WO2014109400A1 - X線コンピュータ断層撮影装置及びx線発生装置 - Google Patents

X線コンピュータ断層撮影装置及びx線発生装置 Download PDF

Info

Publication number
WO2014109400A1
WO2014109400A1 PCT/JP2014/050366 JP2014050366W WO2014109400A1 WO 2014109400 A1 WO2014109400 A1 WO 2014109400A1 JP 2014050366 W JP2014050366 W JP 2014050366W WO 2014109400 A1 WO2014109400 A1 WO 2014109400A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
discharge
ray
tube
voltage value
Prior art date
Application number
PCT/JP2014/050366
Other languages
English (en)
French (fr)
Inventor
本多 豊正
Original Assignee
株式会社 東芝
東芝メディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝メディカルシステムズ株式会社 filed Critical 株式会社 東芝
Priority to CN201480004231.8A priority Critical patent/CN104904322B/zh
Publication of WO2014109400A1 publication Critical patent/WO2014109400A1/ja
Priority to US14/746,191 priority patent/US9877694B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details
    • H05G1/04Mounting the X-ray tube within a closed housing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/10Power supply arrangements for feeding the X-ray tube
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/10Power supply arrangements for feeding the X-ray tube
    • H05G1/12Power supply arrangements for feeding the X-ray tube with dc or rectified single-phase ac or double-phase
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/10Power supply arrangements for feeding the X-ray tube
    • H05G1/22Power supply arrangements for feeding the X-ray tube with single pulses
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/265Measurements of current, voltage or power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/32Supply voltage of the X-ray apparatus or tube
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/34Anode current, heater current or heater voltage of X-ray tube
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/46Combined control of different quantities, e.g. exposure time as well as voltage or current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/54Protecting or lifetime prediction
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/56Switching-on; Switching-off
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/304Accessories, mechanical or electrical features electric circuits, signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image

