WO2014109370A1 - 光学積層体、その製造方法、並びにこれを用いた偏光板及び液晶表示装置 - Google Patents

光学積層体、その製造方法、並びにこれを用いた偏光板及び液晶表示装置 Download PDF

Info

Publication number
WO2014109370A1
WO2014109370A1 PCT/JP2014/050249 JP2014050249W WO2014109370A1 WO 2014109370 A1 WO2014109370 A1 WO 2014109370A1 JP 2014050249 W JP2014050249 W JP 2014050249W WO 2014109370 A1 WO2014109370 A1 WO 2014109370A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
fine particles
organic fine
optical laminate
resin
Prior art date
Application number
PCT/JP2014/050249
Other languages
English (en)
French (fr)
Inventor
篤 堀井
智之 堀尾
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to KR1020157018259A priority Critical patent/KR102099254B1/ko
Priority to CN201480004087.8A priority patent/CN104903763B/zh
Priority to US14/759,899 priority patent/US9568648B2/en
Priority to JP2014556442A priority patent/JP6481368B2/ja
Publication of WO2014109370A1 publication Critical patent/WO2014109370A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/16Optical coatings produced by application to, or surface treatment of, optical elements having an anti-static effect, e.g. electrically conducting coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles

Definitions

  • the present invention relates to an optical laminate, a method for producing the same, a polarizing plate using the same, and a liquid crystal display device.
  • a film made of a cellulose ester typified by triacetyl cellulose has been used as a light-transmitting substrate of such a hard coat film.
  • cellulose ester is excellent in transparency and optical isotropy, and has almost no retardation in the plane (low retardation value). Because it has little influence on the display quality of the device and has a suitable water permeability, moisture remaining in the polarizer when the polarizing plate using the optical laminate is produced can be dried through the optical laminate. It is based on advantages such as being able to.
  • the cellulose ester film is a disadvantageous material in terms of cost, and has insufficient moisture resistance and heat resistance.
  • the hard coat film based on the cellulose ester film is used as a polarizing plate protective film in a high temperature and high humidity environment.
  • the polarizing function such as the polarizing function and the hue is lowered.
  • the optical laminate in which the hard coat layer is formed on one side or both sides of the base material mainly composed of the acrylic resin has a problem that the adhesion between the acrylic base material and the hard coat layer is inferior.
  • the difference in refractive index between the acrylic substrate and the hard coat layer there is a problem in that interference fringes are generated and the appearance is poor.
  • Patent Document 1 in addition to physical treatment such as corona discharge treatment and oxidation treatment on a base film, a coating material called an anchor agent or primer is applied, It is disclosed to improve the adhesion between the base film and the hard coat layer by forming a coat layer.
  • Patent Document 2 discloses a method of forming irregularities at the interface between a base film and a hard coat layer with respect to prevention of interference fringes.
  • the number of steps necessary for the production of the hard coat film is increased and special treatment is required, so that productivity is lacking.
  • the present invention suppresses the generation of interference fringes and improves the adhesion between the acrylic substrate and the resin layer in the optical laminate having the resin layer on the acrylic substrate, and It aims at providing the method of manufacturing this optical laminated body efficiently.
  • the present inventor formed a resin layer on one surface of an acrylic base material containing organic fine particles, and the organic fine particles in the acrylic base material were used as the resin layer.
  • the present inventors have found that the above problems can be solved by shifting.
  • the present invention has been completed based on such findings.
  • An optical laminate having a resin layer containing a binder resin and organic fine particles B on one surface of an acrylic substrate containing organic fine particles A, in a cross section in the thickness direction of the optical laminate, At a reference length of 30 ⁇ m in the direction perpendicular to the thickness direction of the optical laminate, the average depth from the deepest valley bottom to the third deepest of the valleys at the acrylic substrate-resin layer interface is the reference depth.
  • the average height from the highest peak to the third highest in order from the highest peak is set as the reference height, and the difference in height between the reference height and the reference depth is 150 to 500 nm.
  • An image display device comprising the optical laminate according to any one of [1] to [8] and / or the polarizing plate according to [9].
  • a resin layer forming composition containing a solvent is applied onto an acrylic substrate containing organic fine particles A and an acrylic resin-containing binder, and the organic fine particles A are transferred into the curable resin composition and dried.
  • the method for producing an optical layered body according to [12], wherein the solvent further contains an alcohol.
  • a resin layer forming composition containing a solvent is applied onto an acrylic substrate containing organic fine particles A and an acrylic resin-containing binder, and the organic fine particles A are transferred to the resin layer composition and dried. A method for improving the adhesion of an optical laminate to be formed.
  • a resin layer forming composition containing a solvent is applied onto an acrylic substrate containing organic fine particles A and an acrylic resin-containing binder, and the organic fine particles A are transferred to the resin layer composition, dried, A method for preventing interference fringes of an optical laminated body to be formed.
  • the optical layered body of the present invention is an optical layered body having a resin layer on an acrylic base material, in which the generation of interference fringes is suppressed, and excellent adhesion between the acrylic base material and the resin layer,
  • the manufacturing method of the optical laminated body of this invention can manufacture the said optical laminated body efficiently.
  • FIG. 3 is a schematic diagram showing a ridgeline at the acrylic substrate-resin layer interface and a height difference between a reference height and a reference depth of the optical layered body of the present invention. It is a schematic diagram which shows the cross section of the optical laminated body of this invention explaining the range of the area
  • FIG. It is a schematic diagram which shows the cross section of the optical laminated body of this invention explaining the range of the area
  • An optical laminate according to the present invention is an optical laminate having a resin layer containing a binder resin and organic fine particles B on one surface of an acrylic base material containing organic fine particles A, the thickness of the optical laminate being In the cross section in the vertical direction, at the reference length of 30 ⁇ m in the direction perpendicular to the thickness direction of the optical laminate, the average from the deepest valley bottom to the third deepest of the valleys at the acrylic substrate-resin layer interface The depth is defined as the reference depth, and then the average height from the highest peak to the third highest in the peak of the acrylic substrate-resin layer interface is defined as the reference height, and the difference in height between the reference height and the reference depth Is 150 to 500 nm.
  • FIG. 1 is a photograph of a cross section of the optical layered body of the present invention taken by a scanning transmission electron microscope (Hitachi High Technology, S4800) at a magnification of 6,000 and an acceleration voltage of 30 kV
  • FIG. 3 is a cross-sectional view schematically showing the interface between the acrylic substrate and the resin layer of the optical layered body of the present invention.
  • the acrylic substrate-resin layer interface 4 has irregularities in the cross section in the thickness direction of the optical laminate.
  • the optical layered body of the present invention has an acrylic substrate-resin layer interface with a reference length of 30 ⁇ m in a direction perpendicular to the thickness direction of the optical layered body in the cross section in the thickness direction of the optical layered body.
  • the average depth from the deepest valley bottom to the third deepest is the reference depth, and then the average height from the highest peak to the third highest in the peak at the acrylic substrate-resin layer interface.
  • the height difference between the reference height and the reference depth is 150 to 500 nm, the height difference is more preferably 175 to 450 nm, and further preferably 200 to 400 nm.
  • the height difference is 500 nm or less, the generation of haze and the decrease in contrast can be suppressed. Further, when the height difference is 150 nm or more, a sufficient anchor effect is generated between the acrylic base material-resin layer interface, the adhesion is improved, and interference fringes are hardly generated.
  • the height difference between the reference depth and the average height is measured as follows.
  • Measurement method of height difference between reference height and reference depth As shown in FIG. 4, in the cross section in the thickness direction of the optical laminate, the acrylic substrate-resin layer interface shows a ridge line having peaks and valleys, and the thickness direction of the optical laminate is represented by the y-axis ( However, in the xy plane with the x-axis being the direction perpendicular to the y-axis, the resin layer side has a positive direction), and the reference length L of 30 ⁇ m is taken in the x-axis direction, and the ridge line has the minimum in the reference length L Among the points 4b, three points (4b-1) are selected in order from the smallest y coordinate, and the average y coordinate is set as the reference depth 5b.
  • the maximum point 4a of the ridge line at the reference length L Among them, three points (4a-1) are selected in order from the largest y coordinate, the average y coordinate is set as the reference height 5a, and the difference (absolute value) between the reference depth 5b and the reference height 5a is determined. The height difference between the reference depth 5b and the reference height 5a.
  • the electron micrograph is preferably imaged at a magnification of about 10,000 to 60,000 using a transmission scanning electron microscope.
  • the acrylic base material-resin layer interface shows a ridge line having peaks and valleys, and the acrylic base material and resin
  • the length of the ridge line at a reference length of 30 ⁇ m taken in the direction perpendicular to the thickness direction of the layer is preferably 31 to 50 ⁇ m, and more preferably 33 to 42 ⁇ m.
  • the length of the ridgeline is 31 ⁇ m or more, the interface between the acrylic base material and the resin layer has a sufficient area, and adhesion is improved.
  • the length of the ridge line is 50 ⁇ m or less, an increase in interface reflection is suppressed in the optical laminate, and a decrease in contrast is suppressed. Moreover, it is preferable also from a viewpoint of suppressing generation
  • the length of the ridge line is measured as follows. (Measuring method of the length of the ridgeline at a reference length of 30 ⁇ m)
  • the length of the ridgeline at the reference length of 30 ⁇ m can be measured, for example, by image analysis of the cross section using image analysis software (Image Pro, manufactured by Media Cybernetic).
  • image analysis software Image Pro, manufactured by Media Cybernetic.
  • image analysis software taking the reference length on a straight line between the resin layer and the base film end in the image.
  • the length of the interface at the reference length is measured using the image analysis software.
  • the acrylic substrate includes organic fine particles A and an acrylic resin-containing binder.
  • acrylic resin-containing binder In the optical layered body of the present invention, since the acrylic base material contains an acrylic resin binder, it is superior in moisture resistance and heat resistance as compared with the one provided with a base material made of triacetyl cellulose (TAC). Generation
  • production can be prevented suitably.
  • acrylic resin means an acrylic resin and / or a methacrylic resin.
  • the base film containing these acrylic resins is superior in mechanical strength and smoothness compared to a base film made of TAC, has low moisture permeability, moisture resistance in a high temperature and high humidity environment, heat resistance, etc. It is excellent in durability.
  • the acrylic resin is preferably a polymer mainly composed of alkyl methacrylate units. Specifically, it may be a homopolymer of alkyl methacrylate or a copolymer using two or more kinds of alkyl methacrylate, or 50 mass% of monomers other than alkyl methacrylate 50 mass% and alkyl methacrylate. % Or less copolymer.
  • alkyl methacrylate those having 1 to 4 carbon atoms of the alkyl group are usually used, and methyl methacrylate is preferably used.
  • the monomer other than alkyl methacrylate may be a monofunctional monomer having one polymerizable carbon-carbon double bond in the molecule, or two or more polymerizable carbons in the molecule.
  • -A polyfunctional monomer having a carbon double bond may be used, but a monofunctional monomer is particularly preferably used.
  • alkyl acrylates such as methyl acrylate and ethyl acrylate
  • styrene monomers such as styrene and alkyl styrene
  • unsaturated nitriles such as acrylonitrile and methacrylonitrile.
  • alkyl acrylate When alkyl acrylate is used as a copolymerization component, the alkyl group usually has about 1 to 8 carbon atoms.
  • the monomer composition of the acrylic resin is preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more based on the total amount of the monomers. Further, it is preferably 99% by mass or less.
  • the acrylic resin-containing binder preferably has a glass transition point (Tg) of 110 to 140 ° C., more preferably 120 to 130 ° C.
  • Tg glass transition point
  • the acrylic resin-containing binder preferably has a glass transition point (Tg) of 110 to 140 ° C., more preferably 120 to 130 ° C.
  • Tg glass transition point
  • the glass transition point (Tg) of the acrylic resin-containing binder is 110 ° C. or higher, generation of hot fever can be suppressed when the resin layer is formed, and it is damaged by the solvent contained in the resin layer forming composition.
  • the binder resin a resin other than an acrylic resin may be included, but the ratio of the acrylic resin in the total binder resin is preferably 80% by mass or more, and more preferably 90% by mass or more.
  • organic fine particles A rubber elastic particles including a layer exhibiting rubber elasticity are preferably used.
  • the rubber elastic particles may be particles composed only of a layer exhibiting rubber elasticity, or may be particles having a multilayer structure having other layers together with a layer exhibiting rubber elasticity.
  • the acrylic base material contains the organic fine particles A, the bendability of the acrylic base material is improved, and cracking due to a solvent or the like is also suppressed.
  • the organic fine particles A those having a core-shell structure composed of a nucleus and a shell are preferably used.
  • the material of the organic fine particles A is preferably transparent, and examples thereof include olefin-based elastic polymers, diene-based elastic polymers, styrene-diene-based elastic copolymers, and acrylic-based elastic polymers.
  • olefin-based elastic polymers diene-based elastic polymers, styrene-diene-based elastic copolymers, and acrylic-based elastic polymers.
  • An acrylic elastic polymer is preferably used.
  • the acrylic elastic polymer a polymer mainly composed of (meth) acrylic acid ester is preferable.
  • This may be a homopolymer of (meth) acrylic acid ester or a copolymer of 50% by mass or more of (meth) acrylic acid ester and 50% by mass or less of other monomers.
  • (meth) acrylic acid ester a (meth) acrylic acid alkyl ester whose alkyl group has 4 to 8 carbon atoms is usually used.
  • copolymerization of monomers other than acrylate esters include monofunctional monomers such as styrene monomers such as styrene and alkylstyrene, and unsaturated nitriles such as acrylonitrile and methacrylonitrile.
  • alkenyl esters of unsaturated carboxylic acids such as allyl (meth) acrylate and methallyl (meth) acrylate
  • dialkenyl esters of dibasic acids such as diallyl maleate
  • alkylene glycol di (meth) acrylate
  • polyfunctional monomers such as unsaturated carboxylic acid diesters of glycols.
  • the organic fine particles A are acrylic elastic copolymers copolymerized with monomers arbitrarily selected from polymethyl methacrylate, methyl acrylate, butyl acrylate, styrene, acrylonitrile, benzoacrylate, acrylic acid and methacrylic acid. Preferably there is.
  • the organic fine particles A preferably have an average particle size of 10 to 400 nm, more preferably 50 to 300 nm.
  • the average particle size By setting the average particle size to 10 nm or more, the propagation of microcracks generated in the acrylic base material can be effectively suppressed, and by setting the average particle size to 400 nm or less, an increase in haze can be suppressed.
  • the cross section of the optical layered body was measured with a transmission electron microscope (STEM) at a magnification of 10,000 to 30,000 times.
  • the diameter of each particle is an average value of the longest diameter and the shortest diameter in the cross section of the particle. The same measurement was performed at n3 on the cross section of the same optical laminate, and the average value for three times was defined as the final average particle size.
  • the content of the organic fine particles A in the acrylic substrate is preferably 25 to 45% by mass based on the total amount of the organic fine particles A and the binder resin.
  • the thickness of the acrylic substrate is preferably 15 to 800 ⁇ m. Depending on the application, a plate shape or a rollable thickness can be selected. In the case of a plate shape, the more preferable thickness is 200 ⁇ m at the upper limit and 300 ⁇ m at the lower limit. In the case of a thickness that can be wound, it is more preferable that the upper limit is 100 ⁇ m and the lower limit is 20 ⁇ m. When the thickness of the acrylic substrate is 15 ⁇ m or more, wrinkles are not easily generated in the optical laminate of the present invention. On the other hand, when the thickness is 100 ⁇ m or less, the optical laminate of the present invention and the entire final product are excellent in thickness. .
  • the acrylic base material may be used after being stretched. However, if the stretch ratio is too high, the optical laminate may be cracked in the interface region between the organic fine particles A and the binder resin or the organic fine particles A may jump out. There is a risk that the haze of this will increase.
  • the degree of this reduction is preferably 0.5 to 4 ⁇ m. Within this range, that is, the interface between the acrylic base material and the resin layer becomes a preferred ridge line, and adhesion, interference fringe prevention and hardness can be improved.
  • the reduction exceeds 4 ⁇ m, the interface state is deteriorated and the hardness of the resin layer is lowered even when a resin layer having a high hardness is used.
  • the decrease is less than 0.5 ⁇ m, the ridgeline at the interface cannot be formed well, and the adhesion and interference fringe prevention properties are degraded.
  • the acrylic substrate may be subjected to surface treatment such as saponification treatment, glow discharge treatment, corona discharge treatment, ultraviolet (UV) treatment, and flame treatment without departing from the spirit of the present invention. Good.
  • the resin layer includes the organic fine particles B described above.
  • the organic fine particles B are formed by applying a resin layer forming composition to be described later on an acrylic base material containing the organic fine particles A and an acrylic resin-containing binder, thereby raising the organic fine particles A in the acrylic base material. By transferring into the forming composition, drying and curing, the organic fine particles A transferred from the acrylic base material are impregnated with at least a part of the binder contained in the resin layer forming composition. Fine particles B are formed.
  • the reference height and the reference depth at the acrylic base material-resin layer interface have a predetermined height difference at the acrylic base material-resin layer interface as described above. It will be a thing.
  • the acrylic resin-containing binder of the acrylic base material and the binder resin of the resin layer are mixed and integrated in the vicinity of the interface of the acrylic base material-resin layer.
  • a force is applied in the vertical direction of the optical layered body from the resin layer side or the acrylic base material side, a unique effect is obtained that it is difficult to break.
  • a hard coat layer or the like is simply provided on an acrylic substrate, the hard coat layer is cracked and the acrylic substrate is also broken. This is because the physical performance of the acrylic substrate and the resin layer changes smoothly at the interface, so that the stress strain applied in the vertical direction can be smoothly propagated at the interface or the hard resin layer has elasticity.
  • the refractive index of the organic fine particles A is preferably substantially the same as that of the above-mentioned acrylic resin-containing binder, so that the acrylic base material does not generate squeezes inside.
