度1.5℃/minで180℃まで昇温して圧力6気圧で2時間かけて硬化させ、擬似等方強化材(炭素繊維複合材料)を得た。
d.サンプルサイズ
Dimensions: 長さ308mm×幅38.1mm×厚み4.5mm。
 (G)引き裂き可能距離
 引き裂き可能距離の測定方法を図1に示す。繊維束1を1160mmの長さにカットし、その一端2を水平な台上に粘着テープで動かないように固定する(この点を固定点Aと呼ぶ)。該繊維束の固定していない方の一端3を指で2分割し、その一方を緊張させた状態で台上に粘着テープで動かないように固定する(この点を固定点Bと呼ぶ)。2分割した繊維束の一端の他方を、固定点Aを支点として弛みが出ないよう台上に沿って動かし、固定点Bからの直線距離が500mmの位置4で静止させ、台上に粘着テープで動かないように固定する(この点を固定点Cと呼ぶ)。固定点A、B、Cで囲まれた領域を目視で観察し、固定点Aから最も遠い交絡点5を見つけ、固定点Aと固定点Bで結ばれる直線上に投影した距離を最低目盛りが1mmの定規で読み取り、引き裂き可能距離6とする。この測定を30回繰り返し、測定値の算術平均値を平均引き裂き可能距離とする。本測定方法において、固定点Aから最も遠い交絡点とは、固定点Aからの直線距離が最も遠く、かつ弛みのない3本以上の単繊維が交絡している点のことである。
 (H)フックドロップ法による交絡度(CF値)
 フックドロップ法による繊維束の交絡度は、JIS L1013(2010年)に基づいて、以下の通りにして求める。すなわち、測定に供する繊維束を垂下装置の上部にクリップで固定し、繊維束下端にクリップで50gの錘をぶらさげ、試料を垂直にたらす。試料上部固定端から1cm下に、繊維束を2分割するように、直径0.6mmの表面を滑らかに仕上げた重さ10gのフックを挿入し、その降下距離を50回測定し、その算術平均値より下記式で算出する。
交絡度(CF値)=1000/フック降下距離の50回算術平均値(mm)。
 (I)動摩擦係数
 ポリアクリロニトリル前駆体繊維束同士の動摩擦係数の測定は以下の通りにして求める。直径150mmの円筒に、繊維束が円筒の軸と平行になるように、ポリアクリロニトリル前駆体繊維束を連続で巻き付け、同一試料からなる他の繊維束を、円筒の中央に、先の繊維束との接触角180°になるようにかける。円筒にかけた繊維束の一端に1500g(W)のおもりをつり下げ、糸速2.3m/分で繊維束を走行させ、繊維束の他端の張力(T)を測定し、次式によって繊維束同士の動摩擦係数を求める。
動摩擦係数μ=(T-W)/(T+W)。
 (J)単繊維破断数
 炭素繊維束の単繊維破断数は、以下の通りにして求める。炭素繊維束3.8mを観測し、外部に見える単繊維破断数を全てカウントする。総カウント数を3.8で割って、1mあたりの破断数を算出する。測定は6回行い、6回の平均値を単繊維破断数(個/m)と定義する。
 (K)炭素繊維束の試長10mにおける束強度
 試長10mの束強度は、以下の手順で測定する。1組の駆動ロールを、該ロールの頂点間距離が10mとなるように設置する。測定に供する繊維束を両駆動ロールに掛け、片方の駆動ロールは停止したまま、もう片方の駆動ロールを70mm/分で回転させ、引張試験を行う。引張試験中の繊維束の張力をテンションメーターで測定し、断糸に至るまでの間の最高張力を束強度とする。10回の測定の算術平均値を10mの束強度とした。なお、駆動ロール上で繊維束がスリップしないよう、適宜、接触角、ロール材質を選択する。
 (L)炭素繊維束の結晶子サイズLc
 測定に供する炭素繊維を引き揃え、コロジオン・アルコール溶液を用いて固めることにより、長さ4cm、1辺の長さが1mmの四角柱の測定試料を用意する。用意された測定試料について、広角X線回折装置を用いて、次の条件により測定を行う。
・X線源:CuKα線(管電圧40kV、管電流30mA)
・検出器:ゴニオメーター+モノクロメーター+シンチレーションカウンター
・走査範囲:2θ=10~40°
・走査モード:ステップスキャン、ステップ単位0.02°、計数時間2秒。
 得られた回折パターンにおいて、2θ=25~26°付近に現れるピークについて、半値幅を求め、この値から、次のシェラー(Scherrer)の式により結晶子サイズを算出する。
 結晶子サイズ(nm)=Kλ/βcosθ
 ただし、
 K:1.0、λ:0.15418nm(X線の波長)
 β:(β -β 1/2
 β:見かけの半値幅(測定値)rad、β:1.046×10-2rad
 θ:Braggの回析角。
 上記測定を3回行い、その算術平均を、その炭素繊維の結晶子サイズとする。なお、後述の実施例および比較例においては、上記広角X線回折装置として、島津製作所製XRD-6100を用いる。
 次に、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により制限されるものではない。
 各実施例および各比較例で用いた材料と成分は下記の通りである。
・(C)成分:C-1~C-3
C-1:“デナコール(登録商標)”EX-810(ナガセケムテックス(株)製)
 エチレングリコールのジグリシジルエーテル
 エポキシ当量:113g/mol、エポキシ基数:2
C-2:“デナコール(登録商標)”EX-611(ナガセケムテックス(株)製)
 ソルビトールポリグリシジルエーテル
 エポキシ当量:167g/mol、エポキシ基数:4
 水酸基数:2
C-3:“デナコール(登録商標)”EX-521(ナガセケムテックス(株)製)
 ポリグリセリンポリグリシジルエーテル
 エポキシ当量:183g/mol、エポキシ基数:3以上。
 ・(D)成分:D-1~D-3
D-1:“jER(登録商標)”828(三菱化学(株)製)
 ビスフェノールAのジグリシジルエーテル
 エポキシ当量:189g/mol、エポキシ基数:2
D-2:“jER(登録商標)”1001(三菱化学(株)製)
 ビスフェノールAのジグリシジルエーテル
 エポキシ当量:475g/mol、エポキシ基数:2
D-3:“jER(登録商標)”807(三菱化学(株)製)
 ビスフェノールFのジグリシジルエーテル
 エポキシ当量:167g/mol、エポキシ基数:2。
 ・(A)成分:A-1~A-3
A-1:“スミエポキシ(登録商標)”ELM434(住友化学(株)製)
 テトラグリシジルジアミノジフェニルメタン
 エポキシ当量:120g/mol
A-2:“jER(登録商標)”828(三菱化学(株)製)
 ビスフェノールAのジグリシジルエーテル
 エポキシ当量:189g/mol
A-3:GAN(日本化薬(株)製)
 N-ジグリシジルアニリン
・(B)成分: 
 “セイカキュア(登録商標)”S(4,4’-ジアミノジフェニルスルホン、和歌山精化(株)製)
・熱可塑性樹脂
“スミカエクセル(登録商標)”5003P(住友化学(株)製)
 ポリエーテルスルホン。
 (実施例1~16、比較例1~26)
 本実施例は、次の第Iの工程:原料となる炭素繊維を製造する工程、第IIの工程:炭素繊維の表面処理を行う工程、第IIIの工程:サイジング剤を炭素繊維に付着させる工程および第IVの工程:プリプレグの作製からなる。
 ・第Iの工程
