WO2014112521A1 - 溶銑の予備処理方法 - Google Patents

溶銑の予備処理方法 Download PDF

Info

Publication number
WO2014112521A1
WO2014112521A1 PCT/JP2014/050561 JP2014050561W WO2014112521A1 WO 2014112521 A1 WO2014112521 A1 WO 2014112521A1 JP 2014050561 W JP2014050561 W JP 2014050561W WO 2014112521 A1 WO2014112521 A1 WO 2014112521A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
hot metal
desiliconization
slag
concentration
Prior art date
Application number
PCT/JP2014/050561
Other languages
English (en)
French (fr)
Inventor
川畑 涼
田中 高太郎
秀光 根岸
俊朗 石毛
菊池 直樹
内田 祐一
泰志 小笠原
直敬 佐々木
陽三 岩城
鈴木 紀彦
政臣 妹尾
洋晴 井戸
田野 学
市川 彰
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2014526322A priority Critical patent/JP5790964B2/ja
Priority to BR112015016931A priority patent/BR112015016931B1/pt
Priority to KR1020157018162A priority patent/KR101701658B1/ko
Priority to CN201480003658.6A priority patent/CN104884641B/zh
Publication of WO2014112521A1 publication Critical patent/WO2014112521A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/04Removing impurities other than carbon, phosphorus or sulfur