  • the difference in refractive index between the organic fine particles A and the acrylic resin-containing binder is preferably 0.00 to 0.03. Further, even if the refractive index of the organic fine particles A and the refractive index of the binder resin of the resin layer are different, the resin layer forming composition in the organic fine particles A when the resin layer forming composition is applied to the acrylic substrate.
  • the organic fine particles B contained in the resin layer are refracted from the resin layer by being impregnated with at least a part of a binder component such as a monomer in the product.
  • production of a new internal haze is suppressed because a rate difference becomes small.
  • the method of impregnating one component into the other is to change the refractive index in gradation at the interface between the two types of materials, An intermediate refractive index can be obtained, which is effective for suppressing internal noise.
  • the average particle diameter (D b ) of the organic fine particles B is larger than the average particle diameter (D a ) of the organic fine particles A in the acrylic base material by absorbing the resin layer forming composition.
  • the ratio [D b / D a ] of the average particle diameter (D b ) of the organic fine particles B in the resin layer to the average particle diameter (D a ) of the organic fine particles A in the acrylic base material is 1. If it is about .05 times or more, a decrease in internal haze due to a difference in refractive index between the organic fine particles B and the resin layer appears, and if it is 1.80 times or less, the organic fine particles B in the resin layer are too much.
  • D b / D a is more preferably 1.05 to 1.80 times, and even more preferably 1.10 to 1.60 times.
  • the method of measuring an average particle diameter about the organic fine particle B in a resin layer is the same as that in the organic fine particle A in the above-mentioned acrylic base material.
  • the organic fine particles B in the resin layer may or may not be exposed on the outermost surface of the resin layer, but can effectively prevent the surface of the optical layered body from becoming uneven, and resolution, contrast Therefore, it is preferable that the resin layer is not exposed on the outermost surface.
  • by impregnating the organic fine particles B with at least a part of the resin layer not only the generation of internal haze is prevented, but also the adhesion between the organic fine particles B and the resin layer is improved.
  • the organic fine particles A have a low crosslink density and have an appropriate elasticity, when the resin layer is formed by curing and shrinking, it has a function of relaxing the shrinkage stress, thereby suppressing the formation of surface irregularities. Adhesion is ensured by reducing the stress strain of the resin layer.
  • the organic fine particles B are preferably not exposed on the outermost surface of the resin layer. Moreover, it is more preferable that the presence rate of the organic fine particles B near the surface of the resin layer is lower than the presence rate of the organic fine particles B inside the resin layer.
  • the thickness of the region S is 10% from the surface opposite to the acrylic substrate side with respect to the number of organic fine particles B in the region S.
  • the number of the organic fine particles B in the region T is preferably 3% or less.
  • the entire resin layer and at least the upper part of the acrylic base material are copied, and a STEM cross-sectional photograph at a magnification of 3000 to 10,000 times in which the presence of the organic fine particles can be confirmed is used. This is done by visual observation.
  • at least three STEM cross-sectional photographs are used, and in each STEM cross-sectional photograph, the ratio of the organic fine particles B in the region T to the organic fine particles B in the region S in the resin layer is obtained, and the average value is calculated.
  • the average value is defined as the ratio of the organic fine particles B in the region T. In the present invention, this ratio is defined as the presence ratio of the organic fine particles B.
  • a method for determining the region S and the region T will be specifically described with reference to FIGS. 5 and 6.
  • a STEM cross-sectional photograph is taken so that the layer of the optical laminate to be observed is as horizontal as possible.
  • a perpendicular line L and a perpendicular line R that are perpendicular to the cross-sectional photograph and that are 10 ⁇ m apart from each other are drawn.
  • An intersection R 2 with the layer interface is provided, and a quadrangular region having these four points as vertices is defined as a region S.
  • the region S the distance between the intersection point L 1 and the intersection point L 2 and the distance between the intersection point R 1 and the intersection point R 2 are respectively determined, and the average value is defined as the average height h 1 .
  • a point distance from the intersection L 1 is 10% of the average height h 1 and point L M
  • the intersection R 1 and the intersection R 2 A point where the distance from the intersection R 1 is 10% of the average height h 1 on the line connecting the two points is a point R M
  • the intersection L 1 , the intersection R 1 , the point L M , and the point R M are the vertices Is defined as a region T.
  • the resin layer is preferably a hard coat layer having a hard coat performance, and the hard coat layer has a hardness of HH in a pencil hardness test (load 4.9 N) according to JIS K5600-5-4 (1999). Preferably, it is preferably 2H or more.
  • the resin layer may contain functional particles.
  • the resin layer forming composition for forming the resin layer may be described as an electron beam curable resin composition or an ultraviolet curable resin composition (hereinafter referred to as “ionizing radiation curable resin composition”). ) Or a thermosetting resin composition.
  • the electron beam curable resin composition includes a photopolymerizable monomer and / or a photopolymerizable prepolymer and / or a photopolymerizable polymer (hereinafter sometimes abbreviated as “photopolymerizable monomer / prepolymer”).
  • the ultraviolet curable resin composition contains a photopolymerizable monomer and / or a photopolymerizable prepolymer and a photopolymerization initiator.
  • Examples of the photopolymerizable monomer include those having one or more unsaturated bonds such as a compound having an acrylate functional group.
  • Examples of one having an unsaturated bond include ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone and the like.
  • Examples of those having two or more unsaturated bonds include polymethylolpropane tri (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentylglycol di (meth) acrylate, and the like and ethylene oxide ( A polyfunctional compound modified with EEO), or a reaction product of the polyfunctional compound and (meth) acrylate (for example, poly (meth) acrylate ester of polyhydric alcohol).
  • a polyfunctional compound modified with EEO or a reaction product of the polyfunctional compound and (meth
  • (meth) acrylate refers to methacrylate and acrylate.
  • Preferred photopolymerizable monomers in the present invention include compounds having 3 or more unsaturated bonds. When these are used, the crosslinking density of the resin layer to be formed can be increased, and the coating film hardness can be improved.
  • pentaerythritol triacrylate, pentaerythritol tetraacrylate, polyester polyfunctional acrylate oligomer (3 to 15 functional), urethane polyfunctional acrylate oligomer (3 to 15 functional) and the like are preferably used in appropriate combination.
  • the ionizing radiation curable resin composition is a relatively low molecular weight polyester resin having an unsaturated double bond, a polyether resin, an acrylic resin, an epoxy resin, a urethane resin, an alkyd resin, A resin such as a spiroacetal resin, a polybutadiene resin, or a polythiol polyene resin may be contained.
  • the resin in this case includes all dimers, oligomers, and polymers other than monomers.
  • the ionizing radiation curable resin composition may further contain a solvent-drying resin.
  • a solvent-drying resin By using the solvent-drying resin in combination, coating defects on the coated surface can be effectively prevented.
  • the said solvent dry type resin means resin which becomes a film only by drying the solvent added in order to adjust solid content at the time of coating, such as a thermoplastic resin.
  • the solvent-drying resin is not particularly limited, and generally a thermoplastic resin can be used.
  • the thermoplastic resin is not particularly limited. For example, a styrene resin, a (meth) acrylic resin, a vinyl acetate resin, a vinyl ether resin, a halogen-containing resin, an alicyclic olefin resin, a polycarbonate resin, or a polyester resin.
  • thermoplastic resin examples thereof include resins, polyamide-based resins, cellulose derivatives, silicone-based resins, rubbers, and elastomers.
  • the thermoplastic resin is preferably amorphous and soluble in an organic solvent (particularly a common solvent capable of dissolving a plurality of polymers and curable compounds).
  • organic solvent particularly a common solvent capable of dissolving a plurality of polymers and curable compounds.
  • styrene resins (meth) acrylic resins, alicyclic olefin resins, polyester resins, cellulose derivatives (cellulose esters, etc.) and the like are preferable.
  • the said ionizing radiation curable resin composition may contain the thermosetting resin mentioned later further.
  • the photopolymerization initiator is not particularly limited and known ones can be used.
  • specific examples of the photopolymerization initiator include acetophenones, benzophenones, Michler benzoylbenzoate, ⁇ -amylo Examples include oxime esters, thioxanthones, propiophenones, benzyls, benzoins, and acylphosphine oxides.
  • it is preferable to use a mixture of photosensitizers and specific examples thereof include n-butylamine, triethylamine, poly-n-butylphosphine and the like.
  • the photopolymerization initiator when the photopolymerizable monomer / prepolymer is a resin system having a radical polymerizable unsaturated group, acetophenones, benzophenones, thioxanthones, benzoin, benzoin methyl ether, etc. are used alone or in combination.
  • 1-hydroxy-cyclohexyl-phenyl-ketone is particularly preferred because it is compatible with ionizing radiation curable resins and has little yellowing.
  • the photopolymerization initiator may be an aromatic diazonium salt, aromatic sulfonium salt, aromatic iodonium salt, metallocene compound, benzoin sulfonic acid. It is preferable to use esters or the like alone or as a mixture.
  • the content of the photopolymerization initiator in the ultraviolet curable resin composition is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the photopolymerizable monomer / prepolymer.
  • the content of the photopolymerization initiator is 1 part by mass or more, the hardness of the resin layer in the optical layered body of the present invention can be in the above-described range, and when it is 10 parts by mass or less, the unreacted initiator This is because the deterioration of the resin due to the residue is suppressed and the uniformity of the resin layer surface may not be obtained.
  • the minimum with more preferable content of the said photoinitiator is 2 mass parts with respect to 100 mass parts of photopolymerizable monomers / prepolymer, and a more preferable upper limit is 8 mass parts.
  • thermosetting resin composition used as the resin layer forming composition contains a thermosetting resin.
  • the thermosetting resin is not particularly limited.
  • phenol resin, urea resin, diallyl phthalate resin, melamine resin, guanamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, melamine-urea cocondensation examples thereof include resins, silicon resins, polysiloxane resins, and the like.
  • the composition for resin layer formation may contain a solvent.
  • This solvent is preferably selected so that the acrylic base material is appropriately swollen and the organic fine particles A are easily transferred into the resin composition.
  • the acrylic base material swells with almost all kinds of solvents, unlike the TAC base material that has been often used conventionally. Therefore, since the influence by the solvent is strong and it may break if the degree of swelling is too strong, by selecting the following solvent, it can be appropriately swollen and the resin component constituting the resin layer and the resin layer constituting the substrate The balance in which the components move is moderate, and a preferable ridgeline can be obtained at the interface.
  • a solvent can be selected and used according to the kind and solubility of the resin component to be used.
  • alcohols methanol, ethanol, isopropanol, 1-butanol
  • those having a higher carbon number tend to be good, and those having a high evaporation rate tend to be good.
  • ketones methyl isobutyl ketone
  • aromatic hydrocarbons toluene
  • glycols propylene glycol monomethyl ether and the like
  • a mixed solvent thereof may be used.
  • the compatibility with the resin, the coating property is excellent, the unique uneven shape of the present application is formed at the acrylic substrate-resin layer interface, and the organic fine particles can be transferred to the resin layer.
  • a material containing at least one selected from methyl isobutyl ketone, isopropanol, 1-butanol, and propylene glycol monomethyl ether is particularly preferable.
  • esters methyl acetate, ethyl acetate, propyl acetate, butyl acetate, etc.
  • ketones acetone, methyl ethyl ketone, cyclohexanone, diacetone alcohol
  • cellosolves ethers (dioxane, tetrahydrofuran, propylene glycol monomethyl ether acetate) Etc.), aliphatic hydrocarbons (hexane, etc.), aromatic hydrocarbons (xylene), halogenated carbons (dichloromethane, dichloroethane, etc.), cellosolves (methyl cellosolve, ethyl cellosolve, etc.), cellosolve acetates, sulfoxides (Dimethylsulfoxide, etc.) and amides (dimethylformamide, dimethylacetamide, etc.) may cause the acrylic base material to swell excessively.
  • the content ratio of the solvent in the resin layer forming composition is not particularly limited.
  • the preferable solvent described above is 75 to 300 parts by mass with respect to 100 parts by mass of the solid content of the resin layer forming composition.
  • the amount is preferably 100 to 220 parts by mass.
  • the content ratio of the solvent is within the above range, a solvent satisfying the height difference between the ridgeline length and the reference height and the reference depth at the reference length of 30 ⁇ m can be easily obtained.
  • the content ratio of the solvent is 75 parts by mass or more with respect to 100 parts by mass of the solid content of the resin layer forming composition, the height of the ridgeline at the reference length of 30 ⁇ m, the height difference between the reference height and the reference depth When it is 300 mass parts or less, these become small.
  • the resin layer composition preferably contains a monomer and / or oligomer, and more preferably contains a monomer. This is because the monomer and / or oligomer easily penetrates into the acrylic substrate together with the solvent. On the other hand, the polymer is difficult to penetrate into the acrylic substrate.
  • the resin layer forming composition has high resin layer hardness, suppresses curing shrinkage, prevents blocking, imparts stability to heat, humidity and light, controls refractive index, and has antiglare properties.
  • Agents pigmentments, dyes
  • antifoaming agents leveling agents, antifouling agents, antibacterial agents, antifogging agents, flame retardants, UV absorbers, adhesion promoters, polymerization inhibitors, antioxidants, surface modifiers, etc.
  • a functional component may be added.
  • the resin layer forming composition may be used by mixing with a photosensitizer, and specific examples thereof include n-butylamine, triethylamine, poly-n-butylphosphine, and the like.
  • the method for preparing the resin layer forming composition is not particularly limited as long as each component can be mixed uniformly.
  • the composition can be performed using a known apparatus such as a paint shaker, a bead mill, a kneader, or a mixer.
  • the method for applying the resin layer forming composition on the acrylic substrate is not particularly limited.
  • Well-known methods such as a coater method, a meniscus coater method, a flexographic printing method, a screen printing method, a speed coater method, can be mentioned.
  • the coating film formed by applying the resin layer forming composition on the acrylic substrate is preferably heated and / or dried as necessary and cured by irradiation with active energy rays or the like.
  • the drying time in the drying step is preferably 20 seconds to 2 minutes, more preferably 30 seconds to 1 minute.
  • the drying temperature in the drying step is preferably 40 to 90 ° C, more preferably 50 to 80 ° C. If the drying temperature exceeds 100 ° C., even if a solvent that has good swellability to acrylic is selected, the solvent penetration and the like may be increased, and the substrate may be cracked. Even in this case, it is basically preferable that the temperature is 90 ° C. or lower.
  • methyl isobutyl ketone is a preferred solvent, but even when this solvent is used, the acrylic substrate may be cut off when tension is applied at a drying temperature of 100 ° C.
  • the minimum temperature is preferably 50 ° C. or higher because the solvent can be dried and the organic fine particles A are easily transferred to the resin layer.
  • the drying temperature is 30 ° C. with methyl isobutyl ketone, curing is performed with ultraviolet rays or the like with insufficient drying. In this case, curing is not successful, and an uncured part is also generated. At this time, the adhesion may be reduced.
  • the type of solvent and the resin layer forming it is preferable that the amount of the solvent in the composition, the drying temperature, and the like be the above-described suitable conditions.
  • Examples of the active energy ray irradiation include irradiation with ultraviolet rays or electron beams.
  • Specific examples of the ultraviolet light source in the ultraviolet irradiation include light sources such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc lamp, a black light fluorescent lamp, and a metal halide lamp.
  • the wavelength of ultraviolet rays a wavelength range of 190 to 380 nm can be used.
  • electron beam sources in the above-mentioned electron beam irradiation include various types of electron beam accelerators such as cockcroft-wald type, bande graft type, resonant transformer type, insulated core transformer type, linear type, dynamitron type, and high frequency type. Can be mentioned.
  • electron beam accelerators such as cockcroft-wald type, bande graft type, resonant transformer type, insulated core transformer type, linear type, dynamitron type, and high frequency type.
  • the organic fine particle A is impregnated with a photopolymerizable monomer or the like
  • the photopolymerizable monomer or the like is also cured in the active energy ray irradiation step.
  • the binder component of the resin layer impregnated in the organic fine particle B is the organic fine particle B.
  • the average particle size is larger than that of the organic fine particles A.
  • the resin layer preferably has a thickness (at the time of curing) of 0.5 to 100 ⁇ m, more preferably 0.8 to 20 ⁇ m, and is particularly excellent in curling prevention and crack prevention, and more preferably in the range of 2 to 10 ⁇ m. More preferably, it is in the range of 2 to 5 ⁇ m.
  • the film thickness of the resin layer is an average value ( ⁇ m) obtained by observing a cross section with an electron microscope (SEM, TEM, STEM) and measuring any 10 points.
  • the resin layer may contain particles (other particles) other than the organic fine particles B transferred from the acrylic base material.
  • the functional component By including a functional component in the resin layer composition, it is possible to further impart a function to the resin layer.
  • the functional component include those used for ordinary optical sheets such as an antistatic agent, a refractive index adjusting agent, an antifouling agent, a slip agent, an antiglare agent, and a hard coat property imparting agent.
  • an organic type is preferable, and more specifically, ionic ones such as lithium ion salts, quaternary ammonium salts, ionic liquids, and electronic conductivity such as polythiophene, polyaniline, polypyrrole, polyacetylene, etc.
  • the antifouling agent include antifouling agents such as fluorine and silicone.
  • the functional component is used, the content thereof is preferably 0.1 to 10% by mass with respect to the total mass of the total solid content in the resin layer forming composition.
  • the optical layered body of the present invention migrates from an acrylic substrate when a resin layer is formed using a resin layer forming composition containing an antistatic agent (that is, when the resin layer contains an antistatic agent).
  • the antistatic agent is localized on the upper surface of the resin layer due to the influence of the component to be antistatic, antistatic performance is further improved.
  • a resin layer is formed using a resin layer forming composition containing ultrafine particles such as silica and alumina as a hard coatability-imparting agent (that is, when the resin layer contains a hardcoat property-imparting agent), hard
  • the pencil hardness defined by JIS K5600-5-4 can be improved to such an extent that 2H becomes 3H and 3H becomes 4H.
  • the addition amount which adds the said inorganic ultrafine particle in order to provide hard-coat property may be a very small addition rather than making it contain in the whole layer.