 アクリロニトリル99.5mol%とイタコン酸0.5mol%からなるモノマー混合物を、ジメチルスルホキシドを溶媒とし、2,2’-アゾビスイソブチロニトリルを開始剤として溶液重合法により重合させ、重量平均分子量70万、Mz/Mwが1.8のポリアクリロニトリル共重合体を製造した。製造されたポリアクリロニトリル重合体に、アンモニアガスをpH8.5になるまで吹き込み、重合体濃度が15質量%になるように調整して、紡糸溶液を得た。得られた紡糸溶液を、40℃で、直径0.15mm、孔数6,000の紡糸口金を用い、一旦空気中に吐出し、約4mmの空間を通過させた後、3℃にコントロールした35%ジメチルスルホキシドの水溶液からなる凝固浴に導入する乾湿式紡糸法により凝固糸条を得た。この凝固糸条を、常法により水洗した後、2槽の温水浴中で、3.5倍の延伸を行った。続いて、この水浴延伸後の繊維束に対して、アミノ変性シリコーン系シリコーン油剤を付与し、160℃の加熱ローラーを用いて、乾燥緻密化処理を行った。続いて、2糸条を合糸し、単繊維本数12000本としてから、加圧スチーム中で3.7倍延伸することにより、製糸全延伸倍率を13倍とし、その後交絡処理を行って単繊維繊度0.7dtex、単繊維本数12000本のポリアクリロニトリル前駆体繊維を得た。ここで、交絡処理とは、繊維束長手方向と流体の吹き付け方向の成す角が90°で、かつ繊維束を取り囲むように8個の噴出孔を配置し、各々の噴出孔が2孔で1組となるよう対向する位置に配置した流体吹きつけノズルを用い、流体として空気を用い、繊維束の張力が3mN/dtexの状態に調節し、かつ、流体の吐出圧力を0.35MPaに設定して行った。次に、温度240~260℃の空気中において、延伸比1で延伸しながら耐炎化処理し、比重1.35~1.36の耐炎化繊維束を得た。得られた耐炎化繊維束を、温度300~800℃の窒素雰囲気中において、延伸比1.15で延伸しながら予備炭素化処理を行い、予備炭素化繊維束を得た。得られた予備炭素化繊維束を、窒素雰囲気中において、最高温度1500℃で、5.5mN/dtexの張力で炭素化処理を行い、炭素繊維を得た。これを炭素繊維Aとした。
 ポリアクリロニトリル前駆体繊維の交絡処理を行わない以外は炭素繊維Aと同様にして炭素繊維を得た。これを炭素繊維Bとした。
 溶液重合時に開始剤の量や投入タイミングを調整することで、ポリアクリロニトリル共重合体の重量平均分子量40万、Mz/Mwが3.5、重合体濃度が19%の紡糸溶液を得て、それを用いた以外は炭素繊維Aと同様にして炭素繊維を得た。これを炭素繊維Cとした。
 ポリアクリロニトリル前駆体繊維の交絡処理を行わない以外は炭素繊維Cと同様にして炭素繊維を得た。これを炭素繊維Dとした。
 上記炭素繊維A~D以外に、市販されている”TORAYCA(登録商標)”T800S-24k-10E、”TORAYCA(登録商標)”T700S-24k-50E(東レ(株)製)、”Hextow(登録商標)”IM-10(Hexcel社製)、”Hextow(登録商標)”IM-9(Hexcel社製)、”TENAX(登録商標) ”IM600(東邦テナックス社製)も用いて解析を行った。
 ・第IIの工程
 第Iの工程で得た炭素繊維を、濃度0.1モル/lの炭酸水素アンモニウム水溶液を電解液として、電気量を炭素繊維1g当たり80クーロンで電解表面処理した。この電解表面処理を施された炭素繊維を水洗し、150℃の温度の加熱空気中で乾燥し、表面処理された炭素繊維を得た。この表面処理を表面処理Aとした。このときの表面酸素濃度O/Cは、0.15であった。
 第Iの工程で得た炭素繊維を、濃度0.1モル/lの炭酸水素アンモニウム水溶液を電解液として、電気量を炭素繊維1g当たり500クーロンで電解表面処理した。この電解表面処理を施された炭素繊維を続いて水洗し、150℃の温度の加熱空気中で乾燥し、表面処理された炭素繊維を得た。この表面処理を表面処理Bとした。このときの表面酸素濃度O/Cは、0.22であった。
 第Iの工程で得た炭素繊維を、濃度0.1モル/lの硫酸水溶液を電解液として、電気量を炭素繊維1g当たり80クーロンで電解表面処理した。この電解表面処理を施された炭素繊維を続いて水洗し、150℃の温度の加熱空気中で乾燥し、表面処理された炭素繊維を得た。この表面処理を表面処理Cとした。このときの表面酸素濃度O/Cは、0.20であった。
 第Iの工程で得た炭素繊維を、濃度0.1モル/lの硝酸水溶液を電解液として、電気量を炭素繊維1g当たり80クーロンで電解表面処理した。この電解表面処理を施された炭素繊維を続いて水洗し、150℃の温度の加熱空気中で乾燥し、表面処理された炭素繊維を得た。この表面処理を表面処理Dとした。このときの表面酸素濃度O/Cは、0.14であった。
 第Iの工程で得た炭素繊維を表面処理しなかったとき、便宜上、表面処理Eと呼ぶ。このときの表面酸素濃度O/Cは、0.02であった。
 ・第IIIの工程
 (D)成分としてD-1を10質量部とD-2を10質量部、ビスフェノールAのEO2モル付加物2モルとマレイン酸1.5モルおよびセバチン酸0.5モルの縮合物を20質量部および乳化剤としてポリオキシエチレン(70モル)スチレン化(5モル)クミルフェノールを10質量部からなる水分散エマルジョンを調合した後、(C)成分としてC-3を50質量部混合してサイジング液を調合した。このサイジング剤を浸漬法により、第IIの工程で得られた表面処理された炭素繊維に塗布した後、210℃の温度で75秒間熱処理をして、サイジング剤塗布炭素繊維束を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して1.0質量部となるように調整した。これをサイジング剤Aとした。サイジング剤表面を光電子脱出角度15°でX線光電子分光法によって測定されるC1s内殻スペクトルの(a)CHx、C-C、C=Cに帰属される結合エネルギー(284.6eV)の成分の高さ(cps)と(b)C-Oに帰属される結合エネルギー(286.1eV)の成分の高さ(cps)の比率(a)/(b)は0.67であった。
 サイジング剤の付着量を、表面処理された炭素繊維100質量部に対して0.2質量部となるように調整した以外はサイジング剤Aと同様にして、サイジング剤塗布炭素繊維束を得た。これをサイジング剤Bとした。比率(a)/(b)は0.67であった。
 サイジング剤の付着量を、表面処理された炭素繊維100質量部に対して2.0質量部となるように調整した以外はサイジング剤Aと同様にして、サイジング剤塗布炭素繊維束を得た。これをサイジング剤Cとした。比率(a)/(b)は0.67であった。
 第IIの工程で得られた表面処理された炭素繊維にサイジング剤を塗布しなかったものを、便宜上、サイジング剤Dと呼ぶ。
 D-1、D-2成分、ビスフェノールAのEO2モル付加物2モルとマレイン酸1.5モルおよびセバチン酸0.5モルの縮合物、C-3成分を10:10:20:50から22.5:22.5:45:0に変更した以外はサイジング剤Aと同様に行った。これをサイジング剤Eとした。かかる比率(a)/(b)は0.99であった。
 D-1成分、D-2成分、ビスフェノールAのEO2モル付加物2モルとマレイン酸1.5モル、セバチン酸0.5モルの縮合物、C-1成分、C-3成分、乳化剤の量を10質量部:10質量部:20質量部:0:50質量部:10質量部から0:0:0:50質量部:50質量部:0に変更した以外はサイジング剤Aと同様にして、サイジング剤塗布炭素繊維束を得た。これをサイジング剤Fとした。比率(a)/(b)は0.26であった。
 D-2成分をD-3成分に変更した以外はサイジング剤Aと同様にして、サイジング剤塗布炭素繊維束を得た。これをサイジング剤Gとした。比率(a)/(b)は0.63であった。
 D-1成分、D-2成分、ビスフェノールAのEO2モル付加物2モルとマレイン酸1.5モルおよびセバチン酸0.5モルの縮合物、C-1成分、C-3成分、乳化剤の量を0:0:0:50質量部:50質量部:0から20質量部:0:20質量部:25質量部:25質量部:10質量部に変更した以外はサイジング剤Eと同様にして、サイジング剤塗布炭素繊維束を得た。これをサイジング剤Hとした。比率(a)/(b)は0.60であった。
 C-1成分をC-2成分に変更した以外はサイジング剤H同様にして、サイジング剤塗布炭素繊維束を得た。これをサイジング剤Iとした。かかる比率(a)/(b)は0.62であった。
 続いて、前記のようにしてサイジング剤塗布炭素繊維束のストランド強度試験、単繊維弾性率試験を実施した。また、使用条件を想定した加速試験として、サイジング剤塗布炭素繊維束を温度70℃、湿度95%で3日保管後、サイジング剤塗布炭素繊維束のフラグメンテーション試験を実施した。結果を表1にまとめた。