Definitions

  • the present invention relates to a hot metal pretreatment method in which a single converter-type refining furnace is used to continuously perform desiliconization and dephosphorization of hot metal with an intermediate waste removal step in between.
  • a refining method (“preliminary dephosphorization treatment” in which hot metal is preliminarily treated before decarburization refining in a converter and phosphorus in the molten iron is removed in advance.
  • the dephosphorization treatment is performed by adding an oxidizing agent (oxygen source such as oxygen gas) and a dephosphorizing refining agent (CaO-based solvent) to hot metal, and oxidizing phosphorus in the hot metal with an oxidizing agent to form a phosphorus oxide.
  • an oxidizing agent oxygen source such as oxygen gas
  • a dephosphorizing refining agent CaO-based solvent
  • this dephosphorization reaction is advantageous as the refining temperature is lower in terms of thermodynamics. That is, the dephosphorization reaction is more likely to proceed in the hot metal stage where the temperature is lower than that in the molten steel stage, and the dephosphorization treatment can be performed with less oxidizing agent and dephosphorizing agent. Therefore, by performing the preliminary dephosphorization treatment, the number of treatment steps increases, but the amount of slag generation in the entire steelmaking refining step can be reduced.
  • the hot metal discharged from the blast furnace contains about 0.3 to 0.6 mass% of silicon.
  • the silicon is first oxidized and removed. After the silicon concentration is reduced to a certain level, phosphorus in the hot metal is oxidized and removed. Oxidation of silicon produces slag containing SiO 2 as a main component, but this slag inhibits the dephosphorization reaction. This is because slag having a basicity ([CaO (mass%)] / [SiO 2 (mass%)]) of 1.2 or more is necessary for the dephosphorization reaction, whereas silicon oxidation is performed. This is because the SiO 2 produced by this has the effect of lowering the basicity of the slag.
  • the heat source for melting cold iron sources such as iron scrap mainly consists of sensible heat of hot metal and combustion heat of carbon and silicon in hot metal. Cannot dissolve a large amount of cold iron source.
  • the heat source for melting cold iron sources such as iron scrap mainly consists of sensible heat of hot metal and combustion heat of carbon and silicon in hot metal. Cannot dissolve a large amount of cold iron source.
  • carbon and silicon in the hot metal as a combustion heat source are reduced. Since it is oxidized and reduced by the above desiliconization treatment and dephosphorization treatment, it is more disadvantageous for melting the cold iron source in the converter.
  • Patent Document 1 discloses desiliconization and dephosphorization of hot metal using one converter-type refining furnace.
  • a hot metal pretreatment method in which a slag produced in a furnace is tilted and discharged from a furnace port, and then a CaO-based solvent is newly added to perform dephosphorization.
  • Patent Document 2 when performing desiliconization and dephosphorization of hot metal using one converter-type refining furnace, the dephosphorization process is completed, the hot metal is discharged, and the slag is not discharged.
  • An intermediate waste removal process in which the hot metal of the next charge is charged into the smelting furnace while remaining in the furnace, oxygen is supplied to perform the desiliconization process, and after the desiliconization process, the blowing is temporarily interrupted and the slag is discharged.
  • a hot metal pretreatment method that is provided and then subsequently dephosphorized.
  • the temperature drop due to the transfer of hot metal can be prevented by performing the desiliconization process and the dephosphorization process in one converter-type refining furnace.
  • the slag generated in the dephosphorization process (hereinafter also referred to as “dephosphorization slag”) is reused in the desiliconization process. It becomes possible to reduce. That is, by adopting the techniques of Patent Document 1 and Patent Document 2, the heat loss in the hot metal pretreatment process can be reduced, so that the blending ratio of the cold iron source is increased as compared with the conventional one, and the amount of greenhouse gas emissions Reduction and manufacturing cost can be reduced.
  • JP-A-10-152714 Japanese Patent Laid-Open No. 11-323420
  • Patent Document 1 shows that the slag is sufficiently fluid if the basicity of the slag at the end of the desiliconization process is controlled to 0.3 to 1.3. It is said that the desiliconization slag will be exhausted sufficiently.
  • slag formation is insufficient, fluidity is poor, and slag can be discharged in a short time without causing molten iron to flow out. It may be difficult, or conversely, forming may be excessive, and slag may overflow from the furnace port during the desiliconization process, thereby hindering operation.
  • Patent Document 2 is optimal to set the basicity of desiliconized slag to 1.0 to 3.0 and perform intermediate waste after the silicon concentration in the hot metal becomes 0.20 mass% or less.
  • the reason for this is that when the silicon concentration in the hot metal at the end of the desiliconization process is higher than 0.20 mass%, the basicity of the slag at the next dephosphorization process is adjusted to 2.0. This is because the necessary CaO-containing material is excessively increased, which is disadvantageous in terms of cost, and no consideration is given to the elimination of the desiliconized slag.
  • the present invention has been made in view of the above-mentioned problems in the prior art, and its purpose is to use a single converter-type refining furnace and to perform desiliconization treatment and dephosphorization of hot metal with an intermediate waste removal step in between.
  • the hot metal preliminary treatment method in which the treatment is continuously performed, the dephosphorization property of the desiliconization slag generated by the desiliconization treatment is improved, and the dephosphorization treatment of the next step is performed while suppressing the temperature drop of the hot metal,
  • the object is to propose a hot metal pretreatment method that can be performed at low cost.
  • the first aspect of the present invention developed to solve the above problem is that the oxygen source is supplied to the hot metal in the converter type refining furnace and desiliconized, and then the hot metal remains in the furnace. Part of the slag present in the furnace is discharged from the converter-type refining furnace, and then the hot metal that has been dephosphorized by supplying a CaO-based solvent and an oxygen source into the converter-type refining furnace is discharged from the converter-type refining furnace.
  • the exhaust gas treatment equipment of the converter type refining furnace is used during the desiliconization treatment.
  • a hot metal pretreatment method characterized in that the concentration of a gas species containing at least one carbon atom in the sucked suction gas is analyzed, and the end point of the desiliconization treatment is determined based on the analysis value. .
  • the suction rate of carbon in the exhaust gas discharged from the converter-type smelting furnace during the desiliconization process is set as the suction rate. Calculated based on the analytical value of the concentration of the gas species containing carbon atoms in the gas and the flow rate of the suction gas, and the calculated rate of carbon emission in the exhaust gas reaches a maximum value and then increases again after reaching a minimum value. An end point of the desiliconization process is determined based on a fluctuation pattern to be performed.
  • the end point of the desiliconization treatment is determined by the CO gas concentration, the CO 2 gas concentration, and the CO gas in the suction gas.
  • the analysis value of the concentration of any one of the total concentrations of CO 2 and CO 2 gas becomes a maximum value, and is determined based on a fluctuation pattern that increases again after reaching the minimum value.
  • the end point of the desiliconization treatment is determined by the CO gas concentration, the CO 2 gas concentration and the CO gas in the suction gas.
  • the CO gas flow rate in the suction gas, the CO 2 gas flow rate, and the CO gas and CO 2 calculated from the product of the analytical value of the concentration of any one of the total concentrations of CO 2 and CO 2 gas and the flow rate of the suction gas Any one of the total gas flow rates becomes a maximum value, and is determined based on a fluctuation pattern that increases again after reaching the minimum value.
  • the end point of the desiliconization treatment becomes the maximum value and the minimum value.
  • the increased value is within a predetermined elapsed time range with reference to a point in time when the increased value becomes equal to or greater than a predetermined ratio of 90% to 150% with respect to the maximum value.
  • the maximum value in the fluctuation pattern that becomes the maximum value and increases again after reaching the minimum value is 10% or more of the maximum value.
  • the end point of the desiliconization treatment is defined as a CO gas concentration, a CO 2 gas concentration, and a CO gas in the suction gas.
  • the analysis value of any one of the total concentrations of CO 2 and CO 2 gas is set within a predetermined elapsed time range with reference to a time point when the analysis value of the concentration becomes equal to or higher than a predetermined threshold value.
  • the exhaust gas treatment facility has a function of recovering the sucked exhaust gas from the converter refining furnace as fuel gas.
  • the air is sucked together with the exhaust gas of the converter refining furnace to burn at least a part of the CO gas in the exhaust gas, and the end point of the desiliconization treatment is determined after the combustion. It is characterized in that the CO gas concentration in the suction gas is within a predetermined elapsed time range with reference to a time point when the CO gas concentration becomes 2.0 vol% or more and 18.0 vol% or less.
  • the end point of the desiliconization treatment is defined as a CO gas concentration, a CO 2 gas concentration, and a CO gas in the suction gas.
  • the CO gas flow rate in the suction gas, the CO 2 gas flow rate, and the CO gas and CO 2 calculated from the product of the analytical value of the concentration of any one of the total concentrations of CO 2 and CO 2 gas and the flow rate of the suction gas It is characterized in that any one of the total gas flow rates is within a predetermined elapsed time range with reference to a point in time when the flow rate becomes equal to or higher than a predetermined threshold value.
  • the end point of the desiliconization treatment is determined as an analytical value of the concentration of a gas species containing carbon atoms in the suction gas. Based on the flow rate of the suction gas, the carbon discharge rate in the exhaust gas discharged from the converter-type refining furnace during the desiliconization process is calculated, and the time point when the discharge rate exceeds a predetermined threshold is used as a reference. And within a predetermined elapsed time range.
  • the hot metal pretreatment method in the hot metal pretreatment method according to any one of the first to tenth aspects of the present invention, at least 30 mass% of the slag produced by the pre-charge dephosphorization treatment is left in the furnace. In this state, the hot metal of the next charge is charged into a converter type refining furnace and desiliconized.
  • a hot metal pretreatment method according to any one of the first to eleventh aspects of the present invention, wherein a base of slag present in the converter type refining furnace at the end of the desiliconization process.
  • the degree ([CaO (mass%)] / [SiO 2 (mass%)]) is controlled in the range of 0.80 to 1.50.
  • the end point of the desiliconization process is determined as the converter. Because it is determined based on the analysis value of the gas species containing carbon atoms in the suction gas sucked into the exhaust gas treatment facility of the smelting furnace, the variation in the desiliconization process completion judgment is greatly reduced, and intermediate waste is always removed. Silica slag can be sufficiently formed and fluidized, and the desiliconized slag can be discharged sufficiently in a short time without causing molten iron to flow out. Thus, it is possible to reduce the cost in the dephosphorization process and to reduce the variation of the phosphorus concentration in the hot metal after the process.
  • the inventors use one converter-type refining furnace to sandwich the desiliconized slag discharge after desiliconization (hereinafter also referred to as “intermediate waste”), and then desiliconize and dephosphorize the hot metal.
  • intermediate waste the desiliconized slag discharge after desiliconization
  • the various factors affecting the exhaustability of the desiliconized slag were repeatedly studied.
  • the removal performance of desiliconized slag in intermediate waste is greatly influenced by the forming condition of the desiliconized slag in addition to the fluidity of the desiliconized slag itself. In order to do so, it is important that the desiliconized slag is sufficiently hatched and exhibits good fluidity at the time of discharge, and that the slag is sufficiently formed and the bulk specific gravity is reduced. Became clear.
  • the desiliconization slag produced by the desiliconization process is formed by the hatching of SiO 2 produced by the combustion of silicon in the molten iron and the ironmaking material added or left in the furnace.
  • the desiliconization reaction preferentially proceeds and the amount of SiO 2 in the furnace gradually increases, but the fluidity at the time of discharge is ensured.
  • it is important to add or pre-load a slag-forming material containing CaO such as quicklime or steelmaking slag to adjust the composition of the slag to an appropriate range.
  • the CO gas generation rate is low at the initial stage of the desiliconization process, but the silicon concentration in the hot metal decreases to less than 0.20 mass% as the desiliconization reaction proceeds, and the hot metal temperature rises.
  • the decarburization reaction becomes active and gradually increases.
  • the iron oxide concentration in the slag is relatively low at less than 10 mass% at the beginning of the desiliconization process, where the silicon concentration in the hot metal is high, but the desiliconization reaction proceeds and the silicon concentration in the hot metal decreases. As the amount of slag increases, it gradually increases.
  • the concentration of iron oxide in the slag increases and exceeds 10 mass%, the melting point of the slag is lowered or the liquid phase ratio is significantly increased. Improves. Furthermore, the generation of CO gas due to the reaction between the iron oxide in the slag and the molten iron bath or the molten iron droplets entrained in the slag becomes active, and a large amount of CO gas bubbles are included in the slag. "Forming" state. Once the slag begins to form, the amount of oxygen supplied to the slag layer by the acid sent from the top blow lance also increases and promotes oxidation of iron, etc. In some cases, the forming height increases, leading to so-called “sloping”.
  • the bulk specific gravity of the slag can be made very small, and even the same slag mass can be about 10 times larger in volume.
  • the slag can be discharged quickly without causing the hot metal to flow out.
  • slag forming is excessive during the desiliconization process, slag overflows from the furnace port, which may impede operation.
  • the inventors have made extensive studies on a method of appropriately evaluating the forming state of the slag during the desiliconization process and determining the timing for finishing the desiliconization process and starting the intermediate evacuation.
  • the emission rate of carbon in the exhaust gas shows a specific fluctuation pattern, and the forming state is optimal for exhaustion within a specific range of the fluctuation pattern.
  • the timing at which the desiliconization process is completed and the intermediate waste is started is the suction gas (hereinafter simply referred to as “suction gas”) sucked into the exhaust gas treatment facility attached to the converter refining furnace.
  • suction gas hereinafter simply referred to as “suction gas”
  • FIG. 1 shows a converter-type smelting furnace when desiliconization treatment is performed to reduce hot metal having a silicon concentration of 0.35 mass% in hot metal to 0.10 mass% or less under conditions where desiliconization slag is easy to form.
  • the discharge rate of carbon contained in the exhaust gas (per unit time) calculated based on the CO gas concentration, CO 2 gas concentration and suction gas flow rate (standard state) in the suction gas sucked into the exhaust gas treatment facility attached to This shows the transition (change over time) of the amount of carbon contained in the exhaust gas discharged together with the transition of the suction gas flow rate, the acid feed rate, and the sum of the CO gas concentration and CO 2 gas concentration in the suction gas. .
  • the discharge rate of carbon contained in the exhaust gas gradually increases with the progress of the desiliconization reaction after the start of the desiliconization process (stage I), and once shows the maximum value. After that, it can be seen that it shows a unique fluctuation pattern of decreasing to show a minimum value (stage II) and then increasing again (stage III). Strictly speaking, the discharge rate of carbon in the exhaust gas includes CO 2 contained in the air sucked into the exhaust gas treatment facility. However, since the amount of CO 2 in the air is very small, the influence of this is not affected. Can be ignored.
  • stage I is a stage in which the generation amount of CO gas gradually increases as the hot metal temperature rises and the silicon concentration in the hot metal decreases with the progress of desiliconization treatment. Since the amount of generation is small, the temperature is low, and no forming is performed. Therefore, as shown in FIG. 2A, the CO gas can easily pass through the desiliconized slag layer and be discharged out of the furnace. However, when the desiliconization reaction proceeds and stage II is reached, the amount of CO gas generated increases, and the temperature of the desiliconization slag rises and the viscosity decreases, as shown in FIG.
  • the generated CO gas is taken into the desiliconized slag, and the slag begins to form, and the discharge rate of carbon in the exhaust gas apparently decreases temporarily. Further, when the desiliconization reaction proceeds and stage III is reached, CO gas cannot be further taken into the desiliconization slag, and the forming reaches a saturated state. Therefore, as shown in FIG. Gas begins to be discharged outside the furnace, and the discharge rate of carbon in the exhaust gas begins to increase again.
  • stage I of the desiliconization process oxygen supplied from the top blowing lance is mainly consumed in the desiliconization reaction and decarburization reaction.
  • stage II the amount of generated slag is increased and the thickness of the slag layer is reduced.
  • the concentration of iron oxide in the slag increases and the oxygen supplied is also consumed in the oxidation reaction of iron, so the oxygen used for decarburization decreases accordingly, The carbon emission rate decreases.
  • the amount of oxygen supplied to the slag layer by the acid sent from the top blowing lance increases at an accelerated rate, and the iron oxide concentration increases.