  • the optical laminate of the present invention comprises at least one selected from an antireflection layer, a hard coat layer, an antifouling layer, an antiglare layer, an antistatic layer, and a high refractive index layer directly on the resin layer. You may have.
  • the antireflection layer is preferably 1) a resin containing low refractive index inorganic fine particles such as silica or magnesium fluoride, 2) a fluorine resin which is a low refractive index resin, and 3) low refraction such as silica or magnesium fluoride. It is formed using a composition for forming an antireflection layer containing any one of a fluorine-containing resin containing inorganic fine particles and 4) a low refractive index inorganic thin film such as silica or magnesium fluoride.
  • resins other than fluorine-based resins the same resins as the binder resins described above can be used.
  • the silica described above is preferably hollow silica fine particles, and such hollow silica fine particles can be produced by, for example, the production method described in Examples of Japanese Patent Application Laid-Open No. 2005-099778.
  • These antireflection layers preferably have a refractive index of 1.47 or less, particularly 1.42 or less.
  • the thickness of the antireflection layer is not limited, but it may be set appropriately from the range of about 10 nm to 1 ⁇ m.
  • a polymerizable compound containing at least a fluorine atom in the molecule or a polymer thereof can be used.
  • a polymeric compound For example, what has hardening reactive groups, such as a functional group hardened
  • the compound which has these reactive groups simultaneously may be sufficient.
  • a polymer has no reactive groups as described above.
  • Fluorine-containing monomers having an ethylenically unsaturated bond can be widely used as the polymerizable compound having a functional group that is cured by ionizing radiation. More specifically, fluoroolefins (eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluorobutadiene, perfluoro-2,2-dimethyl-1,3-dioxole, etc.) are exemplified. Can do.
  • fluoroolefins eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluorobutadiene, perfluoro-2,2-dimethyl-1,3-dioxole, etc.
  • Examples of those having (meth) acryloyloxy groups include 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3,3-pentafluoropropyl (meth) acrylate, and 2- (perfluorobutyl).
  • thermosetting polar group examples include hydrogen bond forming groups such as a hydroxyl group, a carboxyl group, an amino group, and an epoxy group. These are excellent not only in adhesion to the coating film but also in affinity with inorganic ultrafine particles such as silica.
  • examples of the polymerizable compound having a thermosetting polar group include 4-fluoroethylene-perfluoroalkyl vinyl ether copolymer; fluoroethylene-hydrocarbon vinyl ether copolymer; epoxy, polyurethane, cellulose, phenol, polyimide, etc. Examples include fluorine-modified products of each resin.
  • Examples of the polymerizable compound having both a functional group curable by ionizing radiation and a polar group curable by heat include acrylic or methacrylic acid moieties and fully fluorinated alkyl, alkenyl, aryl esters, fully or partially fluorinated vinyl ethers, fully Alternatively, partially fluorinated vinyl esters, fully or partially fluorinated vinyl ketones and the like can be exemplified.
  • fluorine resin the following can be mentioned, for example.
  • Silicone-containing vinylidene fluoride copolymers obtained by adding a silicone component to these copolymers can also be used.
  • the silicone components in this case include (poly) dimethylsiloxane, (poly) diethylsiloxane, (poly) diphenylsiloxane, (poly) methylphenylsiloxane, alkyl-modified (poly) dimethylsiloxane, azo group-containing (poly) dimethylsiloxane, Dimethyl silicone, phenylmethyl silicone, alkyl modified silicone, aralkyl modified silicone, fluorosilicone, polyether modified silicone, fatty acid ester modified silicone, methyl hydrogen silicone, silanol group containing silicone, alkoxy group containing silicone, phenol group containing silicone, methacryl modified silicone , Acrylic modified silicone, amino modified silicone, carboxylic acid modified silicone, carbinol modified silicone, epoxy modified silicone, mel Hept-modified silicones, fluorine-mod
  • non-polymers or polymers composed of the following compounds can also be used as the fluororesin. That is, a fluorine-containing compound having at least one isocyanato group in the molecule is reacted with a compound having at least one functional group in the molecule that reacts with an isocyanato group such as an amino group, a hydroxyl group, or a carboxyl group.
  • Compounds obtained compounds obtained by reacting fluorine-containing polyols such as fluorine-containing polyether polyols, fluorine-containing alkyl polyols, fluorine-containing polyester polyols, fluorine-containing ⁇ -caprolactone-modified polyols with compounds having isocyanato groups, etc. Can be used.
  • composition for forming an antireflection layer may contain each binder resin as described above together with the above-described polymerizable compound or polymer having a fluorine atom.
  • various additives and solvents can be used as appropriate in order to improve the curing agent for curing the reactive group or the like, the coating property, or the antifouling property.
  • the viscosity of the composition for forming an antireflection layer is 0.5 to 5 mPa ⁇ s (25 ° C.), preferably 0.7 to 3 mPa ⁇ s (25 ° C.) at which a preferable coating property is obtained. ) Is preferable.
  • An antireflection layer excellent in visible light can be realized, a uniform thin film without uneven coating can be formed, and an antireflection layer particularly excellent in adhesion can be formed.
  • the curing means for the resin of the antireflection layer may be the same as the curing means for the resin layer described above.
  • a heating means for the curing treatment, for example, a heat polymerization initiator that generates radicals and initiates polymerization of the polymerizable compound by heating may be added to the composition for forming an antireflection layer. preferable.
  • the optical layered body of the present invention preferably has a total light transmittance of 80% or more. If it is less than 80%, color reproducibility and visibility may be impaired when mounted on an image display device, and a desired contrast may not be obtained.
  • the total light transmittance is more preferably 90% or more.
  • the total light transmittance can be measured by a method based on JIS K-7361 using a haze meter (manufactured by Murakami Color Research Laboratory, product number: HM-150).
  • the optical layered body of the present invention preferably has a haze of 1% or less.
  • a haze of 1% or less.
  • desired optical characteristics can be obtained, and deterioration of the optical characteristics when the optical laminate of the present invention is placed on the image display surface can be prevented.
  • Further preferred haze is 0.5% or less.
  • the haze is not limited to this, and the haze of the entire optical laminate can be designed from 1% to 50% by the preferable antiglare property.
  • the upper limit is preferably 5% or less.
  • the haze can be measured by a method based on JIS K-7136 using a haze meter (manufactured by Murakami Color Research Laboratory, product number: HM-150).
  • the polarizing plate of the present invention is formed by laminating the optical laminate of the present invention on at least one surface of a polarizing film.
  • the polarizing film is not particularly limited, and for example, a polyvinyl alcohol film, a polyvinyl formal film, a polyvinyl acetal film, an ethylene-vinyl acetate copolymer saponified film, etc. dyed and stretched with iodine or the like can be used.
  • the present invention also provides an image display device comprising the optical laminate and / or the polarizing plate.
  • the image display device include a television, a computer, an LCD, a PDP, an FED, an ELD (organic EL, inorganic EL), a CRT, a tablet PC, electronic paper, a mobile phone, and the like, and further used for an image display device and the like. It can also be suitably used for a touch panel.
  • the LCD which is a typical example of the above, includes a transmissive display body and a light source device that irradiates the transmissive display body from the back.
  • the image display device of the present invention is an LCD
  • the optical laminate of the present invention and / or the polarizing plate of the present invention is formed on the surface of the transmissive display.
  • it can be used not only on the surface but also as a transparent substrate constituting the touch panel.
  • the LCD which is a typical example of the above, includes a transmissive display body and a light source device that irradiates the transmissive display body from the back.
  • the image display device of the present invention is an LCD
  • the optical laminate of the present invention and / or the polarizing plate of the present invention is formed on the surface of the transmissive display.
  • an image display device equipped with a touch panel or an LCD it can be used not only as a surface but also as a transparent substrate constituting the inside of the device.
  • the light source of the light source device irradiates from the lower side of the optical laminate or the polarizing plate.
  • a retardation plate may be inserted between the liquid crystal display element and the polarizing plate.
  • An adhesive layer may be provided between the layers of the liquid crystal display device as necessary.
  • the backlight light source in the liquid crystal display device is not particularly limited, but is preferably a white light emitting diode (white LED).
  • the display device is preferably a VA mode or IPS mode liquid crystal display device including a white light emitting diode as a backlight light source.
  • the white LED is an element that emits white by combining a phosphor with a phosphor system, that is, a light emitting diode that emits blue light or ultraviolet light using a compound semiconductor.
  • white light-emitting diodes which are composed of a combination of blue light-emitting diodes using compound semiconductors and yttrium / aluminum / garnet yellow phosphors, have a continuous and broad emission spectrum, and thus have anti-reflection performance.
  • it is effective for improving the contrast of a bright place and is excellent in luminous efficiency, and thus is suitable as the backlight light source in the present invention.
  • white LEDs with low power consumption can be widely used, it is possible to achieve an energy saving effect.
  • the VA (Vertical Alignment) mode refers to a dark display in which liquid crystal molecules are aligned so as to be perpendicular to the substrate of the liquid crystal cell when no voltage is applied, and the liquid crystal molecules are collapsed when a voltage is applied. This is an operation mode showing bright display.
  • the IPS (In-Plane Switching) mode is a method in which display is performed by rotating the liquid crystal within the substrate plane by a horizontal electric field applied to a pair of comb electrodes provided on one substrate of the liquid crystal cell. is there.
  • the PDP as the image display device has a surface glass substrate on which an electrode is formed on the surface and a discharge gas sealed between the surface glass substrate to form the electrode and minute grooves on the surface. And a rear glass substrate on which red, green and blue phosphor layers are formed in the groove.
  • the image display device of the present invention is a PDP, the above-mentioned optical laminate is provided on the surface of the surface glass substrate or the front plate (glass substrate or film substrate).
  • the above image display device is a zinc sulfide or diamine substance that emits light when a voltage is applied: a light emitting material is deposited on a glass substrate, and an ELD device that performs display by controlling the voltage applied to the substrate, or converts an electrical signal into light Alternatively, it may be an image display device such as a CRT that generates an image visible to human eyes.
  • the optical laminated body described above is provided on the outermost surface of each display device as described above or the surface of the front plate.
  • the optical layered body of the present invention is obtained by applying a resin layer forming composition containing a solvent on an acrylic substrate containing organic fine particles A and an acrylic resin-containing binder, transferring the organic fine particles A to the resin layer composition, and drying. And it can manufacture by forming a resin layer.
  • the kind of solvent, the amount of the solvent in the resin layer forming composition, the drying temperature, and the like be the above-described suitable conditions.
  • the resin layer composition is a curable system, a curable resin composition containing a solvent is applied onto an acrylic substrate containing organic fine particles A and an acrylic resin-containing binder, and the organic fine particles A are contained in the curable resin composition.
  • the optical layered body can be produced by transferring to, drying and curing the curable resin composition to form a resin layer.
  • a resin layer forming composition containing a solvent is applied onto an acrylic substrate containing organic fine particles A and an acrylic resin-containing binder, and the organic fine particles A are applied to the resin layer.
  • the composition is transferred to a composition and dried to form a resin layer.
  • the kind of the solvent, the amount of the solvent in the resin layer forming composition, the drying temperature, and the like are set to the above-described suitable conditions.
  • the interference fringe prevention method of the optical laminated body of this invention apply
  • the composition is transferred to a composition and dried to form a resin layer.
  • it is preferable that the kind of solvent, the amount of the solvent in the resin layer forming composition, the drying temperature, and the like are set to the above-described suitable conditions.
  • Example 1 (Preparation of resin layer forming composition) A resin layer forming composition was prepared by dissolving 50 parts by mass of pentaerythritol triacrylate and 50 parts by mass of tetraethylene glycol diacrylate (manufactured by Toagosei Co., Ltd., “M240”) in 150 parts by mass of methyl isobutyl ketone. Table 1 shows the composition of the resin layer forming composition.
  • the innermost layer is a hard polymer obtained from methyl methacrylate as the main component
  • the intermediate layer is a soft elastic body polymerized from butyl acrylate as the main component
  • the outermost layer uses methyl methacrylate as the main component.
  • a resin layer is formed by die coating on a 40 ⁇ m acrylic base material containing a core-shell type rubber particle having a three-layer structure composed of a hard polymer polymerized by polymerization and a polymer obtained by using methyl methacrylate as a main component.
  • the forming composition was applied, dried at 70 ° C. for 1 minute to evaporate the solvent, and a resin layer was formed so that the coating amount after drying was 4 g / m 2 .
  • the obtained coating film was irradiated with ultraviolet rays at an irradiation amount of 200 mJ / cm 2 to completely cure the coating film (full cure state), thereby obtaining an optical laminate having a post-curing film thickness of 3.2 ⁇ m.
  • Examples 2 to 12 and Comparative Examples 1 to 8 An optical laminate was obtained in the same manner as in Example 1 except that the composition of the resin layer forming composition was changed to that shown in Table 1. However, for Comparative Example 3, an acrylic base material that did not contain core-shell type rubber particles was used.
  • the acrylic substrate-resin layer interface shows a ridge line having peaks and valleys
  • the thickness direction of the optical laminate is represented by the y-axis ( However, in the xy plane with the x-axis being the direction perpendicular to the y-axis, the resin layer side has a positive direction), and the reference length L of 30 ⁇ m is taken in the x-axis direction, and the ridge line has the minimum in the reference length L
  • the points 4b three points (4b-1) are selected in order from the smallest y coordinate, and the average y coordinate is set as the reference depth 5b.
  • the maximum point 4a of the ridge line at the reference length L Among them, three points (4a-1) are selected in order from the largest y coordinate, the average y coordinate is set as the reference height 5a, and the difference (absolute value) between the reference depth 5b and the reference height 5a is determined. The height difference between the reference depth 5b and the reference height 5a was determined.
  • a cross section in the thickness direction of the obtained optical layered body is imaged using a scanning transmission electron microscope (STEM), and the organic in the acrylic base material is based on the screen at a magnification of 10,000 to 30,000 times.
  • STEM scanning transmission electron microscope
  • 10 organic fine particles were randomly extracted, and the particle diameter of each was calculated, and the number average value thereof was taken as the average particle diameter.
  • the same measurement was performed at n3 on the cross section of the same optical laminate, and the average value for three times was defined as the final average particle size.
  • the resin layer of the optical laminate is filled with 100 square grids of 1 mm square and subjected to continuous peeling test 5 times using Nichiban Co., Ltd. industrial 24 mm cello tape (registered trademark). The number of remaining squares was measured.
  • interference fringes After pasting a black tape on the surface of the optical laminate opposite to the resin layer, the presence or absence of interference fringes was evaluated visually under a three-wavelength fluorescent lamp and a sodium lamp manufactured by Funatech. In both the fluorescent lamp and the sodium lamp, the interference fringes cannot be visually recognized as AA. In the three-wave tube fluorescent lamp, the three-wavelength interference fringes cannot be visually recognized. In the case of the wavelength tube fluorescent lamp, the interference fringe was visually recognized as B, and in the case of both the three wavelength tube fluorescent lamp and the sodium lamp, the interference fringe was visually recognized as C.
  • haze value (%) of the optical laminate was measured according to JIS K-7136 using a haze meter (Murakami Color Research Laboratory, product number: HM-150). Those having a haze value of 1.0% or less are good with little haze.
  • the interference pattern is prevented because the height difference between the lines of the acrylic substrate-resin layer interface is in the range of 150 to 500 nm.
  • the adhesion between the acrylic substrate and the resin layer was good.
  • the type of solvent, the amount of solvent, and the drying temperature are appropriate, and since the monomer and / or oligomer are included, the difference in the height of the line is within the above range. Conceivable.
  • the decrease in thickness after formation of the resin layer of the acrylic base material was in the range of 1 to 4 ⁇ m.
  • the number of organic fine particles B in the region T was 3% or less with respect to the number of organic fine particles B in the region S.
  • the height difference between the lines of the acrylic base material-resin layer interface is outside the range of 150 to 500 nm, so interference fringes cannot be prevented. Adhesion with the resin layer was not good.
  • Comparative Examples 1 and 4 to 6 use a preferable solvent, since the ratio of the preferable solvent in the whole solvent is low, the acrylic resin-containing binder of the acrylic substrate and the resin layer in the vicinity of the acrylic substrate-resin layer interface
  • the ratio of the preferred solvent is good, but the resin component used does not contain any monomer and / or oligomer, and the acrylic base material. It was considered that the organic fine particles A did not migrate into the resin layer since only the polymer that hardly penetrates into the resin layer. In Comparative Example 3, the organic fine particles A migrated into the resin layer.
  • the binder component also migrates into the resin layer, thereby being integrated at the acrylic base material-resin layer interface.
  • Example 8 When an adhesive test was performed on each of the optical layered body of Example 8 (ridge line length: 32 ⁇ m) and the optical layered body of Example 5 (ridge line length: 34 ⁇ m), the optical structure of Example 8 was measured. In the laminate, the first grid of the grid was not peeled off, but the corner of the cut portion was sometimes peeled off slightly. On the other hand, in the optical laminated body of Example 5, it was closely_contact
  • PETA pentaerythritol triacrylate
  • DPHA dipentaerythritol hexaacrylate
  • M240 tetraethylene glycol diacrylate, manufactured by Toagosei Co., Ltd., “M240”, molecular weight: 286
  • TMPTA trimethylolpropane triacrylate
  • ALEN10 manufactured by Nippon Kayaku Co., Ltd .
  • ethoxylated o-phenylphenol acrylate BS577 manufactured by Shin-Nakamura Chemical Co., Ltd., urethane acrylate, UV1700B manufactured by Arakawa Chemical Industries, Ltd.
  • the hard coat film of the present invention is a cathode ray tube display (CRT), a liquid crystal display (LCD), a plasma display (PDP), an electroluminescence display (ELD), a touch panel, an electronic paper, a display such as a mobile phone, particularly high definition. It can be suitably used for a display.
  • CTR cathode ray tube display
  • LCD liquid crystal display
  • PDP plasma display
  • ELD electroluminescence display
  • touch panel an electronic paper
  • a display such as a mobile phone, particularly high definition. It can be suitably used for a display.