Definitions

  • the present embodiment relates to an X-ray computed tomography apparatus and an X-ray generation apparatus.
  • ⁇ Discharge may occur in the X-ray tube.
  • the supply of power to the X-ray tube is immediately interrupted, and the X-ray irradiation is stopped. Then, after the atmosphere in the X-ray tube is stabilized, power is supplied again to the X-ray tube, and X-ray irradiation is resumed.
  • the stop period of X-ray irradiation accompanying the interruption of the supply of power to the X-ray tube after the occurrence of discharge is several tens of milliseconds to several hundreds of milliseconds. During that period, data that can be used for image reconstruction cannot be collected, resulting in artifacts in the reconstructed image. For this reason, the discharge phenomenon hinders diagnosis.
  • An object of the embodiment is to provide an X-ray computed tomography apparatus and an X-ray generation apparatus that can reduce image artifacts due to electric discharge.
  • An X-ray computed tomography apparatus is generated from an X-ray tube that generates X-rays, an inverter type high-voltage unit that generates a high voltage applied to the X-ray tube, and the X-ray tube.
  • An X-ray detector for detecting X-rays, a support mechanism for supporting the X-ray tube and the X-ray detector, and reconstruction for reconstructing image data based on output data from the X-ray detector
  • An X-ray computed tomography apparatus comprising: a DC power supply unit that generates direct current; and an inverter unit that converts direct current from the direct current power supply unit into alternating current by switching.
  • a high voltage conversion unit that converts an AC output pulse from the inverter unit into a high voltage applied to the X-ray tube
  • a detection unit that detects discharge in the X-ray tube, and the discharge is detected
  • a control unit that controls switching of the inverter unit and changes a pulse width or a frequency of an AC output pulse from the inverter unit; Is provided.
  • FIG. 1 is a diagram showing a configuration of an X-ray computed tomography apparatus according to the present embodiment.
  • FIG. 2 is a diagram showing a configuration of the X-ray generator of FIG.
  • FIG. 3 is a diagram showing an example of a timing chart of the operation of the pulse width modulation method performed by the X-ray generator of FIG.
  • FIG. 4 is a diagram showing an example of a timing chart of the operation of the frequency modulation method performed by the X-ray generator of FIG.
  • FIG. 5 is a diagram showing a timing chart of the operation of the inverter type high voltage generation unit of FIG. 1 together with the time change of the tube voltage.
  • FIG. 6 is a diagram for explaining the projection data correction processing by the correction unit in FIG. 1.
  • FIG. 1 is a diagram showing a configuration of an X-ray computed tomography apparatus according to the present embodiment.
  • FIG. 2 is a diagram showing a configuration of the X-ray generator of FIG.
  • FIG. 3 is a
  • FIG. 7 is a view showing a timing chart of the operation of the inverter type high voltage generator according to the conventional example together with the time change of the tube voltage.
  • FIG. 8 is a diagram showing a timing chart of another operation of the inverter type high voltage generator according to the conventional example, together with the time change of the tube voltage.
  • FIG. 1 is a diagram showing a configuration of an X-ray computed tomography apparatus according to the present embodiment.
  • the X-ray computed tomography apparatus 1 includes a gantry 10 and a console 30.
  • the gantry 10 is equipped with a rotating frame 11 in a housing (not shown) in which an opening is formed.
  • the rotating frame 11 is accommodated in the casing so that the central axis Z of the casing and the central axis (rotating axis) Z of the rotating frame 11 coincide.
  • the rotating frame 11 is equipped with an X-ray tube 13 and an X-ray detector 15 that are arranged to face each other.
  • the rotating frame 11 supports the X-ray tube 13 and the X-ray detector 15 so as to be rotatable around the rotation axis Z.
  • An FOV field of view
  • the top plate 17 is positioned so that the imaging region of the subject (patient) P is included in the FOV.
  • the rotating frame 11 is connected to the rotation driving unit 19.
  • the rotation drive unit 19 rotates the X-ray tube 13 and the X-ray detector 15 around the rotation axis Z by rotating the rotating frame 11 at a constant angular velocity according to the control by the gantry control unit 21.
  • the X-ray tube 13 generates X-rays upon receiving a high voltage from the inverter type high voltage generator 23.
  • the inverter type high voltage generator 23 applies a high voltage to the X-ray tube 13 according to the control by the gantry controller 21.
  • the inverter type high voltage generator 23 has a function of detecting that discharge has occurred in the X-ray tube 13. Inverter type high voltage generator 23 is triggered by the detection of the discharge, and in order to prevent further discharge induction, the tube voltage value is not changed rapidly to the set tube voltage value, but the tube voltage value is changed over time. Increase gradually according to.
  • the X-ray tube 13 and the inverter type high voltage generator 23 constitute an X-ray generator 25. Details of the X-ray generator 25 will be described later.
  • the X-ray detector 15 detects X-rays generated from the X-ray tube 13.
  • the X-ray detector 15 is equipped with a plurality of X-ray detection elements arranged in a two-dimensional shape.
  • the plurality of X-ray detection elements are arranged along an arc centered on the rotation axis Z of the rotating frame 11.
  • the arrangement direction of the X-ray detection elements along the arc is called a channel direction.
  • a plurality of X-ray detection elements arranged along the channel direction is called an X-ray detection element array.
  • the plurality of X-ray detection element rows are arranged along the row direction along the rotation axis Z.
  • Each X-ray detection element detects X-rays generated from the X-ray tube 13 and generates an electric signal (current signal) corresponding to the detected X-ray intensity.
  • the generated electrical signal is supplied to a data collection unit (DAS) 27.
  • DAS data collection unit
  • the data collection unit 27 collects electrical signals for each view via the X-ray detector 15 under the control of the gantry control unit 21.
  • the view corresponds to the rotation angle of the rotating frame 11 about the rotation axis Z.
  • the view corresponds to a data sampling point when the rotating frame 11 is rotated.
  • the data collection unit 27 converts the collected analog electrical signals into digital data. Digital data is called raw data.
  • the raw data is supplied to the console 30 for each predetermined view by the non-contact type transmission unit 29.
  • the gantry control unit 21 supervises control of various devices mounted on the gantry 10 according to instructions from the system control unit 43 in the console 30.
  • the gantry control unit 21 controls the rotation drive unit 19, the inverter type high voltage generation unit 23, and the data collection unit 27.
  • the console 30 includes a preprocessing unit 31, a correction unit 33, a reconstruction unit 35, a display unit 37, an operation unit 39, a storage unit 41, and a system control unit 43.
  • the preprocessing unit 31 performs preprocessing such as logarithmic conversion and sensitivity correction on the raw data transmitted from the transmission unit 29.
  • the raw data that has been preprocessed is called projection data.
  • the correction unit 33 converts the projection data belonging to the view section including the view in which the discharge is detected, to the projection data belonging to the view section before the discharge view section and the view section after the discharge view section. Is corrected based on at least one of the projection data belonging to.
  • the reconstruction unit 35 reconstructs image data related to the subject based on the projection data.
  • the display unit 37 displays the image data generated by the reconstruction unit 35 on a display device.
  • the operation unit 39 receives various commands and information input from the user by the input device.
  • the storage unit 41 stores raw data, projection data, and image data.
  • the storage unit 41 stores a control program.
  • the system control unit 43 reads out the control program stored in the storage unit 41 and develops it on the memory, and controls each unit according to the developed control program.
  • FIG. 2 is a diagram showing a configuration of the X-ray generator 25 according to the present embodiment.
  • the X-ray generator 25 includes an X-ray tube 13 and an inverter type high voltage generator 23.
  • the inverter type high voltage generation unit 23 includes a DC power supply unit 51, an inverter unit 53, a high voltage conversion unit 55, a tube voltage detection unit 57, a tube current detection unit 59, a discharge detection unit 61, a switching control unit 63, and a gate circuit 65. have.
  • the operation type of the inverter type high voltage generator 23 according to the present embodiment can be applied to any of a square wave type (non-resonant type) and a resonant type.
  • the direct current power supply unit 51 generates direct current based on alternating current from power supply equipment provided in an examination room or the like where the gantry 10 is installed.
  • the DC power supply unit 51 includes a rectifier circuit and a smoothing capacitor.
  • the rectifier circuit rectifies alternating current from the power supply facility into direct current.
  • the smoothing capacitor smoothes the alternating current rectified by the rectifier circuit. This rectification and smoothing converts alternating current into direct current.
  • the power supply which supplies electric power to the direct-current power supply part 51 is not limited only to power supply equipment, A capacitor
  • the inverter 53 converts the direct current from the direct current power supply unit 51 into an alternating output pulse by switching.
  • the inverter unit 53 has a plurality of switches between the DC power supply unit 51 and the high voltage conversion unit 55.
  • the inverter unit 53 converts the direct current into an alternating output pulse by selectively switching a plurality of switches at a timing according to the control by the switching control unit 63.
  • the inverter type high voltage generator 23 is a square wave type
  • the inverter 53 selectively switches the plurality of switches to convert the DC power from the DC power source 51 into a square wave AC voltage pulse and an AC current pulse. Convert.
  • the inverter unit 53 selectively switches a plurality of switches using a resonance phenomenon, thereby converting the DC power from the DC power source unit 51 into a square-wave AC voltage pulse and a sine wave AC current, or Sine wave AC voltage and square wave AC current pulse.
  • the period and pulse width of the output pulse of the inverter unit 53 are determined according to the switching period of each of the plurality of switches.
  • the time change rate of the tube voltage is adjusted according to the period and pulse width of the output pulse.
  • the high voltage converter 55 converts the AC output pulse from the inverter 53 into a DC high voltage.
  • the high voltage conversion unit 55 includes a high voltage transformer and a high voltage rectifier.
  • the high voltage transformer boosts the output voltage (primary voltage) from the inverter unit 53 to an alternating high voltage (secondary voltage) via an insulating magnetic circuit.
  • the high voltage rectifier rectifies the alternating high voltage boosted by the high voltage transformer into a direct high voltage. By this boosting and rectification, an AC voltage pulse is converted into a DC high voltage.
  • the X-ray tube 13 is connected to the high voltage converter 55 via an anode side cable and a cathode side cable.
  • the X-ray tube 13 has a cathode 133 and an anode 135 in a container 131.
  • the high voltage conversion unit 55 and the anode 135 are connected to the anode side cable, and the high voltage conversion unit 55 and the cathode 133 are connected to the cathode side cable.
  • the inside of the container 131 is kept in a vacuum.
  • the cathode 133 has a filament 137.
  • the filament 137 is heated by receiving supply of a filament current from a filament heating transformer (not shown).
  • the heated filament 137 emits thermoelectrons.
  • the anode 135 has a target 139 that rotates about the rotation axis R.
  • a high voltage from the high voltage conversion unit 55 is applied between the cathode 133 and the anode 135 via the anode side cable and the cathode side cable.
  • the thermoelectrons emitted from the filament 137 collide with the target 139 by the action of an electric field due to a high voltage. X-rays are generated by the interaction between the thermal electrons and the target 139.
  • the thermoelectrons flow from the anode 135 to the anode-side cable after colliding with the target 139.
  • a tube voltage detection unit 57 is connected between the X-ray tube 13 and the high voltage conversion unit 55.
  • the tube voltage detector 57 detects a high voltage applied between the cathode 133 and the anode 135 as a tube voltage. Data of the detected tube voltage value is supplied to the discharge detection unit 61 and the switching control unit 63.
  • the tube current detector 59 is connected to the anode side cable.
  • the tube current detection unit 59 detects the current that has flowed through the anode-side cable due to the flow of thermoelectrons from the cathode 133 to the anode 135 as a tube current.
  • the tube current value data is supplied to the discharge detector 61 and the switching controller 63.
  • the discharge detection unit 61 detects that a discharge has occurred in the X-ray tube 13 based on a temporal change in the tube voltage value or the tube current value. Discharge is a phenomenon in which when the degree of vacuum in the container 131 is deteriorated, dielectric breakdown occurs in the container 131 and an abnormal current flows between the cathode 133 and the anode 135. When discharge occurs, the tube current rises sharply and the tube voltage falls sharply.
  • the discharge detector 61 detects a discharge by using a time change of a specific X-ray tube output value during such a discharge. When the discharge is detected, the discharge detection unit switches the discharge flag from OFF to ON. The discharge flag is transmitted to the switching control unit 63.
  • the switching control unit 63 controls switching by the inverter unit 53.
  • the switching control unit 63 switches the switching control method in the inverter unit 53 between a period when the discharge flag is ON (discharge period) and a period when the discharge flag is OFF (non-discharge period).
  • the switching control unit 63 performs normal feedback control. That is, in the non-discharge period, the switching control unit 63 performs feedback control using the tube voltage value and the set tube voltage value in order to maintain the tube voltage value at the set tube voltage value.
  • the set tube voltage value is a tube voltage value set as an X-ray condition, and is a tube voltage value required when collecting raw data used for image reconstruction.
  • the switching control unit 63 controls the switching of the inverter unit 53 so that the tube voltage value is slowly increased to the set tube voltage value over time.
  • the switching control unit 63 includes a threshold setting unit 631, a tube voltage control amount determination unit 633, and a switch driving unit 635.
  • the threshold setting unit 631 sets a threshold used in the tube voltage control amount determination unit 633.
  • the threshold setting unit 631 switches the threshold setting method between the non-discharge period and the discharge period.
  • the threshold setting unit 631 sets the set tube voltage value as a threshold.
  • the threshold setting unit 631 sets a plurality of provisional values as thresholds in order from the smallest in accordance with the passage of time so as to gradually approach the set tube voltage value with the passage of time.
  • the threshold value may be increased continuously over time or may be increased in stages.
  • the tube voltage control amount determination unit 633 determines the tube voltage control amount based on the tube voltage value from the tube voltage detection unit 57 and the threshold value from the threshold setting unit 631. Specifically, the tube voltage control amount determination unit 633 first compares the tube voltage value with a threshold value. Next, the tube voltage control amount determination unit 633 determines the tube voltage control amount according to the deviation between the tube voltage value and the threshold value.
  • the switch driving unit 635 individually switches a plurality of switches in the inverter unit 53 at a switching timing according to the tube voltage control amount determined by the tube voltage control amount determination unit 633.
  • the gate circuit 65 is connected to the switch driving unit 635 of the switching control unit 63.
  • the gate circuit 65 repeats driving and stopping of the switch driving unit 635. Specifically, the gate circuit 65 supplies a gate pulse to the switch drive unit 635 in response to a start command from the gantry control unit 21 in order to drive the switch drive unit 635. In response to receiving the application of the gate pulse, the switch driving unit 635 executes switching of a plurality of switches as described above. Further, the gate circuit 65 supplies a stop signal to the switch drive unit 635 in response to a stop command from the gantry control unit 21 in order to stop the drive of the switch drive unit 635. The stop signal is supplied at the end of the scan sequence.
  • the switch driving unit 635 stops switching of the plurality of switches. Thereby, the operation of the inverter type high voltage generator 23 is stopped, that is, the application of the tube voltage is stopped, and the generation of X-rays is stopped.
  • Examples of the switch control according to the present embodiment include a pulse width modulation method and a frequency modulation method.
  • the pulse width modulation method is a method of changing the tube voltage value by changing the pulse width of the output pulse of the inverter unit 53 over time.