  • CO gas is generated by the reaction between iron oxide in the slag and molten iron, and the iron oxide in the slag is reduced by that amount, and the balance of the iron oxide in the slag is balanced. Therefore, the generation rate of CO gas increases again, and the discharge rate of carbon in the exhaust gas begins to increase.
  • the desiliconization process is completed at the stage III in which the discharge rate of carbon in the exhaust gas is changed from the maximum value to the minimum value and increases again from the minimum value and the desiliconization slag is in the forming state. It was found that if the intermediate waste was started, the waste rate of desiliconized slag could be reliably increased. In addition, the silicon concentration in the hot metal at this stage is stably reduced to 0.10 mass% or less, which enables efficient dephosphorization by reducing the amount of dephosphorizing agent used in the subsequent dephosphorization treatment. Confirmed that.
  • the inventors have completed the desiliconization process within a specific region of the stage III, specifically, within a range of 90% to 150% with respect to the maximum value of the discharge rate of carbon in the exhaust gas.
  • the removal rate of desiliconized slag can be further improved.
  • the reason for this is that, as explained above, the temperature of the desiliconization slag rises due to the progress of the decarburization reaction, the viscosity decreases, and the fluidity is improved. It seems to be due to the fact that the height (thickness) of the slag layer on the hot metal bath increases and it tends to flow out of the furnace port because it apparently becomes smaller.
  • the present invention has been developed on the basis of the above-described novel knowledge, and its features are present in the furnace after supplying an oxygen source to the hot metal in the converter type refining furnace and desiliconizing. At least a part of the slag is discharged from the converter-type refining furnace (intermediate waste), and then the hot metal in the converter-type refining furnace is supplied with a CaO-based solvent and an oxygen source for dephosphorization and discharged
  • the concentration of the gas species containing carbon atoms in the suction gas sucked by the exhaust gas treatment facility of the converter type refining furnace during the desiliconization treatment is analyzed, and the desiliconization treatment is performed based on the analysis value. It is to determine the end point.
  • a converter-type refining furnace 1 capable of top bottom blowing as shown in FIG. 3 is used.
  • the upper blowing is performed by supplying an oxygen-containing gas 9 as an oxygen source from the tip of the upper blowing lance 2 through an upper blowing lance 2 that can move up and down in the converter type refining furnace 1.
  • oxygen gas oxygen gas (industrial pure oxygen), oxygen-enriched air, air, a mixed gas of oxygen gas and inert gas, or the like can be used.
  • bottom blowing is performed by blowing a bottom blowing gas 10 into the hot metal through a bottom blowing tuyere 3 provided at the bottom of the converter type refining furnace 1.
  • the bottom blowing gas 10 may be a gas containing oxygen gas or only an inert gas such as Ar gas or nitrogen gas.
  • the bottom blowing gas 10 has a function of accelerating the stirring of the hot metal 5 by blowing it into the hot metal and accelerating the melting of the cold iron source, but the conveying gas for blowing the iron making agent into the hot metal from the bottom blowing tuyere 3 You may give the function as.
  • a skirt 11 that moves up and down to cover the furnace port of the converter type refining furnace 1 and a flue 12 connected to the skirt 11 are installed.
  • the exhaust gas discharged from the converter type refining furnace 1 is sucked through an exhaust gas treatment facility (not shown) through a flue 12, and after sprinkling water to remove dust, the suction speed is measured.
  • the exhaust gas treatment facility has a function of collecting the suction gas sucked as fuel gas, the suction gas is recovered or released as fuel gas depending on the composition and flow rate. Since the generation rate of CO gas is low, it is generally not recovered as fuel gas.
  • the suction gas sucked in the exhaust gas treatment facility includes the differential pressure from the atmospheric pressure in the skirt 11 and the converter refining furnace 1. Also included is air (atmosphere) sucked according to the size of the gap between the skirt 11 and the skirt 11 (hereinafter also referred to as “skirt height”).
  • the oxygen in the air sucked into the skirt together with the high-temperature exhaust gas reacts to produce CO 2 until the CO in the exhaust gas and either oxygen or CO are substantially consumed.
  • the flue 12 is provided with a gas sampling probe 13 for collecting an exhaust gas for analysis.
  • the gas sampling probe 13 is connected to the gas sampling probe 13 to collect CO, CO 2 , O in the suction gas collected by the gas sampling probe 13.
  • a gas analyzer 14 for analyzing a gas composition such as 2 is provided. That is, the gas composition of the suction gas sampled by the gas sampling probe 13 is configured to be measured continuously or intermittently by the gas analyzer 14.
  • a steam boiler may be installed in a portion through which a high-temperature gas such as the flue 12 passes.
  • the operation of the exhaust gas treatment facility is usually performed by making the skirt height as small as possible so that the sucked air is minimized.
  • the skirt height can be arbitrarily set. Therefore, for example, when the flue 12 has the function of a steam boiler, the skirt 11 is raised to actively suck air to burn the CO gas in the exhaust gas, and its combustion heat (thermal energy) Is preferably recovered as high-pressure steam.
  • the exhaust gas treatment facility may be operated by lowering the position of the skirt 11 in order to suppress the suction of air. Can reduce the heat load.
  • the component composition of the suction gas sucked by the exhaust gas treatment facility is completely different depending on the characteristics of the exhaust gas treatment facility and the operating conditions. That is, when the position of the skirt 11 is lowered to suppress the amount of air sucked, the CO and CO 2 concentrations are relatively high, but when the skirt 11 is raised and air is actively sucked. If the generation rate of the CO gas from the converter-type refining furnace 1 is not a certain ratio or more (specifically, about 30 vol% or more) with respect to the gas suction speed of the exhaust gas treatment facility, CO is determined in the analysis of the suction gas. Only 2 is detected, CO is not detected. This is because CO in the exhaust gas is burned with O 2 in the sucked air.
  • FIG. 1 shows that the exhaust gas treatment facility which has a gas recovery function but does not have a steam boiler in the flue uses an exhaust gas treatment facility to confirm the ignition of the exhaust gas after the desiliconization process is started, and then lowers the skirt 11 to reduce the air flow.
  • the example which is performing the operation which suppressed suction is shown.
  • the discharge rate of carbon in the exhaust gas shown in FIG. 1 is the CO gas in the suction gas measured by the gas sampling probe 13 disposed in the flue leading to the converter exhaust gas treatment facility shown in FIG. This is calculated based on the concentration, the CO 2 gas concentration, and the gas suction speed of the exhaust gas treatment facility (the suction gas flow rate in the standard state).
  • an infrared absorption analyzer is used to measure the gas composition of CO and CO 2.
  • this measurement method has a slow response speed compared with the measurement of the gas flow rate, and it is 10 to several tens. Since a delay time of about seconds occurs, each measurement time is corrected.
  • the gas suction amount in the exhaust gas treatment facility is larger than the amount of gas generated from the converter type refining furnace by desiliconization treatment or decarburization treatment in order to prevent the leakage of exhaust gas. Air is sucked in from between and at least a part of the generated CO is oxidized and converted to CO 2 .
  • the carbon discharge rate in the exhaust gas, the CO concentration and CO 2 concentration in the suction gas, and the suction rate (standard state flow rate) of the exhaust gas treatment facility are measured.
  • the method to find out by this is effective.
  • the operating conditions (skirt height, furnace port pressure, etc.) of the converter exhaust gas treatment facility are constant, instead of the discharge rate of carbon in the exhaust gas, From the fluctuation pattern in which any one of the CO gas concentration, the CO 2 gas concentration, and the total concentration of CO gas and CO 2 gas becomes a maximum value and increases again after reaching the minimum value. It is possible to determine the end point of processing.
  • the operating conditions in which the amount of air sucked is relatively small and CO remains in the suction gas can be determined based on the fluctuation pattern of the total concentration of CO gas and CO 2 gas.
  • the amount of air to be produced does not vary so much and the CO 2 gas concentration is stable, it can be determined based on a variation pattern of only the CO gas concentration.
  • the amount of air to be sucked is sufficiently large and CO in exhaust gas is completely burned, it can be determined based on a variation pattern of only the CO 2 gas concentration.
  • the CO gas flow rate in the suction gas calculated from the product of the analysis value of the CO gas concentration and / or the CO 2 gas concentration in the suction gas and the flow rate of the suction gas, From the fluctuation pattern of any one of the CO 2 gas flow rate and the total flow rate of the CO gas and the CO 2 gas, which becomes a maximum value and increases again after reaching the minimum value, the end point of the desiliconization process is determined. It is also possible to decide. At this time, the operating conditions in which the amount of air sucked is relatively small and CO remains in the suction gas can be determined based on the fluctuation pattern of the total flow rate of CO gas and CO 2 gas.
  • the amount of air to be produced does not vary much and the CO 2 gas flow rate is stable, it can also be determined based on a variation pattern of only the CO gas flow rate. Further, under an operating condition where the amount of air sucked is sufficiently large and CO in exhaust gas is completely burned, it may be determined based on a fluctuation pattern of only the CO 2 gas flow rate.
  • the suction gas flow rate varies greatly by adjusting the skirt height before and after the silicon removal treatment (see FIG. 1), but as described above, the response speed is measured in the suction gas flow rate measurement and the gas composition analysis. Therefore, if the suction gas flow rate varies greatly, it may cause an error when measuring the change in the discharge rate of carbon in the exhaust gas. Therefore, in determining the maximum value and the minimum value, it is desirable to operate so as not to cause a significant fluctuation in the suction gas flow rate before and after the maximum value and the minimum value are generated.
  • the skirt height is generally controlled so as to keep the gas suction pressure constant, or controlled so as to keep the skirt height constant. The fluctuation is at a level at which there is no problem in determining the maximum value and the minimum value.
  • the end point of the desiliconization process is determined based on a fluctuation pattern in which any one of the measured values of the total flow rate of CO gas and CO 2 gas becomes a maximum value and increases again after reaching the minimum value.
  • the difference between the maximum value and the minimum value is 10% or more of the maximum value, it is desirable to determine the maximum value and the minimum value in the above variation pattern.
  • the end point of the desiliconization process is a time point when the fluctuation value increased again after reaching the above-mentioned minimum value becomes equal to or more than a predetermined ratio of 90% to 150% with respect to the above-mentioned maximum value.
  • a predetermined ratio of 90% to 150% with respect to the above-mentioned maximum value As a reference, it is desirable to be within a predetermined elapsed time range.
  • the reason why the value of the predetermined ratio in the above range with respect to the maximum value is set as the threshold value is that the region that increases again after reaching the minimum value in the above variation pattern is formed by the desiliconization slag forming,
  • the area where the slag height of the slag rapidly increases is less than 90% of the maximum value, but the slag forming is insufficient and the removal rate of the desiliconized slag may be insufficient. This is because the area exceeding 150% may hinder the operation by overflowing slag from the furnace port before the desiliconization process is finished.
  • the end point of the silicon removal treatment may be any time as long as the above fluctuation value is equal to or greater than the threshold value.
  • the elapsed time is preferably in the range of 0 to 50 seconds, and more preferably in the range of 0 to 30 seconds. If it is within the range of the above time, it is possible to complete the desiliconization process and perform the intermediate evacuation sufficiently without excessively forming and inhibiting the operation.
  • the end point of the desiliconization process determined as described above may be a point in time when any of the above measured values is equal to or greater than a predetermined ratio with respect to the maximum value, and from this point in time, It may be the time when the processing time of elapses. However, in the latter case, it is desirable to set the desiliconization process to end when any of the above measured values does not exceed 150% of the maximum value.
  • the method for determining the end point of the desiliconization process is not limited to the method of determining based on the fluctuation pattern as described above, but also the discharge rate of carbon in the exhaust gas, the CO gas concentration in the suction gas, CO 2.
  • the measured value of any one of the gas concentration, the total concentration of CO gas and CO 2 gas, the CO gas flow rate, the CO 2 gas flow rate, and the total flow rate of CO gas and CO 2 gas is greater than or equal to a predetermined threshold value It is also effective to set the time point within the predetermined elapsed time range as a reference.
  • the elapsed time from the time when the measured value is equal to or greater than the threshold value to the end of the desiliconization process is in the range of 0 to 50 seconds, as described above, and is 0 to 30 seconds. It is more desirable to be within the range.
  • the above measured value is equal to or greater than the threshold at the maximum value portion as seen in the variation pattern of the carbon discharge rate shown in FIG. It is necessary not to do so.
  • 1.2 times the stoichiometrically required oxygen amount calculated from the Si concentration in the hot metal before the desiliconization treatment and the Si concentration in the hot metal after the target desiliconization treatment preferably 1 It is desirable to set the time when the above measured value is equal to or higher than a predetermined threshold after the time when the supply of .5 times oxygen is completed.
  • the above threshold value may be a numerical value obtained empirically or may be a value calculated using variables such as the hot metal temperature and the Si concentration in the hot metal, but the waste state at the time of intermediate waste, It is preferable to determine in consideration of the results of the subsequent dephosphorization treatment.
  • the exhaust gas treatment facility has a function of recovering the exhaust gas of the converter type refining furnace as fuel gas and a flue with a steam boiler, and the exhaust gas treatment facility is actively used during desiliconization treatment.
  • the operation is performed so that at least a part of the CO gas in the exhaust gas is burned by sucking the atmosphere into the exhaust gas, when the end point of the desiliconization process is determined based on the threshold described above, specifically, An example of investigating the exhaustability of the desiliconization slag when the end point of the desiliconization process is determined based on the CO gas concentration in the suction gas will be described below.
  • the decontamination performance of desiliconization slag is defined as the concentration of silicon in the hot metal before desiliconization and the mass of desiliconization slag that is generated, and the tilt angle of the converter-type refining furnace at the time of decontamination. Evaluation was made based on the amount of desiliconized slag discharged from the converter-type refining furnace under constant conditions.
  • the case where the mass of desiliconized slag discharged to the receiving vessel directly under the converter type refining furnace is 50% or more of the mass of desiliconized slag present in the furnace is “Excellent”, the case where the above value was 30% or more and less than 50% was evaluated as “excellent”, and the case where the above value was less than 30% was evaluated as “exclusion”.
  • Figure 4 shows the results of the above survey. From this figure, the higher the CO gas concentration in the suction gas at the end of the desiliconization process, the better the exhaustability of the desiliconization slag, and the CO gas concentration in the suction gas at the end of the desiliconization process is 6 It can be seen that “exclusion defect” does not occur when the value is 0.0 vol% or more. That is, the end of the desiliconization process can be determined based on the CO gas concentration in the suction gas during the desiliconization process, and in that case, the CO gas concentration in the suction gas is 6.0 vol% or more. It can be seen that the value is preferably used as a threshold value for determining the end point of the desiliconization process.
  • the hot metal and molten steel in the furnace are refined batchwise, and this single unit of refining is called “charge”.
  • the number of charges indicates the number of times.
  • the CO gas concentration in the suction gas changes depending on the air sucked from between the furnace port and the skirt of the converter type refining furnace.
  • the threshold value of “CO gas concentration of 6.0 vol% or more” in the gas is obtained under operating conditions in which the operating conditions (the amount of acid fed, the skirt height, the furnace port pressure, etc.) are constant. Therefore, if it is the condition, it can fully be used as a threshold value.
  • an appropriate value as the above-mentioned threshold varies depending on equipment conditions such as the suction capacity of the exhaust gas treatment equipment and operating conditions such as the oxygen supply rate.
  • the CO gas concentration in the suction gas is in the range of 2.0 vol% to 18.0 vol% It is preferable to select and use appropriate values.
  • the CO gas concentration threshold is 2.0 vol% or more, slag forming is sufficiently accelerated even if only the measured value of the CO gas concentration is used instead of the variation pattern of the discharge rate of carbon in the exhaust gas. Misrecognition at the time of determining that the gas is discharged can be reduced. On the other hand, if the CO gas concentration threshold is 18.0 vol% or less, it is efficient while preventing an operation hindrance due to excessive slag forming. Therefore, it is possible to accurately determine the forming state for rejecting.