Abstract

アクリル基材上に樹脂層を有する光学積層体において、干渉縞の発生を抑制し、かつアクリル基材と樹脂層との密着性を向上すること、及びこの光学積層体を効率よく製造する方法を提供する。 有機微粒子Aを含有するアクリル基材の一方の面上に、バインダー樹脂及び有機微粒子Bを含有する樹脂層を有する光学積層体であって、光学積層体の厚さ方向の断面において、光学積層体の厚さ方向に垂直な方向にとった基準長さ30μmにおいて、アクリル基材-樹脂層界面の谷部のうち、最深の谷底から深い順に3番目までの平均深さを基準深さとし、次いでアクリル基材-樹脂層界面の山部のうち、最高の山頂から高い順に3番目のまでの平均高さを基準高さとし、該基準高さと基準深さとの高低差が150~500nmである光学積層体、これを用いた偏光板及び画像表示装置、並びにその製造方法。

Description

光学積層体、その製造方法、並びにこれを用いた偏光板及び液晶表示装置
 本発明は光学積層体、その製造方法、並びにこれを用いた偏光板及び液晶表示装置に関する。
 画像表示装置において、LCD、タッチパネルを搭載したLCDやEL、電子ペーパーなどは、省電力、軽量、薄型等といった特徴を有していることから、従来のCRTディスプレイに替わり、近年急速に普及している。
 このような画像表示装置の表面や内部に用いる光学積層体は、通常、取扱い時に傷が付かないように硬度を付与することが要求されることから、光透過性基材上にハードコート層などを設けることにより、硬度を付与することが一般になされている。例えばLCDにおいては、液晶セルの画像表示面側に偏光素子が配置されており、偏光板保護フィルムとして、光透過性基材上にハードコート層を設けたハードコートフィルムを利用することにより、画像表示面に硬度を付与することが一般になされている。
 従来、このようなハードコートフィルムの光透過性基材として、トリアセチルセルロースに代表されるセルロースエステルからなるフィルムが用いられていた。これは、セルロースエステルは、透明性、光学等方性に優れ、面内にほとんど位相差を持たない(リタデーション値が低い)ため、入射直線偏光の振動方向を変化させることが極めて少なく、液晶表示装置の表示品質への影響が少ないことや、適度な透水性を有することから、光学積層体を用いてなる偏光板を製造した時に偏光子に残留した水分を、光学積層体を通して乾燥させることができる等の利点に基づくものである。
 しかしながら、セルロースエステルフィルムは、コスト的には不利な素材であり、また、耐湿性及び耐熱性が充分でなく、セルロースエステルフィルムを基材とするハードコートフィルムを偏光板保護フィルムとして高温多湿の環境下で使用すると、偏光機能や色相等の偏光板機能を低下させるという欠点があった。
 このようなセルロースエステルフィルムの問題点から、透明性、耐湿性、耐熱性、機械強度に優れ、かつ、セルロースエステルフィルムに比べて安価で市場において入手が容易な、アクリル樹脂を主成分とする透明プラスチック基材を用いることが提案されている。
 しかしながら、アクリル樹脂を主成分とする基材の片面若しくは両面にハードコート層を形成した光学積層体では、アクリル基材とハードコート層との密着性に劣るという問題があった。また、アクリル基材とハードコート層との間の屈折率差に起因して、干渉縞が発生して外観不良になるといった問題もあった。
 このような問題点に対し、例えば、特許文献1には、基材フィルムにコロナ放電処理、酸化処理等の物理的な処理のほか、アンカー剤又はプライマーと呼ばれる塗料の塗布を行った後、ハードコート層を形成することで、基材フィルムとハードコート層との密着性の向上を図ることが開示されている。また、例えば特許文献2には、干渉縞の防止に関して、基材フィルムとハードコート層との界面に凹凸を形成する方法が開示されている。
 しかしながら、これらの方法では、ハードコートフィルムの製造に必要な工程が増え、特別な処理をする必要があることから、生産性に欠けるものであった。
特開2011-81359号公報 特開平8-197670号公報
 本発明は、このような状況下で、アクリル基材上に樹脂層を有する光学積層体において、干渉縞の発生を抑制し、かつアクリル基材と樹脂層との密着性を向上すること、及びこの光学積層体を効率よく製造する方法を提供することを目的とする。
 本発明者は、前記課題を解決するために鋭意研究を重ねた結果、有機微粒子を含有するアクリル基材の一方の面上に樹脂層を形成し、アクリル基材中の有機微粒子を樹脂層に移行させることで上記課題を解決し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
  すなわち、本発明は、以下の発明を提供するものである。
[1]有機微粒子Aを含有するアクリル基材の一方の面上に、バインダー樹脂及び有機微粒子Bを含有する樹脂層を有する光学積層体であって、光学積層体の厚さ方向の断面において、光学積層体の厚さ方向に垂直な方向にとった基準長さ30μmにおいて、アクリル基材-樹脂層界面の谷部のうち、最深の谷底から深い順に3番目までの平均深さを基準深さとし、次いでアクリル基材-樹脂層界面の山部のうち、最高の山頂から高い順に3番目までの平均高さを基準高さとし、該基準高さと基準深さとの高低差が150~500nmである光学積層体。
[2]前記有機微粒子Aの平均粒子径Daに対する、前記有機微粒子Bの平均粒子径Dbの比が、1.05~1.80倍である[1]に記載の光学積層体。
[3]前記有機微粒子Aは凝集体を形成せず、その平均粒子径が10~400nmである[1]又は[2]に記載の光学積層体。
[4]光学積層体の厚さ方向の断面において、前記樹脂層内の領域Sにおける有機微粒子Bの個数に対し、該領域Sのアクリル基材側とは反対側の表面から10%の厚みの領域Tにおける有機微粒子Bの個数が3%以下である[1]~[3]のいずれかに記載の光学積層体。
[5]前記有機微粒子Bが、樹脂層の最表面に露出していない[1]~[4]のいずれかに記載の光学積層体。
[6]前記有機微粒子Bが、前記バインダー樹脂及び有機微粒子Aを含有する[1]~[5]のいずれかに記載の光学積層体。
[7]前記樹脂層がハードコート層である[1]~[6]のいずれかに記載の光学積層体。
[8]前記樹脂層がさらに機能性粒子を含有する[1]~[7]のいずれかに記載の光学積層体。
[9]偏光膜の少なくとも一方の面に[1]~[8]のいずれかに記載の光学積層体を積層してなる偏光板。
[10][1]~[8]のいずれかに記載の光学積層体及び/又は[9]に記載の偏光板を備える画像表示装置。
[11]有機微粒子A及びアクリル樹脂含有バインダーを含むアクリル基材上に、溶媒を含む樹脂層形成用組成物を塗布し、有機微粒子Aを該硬化性樹脂組成物中に移行させ、乾燥し、樹脂層を形成する[1]~[8]のいずれかに記載の光学積層体の製造方法。
[12]前記溶媒がメチルイソブチルケトンを含有する[11]に記載の光学積層体の製造方法。
[13]前記溶媒がさらにアルコールを含む[12]に記載の光学積層体の製造方法。
[14]有機微粒子A及びアクリル樹脂含有バインダーを含むアクリル基材上に、溶媒を含む樹脂層形成用組成物を塗布し、有機微粒子Aを樹脂層組成物に移行させ、乾燥し、樹脂層を形成する、光学積層体の密着性改良方法。
[15]有機微粒子A及びアクリル樹脂含有バインダーを含むアクリル基材上に、溶媒を含む樹脂層形成用組成物を塗布し、有機微粒子Aを樹脂層組成物に移行させ、乾燥し、樹脂層を形成する、光学積層体の干渉縞防止方法。
 本発明の光学積層体は、アクリル基材上に樹脂層を有し、干渉縞の発生が抑制され、かつアクリル基材と樹脂層との密着性に優れた光学積層体であって、また、本発明の光学積層体の製造方法は、上記光学積層体を効率よく製造することができる。
本発明の光学積層体の一態様の断面を示す走査型透過電子顕微鏡写真(STEM)である。 本発明の光学積層体の一態様の断面において、アクリル基材-樹脂層界面を拡大して示す走査型透過電子顕微鏡写真(STEM)である。 本発明の光学積層体の一態様の断面を示す模式図である。 本発明の光学積層体のアクリル基材-樹脂層界面の稜線、及び基準高さと基準深さとの高低差を示す模式図である。 領域Sの範囲を説明する本発明の光学積層体の断面を示す模式図である。 領域Tの範囲を説明する本発明の光学積層体の断面を示す模式図である。
 本発明に係る光学積層体は、有機微粒子Aを含有するアクリル基材の一方の面上に、バインダー樹脂及び有機微粒子Bを含有する樹脂層を有する光学積層体であって、光学積層体の厚さ方向の断面において、光学積層体の厚さ方向に垂直な方向にとった基準長さ30μmにおいて、アクリル基材-樹脂層界面の谷部のうち、最深の谷底から深い順に3番目までの平均深さを基準深さとし、次いでアクリル基材-樹脂層界面の山部のうち、最高の山頂から高い順に3番目のまでの平均高さを基準高さとし、該基準高さと基準深さとの高低差が150~500nmであることを特徴とする。
 本発明の光学積層体におけるアクリル基材と樹脂層との界面(以下、アクリル基材-樹脂層界面と略記することがある。)に形成される凹凸について、図面を用いてより詳細に説明する。
 図1は、本発明の光学積層体の断面を、走査型透過電子顕微鏡(日立ハイテクノロジー製、S4800)により倍率6,000倍、加速電圧30kVにて撮像した写真であり、図2は、倍率を50,000倍とした以外は同様にして撮像したアクリル基材と樹脂層の界面の写真である。
 図3は、本発明の光学積層体のアクリル基材と樹脂層の界面を模式的に示した断面図である。
 図3に示すように、本発明の光学積層体は、光学積層体の厚さ方向の断面において、アクリル基材-樹脂層界面4が凹凸を有している。
(基準高さと基準深さとの高低差)
 また、本発明の光学積層体は、前記光学積層体の厚さ方向の断面において、光学積層体の厚さ方向に垂直な方向にとった基準長さ30μmにて、アクリル基材-樹脂層界面の谷部のうち、最深の谷底から深い順に3番目までの平均深さを基準深さとし、次いでアクリル基材-樹脂層界面の山部のうち、最高の山頂から高い順に3番目までの平均高さを基準高さとし、該基準高さと基準深さとの高低差が150~500nmであり、該高低差はより好ましくは175~450nmであり、さらに好ましくは200~400nmである。この高低差が500nm以下であると、ヘイズの発生、コントラストの低下を抑制できる。また、上記高低差が150nm以上であると、アクリル基材-樹脂層界面間に十分なアンカー効果が生じて密着性が改善するとともに、干渉縞も発生しにくくなる。
 前記基準深さと平均高さとの高低差は、具体的には以下のようにして測定する。
(基準高さと基準深さとの高低差の測定方法)
 図4に示すように、前記光学積層体の厚さ方向の断面において、アクリル基材-樹脂層界面が、山部及び谷部を有する稜線を示し、光学積層体の厚さ方向をy軸(但し、樹脂層側が正の向き)、該y軸に垂直な方向をx軸とするxy平面において、該x軸方向に30μmの基準長さLをとり、該基準長さLにおいて稜線が有する極小点4bのうち、y座標が最も小さいものから順に3点(4b-1)を選択し、その平均y座標を基準深さ5bとし、一方、該基準長さLにおいて稜線が有する極大点4aのうち、y座標が最も大きいものから順に3点(4a-1)を選択し、その平均y座標を基準高さ5aとし、この基準深さ5bと基準高さ5aとの差(絶対値)が、基準深さ5bと基準高さ5aとの高低差である。
 尚、電子顕微鏡写真の撮像は、透過型走査電子顕微鏡を用いて、倍率10,000~60,000倍程度で撮像することが好ましい。
 また、本発明の光学積層体は、アクリル基材及び樹脂層の厚さ方向の断面において、アクリル基材-樹脂層界面が、山部及び谷部を有する稜線を示し、前記アクリル基材及び樹脂層の厚さ方向に垂直な方向にとった基準長さ30μmにおける前記稜線の長さが31~50μmであることが好ましく、該稜線の長さが33~42μmであることがより好ましい。該稜線の長さが31μm以上であると、アクリル基材-樹脂層界面が十分な面積を有し、密着性が向上する。また、平坦な部分が少なくなるため、干渉縞の発生を抑制する観点からも好ましい。一方、該稜線の長さが50μm以下であると、光学積層体において界面反射の増加が抑えられ、コントラストの低下が抑制される。また、ヘイズの発生を抑制する観点からも好ましい。
 前記稜線の長さは、具体的には以下に示すようにして測定する。
(基準長さ30μmにおける稜線の長さの測定方法)
 ここで、上記基準長さ30μmにおける稜線の長さは、例えば、画像解析ソフト(イメージプロ、Media Cybernetic社製)を用いた上記断面の画像解析により測定することができる。具体的には、電子顕微鏡などにより断面観察を行った画像を用い、上記画像解析ソフトを用いて、上記画像内の樹脂層と基材フィルム端部間の直線上に上記基準長さをとり、上記画像解析ソフトを用いて該基準長さにおける上記界面の長さを測定する。更に具体的には画像解析ソフトImage-Pro Plus、Sharp Stackバージョン6.2を用い、測定、較正、空間の較正ウィザード、アクティブな画像を構成、単位(microns)と操作を行い、画像のスケールに合わせて定義線を引き、較正を行う。較正後、距離測定で界面の両末端の2点間に基準長さをとる。次にマニュアル測定でトレース線を作成(閾値=3、平滑化=0、速度=3、ノイズ=5、自動)し、末端に標準をあわせることで自動的に曲線を測定し、実測値を読み取り界面の長さとする。
<アクリル基材>
 上記アクリル基材は、有機微粒子A及びアクリル樹脂含有バインダーを含む。
(アクリル樹脂含有バインダー)
 本発明の光学積層体においては、アクリル基材がアクリル樹脂バインダーを含むため、トリアセチルセルロース(TAC)からなる基材を備えたものと比較して、耐湿性、耐熱性に優れるとともに、シワの発生を好適に防止することができる。なお、本明細書において、「アクリル樹脂」とは、アクリル系のもの及び/又はメタクリル系のものを意味する。
 これらのアクリル樹脂を含む基材フィルムは、TACからなる基材フィルムと比較して、機械的強度及び平滑性に優れ、また、透湿度が低く、高温高湿環境下における耐湿性、耐熱性等の耐久性に優れたものである。
 上記アクリル樹脂としては、メタクリル酸アルキル単位を主体とする重合体が好ましい。具体的には、メタクリル酸アルキルの単独重合体又はメタクリル酸アルキルを2種以上用いた共重合体であってもよいし、メタクリル酸アルキル50質量%以上とメタクリル酸アルキル以外の単量体50質量%以下との共重合体であってもよい。メタクリル酸アルキルとしては通常、そのアルキル基の炭素数が1~4のものが用いられ、なかでもメタクリル酸メチルが好ましく用いられる。
 また、メタクリル酸アルキル以外の単量体は、分子内に1個の重合性炭素-炭素二重結合を有する単官能単量体であってもよいし、分子内に2個以上の重合性炭素-炭素二重結合を有する多官能単量体であってもよいが、特に単官能単量体が好ましく用いられる。その例としては、アクリル酸メチルやアクリル酸エチルのようなアクリル酸アルキル、スチレンやアルキルスチレンのようなスチレン系単量体、アクリロニトリルやメタクリロニトリルのような不飽和ニトリルなどが挙げられる。共重合成分としてアクリル酸アルキルを用いる場合、そのアルキル基は通常、炭素数1~8程度である。アクリル系樹脂の単量体組成は、単量体全体の量を基準にして、メタクリル酸アルキルが、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上であり、また好ましくは99質量%以下である。
 また、上記アクリル樹脂含有バインダーは、ガラス転移点(Tg)が110~140℃であることが好ましく、120~130℃であることがより好ましい。アクリル樹脂含有バインダーのガラス転移点(Tg)が110℃以上であると、樹脂層を形成する際に熱皺の発生を抑制でき、また、樹脂層形成用組成物に含まれる溶媒によりダメージを受けにくく、一方、140℃以下であると、樹脂層との界面に凹凸を形成しやすい。
 バインダー樹脂としては、アクリル樹脂以外の樹脂を含んでもよいが、全バインダー樹脂のうちアクリル樹脂の割合が80質量%以上であることが好ましく、90質量%以上であることがより好ましい。
(有機微粒子A)
 上記有機微粒子Aとしては、ゴム弾性を示す層を含むゴム弾性体粒子が好ましく用いられる。このゴム弾性体粒子は、ゴム弾性を示す層のみからなる粒子であってもよいし、ゴム弾性を示す層とともに他の層を有する多層構造の粒子であってもよい。アクリル基材が有機微粒子Aを含むことで、アクリル基材の曲げ性が良好となり、また、溶媒等によりクラックが生じることも抑制される。
 また、上記有機微粒子Aとしては、核及び殻からなるコアシェル構造のものが好ましく用いられる。
 有機微粒子Aの材料としては、透明なものが好ましく、例えば、オレフィン系弾性重合体、ジエン系弾性重合体、スチレン-ジエン系弾性共重合体、アクリル系弾性重合体などが挙げられる。なかでも、光学積層体の表面硬度、耐光性、透明性の観点及び、温度に対する屈折率の変化がバインダーのアクリル樹脂と近しいので、広い温度範囲で透明性を有することができるとの観点から、アクリル系弾性重合体が好ましく用いられる。