 ・第IVの工程
 混練装置で、(A)成分として(A-1)を35質量部と(A-2)を35質量部および(A-3)を30質量部、および、熱可塑性樹脂として14質量部の”スミカエクセル(登録商標)”5003Pを配合して溶解した後、さらに(B)成分である4,4’-ジアミノジフェニルスルホンを40質量部添加して混練し、炭素繊維強化複合材料用のエポキシ樹脂組成物を作製した。これを樹脂組成物Aとした。
 スミカエクセル5003Pの配合量を10質量部から5質量部に変更した以外は樹脂組成物Aと同様に樹脂組成物を得た。これを樹脂組成物Bとした。
 (A-1):(A-2):(A-3):(B)=50質量部:50質量部:0:40質量部と組成比を変更した以外は樹脂組成物Aと同様に樹脂組成物を得た。これを樹脂組成物Cとした。
 得られた樹脂組成物を、ナイフコーターを用いて樹脂目付52g/mで離型紙上にコーティングし、樹脂フィルムを作製した。この樹脂フィルムを、一方向に引き揃えたサイジング剤塗布炭素繊維束(目付190g/m)の両側に重ね合せてヒートロールを用い、温度100℃、気圧1気圧で加熱加圧しながら脂組成物をサイジング剤塗布炭素繊維束に含浸させ、プリプレグを得た。実際の使用条件を想定して、プリプレグを温度25℃、湿度60%で20日保管後、複合材料を成形してOHT試験を実施した。その結果を表2に示す。
 工程I~IIIにおいて、表1に示すように製造したサイジング剤塗布炭素繊維束の評価結果を表1に、実施例1(Carbon fibre A)、比較例2(Carbon fibre C)、比較例3(Carbon fibre D)のフラグメンテーション試験結果を図2に示す。また、表1に示されるサイジング剤塗布炭素繊維束とマトリックス樹脂を組み合わせて製造したプリプレグの評価結果を表2に示す。表1と表2から判断すると、ストランド強度が高いほど、単繊維見掛け応力が6.8GPaのときの繊維破断数が少ない傾向にあるとわかった。また、単繊維見掛け応力12.2GPaのときの繊維破断数が少ないほど、特に低温試験でのOHTが高い傾向にあるとわかった。市販されているプリプレグの中でOHT(室温条件)のカタログ値の最も大きい“Hexply(登録商標)”IM-10/M91であっても600MPa(=88ksi)程度であり、それに用いられている“Hextow(登録商標)”IM-10のフラグメンテーション試験結果から考えると妥当なOHTである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 [実施例17]
 アクリロニトリル99.4mol%とイタコン酸0.6mol%からなるモノマー混合物を、ジメチルスルホキシドを溶媒とし、2,2’-アゾビスイソブチロニトリルを開始剤として溶液重合法により重合させ、ポリアクリロニトリル共重合体を製造した。製造されたポリアクリロニトリル重合体に、アンモニアガスをpH9.0になるまで吹き込み、イタコン酸を中和しつつ、アンモニウム基をポリアクリロニトリル共重合体に導入し、極限粘度が3.4(重量平均分子量で90万)である紡糸溶液を得た。得られた紡糸溶液を、30℃で、直径0.10mm、孔数6,000の紡糸口金を用い、一旦空気中に吐出し、約4mmの空間を通過させた後、0℃にコントロールした35%ジメチルスルホキシドの水溶液からなる凝固浴に導入する乾湿式紡糸法により凝固糸条を得た。この凝固糸条を、常法により水洗した後、4槽の温水浴中で第1浴から10℃ずつ昇温して、第4浴の温度を95℃とした。またこのときトータルの延伸倍率は2.5倍とした。続いて、この水浴延伸後の繊維束に対して、アミノ変性シリコーン系シリコーン油剤を付与し、160℃の加熱ローラーを用いて、乾燥緻密化処理を行い、2糸条を合糸し、単繊維本数12000本としてから、加圧スチーム中で3.7倍延伸することにより、製糸全延伸倍率を13倍とし、その後交絡処理を行って単繊維繊度0.41dtex、単繊維本数12000本のポリアクリロニトリル前駆体繊維を得た。ここで、交絡処理とは、繊維束長手方向と流体の吹き付け方向の成す角が90°で、かつ繊維束を取り囲むように8個の噴出孔を配置し、各々の噴出孔が2孔で1組となるよう対向する位置に配置した流体吹きつけノズルを用い、流体として空気を用い、繊維束の張力が3mN/dtexの状態に調節し、かつ、流体の吐出圧力を0.35MPaに設定して行った。次に、温度250~280℃の空気中において、延伸比1.00で延伸しながら耐炎化処理し、比重1.36g/cmの耐炎化繊維束を得た。得られた耐炎化繊維束を、温度300~800℃の窒素雰囲気中において、延伸比1.10で延伸しながら予備炭素化処理を行い、予備炭素化繊維束を得た。得られた予備炭素化繊維束を、窒素雰囲気中において、最高温度1500℃で、9.8mN/dtexの張力で炭素化処理を行い、炭素繊維を得た。
 得られた炭素繊維を、濃度0.1モル/リットルの炭酸水素アンモニウム水溶液を電解液として、電気量を炭素繊維1g当たり80クーロンで電解表面処理した。この電解表面処理を施された炭素繊維を水洗し、150℃の温度の加熱空気中で乾燥し、表面処理された炭素繊維を得た。
 続いて、“jER(登録商標)”828(三菱化学(株)製)を10質量部、“jER(登録商標)”1001(三菱化学(株)製)を10質量部、ビスフェノールAのEO2モル付加物2モルとマレイン酸1.5モルおよびセバチン酸0.5モルの縮合物を20質量部および乳化剤としてポリオキシエチレン(70モル)スチレン化(5モル)クミルフェノールを10質量部からなる水分散エマルジョンを調合した後、“デナコール(登録商標)”EX-521(ナガセケムテックス(株)製)を50質量部混合してサイジング液を調合した。このサイジング剤を浸漬法により表面処理された炭素繊維に塗布した後、210℃の温度で75秒間熱処理をして、サイジング剤塗布炭素繊維束を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して1.0質量部となるように調整した。得られたサイジング剤塗布炭素繊維束の特性、OHT試験結果を表3にまとめた。
 [実施例18]
 ポリアクリロニトリル前駆体繊維の単繊維繊度が0.26dtexになるように紡糸溶液の吐出量を調整した以外は実施例17と同様にしてサイジング剤塗布炭素繊維束を得た。得られたサイジング剤塗布炭素繊維束の特性、OHT試験結果を表3にまとめた。
 [実施例19]
 ポリアクリロニトリル前駆体繊維の単繊維繊度が0.14dtexになるように紡糸溶液の吐出量を調整した以外は実施例17と同様にしてサイジング剤塗布炭素繊維束を得た。得られたサイジング剤塗布炭素繊維束の特性、OHT試験結果を表3にまとめた。
 [実施例20]
 ポリアクリロニトリル前駆体繊維の単繊維繊度が0.60dtexになるように紡糸溶液の吐出量を調整した以外は実施例17と同様にしてサイジング剤塗布炭素繊維束を得た。得られたサイジング剤塗布炭素繊維束の特性、OHT試験結果を表3にまとめた。
 [実施例21]