  • the slag forming status during the desiliconization process and the timing suitable for ending the desiliconization process and starting the intermediate evacuation can be determined only from the information obtained from the suction gas, Necessary amount of oxygen in desiliconization blowing calculated from operating conditions obtained in advance, exhaust gas temperature, slag discharge status from the furnace port, slag outflow status from the steel outlet, changes in lance or sub lance vibration, oxygen blowing
  • the determination conditions may be made more accurate by combining information such as acoustic changes during smelting, or a slag level estimation technique using a known method.
  • the hot metal pretreatment method of the present invention will be specifically described with reference to an example in which the converter type refining furnace shown in FIG. 3 is used.
  • the converter type refining furnace 1 in which the cold iron source 8 such as iron scrap is charged is subjected to desiliconization treatment and dephosphorization treatment. , That is, the hot metal 5 before the pretreatment is charged through the charging pan 15 (hot metal charging step).
  • the hot metal 5 in the converter-type refining furnace 1 is supplied with oxygen-containing gas or oxygen-containing gas and iron oxide as an oxygen source and subjected to desiliconization treatment (desiliconization). Processing step).
  • the silicon contained in the hot metal 5 reacts with the supplied oxygen to proceed a desiliconization reaction (Si + O 2 ⁇ SiO 2 ).
  • the hot metal temperature is increased by the combustion heat of silicon due to this desiliconization reaction, and the melting of the cold iron source 8 in the hot metal is promoted.
  • the silicon concentration in the hot metal gradually decreases and CO gas is generated.
  • the desiliconization process further proceeds and the generation amount of desiliconization slag increases.
  • the hot metal temperature rises the composition and physical properties of the slag also change, and the generated CO gas causes the slag to form.
  • the desiliconized slag 6 produced by the above desiliconization treatment is obtained by decomposing phosphorus oxide (P 2 O 5 ) derived from the dephosphorization slag 7 described later during the desiliconization treatment.
  • the basicity ([CaO (mass%)] / [SiO 2 (mass%)]) after the desiliconization treatment is set to 0. 80 or more is preferable.
  • high basicity means that the ratio of CaO to the generated SiO 2 is high, and the amount of desiliconized slag 6 increases, so the upper limit is preferably about 1.50. More preferably, it is less than 1.30, More preferably, it is less than 1.20.
  • the basicity of the desiliconized slag 6 can be adjusted to the above range by adding a medium solvent such as a CaO-based medium solvent into the furnace before and during the desiliconization process.
  • a medium solvent such as a CaO-based medium solvent
  • the basicity of the desiliconization slag 6 is lowest because the desiliconization process ends when the amount of generated SiO 2 is the largest. If the basicity at the end of the desiliconization treatment is 0.80 or more, the basicity during the previous desiliconization treatment inevitably becomes 0.80 or more.
  • a medium solvent such as a CaO-based medium solvent is used.
  • the addition method of the CaO-based medium solvent may be a method in which granular and lump-shaped ones are introduced from a hopper on the furnace, or a powdery one is introduced through the blowing lance 2, and there is no particular limitation. .
  • the basicity of the desiliconized slag 6 is expressed by the following formula (1):
  • Basicity [(Residual amount of CaO in furnace (kg / molten metal-t)) + (Amount of added CaO in desiliconization treatment (kg / molten metal-t))] / [(Remained amount of SiO 2 in furnace (kg / molten metal) -T)) + (amount of SiO 2 produced by desiliconization treatment (kg / molten metal-t))]
  • Can be calculated based on The amount of SiO 2 produced by the desiliconization treatment in the above formula is calculated from the change in the silicon concentration in the hot metal before and after the desiliconization treatment.
  • an oxygen source for the silicon removal treatment only the oxygen gas 9 supplied from the top blowing lance 2 may be used, or iron oxide (not shown) may be used in combination with the oxygen gas 9. .
  • iron oxide it is not preferable to use iron oxide that absorbs heat during temperature rise and decomposition. Therefore, it is preferable to avoid using iron oxide as an oxygen source as much as possible.
  • the end point of the desiliconization process is obtained when the discharge rate of carbon contained in the exhaust gas discharged from the converter type refining furnace during the desiliconization process is measured. Since it is determined based on a fluctuation pattern in which the maximum value is reached and then increases again after reaching the minimum value, the supply rate of the oxygen source is kept as constant as possible during the period in which the carbon emission rate reaches the maximum value and the minimum value. It is desirable to operate. In normal operation, since the desiliconization process is completed in a short time, the operation of increasing the acid feed rate or introducing iron oxide is performed at the initial stage of the desiliconization process. By making the speed constant, the maximum value and the minimum value of the carbon discharge rate can be stably measured.
  • the top blow lance 2 is immediately raised to end the desiliconization process. In general, it is after about several tens of seconds required for operations such as necessary operations and operation of the apparatus from the determination time.
  • the converter-type refining furnace 1 is tilted to the side opposite to the side where the outlet 4 is provided, and contains a large amount of SiO 2 generated by the desiliconization process.
  • the low basicity desiliconized slag 6 is discharged from the furnace port of the converter-type refining furnace 1 (intermediate waste discharging process).
  • the hot metal after the desiliconization treatment is indicated as 5a in order to distinguish it from the hot metal 5 before the desiliconization treatment.
  • the removal rate of the desiliconized slag 6 in the intermediate removal step is set to 30 mass% or more in order to advance the dephosphorization reaction efficiently with a small amount of CaO-based solvent used in the dephosphorization treatment step described later. preferable. Furthermore, in order to reduce the total amount of the CaO-based solvent used between the hot metal pretreatment and the next decarburization and refining process, compared to the conventional method in which the intermediate waste process is not performed, the waste rate above 50 mass% is reduced. It is more preferable to ensure stably.
  • Waste rate (mass%) (discharge slag mass) ⁇ 100 / [(slag mass generated in the desiliconization process) + (residual slag mass of the previous charge)] (2)
  • a CaO-based medium solvent or an oxygen source is supplied to the hot metal 5a after the desiliconization treatment left in the converter type refining furnace to remove the phosphorus.
  • Process (dephosphorization process).
  • the basicity of the dephosphorization slag 7 generated in the furnace is preferably adjusted to a range of 1.2 to 3.0. If the basicity is 1.2 or more, the dephosphorization ability of the slag is in an appropriate range, and the phosphorus concentration in the hot metal can be reduced with a small amount of slag. On the other hand, if it is 3.0 or less, the dephosphorization reaction proceeds with the fluidity of the slag within an appropriate range without impairing the hatching of the CaO-based solvent.
  • the oxygen source used in the dephosphorization process is mainly composed of the oxygen gas 9 from the top blowing lance 2 as in the desiliconization process, but iron oxide may be used in part.
  • the present invention is intended to expand the use of the cold iron source 8, it is preferable to use as little iron oxide as possible to absorb heat during temperature rise and decomposition.
  • the T. of dephosphorization slag 7 is controlled by appropriately controlling the acid feeding conditions and the lance height. It is preferable to adjust the Fe concentration and promote the hatching of the CaO-based solvent without depending on the use of iron oxide.
  • quick lime (CaO), limestone (CaCO 3 ), slaked lime (Ca (OH) 2 ) and the like can be used as the CaO-based solvent used in the dephosphorization treatment.
  • CaO-based solvent used in the dephosphorization treatment.
  • group solvent can also be used as a CaO type
  • group solvent is the same as when adding a CaO type
  • the method may be a method of throwing it in through the like.
  • phosphorus in the molten iron is oxidized by oxygen in an oxygen source to be converted into phosphorus oxide (P 2 O 5 ), and a dephosphorizing agent formed by the incubation of a CaO-based solvent.
  • phosphorus oxide P 2 O 5
  • a dephosphorizing agent formed by the incubation of a CaO-based solvent.
  • the dephosphorization process may be terminated when the dephosphorization process time has elapsed or when the dephosphorization reaction has progressed and the phosphorus concentration in the hot metal 5a has fallen below a predetermined value.
  • the converter-type refining furnace 1 is tilted in the direction opposite to the intermediate waste, and the hot metal 5b in the converter-type refining furnace 1 is discharged into the outlet 4 Then, the hot water is poured into a hot metal holding container (not shown).
  • the hot metal after the dephosphorization process is indicated as 5b in order to distinguish it from the hot metal 5a after the desiliconization process.
  • the converter type refining furnace 1 is inverted so that the furnace port faces upward, and the hot water is finished.
  • the dephosphorization slag 7 may flow out mixed with the molten iron 5b flowing out from the hot water outlet 4, but the flow of the dephosphorization slag 7 is inevitable, but the amount is small. This is clearly distinguished from the later-described dephosphorization slag discharge. Therefore, a small amount of hot metal 5b (not shown) that has not been discharged and almost the entire amount of dephosphorization slag 7 remain in the converter-type refining furnace 1 after the end of the pouring.
  • this dephosphorization slag 7 has a high phosphoric acid concentration, if it is used as it is as a desiliconization slag for the next charge as it is, there is a risk that the phosphorus concentration in the hot metal will rise due to recovery. For this reason, conventionally, the entire amount of dephosphorization slag has been discharged after the completion of the above-mentioned hot water discharge step. However, if the entire amount of dephosphorization slag is exhausted, the amount of ironmaking material used to generate the desiliconization slag necessary for the desiliconization process of the next charge increases, leading to an increase in the cost of auxiliary materials. .
  • the dephosphorization treatment is performed after the intermediate waste, the hot metal is discharged, and then the converter type It is preferable that 30 mass% or more of the dephosphorization slag remaining in the refining furnace is left in the furnace and used as a part of the raw material of the desiliconization slag for the next charge.
  • the dephosphorization slag to remain is more preferably 50 mass% or more.
  • the furnace body after pouring is tilted to the opposite side from the pouring gate and discharged from the furnace port, as in the usual slag draining method.
  • a method of adjusting the tilt angle and discharging the slag so as to partially remain in the furnace may be used.
  • the basicity of the slag after the dephosphorization treatment is in the range of 1.2 to 1.8, and the concentration of iron oxide is 10 mass%. It is preferable to adjust so as to be above.
  • This dephosphorization slag solidifying step is a step for preventing the bottom blowing tuyere 3 from being blocked by the dephosphorizing slag 7 and the molten iron 5b remaining in the furnace flowing into the bottom blowing tuyere 3. It is preferable that the bottom blowing gas 10 be ejected from the bottom blowing tuyere 3 at least until the dephosphorization slag 7 and the molten iron 5b are solidified and solidified. However, this step may be omitted when the bottom blowing gas is continuously supplied.
  • the desiliconization process and the dephosphorization process can be continuously performed using the single converter-type refining furnace with the intermediate waste interposed therebetween. It is possible to utilize the heat loss as a heat source for melting the cold iron source. Further, according to the present invention, the end point of the desiliconization process is determined based on the concentration of the gas species including carbon atoms in the suction gas (exhaust gas) sucked into the exhaust gas treatment facility of the converter type refining furnace. Since the intermediate waste can be always performed in a state where the bulk specific gravity of the desiliconized slag is small and the fluidity is high, the waste rate of the desiliconized slag can be stably improved.
  • a single converter-type refining furnace is used to sandwich the discharge of desiliconized slag after desiliconization (hereinafter, also referred to as “intermediate waste”), and then desiliconize the hot metal.
  • two or more converter-type refining furnaces are used for refining the hot metal 5 and at least one of these converter-type refining furnaces is used.
  • the refining furnace 1 is used for the hot metal pretreatment according to the present invention, and the remaining at least one converter type refining furnace 1 ′ is used for decarburization refining of the hot metal subjected to the hot metal pretreatment according to the present invention. Is preferred.
  • the hot metal subjected to the hot metal pretreatment was one having a temperature of 1250 to 1320 ° C., a silicon concentration of 0.20 to 0.55 mass%, and a phosphorus concentration of about 0.12 mass%.
  • the target silicon concentration in the hot metal after the above desiliconization treatment was set to 0.03 mass%, and the target basicity of the desiliconization slag after the desiliconization treatment was set in the range of 0.6 to 0.9.
  • the target hot metal temperature at the end of the desiliconization process is set to 1300 to 1340 ° C., and the control is performed by keeping the scrap charge constant at 80 kg / t, and depending on the hot metal temperature to be charged.
  • a cold iron source and / or iron ore or a carbon material and / or ferrosilicon as a heat source were added at the initial stage of the desiliconization treatment, and the amount of addition and the amount of acid sent were adjusted.
  • the basicity of the dephosphorized slag is adjusted so that the basicity of the dephosphorized slag is in the range of 1.6 to 2.0. The amount used was adjusted.
  • Method 1 Oxygen necessary for the silicon concentration in the molten iron to be 0.03 mass%, calculated from the silicon concentration in the molten iron before pretreatment and the desiliconization oxygen efficiency (experience value) corresponding to the concentration.
  • the acid feed rate from the top blowing lance was constant at 30000 Nm 3 / hr, and nitrogen gas was blown at the bottom at a rate of 1200 Nm 3 / hr.
  • the hot metal preliminary treatment for determining the end point of the desiliconization treatment by the two methods, Method 1 and Method 2 is carried out by several tens of charges for each method, and the desiliconization slag in the intermediate waste of each method is reduced. The rejection rate was compared. At this time, the removal of the desiliconization slag after the desiliconization treatment (intermediate waste) starts immediately after raising the upper blow lance after the desiliconization treatment and tilting the furnace body.
  • Waste rate (mass%) (discharge slag mass) ⁇ 100 / [(slag mass generated in the desiliconization process) + (residual slag mass of the previous charge)] (2)
  • the rejection rate of the desiliconization slag after the desiliconization process varies in the range of 20 to 70 mass%, and the average rejection Whereas the rate is 37 mass%
  • the rejection rate of the desiliconized slag after the desiliconization process is 50 to 80 mass%.
  • the range and the average rejection rate are 67 mass%, and it can be seen that the rejection rate of 50 mass% or more can be stably achieved.
  • FIG. 6 shows the relationship between the time required for intermediate waste and the Si concentration in the hot metal before preliminary treatment.
  • the work time required for intermediate waste is 10 minutes or less. It can be seen that it has been greatly shortened.
  • the treatment pitch of the hot metal preliminary treatment it is possible to reduce the treatment pitch of the hot metal preliminary treatment to a level substantially equal to the treatment pitch of the decarburization treatment of the next step, so that the hot metal pretreatment can be carried out on almost the entire amount of hot metal. Became.
  • the dephosphorization slag after the dephosphorization treatment is charged with molten iron of the next charge while leaving the entire amount in the furnace without being discharged, and the basicity of the slag in the desiliconization treatment is determined by the dephosphorization slag.
  • the hot metal preliminary treatment is carried out under the same conditions as those of the invention example in which the end point of the desiliconization treatment is determined by the method 2 of Example 1 except that the range of 0.9 to 1.2 is controlled to prevent dephosphorization from The experiment which applied was carried out for 10 charges continuously.
  • the amount of CaO-based solvent (quick lime) used in the desiliconization treatment is changed from 6.0 kg / molten iron t (see Table 1) in the case of the inventive example of Example 1 to 2.0 kg / molten iron t. It was possible to greatly reduce.
  • the pre-charge dephosphorization slag was left in the furnace, there was almost no adverse effect on the amount of quicklime used in the dephosphorization process and the phosphorus concentration in the hot metal after the process. We were able to enjoy the benefits of reducing lime usage.
  • the exhaust gas treatment facility of the converter type refining furnace 1 has a function of collecting suction gas as fuel gas, and suction of about 90000 to 100,000 Nm 3 / hr with the skirt 11 raised during blowing. Has the ability.
  • the flue 12 is provided with a steam boiler (exhaust heat boiler), and during the desiliconization process, the suction gas is not collected. Therefore, the skirt 11 is raised to suck the atmosphere and remove the CO gas in the exhaust gas. The energy was recovered as high-pressure steam by aggressive combustion.
  • a steam boiler exhaust heat boiler
  • the hot metal pretreatment is carried out for 100 charges in each of the two methods 1 and 3, and the average waste rate of desiliconized slag in the intermediate waste after the desiliconization treatment and the phosphorus in the hot metal after the hot metal pretreatment
  • the concentration was investigated and the results are shown in Table 2. From this result, the average removal rate of the desiliconization slag in Method 1 for determining the end point of the desiliconization process by the same method as the conventional method was 47 mass%, whereas the desiliconization process was completed by the method suitable for the present invention.
  • the average removal rate of desiliconized slag in Method 3 for determining the time point is greatly improved to 62 mass%, and accordingly, the phosphorus concentration in the hot metal after hot metal pretreatment is greatly reduced. It can be seen that the variation (standard deviation) can be greatly reduced.
  • Converter refining furnace 2 Top blowing lance 3: Bottom blowing tuyere 4: Outlet 5: Hot metal 5a: Hot metal after desiliconization 5b: Hot metal after dephosphorization 6: Desiliconization slag 7: Dephosphorization Slag 8: Cold iron source 9: Oxygen gas 10: Bottom blowing gas 11: Skirt 12: Flue 13: Gas sampling probe 14: Gas analyzer 15: Charging pan