 アクリル系弾性重合体としては、(メタ)アクリル酸エステルを主体とする重合体が好ましい。これは、(メタ)アクリル酸エステルの単独重合体であってもよいし、(メタ)アクリル酸エステル50質量%以上とそれ以外の単量体50質量%以下との共重合体であってもよい。(メタ)アクリル酸エステルとしては通常、アルキル基の炭素数が4~8である(メタ)アクリル酸アルキルエステルが用いられる。アクリル酸エステル以外の単量体を共重合させる場合、その例としては、スチレンやアルキルスチレンのようなスチレン系単量体、アクリロニトリルやメタクリロニトリルのような不飽和ニトリルなどの単官能単量体、また、(メタ)アクリル酸アリルや(メタ)アクリル酸メタリルのような不飽和カルボン酸のアルケニルエステル、マレイン酸ジアリルのような二塩基酸のジアルケニルエステル、アルキレングリコールジ(メタ)アクリレートのようなグリコール類の不飽和カルボン酸ジエステルなどの多官能単量体が挙げられる。
 なお、後述するように、樹脂層中で有機微粒子Aを膨潤させて有機微粒子Bとする観点および、有機粒子Bに歪緩和作用を有させるとの観点からは、架橋密度を抑えて適度な弾性を有することが好ましい。また、有機微粒子Aはポリメタクリル酸メチル、アクリル酸メチル、アクリル酸ブチル、スチレン、アクリロニトリル、ベンゾアクリレート、アクリル酸及びメタアクリル酸の中から任意に選ばれるモノマーと共重合したアクリル弾性共重合体であることが好ましい。
 有機微粒子Aとしては、平均粒子径が10~400nmのものが好ましく、50~300nmのものがより好ましい。平均粒子径を10nm以上とすることにより、アクリル基材に発生するマイクロクラックの伝播を効果的に抑止することができ、400nm以下とすることにより、ヘイズの上昇を抑えることができる。また、有機微粒子Aは、アクリル基材中において凝集体を形成していないことが好ましい。
 有機微粒子A及び後述する有機微粒子Bの平均粒径の測定においては、光学積層体の断面を透過型電子顕微鏡(STEM)で、倍率10,000倍から30,000倍で撮像した画面において、無作為に10個の有機微粒子を抽出し、各々の粒子径を算出した後、その数平均値を平均粒径とする。各粒子の直径は、粒子の断面において、最も長い径と最も短い径との平均値とする。同じ光学積層体の断面にて、同じ測定をn3で行い、3回分の平均値を最終的な平均粒径とした。
 アクリル基材における有機微粒子Aの含有量は、有機微粒子A及びバインダー樹脂の合計量を基準に、25~45質量%の割合であることが好ましい。有機微粒子Aをこの割合で配合することにより、アクリル基材に発生するマイクロクラックの伝播を抑止することができるとともに、フィルム加工適正を保つと共に、ヘイズの上昇を抑えることができる。
 上記アクリル基材の厚さとしては、15~800μmであることが好ましい。用途によって、板状または、巻き取り可能な厚さを選択できる。板状の場合、より好ましい厚さは、上限が200μmであり、下限が300μmである。巻取り可能な厚さの場合は、上限が100μm、下限が20μmであることがより好ましい。上記アクリル基材の厚さが15μm以上であると、本発明の光学積層体にシワが発生しにくく、一方、100μm以下であると、本発明の光学積層体や最終製品全体の薄さに優れる。
 また上記アクリル基材は、延伸して用いてもよいが、延伸倍率が高すぎると、有機微粒子Aとバインダー樹脂との界面領域において亀裂が入ったり、有機微粒子Aが飛び出したりして光学積層体のヘイズが上昇する虞がある。
 アクリル基材に後述する樹脂層を形成すると、有機微粒子Aが樹脂層中に移行するとともに、アクリル基材のバインダー成分も樹脂層中に移行する。このため、アクリル基材は当初の厚みに比べて、樹脂層を形成した後の厚みが減少する。この減少の程度は、0.5~4μmが好ましい。この範囲であると、すなわちアクリル基材-樹脂層界面が、好ましい稜線となり、密着性、干渉縞防止性および硬度も良好にできる。一方、減少が4μmを超えると、界面状態が悪くなるとともに、樹脂層の材料に硬度が高いものを用いても、樹脂層の硬度が低下してしまう。また、減少が0.5μm未満であると、界面の稜線がうまく形成できず、密着性、干渉縞防止性が低下してしまう。
 また、本発明において、上記アクリル基材には本発明の趣旨を逸脱しない範囲で、けん化処理、グロー放電処理、コロナ放電処理、紫外線(UV)処理、及び火炎処理等の表面処理を行ってもよい。
<樹脂層>
 前記樹脂層は、上述の有機微粒子Bを含む。この有機微粒子Bは、有機微粒子A及びアクリル樹脂含有バインダーを含むアクリル基材上に、後述する樹脂層形成用組成物を塗布することで、アクリル基材中の有機微粒子Aを浮き出させ、樹脂層形成用組成物中に移行させ、乾燥、硬化することで、アクリル基材から移行した有機微粒子Aに前記樹脂層形成用組成物に含まれるバインダーのうちの少なくとも一部の成分が含浸して有機微粒子Bとなる。このような製造方法により得られる本発明の光学積層体は、アクリル基材-樹脂層界面が、上述のようにアクリル基材-樹脂層界面における基準高さと基準深さとが所定の高低差を有するものとなる。
 本発明の光学積層体は、アクリル基材-樹脂層界面付近においてアクリル基材のアクリル樹脂含有バインダーと、樹脂層のバインダー樹脂とが混ざり合って一体化している。この結果、樹脂層側又はアクリル基材側から、光学積層体の垂直方向に力がかかった場合に、割れにくくなるという特異な効果が発現する。これに対し、単にアクリル基材上にハードコート層等を設けた場合、ハードコート層が割れると共にアクリル基材までも割れてしまう。これは、界面でアクリル基材と樹脂層の物理的な性能が滑らかに変化することで、垂直方向に加えられた応力歪が界面においても滑らかに伝播されたり、硬い樹脂層に弾性を有する有機微粒子が樹脂層の界面近傍に入り込むため、界面での応力歪が吸収されるためであると推認される。
 前記有機微粒子Aの屈折率は、アクリル基材に内部へイズの発生が無いようにするため、基本的には上述のアクリル樹脂含有バインダーと屈折率はほぼ同じであることが好ましい。具体的には、有機微粒子Aとアクリル樹脂含有バインダーとの屈折率差は、0.00~0.03であることが好ましい。
 また、有機微粒子Aの屈折率と、樹脂層のバインダー樹脂との屈折率が異なっていても、樹脂層形成用組成物をアクリル基材に塗布した際に有機微粒子A中に樹脂層形成用組成物中のモノマー等のバインダー成分の少なくとも一部成分が含浸することで、樹脂層中に含まれる有機微粒子B(アクリル基材側から樹脂層に移行した有機微粒子A)は、樹脂層との屈折率差が小さくなることで、新たな内部ヘイズの発生が抑制される。このような2種類の屈折率の異なる材料を用いた場合に、片方の成分を他方に含浸させる方法は、2種類の材料の界面部分において屈折率をグラデーションで変化させたり、2種類の材料の中間の屈折率とすることが出来、内部へイズ抑制に有効である。
 したがって、有機微粒子Bの平均粒子径(Db)は、樹脂層形成用組成物を吸収してアクリル基材中の有機微粒子Aの平均粒子径(Da)よりも大きくなる程度が好ましい。具体的には、アクリル基材中の有機微粒子Aの平均粒子径(Da)に対し、樹脂層中の有機微粒子Bの平均粒子径(Db)の比[Db/Da]が1.05倍以上となる程度であると、有機微粒子Bと樹脂層の屈折率差による内部ヘイズの低下が発現するため好ましく、また1.80倍以下であると樹脂層中における有機微粒子Bがあまりに大粒径となることが抑えられ、樹脂層表面の凹凸発現による新たな表面ヘイズの発生を抑制することができるため好ましい。同様に、Db/Daは1.05~1.80倍であることがより好ましく、1.10~1.60倍であることがさらに好ましい。
 尚、樹脂層中の有機微粒子Bについて平均粒子径を測定する方法は、上述のアクリル基材中の有機微粒子Aにおけるものと同様である。
 また、樹脂層中の有機微粒子Bは、樹脂層最表面に露出していても、露出していなくてもよいが、光学積層体表面が凹凸となることを効果的に防止でき、解像度、コントラスト等に優れた光学積層体が得られることから、樹脂層最表面に露出していないことが好ましい。なお、有機微粒子Bに樹脂層の少なくとも一部の成分が含浸することで、内部ヘイズの発生を防ぐばかりでなく、有機微粒子Bと樹脂層の接着性向上にも寄与している。
 また、有機微粒子Aは架橋密度が低く適度な弾力性を有しているので、硬化収縮して樹脂層が形成されるとき、収縮応力を緩和する作用を有することで表面凹凸形成を抑制すると共に、樹脂層の応力歪を減少することで接着性を担保する。
 本発明では、上述したように、有機微粒子Bが樹脂層最表面に露出していないことが好ましい。また、樹脂層の表面付近の有機微粒子Bの存在率が、樹脂層の内部の有機微粒子Bの存在率よりも低いことがより好ましい。具体的には、光学積層体の厚さ方向の断面において、樹脂層内の領域Sにおける有機微粒子Bの個数に対し、該領域Sのアクリル基材側とは反対側の表面から10%の厚みの領域Tにおける有機微粒子Bの個数が3%以下であることが好ましい。有機微粒子Bの存在率をこのような範囲とすることにより、樹脂層の硬度の低下を防止することができる。
 有機微粒子の個数を算出する際は、樹脂層全体と、アクリル基材の少なくとも上部が写されており、かつ、有機微粒子の存在が確認できている倍率3000~10000倍のSTEM断面写真を用いて、目視観察により行う。また、本発明では、少なくとも3箇所のSTEM断面写真を用い、それぞれのSTEM断面写真において領域Tにおける有機微粒子Bの、樹脂層内の領域Sにおける有機微粒子Bに対する比率を求め、その平均値を算出し、該平均値を領域Tにおける有機微粒子Bの比率とし、本発明においては、この比率を有機微粒子Bの存在率とした。
 以下、領域S及び領域Tを確定する方法について図5及び図6を参照しつつ具体的に説明する。
 まず、観察する光学積層体の層が、極力水平となるようにSTEM断面写真を撮影する。次に、断面写真に垂直となり、かつ、互いの間隔が10μmとなる垂線L及び垂線Rを引く。そして、垂線Lと樹脂層表面との交点L1、垂線Lとアクリル基材-樹脂層界面との交点L2、垂線Rと樹脂層表面との交点R1、垂線Rとアクリル基材-樹脂層界面との交点R2をそれぞれ設け、これら4点を頂点とする四角形領域を領域Sと定義する。
 上記領域Sにおいて、交点L1と交点L2との距離と、交点R1と交点R2との距離の距離をそれぞれ求め、その平均値を平均高さh1とする。そして、交点L1と交点L2とを繋ぐ線分上で、交点L1からの距離が平均高さh1の10%である点を点LMとし、また、交点R1と交点R2とを繋ぐ線分上で、交点R1からの距離が平均高さh1の10%である点を点RMとし、交点L1、交点R1、点LM、及び点RMを頂点とする四角形領域を領域Tと定義する。
 上記樹脂層は、ハードコート性能を有するハードコート層であることが好ましく、該ハードコート層は、硬度が、JIS K5600-5-4(1999)による鉛筆硬度試験(荷重4.9N)において、H以上であることが好ましく、2H以上であることがより好ましい。また、上記樹脂層は、機能性粒子を含有するものであってもよい。
 樹脂層を形成する樹脂層形成用組成物の具体例としては、電子線硬化性樹脂組成物や紫外線硬化性樹脂組成物(以下、「電離放射線硬化性樹脂組成物」と記載することがある。)、あるいは熱硬化性樹脂組成物が挙げられる。
 上記電子線硬化性樹脂組成物は、光重合性モノマー及び/又は光重合性プレポリマー及び/又は光重合性ポリマー(以下、「光重合性モノマー/プレポリマー」と略記することがある。)を含有し、上記紫外線硬化性樹脂組成物は、光重合性モノマー及び/又は光重合性プレポリマーと光重合開始剤とを含有する。
 上記光重合性モノマーとしては、例えば、アクリレート系の官能基を有する化合物等の1又は2以上の不飽和結合を有するものを挙げることができる。1の不飽和結合を有するものとしては、例えば、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等を挙げることができる。2以上の不飽和結合を有するものとしては、例えば、ポリメチロールプロパントリ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等及びこれらをエチレンオキサイド(EО)等で変性した多官能化合物、又は、上記多官能化合物と(メタ)アクリレート等の反応生成物(例えば多価アルコールのポリ(メタ)アクリレートエステル)等を挙げることができる。なお、本明細書において「(メタ)アクリレート」とは、メタクリレート及びアクリレートを指すものである。
 本発明における好ましい光重合性モノマーとしては、3以上の不飽和結合を有する化合物が挙げられ、これらを用いると形成する樹脂層の架橋密度を高めることができ、塗膜硬度を良好にできる。具体的には、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ポリエステル多官能アクリレートオリゴマー(3~15官能)、ウレタン多官能アクリレートオリゴマー(3~15官能)等を適宜組み合わせて用いることが好ましい。
 上記電離放射線硬化性樹脂組成物は、上記光重合性モノマーのほかに、不飽和二重結合を有する比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等の樹脂を含有していてもよい。なお、この場合の樹脂とは、モノマー以外のダイマー、オリゴマー、ポリマー全てを含む。
 上記電離放射線硬化性樹脂組成物は、さらに溶媒乾燥型樹脂を含有していてもよい。溶媒乾燥型樹脂を併用することによって、塗布面の被膜欠陥を有効に防止することができる。なお、上記溶媒乾燥型樹脂とは、熱可塑性樹脂等、塗工時に固形分を調整するために添加した溶媒を乾燥させるだけで、被膜となるような樹脂をいう。
 上記溶媒乾燥型樹脂としては特に限定されず、一般に、熱可塑性樹脂を使用することができる。
 上記熱可塑性樹脂としては特に限定されず、例えば、スチレン系樹脂、(メタ)アクリル系樹脂、酢酸ビニル系樹脂、ビニルエーテル系樹脂、ハロゲン含有樹脂、脂環式オレフィン系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、セルロース誘導体、シリコーン系樹脂及びゴム又はエラストマー等を挙げることができる。上記熱可塑性樹脂は、非結晶性で、かつ有機溶媒(特に複数のポリマーや硬化性化合物を溶解可能な共通溶媒)に可溶であることが好ましい。特に、製膜性、透明性や耐候性の観点から、スチレン系樹脂、(メタ)アクリル系樹脂、脂環式オレフィン系樹脂、ポリエステル系樹脂、セルロース誘導体(セルロースエステル類等)等が好ましい。
 また、上記電離放射線硬化性樹脂組成物は、さらに後述する熱硬化性樹脂を含有していてもよい。
 上記光重合開始剤としては特に限定されず、公知のものを用いることができ、例えば、上記光重合開始剤としては、具体例には、アセトフェノン類、ベンゾフェノン類、ミヒラーベンゾイルベンゾエート、α-アミロキシムエステル、チオキサントン類、プロピオフェノン類、ベンジル類、ベンゾイン類、アシルホスフィンオキシド類が挙げられる。また、光増感剤を混合して用いることが好ましく、その具体例としては、例えば、n-ブチルアミン、トリエチルアミン、ポリ-n-ブチルホスフィン等が挙げられる。
 上記光重合開始剤としては、上記光重合性モノマー/プレポリマーがラジカル重合性不飽和基を有する樹脂系の場合は、アセトフェノン類、ベンゾフェノン類、チオキサントン類、ベンゾイン、ベンゾインメチルエーテル等を単独又は混合して用いることが好ましく、1-ヒドロキシ-シクロヘキシル-フェニル-ケトンが、電離放射線硬化型樹脂との相溶性、及び、黄変も少ないという理由から特に好ましい。また、上記光重合性モノマー/プレポリマーがカチオン重合性官能基を有する場合は、上記光重合開始剤としては、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、メタロセン化合物、ベンゾインスルホン酸エステル等を単独又は混合物として用いることが好ましい。
 上記紫外線硬化性樹脂組成物における上記光重合開始剤の含有量は、上記光重合性モノマー/プレポリマー100質量部に対して、1~10質量部であることが好ましい。光重合開始剤の含有量が1質量部以上であると、本発明の光学積層体における樹脂層の硬度を上述した範囲とすることができ、10質量部以下であると、未反応開始剤の残留による樹脂劣化を抑えると共に、樹脂層表面の均一性が得られないおそれがあるためである。
 上記光重合開始剤の含有量のより好ましい下限は、光重合性モノマー/プレポリマー100質量部に対して2質量部であり、より好ましい上限は8質量部である。
 上記樹脂層形成用組成物として用いられる熱硬化性樹脂組成物は、熱硬化性樹脂を含有する。
 上記熱硬化性樹脂としては特に限定されず、例えば、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、グアナミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、メラミン-尿素共縮合樹脂、ケイ素樹脂、ポリシロキサン樹脂等を挙げることができる。
 上記樹脂層形成用組成物は、溶媒を含有していてもよい。
 この溶媒は、アクリル基材を適度に膨潤させ、有機微粒子Aが樹脂組成物中に移行させやすいものを選択することが好ましい。ただし、アクリル基材は、従来よく用いられているTAC基材とは異なり、ほぼあらゆる種類の溶媒で膨潤する。よって溶媒による影響が強く、膨潤度が強すぎると割れる場合もあるため、以下の溶媒を選択することで、適度に膨潤させることができ、基材を構成する樹脂成分と樹脂層を構成する樹脂成分とが移動するバランスが適度になり、界面において好ましい稜線を得ることができる。溶媒は、使用する樹脂成分の種類及び溶解性に応じて選択して使用することができる。