 アクリロニトリル99.5mol%とイタコン酸0.5mol%からなるモノマー混合物を、ジメチルスルホキシドを溶媒とし、2,2’-アゾビスイソブチロニトリルを開始剤として溶液重合法により重合させ、重量平均分子量70万、Mz/Mwが1.8のポリアクリロニトリル共重合体を製造した。製造されたポリアクリロニトリル重合体に、アンモニアガスをpH8.5になるまで吹き込み、重合体濃度が15質量%になるように調整して、紡糸溶液を得た。得られた紡糸溶液を、40℃で、直径0.15mm、孔数6,000の紡糸口金を用い、一旦空気中に吐出し、約4mmの空間を通過させた後、3℃にコントロールした35%ジメチルスルホキシドの水溶液からなる凝固浴に導入する乾湿式紡糸法により凝固糸条を得た。この凝固糸条を、常法により水洗した後、2槽の温水浴中で、3.5倍の延伸を行った。続いて、この水浴延伸後の繊維束に対して、アミノ変性シリコーン系シリコーン油剤を付与し、160℃の加熱ローラーを用いて、乾燥緻密化処理を行った。続いて、2糸条を合糸し、単繊維本数12000本としてから、加圧スチーム中で3.7倍延伸することにより、製糸全延伸倍率を13倍とし、その後交絡処理を行って単繊維繊度0.70dtex、単繊維本数12000本のポリアクリロニトリル前駆体繊維を得た。ここで、交絡処理とは、繊維束長手方向と流体の吹き付け方向の成す角が90°で、かつ繊維束を取り囲むように8個の噴出孔を配置し、各々の噴出孔が2孔で1組となるよう対向する位置に配置した流体吹きつけノズルを用い、流体として空気を用い、繊維束の張力が3mN/dtexの状態に調節し、かつ、流体の吐出圧力を0.35MPaに設定して行った。次に、温度240~260℃の空気中において、延伸比1で延伸しながら耐炎化処理し、比重1.35~1.36の耐炎化繊維束を得た。得られた耐炎化繊維束を、温度300~800℃の窒素雰囲気中において、延伸比1.15で延伸しながら予備炭素化処理を行い、予備炭素化繊維束を得た。得られた予備炭素化繊維束を、窒素雰囲気中において、最高温度1500℃で、5.5mN/dtexの張力で炭素化処理を行い、炭素繊維を得た。
 得られた炭素繊維を、濃度0.1モル/リットルの炭酸水素アンモニウム水溶液を電解液として、電気量を炭素繊維1g当たり80クーロンで電解表面処理した。この電解表面処理を施された炭素繊維を水洗し、150℃の温度の加熱空気中で乾燥し、表面処理された炭素繊維を得た。
 続いて、(A)成分を20質量部、ビスフェノールAのEO2モル付加物2モルとマレイン酸1.5モルおよびセバチン酸0.5モルの縮合物を20質量部および乳化剤としてポリオキシエチレン(70モル)スチレン化(5モル)クミルフェノールを10質量部からなる水分散エマルジョンを調合した後、(B)成分を50質量部混合してサイジング液を調合した。このサイジング剤を浸漬法により表面処理された炭素繊維に塗布した後、210℃の温度で75秒間熱処理をして、サイジング剤塗布炭素繊維束を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して1.0質量部となるように調整した。得られたサイジング剤塗布炭素繊維束の特性、OHT試験結果を表3にまとめた。
 [実施例22]
 ポリアクリロニトリル前駆体繊維の単繊維繊度が0.62dtexになるように紡糸溶液の吐出量を調整した以外は実施例21と同様にしてサイジング剤塗布炭素繊維束を得た。得られたサイジング剤塗布炭素繊維束の特性、OHT試験結果を表3にまとめた。
 [比較例27]
 サイジング剤について、“jER(登録商標)”828(三菱化学(株)製)、“jER(登録商標)”1001(三菱化学(株)製)、ビスフェノールAのEO2モル付加物2モルとマレイン酸1.5モルおよびセバチン酸0.5モルの縮合物、“デナコール(登録商標)”EX-521(ナガセケムテックス(株)製)の量を10質量部:10質量部:20質量部:50質量部から22.5質量部:22.5質量部:45質量部:0に変更した以外は実施例17と同様にしてサイジング剤塗布炭素繊維束を得た。得られたサイジング剤塗布炭素繊維束の特性、OHT試験結果を表3にまとめた。
 [比較例28]
 ポリアクリロニトリル前駆体繊維の単繊維繊度が0.14dtexになるように紡糸溶液の吐出量を調整した以外は比較例27と同様にしてサイジング剤塗布炭素繊維束を得た。得られたサイジング剤塗布炭素繊維束の特性、OHT試験結果を表3にまとめた。
 [比較例29]
 ポリアクリロニトリル前駆体繊維の製造工程において、交絡処理を行わない以外は実施例19と同様にしてサイジング剤塗布炭素繊維束を得た。得られたサイジング剤塗布炭素繊維束の特性、OHT試験結果を表3にまとめた。
 [比較例30]
 ポリアクリロニトリル前駆体繊維の製造工程において、交絡処理を行わない以外は実施例19と同様にしてサイジング剤塗布炭素繊維束を得た。得られたサイジング剤塗布炭素繊維束の特性、OHT試験結果を表3にまとめた。
 [比較例31]
 市販されている“Torayca(登録商標)”T800S(東レ社製)を用いて解析を行った。炭素繊維束の特性を表3にまとめた。
 [比較例32]
 市販されている“TENAX(登録商標) ”IM600(東邦テナックス社製)を用いて解析を行った。炭素繊維束の特性を表3にまとめた。
 表3から判断すると、ストランド強度が高いほど、単繊維見掛け応力が10.0GPaのときの繊維破断数が少ない傾向にあるとわかった。また、単繊維見掛け応力12.2GPaのときの繊維破断数が少ないほど、特に低温試験でのOHTが高い傾向にあるとわかった。市販されているプリプレグの中でOHT(室温条件)のカタログ値の最も大きい“Hexply(登録商標)”IM-10/M91であっても600MPa(=88ksi)程度であった。
Figure JPOXMLDOC01-appb-T000003
 [実施例23]
 アクリロニトリル99.5mol%とイタコン酸0.5mol%からなるモノマー混合物を、ジメチルスルホキシドを溶媒とし、2,2’-アゾビスイソブチロニトリルを開始剤として溶液重合法により重合させ、ポリアクリロニトリル共重合体を製造した。製造されたポリアクリロニトリル重合体に、アンモニアガスをpH8.5になるまで吹き込み、イタコン酸を中和しつつ、アンモニウム基をポリアクリロニトリル共重合体に導入し、紡糸原液を得た。得られた紡糸原液を、40℃で、直径0.15mm、孔数6,000の紡糸口金を用い、一旦空気中に吐出し、約4mmの空間を通過させた後、3℃にコントロールした35%ジメチルスルホキシドの水溶液からなる凝固浴に導入する乾湿式紡糸法により凝固糸条を得た。この凝固糸条を、常法により水洗した後、2槽の温水浴中で、3.5倍の延伸を行った。続いて、この水浴延伸後の繊維束に対して、流体として空気を用い、表4記載の条件で流体交絡処理を行った後に、アミノ変性シリコーン系シリコーン油剤を付与し、160℃の加熱ローラーを用いて、乾燥緻密化処理を行い、次いで、加圧スチーム中で3.7倍延伸することにより、製糸全延伸倍率を13倍とし、単繊維繊度0.7dtex、単繊維本数6000本のポリアクリロニトリル前駆体繊維束を得た。次に、得られたアクリル繊維を2本合糸し、単繊維本数12000本とし、温度240~260℃の空気中において、延伸比1で延伸しながら耐炎化処理し、比重1.35~1.36の耐炎化繊維束を得た。得られた耐炎化繊維束を、温度300~800℃の窒素雰囲気中において、延伸比1.15で延伸しながら予備炭素化処理を行い、予備炭素化繊維束を得た。得られた予備炭素化繊維束を、窒素雰囲気中において、最高温度1500℃で、表5記載の張力で炭素化処理を行い、炭素繊維を得た。得られた炭素繊維を、濃度0.1モル/lの硫酸水溶液を電解液として電解表面処理し、水洗、150℃で乾燥した後、サイジング剤を付与し、良好な品位であり実質的に無撚りのサイジング剤塗布炭素繊維束を得た。製造条件、得られた炭素繊維束の特性などを表4、5にまとめた。
 [実施例24]
 炭素化処理における炭素化張力を14.7mN/dtexに変更した以外は、実施例23と同様にしてサイジング剤塗布炭素繊維束を得た。得られた炭素繊維束の単繊維破断数は少なく品位が良好であり、ストランド弾性率は364GPaに向上した。製造条件、得られた炭素繊維束の特性などを表4、5にまとめた。
 [実施例25]
 炭素化処理における炭素化張力を18.6mN/dtexに変更した以外は、実施例23と同様にしてサイジング剤塗布炭素繊維束を得た。得られた炭素繊維束の単繊維破断数は少なく品位が良好であり、ストランド弾性率は378GPaに向上した。製造条件、得られた炭素繊維束の特性などを表4、5にまとめた。
 [比較例33]
 ポリアクリロニトリル前駆体繊維の流体交絡処理を行わなかった以外は、実施例23と同様にしてサイジング剤塗布炭素繊維束を得た。得られた炭素繊維束の単繊維破断数は増加して品位は大きく低下し、ストランド強度は5500MPaに低下した。製造条件、得られた炭素繊維束の特性などを表4、5にまとめた。