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

転炉型精錬炉内の溶銑に酸素源を供給して脱珪処理した後、炉内に溶銑を残留させたまま炉内に存在するスラグの一部を転炉型精錬炉から排出し、その後、転炉型精錬炉内にCaO系媒溶剤および酸素源を供給して脱燐処理した溶銑を転炉型精錬炉から出湯することで、1つの転炉型精錬炉を用いて溶銑に対して脱珪処理および脱燐処理を行う溶銑の予備処理方法において、前記脱珪処理中、転炉型精錬炉の排ガス処理設備で吸引した吸引ガス中の少なくとも1種以上の炭素原子を含むガス種の濃度を分析し、その分析値に基づいて脱珪処理の終了時点を決定することによって、次工程の脱燐処理を、溶銑の温度低下を抑制しつつ、低コストで行うことを可能とする。

Description

溶銑の予備処理方法
 本発明は、1つの転炉型精錬炉を用いて、途中の排滓工程を挟んで溶銑の脱珪処理と脱燐処理を連続して行う溶銑の予備処理方法に関するものである。
 温室効果ガスの排出量削減が強く求められる近年、鉄鋼業においては、転炉や溶銑鍋などの処理容器で脱燐処理や脱炭精錬等を行う際に、炉内の溶銑に鉄スクラップなどの冷鉄源を配合して、鉄鋼製造に要するエネルギーを削減することが行われている。これは、冷鉄源は、高炉に装入する鉄鉱石のような酸化鉄と異なり、還元する必要がないため、高炉から出銑される銑鉄を精錬して溶鋼を製造するよりも、少ないエネルギー消費量、少ない温室効果ガス排出量で溶鋼を製造できるからである。
 また近年、コスト面および品質面で有利であることから、転炉での脱炭精錬の前に溶銑に対して予備処理を施し、予め溶銑中の燐を除去する精錬方法(「予備脱燐処理」ともいう)が実施されている。一般に、脱燐処理は、酸化剤(酸素ガスなどの酸素源)および脱燐精錬剤(CaO系媒溶剤)を溶銑に添加し、溶銑中の燐を酸化剤で酸化して燐酸化物とし、これを滓化した脱燐精錬剤に吸収させることによって行うが、この脱燐反応は、熱力学的には、精錬温度が低いほど有利である。つまり、溶鋼段階よりも温度が低い溶銑段階の方が、脱燐反応は進行しやすく、少ない酸化剤および脱燐精錬剤で脱燐処理を行うことができる。したがって、上記予備脱燐処理を行うことで、処理工程は増加するものの、製鋼精錬工程全体におけるスラグ発生量を削減することができる。
 ところで、高炉から出銑される溶銑には、0.3~0.6mass%程度の珪素が含まれており、珪素を含有する溶銑を脱燐処理すると、最初に珪素が酸化除去され、溶銑中の珪素濃度がある程度まで低下した後、溶銑中の燐が酸化除去される。上記珪素の酸化によって、SiOを主成分とするスラグが生成するが、このスラグは脱燐反応を阻害する。これは、脱燐反応のためには、塩基度([CaO(mass%)]/[SiO(mass%)])が1.2以上のスラグが必要であるのに対して、珪素の酸化によって生成するSiOは、スラグの塩基度を下げる作用があるからである。
 高炉-転炉の組み合わせからなる鉄鋼精錬工程では、鉄スクラップなどの冷鉄源の溶解用熱源は、溶銑の有する顕熱と、溶銑中の炭素および珪素の燃焼熱が主体であり、基本的には、多量の冷鉄源を溶解することはできない。しかも、上記のように、溶銑に対する予備処理として脱珪処理および脱燐処理を施す場合には、処理工程の追加に伴う溶銑温度の低下に加えて、燃焼熱源となる溶銑中の炭素および珪素が、上記脱珪処理および脱燐処理で酸化されて減少するため、転炉での冷鉄源の溶解にはより不利になっている。
 そこで、溶銑予備処理を行う場合でも、より多くの冷鉄源を溶解することを目的として、例えば、特許文献1には、1つの転炉型精錬炉を用いて溶銑の脱珪、脱燐処理を行う際に、先ず、脱珪処理終了時のスラグの塩基度が0.3~1.3の範囲に入るようにCaO系媒溶剤の供給量を調節して脱珪処理を行った後、精錬炉を傾動させて炉内に生成したスラグを炉口から排出し、次いで、新たにCaO系媒溶剤を添加して脱燐処理を行う溶銑の予備処理方法が提案されている。また、特許文献2には、1つの転炉型精錬炉を用いて溶銑の脱珪、脱燐処理を行う際に、脱燐処理終了し、溶銑を出湯した後、スラグを排滓せず炉内に残留させたままで次チャージの溶銑を精錬炉に装入し、酸素を供給して脱珪処理を行い、脱珪処理後、一旦吹錬を中断してスラグを排出する中間排滓工程を設け、その後、引続き脱燐処理を行う溶銑の予備処理方法が提案されている。
 上記特許文献1の技術では、脱珪処理および脱燐処理を1つの転炉型精錬炉で行うことで、溶銑の移し変えによる温度降下を防止することができ、また、特許文献2の技術では、この効果に加えて、脱燐処理で発生したスラグ(以降、「脱燐スラグ」ともいう)を脱珪処理で再使用するので、脱珪処理工程での造滓剤の添加による温度降下を低減することが可能となる。
 すなわち、特許文献1や特許文献2の技術の採用により、溶銑の予備処理工程における熱ロスを低減できるので、冷鉄源の配合比率を、従来に比べて増大するとともに、温室効果ガスの排出量の削減や製造コストの低減を図ることができる。
特開平10-152714号公報 特開平11-323420号公報
 しかしながら、上記従来技術には以下の問題点がある。
 特許文献1や特許文献2に開示の技術のように、脱珪処理、中間排滓、脱燐処理を1つの転炉型精錬炉で連続して行う場合に、スラグの塩基度を脱燐に必要な所定の値以上とし、かつ、脱燐処理で使用するCaO系媒溶剤を低減するためには、脱珪処理で生成した、SiOを大量に含有するスラグ(以降、「脱珪スラグ」ともいう)を転炉型精錬炉から所定量以上排出することが必須となる。
 この観点から、上記従来技術を見ると、特許文献1の技術は、脱珪処理終了時のスラグの塩基度を0.3~1.3に制御すれば、スラグは十分に流動性を示し、脱珪スラグの排滓が十分に行われるとしている。しかし、脱珪スラグの塩基度を0.3~1.3に制御するだけでは、スラグのフォーミングが不十分で、流動性も悪く、溶銑を流出させることなく短時間でスラグを排出することが困難となったり、逆に、フォーミングが過剰となって、脱珪処理中に炉口からスラグが溢れ出て、操業を阻害したりすることがあるため、十分な排滓の制御は難しい。
 また、特許文献2の技術は、脱珪スラグの塩基度を1.0~3.0とし、溶銑中の珪素濃度が0.20mass%以下になった以降に、中間排滓を行うことが最適であることを提案している。しかし、その理由は、脱珪処理終了時の溶銑中の珪素濃度が0.20mass%よりも高い場合には、次工程の脱燐処理時のスラグの塩基度を2.0に調整するために必要なCaO含有物質が多くなり過ぎ、コスト的に不利になるからとしており、脱珪スラグの排滓性については何ら考慮していない。
 つまり、上記の特許文献1および特許文献2の開示の技術では、脱珪スラグを十分に排滓することができず、次工程の脱燐処理でのCaO系媒溶剤の使用量を増加せざるを得なかったり、あるいは、脱燐処理後の溶銑中の燐濃度が高くなるおそれがあったりするという問題点を抱えている。
 本発明は、上記従来技術における問題点に鑑みてなされたものであり、その目的は、1の転炉型精錬炉を用いて、途中の排滓工程を挟んで溶銑の脱珪処理と脱燐処理とを連続して行う溶銑の予備処理方法において、脱珪処理で生成した脱珪スラグの排滓性を改善することによって、次工程の脱燐処理を、溶銑の温度低下を抑制しつつ、低コストで行うことを可能とする溶銑の予備処理方法を提案することにある。
 上記課題を解決するために開発した本発明の第1の態様は、転炉型精錬炉内の溶銑に酸素源を供給して脱珪処理した後、炉内に溶銑を残留させたまま炉内に存在するスラグの一部を転炉型精錬炉から排出し、その後、転炉型精錬炉内にCaO系媒溶剤および酸素源を供給して脱燐処理した溶銑を転炉型精錬炉から出湯することで、1つの転炉型精錬炉を用いて溶銑に対して脱珪処理および脱燐処理を行う溶銑の予備処理方法において、前記脱珪処理中、転炉型精錬炉の排ガス処理設備で吸引した吸引ガス中の少なくとも1種以上の炭素原子を含むガス種の濃度を分析し、その分析値に基づいて脱珪処理の終了時点を決定することを特徴とする溶銑の予備処理方法である。
 本発明の第2の態様は、本発明の第1の態様に係る溶銑の予備処理方法において、前記脱珪処理中の転炉型精錬炉から排出される排ガス中の炭素の排出速度を前記吸引ガス中の炭素原子を含むガス種の濃度の分析値および前記吸引ガスの流量に基づいて算出し、前記算出した排ガス中の炭素の排出速度が、極大値となり、極小値となった後に再び増大する変動パターンに基いて前記脱珪処理の終了時点を決定することを特徴とする。
 本発明の第3の態様は、本発明の第1の態様に係る溶銑の予備処理方法において、前記脱珪処理の終了時点を、前記吸引ガス中のCOガス濃度、COガス濃度およびCOガスとCOガスの合計濃度のうちのいずれか1の濃度の分析値が、極大値となり、極小値となった後に再び増大する変動パターンに基いて決定することを特徴とする。
 本発明の第4の態様は、本発明の第1の態様に係る溶銑の予備処理方法において、前記脱珪処理の終了時点を、前記吸引ガス中のCOガス濃度、COガス濃度およびCOガスとCOガスの合計濃度のうちのいずれか1の濃度の分析値と前記吸引ガスの流量との積から算出した、前記吸引ガス中のCOガス流量、COガス流量およびCOガスとCOガスの合計流量のうちのいずれか1つの流量が、極大値となり、極小値となった後に再び増大する変動パターンに基いて決定することを特徴とする。
 本発明の第5の態様は、本発明の第2~4のいずれか1つの態様に係る溶銑の予備処理方法において、前記脱珪処理の終了時点を、前記極大値となり、極小値となった後に再び増大する変動パターンにおいて、再び増大した値が、極大値に対して90%以上150%以下の所定の比率の値以上となった時点を基準として所定の経過時間範囲内とすることを特徴とする。
 本発明の第6の態様は、本発明の第2~5のいずれか1つの態様に係る溶銑の予備処理方法において、前記極大値となり、極小値となった後に再び増大する変動パターンにおける極大値と極小値の差が、極大値の10%以上であることを特徴とする。
 本発明の第7の態様は、本発明の第1の態様に係る溶銑の予備処理方法において、前記脱珪処理の終了時点を、前記吸引ガス中のCOガス濃度、COガス濃度およびCOガスとCOガスの合計濃度のうちのいずれか1の濃度の分析値が所定の閾値以上となった時点を基準として所定の経過時間範囲内とすることを特徴とする。
 本発明の第8の態様は、本発明の第7の態様に係る溶銑の予備処理方法において、前記排ガス処理設備は、吸引した前記転炉型精錬炉の排ガスを燃料ガスとして回収する機能を有するものであり、前記排ガス処理設備で転炉型精錬炉の排ガスとともに大気を吸引して前記排ガス中のCOガスの少なくとも一部を燃焼させさせるとともに、前記脱珪処理の終了時点を、前記燃焼後の吸引ガス中のCOガス濃度が2.0vol%以上、18.0vol%以下の所定の閾値以上となった時点を基準として所定の経過時間範囲内とすることを特徴とする。
 本発明の第9の態様は、本発明の第1の態様に係る溶銑の予備処理方法において、前記脱珪処理の終了時点を、前記吸引ガス中のCOガス濃度、COガス濃度およびCOガスとCOガスの合計濃度のうちのいずれか1の濃度の分析値と前記吸引ガスの流量との積から算出した、前記吸引ガス中のCOガス流量、COガス流量およびCOガスとCOガスの合計流量のうちのいずれか1つの流量が、所定の閾値以上となった時点を基準として所定の経過時間範囲内とすることを特徴とする。
 本発明の第10の態様は、本発明の第1の態様に係る溶銑の予備処理方法において、前記脱珪処理の終了時点を、前記吸引ガス中の炭素原子を含むガス種の濃度の分析値および前記吸引ガスの流量に基づいて、前記脱珪処理中の転炉型精錬炉から排出される排ガス中の炭素の排出速度を算出し、該排出速度が所定の閾値以上となった時点を基準として所定の経過時間範囲内とすることを特徴とする。
 本発明の第11の態様は、本発明の第1~10のいずれか1つの態様に係る溶銑の予備処理方法において、前チャージの脱燐処理で生成したスラグを30mass%以上炉内に残留させた状態で、次チャージの溶銑を転炉型精錬炉に装入し、脱珪処理することを特徴とする。
 本発明の第12の態様は、本発明の第1~11のいずれか1つの態様に係る溶銑の予備処理方法において、前記脱珪処理終了時に、前記転炉型精錬炉に存在するスラグの塩基度([CaO(mass%)]/[SiO(mass%)])を0.80~1.50の範囲に制御することを特徴とする。
 本発明によれば、1つの転炉型精錬炉を用いて、中間排滓を挟んで溶銑の脱珪処理および脱燐処理を連続して行う際に、脱珪処理の終了時点を、転炉型精錬炉の排ガス処理設備に吸引される吸引ガス中の炭素原子を含むガス種の分析値に基いて決定するので、脱珪処理終了判定のばらつきが大幅に低減され、中間排滓を常に脱珪スラグが十分にフォーミングして流動性が高い状態で行うことができ、脱珪スラグを、溶銑を流出させることなく短時間でかつ十分に排滓することが可能となり、ひいては、脱珪処理後の脱燐処理におけるコスト低減および処理後の溶銑中の燐濃度のばらつきを低減することが可能となる。
脱珪処理における排ガス中の炭素の排出速度の変化の例を示すグラフである。 排ガス中の炭素の排出速度の変化を説明する図である。 本発明の溶銑の予備処理方法に用いる転炉型精錬炉の略断面図である。 脱珪処理終了時の吸引ガス中のCOガス濃度と脱珪スラグの排滓性との関係を示す図である。 本発明の予備処理方法を工程順に説明する模式図である。 本発明の方法における中間排滓時間と溶銑中Si濃度の関係を、従来法と比較して示すグラフである。
 先ず、本発明の基本的な技術思想について説明する。
 発明者らは、1つの転炉型精錬炉を用いて、脱珪処理後の脱珪スラグの排出(以降、「中間排滓」ともいう)を挟んで、溶銑に脱珪処理および脱燐処理を連続して行う場合において、上記脱珪スラグの排滓性を改善することを目的とし、脱珪スラグの排滓性に及ぼす各種要因について鋭意検討を重ねた。
 その結果、中間排滓における脱珪スラグの排滓性は、脱珪スラグ自体の流動性の他に、脱珪スラグのフォーミング状況も大きく影響しており、脱珪スラグの排滓性を良好とするためには、排滓時に、脱珪スラグが十分に滓化されて良好な流動性を示す状態であるとともに、スラグが十分にフォーミングして嵩比重が小さくなっていることが重要であることが明らかとなった。
 脱珪処理で生成する脱珪スラグは、溶銑中の珪素の燃焼によって生成されるSiOと、炉内に添加あるいは残留させた造滓材が滓化することによって形成される。溶銑温度が低く、溶銑中の珪素濃度が高い脱珪処理の初期には、脱珪反応が優先的に進行し、炉内のSiO量が次第に増大するが、排滓時の流動性を確保するためには、生石灰や製鋼スラグなどのCaOを含有する造滓材を添加あるいは前装入して、スラグの組成を適正範囲に調整しておくことが重要である。
 一方、COガスの生成速度は、脱珪処理の初期には低位であるが、脱珪反応が進行して溶銑中の珪素濃度が0.20mass%未満に低下し、溶銑温度が上昇するのに伴い、脱炭反応が活発となり、次第に増大する。また、スラグ中の酸化鉄の濃度も、溶銑中の珪素濃度が高い脱珪処理の初期には10mass%未満と比較的低いが、脱珪反応が進行して、溶銑中の珪素濃度が低下し、スラグ量が増大するのに伴って次第に増大する。
 そして、スラグ中の酸化鉄の濃度が増大して10mass%を超えると、スラグの低融点化あるいは液相比率の増大が顕著となり、これに炉内温度の上昇が相俟って、スラグの流動性が向上する。さらに、スラグ中の酸化鉄と溶銑浴あるいはスラグ中に巻き込まれた溶銑滴との反応によるCOガスの発生も活発となり、スラグ中に多量のCOガス気泡を内包するようになって、いわゆる「スラグフォーミング」の状態となる。一旦、スラグがフォーミングし始めると、上吹きランスからの送酸によるスラグ層への酸素供給量も増加し、鉄などの酸化を促進するため、ランス高さなどの送酸条件によっては、加速度的にフォーミング高さが増大して、いわゆる「スロッピング」に至ることもある。
 脱珪スラグの排滓時に、このスラグフォーミング状態に制御・維持できれば、スラグの嵩比重を非常に小さなものとし、同じスラグ質量でも、約10倍程度の大きな体積とすることができるので、炉口からスラグを流出させる際に、溶銑を流出させることなく、迅速にスラグを排出することが可能となる。しかし、脱珪処理中のスラグフォーミングが過剰になると、炉口からスラグが溢れ出し、操業を阻害するおそれがあるので注意を要する。
 しかしながら、従来技術においては、上記したスラグフォーミングを制御・維持する方法や、フォーミング状態を適正に評価して、脱珪処理から中間排滓へと移行するタイミングを適切に判断する技術が確立されていなかった。そのため、中間排滓における脱珪スラグの排滓率を安定して高めることが困難であった。
 発明者らは、脱珪処理中におけるスラグのフォーミング状態を適正に評価し、脱珪処理を終了して中間排滓を開始するタイミングを決定する方法について、鋭意検討を重ねた。その結果、転炉型精錬炉を用いた脱珪処理中においては、排ガス中の炭素の排出速度が特定の変動パターンを示すとともに、その変動パターンの特定の範囲において、フォーミング状態が排滓に最適となっていること、そして、脱珪処理を終了して中間排滓を開始するタイミングは、転炉型精錬炉の付帯した排ガス処理設備に吸引される吸引ガス(以下、単に「吸引ガス」とも称する)中に含まれる炭素原子を含むガス種の濃度分析値に基づいて決定することができることを見出し、本発明を開発するに至った。
 図1は、溶銑中の珪素濃度が0.35mass%の溶銑を、脱珪スラグがフォーミングし易い条件で、0.10mass%以下まで低減する脱珪処理を行ったときの、転炉型精錬炉に付帯した排ガス処理設備に吸引される吸引ガス中のCOガス濃度、COガス濃度および吸引ガス流量(標準状態)に基づいて算出した、排ガス中に含まれる炭素の排出速度(単位時間当たりに排出される排ガス中に含まれる炭素量)の推移(経時変化)を、吸引ガス流量、送酸速度および吸引ガス中のCOガス濃度とCOガス濃度との和の推移とともに示したものである。
 この図から、脱珪スラグがフォーミングする場合、排ガス中に含まれる炭素の排出速度は、脱珪処理開始後、脱珪反応の進行に伴い次第に上昇し(ステージI)、一旦、極大値を示した後、減少して極小値を示し(ステージII)、その後、再び増大する(ステージIII)という特異な変動パターンを示すことがわかる。なお、上記排ガス中の炭素の排出速度には、厳密には、排ガス処理設備に吸引された空気に含まれるCOも含まれるが、空気中のCOは微量であるので、これによる影響は無視することができる。
 排ガス中の炭素の排出速度が、上記のような特異な変動パターンを示す理由について、発明者らは以下のように考えている。
 まず、ステージIは、脱珪処理の進行よる溶銑温度の上昇および溶銑中の珪素濃度の低下に従ってCOガスの発生量は次第に上昇する段階であり、脱炭反応開始初期の脱珪スラグは、まだ生成量が少ない上に、温度が低く、フォーミングしていないため、図2(a)に示したように、COガスは容易に脱珪スラグ層を通過して炉外に排出することができる。しかし、脱珪反応が進行して、ステージIIになると、COガスの発生量が多くなるとともに、脱珪スラグの温度が上昇して粘性が小さくなるため、図2(b)に示したように、発生したCOガスは脱珪スラグ中に取り込まれ、スラグがフォーミングを起こすようになり、排ガス中の炭素の排出速度は、見掛け上、一次的に減少する。さらに脱珪反応が進行して、ステージIIIになると、脱珪スラグ中にCOガスをそれ以上取り込むことができなくなり、フォーミングが飽和状態に達するため、図2(c)に示したように、COガスが炉外に排出されるようになり、再び、排ガス中の炭素の排出速度が上昇し始める。
 また、排ガス中の炭素の排出速度の変動パターンには、以下のような現象も関係していると考えられる。