  • the frequency modulation method is a method of changing the tube voltage value by changing the frequency of the output pulse of the inverter unit 53 over time.
  • the discharge detection unit 61 detects discharge using a tube voltage value.
  • FIG. 3 is a diagram showing an example of a timing chart of the operation of the pulse width modulation method performed by the X-ray generator 25.
  • 3A is a graph of the tube voltage value
  • FIG. 3B is a diagram showing a time change of the output pulse from the inverter unit
  • FIG. 3C is a graph showing the change from the inverter unit. It is a graph of the pulse width of the output pulse.
  • the vertical axis is defined by the tube voltage value
  • the horizontal axis is defined by time.
  • the vertical axis in FIG. 3B is defined by the output value of the output pulse
  • the horizontal axis is defined by time.
  • the vertical axis of (c) in FIG. 3 is defined by the pulse width of the output pulse, and the horizontal axis is defined by time.
  • the discharge detection unit 61 monitors the time differential value of the tube voltage value from the tube voltage detection unit 57, and whether the time differential value exceeds a threshold value for discharge detection (hereinafter referred to as a discharge detection threshold value). It is repeatedly determined whether or not.
  • a discharge detection threshold value for discharge detection
  • the discharge detection unit 61 sets the discharge flag to OFF.
  • the discharge detection threshold can be arbitrarily set via the operation unit 39 or the like.
  • the threshold setting unit 631 sets a threshold for the set tube voltage value Ths.
  • the tube voltage control amount determination unit 633 determines the tube voltage control amount by comparing the tube voltage value from the tube voltage detection unit 57 with the set tube voltage value Ths.
  • the switch driving unit 635 individually switches each switch in the inverter unit 53 at a switching timing according to the determined tube voltage control amount, and an output pulse having a pulse width corresponding to the tube voltage control amount is output from the inverter unit 53.
  • a high voltage corresponding to the output pulse is applied between the cathode 133 and the anode 135. As a result, the tube voltage value is maintained at the set tube voltage value Ths.
  • the discharge detection unit 61 determines that the time differential value of the tube voltage value exceeds the discharge detection threshold, the discharge detection unit 61 sets the discharge flag to ON. In the discharge period in which the discharge flag is ON, the threshold setting unit 631 sets the plurality of provisional thresholds Th in order from the smallest one.
  • the threshold setting unit 631 immediately sets the minimum provisional threshold Th1 as the threshold.
  • the tube voltage control amount determination unit 633 determines the tube voltage control amount by comparing the tube voltage value from the tube voltage detection unit 57 with the minimum provisional threshold Th1.
  • the switch driving unit 635 individually switches each switch in the inverter unit 53 at a switching timing according to the determined tube voltage control amount, and an output pulse having a pulse width corresponding to the tube voltage control amount is repeatedly output from the inverter unit 53. .
  • a high voltage corresponding to the output pulse is applied between the cathode 133 and the anode 135. As a result, the tube voltage value increases toward the first provisional threshold Th1.
  • the threshold setting unit 631 sets the provisional threshold Th2 that is one step larger than the minimum provisional threshold Th1.
  • the predetermined condition may be, for example, that a certain period has elapsed, or that the tube voltage value has increased to a threshold value.
  • the tube voltage control amount determination unit 633 determines the tube voltage control amount by comparing the tube voltage value from the tube voltage detection unit 57 with the second provisional threshold Th2.
  • the switch driving unit 635 individually switches each switch in the inverter unit 53 at a switching timing according to the determined tube voltage control amount, and an output pulse having a pulse width corresponding to the tube voltage control amount is repeatedly output from the inverter unit 53. .
  • a high voltage corresponding to the output pulse is applied between the cathode 133 and the anode 135. As a result, the tube voltage value increases toward the second provisional threshold Th2.
  • the threshold setting unit 631 sets the threshold to the provisional threshold th that is one step larger. Thereafter, similarly, the tube voltage control amount is determined for the newly set provisional threshold, and the switch in the inverter unit 53 is switched at a timing according to the tube voltage control amount.
  • the discharge detector 61 monitors the tube voltage from the tube voltage detector 57 during the discharge period, and whether the tube voltage value has reached a threshold for canceling the discharge period (hereinafter referred to as a discharge period cancel threshold). It is repeatedly determined whether or not.
  • the discharge detection unit 61 determines that the tube voltage value has not reached the discharge period release threshold, the discharge detection unit 61 maintains the discharge flag ON.
  • the discharge flag is changed to OFF. As a result, the discharge period is canceled and the process proceeds to a non-discharge period.
  • the switching control unit 63 gradually raises the threshold value for feedback control over time, and gradually increases the pulse width of the output pulse of the inverter unit 53.
  • the tube voltage value that has suddenly dropped due to the discharge can be gradually increased to the set tube voltage value.
  • FIG. 4 is a diagram showing an example of a timing chart of the operation of the frequency modulation method performed by the X-ray generator 25.
  • 4A is a graph of the tube voltage value
  • FIG. 4B is a diagram showing a time change of an output pulse from the inverter unit 53
  • FIG. 4C is an inverter unit.
  • 53 is a graph of the frequency of output pulses from 53;
  • the vertical axis is defined by the tube voltage value, and the horizontal axis is defined by time.
  • the vertical axis is defined by the output value of the output pulse, and the horizontal axis is defined by time.
  • the vertical axis in FIG. 4C is defined by the frequency of the output pulse, and the horizontal axis is defined by time.
  • the threshold setting unit 631 when a discharge is detected, the threshold setting unit 631 immediately sets the minimum provisional threshold Th1 as a threshold.
  • the tube voltage control amount determination unit 633 determines the tube voltage control amount by comparing the tube voltage value from the tube voltage detection unit 57 with the minimum provisional threshold Th1.
  • the switch driving unit 635 individually switches each switch in the inverter unit 53 at a switching timing according to the determined tube voltage control amount, and an output pulse is repeatedly output from the inverter unit 53 at a frequency corresponding to the tube voltage control amount. A high voltage corresponding to the output pulse is applied between the cathode 133 and the anode 135. As a result, the tube voltage value increases toward the first provisional threshold.
  • the threshold setting unit 631 sets the provisional threshold Th2 that is one step larger than the minimum provisional threshold Th1.
  • the predetermined condition may be, for example, that a certain period has elapsed, or that the tube voltage value has increased to a threshold value.
  • the tube voltage control amount determination unit 633 determines the tube voltage control amount by comparing the tube voltage value from the tube voltage detection unit 57 with the second provisional threshold.
  • the switch driving unit 635 individually switches each switch in the inverter unit 53 at a switching timing according to the determined tube voltage control amount, and an output pulse is repeatedly output from the inverter unit 53 at a frequency corresponding to the tube voltage control amount. A high voltage corresponding to the output pulse is applied between the cathode 133 and the anode 135. As a result, the tube voltage value increases toward the second provisional threshold.
  • the switching control unit 63 gradually raises the threshold value for feedback control over time, and gradually increases the frequency of the output pulse of the inverter unit 53.
  • the tube voltage value that has suddenly dropped due to the discharge can be gradually increased to the set tube voltage value.
  • the gate circuit 65 continues switching the plurality of switches by the switch driving unit 635 even when the discharge detection unit 61 detects a discharge. Therefore, the inverter type high voltage generator 23 according to the present embodiment continues to operate even when a discharge is detected.
  • FIG. 5 is a view showing a timing chart of the operation of the inverter type high voltage generation unit 23 according to the present embodiment together with the time change of the tube voltage
  • FIG. It is a figure which shows a timing chart with the time change of a tube voltage.
  • the conventional example is a method in which the pulse width or frequency is not modulated before and after the occurrence of discharge.
  • the inverter type high voltage generator according to the conventional example has stopped operating until the atmosphere in the X-ray tube is stabilized, triggered by the detection of discharge. That is, the switch switching of the switch drive unit is stopped by the gate circuit.
  • the return time (the length of the discharge period) from when the discharge occurs until the tube voltage reaches the target tube voltage value is about 100 ms.
  • the pulse width corresponding to the target tube voltage value is maintained even when the discharge is detected, the discharge is induced by the steep rise of the tube voltage value from the occurrence of the discharge.
  • the inverter type high voltage generator will be damaged.
  • the inverter type high voltage generator 23 causes the tube voltage value to gradually increase to the target tube voltage value when the discharge is detected as described above. Control the pulse width or frequency. At this time, the inverter type high voltage generator 23 according to the present embodiment continues to operate even when a discharge is detected. That is, the switch driver 635 is not stopped by the gate circuit 65, and the switching of the plurality of switches is continued. Therefore, the inverter type high voltage generator 23 according to the present embodiment can recover from the discharge period in a shorter time than the conventional example.
  • projection data collected during a period when the tube voltage value is lower than the set tube voltage value due to discharge causes artifacts in the reconstructed image.
  • the period in which the discharge is occurring is relatively short, such as several milliseconds.
  • the correction unit 33 according to the present embodiment restores projection data collected during a period in which the tube voltage value is lower than the set tube voltage value to the extent that it can be used for image reconstruction.
  • FIG. 6 is a diagram for explaining projection data correction processing by the correction unit 33.
  • the X-ray tube 13 irradiates X-rays while rotating around the rotation axis Z with the rotation of the rotating frame.
  • the view section in the discharge period is referred to as a discharge view section S1
  • the view section in the non-discharge period is referred to as a non-discharge view section S2.
  • the discharge view section S1 includes a view at the time when discharge is detected.
  • the projection data related to the discharge view section S1 is based on raw data collected in a state where the tube voltage value is lower than the set tube voltage value. Therefore, the projection data related to the discharge view section S1 cannot be used for image reconstruction as it is.
  • the projection data related to the discharge view section S1 is a correction target by the correction unit 33.
  • the correction unit 33 projects the projection data related to the discharge view section S1 into a non-discharge view section S2 and a view section (hereinafter referred to as a pre-discharge view section) S21 that is earlier in time than the discharge view section S1. Correction is performed based on the data and projection data belonging to a view section later in time than the discharge view section S1 (hereinafter referred to as a post-discharge view section) S22. For example, the correction unit 33 corrects the projection data related to the discharge view section S1 based on at least one of the projection data related to the pre-discharge view section S21 and the projection data related to the post-discharge view section S22.
  • the pre-discharge view section S21 and the post-discharge view section S22 may be automatically set by the correction unit 33, or can be arbitrarily set by the user via the operation unit 39.
  • Each of the pre-discharge view section S21 and the post-discharge view section S22 may be a single view instead of a plurality of views.
  • the pre-discharge view section and the discharge view section may be automatically set to a view section adjacent to the discharge view section.
  • the projection data of the X-ray path in the discharge view section is projected to the X-ray path in the non-discharge view section It may be replaced with data.
  • the pre-discharge view section and the discharge view section may be set to the same view section as the discharge view section or a view section different by 180 degrees. Further, when the top 17 is stationary, the correcting unit 33 may replace the projection data related to the discharge view section with the projection data related to the pre-discharge view section or the projection data related to the post-discharge view section.
  • the reconstruction unit 35 reconstructs an image based on the corrected projection data related to the discharge view section and the projection data related to the non-discharge view section. Artifact components caused by the discharge included in the reconstructed image are reduced as compared with the case where the correction process by the correction unit 33 is not executed.
  • the reconstruction unit 35 may reconstruct an image based on projection data belonging to the non-discharge view section.
  • the inverter type high voltage generation unit 23 according to the present embodiment can shorten the recovery time from the occurrence of discharge compared to the conventional example. Therefore, the image according to the present embodiment reconstructed without using the projection data belonging to the discharge view section has fewer artifact components due to the discharge than the image according to the conventional example. Whether or not to use projection data belonging to the discharge view section can be arbitrarily set by the user via the operation unit 39.
  • the switching control unit 63 may change the time until return from discharge according to the scan mode. For example, in a scan mode that requires high time resolution such as a cardiac scan, the gantry control unit 21 stops in the gate circuit 65 in order to continue operating the switching control unit 63 even when a discharge is detected. Do not supply directives. In this case, the switching control unit 63 shortens the time until the return from the discharge as compared with the conventional case. Therefore, as described above, when the discharge is detected, the measured tube voltage value is reduced to the target tube voltage value. In order to raise gently, the pulse width or frequency of the output pulse of the inverter unit 53 is modulated and controlled.
  • the gantry controller 21 In the scan mode where high time resolution is not required, such as in the case of head scan, the gantry controller 21 immediately supplies a stop command to the gate circuit 65 when the discharge is detected.
  • the gate circuit 65 that has received the stop command temporarily stops the switching control unit 63.
  • the predetermined stop period is good, for example, the time until the atmosphere in the X-ray tube 13 is stabilized.
  • the stop period is not limited to this, and can be set via the operation unit 39 at an arbitrary time.
  • the gantry controller 21 immediately supplies a start command to the gate circuit 65.
  • the gate circuit 65 that has received the start command supplies a gate pulse to the switch driving unit 635.
  • the switch driving unit 635 receives the detection of the discharge as described above in order to gradually increase the measured tube voltage value to the target tube voltage value.
  • the pulse width or frequency of 53 output pulses is modulated and controlled.
  • the switching control unit 63 changes the time from the detection of the discharge to the start of the modulation control of the pulse width or the frequency according to the scan mode, thereby changing the time from the discharge to the return. To change.
  • the X-ray generator 25 gradually increases the tube voltage value to the set tube voltage value without interrupting the supply of power to the X-ray tube 13 after the discharge is detected. Therefore, since the tube voltage value can be raised to the set tube voltage value while stabilizing the atmosphere in the X-ray tube 13, it is difficult to induce discharge. As a result, the X-ray generator 25 can quickly recover the tube voltage value to the set tube voltage value as compared with the conventional example, and the amount of data including artifact components derived from the discharge is larger than that of the conventional example. Less. Therefore, the X-ray generator 25 can reduce the artifact of the reconstructed image as compared with the conventional example. Further, the X-ray computed tomography apparatus according to the present embodiment can restore the projection data related to the discharge view section based on the projection data related to the non-discharge view section in order to improve the image quality of the reconstructed image.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pulmonology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Power Engineering (AREA)
  • X-Ray Techniques (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 放電に起因する画像アーチファクトの低減。 直流電源部51は、直流を発生する。インバータ部53は、直流をスイッチングにより交流の出力パルスに変換する。高電圧変換部53は、交流の出力パルスを高電圧に変換する。X線管13は、高電圧の印加を受けてX線を発生する。放電検出部61は、X線管13における放電を検出する。スイッチング制御部63は、放電が検出されたことを契機として、X線管13の実測管電圧値を目標管電圧値までゆるやかに上昇させるため、インバータ部53のスイッチングを制御してインバータ部53からの交流の出力パルスのパルス幅又は周波数を変化させる。