 [比較例34]
 アクリロニトリル99.5mol%とイタコン酸0.5mol%からなるモノマー混合物を、ジメチルスルホキシドを溶媒とし、2,2’-アゾビスイソブチロニトリルを開始剤として溶液重合法により重合させ、ポリアクリロニトリル共重合体を製造した。製造されたポリアクリロニトリル重合体に、アンモニアガスをpH8.5になるまで吹き込み、イタコン酸を中和しつつ、アンモニウム基をポリアクリロニトリル共重合体に導入し、紡糸原液を得た。得られた紡糸原液を、40℃で、直径0.15mm、孔数6000の紡糸口金を用い、一旦空気中に吐出し、約4mmの空間を通過させた後、3℃にコントロールした35%ジメチルスルホキシドの水溶液からなる凝固浴に導入する乾湿式紡糸法により凝固糸条を得た。この凝固糸条を、常法により水洗した後、2槽の温水浴中で、3.5倍の延伸を行った後に、アミノ変性シリコーン系シリコーン油剤を付与し、160℃の加熱ローラーを用いて、乾燥緻密化処理を行い、次いで、加圧スチーム中で3.7倍延伸することにより、製糸全延伸倍率を13倍とし、単繊維繊度0.7dtex、単繊維本数6000本のポリアクリロニトリル前駆体繊維束を得た。続いて、このポリアクリロニトリル前駆体繊維束に対して、流体として空気を用い、表4記載の条件で流体交絡処理を行った後に、12000本に合糸し、実施例23と同様にしてサイジング剤塗布炭素繊維束を得た。得られた炭素繊維束の単繊維破断数は増加して品位は大きく低下し、ストランド強度は5850MPaに低下した。製造条件、得られた炭素繊維束の特性などを表4、5にまとめた。
 [比較例35]
 炭素化処理における炭素化張力を14.7mN/dtexに変更した以外は、比較例34と同様にしてサイジング剤塗布炭素繊維束を得ようとしたが、炭素化工程で糸切れが多発して、良好な品位の炭素繊維束を得ることはできなかった。製造条件、得られた炭素繊維束の特性などを表4、5にまとめた。
 [実施例26]
 アクリロニトリル99.5mol%とイタコン酸0.5mol%からなるモノマー混合物を、ジメチルスルホキシドを溶媒とし、2,2’-アゾビスイソブチロニトリルを開始剤として溶液重合法により重合させ、ポリアクリロニトリル共重合体を製造した。製造されたポリアクリロニトリル重合体に、アンモニアガスをpH8.5になるまで吹き込み、イタコン酸を中和しつつ、アンモニウム基をポリアクリロニトリル共重合体に導入し、紡糸原液を得た。得られた紡糸原液を、40℃で、直径0.15mm、孔数6000の紡糸口金を用い、一旦空気中に吐出し、約4mmの空間を通過させた後、3℃にコントロールした35%ジメチルスルホキシドの水溶液からなる凝固浴に導入する乾湿式紡糸法により凝固糸条を得た。この凝固糸条を、常法により水洗した後、2槽の温水浴中で、3.5倍の延伸を行った後に、アミノ変性シリコーン系シリコーン油剤を付与し、160℃の加熱ローラーを用いて、乾燥緻密化処理を行い、次いで、加圧スチーム中で3.7倍延伸することにより、製糸全延伸倍率を13倍とし、単繊維繊度0.7dtex、単繊維本数6000本のポリアクリロニトリル前駆体繊維束を得た。次に、得られたアクリル繊維を温度240~260℃の空気中において、延伸比1で延伸しながら耐炎化処理し、比重1.35~1.36の耐炎化繊維束を得た。得られた耐炎化繊維束を、温度300~800℃の窒素雰囲気中において、延伸比1.15で延伸しながら予備炭素化処理を行い、流体として空気を用い、表4記載の条件で流体交絡処理を行った後に12000本に合糸し、予備炭素化繊維束を得た。得られた予備炭素化繊維束を、窒素雰囲気中において、最高温度1500℃で表4記載の張力で炭素化処理を行い、炭素繊維を得た。得られた炭素繊維を、濃度0.1モル/lの硫酸水溶液を電解液として電解表面処理し、水洗、150℃で乾燥した後、サイジング剤を付与し、良好な品位であり実質的に無撚りのサイジング剤塗布炭素繊維束を得た。製造条件、得られた炭素繊維束の特性などを表4、5にまとめた。
 [実施例27]
 炭素化処理における炭素化張力を14.7mN/dtexに変更した以外は、実施例26と同様にしてサイジング剤塗布炭素繊維束を得た。得られた炭素繊維束の単繊維破断数は少なく品位が良好であり、ストランド弾性率は365GPaに向上した。製造条件、得られた炭素繊維束の特性などを表4、5にまとめた。
 [比較例36]
 炭素化処理における炭素化張力を18.6mN/dtexに変更した以外は、実施例27と同様にしてサイジング剤塗布炭素繊維束を得ようとしたが、炭素化工程で糸切れが多発して、良好な品位の炭素繊維束を得ることはできなかった。製造条件、得られた炭素繊維束の特性などを表4、5にまとめた。
 [比較例37]
 炭素化処理における炭素化温度を2300℃に変更した以外は、実施例23と同様にしてサイジング剤塗布炭素繊維束を得た。得られた炭素繊維束の単繊維破断数は少なく品位が良好であり、ストランド弾性率は377GPaに向上したが、ストランド強度は4560MPaに低下した。製造条件、得られた炭素繊維束の特性などを表4、5にまとめた。
 [実施例28]
 流体として空気を用い、表4記載の条件で流体交絡処理を行い、炭素化処理における炭素化張力を19.1mN/dtexに変更した以外は、実施例23と同様にしてサイジング剤塗布炭素繊維束を得た。得られた炭素繊維束の単繊維破断数は若干増加して品位はやや低下し、ストランド弾性率は384GPaに向上したが、ストランド強度は5900MPaとやや低下した。製造条件、得られた炭素繊維束の特性などを表4、5にまとめた。
 [実施例29]
 流体として空気を用い、表4記載の条件で流体交絡処理を行い、炭素化処理における炭素化張力を19.5mN/dtexに変更した以外は、実施例23と同様にしてサイジング剤塗布炭素繊維束を得た。得られた炭素繊維束の単繊維破断数は若干増加して品位はやや低下し、ストランド弾性率は386GPaに向上したが、ストランド強度は5900MPaとやや低下した。製造条件、得られた炭素繊維束の特性などを表4、5にまとめた。
 [実施例30]
 流体交絡処理時のフィラメント数を12000本に変更した以外は、実施例23と同様にしてサイジング剤塗布炭素繊維束を得た。得られた炭素繊維束の単繊維破断数は若干増加した。製造条件、得られた炭素繊維束の特性などを表4、5にまとめた。
 [実施例31]
 炭素化処理における炭素化張力を11.8mN/dtexに変更した以外は、実施例28と同様にしてサイジング剤塗布炭素繊維束を得た。得られた炭素繊維束の単繊維破断数は若干増加し、ストランド弾性率は351GPaに向上した。製造条件、得られた炭素繊維束の特性などを表4、5にまとめた。
 [比較例38]
 流体交絡処理時のフィラメント数を24000本に変更した以外は、実施例30と同様にしてサイジング剤塗布炭素繊維束を得た。得られた炭素繊維束の単繊維破断数は増加して品位は大きく低下し、ストランド強度は5700MPaに低下した。製造条件、得られた炭素繊維束の特性などを表4、5にまとめた。
 [比較例39]
 炭素化処理における炭素化張力を11.8mN/dtexに変更した以外は、比較例38と同様にしてサイジング剤塗布炭素繊維束を得ようとしたが、炭素化工程で糸切れが多発して、良好な品位の炭素繊維束を得ることはできなかった。製造条件、得られた炭素繊維束の特性などを表4、5にまとめた。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 1:繊維束
 2:固定点A
 3:固定点B
 4:固定点C
 5:交絡点
 6:引き裂き可能距離
 本発明のプリプレグを用いると、それを硬化して得られる炭素繊維複合材料の引張弾性率や有孔板引張強度という物性がバランス良く高い。そのため、航空機の軽量化に大きく貢献し、航空機の燃料消費率を改善することができる。