 脱珪処理のステージIにおいては、上吹きランスから供給する酸素は、主に脱珪反応および脱炭反応に費やされるが、ステージIIになると、生成スラグ量が増大してスラグ層の厚さが増大するとともに、スラグ中の酸化鉄濃度が上昇し、供給する酸素が鉄の酸化反応にも消費されるようになるため、脱炭に使われる酸素がその分だけ減少することになり、排ガス中の炭素の排出速度が低下する。特に、スラグがフォーミングし始めてスラグ層の厚さが大きくなると、上吹きランスからの送酸によるスラグ層への酸素供給量が加速度的に増加して、酸化鉄濃度が上昇する。次に、ステージIIIになると、スラグ中の酸化鉄と溶銑との反応によって、COガスが発生するとともに、スラグ中の酸化鉄がその分だけ減少し、スラグ中の酸化鉄は収支が平衡した状態になるため、COガスの発生速度は再び増大して、排ガス中の炭素の排出速度が上昇し始める。
 以上の考察から、排ガス中の炭素の排出速度が極大値から極小値になり、極小値から再び増大して、脱珪スラグがフォーミング状態にある上記ステージIIIの段階で、脱珪処理を終了して中間排滓を開始すれば、脱珪スラグの排滓率を確実に高めることができることがわかった。また、この段階での溶銑中の珪素濃度は、引き続き行う脱燐処理において脱燐精錬剤の使用量を低減して効率的に脱燐することができる0.10mass%以下まで安定して低減していることを確認した。
 さらに、発明者らは、上記ステージIIIの特定領域、具体的には、排ガス中の炭素の排出速度の極大値に対して90%以上150%以下の範囲内において脱珪処理を終了した場合には、脱珪スラグの排滓率をより向上することができることを見出した。
 この理由は、上記に説明したように、脱炭反応の進行によって脱珪スラグの温度が上昇して粘性が低下し、流動性が向上することに加えて、フォーミングによって、脱珪スラグの比重が見掛け上小さくなるため、溶銑浴上のスラグ層の高さ(厚さ)が増大して炉口から流出し易くなることによるものと考えられる。排ガス中の炭素の排出速度が、上記極大値に対して90%未満で脱珪処理を終了した場合には、スラグのフォーミングが不十分で、脱珪スラグの排滓率も不十分となることがある。一方、上記極大値に対して150%超で脱珪処理を終了した場合には、脱珪処理を終了する前に炉口からスラグが溢れ出し、操業を阻害するおそれがあるからである。
 本発明は、上記のような新規な知見に基いて開発したものであり、その特徴は、転炉型精錬炉内の溶銑に酸素源を供給して脱珪処理した後、炉内に存在するスラグの少なくとも一部を転炉型精錬炉から排出(中間排滓)し、その後、転炉型精錬炉内の溶銑にCaO系媒溶剤および酸素源を供給して脱燐処理し、出湯する溶銑の予備処理方法において、上記脱珪処理中の転炉型精錬炉の排ガス処理設備で吸引した吸引ガス中の炭素原子を含むガス種の濃度を分析し、その分析値に基づいて脱珪処理の終了時点を決定することにある。
 上記した本発明の溶銑の予備処理方法には、図3に示したような上底吹き可能な転炉型精錬炉1を用いる。上吹きは、転炉型精錬炉1の内部を昇降可能な上吹きランス2を介して、該上吹きランス2の先端から酸素源として酸素含有ガス9を溶銑5に向けて供給して行う。上記酸素含有ガス9としては、酸素ガス(工業用純酸素)、酸素富化空気、空気、酸素ガスと不活性ガスとの混合ガス等を使用することができる。
 一方、底吹きは、転炉型精錬炉1の底部に設けられた底吹き羽口3を介して、溶銑中に底吹きガス10を吹き込むことにより行われる。上記底吹きガス10としては、酸素ガスを含むガスでも、Arガスや窒素ガスなどの不活性ガスのみでもよい。底吹きガス10は、溶銑中に吹き込むことによって溶銑5の攪拌を促進して冷鉄源の溶解を促進する機能を有するが、底吹き羽口3から造滓剤を溶銑中に吹き込む搬送用ガスとしての機能を持たせてもよい。
 また、転炉型精錬炉1の上方には、昇降して転炉型精錬炉1の炉口を覆うスカート11およびこれに接続する煙道12が設置されている。転炉型精錬炉1から排出される排ガスは、煙道12を介して、図示のない排ガス処理設備で吸引され、散水して除塵した後、吸引速度を測定する。排ガス処理設備が吸引した吸引ガスを燃料ガスとして回収する機能を有する場合には、吸引ガスは、組成や流量に応じて、燃料ガスとして回収されるかまたは放散されるが、脱珪処理中はCOガスの発生速度が低いため燃料ガスとして回収されないのが一般的である。ここで、図示のない排ガス処理設備で吸引した吸引ガスには、転炉型精錬炉1から排出される排ガスの他に、スカート11内の大気圧との差圧と、転炉型精錬炉1とスカート11との間隔の大きさ(以降、「スカート高さ」とも称する)とに応じて吸引される空気(大気)も含まれる。
 高温の排ガスとともにスカート内に吸引される空気中の酸素は、排ガス中のCOと、酸素とCOのいずれかが実質的に消費され尽くすまで反応してCOを生成する。煙道12には、分析用の排ガスを採取するガス採取プローブ13が設けられており、このガス採取プローブ13に接続して、ガス採取プローブ13で採取した吸引ガス中のCO,CO,O等のガス組成を分析するガス分析装置14が設けられている。つまり、ガス採取プローブ13で採取した吸引ガスのガス組成が、ガス分析装置14で連続的に、または、間欠的に測定されるように構成されている。なお、煙道12などの高温ガスが通過する部分には、蒸気ボイラーが設置される場合もある。
 高温の排ガスを、排ガス処理設備で燃料ガスとして回収する場合には、排ガス処理設備の運転は、スカート高さをできるだけ小さくし、吸引される空気が極力少なくなるようにするのが普通である。しかし、脱珪処理時のCOガスの発生速度は小さい(発生量が少ない)ため、通常、燃料ガスとしての回収は行わないことから、スカート高さは任意に設定することができる。したがって、例えば、煙道12が蒸気ボイラーの機能を有する場合には、スカート11を上昇させて積極的に空気を吸引することによって、排ガス中のCOガスを燃焼させ、その燃焼熱(熱エネルギー)を高圧の蒸気として回収することが望ましい。一方、煙道12が蒸気ボイラーの機能を有さない場合には、空気の吸引を抑制するため、スカート11の位置を下げて排ガス処理設備を運転してもよく、これにより、煙道12などの熱負荷を軽減することができる。
 排ガス処理設備で吸引した吸引ガスの成分組成は、排ガス処理設備の特徴やその運転条件によって全く異なったものとなる。即ち、スカート11の位置を下げて空気の吸引量を抑制した場合には、COおよびCOの濃度は比較的高いものとなるが、スカート11を上昇させて積極的に空気を吸引する場合には、転炉型精錬炉1からのCOガスの発生速度が、排ガス処理設備のガス吸引速度に対してある程度の比率以上(具体的には約30vol%以上)でないと、吸引ガスの分析ではCOのみが検出され、COは検出されない。これは、排ガス中のCOが吸引された空気中のOで燃焼されるためである。また吸引ガス中のCOおよびCOの濃度はNで希釈されるため比較的低いものとなる。因みに、図1は、ガス回収機能は有するが、煙道に蒸気ボイラーを有していない排ガス処理設備を用いて、脱珪処理開始後に排ガスの着火を確認してからスカート11を下げて空気の吸引を抑制した操業を行っている例を示したものである。
 また、前述した図1に示した排ガス中の炭素の排出速度は、図3に示した転炉排ガス処理設備に至る煙道に配設されたガス採取プローブ13で測定した吸引ガス中のCOガス濃度、COガス濃度および排ガス処理設備のガス吸引速度(標準状態での吸引ガス流量)に基いて算出したものである。CO,COのガス組成の測定には、赤外線吸収式の分析計を用いるのが一般的であるが、この測定法は、ガス流量の測定と比較して応答速度が遅く、十~数十秒程度の遅れ時間が生じるため、各測定時間には補正を加えている。また、排ガス処理設備におけるガス吸引量は、排ガスの漏洩を防止するため、脱珪処理や脱炭処理で転炉型精錬炉から発生するガス量よりも多くしているため、炉口とスカートとの間から空気を吸い込み、発生したCOの少なくとも一部は酸化されてCOに変化する。
 したがって、脱珪処理の終了時点を決定するためには、排ガス中の炭素の排出速度を、吸引ガス中のCO濃度およびCO濃度と排ガス処理設備の吸引速度(標準状態の流量)を測定することによって求める方法が有効である。しかし、発明者らの実験結果によれば、転炉排ガス処理設備の操業条件(スカート高さ、炉口圧等)が一定であれば、排ガス中の炭素の排出速度に代えて、吸引ガス中のCOガス濃度、COガス濃度、および、COガスとCOガスの合計濃度のうちのいずれか1つの濃度の、極大値となり、極小値となった後に再び増大する変動パターンからも脱珪処理終了の時点を決定することが可能である。この際、吸引される空気量が比較的少なく、吸引ガス中にCOが残留するような操業条件では、COガスとCOガスの合計濃度の変動パターンに基づいて決定することができるが、吸引される空気量があまり変動せずCOガス濃度が安定している場合には、COガス濃度のみの変動パターンに基づいて決定することもできる。また、吸引される空気量が十分大きく、排ガス中のCOが完全に燃焼されるような操業条件では、COガス濃度のみの変動パターンに基づいて決定することもできる。
 さらに、排ガス中の炭素の排出速度に代えて、吸引ガス中のCOガス濃度および/またはCOガス濃度の分析値と吸引ガスの流量との積から算出した、吸引ガス中のCOガス流量、COガス流量、および、COガスとCOガスの合計流量のうちのいずれか1つの流量の、極大値となり、極小値となった後に再び増大する変動パターンから、脱珪処理終了の時点を決定することも可能である。この際、吸引される空気量が比較的少なく、吸引ガス中にCOが残留するような操業条件では、COガスとCOガスの合計流量の変動パターンに基づいて決定することができるが、吸引される空気量があまり変動せずCOガス流量が安定している場合には、COガス流量のみの変動パターンに基づいて決定することもできる。また、吸引される空気量が十分大きく、排ガス中のCOが完全に燃焼されるような操業条件では、COガス流量のみの変動パターンに基づいて決定してもよい。
 また、吸引ガス流量は、脱珪処理の前後に行われるスカート高さの調節により大幅に変化する(図1参照)が、前述したように、吸引ガス流量の測定とガス組成の分析では応答速度が異なるため、吸引ガス流量に大きな変動があると、排ガス中の炭素の排出速度の変化を測定する際、誤差を生ずる原因となる。従って、上記の極大値および極小値を判定するに当たっては、極大値および極小値が発生する前後の吸引ガス流量に大幅な変動を来たさないように操業を行うことが望ましい。スカート高さは、ガスの吸引圧を一定に保つように制御したり、スカート高さを一定に保つように制御したりするのが一般的であるが、これらの場合には、吸引ガス流量の変動は、極大値および極小値を判定に問題のないレベルとなる。
 上記の様に、排ガス中の炭素の排出速度、あるいは、吸引ガス中のCOガス濃度、COガス濃度、COガスとCOガスとの合計濃度、COガス流量、COガス流量、および、COガスとCOガスとの合計流量のうちのいずれか1つの測定値が、極大値となり、極小値となった後に再び増大する変動パターンに基づいて、脱珪処理の終了時点を決定することができるが、極大値と極小値との差が極大値の10%以上である場合に、上記の変動パターンにおける極大値及び極小値と判定することが望ましい。その理由は、上記の差が10%未満では、吸引ガス流量の変動などに起因する微小な変動を、上記のスラグのフォーミング現象に関連する変動パターンと誤認するおそれがあるので、微小な変動は無視して確実に誤検知を防止するためである。なお、上記測定値の極大値と極小値との差が極大値の10%未満の場合には、上記の変動パターンにおける極大値及び極小値とは認識しないで無視し、極大値と極小値との差が極大値の10%となる変動パターンが現れるまで測定値の変動を継続して監視することが望ましい。
 また、脱珪処理の終了時点は、上記の極小値となった後に再び増大した変動値が、上記の極大値に対して90%以上150%以下の所定の比率の値以上となった時点を基準として所定の経過時間範囲内とすることが望ましい。極大値に対して上記の範囲の所定の比率の値を閾値とする理由は、上記の変動パターンにおいて極小値となった後に再び増大する領域は、脱珪スラグのフォーミングが進行して、炉内のスラグ高さが急激に増大する領域であるが、極大値に対して90%未満の領域は、スラグフォーミングが不十分なため脱珪スラグの排滓率が不十分となるおそれがあり、一方、150%を超える領域は、脱珪処理を終了する前に炉口からスラグが溢れ出して操業を阻害するおそれがあるからである。また、脱珪処理の終了時点は、上記の変動値が閾値以上となった時点そのものとすることが可能であればそれでもよいが、この時点から、必要な操作等の作業や装置の作動に要する数十秒程度を経過した後としても実際的には支障はない。上記の経過時間は、0~50秒の範囲内とすることが望ましく、0~30秒の範囲内とすることがより望ましい。上記時間の範囲内であれば、過剰にフォーミングが進行して操業が阻害されることなく、脱珪処理を終了して中間排滓を十分に行うことが可能である。
 なお、上記のようにして決定される脱珪処理の終了時点は、上記のいずれかの測定値が極大値に対して所定の比率の値以上となった時点としてもよいし、この時点から所定の処理時間を経過した時点としてもよい。しかし、後者の場合には、上記のいずれかの測定値が極大値に対して150%を超えない時点で脱珪処理を終了するように設定することが望ましい。
 さらに、脱珪処理の終了時点を決定する方法は、上記のような変動パターンに基づいて決定する方法の他に、排ガス中の炭素の排出速度、あるいは、吸引ガス中のCOガス濃度、COガス濃度、COガスとCOガスとの合計濃度、COガス流量、COガス流量、および、COガスとCOガスとの合計流量のうちのいずれか1の測定値が、所定の閾値以上となった時点を基準として所定の経過時間範囲内とする方法も有効である。ここで、上記の測定値が閾値以上となった時点から脱珪処理の終了時点までの経過時間は、上記と同様に、0~50秒の範囲内とするのが望ましく、0~30秒の範囲内とするのがより望ましい。
 ただし、これらの方法の場合、脱珪処理の中盤において、例えば、図1に示した炭素排出速度の変動パターンに見られるような極大値の部分で、上記の測定値が閾値以上となったと認識しないようにすることが必要である。そのためには、脱珪処理前の溶銑中のSi濃度と目標とする脱珪処理後の溶銑中のSi濃度から計算される化学量論的に必要な酸素量の1.2倍、望ましくは1.5倍の酸素を供給し終えた時点以降において、上記の測定値が所定の閾値以上となった時点とすることが望ましい。また、上記の閾値は、経験的に求めた数値でもよいし、例えば、溶銑温度や溶銑中のSi濃度などの変数を用いて計算した値でもよいが、中間排滓時の排滓状況や、その後の脱燐処理の実績を考慮して定めることが好ましい。
 ここで、排ガス処理設備が、転炉型精錬炉の排ガスを燃料ガスとして回収する機能と、蒸気ボイラーを備えた煙道とを有し、かつ、排ガス処理設備を、脱珪処理中に積極的に大気を吸引して排ガス中のCOガスの少なくとも一部を燃焼させるように運転する場合において、上記に説明した閾値に基いて脱珪処理の終了時点を決定したときの、具体的には、脱珪処理の終了時点を、吸引ガス中のCOガス濃度に基いて決定したときの、脱珪スラグの排滓性を調査した例について以下に説明する。
 この例では、脱珪スラグの排滓性は、脱珪処理前の溶銑中の珪素濃度および生成される脱珪スラグの質量をおおよそ一定とし、排滓時の転炉型精錬炉の傾動角度を一定とする条件で、転炉型精錬炉から排出した脱珪スラグの量に基いて評価した。具体的には、転炉型精錬炉の直下で受滓する受滓容器に排出された脱珪スラグの質量が、炉内に存在した脱珪スラグの質量の50%以上である場合を「排滓優良」、上記値が30%以上50%未満である場合を「排滓良」、上記値が30%未満の場合を「排滓不良」と評価した。
 図4に、上記の調査結果を示した。この図から、脱珪処理終了時の吸引ガス中のCOガス濃度が高くなるほど、脱珪スラグの排滓性が向上すること、また、脱珪処理終了時の吸引ガス中のCOガス濃度が6.0vol%以上のときには、「排滓不良」が発生しないことがわかる。すなわち、脱珪処理中の吸引ガス中のCOガス濃度に基づいて脱珪処理の終了を決定することができること、および、その場合には、吸引ガス中のCOガス濃度が6.0vol%以上の値を脱珪処理の終了時点を決定する閾値とすることが好ましいことがわかる。
 なお、転炉型精錬炉などの精錬炉では、炉内の溶銑や溶鋼に対してバッチ式で精錬を施しており、この1つの単位の精錬を「チャージ」と称しており、図4中のチャージ数は、その回数を示している。また、脱珪処理では、排ガスの発生量が少ないことから、転炉型精錬炉の炉口とスカートとの間から吸い込まれる空気によって、吸引ガス中のCOガス濃度は変化するが、上記した吸引ガス中の「COガス濃度が6.0vol%以上」の閾値は、操業条件(送酸量、スカート高さ、炉口圧など)をある一定とした操業条件下で得られたものである。したがって、その条件下であれば、閾値として十分に使用可能である。
 さらに、上記の閾値として適正な値は、排ガス処理設備の吸引能力などの設備条件や、酸素供給速度などの操業条件によっても異なる。排ガス処理設備が、転炉型精錬炉の排ガスを燃料ガスとして回収する機能を有し、かつ、脱珪処理中に積極的に空気を吸引して排ガス中のCOを燃焼させる場合には、脱珪処理の終了時点を決定する閾値として、吸引ガス中のCOガス濃度が2.0vol%以上18.0vol%以下の範囲内で、中間排滓時の排滓率や排滓時間の実績から経験的に適正な値を選定して用いることが好ましい。COガス濃度の閾値が2.0vol%以上であれば、上記の排ガス中の炭素の排出速度の変動パターンに代えて、COガス濃度の測定値のみを用いても、スラグのフォーミングが十分に促進されていることを判定する際の誤認識を低減することができ、一方、COガス濃度の閾値が18.0vol%以下であれば、スラグの過剰なフォーミングによる操業阻害を防止しつつ、効率的に排滓を行うためのフォーミング状態を精度よく判定することができる。
 以上のように、脱珪処理中のスラグのフォーミング状況および脱珪処理を終了して中間排滓を開始するのに適したタイミングは、吸引ガスから得られる情報のみから判定することができるが、事前に得られる操業条件から計算される脱珪吹錬での必要酸素量、排ガス温度、炉口からのスラグ噴出状況、出鋼口からのスラグ流出状況、ランスあるいはサブランスの振動の変化、酸素吹錬中の音響の変化などの情報、あるいは、既知の方法によるスラグレベルの推定技術等を組み合わせることで、上記判定条件をより精度の高いものとしてもよい。
 次に、本発明の溶銑の予備処理方法について、図3に示した転炉型精錬炉を用いる場合を例にとって具体的に説明する。
 まず、本発明の溶銑の予備処理方法では、図5(a)に示すように、鉄スクラップなどの冷鉄源8が装入された転炉型精錬炉1に、脱珪処理および脱燐処理の施されていない、すなわち、予備処理前の溶銑5を、装入鍋15を介して装入する(溶銑装入工程)。
 次いで、この転炉型精錬炉1内の溶銑5に、図5(b)に示すように、酸素源として酸素含有ガスあるいは酸素含有ガスおよび酸化鉄を供給して脱珪処理を施す(脱珪処理工程)。この際、溶銑5に含まれる珪素と、供給する酸素とが反応して脱珪反応(Si+O→SiO)が進行する。この脱珪反応による珪素の燃焼熱で溶銑温度が上昇し、溶銑中の冷鉄源8の溶解が促進される。
 その後、上記脱珪処理の進行に伴って、溶銑中の珪素濃度は徐々に低下し、COガスが発生するようになるが、さらに脱珪処理が進行して、脱珪スラグの生成量が増加し、溶銑温度が上昇すると、スラグの組成および物性も変化し、発生したCOガスによって、スラグがフォーミングを起こすようになる。