 このような溶媒としては、アルコール類(メタノール、エタノール、イソプロパノール、1-ブタノール)が好ましい。また、その他の各溶媒種類においては炭素数がより多いものが良好な傾向があり、その中でも蒸発速度が速いものが良好な傾向がある。例えば、ケトン類であれば、メチルイソブチルケトン、芳香族炭化水素類であればトルエン、グリコール類であればプロピレングリコールモノメチルエーテル等が例示でき、これらの混合溶媒であってもよい。
 特に本発明においては、樹脂との相溶性、塗工性に優れ、また、アクリル基材-樹脂層界面に本願の特異な凹凸形状が形成され有機微粒子を樹脂層への移行が可能であり、更には加工時に基材が切れる不具合が出ない、という理由から、とりわけメチルイソブチルケトン、イソプロパノール及び1-ブタノール、プロピレングリコールモノメチルエーテルから選択される一種以上を含むものが好ましい。これらの溶媒であると、アクリル基材が割れることなく適度に膨潤でき、かつ、有機微粒子A及びアクリル樹脂含有バインダーを含むアクリル基材上に、溶媒を含む樹脂層形成組成物を塗布することで、有機微粒子Aを樹脂層に移行させることが容易にできる。
 逆に、エステル類(酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等)や、ケトン類(アセトン、メチルエチルケトン、シクロヘキサノン、ジアセトンアルコール)、セロソルブ類、エーテル類(ジオキサン、テトラヒドロフラン、プロピレングリコールモノメチルエーテルアセテート等)、脂肪族炭化水素類(ヘキサン等)、芳香族炭化水素類(キシレン)、ハロゲン化炭素類(ジクロロメタン、ジクロロエタン等)、セロソルブ類(メチルセロソルブ、エチルセロソルブ等)、セロソルブアセテート類、スルホキシド類(ジメチルスルホキシド等)、アミド類(ジメチルホルムアミド、ジメチルアセトアミド等)は、アクリル基材を過剰に膨潤させる場合があり、テンションで基材が割れるおそれがあるため、基材にテンションがかかる場合には使用しないことが好ましい。ただし、樹脂層組成物に用いる化合物によっては、これらの溶媒を含まないと組成物全体の相溶性が得られない等、使う必要性が生じる場合もある。その場合には、本来は使用をひかえたほうがよい溶媒を、溶媒全体量の25質量%未満に抑えることで基材が割れることを防止できる。例えば、メチルエチルケトンを使う必要性がある場合には、好ましい溶媒であるメチルイソブチルケトン、イソプロパノール及び1-ブタノール、プロピレングリコールモノメチルエーテルから選択した1種以上の溶媒を75質量%以上含ませるとよい。
 上記樹脂層形成用組成物中における溶媒の含有割合としては特に限定されないが、例えば上述の好ましい溶媒については、樹脂層形成用組成物の固形分100質量部に対して、75~300質量部が好ましく、100~220質量部であることがより好ましい。溶媒の含有割合が上記範囲以内であると、上述の基準長さ30μmにおける稜線の長さ、基準高さと基準深さとの高低差を満たすものが容易に得られる。樹脂層形成用組成物の固形分100質量部に対して、溶媒の含有割合が75質量部以上であると、上述の基準長さ30μmにおける稜線の長さ、基準高さと基準深さとの高低差が大きくなり、300質量部以下であると、これらが小さくなる。
 また、有機微粒子Aを樹脂組成物中に移行させやすくするためには、樹脂層組成物がモノマー及び/又はオリゴマーを含むことが好ましく、モノマーを含むことがより好ましい。モノマー及び/又はオリゴマーは、溶媒とともにアクリル基材に浸透しやすいためである。一方、ポリマーはアクリル基材に浸透しづらい。
 上記樹脂層形成用組成物には、樹脂層の硬度を高くする、硬化収縮を抑える、ブロッキングを防止する、熱・湿度・光に対する安定性を付与する、屈折率を制御する、防眩性を付与する、樹脂層表面の性質を変える等の目的に応じて、従来公知の有機、無機微粒子、分散剤、界面活性剤、帯電防止剤、シランカップリング剤、増粘剤、着色防止剤、着色剤(顔料、染料)、消泡剤、レベリング剤、防汚剤、抗菌剤、防曇剤、難燃剤、紫外線吸収剤、接着付与剤、重合禁止剤、酸化防止剤、表面改質剤等の機能性成分を添加していてもよい。
 また、上記樹脂層形成用組成物は、光増感剤を混合して用いてもよく、その具体例としては、例えば、n-ブチルアミン、トリエチルアミン、ポリ-n-ブチルホスフィン等が挙げられる。
 上記樹脂層形成用組成物の調製方法としては各成分を均一に混合できれば特に限定されず、例えば、ペイントシェーカー、ビーズミル、ニーダー、ミキサー等の公知の装置を使用して行うことができる。
 また、上記樹脂層形成用組成物を上記アクリル基材上に塗布する方法としては特に限定されず、例えば、スピンコート法、ディップ法、スプレー法、ダイコート法、バーコート法、グラビアコート法、ロールコーター法、メニスカスコーター法、フレキソ印刷法、スクリーン印刷法、ピードコーター法等の公知の方法を挙げることができる。
 上記アクリル基材上に上記樹脂層形成用組成物を塗布して形成した塗膜は、必要に応じて加熱及び/又は乾燥し、活性エネルギー線照射等により硬化させることが好ましい。
 乾燥工程における乾燥時間は、好ましくは20秒~2分であり、より好ましくは30秒~1分である。また、乾燥工程における乾燥温度は、好ましくは40~90℃であり、より好ましくは50~80℃である。
 乾燥温度が100℃を超えると、アクリルへの膨潤性が好ましい溶媒を選択していても、溶媒の浸透力などがアップし、基材が割れる場合があるため、乾燥温度は、どの溶媒を用いる場合でも基本的に90℃以下であることが好ましい。例えば、好ましい溶媒としてメチルイソブチルケトンがあるが、この溶媒であっても乾燥温度が100℃であると張力をかけた場合、アクリル基材が切れる場合がある。
 最低温度は、溶媒が乾燥でき、また、有機微粒子Aを樹脂層に移行させやすいため、50℃以上が好ましい。例えば、メチルイソブチルケトンで乾燥温度が30℃であった場合は、乾燥不十分のまま紫外線などで硬化することになり、その場合は硬化がうまくいかず、未硬化部分も生じる。このときは、密着性が低下することがある。
 有機微粒子A及びアクリル樹脂含有バインダーを含むアクリル基材上に、溶媒を含む樹脂層形成用組成物を塗布し、有機微粒子Aを樹脂層に移行させるためには、溶媒の種類、樹脂層形成用組成物中の溶媒の量、および乾燥温度等を上述した好適な条件とすることが好ましい。
 上記活性エネルギー線照射としては、紫外線又は電子線による照射が挙げられる。
 上記紫外線照射における紫外線源の具体例としては、例えば、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク灯、ブラックライト蛍光灯、メタルハライドランプ灯等の光源が挙げられる。また、紫外線の波長としては、190~380nmの波長域を使用することができる。
 上記電子線照射における電子線源の具体例としては、コッククロフトワルト型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、又は直線型、ダイナミトロン型、高周波型等の各種電子線加速器が挙げられる。
 尚、有機微粒子A中に光重合性モノマー等が含浸した場合、活性エネルギー線照射工程において当該光重合性モノマー等も硬化し、この結果有機微粒子Bに含浸した樹脂層のバインダー成分は有機微粒子B中で固定され、平均粒子径は、有機微粒子Aよりも大きくなっている。
 なお、上記樹脂層の好ましい膜厚(硬化時)は0.5~100μm、より好ましくは0.8~20μm、カール防止性やクラック防止性が特に優れるので、さらに好ましくは2~10μmの範囲であり、よりさらに好ましくは2~5μmの範囲である。上記樹脂層の膜厚は、断面を電子顕微鏡(SEM、TEM、STEM)で観察し、任意の10点を測定した平均値(μm)である。
 樹脂層中には、アクリル基材から移行した有機微粒子B以外の粒子(その他の粒子)を含んでいてもよい。
 上記樹脂層組成物中に機能性成分を含有させることで、樹脂層にさらに機能を賦与することができる。
 機能性成分としては、帯電防止剤、屈折率調整剤、防汚剤、スリップ剤、防眩剤、ハードコート性付与剤等、通常の光学シートに用いられるものが挙げられる。
 帯電防止剤としては有機系のものが好ましく、より具体的には、リチウムイオン塩、4級アンモニウム塩、イオン性液体などのイオン性のものや、ポリチオフェン、ポリアニリン、ポリピロール、ポリアセチレン等の電子伝導性のものが挙げられる。
 防汚剤としては、フッ素、シリコーンなどの防汚剤が挙げられる。
 上記機能性成分を用いる場合、その含有量は、樹脂層形成用組成物中の全固形分の合計質量に対して0.1~10質量%であることが好ましい。
 尚、本発明の光学積層体は、帯電防止剤を含む樹脂層形成用組成物を用いて樹脂層を形成した場合(すなわち、樹脂層が帯電防止剤を含有する場合)、アクリル基材から移行する成分の影響で帯電防止剤が樹脂層の上面に局在化するので、帯電防止性能がさらに向上する。また、シリカ、アルミナ等の超微粒子をハードコート性付与剤として含む樹脂層形成用組成物を用いて樹脂層を形成した場合(すなわち、樹脂層がハードコート性付与剤を含有する場合)、ハードコート性は、局在化しなかった場合と比較し、JIS K5600-5-4で規定される鉛筆硬度は2Hが3H、3Hが4Hになる程度に良好に出来る。また、局在化するため、ハードコート性を付与するために上記無機超微粒子を添加する添加量も層全体に含有させるよりもごく少量の添加でよい。
 また、本発明の光学積層体は、上記樹脂層上に直接、反射防止層、ハードコート層、防汚層、防眩層、帯電防止層、及び高屈折率層から選択される1つ以上を有していてもよい。
<反射防止層>
 反射防止層としては、好ましくは1)シリカ又はフッ化マグネシウム等の低屈折率無機微粒子を含有する樹脂、2)低屈折率樹脂であるフッ素系樹脂、3)シリカ又はフッ化マグネシウム等の低屈折率無機微粒子を含有するフッ素系樹脂、4)シリカ又はフッ化マグネシウム等の低屈折率無機薄膜等のいずれかを含む反射防止層形成用組成物を用いて形成する。フッ素系樹脂以外の樹脂については、上述したバインダー樹脂と同様の樹脂を用いることができる。
 また、上述したシリカは、中空シリカ微粒子であることが好ましく、このような中空シリカ微粒子は、例えば、特開2005-099778号公報の実施例に記載の製造方法にて作製できる。
 これらの反射防止層は、その屈折率が1.47以下、特に1.42以下であることが好ましい。また、反射防止層の厚みは限定されないが、通常は10nm~1μm程度の範囲内から適宜設定すれば良い。
 上記フッ素系樹脂としては、少なくとも分子中にフッ素原子を含む重合性化合物又はその重合体を用いることができる。重合性化合物としては特に限定されないが、例えば、電離放射線で硬化する官能基、熱硬化する極性基等の硬化反応性の基を有するものが好ましい。また、これらの反応性の基を同時に併せ持つ化合物でもよい。この重合性化合物に対し、重合体とは、上記のような反応性基などを一切もたないものである。
 上記電離放射線で硬化する官能基を有する重合性化合物としては、エチレン性不飽和結合を有するフッ素含有モノマーを広く用いることができる。より具体的には、フルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロブタジエン、パーフルオロ-2,2-ジメチル-1,3-ジオキソール等)を例示することができる。(メタ)アクリロイルオキシ基を有するものとしては、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3,3-ペンタフルオロプロピル(メタ)アクリレート、2-(パーフルオロブチル)エチル(メタ)アクリレート、2-(パーフルオロヘキシル)エチル(メタ)アクリレート、2-(パーフルオロオクチル)エチル(メタ)アクリレート、2-(パーフルオロデシル)エチル(メタ)アクリレート、α-トリフルオロメタクリル酸メチル、α-トリフルオロメタクリル酸エチルのような、分子中にフッ素原子を有する(メタ)アクリレート化合物;分子中に、フッ素原子を少なくとも3個持つ炭素数1~14のフルオロアルキル基、フルオロシクロアルキル基又はフルオロアルキレン基と、少なくとも2個の(メタ)アクリロイルオキシ基とを有する含フッ素多官能(メタ)アクリル酸エステル化合物等もある。
 上記熱硬化する極性基として好ましいのは、例えば、水酸基、カルボキシル基、アミノ基、エポキシ基等の水素結合形成基である。これらは、塗膜との密着性だけでなく、シリカ等の無機超微粒子との親和性にも優れている。熱硬化性極性基を持つ重合性化合物としては、例えば、4-フルオロエチレン-パーフルオロアルキルビニルエーテル共重合体;フルオロエチレン-炭化水素系ビニルエーテル共重合体;エポキシ、ポリウレタン、セルロース、フェノール、ポリイミド等の各樹脂のフッ素変性品等が挙げられる。
 上記電離放射線で硬化する官能基と熱硬化する極性基とを併せ持つ重合性化合物としては、アクリル又はメタクリル酸の部分及び完全フッ素化アルキル、アルケニル、アリールエステル類、完全又は部分フッ素化ビニルエーテル類、完全又は部分フッ素化ビニルエステル類、完全又は部分フッ素化ビニルケトン類等を例示することができる。
 また、フッ素系樹脂としては、例えば、次のようなものを挙げることができる。
 上記電離放射線硬化性基を有する重合性化合物の含フッ素(メタ)アクリレート化合物を少なくとも1種類含むモノマー又はモノマー混合物の重合体;上記含フッ素(メタ)アクリレート化合物の少なくとも1種類と、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレートの如き分子中にフッ素原子を含まない(メタ)アクリレート化合物との共重合体;フルオロエチレン、フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレン、3,3,3-トリフルオロプロピレン、1,1,2-トリクロロ-3,3,3-トリフルオロプロピレン、ヘキサフルオロプロピレンのような含フッ素モノマーの単独重合体又は共重合体など。これらの共重合体にシリコーン成分を含有させたシリコーン含有フッ化ビニリデン共重合体も用いることができる。この場合のシリコーン成分としては、(ポリ)ジメチルシロキサン、(ポリ)ジエチルシロキサン、(ポリ)ジフェニルシロキサン、(ポリ)メチルフェニルシロキサン、アルキル変性(ポリ)ジメチルシロキサン、アゾ基含有(ポリ)ジメチルシロキサン、ジメチルシリコーン、フェニルメチルシリコーン、アルキル変性シリコーン、アラルキル変性シリコーン、フルオロシリコーン、ポリエーテル変性シリコーン、脂肪酸エステル変性シリコーン、メチル水素シリコーン、シラノール基含有シリコーン、アルコキシ基含有シリコーン、フェノール基含有シリコーン、メタクリル変性シリコーン、アクリル変性シリコーン、アミノ変性シリコーン、カルボン酸変性シリコーン、カルビノール変性シリコーン、エポキシ変性シリコーン、メルカプト変性シリコーン、フッ素変性シリコーン、ポリエーテル変性シリコーン等が例示される。なかでも、ジメチルシロキサン構造を有するものが好ましい。
 更には、以下のような化合物からなる非重合体又は重合体も、フッ素系樹脂として用いることができる。すなわち、分子中に少なくとも1個のイソシアナト基を有する含フッ素化合物と、アミノ基、ヒドロキシル基、カルボキシル基のようなイソシアナト基と反応する官能基を分子中に少なくとも1個有する化合物とを反応させて得られる化合物;フッ素含有ポリエーテルポリオール、フッ素含有アルキルポリオール、フッ素含有ポリエステルポリオール、フッ素含有ε-カプロラクトン変性ポリオールのようなフッ素含有ポリオールと、イソシアナト基を有する化合物とを反応させて得られる化合物等を用いることができる。
 また、反射防止層形成用組成物は、上記したフッ素原子を持つ重合性化合物や重合体とともに、上記に記載したような各バインダー樹脂を含有してもよい。更に、反応性基等を硬化させるための硬化剤、塗工性を向上させたり、防汚性を付与させたりするために、各種添加剤、溶媒を適宜使用することができる。
 上記反射防止層の形成においては、上記反射防止層形成用組成物の粘度を好ましい塗布性が得られる0.5~5mPa・s(25℃)、好ましくは0.7~3mPa・s(25℃)の範囲のものとすることが好ましい。可視光線の優れた反射防止層を実現でき、かつ、均一で塗布ムラのない薄膜を形成することができ、かつ、密着性に特に優れた反射防止層を形成することができる。
 反射防止層の樹脂の硬化手段は、前述の樹脂層における硬化手段と同様であってよい。硬化処理のために加熱手段が利用される場合には、加熱により、例えばラジカルを発生して重合性化合物の重合を開始させる熱重合開始剤が反射防止層形成用組成物に添加されることが好ましい。
 本発明の光学積層体は、全光線透過率が80%以上であることが好ましい。80%未満であると、画像表示装置に装着した場合において、色再現性や視認性を損なうおそれがある他、所望のコントラストが得られないおそれがある。上記全光線透過率は、90%以上であることがより好ましい。
 上記全光線透過率は、ヘイズメーター(村上色彩技術研究所製、製品番号;HM-150)を用いてJIS K-7361に準拠した方法により測定することができる。