Description

X線コンピュータ断層撮影装置及びX線発生装置
 本実施形態は、X線コンピュータ断層撮影装置及びX線発生装置に関する。
 X線管に放電が発生する場合がある。X線管の放電が発生した場合、X線管への電力の供給を即時的に遮断し、X線の照射を停止している。そしてX線管内の雰囲気が安定した後、再びX線管へ電力を供給し、X線の照射を再開している。放電発生後のX線管への電力の供給の遮断に伴うX線照射の停止期間は、数十m秒から数百m秒である。その期間は、画像再構成に利用可能なデータを収集できないため、再構成画像にアーチファクトが生じてしまう。そのため、放電現象は診断に支障を来している。
特開平10-106792号公報
  実施形態の目的は、放電に起因する画像アーチファクトを低減することを可能とするX線コンピュータ断層撮影装置及びX線発生装置を提供することにある。
 本実施形態に係るX線コンピュータ断層撮影装置は、X線を発生するX線管と、前記X線管に印加される高電圧を発生するインバータ式高電圧部と、前記X線管から発生されたX線を検出するX線検出器と、前記X線管と前記X線検出器とを支持する支持機構と、前記X線検出器からの出力データに基づいて画像データを再構成する再構成部と、を具備するX線コンピュータ断層撮影装置であって、前記インバータ式高電圧部は、直流を発生する直流電源部と、前記直流電源部からの直流をスイッチングにより交流に変換するインバータ部と、前記インバータ部からの交流の出力パルスを前記X線管に印加される高電圧に変換する高電圧変換部と、前記X線管における放電を検出する検出部と、前記放電が検出されたことを契機として、前記X線管の実測管電圧値を目標管電圧値までゆるやかに上昇させるため、前記インバータ部のスイッチングを制御して前記インバータ部からの交流の出力パルスのパルス幅又は周波数を変化させる制御部と、を備える。
 放電に起因する画像アーチファクトを低減すること
図1は、本実施形態に係るX線コンピュータ断層撮影装置の構成を示す図である。 図2は、図1のX線発生装置の構成を示す図である。 図3は、図2のX線発生装置により行われるパルス幅変調方式の動作のタイミングチャートの一例を示す図である。 図4は、図2のX線発生装置により行われる周波数変調方式の動作のタイミングチャートの一例を示す図である。 図5は、図1のインバータ式高電圧発生部の動作のタイミングチャートを管電圧の時間変化とともに示す図である。 図6は、図1の補正部による投影データの補正処理を説明するための図である。 図7は、従来例に係るインバータ式高電圧発生部の動作のタイミングチャートを管電圧の時間変化とともに示す図である。 図8は、従来例に係るインバータ式高電圧発生部の他の動作のタイミングチャートを管電圧の時間変化とともに示す図である。
 以下、図面を参照しながら本実施形態に係わるX線コンピュータ断層撮影装置及びX線発生装置を説明する。
 図1は、本実施形態に係るX線コンピュータ断層撮影装置の構成を示す図である。図1に示すように、本実施形態にX線コンピュータ断層撮影装置1は、架台10とコンソール30とを備える。
 架台10は、開口部が形成された筐体(図示せず)内に回転フレーム11を装備している。筐体の中心軸Zと回転フレーム11の中心軸(回転軸)Zとが一致するように回転フレーム11は、筐体内に収容されている。回転フレーム11は、互いに対向して配置されたX線管13とX線検出器15とを装備している。回転フレーム11は、X線管13とX線検出器15とを回転軸Z回りに回転可能に支持している。筐体あるいは回転フレーム11の開口の内部には、FOV(field of view)が設定される。FOVに被検体(患者)Pの撮像領域が含まれるように天板17が位置決めされる。回転フレーム11は、回転駆動部19に接続されている。回転駆動部19は、架台制御部21による制御に従って回転フレーム11を一定の角速度で回転することにより、X線管13とX線検出器15とを回転軸Z回りに回転する。
 X線管13は、インバータ式高電圧発生部23から高電圧の印加を受けてX線を発生する。インバータ式高電圧発生部23は、架台制御部21による制御に従う高電圧をX線管13に印加する。インバータ式高電圧発生部23は、X線管13内において放電が発生したことを検出する機能を有している。インバータ式高電圧発生部23は、放電を検出したことを契機として、さらなる放電の誘発を防止するため、管電圧値を設定管電圧値まで急峻に上昇させるのではなく、管電圧値を時間変化に従って徐々に上昇させる。X線管13とインバータ式高電圧発生部23とはX線発生装置25を構成する。X線発生装置25の詳細については後述する。
 X線検出器15は、X線管13から発生されたX線を検出する。X線検出器15は、2次元状に配列された複数のX線検出素子を搭載する。例えば、複数のX線検出素子は、回転フレーム11の回転軸Zを中心とした円弧に沿って配列される。この円弧に沿うX線検出素子の配列方向はチャンネル方向と呼ばれる。チャンネル方向に沿って配列された複数のX線検出素子は、X線検出素子列と呼ばれる。複数のX線検出素子列は、回転軸Zに沿う列方向に沿って配列される。各X線検出素子は、X線管13から発生されたX線を検出し、検出されたX線の強度に応じた電気信号(電流信号)を生成する。生成された電気信号は、データ収集部(DAS)27に供給される。
 データ収集部27は、架台制御部21による制御に従って、X線検出器15を介して電気信号をビュー(view)毎に収集する。よく知られているように、ビューは、回転軸Z周りの回転フレーム11の回転角度に対応する。また、信号処理的には、ビューは、回転フレーム11の回転時におけるデータのサンプリング点に対応する。データ収集部27は、収集されたアナログの電気信号をデジタルデータに変換する。デジタルデータは、生データと呼ばれている。生データは、非接触型の伝送部29により所定ビュー毎にコンソール30に供給される。
 架台制御部21は、コンソール30内のシステム制御部43による指示に従って、架台10に搭載された各種機器の制御を統括する。例えば、架台制御部21は、回転駆動部19、インバータ式高電圧発生部23、及びデータ収集部27を制御する。
 コンソール30は、前処理部31、補正部33、再構成部35、表示部37、操作部39、記憶部41、及びシステム制御部43を備える。前処理部31は、伝送部29から伝送された生データに対数変換や感度補正等の前処理を施す。前処理が施された生データは、投影データと呼ばれる。補正部33は、放電が検出されたビューを含むビュー区間に属する投影データを、放電ビュー区間よりも時刻的に前のビュー区間に属する投影データと放電ビュー区間よりも時刻的に後のビュー区間に属する投影データとの少なくとも一つに基づいて補正する。再構成部35は、投影データに基づいて被検体に関する画像データを再構成する。表示部37は、再構成部35により発生された画像データを表示機器に表示する。操作部39は、入力機器によるユーザからの各種指令や情報入力を受け付ける。記憶部41は、生データや投影データ、画像データを記憶する。また、記憶部41は、制御プログラムを記憶している。システム制御部43は、記憶部41に記憶されている制御プログラムを読み出してメモリ上に展開し、展開された制御プログラムに従って各部を制御する。
 以下、本実施形態に係るX線コンピュータ断層撮影装置の詳細について説明する。
 図2は、本実施形態に係るX線発生装置25の構成を示す図である。図2に示すように、X線発生装置25は、X線管13とインバータ式高電圧発生部23とを有している。インバータ式高電圧発生部23は、直流電源部51、インバータ部53、高電圧変換部55、管電圧検出部57、管電流検出部59、放電検出部61、スイッチング制御部63、及びゲート回路65を有している。なお、本実施形態に係るインバータ式高電圧発生部23の動作形式は、方形波型(非共振型)と共振型との何れのタイプにも適用可能である。
 直流電源部51は、架台10が設置されている検査室等に設けられた電源設備からの交流に基づいて直流を発生する。具体的には、直流電源部51は、整流回路と平滑コンデンサとを有している。整流回路は、電源設備からの交流を直流に整流する。平滑コンデンサは、整流回路により整流された交流を平滑する。この整流及び平滑により交流が直流に変換される。なお、直流電源部51に電力を供給する電源は、電源設備のみに限定されず、コンデンサや蓄電池でも良い。
 インバータ部53は、直流電源部51からの直流をスイッチングにより交流の出力パルスに変換する。インバータ部53は、直流電源部51と高電圧変換部55との間に複数のスイッチを有している。インバータ部53は、スイッチング制御部63による制御に従うタイミングで複数のスイッチを選択的に切り替えることにより直流を交流の出力パルスに変換する。インバータ式高電圧発生部23が方形波型の場合、インバータ部53は、複数のスイッチを選択的に切り替えることにより、直流電源部51からの直流電力を方形波の交流電圧パルス及び交流電流パルスに変換する。共振型の場合、インバータ部53は、複数のスイッチを共振現象を利用して選択的に切り替えることにより、直流電源部51からの直流電力を方形波の交流電圧パルス及び正弦波の交流電流、または、正弦波の交流電圧及び方形波の交流電流パルスに変換する。複数のスイッチの各々の切替周期に応じてインバータ部53の出力パルスの周期及びパルス幅が決定される。出力パルスの周期及びパルス幅により管電圧の時間変化速度が調整される。
 高電圧変換部55は、インバータ部53からの交流の出力パルスを直流の高電圧に変換する。具体的には、高電圧変換部55は、高電圧変圧器と高電圧整流器とを有している。高電圧変圧器は、インバータ部53からの出力電圧(一次電圧)を、絶縁磁気回路を介して交流の高電圧(二次電圧)に昇圧する。高電圧整流器は、高電圧変圧器により昇圧された交流の高電圧を直流の高電圧に整流する。この昇圧及び整流により交流の電圧パルスが直流の高電圧に変換される。
 X線管13は、高電圧変換部55に陽極側ケーブルと陰極側ケーブルとを介して接続されている。X線管13は、容器131内に陰極133と陽極135とを有している。高電圧変換部55と陽極135とは陽極側ケーブルに接続され、高電圧変換部55と陰極133とは陰極側ケーブルに接続される。容器131内は、真空に保たれている。陰極133は、フィラメント137を有している。フィラメント137は、図示しないフィラメント加熱変圧器からのフィラメント電流の供給を受けて加熱される。加熱されたフィラメント137は、熱電子を放出する。陽極135は、回転軸R回りに回転するターゲット139を有している。陰極133-陽極135間には、陽極側ケーブルと陰極側ケーブルとを介して高電圧変換部55からの高電圧が印加される。フィラメント137から放出された熱電子は、高電圧による電界の作用によりターゲット139に衝突する。熱電子とターゲット139との相互作用によりX線が発生する。熱電子は、ターゲット139に衝突した後、陽極135から陽極側ケーブルへ流れる。