 ここで、上記脱珪処理によって生成する脱珪スラグ6は、脱珪処理中に、後述する脱燐スラグ7に由来して含まれる燐酸化物(P)が分解して生成した燐が溶銑5に移行(この現象を「復燐」という)するのを防止するため、脱珪処理終了後の塩基度([CaO(mass%)]/[SiO(mass%)])を0.80以上とするのが好ましい。なお、脱珪スラグ6の塩基度の上限値については、脱珪反応上からは、規定する必要はない。しかし、塩基度が高いことは、生成したSiOに対するCaOの割合が高いことを意味し、脱珪スラグ6の量が増大するので、上限は1.50程度とするのが好ましい。より好ましくは1.30未満、さらに好ましくは1.20未満である。
 なお、脱珪スラグ6の塩基度の上記範囲内への調整は、脱珪処理前および脱珪処理中に、炉内にCaO系媒溶剤などの媒溶剤を添加することで行うことができる。ただし、脱珪処理の初期にCaO系媒溶剤を添加する場合には、脱珪スラグ6の塩基度が最も低くなるのは、生成したSiO量が最も多くなる脱珪処理終了時点であるので、脱珪処理終了時の塩基度を0.80以上とすれば、それ以前の脱珪処理中の塩基度は必然的に0.80以上となる。また、炉内に残留させた前チャージの脱燐スラグ7に含有されるCaOのみで脱珪処理終了時の塩基度が0.80以上となる場合には、CaO系媒溶剤などの媒溶剤の添加は基本的に必要としない。
 なお、上記CaO系媒溶剤の添加方法は、粒状および塊状のものを炉上のホッパーから投入したり、粉状のものを吹きランス2を介して投入したりする方法でもよく、特に制限はない。
 因みに、脱珪スラグ6の塩基度は、下記(1)式;
 塩基度=[(炉内残留CaO量(kg/溶銑-t))+(脱珪処理での添加CaO量(kg/溶銑-t))]/[(炉内残留SiO量(kg/溶銑-t))+(脱珪処理で生成したSiO量(kg/溶銑-t))] ・・・(1)
に基づいて計算することができる。なお、上記式中の脱珪処理で生成したSiO量は、脱珪処理前後の溶銑中の珪素濃度の変化から算出する。
 また、脱珪処理のための酸素源としては、上吹きランス2から供給する酸素ガス9のみでもよいし、また、上記酸素ガス9に加えて酸化鉄(図示せず)を併用してもよい。ただし、本発明の目的の1つである冷鉄源8を多く溶解させる観点からは、昇温および分解時に吸熱する酸化鉄を用いることは好ましくない。従って、酸素源として酸化鉄を用いることはできる限り避けることが好ましい。
 また、本発明の1つの実施態様では、脱珪処理の終了時点を、脱珪処理中の転炉型精錬炉から排出される排ガス中に含まれる炭素の排出速度を測定したときに得られる、極大値となり、極小値となった後に再び増大するという変動パターンに基いて決定するので、上記の炭素の排出速度が極大値および極小値となる期間では、酸素源の供給速度をできるだけ一定に保つ操業を行うことが望ましい。なお、通常の操業においては、脱珪処理を短時間で完了するため、送酸速度を増大したり、酸化鉄を投入したりする操作は、脱珪処理の初期に行うので、その後、酸素供給速度を一定とすることで、炭素の排出速度の極大値および極小値を安定して測定することができる。
 上記のようにして溶銑に脱珪処理を施して、その終了を決定した後は、直ちに上吹きランス2を上昇して脱珪処理を終了するが、実際の脱珪処理の終了時点は、上記の決定時点から、必要な操作等の作業や装置の作動に要する数十秒程度を経過した後となるのが一般的である。その後、直ちに、図5(c)に示すように、転炉型精錬炉1を出湯口4が設けられた側とは反対側に傾動させて、脱珪処理で発生したSiOを大量に含む低塩基度の脱珪スラグ6を転炉型精錬炉1の炉口から排出する(中間排滓工程)。なお、図5(c)においては、脱珪処理後の溶銑は、脱珪処理前の溶銑5と区別するため5aと表示している。
 上記中間排滓工程における脱珪スラグ6の排滓率は、後述する脱燐処理工程において、少ないCaO系媒溶剤の使用量で効率的に脱燐反応を進めるため、30mass%以上とするのが好ましい。さらに、溶銑予備処理から次工程の脱炭精錬工程間で使用するCaO系媒溶剤の総量を、中間排滓工程を実施しない従来方法よりも少なくするためには、50mass%上の排滓率を安定して確保することがより好ましい。
 しかし、脱珪スラグ6を80mass%超え排滓してしまうと、次工程の脱燐処理工程において新たに添加するCaO系媒溶剤の滓化が損なわれ、脱燐反応が阻害されるおそれがある。従って、本発明においては、脱珪スラグ6の排滓率を50~80mass%の範囲に制御することが好ましい。
 なお、上記排滓率は、下記(2)式で定義される。
 排滓率(mass%)=(排出スラグ質量)×100/[(脱珪処理工程で生成したスラグ質量)+(前チャージの残留スラグ質量)] ・・・(2)
 上記中間排滓した後は、図5(d)に示すように、転炉型精錬炉内に残留させた脱珪処理後の溶銑5aに、CaO系媒溶剤や酸素源を供給して脱燐処理する(脱燐処理工程)。ここで、上記脱燐処理工程において、炉内に生成させる脱燐スラグ7の塩基度は1.2~3.0の範囲に調整するのが好ましい。塩基度が1.2以上であれば、スラグの脱燐能は適切な範囲となり、少ないスラグ量で溶銑中の燐濃度を低減することが可能となる。一方、3.0以下であれば、CaO系媒溶剤の滓化が損なわれることなくスラグの流動性が適切な範囲となって脱燐反応が進行するからである。
 ここで、上記の脱燐処理工程で使用する酸素源は、脱珪処理と同様に、上吹きランス2からの酸素ガス9を主体とするが、一部に酸化鉄を使用しても構わない。ただし、本発明は、冷鉄源8の使用拡大を目的の1つとするものであるので、昇温や分解時に吸熱する酸化鉄の使用はできるだけ少量とするのが好ましい。そのためには、送酸条件やランス高さなどを適正に制御して脱燐スラグ7のT.Fe濃度を調整し、酸化鉄の使用に拠らずにCaO系媒溶剤の滓化を促進するのが好ましい。
 また、脱燐処理で使用するCaO系媒溶剤としては、生石灰(CaO)、石灰石(CaCO)、消石灰(Ca(OH))などを使用することができる。ただし、これらに限定されるものではなく、例えば、CaOを40mass%以上含有し、必要に応じてフッ素やアルミナなどの他の成分を含有するものも、CaO系媒溶剤として使用することができる。なお、上記CaO系媒溶剤の添加方法は、脱珪処理でCaO系媒溶剤を添加するときと同様、粒状および塊状のものを炉上のホッパーから投入したり、粉状のものを吹きランス2を介するなどして投入したりする方法でよく、特に制限はない。
 この脱燐処理工程においては、溶銑中の燐が供給される酸素源中の酸素によって酸化されて燐酸化物(P)となり、CaO系媒溶剤の滓化によって形成された脱燐精錬剤として機能する脱燐スラグ7に取り込まれて、安定形態の化合物(3CaO・P)となることにより、溶銑5aの脱燐が進行する。なお、脱燐処理の終了は、脱燐処理時間が所定の時間経過したとき、あるいは、脱燐反応が進行して溶銑5aの燐濃度が所定値以下に低下したときとすればよい。
 脱燐処理終了後は、図5(e)に示すように、転炉型精錬炉1を中間排滓とは反対方向に傾動させて、転炉型精錬炉1内の溶銑5bを出湯口4を介して、図示のない溶銑保持容器に出湯する(出湯工程)。なお、図5(e)において、脱燐処理後の溶銑は、脱珪処理後の溶銑5aと区別するため、5bと表示している。溶銑5bの出銑が終了したら、図5(f)に示したように、炉口が上方を向くように転炉型精錬炉1を反転させて出湯を終了する。
 なお、上記出湯工程では、出湯口4から流出する溶銑5bに混じって脱燐スラグ7が流出することがあるが、この脱燐スラグ7の流出は不可避なものであるが、少量であり、意図的に排出する後述の脱燐スラグの排出とは明確に区別される。したがって、出湯終了後の転炉型精錬炉1内には、出湯されなかった少量の溶銑5b(図示せず)と、ほぼ全量の脱燐スラグ7が残留する。
 なお、この脱燐スラグ7は、燐酸濃度が高いので、そのまま、次のチャージの脱珪スラグとして用いると、復燐を起こして、溶銑中の燐濃度が上昇してしまうおそれがある。そのため、従来は、上記出湯工程完了後、脱燐スラグを全量排滓していた。しかし、脱燐スラグの全量を排滓してしまうと、次のチャージの脱珪処理に必要な脱珪スラグを生成させるための造滓材の使用量が増大し、副原料コストの上昇を招く。そこで、本発明においては、脱珪処理における精錬条件を調整して脱燐スラグからの復燐を防止した上で、中間排滓後に脱燐処理した後、溶銑を出湯し、その後、転炉型精錬炉内に残留した脱燐スラグのうちの30mass%以上を炉内に残留させ、次チャージの脱珪スラグの原料の一部として用いるのが好ましい。残留させる脱燐スラグは、より好ましくは50mass%以上である。
 なお、上記のように脱燐スラグを残留させる排滓方法としては、通常行われているスラグの排滓方法と同様、出湯後の炉体を出湯口と反対側に傾動させて炉口から排出する際、傾動角度を調節してスラグが部分的に炉内に留まるように排出する方法で構わない。なお、脱燐スラグの流動性を排滓に適したものとするには、脱燐処理後のスラグの塩基度が1.2~1.8の範囲で、かつ、酸化鉄の濃度が10mass%以上となるように調整するのが好ましい。
 次いで、脱燐スラグ7を転炉型精錬炉1の炉内に全量残留させた場合には、上記出湯工程後、一部の脱燐スラグ7を転炉型精錬炉1から排滓した場合には、図5(f)に示すように、転炉型精錬炉1を直立させた状態とした後、炉上のホッパーから転炉型精錬炉1内に小サイズの冷鉄源8を装入する、あるいは、転炉型精錬炉1を前後に数回傾動させ、炉内に残留する脱燐スラグ7を固化させる(脱燐スラグ固化工程)ことによって、炉内に残留する溶銑5bを凝固させてもよい。この脱燐スラグ固化工程は、炉内に残留した脱燐スラグ7および溶銑5bが、底吹き羽口3の内部に流入することによって底吹き羽口3が閉塞するのを防止するための工程であり、少なくとも脱燐スラグ7および溶銑5bが固化・凝固するまで、底吹き羽口3から底吹きガス10を噴出させることが好ましい。ただし、底吹きガスを供給し続ける場合には、この工程は省略してもよい。
 この脱燐スラグ固化工程後、再び、図3(a)に示す溶銑装入工程に戻り、次チャージの脱珪処理および脱燐処理を上記工程に沿って実施する。
 上記に説明した本発明によれば、1つの転炉型精錬炉を用いて、中間排滓を挟んで脱珪処理と脱燐処理を連続的に行うことができるので、精錬容器の移し替えによる損失熱を冷鉄源の溶解のための熱源として活用することが可能となる。また、本発明によれば、脱珪処理の終了時点を、転炉型精錬炉の排ガス処理設備に吸引される吸引ガス(排ガス)中の炭素原子を含むガス種の濃度に基づいて決定するので、中間排滓を、脱珪スラグの嵩比重が小さく、流動性が高い状態において常に行うことができるので、脱珪スラグの排滓率を安定して向上することが可能となる。
 なお、本発明の上記説明では、1つの転炉型精錬炉を用いて、脱珪処理後の脱珪スラグの排出(以降、「中間排滓」ともいう)を挟んで、溶銑に脱珪処理および脱燐処理を連続して行う場合について説明しているが、その場合には、溶銑5の精錬に、2基以上の転炉型精錬炉を使用し、そのうちの少なくとも1基の転炉型精錬炉1を本発明に係る溶銑予備処理に使用し、残りの少なくとも1基の転炉型精錬炉1´で、本発明に係る上記の溶銑予備処理を施した溶銑の脱炭精錬に使用するのが好ましい。
 図3に示した容量300トン規模の転炉型精錬炉を用いて、上記炉内に収容した300トンの溶銑に対して上吹きランスから精錬用の酸素ガスを吹き付けるとともに、炉底に設けた底吹き羽口から撹拌用の窒素ガスを溶銑中に吹き込み、溶銑に脱珪処理と脱燐処理を施す溶銑予備処理を実施した。上記溶銑予備処理は、具体的には、図3に示した転炉型精錬炉に、鉄スクラップを装入した後、溶銑を装入し、さらに必要に応じてCaO系媒溶剤として生石灰を添加し、上吹きランスから酸素ガスを供給して脱珪処理し、脱珪スラグの一部を排滓した後、上吹きランスから酸素ガスを供給し、CaO系媒溶剤として生石灰を添加して脱燐処理した後、溶銑を出湯し、その後、脱燐スラグを全量排滓する一連の工程からなるものである。
 なお、上記の溶銑予備処理を施す溶銑には、温度が1250~1320℃で、珪素濃度が0.20~0.55mass%、燐濃度が約0.12mass%のものを用いた。また、上記の脱珪処理後の溶銑中の目標珪素濃度は0.03mass%とし、脱珪処理終了後の脱珪スラグの目標塩基度は0.6~0.9の範囲に設定した。また、上記脱珪処理終了時の目標溶銑温度の目標溶銑温度は1300~1340℃とし、その制御は、スクラップ装入量を80kg/tで一定とし、装入する溶銑温度に応じて、冷却材となる冷鉄源および/または鉄鉱石あるいは熱源となる炭材および/またはフェロシリコンを脱珪処理の初期に添加し、これらの添加量と送酸量を調整することにより行った。
 また、引続き行う脱燐処理では、炉内に残留する脱珪スラグ量とその組成の推定値に基いて、脱燐スラグの塩基度が1.6~2.0の範囲となるように生石灰の使用量を調整した。
 上記溶銑予備処理においては、脱珪処理の終了時点を以下の2つの方法で決定した。
・方法1:予備処理前の溶銑中の珪素濃度とその濃度に応じた脱珪酸素効率(経験値)とから計算される、溶銑中の珪素濃度が0.03mass%となるのに必要な酸素量を供給し終えた時点とする従来の方法(比較例)
・方法2:図1に示したように、排ガス中の炭素の排出速度の変動パターンにおいて、極大値、極小値を示した後、再び上昇した炭素の排出速度が、上記極大値以上となった時点を基準として脱珪処理の終了を決定し、上記時点から約20秒経過後に炭素の排出速度が上記極大値に対して100%以上150%以下の範囲において脱珪処理を終了する方法(発明例)
 なお、いずれの方法も、上吹きランスからの送酸速度は30000Nm/hrで一定とし、窒素ガスを吹き込み速度1200Nm/hrで底吹きした。
 また、上記方法1および方法2の2つの方法で脱珪処理の終了時点を決定する溶銑予備処理を、それぞれの方法で各数十チャージずつ実施し、各方法の中間排滓における脱珪スラグの排滓率を比較した。
 この際、上記脱珪処理終了後の脱珪スラグの排滓(中間排滓)は、脱珪処理終了後、直ちに上吹きランスを上昇してから炉体を傾動して開始し、炉下の移動台車上に設置したスラグ用鍋に受滓するのに支障がなく、かつ、溶銑が流出しない範囲内で、転炉型精錬炉の傾動角度を可能な限り大きくして行い、中間排滓の終了は、秤量値で十分な排滓量が確認できたとき、溶銑を流出させることなくスラグのみを流出させることが困難となったとき、および、排滓時間が操業上許容できる最長時間となったときのうちのいずれかの時点とした。また、上記中間排滓における脱珪スラグの排滓率は、上記スラグ用鍋に受滓した脱珪スラグの質量を、炉下の移動台車に設置した秤量装置で測定し、下記(2)式から求めた。
 排滓率(mass%)=(排出スラグ質量)×100/[(脱珪処理工程で生成したスラグ質量)+(前チャージの残留スラグ質量)] ・・・(2)
 上記の結果を表1に示した。これから、溶銑中のSi濃度で脱珪処理の終了を決定する従来の方法(比較例)では、脱珪処理後の脱珪スラグの排滓率は20~70mass%の範囲でばらつき、平均排滓率は37mass%であるのに対して、排ガス中の炭素の排出速度から脱珪処理の終了を決定する本発明例では、脱珪処理後の脱珪スラグの排滓率は50~80mass%の範囲、平均排滓率は67mass%であり、排滓率50mass%以上を安定して達成できていることがわかる。また、このように中間排滓の排滓率が向上したことによって、脱燐処理で添加する造滓材の使用量も大幅に削減できていることがわかる。
 また、図6は、中間排滓に要した時間と予備処理前の溶銑中のSi濃度との関係を示したものであるが、本発明例では、中間排滓に要する作業時間を10分以下と、大幅に短縮できていることがわかる。この排滓時間の短縮によって、溶銑予備処理の処理ピッチを、次工程の脱炭処理の処理ピッチとほぼ同等レベルまで短縮することができるので、溶銑予備処理をほほ溶銑全量に対して実施できるようになった。
Figure JPOXMLDOC01-appb-T000001
 脱燐処理後の脱燐スラグを、排滓することなく全量を炉内に残留させたまま、次チャージの溶銑を装入すること、および、脱珪処理におけるスラグの塩基度を、脱燐スラグからの復燐を防止するため0.9~1.2の範囲に制御すること以外は、実施例1の方法2によって脱珪処理の終了時点を決定する発明例と同様の条件で溶銑予備処理を施す実験を10チャージ連続して実施した。
 その結果、脱珪処理におけるCaO系媒溶剤(生石灰)の使用量を、実施例1の本発明例の場合の6.0kg/溶銑t(表1参照)から、2.0kg/溶銑tに、大幅に低減することができた。また、前チャージの脱燐スラグを炉内に残留させたことによる、脱燐処理での生石灰使用量や処理後の溶銑中の燐濃度への悪影響はほとんど無かったので、上記の脱珪処理における生石灰使用量削減メリットをそのまま享受することができた。
 脱珪処理の終了時点を、実施例1の方法1と同じ方法で決定することと、脱燐処理における生石灰使用量を7.0kg/tとすること以外は、実施例2と同じの条件で溶銑予備処理を施した比較例と、この比較例における脱珪処理の終了時点の決定方法を後述する方法3に変更した発明例とで、比較実験を行った。
 具体的には、図5に示したように、前チャージの溶銑予備処理で生成した脱燐スラグ7を排滓せずに全量を残留させた転炉型精錬炉1に鉄スクラップ8を装入し、次いで、上記転炉型精錬炉1に溶銑5を装入し、さらに必要に応じて生石灰を添加し、上吹きランス2から酸素ガス9を供給して脱珪処理を行った後、脱珪スラグ6の一部を排滓し、その後、生石灰を添加し、引き続き上吹きランス2から酸素ガス9を供給して脱燐処理を行う溶銑予備処理を繰り返した。なお、この転炉型精錬炉1の排ガス処理設備は、吸引ガスを燃料ガスとして回収する機能を有するものであり、吹錬時にスカート11を上昇させた状態で90000~100000Nm/hr程度の吸引能力を有している。また煙道12には蒸気ボイラー(排熱ボイラー)を備えており、脱珪処理中は、吸引ガスの回収は行わないため、スカート11を上昇して大気を吸引し、排ガス中のCOガスを積極的に燃焼させて高圧の蒸気としてエネルギーの回収を行った。
 この際、上記脱珪処理の終了時点の決定方法として、実施例1の方法1と同じ方法(比較例)と、下記の方法3(発明例)の2つの方法を用いて、比較した。
・方法3;脱珪処理前の溶銑中のSi濃度と目標とする脱珪処理後の溶銑中のSi濃度とから計算される化学量論的に必要な酸素量の1.2倍の酸素を供給し終えた時点以降において、排ガス中のCOガス濃度が6.0vol%以上となった時点を基準として脱珪処理の終了を決定し、上記時点から約20秒経過後にCOガス濃度が6.0vol%以上18.0vol%以下の範囲内で脱珪処理を終了する方法(発明例)
 上記方法1および方法3の2つの方法でそれぞれ100チャージずつ溶銑予備処理を実施し、脱珪処理終了後の中間排滓における脱珪スラグの平均排滓率および溶銑予備処理後の溶銑中の燐濃度を調査し、その結果を表2に示した。
 この結果から、脱珪処理終了時点を従来と同様の方法で決定する方法1における脱珪スラグの平均排滓率は47mass%であったのに対し、本発明に適合する方法で脱珪処理終了時点を決定する方法3における脱珪スラグの平均排滓率は62mass%と大幅に向上していること、また、それに伴い、溶銑予備処理後の溶銑中の燐濃度が大幅に低減されているとともに、そのばらつき(標準偏差)も大幅に小さくできていることがわかる。
Figure JPOXMLDOC01-appb-T000002
 1:転炉型精錬炉
 2:上吹きランス
 3:底吹き羽口
 4:出湯口
 5:溶銑
 5a:脱珪処理後の溶銑
 5b:脱燐処理後の溶銑
 6:脱珪スラグ
 7:脱燐スラグ
 8:冷鉄源
 9:酸素ガス
 10:底吹きガス
 11:スカート
 12:煙道
 13:ガス採取プローブ
 14:ガス分析装置
 15:装入鍋
 