Claims (14)

  1. 脂肪族エポキシ化合物(C)および芳香族エポキシ化合物(D)を含むサイジング剤が炭素繊維束に塗布されたサイジング剤塗布炭素繊維束であって、
    前記炭素繊維束に含まれる炭素繊維は、単繊維コンポジットのフラグメンテーション法を用いて測定したときに、単繊維見掛け応力が15.3GPaのときに繊維破断数が2.0個/mm以上であり、かつ、単繊維見掛け応力が12.2GPaのときに繊維破断数が1.7個/mm以下である、サイジング剤塗布炭素繊維束。
  2. 単繊維見掛け応力が12.2GPaのときの前記繊維破断数が1.3個/mm以下である、請求項1に記載のサイジング剤塗布炭素繊維束。
  3. 単繊維見掛け応力が12.2GPaのときの前記繊維破断数が1.0個/mm以下である、請求項1または2に記載のサイジング剤塗布炭素繊維束。
  4. 前記炭素繊維束に含まれる炭素繊維は、単繊維コンポジットのフラグメンテーション法を用いて測定したときに、単繊維見掛け応力が10.0GPaのときに繊維破断数が0.8個/mm以下である、請求項1~3のいずれかに記載のサイジング剤塗布炭素繊維束。
  5. 前記炭素繊維に塗布されたサイジング剤表面を、X線光電子分光法によって光電子脱出角度15°で測定したときに得られる、C1s内殻スペクトルの(a)結合エネルギー284.6eVの成分の高さと、(b)結合エネルギー286.1eVの成分の高さとの比率(a)/(b)が0.50~0.90である、請求項1~4のいずれかに記載のサイジング剤塗布炭素繊維束。
  6. 平均引き裂き可能距離が300~710mmであり、実質的に無撚りの、請求項1~5のいずれかに記載のサイジング剤塗布炭素繊維束。
  7. 前記炭素繊維束の引き裂き可能距離の測定を行った際に、引き裂き可能距離が800mm以上の割合が15%以下である、請求項6に記載のサイジング剤塗布炭素繊維束。
  8. 炭素繊維束にサイジング剤が塗布されたサイジング剤塗布炭素繊維束であって、前記炭素繊維束に含まれる炭素繊維は、単繊維コンポジットのフラグメンテーション法を用いて測定したときに、単繊維見掛け応力が15.3GPaのときに繊維破断数が2.0個/mm以上であり、かつ、単繊維見掛け応力が12.2GPaのときに繊維破断数が1.3個/mm以下であるサイジング剤塗布炭素繊維束。
  9. 前記炭素繊維束に含まれる炭素繊維は、単繊維コンポジットのフラグメンテーション法を用いて測定したときに、単繊維見掛け応力が10.0GPaのときに繊維破断数が0.8個/mm以下である、請求項8に記載のサイジング剤塗布炭素繊維束。
  10. 前記炭素繊維に塗布されたサイジング剤表面を、X線光電子分光法によって光電子脱出角度15°で測定したときに得られる、C1s内殻スペクトルの(a)結合エネルギー284.6eVの成分の高さと、(b)結合エネルギー286.1eVの成分の高さとの比率(a)/(b)が0.50~0.90である、請求項8または9に記載のサイジング剤塗布炭素繊維束。
  11. 炭素繊維束にサイジング剤が塗布されたサイジング剤塗布炭素繊維束であって、平均引き裂き可能距離が300~710mmであり、ストランド強度が5900MPa以上、ストランド弾性率が320GPa以上であり、単繊維破断数が0.5~3個/mであり、実質的に無撚りのサイジング剤塗布炭素繊維束。
  12. 前記炭素繊維束の引き裂き可能距離の測定を行った際に、引き裂き可能距離が800mm以上の割合が15%以下である、請求項11に記載のサイジング剤塗布炭素繊維束。
  13. ポリアクリロニトリル重合体からなる前駆体繊維束に、耐炎化工程、予備炭素化工程、および炭素化工程を施すことにより、炭素繊維束を得る炭素繊維束の製造方法であって、前記炭素化工程が前記予備炭素化により得られた予備炭素化繊維束を、不活性雰囲気中1200~2000℃の温度範囲、かつ、炭素化工程の張力が下式
    9.8≦炭素化工程の張力(mN/dtex)≦-0.0225×(予備炭素化繊維束の平均引き裂き可能距離(mm))+23.5
    を満たす範囲で実施される工程であって、前記予備炭素化繊維束は実質的に無撚りであって、かつ、前記予備炭素化繊維束の平均引き裂き可能距離が150~620mmである炭素繊維束の製造方法。
  14. 請求項1~12のいずれかに記載のサイジング剤塗布炭素繊維束、および、エポキシ化合物(A)と芳香族アミン硬化剤(B)とを含有する熱硬化性樹脂を含むプリプレグ。
PCT/JP2014/051248 2013-01-25 2014-01-22 サイジング剤塗布炭素繊維束、炭素繊維束の製造方法およびプリプレグ WO2014115762A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480005579.9A CN104937150B (zh) 2013-01-25 2014-01-22 涂上浆剂碳纤维束、碳纤维束的制造方法及预浸料坯
EP20200246.5A EP3800285A1 (en) 2013-01-25 2014-01-22 Sizing-agent-coated carbon fibre bundle, carbon-fibre-bundle production method, and prepreg
KR1020157021644A KR101624839B1 (ko) 2013-01-25 2014-01-22 사이징제 도포 탄소 섬유 다발, 탄소 섬유 다발의 제조 방법 및 프리프레그
EP14743393.2A EP2949792A4 (en) 2013-01-25 2014-01-22 CARBON FIBER BUNDLE COATED WITH A SCREENING AGENT, METHOD OF MANUFACTURE OF THE CARBON FIBER BUNDLE AND PREPREG
US14/758,621 US9435057B2 (en) 2013-01-25 2014-01-22 Sizing agent-coated carbon fiber bundle, carbon fiber bundle production method, and prepreg