 また、本発明の光学積層体は、ヘイズが1%以下であることが好ましい。1%以下であると、所望の光学特性が得られ、本発明の光学積層体を画像表示表面に設置した際の光学特性の低下が防止できる。更に好ましいヘイズは0.5%以下である。ただし、樹脂層の機能として防眩性を付与した場合には、ヘイズはこの限りではなく、好ましい防眩性によって光学積層体全体のヘイズを、1%から50%まで設計できる。コントラストを重要視した動画や高精細画像を目的とする場合には、上限を5%以下とするのが好ましい。
 上記ヘイズは、ヘイズメーター(村上色彩技術研究所製、製品番号;HM-150)を用いてJIS K-7136に準拠した方法により測定することができる。
 本発明の偏光板は、偏光膜の少なくとも一方の面に本発明の光学積層体を積層してなりる。
 上記偏光膜としては特に限定されず、例えば、ヨウ素等により染色し、延伸したポリビニルアルコールフィルム、ポリビニルホルマールフィルム、ポリビニルアセタールフィルム、エチレン-酢酸ビニル共重合体系ケン化フィルム等を使用することができる。上記偏光膜と上記光学積層体とのラミネート処理においては、アクリル基材にケン化処理を行うことが好ましい。ケン化処理によって、接着性が良好になり帯電防止効果も得ることができる。
 本発明は、上記光学積層体及び/又は上記偏光板を備えてなる画像表示装置をも提供する。
 上記画像表示装置としては、テレビ、コンピュータ、LCD、PDP、FED、ELD(有機EL、無機EL)、CRT、タブレットPC、電子ペーパー、携帯電話等が挙げられ、さらに、画像表示装置等に用いられるタッチパネルにも好適に用いることができる。
 上記の代表的な例であるLCDは、透過性表示体と、上記透過性表示体を背面から照射する光源装置とを備えてなるものである。本発明の画像表示装置がLCDである場合、この透過性表示体の表面に、本発明の光学積層体及び/又は本発明の偏光板が形成されてなるものである。ただし、タッチパネルを搭載した画像表示装置の場合、表面に限らず、タッチパネルを構成する透明基板としても用いることができる。
 上記の代表的な例であるLCDは、透過性表示体と、上記透過性表示体を背面から照射する光源装置とを備えてなるものである。本発明の画像表示装置がLCDである場合、この透過性表示体の表面に、本発明の光学積層体及び/又は本発明の偏光板が形成されてなるものである。また、タッチパネルを搭載した画像表示装置の場合やLCDでも場合によって、表面に限らず、装置内部を構成する透明基板などとしても用いることができる。
 本発明の液晶表示装置においては、光源装置の光源は光学積層体や偏光板の下側から照射する。なお、液晶表示素子と偏光板との間に、位相差板が挿入されてよい。この液晶表示装置の各層間には必要に応じて接着剤層が設けられてよい。
 ここで、本発明が上記光学積層体有する液晶表示装置の場合、該液晶表示装置において、バックライト光源としては特に限定されないが、白色発光ダイオード(白色LED)であることが好ましく、本発明の画像表示装置は、バックライト光源として白色発光ダイオードを備えたVAモード又はIPSモードの液晶表示装置であることが好ましい。
 上記白色LEDとは、蛍光体方式、すなわち化合物半導体を使用した青色光又は紫外光を発する発光ダイオードと蛍光体を組み合わせることにより白色を発する素子のことである。なかでも、化合物半導体を使用した青色発光ダイオードとイットリウム・アルミニウム・ガーネット系黄色蛍光体とを組み合わせた発光素子からなる白色発光ダイオードは、連続的で幅広い発光スペクトルを有していることから反射防止性能及び明所コントラストの改善に有効であるとともに、発光効率にも優れるため、本発明における上記バックライト光源として好適である。また、消費電力の小さい白色LEDを広汎に利用可能になるので、省エネルギー化の効果も奏することが可能となる。
 また、上記VA(Vertical Alignment)モードとは、電圧無印加のときに液晶分子が液晶セルの基板に垂直になるように配向されて暗表示を示し、電圧の印加で液晶分子を倒れ込ますことで明表示を示す動作モードである。
 また、上記IPS(In-Plane Switching)モードとは、液晶セルの一方の基板に設けた櫛形電極対に印加された横方向の電界により、液晶を基板面内で回転させて表示を行う方式である。
 上記画像表示装置であるPDPは、表面に電極を形成した表面ガラス基板と、当該表面ガラス基板に対向して間に放電ガスが封入されて配置され、電極及び、微小な溝を表面に形成し、溝内に赤、緑、青の蛍光体層を形成した背面ガラス基板とを備えてなるものである。本発明の画像表示装置がPDPである場合、上記表面ガラス基板の表面、又はその前面板(ガラス基板又はフィルム基板)に上述した光学積層体を備えるものでもある。
 上記画像表示装置は、電圧をかけると発光する硫化亜鉛、ジアミン類物質:発光体をガラス基板に蒸着し、基板にかける電圧を制御して表示を行うELD装置、又は、電気信号を光に変換し、人間の目に見える像を発生させるCRTなどの画像表示装置であってもよい。この場合、上記のような各表示装置の最表面又はその前面板の表面に上述した光学積層体を備えるものである。
 本発明の光学積層体は、有機微粒子A及びアクリル樹脂含有バインダーを含むアクリル基材上に、溶媒を含む樹脂層形成用組成物を塗布し、有機微粒子Aを樹脂層組成物に移行させ、乾燥し、樹脂層を形成することにより製造することができる。
 有機微粒子Aを樹脂層組成物に移行させるためには、溶媒の種類、樹脂層形成用組成物中の溶媒の量、および乾燥温度等を上述した好適な条件とすることが好ましい。
 樹脂層組成物が硬化系である場合、有機微粒子A及びアクリル樹脂含有バインダーを含むアクリル基材上に、溶媒を含む硬化性樹脂組成物を塗布し、有機微粒子Aを該硬化性樹脂組成物中に移行させ、乾燥し、硬化性樹脂組成物を硬化して樹脂層を形成することにより、光学積層体を製造することができる。
 また、本発明の光学積層体の密着性改良方法は、有機微粒子A及びアクリル樹脂含有バインダーを含むアクリル基材上に、溶媒を含む樹脂層形成用組成物を塗布し、有機微粒子Aを樹脂層組成物に移行させ、乾燥し、樹脂層を形成してなるものである。
 密着性を適切に改良するためには、溶媒の種類、樹脂層形成用組成物中の溶媒の量、および乾燥温度等を上述した好適な条件とすることが好ましい。
 また、本発明の光学積層体の干渉縞防止方法は、有機微粒子A及びアクリル樹脂含有バインダーを含むアクリル基材上に、溶媒を含む樹脂層形成用組成物を塗布し、有機微粒子Aを樹脂層組成物に移行させ、乾燥し、樹脂層を形成してなるものである。
 干渉縞を適切に防止するためには、溶媒の種類、樹脂層形成用組成物中の溶媒の量、および乾燥温度等を上述した好適な条件とすることが好ましい。
 次に、本発明を実施例によりさらに詳細に説明するが、本発明はこの例によってなんら限定されるものではない。
実施例1
(樹脂層形成用組成物の調製)
 ペンタエリスリトールトリアクリレート 50質量部、及びテトラエチレングリコールジアクリレート(東亞合成株式会社製、「M240」)50質量部を、メチルイソブチルケトン150質量部に溶解させ、樹脂層形成用組成物を調製した。
 尚、第1表に樹脂層形成用組成物の組成を示す。
(樹脂層の形成)
 最内層が、メタクリル酸メチルを主成分として得られた硬質の重合体、中間層が、アクリル酸ブチルを主成分として重合された軟質の弾性体、最外層が、メタクリル酸メチルを主成分として用いて重合された硬質の重合体からなる3層構造のコアシェル型ゴム粒子と、メタクリル酸メチルを主成分として得られた重合体をバインダーとして含む40μmのアクリル基材上に、ダイコート法により、樹脂層形成用組成物を塗工し、70℃にて1分間乾燥させて溶媒を蒸発させ、乾燥後の塗布量が4g/m2となるように樹脂層を形成した。得られた塗膜に、照射量200mJ/cm2で紫外線を照射して塗膜を完全硬化(フルキュアー状態)させ、3.2μmの硬化後膜厚の光学積層体を得た。
実施例2~12及び比較例1~8
 樹脂層形成用組成物の組成を第1表に示すものに変更した以外は、実施例1と同様にして光学積層体を得た。ただし、比較例3に関しては、コアシェル型ゴム粒子を含まないものをアクリル基材として用いた。
 実施例1~12及び比較例1~8で得られた光学積層体につき、下記の評価を行った。結果を第1表に示す。
(基準高さと基準深さとの高低差)
 図4に示すように、前記光学積層体の厚さ方向の断面において、アクリル基材-樹脂層界面が、山部及び谷部を有する稜線を示し、光学積層体の厚さ方向をy軸(但し、樹脂層側が正の向き)、該y軸に垂直な方向をx軸とするxy平面において、該x軸方向に30μmの基準長さLをとり、該基準長さLにおいて稜線が有する極小点4bのうち、y座標が最も小さいものから順に3点(4b-1)を選択し、その平均y座標を基準深さ5bとし、一方、該基準長さLにおいて稜線が有する極大点4aのうち、y座標が最も大きいものから順に3点(4a-1)を選択し、その平均y座標を基準高さ5aとし、この基準深さ5bと基準高さ5aとの差(絶対値)が、基準深さ5bと基準高さ5aとの高低差とした。
(基準長さ30μmにおける稜線の長さ)
 得られた光学積層体の厚さ方向の断面を、走査型透過電子顕微鏡(STEM)を用いて撮像し、その画面に基づき、上述の「基準30mにおける稜線の長さの測定方法」に基づき測定した。
(平均粒子径)
 得られた光学積層体の厚さ方向の断面を、走査型透過電子顕微鏡(STEM)を用いて撮像し、倍率10,000倍から30,000倍でその画面に基づき、アクリル基材中の有機微粒子A及び樹脂層中の有機微粒子Bのそれぞれについて、無作為に10個の有機微粒子を抽出し、各々の粒子径を算出した後、その数平均値を平均粒径とした。同じ光学積層体の断面にて、同じ測定をn3で行い、3回分の平均値を最終的な平均粒径とした。
(有機微粒子の膨潤)
 アクリル樹脂基材中の有機微粒子Aの平均粒子径と、樹脂層中の有機微粒子Bの平均粒子径との比より、以下の基準で評価した。
A:有機微粒子Aの平均粒子径に対する有機微粒子Bの平均粒子径の比が1.05倍以上であった。
C:有機微粒子Aの平均粒子径に対する有機微粒子Bの平均粒子径の比が1.05倍未満であった。
(密着性)
 JIS K 5600に基づき、光学積層体の樹脂層に、1mm角で合計100目の碁盤目を入れ、ニチバン(株)製工業用24mmセロテープ(登録商標)を用いて5回連続剥離試験を行い、残っているマス目の数量を計測した。
(干渉縞)
 光学積層体の樹脂層と反対側の面に黒色のテープを貼合した後、三波長管蛍光灯およびフナテック製のナトリウムランプ下にて目視にて干渉縞の有無の評価を行った。蛍光灯及びナトリウムランプのいずれにおいても干渉縞が視認できないものをAAとし、三波長管蛍光灯では三波長干渉縞が視認できないが、ナトリウムランプでは薄く干渉縞が視認出来たものをAとし、三波長管蛍光灯で干渉縞が薄く視認出来たものをBとし、三波長管蛍光灯およびナトリウムランプの両方で干渉縞が視認出来たものをCとした。
(ヘイズ)
 光学積層体のヘイズ値(%)を、ヘイズメーター(村上色彩技術研究所製、製品番号;HM-150)を用いてJIS K-7136に従って測定した。ヘイズ値が1.0%以下のものはヘイズが少なく良好である。
(鉛筆硬度)
 光学積層体を温度25℃、相対湿度60%の条件で2時間調湿した後、JIS-S-6006が規定する試験用鉛筆を用いて、JIS K5600-5-4(1999)に規定する鉛筆硬度試験(500g荷重)を行い、傷がつかなかった最も高い硬度を測定した。
(割れ耐性)
 テンシロン万能材料試験機(RTG-1310 株式会社エー・アンド・デイ製)を用いて、引っ張り試験を行い、割れ耐性を評価した。光学積層体を幅10mm、長さ100mmのサンプルとし、テンシロンにて100mm/分にて引っ張り、以下の基準で評価した。
 A:15Nより強く引っ張った場合でも切れない場合
 C:15N以下で切れた場合
(表面抵抗率)
 上記実施例および比較例で作製したそれぞれの光学積層体について、表面抵抗測定器(ハイレスターHT-210、三菱油化株式会社製)を用いて表面抵抗率(Ω/□)を測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び2の結果から明らかなように、実施例1~12のものは、アクリル基材-樹脂層界面の陵線の高低差が150~500nmの範囲であることから、干渉縞が防止されるとともに、アクリル基材と樹脂層との密着性が良好なものであった。なお、実施例1~12のものは、溶媒の種類、溶媒の量及び乾燥温度が適切であり、モノマー及び/又はオリゴマーを含むことから、陵線の高低差を上記範囲内にできたものと考えられる。
 なお、実施例1~12のものは、アクリル基材の樹脂層形成後の厚みの減少が1~4μmの範囲であった。また、実施例1~12のものは、領域Sにおける有機微粒子Bの個数に対し、領域Tにおける有機微粒子Bの個数が3%以下であった。
 一方、比較例1~8のものは、アクリル基材-樹脂層界面の陵線の高低差が150~500nmの範囲外であることから、干渉縞を防止することができず、アクリル基材と樹脂層との密着性も良くないものであった。なお、比較例1,4~6は好ましい溶媒を用いているものの、溶媒全体における好ましい溶媒の比率が低いため、アクリル基材-樹脂層界面付近においてアクリル基材のアクリル樹脂含有バインダーと、樹脂層のバインダー樹脂とが混ざり合って一体化できなかったものと考えられ、比較例2は、好ましい溶媒の比率は良好であるが、用いた樹脂成分がモノマー及び/又はオリゴマーを含まず、アクリル基材に浸透しにくいポリマーだけを含んでいたため、有機微粒子Aが樹脂層中に移行しなかったものと考えられ、比較例3は、有機微粒子Aが樹脂層中に移行するとともに、アクリル基材のバインダー成分も樹脂層中に移行し、これによってアクリル基材-樹脂層界面において一体化されるが、この有機微粒子Aを用いなかったため、移行効果が低下し、一体化されず割れ耐性も悪化したものと考えられ、比較例7は溶媒が不適切で、アクリル基材の膨潤が全く起こらず、有機微粒子Aが樹脂層中に移行しなかったものと考えられる。一方、比較例8は溶媒におけるメチルエチルケトンの割合が高すぎるため、稜線の高低差が大きくなりすぎ、ヘイズが上昇したものと考えられる。
 また、稜線の長さが33μm以上であると、特に密着性が安定して良好であった。実施例8(稜線の長さ:32μm)の光学積層体と、実施例5(稜線の長さ:34μm)の光学積層体について、それぞれ5箇所ずつ密着性試験をしたところ、実施例8の光学積層体では、碁盤目の1目がはがれることはなかったが、切り込みを入れた部分の隅が若干はがれる場合もあった。一方、実施例5の光学積層体においては、切り込み部分においても密着していた。
 さらに、アクリル基材-樹脂層界面の稜線の高低差が200~400μmの範囲内のものであっても、稜線の長さが42μmを超えた場合には、ヘイズ値としては現れないが、明室にて黒いアクリル板などに光学積層体を載せた厳しい外観目視検査を行ったところ、稜線の長さが42μm以下のものと比較して、製品にできる範囲ではあるが、非常に薄い濁りが見られた。
 なお、比較例1~7のものは、アクリル基材の樹脂層形成後の厚みの減少が1μm未満であった。
PETA:ペンタエリスリトールトリアクリレート
DPHA:ジペンタエリスリトールヘキサアクリレート、日本化薬株式会社製
M240:テトラエチレングリコールジアクリレート、東亞合成株式会社製、「M240」、分子量:286
TMPTA:トリメチロールプロパントリアクリレート、日本化薬株式会社製
ALEN10:エトキシ化o-フェニルフェノールアクリレート、新中村化学工業株式会社製
BS577:ウレタンアクリレート、荒川化学工業製
UV1700B:ウレタンアクリレート、日本合成化学工業株式会社製
R1403MB:高屈折率ウレタンアクリレート、第一工業製薬株式会社製、「R1403」
BS371:ポリマーアクリレート、荒川化学工業製
帯電防止剤1:4級アンモニウム塩含有ポリマー、大成ファインケミカル社製、「1SX3000」
帯電防止剤2:第4級アンモニウム塩含有化合物、コルコートNR121X、コルコート社製
帯電防止剤3:リチウムビストリフルオロメタンスルホンイミド、住友スリーエム社製、LJ-603010
反応性シリカ:日産化学工業株式会社製、「MIBKSD」、平均粒径:12nm
MIBK:メチルイソブチルケトン
MEK:メチルエチルケトン
Irg184:BASF社製、「Irg184」
 本発明のハードコートフィルムは、陰極線管表示装置(CRT)、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、タッチパネル、電子ペーパー、携帯電話等のディスプレイ、特に高精細化ディスプレイに好適に使用することができる。
1.アクリル基材
2.樹脂層
2a:樹脂層表面
3a.アクリル基材中の有機微粒子
3b.樹脂層中の有機微粒子
4.アクリル基板-樹脂層界面
4a.極大点
4a-1.y座標が最も大きい極大点(3点)
4b.極小点
4b-1.y座標が最も小さい極小点(3点)
5a.基準高さ
5b.基準深さ
h.基準高さと基準深さとの高低差
L:垂線L
R:垂線R
1:交点L1
2:交点L2
1:交点R1
2:交点R2
M:交点LM
M:交点RM
S:領域S
T:領域T
1:平均高さ