 X線管13と高電圧変換部55との間には、管電圧検出部57が接続されている。管電圧検出部57は、陰極133-陽極135間に印加された高電圧を管電圧として検出する。検出された管電圧値のデータは、放電検出部61とスイッチング制御部63とに供給される。
 陽極側ケーブルには、管電流検出部59が接続されている。管電流検出部59は、陰極133から陽極135に熱電子が流れることに起因して陽極側ケーブルに流れた電流を管電流として検出する。管電流値のデータは、放電検出部61とスイッチング制御部63とに供給される。
 放電検出部61は、管電圧値または管電流値の時間変化に基づいて、X線管13に放電が発生したことを検出する。放電は、容器131内の真空度が劣化している場合、容器131内に絶縁破壊が生じて陰極133-陽極135間に異常な電流が流れてしまう現象である。放電が発生する場合、管電流が急峻に上昇し、また、管電圧が急峻に下降してしまう。放電検出部61は、このような放電時に特異的なX線管出力値の時間変化を利用して放電を検出する。放電が検出された場合、放電検出部は、放電フラグをOFFからONに切り替える。放電フラグは、スイッチング制御部63に伝達される。
 スイッチング制御部63は、インバータ部53によるスイッチングを制御する。スイッチング制御部63は、放電フラグがONの期間(放電期間)と放電フラグがOFFの期間(非放電期間)とで、インバータ部53におけるスイッチングの制御方式を切り替える。非放電期間においてスイッチング制御部63は、通常のフィードバック制御を実行する。すなわち、非放電期間においてスイッチング制御部63は、管電圧値を設定管電圧値に維持するために、管電圧値と設定管電圧値とを利用してフィードバック制御を実行する。設定管電圧値は、X線条件として設定される管電圧値であり、画像再構成に用いる生データの収集時に要求される管電圧値である。放電期間においてスイッチング制御部63は、管電圧値を時間経過に従って設定管電圧値までゆっくり上昇させるように、インバータ部53のスイッチングを制御する。
 図2に示すように、スイッチング制御部63は、閾値設定部631、管電圧制御量決定部633、及びスイッチ駆動部635を有している。
 閾値設定部631は、管電圧制御量決定部633において利用される閾値を設定する。閾値設定部631は、非放電期間と放電期間とにおいて閾値の設定方式を切り替える。非放電期間において閾値設定部631は、設定管電圧値を閾値に設定する。放電期間において閾値設定部631は、時間経過に従って徐々に設定管電圧値に近づけるように複数の暫定値を時間経過に従って小さい方から順番に閾値に設定する。閾値は、時間経過に従って連続的に上昇されても良いし、段階的に上昇されても良い。
 管電圧制御量決定部633は、管電圧検出部57からの管電圧値と閾値設定部631からの閾値とに基づいて管電圧制御量を決定する。具体的には、まず管電圧制御量決定部633は、管電圧値を閾値と比較する。次に管電圧制御量決定部633は、管電圧値と閾値との偏差に従って管電圧制御量を決定する。
 スイッチ駆動部635は、管電圧制御量決定部633により決定された管電圧制御量に応じた切替タイミングでインバータ部53内の複数のスイッチを個別に切り替える。
 図2に示すように、ゲート回路65は、スイッチング制御部63のスイッチ駆動部635に接続されている。ゲート回路65は、スイッチ駆動部635の駆動と停止とを繰り替える。具体的には、ゲート回路65は、スイッチ駆動部635を駆動するために、架台制御部21からの開始指令を受けてスイッチ駆動部635にゲートパルスを供給する。ゲートパルスの印可を受けたことを契機としてスイッチ駆動部635は、上記の通り、複数のスイッチの切り替えを実行する。また、ゲート回路65は、スイッチ駆動部635の駆動を停止するため、架台制御部21からの停止指令を受けてスイッチ駆動部635に停止信号を供給する。停止信号は、スキャンシーケンスの終了時に供給される。停止信号の供給を受けてスイッチ駆動部635は、複数のスイッチの切り替えを停止する。これにより、インバータ式高電圧発生部23の動作が停止する、すなわち、管電圧の印加が停止し、X線の発生が停止する。
 次に、CTスキャン実行時におけるX線発生装置25の動作例をスイッチング制御部63の動作を中心として説明する。本実施形態に係るスイッチ制御としては、パルス幅変調方式と周波数変調方式とが挙げられる。パルス幅変調方式は、インバータ部53の出力パルスのパルス幅を経時的に変化させることにより管電圧値を変化させる方式である。周波数変調方式は、インバータ部53の出力パルスの周波数を経時的に変化させることにより管電圧値を変化させる方式である。以下、パルス幅変調方式の場合と周波数変調方式の場合とについて順番に説明する。なお、以下の説明において放電検出部61は、管電圧値を利用して放電を検出するものとする。
 図3は、X線発生装置25により行われるパルス幅変調方式の動作のタイミングチャートの一例を示す図である。図3の(a)は、管電圧値のグラフであり、図3の(b)は、インバータ部からの出力パルスの時間変化を示す図であり、図3の(c)は、インバータ部からの出力パルスのパルス幅のグラフである。図3の(a)の縦軸は管電圧値に規定され、横軸は時間に規定される。図3の(b)の縦軸は出力パルスの出力値に規定され、横軸は時間に規定される。図3の(c)の縦軸は出力パルスのパルス幅に規定され、横軸は時間に規定される。
 CTスキャン中、放電検出部61は、管電圧検出部57からの管電圧値の時間微分値をモニタリングし、時間微分値が放電検出のための閾値(以下、放電検出閾値と呼ぶ)を超えるか否かを繰り返し判定する。放電検出部61は、管電圧値の時間微分値が放電検出閾値を超えていないと判定した場合、放電フラグをOFFに設定する。放電検出閾値は、操作部39等を介して任意に設定可能である。放電フラグがOFFである非放電期間において閾値設定部631は、設定管電圧値Thsに閾値を設定する。管電圧制御量決定部633は、管電圧検出部57からの管電圧値を設定管電圧値Thsと比較して管電圧制御量を決定する。スイッチ駆動部635は、決定された管電圧制御量に従う切替タイミングでインバータ部53内の各スイッチを個別に切り替え、管電圧制御量に応じたパルス幅の出力パルスがインバータ部53から出力される。この出力パルスに応じた高電圧が陰極133-陽極135間に印加される。これにより管電圧値は、設定管電圧値Thsに維持される。
 X線管13の容器131内において放電が発生した場合、管電圧が急峻に降下し、管電圧値の時間微分値が急峻に上昇する。放電検出部61は、管電圧値の時間微分値が放電検出閾値を超えたと判定した場合、放電フラグをONに設定する。放電フラグがONである放電期間において閾値設定部631は、複数の暫定閾値Thを小さい方から順番に閾値に設定する。
 具体的には、放電が検出された場合、閾値設定部631は、最小の暫定閾値Th1を閾値に即時的に設定する。管電圧制御量決定部633は、管電圧検出部57からの管電圧値を最小の暫定閾値Th1と比較して管電圧制御量を決定する。スイッチ駆動部635は、決定された管電圧制御量に従う切替タイミングでインバータ部53内の各スイッチを個別に切り替え、管電圧制御量に応じたパルス幅の出力パルスがインバータ部53から繰り返し出力される。この出力パルスに応じた高電圧が陰極133-陽極135間に印加される。これにより管電圧値は、第1の暫定閾値Th1に向けて上昇する。
 所定の条件が満たされた後、閾値設定部631は、最小の暫定閾値Th1よりも一段階大きい暫定閾値Th2に設定する。所定の条件は、例えば、一定期間が経過されたことであっても良いし、管電圧値が閾値まで上昇したことであっても良い。管電圧制御量決定部633は、管電圧検出部57からの管電圧値を第2の暫定閾値Th2と比較して管電圧制御量を決定する。スイッチ駆動部635は、決定された管電圧制御量に従う切替タイミングでインバータ部53内の各スイッチを個別に切り替え、管電圧制御量に応じたパルス幅の出力パルスがインバータ部53から繰り返し出力される。この出力パルスに応じた高電圧が陰極133-陽極135間に印加される。これにより管電圧値は、第2の暫定閾値Th2に向けて上昇する。
 このように、所定の条件が満たされる毎に、閾値設定部631は、1段階大きい暫定閾値thに閾値を設定する。その後、同様に、新たに設定された暫定閾値について管電圧制御量が決定され、管電圧制御量に従うタイミングでインバータ部53内のスイッチが切り替えられる。
 放電検出部61は、放電期間の間、管電圧検出部57からの管電圧をモニタリングし、管電圧値が放電期間の解除のための閾値(以下、放電期間解除閾値と呼ぶ)に到達したか否かを繰り返し判定している。放電検出部61は、管電圧値が放電期間解除閾値に到達していないと判定した場合、放電フラグをONに維持する。管電圧値が放電期間解除閾値に到達したと判定した場合、放電フラグをOFFに変更する。これにより放電期間が解除され、非放電期間に移行する。
 このようにパルス幅変調方式においてスイッチング制御部63は、フィードバック制御のための閾値を時間経過に従って徐々に引き上げ、インバータ部53の出力パルスのパルス幅を徐々に大きくする。これにより、放電により急降下した管電圧値を徐々に設定管電圧値にまで引き上げることができる。
 次に、周波数変調方式におけるX線発生装置25の動作例について説明する。なお、パルス幅変調方式におけるX線発生装置25の動作例との重複部分についての説明は省略する。
 図4は、X線発生装置25により行われる周波数変調方式の動作のタイミングチャートの一例を示す図である。図4の(a)は、管電圧値のグラフであり、図4の(b)は、インバータ部53からの出力パルスの時間変化を示す図であり、図4の(c)は、インバータ部53からの出力パルスの周波数のグラフである。図4の(a)の縦軸は管電圧値に規定され、横軸は時間に規定される。図4の(b)の縦軸は出力パルスの出力値に規定され、横軸は時間に規定される。図4の(c)の縦軸は出力パルスの周波数に規定され、横軸は時間に規定される。
 図4に示すように、放電が検出された場合、閾値設定部631は、最小の暫定閾値Th1を閾値に即時的に設定する。管電圧制御量決定部633は、管電圧検出部57からの管電圧値を最小の暫定閾値Th1と比較して管電圧制御量を決定する。スイッチ駆動部635は、決定された管電圧制御量に従う切替タイミングでインバータ部53内の各スイッチを個別に切り替え、管電圧制御量に応じた周波数で出力パルスがインバータ部53から繰り返し出力される。この出力パルスに応じた高電圧が陰極133-陽極135間に印加される。これにより管電圧値は、第1の暫定閾値に向けて上昇する。