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013011884 2013-01-25
JP2013-011882 2013-01-25
JP2013-011884 2013-01-25
JP2013011882 2013-01-25
JP2013011885 2013-01-25
JP2013-011885 2013-01-25

Publications (1)

Publication Number Publication Date
WO2014115762A1 true WO2014115762A1 (ja) 2014-07-31

Family

ID=51227553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051248 WO2014115762A1 (ja) 2013-01-25 2014-01-22 サイジング剤塗布炭素繊維束、炭素繊維束の製造方法およびプリプレグ

Country Status (6)

Country Link
US (1) US9435057B2 (ja)
EP (2) EP3800285A1 (ja)
KR (1) KR101624839B1 (ja)
CN (3) CN105970360B (ja)
TW (1) TWI504791B (ja)
WO (1) WO2014115762A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3168334A4 (en) * 2014-10-29 2017-07-05 Toray Industries, Inc. Carbon fiber bundle and method for manufacturing same
WO2020138139A1 (ja) * 2018-12-25 2020-07-02 三菱ケミカル株式会社 サイジング剤、サイジング剤付着炭素繊維及びその製造方法、サイジング剤の水分散液、プリプレグ及びその製造方法、並びに炭素繊維強化複合材料の製造方法
US11313054B2 (en) * 2016-05-24 2022-04-26 Toray Industries, Inc. Carbon fiber bundle
JP7482667B2 (ja) 2020-03-31 2024-05-14 帝人株式会社 炭素繊維束の製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101863990B1 (ko) * 2011-12-27 2018-07-04 도레이 카부시키가이샤 사이징제 도포 탄소 섬유, 사이징제 도포 탄소 섬유의 제조 방법, 프리프레그 및 탄소 섬유 강화 복합 재료
KR101695515B1 (ko) 2014-01-09 2017-01-11 롯데첨단소재(주) 전도성 폴리아미드/폴리페닐렌 에테르 수지 조성물 및 이로부터 제조된 자동차용 성형품
CN105081490B (zh) * 2014-04-23 2017-09-12 北京富纳特创新科技有限公司 线切割电极丝及线切割装置
CN104629264A (zh) * 2015-02-06 2015-05-20 佛山星期六科技研发有限公司 一种应用于鞋中底板的碳纤维增强环氧树脂复合材料及其制备方法
EP3216496B1 (en) * 2015-03-27 2019-06-05 Toray Industries, Inc. Tubular body made of carbon fiber-reinforced composite material and golf club shaft
US10056168B2 (en) * 2015-04-10 2018-08-21 Lotte Advanced Materials Co., Ltd. Electrically conductive polyamide/polyphenylene ether resin composition and molded article for vehicle using the same
KR102142368B1 (ko) * 2017-10-31 2020-08-07 도레이 카부시키가이샤 탄소섬유 다발 및 이의 제조방법
CN107841801A (zh) * 2017-11-11 2018-03-27 龙邦复合材料有限公司 碳纤维碳化与预浸料组合生产线及其生产工艺
CN111936681B (zh) * 2018-04-16 2023-05-16 东丽株式会社 碳纤维束及其制造方法、预浸料坯以及碳纤维增强复合材料
WO2020027126A1 (ja) * 2018-08-02 2020-02-06 三洋化成工業株式会社 繊維用集束剤組成物、繊維束、繊維製品及び複合材料
JPWO2021044935A1 (ja) * 2019-09-04 2021-03-11
CN111118669A (zh) * 2019-12-30 2020-05-08 中复神鹰碳纤维有限责任公司 一种大张力缠绕用耐磨损碳纤维的制备方法
CN111793857A (zh) * 2020-06-30 2020-10-20 镇江市高等专科学校 一种碳纤维表面处理的方法
TWI797655B (zh) 2021-06-28 2023-04-01 臺灣塑膠工業股份有限公司 上漿劑組成物、碳纖維材料與複合材料
KR102704455B1 (ko) * 2022-12-23 2024-09-09 (주)에버텍엔터프라이즈 반도체 소자 봉지용 액상 수지 조성물, 이를 포함하는 반도체 소자 봉지재 및 반도체 소자

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112874A (ja) 1997-06-19 1999-01-19 Toray Ind Inc アクリル系糸条およびアクリル系糸条のスチーム延伸方法および装置および炭素繊維
JPH11241230A (ja) 1997-12-11 1999-09-07 Toray Ind Inc 炭素繊維、炭素繊維用前駆体繊維、複合材料および炭素繊 維の製造方法
JP2004316052A (ja) 2002-09-30 2004-11-11 Toray Ind Inc 炭素繊維製造用油剤及び炭素繊維の製造方法
JP2005179826A (ja) * 2003-12-19 2005-07-07 Toray Ind Inc サイジング被覆炭素繊維およびその製造方法
JP2008248219A (ja) 2006-10-18 2008-10-16 Toray Ind Inc ポリアクリロニトリル系重合体とその製造方法および炭素繊維前駆体繊維の製造方法および炭素繊維とその製造方法
JP2008308777A (ja) 2007-06-13 2008-12-25 Toray Ind Inc 炭素繊維、炭素繊維製造用ポリアクリロニトリル系前駆体繊維の製造方法
JP2008308776A (ja) 2007-06-13 2008-12-25 Toray Ind Inc ポリアクリロニトリル系前駆体繊維の製造方法、炭素繊維の製造方法、および炭素繊維
WO2009060793A1 (ja) * 2007-11-06 2009-05-14 Toho Tenax Co., Ltd. 炭素繊維ストランド及びその製造方法
WO2009125832A1 (ja) * 2008-04-11 2009-10-15 東レ株式会社 炭素繊維前駆体繊維および炭素繊維とその製造方法
JP2010047865A (ja) 2008-08-21 2010-03-04 Toho Tenax Co Ltd 複合材料用炭素繊維とそれを用いた複合材料
JP2010111957A (ja) 2008-11-05 2010-05-20 Toho Tenax Co Ltd 炭素繊維、複合材料及び炭素繊維の製造方法
WO2012002266A1 (ja) * 2010-06-30 2012-01-05 東レ株式会社 サイジング剤塗布炭素繊維の製造方法およびサイジング剤塗布炭素繊維
WO2013099707A1 (ja) * 2011-12-27 2013-07-04 東レ株式会社 サイジング剤塗布炭素繊維、サイジング剤塗布炭素繊維の製造方法、プリプレグおよび炭素繊維強化複合材料