 

Claims (12)

  1. 転炉型精錬炉内の溶銑に酸素源を供給して脱珪処理した後、炉内に溶銑を残留させたまま炉内に存在するスラグの一部を転炉型精錬炉から排出し、その後、転炉型精錬炉内にCaO系媒溶剤および酸素源を供給して脱燐処理した溶銑を転炉型精錬炉から出湯することで、1つの転炉型精錬炉を用いて溶銑に対して脱珪処理および脱燐処理を行う溶銑の予備処理方法において、
    前記脱珪処理中、転炉型精錬炉の排ガス処理設備で吸引した吸引ガス中の少なくとも1種以上の炭素原子を含むガス種の濃度を分析し、その分析値に基づいて脱珪処理の終了時点を決定することを特徴とする溶銑の予備処理方法。
  2. 前記脱珪処理中の転炉型精錬炉から排出される排ガス中の炭素の排出速度を前記吸引ガス中の炭素原子を含むガス種の濃度の分析値および前記吸引ガスの流量に基づいて算出し、前記算出した排ガス中の炭素の排出速度が、極大値となり、極小値となった後に再び増大する変動パターンに基いて前記脱珪処理の終了時点を決定することを特徴とする請求項1に記載の溶銑の予備処理方法。
  3. 前記脱珪処理の終了時点を、前記吸引ガス中のCOガス濃度、COガス濃度およびCOガスとCOガスの合計濃度のうちのいずれか1の濃度の分析値が、極大値となり、極小値となった後に再び増大する変動パターンに基いて決定することを特徴とする請求項1に記載の溶銑の予備処理方法。
  4. 前記脱珪処理の終了時点を、前記吸引ガス中のCOガス濃度、COガス濃度およびCOガスとCOガスの合計濃度のうちのいずれか1の濃度の分析値と前記吸引ガスの流量との積から算出した、前記吸引ガス中のCOガス流量、COガス流量およびCOガスとCOガスの合計流量のうちのいずれか1つの流量が、極大値となり、極小値となった後に再び増大する変動パターンに基いて決定することを特徴とする請求項1に記載の溶銑の予備処理方法。
  5. 前記脱珪処理の終了時点を、前記極大値となり、極小値となった後に再び増大する変動パターンにおいて、再び増大した値が、極大値に対して90%以上150%以下の所定の比率の値以上となった時点を基準として所定の経過時間範囲内とすることを特徴とする請求項2~4のいずれか1項に記載の溶銑の予備処理方法。
  6. 前記極大値となり、極小値となった後に再び増大する変動パターンにおける極大値と極小値の差が、極大値の10%以上であることを特徴とする請求項2~5のいずれか1項に記載の溶銑の予備処理方法。
  7. 前記脱珪処理の終了時点を、前記吸引ガス中のCOガス濃度、COガス濃度およびCOガスとCOガスの合計濃度のうちのいずれか1の濃度の分析値が所定の閾値以上となった時点を基準として所定の経過時間範囲内とすることを特徴とする請求項1に記載の溶銑の予備処理方法。
  8. 前記排ガス処理設備は、吸引した前記転炉型精錬炉の排ガスを燃料ガスとして回収する機能を有するものであり、前記排ガス処理設備で転炉型精錬炉の排ガスとともに大気を吸引して前記排ガス中のCOガスの少なくとも一部を燃焼させさせるとともに、
    前記脱珪処理の終了時点を、前記燃焼後の吸引ガス中のCOガス濃度が2.0vol%以上、18.0vol%以下の所定の閾値以上となった時点を基準として所定の経過時間範囲内とすることを特徴とする請求項7に記載の溶銑の予備処理方法。
  9. 前記脱珪処理の終了時点を、前記吸引ガス中のCOガス濃度、COガス濃度およびCOガスとCOガスの合計濃度のうちのいずれか1の濃度の分析値と前記吸引ガスの流量との積から算出した、前記吸引ガス中のCOガス流量、COガス流量およびCOガスとCOガスの合計流量のうちのいずれか1つの流量が、所定の閾値以上となった時点を基準として所定の経過時間範囲内とすることを特徴とする請求項1に記載の溶銑の予備処理方法。
  10. 前記脱珪処理の終了時点を、前記吸引ガス中の炭素原子を含むガス種の濃度の分析値および前記吸引ガスの流量に基づいて、前記脱珪処理中の転炉型精錬炉から排出される排ガス中の炭素の排出速度を算出し、該排出速度が所定の閾値以上となった時点を基準として所定の経過時間範囲内とすることを特徴とする請求項1に記載の溶銑の予備処理方法。
  11. 前チャージの脱燐処理で生成したスラグを30mass%以上炉内に残留させた状態で、次チャージの溶銑を転炉型精錬炉に装入し、脱珪処理することを特徴とする請求項1~10のいずれか1項に記載の溶銑の予備処理方法。
  12. 前記脱珪処理終了時に、前記転炉型精錬炉に存在するスラグの塩基度([CaO(mass%)]/[SiO(mass%)])を0.80~1.50の範囲に制御することを特徴とする請求項1~11のいずれか1項に記載の溶銑の予備処理方法。
     
     
PCT/JP2014/050561 2013-01-18 2014-01-15 溶銑の予備処理方法 WO2014112521A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014526322A JP5790964B2 (ja) 2013-01-18 2014-01-15 溶銑の予備処理方法
BR112015016931A BR112015016931B1 (pt) 2013-01-18 2014-01-15 método de pré-tratamento de ferro fundido
KR1020157018162A KR101701658B1 (ko) 2013-01-18 2014-01-15 용선의 예비 처리 방법
CN201480003658.6A CN104884641B (zh) 2013-01-18 2014-01-15 铁水的预处理方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013006910 2013-01-18
JP2013-006910 2013-01-18
JP2013-011258 2013-01-24
JP2013011258 2013-01-24

Publications (1)

Publication Number Publication Date
WO2014112521A1 true WO2014112521A1 (ja) 2014-07-24

Family

ID=51209610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050561 WO2014112521A1 (ja) 2013-01-18 2014-01-15 溶銑の予備処理方法

Country Status (6)

Country Link
JP (2) JP5790964B2 (ja)
KR (1) KR101701658B1 (ja)
CN (1) CN104884641B (ja)
BR (1) BR112015016931B1 (ja)
TW (1) TWI570244B (ja)
WO (1) WO2014112521A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017025379A (ja) * 2015-07-22 2017-02-02 新日鐵住金株式会社 溶銑予備処理方法及び溶銑予備処理制御装置
CN107002154A (zh) * 2014-12-16 2017-08-01 杰富意钢铁株式会社 铁液的预处理方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163902A1 (ja) * 2016-03-23 2017-09-28 新日鐵住金株式会社 溶銑予備処理方法及び溶銑予備処理制御装置
CN107385140A (zh) * 2017-08-21 2017-11-24 山西新泰钢铁有限公司 一种转炉炼钢的生产工艺方法
JP6795133B1 (ja) * 2019-03-22 2020-12-02 Jfeスチール株式会社 転炉型脱燐精錬炉の吹錬制御方法及び吹錬制御装置
CN116745439A (zh) * 2021-02-01 2023-09-12 杰富意钢铁株式会社 转炉的顶吹喷枪、添加副原料的方法和铁水的精炼方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02209411A (ja) * 1989-02-07 1990-08-20 Nippon Steel Corp 溶銑の予備処理方法
JPH06240378A (ja) * 1993-02-16 1994-08-30 Nisshin Steel Co Ltd Mn鉱石の溶融還元を伴った低Si・低P・高Mn溶銑の製造
JPH10152714A (ja) * 1996-11-25 1998-06-09 Nippon Steel Corp 溶銑の精錬方法
JP2008184648A (ja) * 2007-01-30 2008-08-14 Jfe Steel Kk 溶銑の脱珪・脱燐処理方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2166097C (en) * 1993-06-30 2002-01-15 Masataka Yano Process for producing steel by converter
JPH10102133A (ja) * 1996-09-27 1998-04-21 Sumitomo Metal Ind Ltd 極低炭素鋼の脱炭制御方法
JPH11264008A (ja) * 1998-03-16 1999-09-28 Kawasaki Steel Corp 転炉内張り耐火物の溶損防止方法
JPH11323420A (ja) 1998-05-15 1999-11-26 Nippon Steel Corp 溶銑予備処理方法
JP2002047509A (ja) * 2000-07-31 2002-02-15 Sumitomo Metal Ind Ltd 溶銑の精錬方法
JP4984946B2 (ja) * 2007-02-14 2012-07-25 Jfeスチール株式会社 溶銑の予備処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02209411A (ja) * 1989-02-07 1990-08-20 Nippon Steel Corp 溶銑の予備処理方法
JPH06240378A (ja) * 1993-02-16 1994-08-30 Nisshin Steel Co Ltd Mn鉱石の溶融還元を伴った低Si・低P・高Mn溶銑の製造
JPH10152714A (ja) * 1996-11-25 1998-06-09 Nippon Steel Corp 溶銑の精錬方法
JP2008184648A (ja) * 2007-01-30 2008-08-14 Jfe Steel Kk 溶銑の脱珪・脱燐処理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107002154A (zh) * 2014-12-16 2017-08-01 杰富意钢铁株式会社 铁液的预处理方法
JP2017025379A (ja) * 2015-07-22 2017-02-02 新日鐵住金株式会社 溶銑予備処理方法及び溶銑予備処理制御装置

Also Published As

Publication number Publication date
TWI570244B (zh) 2017-02-11
JP2015092026A (ja) 2015-05-14
BR112015016931B1 (pt) 2020-04-07
CN104884641B (zh) 2017-09-22
TW201441378A (zh) 2014-11-01
JP5950133B2 (ja) 2016-07-13
KR101701658B1 (ko) 2017-02-01
JPWO2014112521A1 (ja) 2017-01-19
BR112015016931A2 (pt) 2017-07-11
CN104884641A (zh) 2015-09-02
JP5790964B2 (ja) 2015-10-07
KR20150092298A (ko) 2015-08-12

Similar Documents

Publication Publication Date Title
JP5950133B2 (ja) 溶銑の予備処理方法
JP5408369B2 (ja) 溶銑の予備処理方法
JP5573424B2 (ja) 溶鋼の脱硫処理方法
JP6164151B2 (ja) 転炉型精錬炉による溶鉄の精錬方法
JP5343506B2 (ja) 溶銑の脱燐方法
JP6011248B2 (ja) 転炉における溶銑の予備処理方法
JP5408379B2 (ja) 溶銑の予備処理方法
JP5967139B2 (ja) 溶銑の予備処理方法
JP5061545B2 (ja) 溶銑の脱燐処理方法
JP5983900B1 (ja) 溶銑の予備処理方法
JP6806288B2 (ja) 鋼の製造方法
JP4639943B2 (ja) 溶銑の脱硫方法
JP5338251B2 (ja) 溶銑の脱燐方法
JP6416634B2 (ja) 溶銑鍋における脱珪および脱硫方法
JP4360239B2 (ja) 真空脱ガス設備における溶鋼の脱硫処理方法
JP7082320B2 (ja) 溶銑の脱燐処理方法
WO2022195951A1 (ja) 転炉の操業方法および溶鋼の製造方法
JP4025713B2 (ja) 溶銑の脱燐精錬方法
JP2004115910A (ja) 溶銑の精錬方法
JP5854241B2 (ja) 転炉による溶銑の予備処理方法
JP2022143950A (ja) 転炉型精錬炉による溶鉄の溶製方法
JP2010255054A (ja) 溶銑の脱燐処理方法
JP2022105886A (ja) 精錬方法
JP2022105879A (ja) 精錬方法
TW202020166A (zh) 鋼的製造方法以及礦渣的鹽基度降低方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014526322

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740417

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157018162

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2015/08810

Country of ref document: TR

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015016931

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: IDP00201504905

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14740417

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015016931

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150715