 所定の条件が満たされた後、閾値設定部631は、最小の暫定閾値Th1よりも一段階大きい暫定閾値Th2に設定する。所定の条件は、例えば、一定期間が経過されたことであっても良いし、管電圧値が閾値まで上昇したことであっても良い。管電圧制御量決定部633は、管電圧検出部57からの管電圧値を第2の暫定閾値と比較して管電圧制御量を決定する。スイッチ駆動部635は、決定された管電圧制御量に従う切替タイミングでインバータ部53内の各スイッチを個別に切り替え、管電圧制御量に応じた周波数で出力パルスがインバータ部53から繰り返し出力される。この出力パルスに応じた高電圧が陰極133-陽極135間に印加される。これにより管電圧値は、第2の暫定閾値に向けて上昇する。
 このようにパルス幅変調方式においてスイッチング制御部63は、フィードバック制御のための閾値を時間経過に従って徐々に引き上げ、インバータ部53の出力パルスの周波数を徐々に大きくする。これにより、放電により急降下した管電圧値を徐々に設定管電圧値にまで引き上げることができる。
 なお、本実施形態においてゲート回路65は、放電検出部61により放電が検出された場合であってもスイッチ駆動部635による複数のスイッチの切り替えを継続させる。従って本実施形態に係るインバータ式高電圧発生部23は、放電が検出された場合であっても作動し続ける。
 図5と図7とを参照しながら、本実施形態と従来例とに係るインバータ式高電圧発生部の動作シーケンスを比較する。図5は、本実施形態に係るインバータ式高電圧発生部23の動作のタイミングチャートを管電圧の時間変化とともに示す図であり、図7は、従来例に係るインバータ式高電圧発生部の動作のタイミングチャートを管電圧の時間変化とともに示す図である。なお従来例とは、放電の発生前後でパルス幅又は周波数を変調しない方式であるとする。図7に示すように、従来例に係るインバータ式高電圧発生部は、放電が検出されたことを契機として、X線管内の雰囲気が安定するまで作動を停止していた。すなわち、ゲート回路によりスイッチ駆動部のスイッチ切り替えが停止されていた。従って、図7の場合、放電が発生してから管電圧が目標管電圧値に到達するまでの復帰時間(放電期間の時間長)は、100ms程度であった。また、図8に示すように、放電が検出された場合であっても目標管電圧値に対応するパルス幅を維持した場合、放電発生からの管電圧値の急峻な立ち上がりにより放電が誘発されたり、インバータ式高電圧発生部が損傷したりしてしまう。
 図5に示すように、本実施形態に係るインバータ式高電圧発生部23は、上記の通り、放電が検出されたことを契機として、管電圧値が目標管電圧値まで緩やかに上昇するようにパルス幅又は周波数を制御する。この際、本実施形態に係るインバータ式高電圧発生部23は、放電が検出された場合であっても作動し続けている。すなわち、ゲート回路65によりスイッチ駆動部635が停止されず、複数のスイッチの切り替えが継続されている。従って、本実施形態に係るインバータ式高電圧発生部23は、従来例に比して短い時間で放電期間から回復することができる。
 なお、放電により設定管電圧値よりも管電圧値が低下している期間において収集された投影データは、再構成画像にアーチファクトを発生させる。放電が発生している期間は、数m秒と比較的短い。本実施形態に係る補正部33は、設定管電圧値よりも管電圧値が低下している期間において収集された投影データを、画像再構成に利用できる程度に修復する。
 図6は、補正部33による投影データの補正処理を説明するための図である。図6に示すように、CTスキャン中、X線管13は、回転フレームの回転に伴い回転軸Z回りを回転しながら、X線を照射している。ここで放電期間におけるビュー区間を放電ビュー区間S1、非放電期間におけるビュー区間を非放電ビュー区間S2と呼ぶことにする。放電ビュー区間S1は、放電検出された時点のビューを含んでいる。放電ビュー区間S1に関する投影データは、管電圧値が設定管電圧値よりも低い状態で収集された生データに基づく。従って、放電ビュー区間S1に関する投影データは、そのままでは画像再構成に利用することはできない。放電ビュー区間S1に関する投影データが補正部33による補正対象となる。
 補正部33は、放電ビュー区間S1に関する投影データを、非放電ビュー区間S2であって、放電ビュー区間S1よりも時刻的に前のビュー区間(以下、放電前ビュー区間と呼ぶ)S21に属する投影データと放電ビュー区間S1よりも時刻的に後のビュー区間(以下、放電後ビュー区間と呼ぶ)S22に属する投影データとに基づいて補正する。例えば、補正部33は、放電前ビュー区間S21に関する投影データと放電後ビュー区間S22に関する投影データとの少なくとも一方の投影データに基づいて放電ビュー区間にS1関する投影データを補正する。例えば、補正部33は、放電前ビュー区間S21と放電後ビュー区間S22とは、補正部33により自動的に設定されても良いし、ユーザにより操作部39を介して任意に設定可能である。放電前ビュー区間S21と放電後ビュー区間S22との各々は、複数のビューではなく単一のビューであっても良い。
 X線管13が複数回周回しないスキャン方式の場合、放電前ビュー区間と放電ビュー区間とは放電ビュー区間に隣接するビュー区間に自動的に設定されると良い。また、放電ビュー区間に関する投影データの各X線パスと同一のX線パスが非放電ビュー区間に存在する場合、放電ビュー区間におけるX線パスの投影データを非放電ビュー区間におけるX線パスの投影データに置き換えても良い。
 X線管13が複数回周回するスキャン方式の場合、放電前ビュー区間と放電ビュー区間とは、放電ビュー区間と同一のビュー区間、あるいは、180度異なるビュー区間に設定されると良い。さらに天板17が静止している場合、補正部33は、放電前ビュー区間に関する投影データまたは放電後ビュー区間に関する投影データで放電ビュー区間に関する投影データを置き換えても良い。
 補正処理の終了後、再構成部35は、放電ビュー区間に関する補正後の投影データと非放電ビュー区間に関する投影データとに基づいて画像を再構成する。再構成画像に含まれる放電に起因するアーチファクト成分は、補正部33による補正処理を実行しない場合に比して減少する。
 なお、画像再構成において、放電ビュー区間に属する投影データを必ずしも用いる必要はない。再構成部35は、非放電ビュー区間に属する投影データに基づいて画像を再構成しても良い。上記の通り、本実施形態に係るインバータ式高電圧発生部23は、放電の発生からの復帰時間を従来例に比して短縮することができる。従って、放電ビュー区間に属する投影データを利用しないで再構成された本実施形態に係る画像は、従来例に係る画像に比して放電に起因するアーチファクト成分が少ない。放電ビュー区間に属する投影データを用いるか否かは、ユーザにより操作部39を介して任意に設定可能である。
 また、本実施形態に係るスイッチング制御部63は、スキャンモードに応じて放電からの復帰までの時間を変更しても良い。例えば、心臓スキャン等の高時間分解能が要求されるスキャンモードの場合、架台制御部21は、放電が検出された場合であってもスイッチング制御部63を作動し続けるために、ゲート回路65に停止指令を供給しない。この場合、スイッチング制御部63は、放電からの復帰までの時間を従来に比して短縮するため、上記の通り、放電が検出されたことを契機として、実測管電圧値を目標管電圧値まで緩やかに上昇させるために、インバータ部53の出力パルスのパルス幅又は周波数を変調制御する。
 頭部スキャンの場合等の高時間分解能が要求されないスキャンモードの場合、架台制御部21は、放電が検出されたことを契機としてゲート回路65に停止指令を即時的に供給する。停止指令を受けたゲート回路65は、スイッチング制御部63を一時的に停止する。既定の停止期間は、例えば、X線管13内の雰囲気が安定するまでの時間が良い。なお停止期間は、これに限定されず、任意の時間に操作部39を介して設定可能である。停止期間の経過後、架台制御部21は、ゲート回路65に開始指令を即時的に供給する。開始指令の受けたゲート回路65は、スイッチ駆動部635にゲートパルスを供給する。ゲートパルスの印可を受けたことを契機としてスイッチ駆動部635は、上記の通り、放電が検出されたことを契機として、実測管電圧値を目標管電圧値まで緩やかに上昇させるために、インバータ部53の出力パルスのパルス幅又は周波数を変調制御する。
 このように、本実施形態に係るスイッチング制御部63は、スキャンモードに応じて、放電の検出からパルス幅又は周波数の変調制御の開始までの時間を変更することにより、放電からの復帰までの時間を変更する。
 以下、本実施形態に係る効果について説明する。
 従来例のように放電検出後、管電圧値を設定管電圧値まで急速に上昇させる場合、X線管内の雰囲気が安定しないので放電を誘発しやすかった。従って従来においては、放電検出時に即時的にX線管への電力の供給を遮断し、X線出力を一時的に停止させ、X線管内の雰囲気が安定してからX線管への電力供給を再開しX線出力させていた。この場合、画像再構成に利用不可能な投影データ量が多く、再構成画像に激しいアーチファクトが発生してしまう。また、X線管への電力供給を遮断することなく、管電圧値を設定管電圧値まで急速に上昇させる場合、さらなる放電が発生し、結果的に画像再構成に利用可能な投影データ量が少なり、やはり再構成画像に激しいアーチファクトが発生してしまう。
 本実施形態に係るX線発生装置25は、放電検出後、X線管13への電力の供給を遮断することなく、管電圧値を設定管電圧値まで徐々に上昇させる。従って、X線管13内の雰囲気を安定させながら管電圧値を設定管電圧値まで上昇させることができるので、放電の誘発を招きにくい。結果的にX線発生装置25は、従来例に比して、迅速に管電圧値を設定管電圧値まで回復させることができ、放電に由来するアーチファクト成分を含むデータ量が従来例に比して少なる。従ってX線発生装置25は、再構成画像のアーチファクトを従来例に比して低減させることができる。また、本実施形態に係るX線コンピュータ断層撮影装置は、再構成画像の画質を向上させるため、放電ビュー区間に関する投影データを非放電ビュー区間に関する投影データに基づいて修復することができる。
 かくして本実施形態によれば、放電に起因する画像アーチファクトを低減することが可能となる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 10…架台、11…回転フレーム、13…X線管、15…X線検出器、17…天板、19…回転駆動部、21…架台制御部、23…インバータ式高電圧発生部、25…X線発生装置、27…データ収集部、29…伝送部、30…コンソール、31…前処理部、33…補正部、35…再構成部、37…表示部、39…操作部、41…記憶部、43…システム制御部、51…直流電源部、53…インバータ部、55…高電圧変換部、57…管電圧検出部、59…管電流検出部、61…放電検出部、63…スイッチング制御部、65…ゲート回路、631…閾値設定部、633…管電圧制御量決定部、635…スイッチ駆動部