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI220147B (en) 2001-07-24 2004-08-11 Mitsubishi Rayon Co Sizing agent for carbon fibers and water dispersion thereof, sized carbon fibers, sheet-like articles using said carbon fibers, and carbon fiber enhanced composite material
US20040238545A1 (en) 2001-07-31 2004-12-02 Gerard Goffre Method for making a tank containing compressed gas and resulting tank
JP2005213687A (ja) * 2004-01-30 2005-08-11 Toray Ind Inc 炭素繊維束の製造方法
DE602005022281D1 (de) * 2004-02-13 2010-08-26 Mitsubishi Rayon Co Carbonfaservorgängerfaserbündel, produktionsverfahren und produktions-vorrichtung dafür sowie carbonfaser und produktionsverfahren dafür
CN101824205B (zh) 2004-02-27 2014-04-16 东丽株式会社 一体化成型品、纤维增强复合材料板及电气·电子设备用外壳
CN100591713C (zh) 2004-02-27 2010-02-24 东丽株式会社 碳纤维增强复合材料用环氧树脂组合物、预浸料坯、一体化成型品、纤维增强复合材料板及电气·电子设备用外壳
JP2005256226A (ja) 2004-03-12 2005-09-22 Toray Ind Inc サイジング被覆炭素繊維およびその製造方法
KR101154279B1 (ko) * 2004-08-19 2012-06-13 도레이 카부시키가이샤 수계 프로세스용 탄소섬유 및 수계 프로세스용 촙드탄소섬유
JP4957251B2 (ja) 2005-12-13 2012-06-20 東レ株式会社 炭素繊維、炭素繊維製造用ポリアクリロニトリル系前駆体繊維の製造方法、および、炭素繊維の製造方法
ES2385125T3 (es) * 2007-11-06 2012-07-18 Toho Tenax Co., Ltd. Hebra de fibra de carbono y proceso para su producción
WO2010101215A1 (ja) * 2009-03-05 2010-09-10 昭和電工株式会社 炭素繊維凝集体、及びその製造方法
KR101841797B1 (ko) * 2010-12-13 2018-03-23 도레이 카부시키가이샤 탄소 섬유 프리프레그 및 그의 제조 방법, 탄소 섬유 강화 복합 재료

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112874A (ja) 1997-06-19 1999-01-19 Toray Ind Inc アクリル系糸条およびアクリル系糸条のスチーム延伸方法および装置および炭素繊維
JPH11241230A (ja) 1997-12-11 1999-09-07 Toray Ind Inc 炭素繊維、炭素繊維用前駆体繊維、複合材料および炭素繊 維の製造方法
JP2004316052A (ja) 2002-09-30 2004-11-11 Toray Ind Inc 炭素繊維製造用油剤及び炭素繊維の製造方法
JP2005179826A (ja) * 2003-12-19 2005-07-07 Toray Ind Inc サイジング被覆炭素繊維およびその製造方法
JP2008248219A (ja) 2006-10-18 2008-10-16 Toray Ind Inc ポリアクリロニトリル系重合体とその製造方法および炭素繊維前駆体繊維の製造方法および炭素繊維とその製造方法
JP2008308777A (ja) 2007-06-13 2008-12-25 Toray Ind Inc 炭素繊維、炭素繊維製造用ポリアクリロニトリル系前駆体繊維の製造方法
JP2008308776A (ja) 2007-06-13 2008-12-25 Toray Ind Inc ポリアクリロニトリル系前駆体繊維の製造方法、炭素繊維の製造方法、および炭素繊維
WO2009060793A1 (ja) * 2007-11-06 2009-05-14 Toho Tenax Co., Ltd. 炭素繊維ストランド及びその製造方法
JP2009114578A (ja) 2007-11-06 2009-05-28 Toho Tenax Co Ltd 炭素繊維ストランド及びその製造方法
WO2009125832A1 (ja) * 2008-04-11 2009-10-15 東レ株式会社 炭素繊維前駆体繊維および炭素繊維とその製造方法
JP2010047865A (ja) 2008-08-21 2010-03-04 Toho Tenax Co Ltd 複合材料用炭素繊維とそれを用いた複合材料
JP2010111957A (ja) 2008-11-05 2010-05-20 Toho Tenax Co Ltd 炭素繊維、複合材料及び炭素繊維の製造方法
WO2012002266A1 (ja) * 2010-06-30 2012-01-05 東レ株式会社 サイジング剤塗布炭素繊維の製造方法およびサイジング剤塗布炭素繊維
WO2013099707A1 (ja) * 2011-12-27 2013-07-04 東レ株式会社 サイジング剤塗布炭素繊維、サイジング剤塗布炭素繊維の製造方法、プリプレグおよび炭素繊維強化複合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2949792A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3168334A4 (en) * 2014-10-29 2017-07-05 Toray Industries, Inc. Carbon fiber bundle and method for manufacturing same
KR101841407B1 (ko) 2014-10-29 2018-03-22 도레이 카부시키가이샤 탄소 섬유 다발 및 그 제조 방법
US11313054B2 (en) * 2016-05-24 2022-04-26 Toray Industries, Inc. Carbon fiber bundle
WO2020138139A1 (ja) * 2018-12-25 2020-07-02 三菱ケミカル株式会社 サイジング剤、サイジング剤付着炭素繊維及びその製造方法、サイジング剤の水分散液、プリプレグ及びその製造方法、並びに炭素繊維強化複合材料の製造方法
CN113227488A (zh) * 2018-12-25 2021-08-06 三菱化学株式会社 上浆剂、附着有上浆剂的碳纤维及其制造方法、上浆剂水分散液、预浸料及其制造方法、以及碳纤维增强复合材料的制造方法
TWI750558B (zh) * 2018-12-25 2021-12-21 日商三菱化學股份有限公司 上漿劑、附著有上漿劑的碳纖維及其製造方法、上漿劑的水分散液、預浸體及其製造方法以及碳纖維強化複合材料的製造方法
JP7528990B2 (ja) 2018-12-25 2024-08-06 三菱ケミカル株式会社 サイジング剤、サイジング剤付着炭素繊維及びその製造方法、サイジング剤の水分散液、プリプレグ及びその製造方法、並びに炭素繊維強化複合材料の製造方法
CN113227488B (zh) * 2018-12-25 2024-09-17 三菱化学株式会社 上浆剂、上浆剂水分散液、碳纤维和预浸料及其制造方法、碳纤维增强复合材料的制造方法
JP7482667B2 (ja) 2020-03-31 2024-05-14 帝人株式会社 炭素繊維束の製造方法

Also Published As

Publication number Publication date
EP2949792A1 (en) 2015-12-02
TWI504791B (zh) 2015-10-21
CN105970360B (zh) 2018-06-08
CN105970360A (zh) 2016-09-28
CN106012108B (zh) 2018-05-29
TW201437447A (zh) 2014-10-01
KR101624839B1 (ko) 2016-05-26
KR20150095958A (ko) 2015-08-21
CN104937150B (zh) 2016-07-13
CN106012108A (zh) 2016-10-12
EP3800285A1 (en) 2021-04-07
US20150361591A1 (en) 2015-12-17
EP2949792A4 (en) 2016-01-27
CN104937150A (zh) 2015-09-23
US9435057B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
WO2014115762A1 (ja) サイジング剤塗布炭素繊維束、炭素繊維束の製造方法およびプリプレグ
JP6011345B2 (ja) サイジング剤塗布炭素繊維、サイジング剤塗布炭素繊維の製造方法、プリプレグおよび炭素繊維強化複合材料
JP5565480B2 (ja) プリプレグおよび炭素繊維強化複合材料
JP6051987B2 (ja) サイジング剤塗布炭素繊維の製造方法
CN110959023B (zh) 预浸料及碳纤维强化复合材料
JP5582269B1 (ja) プリプレグおよびサイジング剤塗布炭素繊維
JP6115461B2 (ja) サイジング剤塗布炭素繊維およびその製造方法、炭素繊維強化熱可塑性樹脂組成物
JP5516768B2 (ja) プリプレグおよび炭素繊維強化複合材料
JP6136639B2 (ja) 炭素繊維束およびその製造方法
JP5561349B2 (ja) プリプレグおよび炭素繊維強化複合材料
JP5561390B2 (ja) プリプレグおよび炭素繊維強化複合材料
JP6070218B2 (ja) サイジング剤塗布炭素繊維、サイジング剤塗布炭素繊維の製造方法、プリプレグおよび炭素繊維強化複合材料
JP5582268B1 (ja) サイジング剤塗布炭素繊維

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743393

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014743393

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14758621

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157021644

Country of ref document: KR

Kind code of ref document: A