Claims (15)

  1.  有機微粒子Aを含有するアクリル基材の一方の面上に、バインダー樹脂及び有機微粒子Bを含有する樹脂層を有する光学積層体であって、光学積層体の厚さ方向の断面において、光学積層体の厚さ方向に垂直な方向にとった基準長さ30μmにおいて、アクリル基材-樹脂層界面の谷部のうち、最深の谷底から深い順に3番目までの平均深さを基準深さとし、次いでアクリル基材-樹脂層界面の山部のうち、最高の山頂から高い順に3番目のまでの平均高さを基準高さとし、該基準高さと基準深さとの高低差が150~500nmである光学積層体。
  2.  前記有機微粒子Aの平均粒子径Daに対する、前記有機微粒子Bの平均粒子径Dbの比が、1.05~1.80倍である請求項1に記載の光学積層体。
  3.  前記有機微粒子Aは凝集体を形成せず、その平均粒子径が10~400nmである請求項1又は2に記載の光学積層体。
  4.  光学積層体の厚さ方向の断面において、前記樹脂層内の領域Sにおける有機微粒子Bの個数に対し、該領域Sのアクリル基材側とは反対側の表面から10%の厚みの領域Tにおける有機微粒子Bの個数が3%以下である請求項1~3のいずれかに記載の光学積層体。
  5.  前記有機微粒子Bが、樹脂層の最表面に露出していない請求項1~4のいずれかに記載の光学積層体。
  6.  前記有機微粒子Bが、前記バインダー樹脂及び有機微粒子Aを含有する請求項1~5のいずれかに記載の光学積層体。
  7.  前記樹脂層がハードコート層である請求項1~6のいずれかに記載の光学積層体。
  8.  前記樹脂層がさらに機能性成分を含有する請求項1~7のいずれかに記載の光学積層体。
  9.  偏光膜の少なくとも一方の面に請求項1~8のいずれかに記載の光学積層体を積層してなる偏光板。
  10.  請求項1~8のいずれかに記載の光学積層体及び/又は請求項9に記載の偏光板を備える画像表示装置。
  11.  有機微粒子A及びアクリル樹脂含有バインダーを含むアクリル基材上に、溶媒を含む樹脂層形成用組成物を塗布し、有機微粒子Aを該組成物中に移行させ、乾燥し、樹脂層を形成する請求項1~8のいずれかに記載の光学積層体の製造方法。
  12.  前記溶媒がメチルイソブチルケトンを含有する請求項11に記載の光学積層体の製造方法。
  13.  前記溶媒がさらにアルコールを含む請求項12に記載の光学積層体の製造方法。
  14.  有機微粒子A及びアクリル樹脂含有バインダーを含むアクリル基材上に、溶媒を含む樹脂層形成用組成物を塗布し、有機微粒子Aを樹脂層組成物に移行させ、乾燥し、樹脂層を形成する、光学積層体の密着性改良方法。
  15.  有機微粒子A及びアクリル樹脂含有バインダーを含むアクリル基材上に、溶媒を含む樹脂層形成用組成物を塗布し、有機微粒子Aを樹脂層組成物に移行させ、乾燥し、樹脂層を形成する、光学積層体の干渉縞防止方法。
PCT/JP2014/050249 2013-01-11 2014-01-09 光学積層体、その製造方法、並びにこれを用いた偏光板及び液晶表示装置 WO2014109370A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157018259A KR102099254B1 (ko) 2013-01-11 2014-01-09 광학 적층체, 그 제조 방법, 및 이것을 사용한 편광판 및 액정 표시 장치
CN201480004087.8A CN104903763B (zh) 2013-01-11 2014-01-09 光学层叠体、其制造方法以及使用其的偏振片及液晶显示装置
US14/759,899 US9568648B2 (en) 2013-01-11 2014-01-09 Optical laminated body, method for manufacturing same, and polarization plate and liquid-crystal display device using optical laminated body
JP2014556442A JP6481368B2 (ja) 2013-01-11 2014-01-09 光学積層体、その製造方法、並びにこれを用いた偏光板及び液晶表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-004101 2013-01-11
JP2013004101 2013-01-11

Publications (1)

Publication Number Publication Date
WO2014109370A1 true WO2014109370A1 (ja) 2014-07-17

Family

ID=51167017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050249 WO2014109370A1 (ja) 2013-01-11 2014-01-09 光学積層体、その製造方法、並びにこれを用いた偏光板及び液晶表示装置

Country Status (6)

Country Link
US (1) US9568648B2 (ja)
JP (1) JP6481368B2 (ja)
KR (1) KR102099254B1 (ja)
CN (1) CN104903763B (ja)
TW (1) TWI602699B (ja)
WO (1) WO2014109370A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148825A (ja) * 2015-02-09 2016-08-18 大日本印刷株式会社 光学フィルム、これを備えた偏光板、液晶パネル、画像表示装置
WO2017141781A1 (ja) * 2016-02-15 2017-08-24 シャープ株式会社 光学部材、及び、アクリル系重合性組成物
CN110023795A (zh) * 2016-10-07 2019-07-16 日涂汽车涂料有限公司 光学层叠部件
KR20200056769A (ko) * 2018-11-15 2020-05-25 주식회사 엘지화학 광학 적층체, 편광판, 및 디스플레이 장치
KR20200057143A (ko) * 2018-11-15 2020-05-26 주식회사 엘지화학 광학 적층체, 편광판, 및 디스플레이 장치
KR20200088170A (ko) * 2019-01-14 2020-07-22 주식회사 엘지화학 편광판, 및 디스플레이 장치
JP2021516799A (ja) * 2018-11-15 2021-07-08 エルジー・ケム・リミテッド 光学積層体、偏光板、およびディスプレイ装置
JP2021525396A (ja) * 2019-01-08 2021-09-24 エルジー・ケム・リミテッド 光学積層体、偏光板、およびディスプレイ装置
WO2024048407A1 (ja) * 2022-08-31 2024-03-07 三菱瓦斯化学株式会社 防眩性積層体
WO2024048406A1 (ja) * 2022-08-31 2024-03-07 三菱瓦斯化学株式会社 防眩性積層体

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6486859B2 (ja) 2016-03-29 2019-03-20 日東電工株式会社 偏光フィルムおよび画像表示装置
US20210175394A1 (en) * 2017-11-16 2021-06-10 Panasonic Intellectual Prioerty Managerment Co., Ltd. Wavelength converter
TWI667303B (zh) * 2018-08-02 2019-08-01 明基材料股份有限公司 硬塗層光學膜、具有此硬塗層光學膜的偏光板、及含此硬塗層光學膜及/或偏光板的影像顯示裝置
TWI684632B (zh) * 2018-08-02 2020-02-11 明基材料股份有限公司 抗反射膜、具此抗反射膜之偏光板、及含此抗反射膜及/或含具此抗反射膜之偏光板的影像顯示裝置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08197670A (ja) * 1995-01-27 1996-08-06 Dainippon Printing Co Ltd 表面保護シート及びその製造方法
JP2003205563A (ja) * 2002-01-16 2003-07-22 Toppan Printing Co Ltd 光学フィルム
JP2005281476A (ja) * 2004-03-30 2005-10-13 Tomoegawa Paper Co Ltd 樹脂ビーズ含有塗料及びその製造方法
JP2011081359A (ja) * 2009-09-09 2011-04-21 Nitto Denko Corp 偏光板の製造方法
JP2012145748A (ja) * 2011-01-12 2012-08-02 Dainippon Printing Co Ltd 反射防止フィルム、および反射防止フィルムの製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3680206B2 (ja) * 2000-10-17 2005-08-10 古河スカイ株式会社 被覆層の密着性に優れた被覆用アルミニウム合金板
JP2005352238A (ja) * 2004-06-11 2005-12-22 Dainippon Printing Co Ltd 光拡散部材
TW200712579A (en) * 2005-08-12 2007-04-01 Dainippon Printing Co Ltd Protective film for polarizing plate and polarizing plate
US8557332B2 (en) * 2006-03-28 2013-10-15 Fujifilm Corporation Production method of optical film, optical film and image display
JP5252811B2 (ja) * 2006-05-16 2013-07-31 日東電工株式会社 防眩性ハードコートフィルム、偏光板および画像表示装置
JP5220286B2 (ja) * 2006-06-15 2013-06-26 日東電工株式会社 防眩性ハードコートフィルム、それを用いた偏光板および画像表示装置
JP5359270B2 (ja) * 2006-06-30 2013-12-04 王子ホールディングス株式会社 単粒子膜エッチングマスクを用いた微細構造体の製造方法およびナノインプリント用または射出成型用モールドの製造方法
WO2008075619A1 (ja) * 2006-12-19 2008-06-26 Zeon Corporation 光学フィルム
US8208197B2 (en) * 2007-02-19 2012-06-26 Fujifilm Corporation Optical film, and polarizing plate and liquid crystal display device using the optical film
JP5262609B2 (ja) * 2008-11-17 2013-08-14 大日本印刷株式会社 光学シートの製造方法
JP5724171B2 (ja) * 2009-01-09 2015-05-27 ソニー株式会社 光学素子およびその製造方法、原盤およびその製造方法、ならびに表示装置
JP5521354B2 (ja) * 2009-02-27 2014-06-11 三菱レイヨン株式会社 微細凹凸構造を表面に有する透明フィルムおよびその製造方法
US8916266B2 (en) * 2009-03-11 2014-12-23 Asahi Kasei E-Materials Corporation Coating composition, coating film, laminate, and process for production of laminate
JP5271293B2 (ja) * 2010-02-07 2013-08-21 三菱樹脂株式会社 積層ポリエステルフィルム
JP5842320B2 (ja) * 2010-09-16 2016-01-13 大日本印刷株式会社 光学フィルムの製造方法、光学フィルム、偏光板及び画像表示装置
US9346239B2 (en) * 2012-09-26 2016-05-24 Eastman Kodak Company Method for providing patterns of functional materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08197670A (ja) * 1995-01-27 1996-08-06 Dainippon Printing Co Ltd 表面保護シート及びその製造方法
JP2003205563A (ja) * 2002-01-16 2003-07-22 Toppan Printing Co Ltd 光学フィルム
JP2005281476A (ja) * 2004-03-30 2005-10-13 Tomoegawa Paper Co Ltd 樹脂ビーズ含有塗料及びその製造方法
JP2011081359A (ja) * 2009-09-09 2011-04-21 Nitto Denko Corp 偏光板の製造方法
JP2012145748A (ja) * 2011-01-12 2012-08-02 Dainippon Printing Co Ltd 反射防止フィルム、および反射防止フィルムの製造方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148825A (ja) * 2015-02-09 2016-08-18 大日本印刷株式会社 光学フィルム、これを備えた偏光板、液晶パネル、画像表示装置
WO2017141781A1 (ja) * 2016-02-15 2017-08-24 シャープ株式会社 光学部材、及び、アクリル系重合性組成物
CN110023795A (zh) * 2016-10-07 2019-07-16 日涂汽车涂料有限公司 光学层叠部件
CN110023795B (zh) * 2016-10-07 2021-06-29 日涂汽车涂料有限公司 光学层叠部件
US11550080B2 (en) 2016-10-07 2023-01-10 Nippon Paint Automotive Coatings Co., Ltd. Optical laminated member
KR102440277B1 (ko) * 2018-11-15 2022-09-02 주식회사 엘지화학 광학 적층체, 편광판, 및 디스플레이 장치
KR20200056769A (ko) * 2018-11-15 2020-05-25 주식회사 엘지화학 광학 적층체, 편광판, 및 디스플레이 장치
KR20200057143A (ko) * 2018-11-15 2020-05-26 주식회사 엘지화학 광학 적층체, 편광판, 및 디스플레이 장치
JP7378871B2 (ja) 2018-11-15 2023-11-14 エルジー・ケム・リミテッド 光学積層体、偏光板、およびディスプレイ装置
JP2021516799A (ja) * 2018-11-15 2021-07-08 エルジー・ケム・リミテッド 光学積層体、偏光板、およびディスプレイ装置
KR102428883B1 (ko) * 2018-11-15 2022-08-03 주식회사 엘지화학 광학 적층체, 편광판, 및 디스플레이 장치
JP7164128B2 (ja) 2019-01-08 2022-11-01 エルジー・ケム・リミテッド 光学積層体、偏光板、およびディスプレイ装置
JP2021525396A (ja) * 2019-01-08 2021-09-24 エルジー・ケム・リミテッド 光学積層体、偏光板、およびディスプレイ装置
US11860340B2 (en) 2019-01-08 2024-01-02 Lg Chem, Ltd. Optical laminate, polarizing plate, and display device
JP2021525395A (ja) * 2019-01-14 2021-09-24 エルジー・ケム・リミテッド 偏光板、およびディスプレイ装置
KR20200088170A (ko) * 2019-01-14 2020-07-22 주식회사 엘지화학 편광판, 및 디스플레이 장치
KR102608213B1 (ko) * 2019-01-14 2023-11-29 주식회사 엘지화학 편광판, 및 디스플레이 장치
WO2024048407A1 (ja) * 2022-08-31 2024-03-07 三菱瓦斯化学株式会社 防眩性積層体
WO2024048406A1 (ja) * 2022-08-31 2024-03-07 三菱瓦斯化学株式会社 防眩性積層体

Also Published As

Publication number Publication date
CN104903763B (zh) 2018-02-16
CN104903763A (zh) 2015-09-09
US9568648B2 (en) 2017-02-14
KR20150105331A (ko) 2015-09-16
TWI602699B (zh) 2017-10-21
JPWO2014109370A1 (ja) 2017-01-19
JP6481368B2 (ja) 2019-03-13
KR102099254B1 (ko) 2020-04-10
TW201441039A (zh) 2014-11-01
US20150355386A1 (en) 2015-12-10

Similar Documents

Publication Publication Date Title
JP6481368B2 (ja) 光学積層体、その製造方法、並びにこれを用いた偏光板及び液晶表示装置
JP6935463B2 (ja) 偏光板用保護フィルム及びそれを用いた偏光板
KR101796808B1 (ko) 광학 적층체, 광학 적층체의 제조 방법, 편광판 및 화상 표시 장치
TWI406001B (zh) An optical laminate, a polarizing plate, and an image display device
JP5098662B2 (ja) 光学積層体、偏光板及び画像表示装置
JP5098571B2 (ja) 光学積層体、偏光板及び画像表示装置
JP6268692B2 (ja) 光学積層体、偏光板及び画像表示装置
JP6565186B2 (ja) 光学積層体、これを用いた偏光板及び画像表示装置
JP5076763B2 (ja) 光学積層体の製造方法、光学積層体、偏光板及び画像表示装置
JP2009075354A (ja) 光学積層体、偏光板、及び、画像表示装置
JP6413289B2 (ja) 光学積層体及びその製造方法
JP6217365B2 (ja) 光学積層体、その製造方法、並びにこれを用いた偏光板及び画像表示装置
JP5359652B2 (ja) 光学積層体、偏光板及び画像表示装置
JP2009042554A (ja) 光学積層体、偏光板、及び、画像表示装置
JP2012177700A (ja) 光学積層体の防汚剤ブリードアウトの抑制状態の評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14738024

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014556442

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157018259

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14759899

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14738024

Country of ref document: EP

Kind code of ref document: A1