Claims (8)

  1.  X線を発生するX線管と、
     前記X線管に印加される高電圧を発生するインバータ式高電圧部と、
     前記X線管から発生されたX線を検出するX線検出器と、
     前記X線管と前記X線検出器とを支持する支持機構と、
     前記X線検出器からの出力データに基づいて画像データを再構成する再構成部と、
     を具備するX線コンピュータ断層撮影装置であって、
     前記インバータ式高電圧部は、
     直流を発生する直流電源部と、
     前記直流電源部からの直流をスイッチングにより交流に変換するインバータ部と、
     前記インバータ部からの交流の出力パルスを前記X線管に印加される高電圧に変換する高電圧変換部と、
     前記X線管における放電を検出する検出部と、
     前記放電が検出されたことを契機として、前記X線管の実測管電圧値を目標管電圧値までゆるやかに上昇させるため、前記インバータ部のスイッチングを制御して前記インバータ部からの交流の出力パルスのパルス幅又は周波数を変化させる制御部と、
     を備えるX線コンピュータ断層撮影装置。
  2.  前記制御部は、前記放電が検出されていない場合、前記X線管の実測管電圧値と目標管電圧値とに従って前記X線管の実測管電圧値を前記目標管電圧値に即時的に一致させるフィードバック制御を実行する、請求項1記載のX線コンピュータ断層撮影装置。
  3.  前記インバータ部は、前記直流電源部からの直流を前記交流の出力パルスに変更するための複数のスイッチを有し、
     前記制御部は、前記放電が検出されたことを契機として、前記X線管の実測管電圧値を前記目標管電圧値までゆるやかに上昇させるように、前記複数のスイッチの各々の切替タイミングを時間経過に伴って変化させる、
     請求項1記載のX線コンピュータ断層撮影装置。
  4.  前記インバータ式高電圧部は、前記直流電源部からの直流を前記交流の出力パルスに変更するための複数のスイッチを有し、
     前記制御部は、前記実測管電圧値と前記目標管電圧値との偏差に従って管電圧制御量を決定する決定部と、前記管電圧制御量に応じて複数のスイッチを個別に切り替えるスイッチ駆動部と、スイッチ駆動部の作動と停止とを切り替えるゲート回路と、をさらに備え、
     前記スイッチ駆動部は、前記スイッチ駆動部の作動と停止とを切り替えるゲート回路に接続され、
     前記ゲート回路は、前記放電が検出された場合であっても前記スイッチ駆動部を作動し続ける、
     請求項1記載のX線コンピュータ断層撮影装置。
  5.  前記放電が検出されたビューを含む放電ビュー区間に属する出力データを、前記放電ビュー区間よりも時刻的に前の放電前ビュー区間に属する出力データと、前記放電ビュー区間よりも時刻的に後の放電後ビュー区間に属する出力データとの少なくとも一方に基づいて補正する補正部、をさらに備える請求項1記載のX線コンピュータ断層撮影装置。
  6.  前記再構成部は、前記放電が検出されたビューを含む放電ビュー区間以外のビュー区間に属する出力データに基づいて前記画像データを再構成する、請求項1記載のX線コンピュータ断層撮影装置。
  7.  前記制御部は、前記放電が検出された後に実測管電圧値が前記目標管電圧値に復帰するまでの時間をスキャンモードに応じて変化させる、請求項1記載のX線コンピュータ断層撮影装置。
  8.  直流を発生する直流電源部と、
     前記直流をスイッチングにより交流の出力パルスに変換するインバータ部と、
     前記交流の出力パルスを高電圧に変換する高電圧変換部と、
     前記高電圧の印加を受けてX線を発生するX線管と、
     前記X線管における放電を検出する検出部と、
     前記放電が検出されたことを契機として、前記X線管の実測管電圧値を目標管電圧値までゆるやかに上昇させるため、前記インバータ部のスイッチングを制御して前記インバータ部からの交流の出力パルスのパルス幅又は周波数を変化させる制御部と、
     を具備するX線発生装置。
PCT/JP2014/050366 2013-01-10 2014-01-10 X線コンピュータ断層撮影装置及びx線発生装置 WO2014109400A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480004231.8A CN104904322B (zh) 2013-01-10 2014-01-10 X射线计算机断层摄影装置及x射线发生装置
US14/746,191 US9877694B2 (en) 2013-01-10 2015-06-22 X-ray computed tomography apparatus and X-ray generation apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013002893 2013-01-10
JP2013-002893 2013-01-10
JP2014-003523 2014-01-10
JP2014003523A JP6362865B2 (ja) 2013-01-10 2014-01-10 X線コンピュータ断層撮影装置及びx線発生装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/746,191 Continuation US9877694B2 (en) 2013-01-10 2015-06-22 X-ray computed tomography apparatus and X-ray generation apparatus

Publications (1)

Publication Number Publication Date
WO2014109400A1 true WO2014109400A1 (ja) 2014-07-17

Family

ID=51167044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050366 WO2014109400A1 (ja) 2013-01-10 2014-01-10 X線コンピュータ断層撮影装置及びx線発生装置

Country Status (3)

Country Link
US (1) US9877694B2 (ja)
JP (1) JP6362865B2 (ja)
WO (1) WO2014109400A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992446A (zh) * 2015-02-05 2016-10-05 锐珂(上海)医疗器材有限公司 x射线成像装置及用于x射线成像的方法
JP2019201823A (ja) * 2018-05-22 2019-11-28 キヤノンメディカルシステムズ株式会社 X線ct装置、およびx線管制御装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6479438B2 (ja) * 2014-11-25 2019-03-06 キヤノンメディカルシステムズ株式会社 X線高電圧装置、x線コンピュータ断層撮影装置、及びx線診断装置
KR101689359B1 (ko) * 2015-06-17 2016-12-23 성균관대학교산학협력단 의료용 전자가속기의 이극관 전자총 전원공급장치
KR101642089B1 (ko) * 2015-06-17 2016-07-22 성균관대학교산학협력단 의료용 전자가속기의 전자총 전원공급장치
KR101689361B1 (ko) * 2015-06-17 2016-12-26 성균관대학교산학협력단 의료용 전자가속기의 삼극관 전자총 전원공급장치
DE102017106747A1 (de) * 2017-03-29 2018-10-04 Erbe Elektromedizin Gmbh Generator zur Versorgung eines Koagulationsinstruments und Steuerungsverfahren für diesen
JP6849521B2 (ja) * 2017-05-01 2021-03-24 キヤノン電子管デバイス株式会社 X線システムおよびx線管検査方法
EP3399341A1 (en) 2017-05-04 2018-11-07 Koninklijke Philips N.V. Dose modulation for a photon scanning apparatus
JP7233972B2 (ja) * 2019-03-04 2023-03-07 キヤノンメディカルシステムズ株式会社 X線診断システム
CN110074808A (zh) * 2019-04-30 2019-08-02 上海医乐信息科技有限公司 新能源高压发生器及新能源计算机断层成像设备
US11147151B2 (en) * 2019-05-07 2021-10-12 Shimadzu Corporation Rotary anode type X-ray tube apparatus comprising rotary anode driving device
JP7345342B2 (ja) * 2019-10-04 2023-09-15 キヤノンメディカルシステムズ株式会社 X線発生装置およびx線ct装置
KR102675001B1 (ko) * 2022-04-21 2024-06-13 주식회사 레메디 엑스선 발생 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210799A (ja) * 1990-01-12 1991-09-13 Toshiba Corp X線診断装置
JPH04111310U (ja) * 1991-03-15 1992-09-28 横河メデイカルシステム株式会社 X線ctの高電圧発生装置の電圧制御回路
JPH10106792A (ja) * 1996-09-26 1998-04-24 Hitachi Medical Corp インバータ式x線高電圧装置
JP2002306469A (ja) * 2001-04-12 2002-10-22 Ge Medical Systems Global Technology Co Llc X線ctシステムおよびその操作コンソールおよびその制御方法
JP2003116841A (ja) * 2001-10-12 2003-04-22 Ge Medical Systems Global Technology Co Llc X線ctシステムおよびその制御方法
JP2007220514A (ja) * 2006-02-17 2007-08-30 Shimadzu Corp X線高電圧装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654770A (en) * 1983-12-22 1987-03-31 General Electric Company Current-limit circuit in X-ray generator
US4601051A (en) * 1983-12-22 1986-07-15 General Electric Company Protective circuit for X-ray generator
JPS60262400A (ja) * 1984-06-08 1985-12-25 Hitachi Medical Corp X線高電圧装置
JPS628499A (ja) * 1985-07-04 1987-01-16 Toshiba Corp 高電圧発生装置
JPH07118915B2 (ja) * 1987-01-30 1995-12-18 株式会社日立メデイコ 共振型dc−dcコンバ−タ
JPS6489198A (en) * 1987-09-30 1989-04-03 Toshiba Corp X-ray high-voltage device
JPH0675437B2 (ja) 1990-03-31 1994-09-21 株式会社島津製作所 X線高電圧装置
US5187737A (en) * 1990-08-27 1993-02-16 Origin Electric Company, Limited Power supply device for X-ray tube
US5339348A (en) * 1992-11-02 1994-08-16 General Electric Company X-ray tube rotor controller using the main high voltage inverters for acceleration
US5400385A (en) * 1993-09-02 1995-03-21 General Electric Company High voltage power supply for an X-ray tube
US5602897A (en) * 1995-06-29 1997-02-11 Picker International, Inc. High-voltage power supply for x-ray tubes
JPH09115685A (ja) 1995-10-20 1997-05-02 Toshiba Fa Syst Eng Kk X線発生装置および該x線発生装置を用いたx線検査装置
US6738275B1 (en) * 1999-11-10 2004-05-18 Electromed Internationale Ltee. High-voltage x-ray generator
DE10048146A1 (de) * 2000-09-28 2002-04-11 Philips Corp Intellectual Pty Spannungsversorgung für Röntgengenerator
DE10159897A1 (de) * 2001-12-06 2003-06-26 Philips Intellectual Property Spannungsversorgung für Röntgengenerator
JP4306209B2 (ja) * 2002-09-09 2009-07-29 株式会社日立メディコ 中性点接地方式のx線発生装置及びこれを用いたx線ct装置
US7305065B2 (en) * 2003-05-15 2007-12-04 Hitachi Medical Corporation X-ray generator with voltage doubler
JP4392746B2 (ja) * 2003-05-23 2010-01-06 株式会社日立メディコ X線高電圧装置
JP4587672B2 (ja) 2004-01-07 2010-11-24 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 放射線断層撮影装置および放射線断層撮影方法
FR2869480B1 (fr) * 2004-04-21 2006-07-07 Ge Med Sys Global Tech Co Llc Alimentation stabilisee pour tubes a rayons x
EP1844540A2 (en) * 2005-01-28 2007-10-17 Koninklijke Philips Electronics N.V. Power supply and method for operating a power supply
EP2077700B1 (en) * 2006-10-25 2013-03-27 Hitachi Medical Corporation X-ray generator
RU2499349C2 (ru) * 2008-03-06 2013-11-20 Конинклейке Филипс Электроникс Н.В. Блок управления силовым инвертором преобразования постоянного тока в переменный ток схемы резонансного силового преобразователя, в частности преобразователя постоянного тока в постоянный ток, для использования в цепях генератора высокого напряжения современного устройства компьютерной томографии или рентгенографической системы
WO2010053108A1 (ja) * 2008-11-05 2010-05-14 株式会社 日立メディコ 位相シフト型インバータ回路、それを用いたx線高電圧装置、x線ct装置、および、x線撮影装置
WO2011099472A1 (ja) * 2010-02-09 2011-08-18 株式会社 日立メディコ 電力変換装置、x線ct装置およびx線撮影装置
JP4958052B2 (ja) 2010-02-24 2012-06-20 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 系統電力平準化装置および画像診断システム
US8861681B2 (en) * 2010-12-17 2014-10-14 General Electric Company Method and system for active resonant voltage switching
JP5758155B2 (ja) * 2011-03-10 2015-08-05 株式会社東芝 X線ct装置
US9438120B2 (en) * 2014-01-22 2016-09-06 General Electric Company Systems and methods for fast kilovolt switching in an X-ray system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210799A (ja) * 1990-01-12 1991-09-13 Toshiba Corp X線診断装置
JPH04111310U (ja) * 1991-03-15 1992-09-28 横河メデイカルシステム株式会社 X線ctの高電圧発生装置の電圧制御回路
JPH10106792A (ja) * 1996-09-26 1998-04-24 Hitachi Medical Corp インバータ式x線高電圧装置
JP2002306469A (ja) * 2001-04-12 2002-10-22 Ge Medical Systems Global Technology Co Llc X線ctシステムおよびその操作コンソールおよびその制御方法
JP2003116841A (ja) * 2001-10-12 2003-04-22 Ge Medical Systems Global Technology Co Llc X線ctシステムおよびその制御方法
JP2007220514A (ja) * 2006-02-17 2007-08-30 Shimadzu Corp X線高電圧装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992446A (zh) * 2015-02-05 2016-10-05 锐珂(上海)医疗器材有限公司 x射线成像装置及用于x射线成像的方法
JP2019201823A (ja) * 2018-05-22 2019-11-28 キヤノンメディカルシステムズ株式会社 X線ct装置、およびx線管制御装置
JP7062514B2 (ja) 2018-05-22 2022-05-06 キヤノンメディカルシステムズ株式会社 X線ct装置、およびx線管制御装置

Also Published As

Publication number Publication date
JP2014147692A (ja) 2014-08-21
US20150289352A1 (en) 2015-10-08
JP6362865B2 (ja) 2018-07-25
US9877694B2 (en) 2018-01-30

Similar Documents

Publication Publication Date Title
JP6362865B2 (ja) X線コンピュータ断層撮影装置及びx線発生装置
US9992855B2 (en) Energy imaging with controlled rise and fall times
JP2011024806A (ja) X線ct装置
US9717469B2 (en) X-ray computed tomography apparatus, high voltage generation device, and radiological image diagnostic apparatus
US9970889B2 (en) Energy imaging with generally constant energy separation
JP6858648B2 (ja) X線高電圧装置、x線撮影装置、及び判定回路
US11089667B2 (en) X-ray computed tomography apparatus
JP6822807B2 (ja) X線コンピュータ断層撮影装置
JP5570746B2 (ja) X線コンピュータ断層撮像装置
JP7086622B2 (ja) X線コンピュータ断層撮影装置
US10420518B2 (en) X-ray computed tomography imaging apparatus and x-ray tube apparatus
JP6313051B2 (ja) X線コンピュータ断層撮影装置
JP6139262B2 (ja) X線高電圧装置
CN104904322B (zh) X射线计算机断层摄影装置及x射线发生装置
US10863962B2 (en) X-ray computed tomography apparatus and contrast medium inflow amount detection method
JP6169890B2 (ja) X線管制御装置及びx線ct装置
JP6173700B2 (ja) X線高電圧装置及びx線ct装置
JP6858582B2 (ja) X線撮像装置
JP5962555B2 (ja) 透視撮影装置
JP6207948B2 (ja) X線透視撮影装置
JP7034628B2 (ja) X線高電圧装置及びx線画像診断装置
JP2017157433A (ja) X線高電圧装置及びx線ct装置
JP5981283B2 (ja) X線ct装置
JP6359245B2 (ja) X線コンピュータ断層撮影装置
JP2015231492A (ja) X線コンピュータ断層撮影装置、x線高電圧装置、管電圧発生方法および管電圧発生プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14737543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14737543

Country of ref document: EP

Kind code of ref document: A1